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ABSTRACT

Hirvonen, Henry
Probing Properties of Quark-Gluon Plasma Using Machine Learning

This thesis focuses on a phenomenological modeling of ultrarelativistic
heavy-ion collisions. The primary objective is to investigate and constrain the
properties of the quark-gluon plasma (QGP) by comparing fluid-dynamical
simulation results with various flow observables measured at CERN-LHC
and BNL-RHIC. To achieve this, the existing EKRT+fluid dynamics heavy-ion
collision framework is further developed, and machine learning techniques
are utilized to reduce the computational cost of complex simulations. These
types of advancements are crucial for the improving understanding of the QGP
properties. The introduction of the thesis provides a general description of
the employed heavy-ion collision framework and discusses the novel features
introduced in this thesis.

The main contributions of this work can be categorized into three develop-
ment areas: dynamical decoupling, neural networks, and the Monte-Carlo EKRT
initial state model. Firstly, incorporating a dynamical decoupling into the fluid-
dynamical framework improved the description of peripheral collision systems,
resulting in a better agreement with the measured flow coefficients compared
to constant temperature decoupling. Secondly, neural networks were trained to
predict flow observables directly from the initial state, effectively replacing the
computationally expensive hydrodynamic simulations and reducing the required
computation time by several orders of magnitude. Finally, a new Monte-Carlo
EKRT initial state model was introduced and successfully applied to the studies
of rapidity distributions of charged particles and their flow coefficients, as well
as midrapidity flow observables.

Keywords: relativistic heavy-ion collisions, quark-gluon plasma, relativistic hy-
drodynamics, machine learning



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Hirvonen, Henry
Kvarkki-gluoniplasman ominaisuuksien tutkiminen koneoppimisen avulla

Tämä väitöskirja keskittyy ultrarelativististen raskasionitörmäysten mallin-
tamiseen. Ensisijainen tavoite on tutkia ja määrittää kvarkki-gluoniplasman
(QGP) ominaisuuksia vertaamalla fluididynaamisten simulaatioden tuloksia
useiden CERN-LHC:ssä ja BNL-RHIC:ssä mitattujen virtausobservaabelei-
den kanssa. Tämän saavuttamiseksi olemassa olevaa EKRT+fluididynamiikka
-raskasionitörmäysmallia on jatkokehitetty ja koneoppimista hyödynnetty mo-
nimutkaisten simulaatioiden nopeuttamiseksi. Tälläiset edistysaskeleet ovat
erittäin tarpeellisia QGP:n ominaisuuksien ymmärtämisen parantamiseksi.
Väitöskirjan johdanto antaa yleiskatsauksen raskasioinitörmäysten kyseisellä
mallilla simuloimisesta ja keskustelee tässä väitöskirjassa esitellyistä mallin
uusista ominaisuuksista.

Tämän työn päätulokset jakautuvat kolmelle kehitysalueelle: dynaaminen
irtikytkeytyminen, neuroverkot ja Monte-Carlo EKRT -alkutilamalli. Ensinnäkin,
dynaamisen irtikytkeytymisen lisääminen malliin paransi perifeeristen törmäys-
systeemien kuvausta, mikä johti parempaan yhteneväisyyteen mitattujen virtaus-
kertoimien kanssa. Toiseksi, neuroverkkoja koulutettiin ennustamaan virtausob-
servaabeleita suoraan alkutilasta, mikä efektiivisesti korvasi laskennallisesti ras-
kaat virtausmekaniikkasimulaatiot ja vähensi tarvittavaa laskenta-aikaa useilla
kertaluokilla. Viimeiseksi, uusi Monte Carlo EKRT -alkutilamalli esiteltiin ja si-
tä sovellettiin menestyksellisesti varattujen hiukkasten rapiditeettijakaumien ja
virtauskertoimien sekä myös keskirapiditeetin mittaussuureiden tarkasteluun.

Avainsanat: relativistiset raskasionitörmäykset, kvarkki-gluoniplasma, relativis-
tinen virtausmekaniikka, koneoppiminen



Author Henry Hirvonen
Department of Physics
University of Jyväskylä
Finland

Supervisors University Researcher Harri Niemi
Department of Physics
University of Jyväskylä
Finland

Professor Kari J. Eskola
Department of Physics
University of Jyväskylä
Finland

Reviewers Research Director Jean-Yves Ollitrault
CNRS, CEA
Institut de Physique Théorique
Université Paris Saclay
France

Associate Professor Matthew Luzum
Department of Mathematical Physics
Institute of Physics
University of São Paulo
Brazil

Opponent Distinguished Scientist Bjoern P. Schenke
Physics Department
Brookhaven National Laboratory
NY, USA



PREFACE

The research presented in this thesis has been carried out at the Department of
Physics at the University of Jyväskylä during the years 2020-2024. This work is
not entirely my doing and could not have been done without the support of many
other people.

First and foremost, I want to thank my supervisors Dr. Harri Niemi and
Prof. Kari J. Eskola for introducing me to the intriguing field of heavy-ion colli-
sions and guiding me throughout this journey. Our countless meetings over the
past years have helped enormously and none of this would have been possible
without your help. Moreover, I wish to thank my collaborators Dr. Jussi Auvinen,
Dr. Yuuka Kanakubo, and MSc. Mikko Kuha for their immense efforts, especially
during the final stretch of this project. I would also like to thank Prof. Matthew
Luzum and Dr. Jean-Yves Ollitrault for agreeing to review the thesis manuscript,
and Dr. Bjoern P. Schenke for agreeing to be my opponent.

I am grateful to the Jenny and Antti Wihuri Foundation for providing finan-
cial support for the last three years. In addition, I would also like to express my
gratitude to the QCD-theory projects at the Helsinki Institute of Physics led by
Tuomas Lappi and Heikki Mäntysaari, the Center of Excellence in Quark Matter
(Projects No. 346325 and 364192) and Academy of Finland Project No. 330448.
This thesis is also part of the European Research Council Project No. ERC-2018-
ADG-835105 YoctoLHC. I also thank the Finnish IT Center for Science for provid-
ing the computing resources.

I have enjoyed my time at the physics department throughout my stud-
ies, and a big reason for that is the colleagues and friends I have made during
these years. I want to especially thank Harri and Jani, with whom I have spent
countless memorable hours during the last nine years. Your friendship has been
invaluable, and I am grateful for each moment we shared. I am also grateful for
the memories made with Tatu, Kasperi, Sami, Jouni, and Joona. It has been a
pleasure. I also want to give special thanks to the Holvi people for the enjoy-
able discussions during the lunch and coffee breaks, and to everyone in the table
tennis group for the fun time spent playing.

Finally, I want to thank my family and my partner, Pragya, for all the sup-
port you have given me. It has meant a lot to me, and I will miss you all im-
mensely when I move to the US.

Jyväskylä, June 2024

Henry Hirvonen



LIST OF INCLUDED ARTICLES

PI Henry Hirvonen, Kari J. Eskola and Harri Niemi. Flow correlations from a
hydrodynamics model with dynamical freeze-out and initial conditions based on
perturbative QCD and saturation. Physical Review C 106 no.4 044913 (2022).

PII Henry Hirvonen, Kari J. Eskola and Harri Niemi. Deep learning for flow
observables in ultrarelativistic heavy-ion collisions. Physical Review C 108
no.3 034905 (2023).

PIII Henry Hirvonen, Kari J. Eskola and Harri Niemi. Deep learning for flow
observables in high energy heavy-ion collisions. arXiv: 2404.02602 [hep-ph]
(2024), to appear in the Proceedings of the 30th International Conference on
Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2024) (2024).

PIV Mikko Kuha, Jussi Auvinen, Kari J. Eskola, Henry Hirvonen, Yuuka
Kanakubo and Harri Niemi. MC-EKRT: Monte Carlo event generator with
saturated minijet production for initializing 3+1 D fluid dynamics in high energy
nuclear collisions. arXiv: 2406.17592 [hep-ph] (2024), submitted to Physical
Review C (2024).

PV Henry Hirvonen, Mikko Kuha, Jussi Auvinen, Kari J. Eskola, Yuuka
Kanakubo and Harri Niemi. Effects of saturation and fluctuating hotspots for
flow observables in ultrarelativistic heavy-ion collisions. arXiv: 2407.01338 [hep-
ph] (2024), submitted to Physical Review C (2024).

Author’s contribution

In Articles [PI, PII, PIII, PV] the author performed all numerical calculations, im-
plemented the bulk viscosity and the dynamical decoupling conditions into the
existing codes, and constructed and trained all the neural networks. For Arti-
cle [PIV], the author participated in the development of the Monte-Carlo EKRT
model. The author wrote the first drafts for Articles [PI, PII, PIII, PV], and partic-
ipated in the completion of all the articles.





CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
PREFACE
LIST OF INCLUDED ARTICLES
CONTENTS

1 INTRODUCTION ............................................................................ 11

2 HEAVY-ION COLLISIONS ............................................................... 14
2.1 Collision kinematics and flow observables .................................. 14
2.2 Boost invariance ....................................................................... 19

3 HYDRODYNAMICS ........................................................................ 21
3.1 Viscous hydrodynamics ............................................................ 22

3.1.1 Israel-Stewart theory...................................................... 24
3.1.2 DNMR theory ............................................................... 25

3.2 QCD matter properties.............................................................. 29
3.2.1 Equation of state............................................................ 29
3.2.2 Transport coefficients ..................................................... 30

4 INITIAL STATE................................................................................ 34
4.1 Nuclear thickness function and nucleon substructure in EKRT...... 35
4.2 Triggering ................................................................................ 36
4.3 Event-by-Event EKRT ............................................................... 37
4.4 Monte-Carlo EKRT ................................................................... 40

4.4.1 Multiple dijet sampling .................................................. 41
4.4.2 Saturation and conservation laws.................................... 42
4.4.3 Free streaming and parton smearing................................ 43
4.4.4 Rapidity-dependent charged particle multiplicity ............. 45

5 DECOUPLING ................................................................................ 48
5.1 Chemical decoupling ................................................................ 48
5.2 Kinetic decoupling.................................................................... 50
5.3 Dynamical decoupling .............................................................. 51

6 MACHINE LEARNING.................................................................... 56
6.1 Neural networks ...................................................................... 57

6.1.1 Convolutional neural networks....................................... 58
6.1.2 Training ........................................................................ 61

6.2 Predicting flow observables directly from the initial state ............. 64
6.2.1 DenseNet ...................................................................... 64
6.2.2 Initial energy density as an input .................................... 66
6.2.3 Additional inputs .......................................................... 69



7 SATURATION DYNAMICS OF MONTE-CARLO EKRT WITH NEU-
RAL NETWORKS ............................................................................ 72

8 CONCLUSIONS .............................................................................. 75

REFERENCES.......................................................................................... 77
INCLUDED ARTICLES



1 INTRODUCTION

The elementary particles are the smallest construction blocks of matter. During
the past decades, we have managed to gain a deeper understanding of how these
particles interact with each other and form matter. All of the visible matter on
Earth is primarily constructed from electrons, protons, and neutrons. The elec-
trons have been known to be point-like elementary particles since the early 1900s
and for a long time the same was thought to apply to protons and neutrons as
well. This turned out not to be the case when in the 1960s smaller electrically
charged constituents, named quarks, were discovered [1–3]. Later it was exper-
imentally confirmed that the nucleons also consisted of charge-neutral particles
called gluons [4–6]. Gluons play an important role in high-energy nuclear colli-
sions since the nucleon structure is dominantly gluons when probing a nucleon
at small nucleon momentum fractions [7].

Nowadays, it is established that quarks and gluons, collectively known
as partons, are elementary particles that experience the strong interaction. The
fundamental quantum field theory that describes these interactions is Quantum
Chromodynamics (QCD). QCD is a gauge theory and an essential component of
the standard model of particle physics which has been very successful in explain-
ing numerous phenomena. In QCD, particles carry a color charge, analogous
to the electric charge in electrodynamics. However, instead of a single type of
charge, there are three types of color charges: green, red, and blue.

Compared to simpler gauge theories, such as Quantum Electrodynamics,
QCD has certain unique properties due to the non-Abelian nature of the the-
ory. First, the strong interaction mediators, gluons, carry a color charge and can
thus interact with each other. Second, there is confinement of color, which states
that under normal conditions the quarks and gluons are confined inside hadrons,
color singlet bound states of the strong interaction, and cannot be isolated. The
third interesting property of QCD is the asymptotic freedom, which means that
the strong interaction strength decreases asymptotically as the energy scale of the
interaction increases.

One consequence of the asymptotic freedom is that when creating a dense
system at a high enough temperature, the interaction strength is weak enough
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for quarks and gluons to exist in an unconfined phase of matter. This phase of
the QCD matter is called quark-gluon plasma (QGP). The first-principle lattice
simulations of QCD have proven the existence of this new phase, and it has been
shown that a cross-over type phase transition from ordinary hadronic matter to
QGP happens when the temperature is around 155 MeV [8–11]. This corresponds
to temperatures ∼ 1012 K in SI units.

Since the formation of the hot quark-gluon plasma requires such extreme
conditions, it existed in large quantities only in the very early universe1. How-
ever, the QGP can be created in accelerator laboratories by colliding two heavy
nuclei at ultra-relativistic energies. The detectors can only measure properties
of final state particles, so the QGP cannot be measured directly, but its existence
must be deduced from the measured particles. The first compelling experimental
evidence of the formation of QGP in heavy-ion collisions was found at the Rel-
ativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory by col-
liding gold nuclei with a nucleon-nucleon center of mass energy of 200 GeV [12–
16]. It was found that the measured particle spectrum showed signs of collective
behavior and that the measured momentum space anisotropy matched well with
the hydrodynamic simulations of heavy-ion collisions with a very small shear vis-
cosity to entropy ratio [17–21], implying that a thermalized medium was indeed
formed in the collisions.

The construction of the Large Hadron Collider (LHC) at CERN in Geneva
was finished in 2010, and one of its goals is to study the properties of the QGP. The
ALICE detector is specially designed with heavy-ion collisions in mind, and it is
constructed in such a way that it can accurately identify different particle species,
and measure the momentum space anisotropies of the final state particles. The
first heavy-ion run was successfully done in late 2010, and the first results from
the ALICE, CMS, and ATLAS Collaborations were published shortly after [22–
24].

The increased number of high-precision measurements of observables
has necessitated more systematic approaches to simultaneously study multiple
low-transverse-momentum observables across different collision systems. These
so-called global analyses have significantly advanced our understanding of
the transport properties of QCD matter [25–27]. More recently, global analyses
have incorporated modern statistical methods, such as Bayesian analysis, which
offer robust uncertainty estimates and correlations for matter properties [28–37].
However, a significant challenge in these analyses is the enormous compu-
tational cost associated with performing millions or even billions of collision
simulations. Therefore, the development of faster numerical methods to conduct
these simulations is crucial for future progress.

The development of new tools, and refining existing heavy-ion collision
simulation frameworks to get a better understanding of the properties of the QGP
has been the primary focus of this thesis work. Article [PI] introduced dynamical
decoupling conditions offering an alternative hydrodynamic description for the

1 The QCD matter in the cores of neutron stars might also exist in an unconfined phase due
to a high net-baryon density, but this is not discussed in this thesis.



13

evolution of QCD matter that does not rely on a kinetic theory in the hadronic
phase. Articles [PII, PIII] addressed the issue of computational cost, presenting
a novel approach using neural networks to accelerate heavy-ion collision simu-
lations, thereby reducing the computation time by several orders of magnitude.
The Monte Carlo version of the EKRT initial state model, capable of producing
three-dimensional initial states, was introduced in Article [PIV]. This model was
further utilized in a study of midrapidity observables in Article [PV], where neu-
ral networks were employed to perform the simulations efficiently.

This thesis is organized as follows. The general framework of heavy-ion
collisions is briefly discussed in Chapter 2 and a short review of hydrodynamics
and QCD matter properties is given in Chapter 3. Chapter 4 then goes more into
detail by discussing the initial state of heavy-ion collision, while Chapter 5 dis-
cusses the decoupling phase of the collision. A brief introduction to the neural
networks and their application to heavy-ion collisions is presented in Chapter 6.
In Chapter 7, the main results from Article [PV], which demonstrate the impor-
tance of the interplay between saturation and nucleon substructure in the initial
state, are discussed. The final conclusions and remarks of this thesis are then
presented in Chapter 8.



2 HEAVY-ION COLLISIONS

The computational modeling of a collision of two nuclei at ultra-relativistic ener-
gies is complicated, as it consists of many stages, each of them having their own
difficulties and uncertainties. A schematic presentation of a heavy-ion collision
is shown in Fig. 1, where two Lorenz contracted nuclei collide along the z-axis
with an impact parameter b. At very early times, τ ≲ 1.0 fm, the quark-gluon
plasma is created and thermalized. This stage is usually referred to as an initial
or a pre-hydrodynamic stage.

After formation, the thermalized, or nearly thermalized, QGP expands and
cools according to viscous hydrodynamics. Eventually, the temperature of the
system has decreased enough so that partons can no longer exist isolated in the
QGP, and the system hadronizes forming gas of hadrons. The consequent hadron
gas continues to expand and cool. In the context of this thesis, the hadron gas
stage is still modeled using relativistic hydrodynamics, even though switching
to the hadronic kinetic theory approach [38–40] at some fixed temperature has
become a more standard approach during the past decade [41–45]. The advantage
of a purely hydrodynamic description is that it avoids unwanted discontinuities
that easily occur when switching from one description to another.

When the system gets more dilute, the rate of collisions decreases, and in
the end, essentially on a kinetic decoupling surface, the particles stop colliding.
This typically occurs at τ ∼ 10 − 20 fm after the formation of QGP. From this
point on, the unstable hadrons decay into more stable particles, until eventually,
at τ ∼ 1015 fm, the hadrons finally reach the detector.

2.1 Collision kinematics and flow observables

Before the collision, the two nuclei have a large momentum along the z-axis and
no momentum at all in the transverse direction. Thus, in the final state, the trans-
verse momenta of all the particles should still sum up to zero. However, in prac-
tice, all of the final-state particles cannot be measured due to the practical limita-
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FIGURE 1 A visualization from stages of heavy-ion collisions. Figure from the ALICE
review article [46], reprinted under the license CC BY 4.0.

tions of detectors. The detectors cannot measure particles at very low transverse
momentum pT or those that travel almost parallel to a beam pipe. For exam-
ple, the TPC detector at the ALICE experiment, which is especially designed for
detecting low-pT particles, can accurately measure pT ≳ 0.2 GeV. The accurate
measurement of the low-pT particles is crucial for the QGP studies since the aver-
age pT of charged particles is around 0.7 GeV. The measurements designed with
the heavy-ion collision in mind also measure the direction of the momentum in
the transverse plane, i.e. the azimuthal angle ϕ.

Besides the transverse momentum and azimuthal angle, the detectors also
measure rapidity y which is related to the longitudinal momentum pz,

y =
1
2

ln
(E + pz

E − pz

)
, (1)

where E is the energy of the particle. The rapidity is analogous to longitudinal
velocity vz = pz/E, but it is more convenient in high-energy collider physics
because differences in rapidities are invariant under longitudinal boosts. Unfor-
tunately, rapidity cannot be measured for unidentified particles, since the masses
of the particles are not known. In this case, one instead measures so-called pseu-
dorapidity,

η =
1
2

ln
( |p|+ pz

|p| − pz

)
, (2)

which is independent of the particle mass.
The transverse geometry of a heavy-ion collision varies significantly de-

pending on the impact parameter. Therefore, it would be beneficial to classify
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FIGURE 2 The distribution of the V0 amplitude measured by ALICE Collaboration. The
red line indicates the Monte Carlo Glauber fit done to the experimental data.
Figure from [47], reprinted under the license CC BY 3.0.

the collision events based on their impact parameters. However, the impact pa-
rameter cannot be measured. In practice, the events are categorized into cen-
trality classes, which are based on multiplicity or total transverse energy ET. In
the case of the ALICE experiment, the events are categorized in terms of the V0
amplitude, which is proportional to combined charged particle multiplicity at the
−3.7 < η < −1.7 and 2.8 < η < 5.1 pseudorapidity ranges. The centrality classes
are constructed by sorting events in decreasing yield and then binned into per-
centile bins. This is demonstrated in Fig. 2, where the ALICE measurement for
the V0 amplitude distribution is shown. The 5% of the events that produce the
largest yields are therefore placed into a centrality bin 0-5%, and 20% of the events
that produce the smallest yields go into a bin 80-100%. The collisions that belong
to the centrality percentiles 0-20% and 60-100% are called central, and peripheral
events respectively. The centrality provides a nice probe for a collision geome-
try, but larger centrality does not always imply a larger impact parameter, due
to event-by-event fluctuations of the nucleon positions. This is especially true
in small collision systems, such as p+Pb collisions, where there is only a weak
correlation between centrality and impact parameters.

In practice, ALICE does not directly determine the centrality classes from
the measured events, because the fluctuations in the distribution are quite large
and the small amplitude tail of the distribution is sensitive to triggering of the
events 1. Instead, ALICE has performed a Monte-Carlo Glauber fit to the distri-
bution where the multiplicity is estimated from the number of participants and

1 Triggering hadronic events is challenging due to a large electromagnetic background from
ultra-peripheral collisions, where two nuclei interact only by exchange of photons.
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binary collisions by a negative binomial distribution [48]. The centrality classes
are then determined based on the Glauber fit instead of the actual measured data.

When studying the properties of quark-gluon plasma, the most typically
analyzed observables are the particle multiplicities, the average transverse-
momenta, and various observables related to anisotropic flow. An anisotropic
flow is generated when the initial spatial inhomogeneity gets converted into a
momentum space anisotropy through the work done by the pressure gradients.
Formally, the magnitude of the anisotropic flow can be described by flow coeffi-
cients vn(pT, y), which are Fourier components of the single-particle transverse
momentum spectrum, i.e.

dN
dydp2

Tdϕ
=

1
2π

dN
dydp2

T

(
1 +

∞

∑
n=1

vn(pT, y) cos[n (ϕ − Ψn(pT, y))]

)
, (3)

where Ψn(pT, y) are the event-plane angles. Most of the time it is more convenient
to study flow coefficients that are integrated over pT, since these are less sensitive
to the exact form of the viscous corrections used when converting the fluid into
the particle spectra. The integrated flow coefficients vn and event-plane angles
Ψn can be written in a compact form

vn(y)einΨn(y) = ⟨einϕ⟩ϕ,pT (4)

where

⟨einϕ⟩ϕ,pT =

(
dN
dy

)−1 2π∫

0

dϕ

pT,max∫

pT,min

dp2
T

dN
dydp2

Tdϕ
einϕ. (5)

The pT,min and pT,max are the integration ranges introduced to match the kine-
matic cuts of the experimental measurements. Here, the dN/dy must be com-
puted using this same pT integration range.

Numerical simulations done in the context of this thesis give continuous
particle distributions as an output, but the real measurements always measure a
finite number of particles. Thus, here the observables are computed as a contin-
uum limit of the discrete observable. For example, the flow coefficients defined in
Eq. (4) cannot be easily measured, but the magnitude of flow is measured through
a two-particle flow correlation coefficient [49–51]

vn{2}2 =
1

Nh(Nh − 1) ∑
pairs i ̸=j

einϕ1e−inϕ2 , (6)

where Nh is the number of hadrons in the event. At the continuum limit, this
observable can be written as:

vn{2}2 =
1

N2

∫
dϕ1dϕ2

dN2

dϕ1dϕ2
einϕ1e−inϕ2 . (7)

The dN2/dϕ1dϕ2 is the two-particle distribution function, which can be decom-
posed as

dN2

dϕ1dϕ2
=

dN
dϕ1

dN
dϕ2

+ δ2(ϕ1, ϕ2), (8)
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where the first term is just a product of single-particle distributions, and δ2(ϕ1, ϕ2)
describes correlations between particles, that are caused e.g. by particle decays.
The δ2(ϕ1, ϕ2) part is usually referred to as a non-flow since it vanishes when
the correlations between particles come only from the collective flow. The exper-
imental measurements try to suppress such non-flow effects, e.g. by requiring
rapidity gaps between hadron pairs in the sum (6). When ignoring non-flow, the
two-particle flow coefficient can be written as

vn{2}2 = vneinΨn vne−inΨn = v2
n (9)

This expression holds for one event. When considering a large number of events,
the vn{2}2 is averaged over events. This gives

vn{2} =
√
⟨v2

n⟩ev, (10)

where ⟨. . . ⟩ev denotes the average over events.
The same procedure can be used to obtain expressions for higher-order flow

correlations as well. It is also interesting to study different correlations between
the flow coefficients since these can provide additional constraints for the mod-
els, and thereby help extract the QCD matter properties more accurately. The
observable quantifying 4-particle correlation between different flow coefficients
is called symmetric cumulant, which can be expressed as [52]

SC(n, m) = ⟨v2
nv2

m⟩ev,N4 − ⟨v2
n⟩ev,N2⟨v2

m⟩ev,N2 , (11)

where the event average is performed with the indicated power of multiplicity
as a weight. The symmetric cumulant has an advantage that the δ2(ϕ1, ϕ2) cor-
relations explicitly cancel out. Unfortunately, the symmetric cumulant depends
on the magnitude of the flow coefficients, so it is not a genuine correlation. The
absolute correlation can be measured through normalized symmetric cumulants,

NSC(n, m) =
SC(n, m)

⟨v2
n⟩ev,N2⟨v2

m⟩ev,N2
, (12)

but in this case δ2(ϕ1, ϕ2) correlations do not cancel out in the denominator.
The symmetric cumulants are four-particle correlations, but even six- and

eighth-particle correlations have been measured [53, 54]. The advantage of the
multi-particle cumulants is that all the lower order non-flow correlations are can-
celed, e.g. four-particle non-flow is canceled in the six-particle correlation. One
type of such multi-particle correlation is known as the mixed harmonic cumulant.
For six-particle correlations, they are defined as [55]

MHC(v4
n, v2

m) = ⟨v4
nv2

m⟩6 − 4⟨v2
nv2

m⟩4⟨v2
n⟩2 − ⟨v4

n⟩4⟨v2
m⟩2 + 4⟨v2

n⟩2
2⟨v2

m⟩2, (13)

MHC(v2
n, v2

m, v2
l ) =⟨v2

nv2
mv2

l ⟩6 − ⟨v2
nv2

m⟩4⟨v2
l ⟩2 − ⟨v2

nv2
l ⟩4⟨v2

m⟩2

− ⟨v2
mv2

l ⟩4⟨v2
n⟩2 + 2⟨v2

n⟩2⟨v2
m⟩2⟨v2

l ⟩2.
(14)
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where ⟨. . . ⟩k = ⟨. . . ⟩ev,Nk . Similarly, the expressions of the mixed harmonic cu-
mulants for the eight-particle correlations are defined as

MHC(v6
n, v2

m) =⟨v6
nv2

m⟩8 − 9⟨v4
nv2

m⟩6⟨v2
n⟩2 − ⟨v6

n⟩6⟨v2
m⟩2 − 9⟨v4

n⟩4⟨v2
nv2

m⟩4

− 36⟨v2
n⟩3

2⟨v2
m⟩2 + 18⟨v2

n⟩2⟨v2
m⟩2⟨v4

n⟩4 + 36⟨v2
n⟩2

2⟨v2
nv2

m⟩4,

MHC(v4
n, v4

m) =⟨v4
nv4

m⟩8 − 4⟨v4
nv2

m⟩6⟨v2
m⟩2 − 4⟨v2

nv4
m⟩6⟨v2

n⟩2 − ⟨v4
n⟩4⟨v4

m⟩4

− 8⟨v2
nv2

m⟩2
4 − 24⟨v2

n⟩2
2⟨v2

m⟩2
2 + 4⟨v2

n⟩2
2⟨v4

m⟩4

+ 4⟨v4
n⟩4⟨v2

m⟩2
2 + 32⟨v2

n⟩2⟨v2
m⟩2⟨v2

nv2
m⟩4.

(15)

As in the case of the symmetric cumulants, the absolute correlation is described
by the normalized versions of the mixed harmonic cumulants,

nMHC(vk
n, vl

m) =
MHC(vk

n, vl
m)

⟨vk
n⟩k⟨vl

m⟩l
,

nMHC(vk
n, vl

m, vq
p) =

MHC(vk
n, vl

m, vq
p)

⟨vk
n⟩k⟨vl

m⟩l⟨vq
p⟩q

.
(16)

The other way to probe the properties of QGP is through the correlation
between the mean pT and the flow coefficients. In Ref. [56] it was noticed that
the correlation between v2 and mean pT was very sensitive to the initial state
structure and especially to the transverse size of the nuclear overlap area. The
flow-transverse-momentum correlation is defined as a modified Pearson correla-
tion coefficient [57, 58],

ρ(v2
n, [pT]) =

⟨δ̂v2
nδ̂[pT]⟩ev√

⟨(δ̂v2
n)

2⟩ev⟨(δ̂[pT])2⟩ev

, (17)

where the event-by-event variance at a fixed multiplicity for an observable O is
given by

δ̂O = δO − ⟨δOδN⟩ev

σN
δN, δO = O − ⟨O⟩ev, σ2

O = ⟨(δO)2⟩ev, (18)

where N is the multiplicity of an event.

2.2 Boost invariance

The particle spectrum observed in the ultra-relativistic heavy-ion collisions has
an interesting symmetry. The rapidity distributions of hadrons remain nearly
constant around midrapidity when |y| < 1.0, while at larger rapidities, the num-
ber of particles drops quite rapidly. This finding indicates that the system in the
midrapidity region could be approximated as an invariant under Lorentz boosts
along the collision axis.



20

Approximating the collision system as boost invariant was first introduced
by J. D. Bjorken in Ref. [59], where he argued that the boost invariance leads to a
longitudinal flow velocity vz = z/t, which in the absence of transverse dynamics
is many times referred to as Bjorken flow. The approximation of boost invariance
is still widely used today when studying observables at the midrapidity since
it greatly reduces the complexity of the simulations by making it possible to re-
place the full 3+1D hydrodynamic simulations with computationally less expen-
sive 2+1D simulations. The most natural coordinate system for a boost-invariant
collision system are the Milne coordinates (τ, x, y, ηs), where

τ =
√

t2 − z2 (19)

is the longitudinal proper time, and

ηs =
1
2

ln
( t + z

t − z

)
(20)

is the spacetime rapidity. The convention gµν = diag(+,−,−,−) for the
Minkowski metric is used in this thesis. Then, in the Milne coordinates, the
metric tensor is given by gµν = diag(1,−1,−1,−τ2). The spacetime rapidity
ηs is connected to the momentum space rapidity y in the sense that if a freely
moving particle starts traveling from t = z = 0 with rapidity y, it will travel
along a ηs = constant curve. In the boost invariant approximation, the initial
conditions, and the evolution are independent of the ηs component, so the
transverse dynamics determine the system behavior. Finally, we note that even
though the boost invariance has proven to be a great approximation in symmetric
nucleus-nucleus collisions, it starts to fail when the collision is asymmetric, e.g.
in the case of proton-lead collisions.



3 HYDRODYNAMICS

Relativistic viscous hydrodynamics has become the standard way of describing
the evolution of the quark-gluon plasma in ultrarelativistic heavy-ion collisions.
The earliest works that utilize relativistic hydrodynamics in heavy-ion collisions
date back to the 20th century when ideal hydrodynamics was used [59, 60]. Vis-
cous hydrodynamics entered the picture early 2000s, and after that viscous hy-
drodynamics has been successfully used to describe a large number of soft (small-
pT) heavy-ion observables [27, 30–32, 35, 37].

The reason for the usefulness of hydrodynamics is its simplicity compared
to a full QCD theory description. Even though in principle the QCD kinetic the-
ory with quantum fluctuations would be a more accurate way to describe the
system, developing such a theory is challenging, and most of the state-of-the-art
QCD kinetic theories are weakly coupled effective theories [61–65]. Simulating
the full space-time evolution of the system even with these effective kinetic the-
ories is still not very practical, since in a typical heavy-ion collision the system
consists of several thousands of partons making numerical computations very
expensive. Additionally, a realistic description of the cross-over phase transition
from QGP to hadronic matter is a challenge for weakly coupled kinetic theories.
Fortunately, the quick thermalization of QGP after the initial collision of the nu-
clei causes the system to be reasonably close to thermal equilibrium for most of
its evolution, which allows the hydrodynamic description to be sensible. The
advantage of hydrodynamics is that the complicated microscopic dynamics are
captured by a few macroscopic variables and properties of the matter that have a
very intuitive interpretation. The numerical implementation is also significantly
faster than in kinetic theories, and the details of the phase transition are encoded
into the equation of state, which can be computed with lattice QCD when the
baryon chemical potential is reasonably small.

However, the applicability of hydrodynamics is less clear in small colli-
sion systems like p+Pb or when collision energies are smaller, where it is unclear
whether there are enough particles to form a matter or whether this matter has
enough time to thermalize and become isotropic at any point. The measured sig-
nals of collectivity in small systems have been under a lot of discussion in past
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years, and the explanations of the signals vary from initial state effects to the
collective evolution of possibly formed matter [66–69].

3.1 Viscous hydrodynamics

The theory of viscous hydrodynamics for non-relativistic systems was already
invented in the 19th century by Claude-Louis Navier and George Stokes. They
developed the Navier-Stokes equations, which have proven to describe the evo-
lution of non-relativistic viscous fluids incredibly well.

The theory for relativistic dissipative fluids has turned out to be challenging
and thus far no formalism is as established as the Navier-Stokes equations in the
non-relativistic case. The starting point of the covariant formulation of hydro-
dynamics is the conservation laws of energy-momentum tensor Tµν and particle
current Nµ:

∂µTµν = 0,
∂µNµ = 0.

(21)

In thermal equilibrium, the energy-momentum tensor and particle currents are
defined in terms of energy density e, pressure p, particle density n and four-
velocity uµ, such that in the rest frame of the fluid Tµν = diag(e, p, p, p) and
Nµ = (n, 0, 0, 0). From these one can obtain the ideal energy-momentum tensor
and particle current in a general frame:

Tµν
eq = euµuν − p∆µν,

Nµ
eq = nuµ,

(22)

where ∆µν = gµν − uµuν. To solve the hydrodynamic Eqs. (21) one also needs
knowledge about the pressure as a function of energy and particle densities. This
is given by the equation of state (EoS), which is determined by the interactions of
a given matter in thermal equilibrium. The EoS of the strongly interacting matter
is discussed in Sec. 3.2.1.

In an out-of-equilibrium case, the situation gets more complicated, since the
thermodynamic quantities, like temperature T or pressure p, are no longer well
defined. Thus, one needs to choose an artificial equilibrium state where thermo-
dynamic identities are assumed to function as they do in true equilibrium. Addi-
tionally, when the system is out of equilibrium, the velocity can no longer follow
both particle and energy currents simultaneously, and one also needs to define
the 4-velocity uµ, i.e. choose the fluid rest frame. The only physical observables
are components of the energy-momentum tensor and particle 4-current, which
need to be parametrized in terms of macroscopic hydrodynamic variables. In the
literature, the way hydrodynamic variables are defined in the non-equilibrium
case is referred to as a choice of hydrodynamic frame.

The first formulations of relativistic viscous hydrodynamics were done by
Eckart in 1940 [70], followed by Landau and Lifshitz in 1959 [71]. Both of these
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theories are relativistic generalizations of the Navier-Stokes theory, where one
expands the viscous terms to first order in gradients. These kinds of theories are
called first-order theories. The major difference between these two formulations
is the different choice of frame. Eckart chose a frame where velocity would follow
the particle flow, while in Landau’s and Lifshitz’s theory, the velocity was set to
be parallel with the energy flow, so that

uµ =
Tµνuν√

uαuβTα
σTβσ

(Landau frame),

uµ =
Nµ

√
NνNν

(Eckart frame).

(23)

Due to the intuitive nature of these choices, they are still widely used and are
often referred to as the Eckart and Landau frames. To define the artificial equi-
librium state, Eckart’s and Landau’s theories use the so-called Landau matching
conditions:

eeq(T, µ) = e = Tµνuµuν,
neq(T, µ) = n = Nµuµ,

(24)

which sets energy and particle densities to follow the same definitions as in the
equilibrium, while other thermodynamic quantities can then be obtained from e
and n using the EoS. This defines T and µ for a non-equilibrium system. Note that
the definition of velocity directly affects what one means by the equilibrium state.
A different choice of the hydrodynamic frame will result in different composi-
tions of the energy-momentum tensor and particle current. For example, in the
Landau frame, the energy-momentum tensor and the particle current are given
by

Tµν = euµuν − (p + Π)∆µν + πµν,
Nµ = nuµ + nµ.

(25)

where Π is the bulk viscous pressure, πµν is the shear viscous tensor, and nµ is
the particle diffusion current. In the Landau theory, these dissipative currents are
expanded to first order in gradients, i.e.

Π = −ζθ,
πµν = 2ησµν,

nµ = κ∇µα,
(26)

where θ = ∂µuµ is the expansion rate, σµν = ∂⟨µuν⟩ is the strain-rate tensor,
α = µ/T is the ratio of the chemical potential µ to the temperature T, and

A⟨µν⟩ =
1
2

[
∆µ

α∆ν
β + ∆µ

β∆ν
α −

2
3

∆µν∆αβ

]
Aαβ (27)

denotes the double symmetric, traceless projection orthogonal to the fluid veloc-
ity uµ for any 2nd rank tensor A. The proportionally coefficients ζ, η, and κ are
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the first-order transport coefficients called bulk viscosity, shear viscosity, and heat
conductivity, respectively.

Unfortunately, the resulting equations of motion violate causality and are
unstable under small perturbations. This is a more general problem, and it has
been shown that all first-order viscous theories using Landau matching condi-
tions violate causality [72]. Just very recently, it has been shown that it is possible
to find a hydrodynamic frame where the first-order theory turns out to be causal
and stable [73].

3.1.1 Israel-Stewart theory

In the 1980s, Israel and Stewart published a series of papers, which introduced an
alternative formalism that led to a stable and causal equation of motion [74–78].
The idea in the Israel-Stewart (IS) theory was to promote dissipative quantities Π,
πµν, and nµ to dynamical variables, which have their own equations of motion.
In the original derivation, equations of motions for dissipative currents were de-
rived by expanding the entropy 4-current to the second order of gradients in the
dissipative quantities, and then using the second law of thermodynamics [74].
This procedure leads to the following relaxation-type equations:

τπ
d

dτ
π⟨µν⟩ + πµν = 2ησµν + higher-order terms,

τΠ
d

dτ
Π + Π = −ζθ + higher-order terms,

τn
d

dτ
nµ + nµ = κ∇µαµ + higher-order terms,

(28)

where d/dτ = uµ∂µ is the co-moving derivative, and ∇µ = ∆µ
ν∂ν is the space-like

derivative. The relaxation times τπ, τΠ, and τn describe how quickly the dissipa-
tive currents approach corresponding Navier-Stokes values. The relativistic ver-
sion of the Navier-Stokes theory is recovered by setting all the relaxation times to
zero, which corresponds to instantaneous signal propagation not allowed in the
theory of relativity.

A few years later, Israel and Stewart derived the same relaxation-type equa-
tions from kinetic theory [76–78]. The idea was to expand the single-particle dis-
tribution function around equilibrium in the momentum space basis 1, kµ1 , kµ1kµ2 ,
..., and truncate the series in such a way that the number of coefficients matches
the independent macroscopic degrees of freedom in Tµν and Nµ, i.e., having a
total of 14 coefficients. The equations of motion could then be obtained by plug-
ging this expanded particle distribution into the relativistic Boltzmann equation
and integrating over momenta. The advantage of this derivation compared to
one made by utilizing thermodynamics is that in this way the transport coeffi-
cients can be obtained in terms of the microscopic properties of the matter 1, and

1 The microscopic properties are encoded in the collision term of the Boltzmann equation,
which contains information about the particle interactions.



25

the results of hydrodynamics can be tested against the corresponding kinetic the-
ory [79–82].

The applicability of hydrodynamics is typically quantified in terms of the
Knudsen and inverse Reynolds numbers. The Knudsen number is defined as a
ratio between microscopic and macroscopic scales. One example of a Knudsen
number is

Kn = τπθ, (29)

where the relaxation time τπ can be interpreted as the slowest microscopic time
scale appearing in the Boltzmann equation, as discussed in Sec. 3.1.2. The inverse
of the expansion rate 1/θ can be seen as a macroscopic time scale, which describes
how fast the fluid expands locally. The inverse Reynolds number represents how
far the system is from thermal equilibrium. Thus, it is defined as a ratio between
the dissipative and equilibrium quantities. In a relativistic context, the inverse
Reynolds number related to shear viscosity is usually defined as

R−1 =

√
πµνπµν

p
. (30)

One would expect that a successful theory of dissipative hydrodynamics
could accurately reproduce kinetic theory in the region of small Knudsen and
Reynolds numbers. While the IS theory achieves this in many cases, it struggles
in some specific scenarios, such as when heat flow plays a significant role, leading
to discrepancies with kinetic theory calculations [83]. Consequently, the IS theory
has not attained a status comparable to that of the Navier-Stokes theory in the
non-relativistic case.

3.1.2 DNMR theory

Many of the more recent formulations of relativistic viscous hydrodynamics
have taken significant inspiration from the IS theory. One of these is the Denicol-
Niemi-Molnar-Rischke (DNMR) theory [84–87]. The DNMR theory provides
a microscopic explanation for the relaxation time as the longest microscopic
timescale that will dominate the macroscopic dynamics. Here, I will review the
most essential ingredients that go into the DNMR theory. For simplicity, the
conserved particle current is neglected in the following discussions since it has
no major effect on the dynamics of the highest-energy ultra-relativistic heavy-ion
collisions and it has not been implemented in the hydrodynamic code used in
related Articles [PI-PV]. Additionally, only classical particles which interact via
elastic two-body collisions are considered. The derivation presented here is for
a fluid composed of a single particle type. However, the formalism can also be
generalized to a multi-component system [88, 89].

Like the Israel-Stewart theory, the DNMR theory is derived from the rela-
tivistic Boltzmann equation. However, in the DNMR theory, the reduction of the
microscopic degrees of freedom is achieved by assuming that the slowest micro-
scopic timescales dominate the macroscopic dynamics of the system 2 and then
2 This can be argued to be true from the analytic structure of the microscopic theory [90].
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performing systematic power counting in Knudsen and inverse Reynolds num-
bers to truncate the equations of motion. The systematic way of performing trun-
cation in Knudsen and inverse Reynolds numbers should in principle guarantee
a good agreement with the kinetic theory in the region where Kn, R−1 << 1.

In the DNMR theory, the single-particle distribution is expanded in terms of
orthogonal polynomials Pn(Ek) and irreducible tensors 1, k⟨µ1⟩, k⟨µ1kµ2⟩, ...k⟨µ1 ...kµn⟩3,
which form an orthogonal and complete set. Here A⟨µ1...µn⟩ = ∆µ1...µn

ν1...νn Aν1...νn ,
where ∆µ1...µn

ν1...νn are projection operators orthogonal to uµ for rank n tensors intro-
duced in Ref. [91]. The projection operators are traceless for n > 1 and symmetric
in exchange of any two indices. Using this basis, the single-particle distribution
function fk can be then expanded around equilibrium as fk = f0k + δ fk, where
f0k = exp((µ − Ek)/T) is the distribution in local equilibrium with Ek = uµkµ,
and

δ fk = f0k

∞

∑
l=0

Nl

∑
n=0

H(l)
nkρ

µ1...µl
n k⟨µ1

...kµl⟩. (31)

The expansion includes energy-dependent coefficients H(l)
nk, which are con-

structed in terms of orthogonal polynomials in Ek. For more detailed definitions
of H(l)

nk, see Ref. [85]. Additionally, the expansion introduced irreducible
moments of δ fk

ρ
µ1...µn
r =

∫
dKEr

kk⟨µ1 ...kµn⟩δ fk (32)

where dK = gd3k/[(2π)3k0], with g describing the number of internal degrees of
freedom. Some of the irreducible moments are directly related to fluid dynamic
variables, e.g. Π = −m2ρ0/3 and πµν = ρ

µν
0 , and it turns out that all of the ρm

moments contribute to the bulk viscosity, and ρ
µν
m moments to the shear viscos-

ity. Because the decomposition of the energy-momentum tensor does not include
any tensors higher than rank 2, the irreducible moments ρµ1µ2µ3... are neglected.
In Ref. [85], it was more precisely shown that these higher-rank moments have
asymptotic behavior of O(Kn2, KnR−1) and that they don’t contribute to evolu-
tion equations of lower-rank moments at O(Kn2, R−2).

There are infinitely many irreducible moments ρ
µ1...µn
r corresponding to an

infinite number of microscopic timescales and degrees of freedom. Each irre-
ducible moment follows a relaxation-type equation that can be derived from the
Boltzmann equation. The equations with different r are coupled together by the
collision term appearing in the Boltzmann equation. To find out the moments
that dominate the macroscopic dynamics, it is necessary to decouple the equa-
tions. This can be done by diagonalizing the linearized collision term and finding
the eigenmodes of the irreducible moments Xµ1...µl

r that follow uncoupled equa-

3 Note that this differs from the IS theory expansion with 1, kµ1 , kµ1 kµ2 ,..., which is neither an
irreducible nor an orthogonal basis.
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tions. The uncoupled equations for the scalar and rank-2 tensor are

d
dτ

Xr + χ
(0)
r Xr = β

(0)
r θ + higher-order terms,

d
dτ

Xµν
r + χ

(2)
r Xµν

r = β
(2)
r σµν + higher-order terms,

(33)

where χ
(l)
r are the eigenvalues of the collision term and β

(n)
r are the thermody-

namic coefficients that are defined in Ref. [85]. The inverse of eigenvalues χ
(l)
r can

be interpreted as the microscopic timescales related to each eigenmode Xµ1...µl
r .

Without loss of generality, one can rearrange the eigenmodes Xµ1...µl
r and corre-

sponding eigenvalues χ
(l)
r in such a way that χ

(l)
r < χ

(l)
r+1. Therefore, inverse of

eigenvalues χ
(0)
0 , and χ

(2)
0 correspond to the longest microscopic timescales re-

lated to scalar and rank-2 tensor moments, respectively. In the DNMR theory,
it is assumed that only eigenmodes with the longest microscopic timescales, i.e.,
eigenmodes with r = 0, will contribute to the macroscopic dynamics, and all
other timescales are significantly smaller. Thus, one can approximate the eigen-
modes with r > 0 with their asymptotic Navier-Stokes values. With this approx-
imation, the only dynamical equations for the eigenmodes are

d
dτ

X0 + χ
(0)
0 X0 = β

(0)
0 θ + higher-order terms,

d
dτ

Xµν
0 + χ

(2)
0 Xµν

0 = β
(2)
0 σµν + higher-order terms,

(34)

and the eigenmodes with r > 0 are approximated as

Xr ≃
β
(0)
r

χ
(0)
r

θ,

Xµν
r ≃ β

(2)
r

χ
(2)
r

σµν.

(35)

Now that the slowest microscopic timescale has been identified, it is possible to
solve the irreducible moments ρ

µ1...µn
r from their eigenmodes Xµ1...µl

r and find out
the dynamical equations for the macroscopic dissipative currents. Neglecting all
terms higher than second order in Knudsen and inverse Reynolds numbers will
lead to equations of motion of the form

τΠ
d

dτ
Π + Π = −ζθ + J +K+R,

τπ
d

dτ
π⟨µν⟩ + πµν = 2ησµν + J µν +Kµν +Rµν,

(36)

where τΠ = 1/χ
(0)
0 , and τπ = 1/χ

(2)
0 . Thus, the relaxation times for the dissipa-

tive currents are determined by the longest microscopic timescales. The tensors
J , and J µν contain all the terms in first-order in Knudsen and inverse Reynolds
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numbers. The second-order terms in the Knudsen number are contained in the
tensors K, and Kµν, while R, and Rµν contain all of the second-order terms in
the inverse Reynolds number. In practice, the terms K, and Kµν are neglected be-
cause they contain terms that are second order in spatial derivatives which would
make the equations of motion parabolic and unstable [92–94]. The physical rea-
son for this is the approximation done in Eq. (35), which sets the eigenmodes with
r > 0 to relax instantaneously to their Navier-Stokes values and causes acausal
behavior. In Ref. [95], it was shown that the equations of motion could be made
hyperbolic and stable by treating two of the irreducible moments as additional
dynamical variables. However, this kind of method is not implemented in the
numerical code used in Articles [PI-PV], but the terms O(Kn2) are simply ne-
glected. Additionally, some of the terms O(R−2) include transport coefficients,
which have not been expressed in a convenient form to implement in the code.
Thus, most of the numerical codes only include the following terms:

J = −δΠΠΠθ + λΠππµνσµν,

J µν = 2τππ
⟨µ
α ω

ν⟩α − δπππµνθ − τπππ
⟨µ
α σ

ν⟩α
+ λπΠΠσµν,

Rµν = φ7π
⟨µ
α π

ν⟩α,

(37)

where the constants δΠΠ, λΠπ, δππ, τππ, λπΠ, and φ7 are higher-order transport
coefficients. A similar form of equations of motion for viscous tensors is also
obtained from the IS theory, but there the transport coefficients would differ from
the ones obtained from the DNMR theory. In Ref. [95] it was shown that the
DNMR theory can describe the kinetic theory calculations in some cases where IS
theory struggles. This is due to the systematic power counting in Knudsen and
inverse Reynolds numbers done in the DNMR theory.

The higher-order transport coefficients in Eqs. (37), and the relaxation times
τΠ and τπ can be written in terms of the first-order transport coefficients ζ, and
η, when assuming the 14-moment approximation4 in a massless limit. This was
done for shear viscosity in Refs. [85, 87], and for bulk viscosity in Ref. [96]. The
relaxation times obtained there read

τπ =
5η

e + p
, τΠ =

(
15
(1

3
− c2

s

)2
(e + p)

)−1

ζ, (38)

and the second order-transport coefficients as

δΠΠ =
2
3

τΠ, λΠπ =
8
5

(1
3
− c2

s

)
τΠ, δππ =

4
3

τπ

τππ =
10
7

τπ, φ7 =
9

70p
, λπΠ =

6
5

τπ,
(39)

where cs is the speed of sound in the fluid. These coefficients are implemented
in the numerical code used in Articles [PI-PV]. More recently, in Ref. [97], the

4 i.e. truncating δ fk expansion by setting N0 = 2, N1 = 1 and N2 = 0.
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transport coefficients have been calculated in the context of hadron-resonance
gas and thermal-mass quasiparticle models. It was demonstrated that the more
realistic collision term can lead to drastically different relations between transport
coefficients, especially in the case of bulk viscosity. In Ref. [98], it was shown that
the measured observables do not impose tight constraints on the ratios τππ/τπ

or τπsT/η, but a more comprehensive study taking into account all second-order
transport coefficients would be needed to make firmer conclusions.

3.2 QCD matter properties

3.2.1 Equation of state

The equation of state describes the thermodynamic properties of matter in equi-
librium, i.e., the relations between different thermodynamic variables such as
temperature, chemical potential, and entropy density. From the perspective of
hydrodynamics, the relation p = p(e, n) is necessary to close the equations of
motion. The expansion of the system is driven by pressure gradients, for which
reason many observables are sensitive to the details in the equation of state. The
equation of state also captures the details of phase transitions, which is why uti-
lizing hydrodynamics near the phase transition is easier to implement than a re-
alistic microscopic model.

For QCD matter, the most natural variables to describe the phase space are
temperature and net-baryon density. The equation of state has been computed on
a lattice at zero net-baryon density, for example, by the Wuppertal-Budapest [8, 9]
and HotQCD Collaborations [10, 11]. Lattice computations are done by discretiz-
ing the QCD action on a lattice, where nodes correspond to fermion fields and
links between nodes correspond to gauge fields. The discretization is performed
on an N3

s × Nt grid, where Ns describes the spatial dimensions and Nt the tem-
poral direction. In finite-temperature field theory, the temperature is defined as
the upper limit of the temporal integral. On the lattice, this gives the relation
T = 1/(aNt), where a is the lattice spacing. One way to obtain the equation of
state from the lattice is the integral method [99–101], in which the trace anomaly
Θ = e − 3p is computed from the expression

Θ(T) = − T
V

d ln Z
d ln a

, (40)

where V = N3
s a, and the partition function Z is written in terms of the field

operators. The pressure can then be obtained from the trace anomaly as

p(T)
T4 =

p0

T4
0
+
∫ T

T0

dt
Θ(t)

t5 . (41)

In this expression, the value of pressure p0 is needed at some reference tempera-
ture T0. Since lattice computations at low temperatures are computationally very
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expensive, the reference values are usually obtained from the hadron resonance
gas (HRG). For example, the HotQCD Collaboration matches the equation of state
to HRG at T = 130 MeV. When p(T) is known, other thermodynamic relations,
such as e(p), can be obtained using basic thermodynamics.

Calculating the QCD equation of state at non-vanishing net-baryon density
is challenging because, in this case, the QCD action becomes complex, and usual
Monte Carlo sampling techniques are no longer usable [102]. Currently, there
are two main methods to tackle the lattice equation of state at finite net-baryon
density. One way is by expanding the QCD pressure as a Taylor series in the
powers of net-baryon chemical potential µB around µB = 0 [103, 104]. The other
way is to calculate the equation of state at the imaginary chemical potential, in
which case the QCD action is real, and then perform an analytic continuation
to real µB [105, 106]. Even though both of these techniques allow probing QCD
EoS at finite net-baryon densities, the applicability range of these methods is still
quite limited.

Fortunately, in ultra-relativistic heavy-ion collisions, the thermalized matter
created has almost zero net-baryon density. Thus, in this case, the net-baryon
density can be neglected. In Articles [PI-PV], the s95p parametrization [107] of the
lattice QCD results at zero net-baryon density is used. Additionally, the equation
of state used includes the chemical freeze-out, which is discussed in more detail
in Sec. 5.1.

3.2.2 Transport coefficients

The equation of state describes how the ideal fluid behaves in equilibrium with-
out any dissipation, but in reality there is always some dissipation due to finite
mean free path. The magnitude of these dissipative effects is described by the
transport coefficients. Transport coefficients can be naively categorized into first-
order and higher-order coefficients. The first-order transport coefficients usually
dominate the dissipative effects in the applicability region of hydrodynamics,
as they are associated with terms proportional to first-order derivatives, while
the terms including higher-order transport coefficients are suppressed by higher-
order derivatives.

From the perspective of heavy-ion collision simulations discussed in Arti-
cles [PI-PV], only the transport coefficients that appear in Eqs. (36, 37) can impact
the observables. The first-order transport coefficients that appear are the shear
viscosity η and the bulk viscosity ζ. Shear viscosity describes a fluid’s ability
to translate a shear strain and can be thought of as the fluid’s internal friction.
It originates from the momentum transfer between particles over distances of a
mean free path. A larger region of momentum transfer causes more momentum
diffusion in the fluid, corresponding to a high shear viscosity. Consequently, a
lower shear viscosity allows the fluid to convert spatial pressure gradients into
fluid velocity more efficiently. The magnitude of the shear viscosity depends on
the interaction strength of the fluid. As the interaction strength increases, the
mean free path decreases, resulting in a lower shear viscosity.
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On the other hand, the bulk viscosity quantifies a fluid’s resistance to
isotropic expansion. From a microscopic perspective, it arises when part of
the additional kinetic energy gained by particles in an expanding system is
transformed into internal degrees of freedom, such as rotations or vibrations
of fluid constituents. As a result, bulk viscosity acts as a negative correction to
isotropic pressure, decreasing the average momentum of fluid constituents.

Due to their microscopic origin, both bulk viscosity (ζ) and shear viscosity
(η) depend heavily on the density of the system. Therefore, comparing viscosities
at different temperatures may not always provide informative results. To address
this issue, dimensionless specific shear and bulk viscosities (η/s and ζ/s) are of-
ten used to quantify the first-order transport coefficients. The entropy density
(s) serves as a proxy for the number density, making specific viscosities indica-
tive of viscosity per constituent. Current understanding suggests that for the
quark-gluon plasma phase of QCD matter, the η/s ratio is extremely small. Es-
timates from the conformal ADS/CFT formalism suggest η/s ≥ 1/4π ≈ 0.08
in the strong coupling limit [108]. Phenomenological studies of heavy-ion col-
lisions also support low values for η/s, typically estimating its minimum value
to be around 0.1 − 0.2, depending on the study[27, 30–34, 36, 37]. While these
studies consider the temperature dependence of the shear viscosity, the majority
of analyses conducted do not seem to yield significant constraints on the high-
temperature behavior of the specific shear viscosity

At lower temperatures, when QCD matter exists in the hadron gas (HG)
phase, the η/s is expected to increase rapidly with decreasing temperature. This
is because the interaction strength in the hadron gas is weaker than in the QGP
phase. The η/s has been computed for a hadron gas using a transport approach,
where it has been shown that in the 100-150 MeV temperature range η/s =
O(1) [109–111]. This is very different from the QGP phase where η/s = O(0.1).
Since the phase transition at zero net-baryon density is a cross-over type, one
would expect the transport coefficients to be continuous functions of tempera-
ture. However, in many heavy-ion simulations, this is not the case, and there
is a significant discontinuity in η/s at the temperature where hydrodynamics is
switched to a hadronic transport. One potential explanation for this discontinuity
could be that in the transport approach the actual values of the transport coeffi-
cients are significantly influenced by unknown cross-sections of various scatter-
ing processes. Moreover, the reliance solely on 2 → 2 scattering processes near
the phase transition raises questions about the applicability of the transport ap-
proach.

In the ADS/CFT formalism, the bulk viscosity is always zero due to the
conformal nature of ADS/CFT. Nevertheless, in the real QCD matter, one would
expect a peak in the bulk viscosity near the phase transition temperature, i.e.
when T ≈ 200 MeV. Nowadays, bulk viscosity has been included in almost all
state-of-the-art heavy-ion collision simulations, but in its values there seem to be
quite large deviations between different analyses and frameworks [30–32, 34, 36,
37]. The maximum values of the ζ/s range from 0.01 to 0.3, while the temperature
where this happens ranges from 170 to 300 MeV. This indicates that the optimal
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Shear viscosity:
(η/s)min 0.11
TH [ MeV ] 135
SH [ GeV−1 ] 0.025
SQ [ GeV−1 ] 0.3
Wmin [ MeV ] 35
PHG 8.0

Bulk viscosity:
(ζ/s)max 0.09
(ζ/s)width [ MeV ] 60
Tζ/s

max [ MeV ] 240
aζ/s -0.5

TABLE 1 Numerical values of viscosity parameters used in Articles [PI, PII, PV].

values for bulk viscosity are sensitive to the model details, such as the initial
state, and form of viscous corrections at the particlization. Additionally, the large
values of bulk viscosity can easily cause cavitation5 or break causality, both of
which can cause instabilities to the hydrodynamic code, and lead to unphysical
results [112, 113].

In Articles [PI, PII, PV], the specific shear viscosity was parametrized as

η/s(T) =





(η/s)min + SHT
((

T
TH

)−PHG − 1
)

, T < TH

(η/s)min, TH ≤ T ≤ TQ

(η/s)min + SQ(T − TQ), T > TQ,

(42)

where TQ = TH + Wmin. This parametrization contains three different tempera-
ture ranges:

1. Hadron gas phase T < TH: power law behaviour with power PHG, and
slope parameter SH. Captures the fast increase of η/s in the HG phase.

2. TH < T < TQ: η/s is constant at its minimum value.

3. Quark-gluon plasma phase T > TQ: Linear increase in η/s with a slope SQ.

The bulk viscosity was also included in these articles, and it was parametrized as

ζ/s(T) =
(ζ/s)max

1 +
(T−Tζ/s

max
w(T)

)2
,

w(T) =
2(ζ/s)width

1 + exp
( aζ/s(T−Tζ/s

max)

(ζ/s)width

) ,
(43)

so that the specific bulk viscosity is peaked at the temperature Tζ/s
max, where it

reaches its maximum value (ζ/s)max. The width of the peak is asymmetric in
temperature, and the amount of asymmetry is characterized by parameter aζ/s.
If aζ/s is positive (negative) the peak is wider at the lower (higher) temperatures,
and if aζ/s = 0 the width of the peak is determined by the parameter (ζ/s)width.

5 The cavitation happens when p + Π < 0, and negative-pressure bubbles are formed in the
fluid.
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FIGURE 3 The shear and bulk viscosities as a function of temperature for η/s = dyn
parametrization, compared against two parametrizations from Ref. [27]. Fig-
ure from Article [PI], reprinted under the license CC BY 4.0.

The values of parameters used in Articles [PI, PII, PV] are shown in Table
1, and the corresponding temperature dependence of η/s, and ζ/s is illustrated
in Fig. 3. At high temperatures T > TQ, the temperature dependence of η/s is
similar to other studies, although some include non-linear curvature at high tem-
peratures [27, 30–32, 34, 36, 37]. At the lower temperatures, all of the other studies
use hadronic transport models, which means that η/s, and ζ/s are determined by
the details of the transport model. Utilizing hydrodynamics also in the hadronic
phase allows continuous parametrization of the transport coefficients across the
whole evolution, which is not necessarily the case when switching from hydrody-
namics to hadronic transport. The continuity of the transport coefficients is one of
the advantages of the approach adopted in Articles [PI-PIII, PV]. The temperature
dependence of the specific bulk viscosity used is quite similar to the one obtained
from the Bayesian analysis in Ref. [37], while some other studies seem to prefer
bulk viscosity that reaches its maximum value at lower temperatures [30–32, 34].



4 INITIAL STATE

The initial state of a heavy-ion collision is a result of what happens during the
very early moments after the two nuclei collide, and it is necessary for initializ-
ing the hydrodynamics. Modeling the initial state involves significant uncertain-
ties. Generally, there are two main approaches to tackle these uncertainties. The
first is to use a very flexible and general parametric description of the initial state
and constrain the parameters from the data. An example of this kind of initial
state is the TRENTO model [114], which has been widely used in determining
the properties of QCD matter. The advantage of this approach is that it allows
the measured data to dictate the structure of the initial state without a lot of re-
strictions. In a sense, this is a good feature, because it directs the focus on the
most important aspect, which is determining the QCD matter properties. On the
other hand, this kind of parametric approach has very little predictive power, and
it is difficult to interpret the underlying physics. It is not even clear whether the
parametric initial state extracted from the data can be realized according to QCD
dynamics. Additionally, it might lead to less constrained matter properties, since
a flexible initial state parametrization can compensate for changes in the matter
properties.

Another approach is a QCD-inspired one. In this method, the initial state
is modeled by some effective theory, which tries to capture the essential features
of the complicated collision process. In this case, the model can have predic-
tive power as long as the model assumptions hold, and a successful model can
give some insights into underlying physics. Such successful initial state models
are for example Impact parameter dependent saturation model [115, 116], EKRT
(Eskola- Kajantie-Ruuskanen-Tuominen) model [117–119], EPOS (Energy conser-
vation + Parallel scattering + factOrization + Saturation) model [120, 121], AMPT
(A Multi-Phase Transport) model [122, 123], and Dynamical Core-Corona Initial-
ization model [124, 125]. In this thesis, the EKRT initial state model is used. In
Articles [PI-PIII], the initial state is determined at midrapidity by the EKRT model
which includes Event-by-Event (EbyE) fluctuations [27]. Article [PIV] introduces
a completely new Monte-Carlo version of the EKRT model (MC-EKRT), which
can be used to generate full 3D initial state profiles. The behavior of the MC-
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EKRT initial states at midrapidity was further studied in Article [PV] by looking
at the effect of Monte-Carlo fluctuations and saturation on the flow observables.

4.1 Nuclear thickness function and nucleon substructure in EKRT

The nuclear thickness function describes the transverse density of nuclear matter
in a nucleus, and it is a crucial input to many initial state models. In the context
of the EKRT model, the overlap of the thickness functions of two nuclei affects
the saturation strength. In an event-by-event simulation, the nuclear thickness
function with fluctuating nucleon positions is defined as

TA(s) =
A

∑
i=1

TN(s − si), (44)

where A is the number of nucleons in the nucleus, s is the coordinate vector in
the transverse (x, y) plane, TN is the nucleon thickness function, and si is the
position vector of nucleon i. The positions of the nucleons are sampled from the
Wood-Saxon density

ρ(r, θ) ∝
1

1 + exp((r − R(θ))/d)
, (45)

where r is the radial coordinate, θ is the polar angle, d is the thickness parameter,
and R(θ) = R0(1 + β2Y20(θ) + β3Y30(θ) + β4Y40(θ)), with nuclear radius R0 and
deformation parameters βi. The functions Yij are the standard spherical harmon-
ics. For spherically symmetric Pb and Au nuclei, the deformation parameters are
zero, while for Xe nucleus β2 = 0.162, β3 = 0, and β4 = −0.003 [126]. In Arti-
cles [PIV, PV], also a minimum distance of dmin = 0.4 fm was required between
the sampled nucleons inside the nucleus.

At the high collision energies, the dominant contribution to initial particle
production comes from gluons, so TN can also be interpreted as a gluonic thick-
ness function of the nucleon. The estimation of TN can be obtained from exclusive
J/ψ photo-production in γ+ p → J/ψ+ p, for which the differential cross section
dσ/dt ∝ |F(t)|2 with a 2-gluon form factor F(t) [127]. Since the Fourier transform
of F(t) with |q|2 = t can be thought of as the gluonic density of the nucleon, TN
can be obtained from the F(t) by taking a 3-dimensional Fourier transformation,
and then integrating over longitudinal coordinate z. The 2-gluon form factor is
often parameterized as F(t) ∝ exp(−b|t|/2) with an energy-dependent slope pa-
rameter b. The gluonic thickness function corresponding to this parametrization
is

TN(s) =
1

2πσ2 e−
|s|2
2σ2 (46)

where σ =
√

b is the width parameter. The slope parameter b can be directly
extracted from the measured differential cross section dσ/dt. The ZEUS Collabo-
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ration has measured b = 4.72 GeV−2, with the center of mass energy of photon-
proton system W varying in the range of 30 < W < 220 GeV [128]. This corre-
sponds to σ ≈ 0.43 fm, which is the value used in Article [PI]. However, the value
of b depends on W and it is often parameterized as

b = b0 + 4α′ ln
( W

90 GeV

)
. (47)

There is no clear consensus on what values for the fit parameters b0, and α′ should
be used when extrapolating to high energies. For example, in Ref. [129], the pa-
rameters b0 = 4.9 GeV−2, and α′ = 0.06 GeV−2 are used, which are also the
values used in Article [PIV]. In contrast, the H1 Collaboration has extracted val-
ues b0 = 4.630+0.043

−0.163 GeV−2, and α′ = 0.164+0.028
−0.030 GeV−2 from the measurements

with highest energy being W ≈ 250 GeV [130]. These are the b0, and α′ values
used in Article [PV].

The discussion thus far has focused on the average shape of the nucleon.
However, nucleons can have their own fluctuating substructure. In Ref. [131]
it was demonstrated that the nucleon substructure is necessary for correctly de-
scribing the incoherent photo-production of J/ψ. The substructure can be incor-
porated into the nucleon thickness function as a sum of Gaussians, i.e.

TN(s) =
1

Nh

Nh

∑
i=0

1
2πσ2

h
e
− |s−sh

i |2
2σ2

h , (48)

where Nh is the number of gluonic hotspots, σh is the width of the hotspot, and
sh

i is the location of the hotspot sampled from a 2-dimensional Gaussian distri-
bution with a width σs. To maintain the same average geometry as without the
substructure, the total width of the nucleon needs to be σ. This means that the
widths σh, and σs are not independent. The average shape of the nucleon can
be obtained from σh, and σs by taking a convolution between the distribution
from which the hotspots are sampled and the Gaussian thickness function of the

hotspot. This results in another Gaussian with a width σ =
√

σ2
h + σ2

s , giving the
relation between the three widths.

Besides the structure of the nuclei, the collision geometry is determined by
the impact parameter b, which is sampled from a probability distribution P(b) ∝
b. This means that there are a lot of events with large impact parameters. To make
sure that the simulated events correspond to the ones seen in the experiments, a
triggering condition is needed.

4.2 Triggering

When studying hadronic events in heavy-ion collisions, there is a huge back-
ground from large impact parameter events that happen only through electro-
magnetic interactions. The goal of the triggering is to filter out these events and



37

obtain the same inelastic nucleus-nucleus cross section as in the measurements.
The triggering is especially important for peripheral collisions, where the parti-
cle multiplicity decreases rapidly, and minor changes in the triggering can have
a visible impact on the observables. In the simulations, the triggering is done
based on a geometrical criterion. Without any nucleon substructure, the nuclear
collision event is accepted if the minimum distance between colliding nucleon-
nucleon pairs D(NN)

min is less than the corresponding effective distance given by the
inelastic nucleon-nucleon cross-section σNN, i.e.

D(NN)
min <

√
σNN

π
, (49)

The nucleon-nucleon cross sections σNN can be obtained from the measurements
of p + p collision with various collision energies, and various fits parameterize
the energy dependence of σNN. In Article [PIV, PV], σNN is obtained as the differ-
ence between the total cross section fit from COMPETE [132] and the elastic cross
section fit from TOTEM [133]. On the other hand, Articles [PI-PIII] use values
σNN = 42 mb at

√
sNN = 200 GeV, σNN = 64 mb at

√
sNN = 2.76 TeV, σNN = 70

mb at
√

sNN = 5.023 TeV, and σNN = 72 mb at
√

sNN = 5.44 TeV collision ener-
gies. All these choices lead to A + A inelastic cross sections that agree with the
measurements [134, 135].

The triggering condition (49) treats nucleons as hard spheres with a scat-
tering cross section σNN. This is a good approximation when the density of nu-
cleus is distributed isotropically in azimuthal angle. However, with the nucleon
substructure, the positions of hotspots fluctuate. Thus, using the triggering con-
dition (49) may lead to situations where a collision is accepted even if any two
colliding hotspots are relatively far apart, resulting in no hadronic interaction.
The triggering can also be done at the substructure level with the condition

D(HS)
min <

√
σHS

π
, (50)

where D(HS)
min is the minimum distance between two colliding hotspots, and σHS is

the effective hotspot-hotspot cross section tuned to reproduce the same nucleus-
nucleus cross section as the triggering condition (49). As discussed in Article
[PV], the tuning of σHS needs to be done separately for each hotspot sampling
width σs and for all different collision systems.

4.3 Event-by-Event EKRT

The EKRT model is an initial state model based on perturbative QCD and
collinear factorization combined with gluon saturation [117–119]. The collinear
factorization has been very successful in predicting hard (high-pT) observables.
However, when moving towards smaller transverse momenta, it predicts that
the production of gluons will increase rapidly and even unlimitedly. This growth
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cannot continue forever, since at some point the density of gluons increases so
much that the non-linear QCD effects start to play a role. This effect is called
gluon saturation, and it is most prominent in the ultrarelativistic collisions of two
nuclei, where all the nucleons interact simultaneously. At high collision energies,
the nucleus consists mostly of gluons, so that the collision can be thought to
be more like a collision between two gluon clouds rather than a collision of
individual nucleons.

Unfortunately, the gluon saturation in this context is a non-perturbative ef-
fect and cannot be fully explained by collinear factorization alone. In the EKRT
model, saturation arises when the production processes of low-pT quarks and
gluons, often referred to as minijets, start overlapping each other in the trans-
verse coordinate plane. Many overlapping 2 → 2 processes would then lead to a
situation where 3 → 2 or higher-order processes would become a more favorable
production method, and thus the number of produced minijets saturates.

The EbyE variant of the EKRT model [27], is based on a perturbative pro-
duction of the minijet transverse energy ET into a midrapidity window ∆y. For
the A + A collision of two nuclei with mass number A this can be expressed as

dET

d2rdy
(p0,

√
sNN, A, r, b, β) = TA(r − b/2)TA(r + b/2)σ⟨ET⟩p0,∆y,β, (51)

where p0 ≫ ΛQCD is a low transverse momentum cutoff scale where perturbative
QCD (pQCD) is still applicable. The term σ⟨ET⟩p0,∆y,β is the first ET moment of
the minijet ET distribution (ET being the scalar sum of the minijet pT’s), which
can be computed perturbatively [118, 136, 137]. At next-to-leading order, there is
some freedom in the definition of ET with a pT cutoff, which is quantified by the
parameter β.

The perturbatively produced minijet ET can be computed from Eq. (51), but
this does not take into account saturation effects. In the EbyE EKRT model, the
saturation is conjectured to take place when the transverse energy produced from
2 → 2 processes becomes similar to one obtained from 3 → 2 processes, i.e.

dET

d2rdy
(2 → 2) ∼ dET

d2rdy
(3 → 2). (52)

On the other hand the ET production for n → 2 processes, with n = 2, 3 scales as:

dET

d2rdy
(n → 2) ∼ (TAg)n p4−2n

0

(αn
s

p2
0

)
p0, (53)

where αs is the QCD coupling constant, and g is the gluon parton distribution
function. Here, the factor TAg is assigned for each incoming gluon, the factor
p4−2n

0 is to compensate extra fm2 dimensions of TA, and factors αn
s /p2

0 and p0 take
account the partonic cross section, and ET cutoff scale respectively. This scaling
law combined with the saturation condition (52) leads to a scaling

TAg ∼ p2
0

αs
. (54)
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FIGURE 4 Charged hadron multiplicity as a function of centrality for 200 GeV Au+Au,
2.76 TeV Pb+Pb, 5.023 TeV Pb+Pb, and 5.44 TeV Xe+Xe collision systems. The
experimental data are from the STAR [138], PHENIX [139] and ALICE [140–
142] Collaborations. Figure from Article [PI], reprinted under the license CC
BY 4.0.

The local saturation criterion for the minijet ET production to the midrapidity
window ∆y is then obtained by feeding the scaling law (54) back to Eq. (53)

dET

d2r
(p0,

√
sNN, A, r, b, β) =

Ksat

π
p3

0∆y, (55)

where the value of the proportionally constant Ksat ∼ 1 needs to be de-
termined from the measured data. The solution of Eq. (55) is the satu-
ration scale p0 = psat [27, 119]. In principle, the saturation scale is a
function of

√
sNN, A, r, b, β, Ksat, and ∆y. However, in practice, the nu-

clear geometry is contained in the nuclear overlap density TATA, so that
psat = psat (TATA(r, b),

√
sNN, A, ∆y, Ksat, β).

The 2+1D hydrodynamics requires the energy density e, the transverse ve-
locity vT, and the shear stress tensor πµν as initial conditions at some constant
time τ0. In the EbyE EKRT model, the energy density at the formation time
τs(r) = 1/psat(r) is given by

e(r, τs(r)) =
dET(psat)

d2r
1

τs(r)∆y
=

Ksat

π
[psat(r)]4, (56)

while the transverse velocity and shear stress tensor are assumed to be zero. Since
the formation time depends on the transverse coordinates, the energy density in
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η/s 0.20 param1 dyn
Ksat 0.63 0.50 0.67

TABLE 2 The values of Ksat parameter for different η/s parametrizations.

Eq. (56) needs to be evolved to a constant initialization time τ0. This is done using
Bjorken flow, i.e.

e(r, τ0) = e(r, τs(r))
(

τs(r)
τ0

)4/3

. (57)

In Article [PI], The initialization time was chosen as τ0 = 1/psat,min ≈ 0.2 fm, with
psat,min = 1 GeV. Below the scale psat,min, the perturbative QCD computation
can no longer be trusted. In that region, the Bjorken evolved energy density is
smoothly connected to e ∝ TATA binary profile.

The strength of the EbyE EKRT model is its predictive power. The param-
eters Ksat, and β are (assumed to remain) constant and do not depend on the
collision energy so that Ksat, and β determined based on the measurements from
one collision system can be used to predict results for other systems. This can be
seen in Fig. 4, where the charged particle multiplicity is plotted as a function of
centrality for 200 GeV Au+Au, 2.76 TeV Pb+Pb, 5.023 TeV Pb+Pb and 5.44 TeV
Xe+Xe collision systems. The viscosities corresponding to different parametriza-
tions are shown in Fig. 3, and values of Ksat, fitted based on the charged particle
multiplicity in the most central 2.76 TeV Pb+Pb collisions, are shown in Table. 2.
The value β = 0.8 is used in all cases. All of the parametrizations use the nucleon
width parameter σ =0.43 fm and no nucleon substructure was introduced. The
η/s = dyn parametrization is obtained in the context of a dynamical decoupling
introduced in Sec. 5.3, while the other two are obtained with a constant tempera-
ture decoupling Tdec = 100 MeV.

The charged particle multiplicity is sensitive to the initial entropy of the
system and to the entropy production caused by dissipation. Therefore, differ-
ent viscosity parametrizations require different values for Ksat to obtain the same
multiplicity. Even so, all the parametrizations agree well with the measured data
for all collision systems, highlighting the predictive power of the EbyE EKRT
model.

4.4 Monte-Carlo EKRT

The EbyE version of the EKRT model has provided good results for the midrapid-
ity observables, but it cannot be used to predict rapidity-dependent observables.
Additionally, the EbyE EKRT does not include local fluctuations of the saturation
scale that originate from local fluctuations of the minijet multiplicity, or explicit
energy conservation. These weaknesses are addressed in the Monte-Carlo EKRT
model introduced in Article [PIV].
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4.4.1 Multiple dijet sampling

To generate an A + B collision between two nuclei, the first step in the MC-EKRT
model is to sample the nuclear configurations and the impact parameter, and per-
form event triggering, as discussed in Secs. 4.1, and 4.2. After triggering, multiple
dijet production is computed from all possible nucleon pairs ab (a ∈ A, b ∈ B).
The dijets from each ab pair are supposed to be produced independently, which is
why Poissonian statistics is used. Thus, the probability of producing n ≥ 0 dijets
from the ab pair is given by

Pn(p0,
√

sNN, {s̄a}, {s̄b}) ≡

(
N̄ab

jets

)n

n!
e−N̄ab

jets , (58)

where s̄a, and s̄b are the locations of nucleons a, and b respectively. The average
number of produced dijets from the ab pair is obtained as

N̄ab
jets(p0,

√
sNN, {s̄a}, {s̄b}) = TNN(b̄ab) σab

jet(p0,
√

sNN, {s̄a}, {s̄b}) (59)

where b̄ab = s̄b − s̄a, and σab
jet is the integrated inclusive pQCD cross section pro-

ducing dijet pair with pT ≥ p0. The quantity TNN is the nucleon-nucleon overlap
function, calculated as

TNN(b̄ab) =
∫

d2s̄ TN(s̄)TN(s̄ − b̄ab), (60)

where TN’s are the gluonic thickness functions of the nucleons.
When the number of produced dijets is decided, the transverse momentum

pT, and the rapidities y1 and y2 of each final state parton in a dijet are sampled
from the differential minijet cross section

dσjet({s̄a}, {s̄b})
dp2

Tdy1dy2
= K ∑

i,j,k,l
x1 f a/A

i ({s̄a}, x1, Q2)x2 f b/B
j ({s̄b}, x2, Q2)

dσ̂ij→kl

dt̂
(
ŝ, t̂, û

)
,

(61)
where dσ̂ij→kl

dt̂ are the differential leading-order pQCD cross sections, which
depend on parton-level Mandelstam variables ŝ, t̂, and û. The missing higher-
order pQCD contributions are taken into account by the K-factor, which is fitted
from the measurements for each collision energy separately. The distribution
of partons with a flavor i inside the nucleon a bound to nucleus A is de-
scribed by the spatially dependent nuclear parton distribution function (snPDF)
f a/A
i ({s̄a}, x, Q2). The snPDFs depend on the position of the nucleon a, as well as

the whole nucleon configuration in each event, longitudinal momentum fraction
x of the parton, and factorization scale Q2, which is set equal to p2

T. In the
MC-EKRT model, the snPDFs are implemented as

f a/A
i ({s̄a}, Q2) = f p

i (x, Q2)ra/A
i ({s̄a}, Q2), (62)

where f p
i (x, Q2) is the free-proton PDF, and ra/A

i are the spatially dependent,
nucleon-configuration-dependent, nuclear modifications. As explained in Article
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[PIV], ra/A
i are normalized so that the standard nuclear PDF modifications Rp/A

i
(here EPS09LO [143]) are obtained when taking an average over the nucleons in
each nucleon configuration and an average over many nucleon configurations.
That is

Rp/A
i (x, Q2) =

〈
1
A ∑

a
ra/A

i ({s̄a}, x, Q2)

〉

{A}
, (63)

where ⟨· · · ⟩{A} denotes the average over nucleon configurations. The advantage
of th snPDFs constructed this way is that, unlike previous snPDFs, they can han-
dle large nucleon density regions relevant for the event-by-event simulations. A
more detailed description of the implementation of the snPDFs in MC-EKRT is
found in Article [PIV].

After y1, y2, and pT have been sampled from Eq. (61), the same distribu-
tion is reused to sample the parton process types, which fixes the flavors of the
partons. Additionally, each participating quark is identified as a sea quark or va-
lence quark. The azimuthal angle ϕ of the minijet pair is sampled from a uniform
distribution.

Besides the momenta and the flavors, the hydrodynamics needs information
about the spatial locations x⊥ of the formed dijets. These are obtained by sam-
pling the nucleon-nucleon overlap function (60) for each parton produced from
nucleons a and b. The space-time rapidity coordinate ηs of a parton is obtained
by assuming that formed partons move along ηs = y curves.

4.4.2 Saturation and conservation laws

The minijet sampling procedure described above does not account for the conser-
vation of energy, momentum, or baryon number, nor does it consider saturation.
Consequently, not all the sampled dijets are physical ones. Thus, the dijets sam-
pled based on pQCD cross sections are referred to as candidates. In principle,
saturation and conservation laws could be taken into account by including all
multiparton processes to the differential cross-section in Eq. (61), and using mul-
tiparton distributions that would be constructed so that they would conserve en-
ergy. Obviously, this is not achievable so one needs to make some simplifying ap-
proximations. In MC-EKRT, saturation, and conservation laws are implemented
as filters that are applied to the candidate dijet list. The collinear factorization
has proven to work well at high pT, and to maintain this the candidate dijets are
ordered in decreasing pT when applying filters. This way the highest pT dijets
are practically always kept after the filters, while the low-pT dijets are removed.

Saturation is implemented as a geometrical criterion, which is motivated
by the saturation criterion introduced in Ref. [117], and derivable from Eq. (55)
above, replacing on the l.h.s. the ET with the number of dijets and reducing one
power of p0 from the r.h.s. and integrating over the transverse coordinate and ra-
pidity. Then each minijet production process occupies a transverse area ∝ 1/p2

T,
and the candidate dijet with the transverse location s̄cand and transverse momen-
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tum pcand
T is rejected if

∣∣∣s̄ − s̄cand
∣∣∣ < 1

κsat

(
1
pT

+
1

pcand
T

)
(64)

holds for any previously accepted dijet with pT ≤ pcand
T and s̄. The parameter

κsat is a fitting parameter that determines the proximity at which dijets can be
formed from each other. Because saturation should be the main mechanism that
regulates the low-pT dijets, it is applied before the conservation laws.

The MC-EKRT can take into account the momentum and valence-quark
number conservation laws. The momentum conservation is implemented for
each nucleon separately, again considering the dijet candidates in a pT ordered
manner. That is, given a candidate dijet with longitudinal momentum fractions
xcand

1 in a projectile a ∈ A, and xcand
2 in a target b ∈ B, the energy conservation is

broken and the candidate dijet is rejected if

xcand
1 +

n

∑
i=1

x(i)1 > 1 or xcand
2 +

m

∑
j=1

x(j)
2 > 1, (65)

where x(i)1 (x(j)
2 ) are the longitudinal momentum fractions of the accepted dijets

associated with nucleon a (b). The valence-quark number conservation is imple-
mented by keeping track of the number of available valence quarks in nucleons a
and b. A candidate dijet is rejected if it involves a valence quark of a specific fla-
vor from either parton a or parton b, and if either nucleon has already consumed
all its valence quarks of that flavor in the previous parton scatterings.

4.4.3 Free streaming and parton smearing

At this stage, the excess minijets have been filtered away, and the remaining ones
can be used to initialize hydrodynamics. For each parton i, the momentum ra-
pidity yi, the transverse momentum pT,i, and the transverse coordinate x⊥,0i are
known. However, the partons need to be propagated to a constant proper time
τ0 to initialize the hydrodynamics. This is done by letting partons propagate as
free particles, and assuming that all the partons are produced at the longitudinal
location zi = 0 at time t = 0. This sets the spacetime and momentum rapidities
equivalent, i.e. ηs,i = yi. The position of a parton i at proper time τ0 is then given
by (τ0, x⊥,i(τ0), ηs,i) where x⊥,i(τ0) = x⊥,0i + τ0pT,i/pT,i.

After the free streaming, the space-time rapidity ηs,i, transverse momentum
pT,i, and the transverse coordinate x⊥,i of all partons i are known at the proper
time τ0. From these, it is possible to construct a distribution function for point-like
partons in the Milne coordinates [144]

f (τ, x⃗, p⃗) = ∑
i

δ(3)(x − xi)δ
(3)(p − pi)/|det g|, (66)

where pi = (pT,i, pη
i ) is the three-momentum, xi = (x⊥,i, ηs,i) is the spatial lo-

cation, and det g = −τ2 is the determinant of the metric tensor in the Milne
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coordinates. The energy-momentum tensor in the Milne coordinates reads

Tαβ(τ, x⊥, ηs) =
∫ d3 p⃗

pτ
τpα pβ f (τ, x, p⃗), (67)

where d3 p⃗ = d2pTdpη, and pα = (pτ, pT, pη) is the four-momentum, which can
be expressed as

pα
i =

∂xα

∂x′µ
p′µ =




pT cosh(y − ηs)
pT

τ−1pT sinh(y − ηs)


 , (68)

where x′µ and p′µ are the Cartesian space-time point, and four-momentum re-
spectively. By substituting distribution (66) to the energy-momentum tensor (67),
and writing the ηs integral in terms of y, it is possible to write

Tαβ = ∑
i

∫
d2pTdy

pα pβ

pτ

1
τ

cosh(y − ηs) (69)

× δ(2)(x⊥ − x⊥,i)δ(ηs − ηs,i)δ
(2)(pT − pT,i)δ(y − ηs),

where pη
i = 0 was assumed so that ηs,i = yi.

The point-like nature of particles in the distribution function leads to infi-
nite energy and momentum densities. Therefore, additional smearing is needed
to smooth the density profiles. Alternatively, the smearing can be thought of
as a way to account the parton shower evolution from τf to τ0 which smears
the particle distribution. The smearing is implemented by replacing delta func-
tions with Gaussians in coordinate space. That is, δ(2)(x⊥ − x⊥,i)δ(ηs − ηs,i) →
g⊥(x⊥; x⊥,i)g∥(ηs; ηs,i), where the Gaussian functions are defined as

g⊥(x⊥; x⊥,i) =
C⊥

2πσ2
⊥

exp

[
− (x⊥ − x⊥,i)

2

2σ2
⊥

]
, (70)

g∥(ηs; ηs,i) =
C∥√
2πσ2

∥
exp

[
− (ηs − ηs,i)

2

2σ2
∥

]
, (71)

where σ⊥ and σ∥ are the Gaussian widths in transverse, and longitudinal direc-
tions respectively. The Gaussians are normalized as

∫
d2xTdηsg⊥(x⊥; x⊥,i)g∥(ηs; ηs,i) = 1. (72)

To reduce the computational cost, the smearing is done only in the ±3σ

range from the center of Gaussian to each direction. This together with a finite
grid size causes some discretization errors in the normalization of Gaussians.
Thus, the normalization constants C⊥, and C∥ are added to guarantee correct
normalization. In practice, these constants are very close to unity.
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With assumptions made here, the Tττ component of the energy-momentum
tensor is given as

Tττ(τ, x⊥, ηs) =
1
τ ∑

i
pT,ig⊥(x⊥; x⊥,i)g∥(ηs; ηs,i). (73)

In Articles [PIV, PV], only the initialization of energy density is considered, ignor-
ing the initial shear-stress tensor, bulk pressure, and transverse velocity. Thus, the
initialization is determined by e(τ0) = Tττ(τ0). This way of initializing hydrody-
namics breaks the energy conservation only by around 1% with σ∥ = 0.15.

In Article [PV], the 2+1D hydrodynamics is used together with MC-EKRT.
There, it is not necessary to perform smearing in the η direction, but instead, one
can replace the smearing with the Heaviside theta function and set ηs = y, so that
all the partons with |yi| < ∆y/2 are counted to the initial state in the midrapidity
window ∆y. With this approach one obtains

Tττ(τ, x⊥) =
1

τ∆y ∑
i

pT,ig⊥(x⊥; x⊥,i)θ(∆y/2 − |yi|), (74)

where the g⊥ is normalized as
∫

d2xTg⊥(x⊥; x⊥,i) = 1. (75)

4.4.4 Rapidity-dependent charged particle multiplicity

The MC-EKRT model provides full 3-dimensional initial conditions and can be
used to study rapidity-dependent observables. Since 3+1 D hydrodynamic sim-
ulations are computationally very expensive and parameter tuning consequently
overly slow, a large set of MC-EKRT initial conditions are averaged over in Ar-
ticle [PIV]. The events are first divided into centrality classes based on the total
transverse energy of the minijets that survived all the filters. Within each cen-
trality class, the energy density profiles of events are converted into entropy den-
sities. These are then averaged and converted back to energy density profiles.
Averaging is performed based on the entropy density because total entropy is a
good proxy for the multiplicity of the event. Therefore, the final multiplicity ob-
tained from the entropy-averaged initial conditions should be a good estimate of
the event-averaged, event-by-event multiplicities.

Examples of the obtained charged particle multiplicities as a function of
rapidity are presented in Fig. 5 for 5.023 TeV Pb+Pb, 2.76 TeV Pb+Pb, and 200
GeV Au+Au collisions. All results shown here are obtained with the MC-EKRT
initial states with saturation, energy conservation, and valence quark conser-
vation enabled. Different viscosity parametrizations and initial state parame-
ter combinations are shown to probe uncertainties in the initial conditions. The
η/s = param1 is the temperature-dependent viscosity shown in Fig. 3, while the
other two parametrizations correspond to temperature-independent shear vis-
cosities. In all cases σ∥ = 0.15. The 3+1 D hydrodynamic simulations performed
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FIGURE 5 The rapidity dependence of charged particle multiplicity for 5.023 TeV
Pb+Pb (top panel), 2.76 TeV Pb+Pb (middle panel), and 200 GeV Au+Au
(bottom panel) collisions as obtained from the MC-EKRT model. The exper-
imental data are from PHOBOS [145], and ALICE [140, 141, 146, 147] Collab-
orations. Figure from Article [PIV].
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to obtain these results had chemical decoupling at the temperature Tchem = 150
MeV and the kinetic decoupling at the temperature Tkin = 120 MeV. The best
overall agreement with the data is obtained with constant η/s = 0.16 and with
σ⊥ = 0.4 fm. In this case, the measured rapidity distribution is reasonably well
reproduced, except for peripheral RHIC collisions, where the rapidity distribu-
tion is systematically slightly narrower than the measured one. This discrepancy
could be due to the lower collision energy where also approximation ηs = y is
more likely to break down. It is noteworthy that the same saturation mechanism,
which previously produced a good agreement with the measured midrapidity
data, also appears to work in 3+1D simulations. This emphasizes that the non-
linear saturation effect is the dominant mechanism suppressing pQCD minijet
production.



5 DECOUPLING

When a fluid expands and cools down, the density of matter decreases. At the
same time, the rate of scatterings decreases, eventually leading to a state where
there are no scatterings between fluid constituents, and the fluid decouples. The
decoupling stages in heavy-ion collisions can be divided into chemical and ki-
netic phases.

5.1 Chemical decoupling

Chemical decoupling describes a point where all of the inelastic processes stop,
and the system is no longer in a chemical equilibrium (CE). Thus, after chemical
decoupling, particle species cannot be converted into each other. Without reso-
nances, the number of hadrons would be conserved separately for each hadron
species after chemical decoupling. When resonances are included, only the ef-
fective particle number N̄i is conserved. The effective particle number is defined
as

N̄i = Ni + ∑
j

n(i)
j Nj, (76)

where Ni is the actual number of particles of species i, Nj is the number of res-

onances j, and n(i)
j is the number of particles i formed in the decay of the reso-

nance j according to the branching ratios. The inclusion of resonances means that
even though all the effective particle number-changing processes have ceased,
the number of resonances and their constituent particles can still be in chemi-
cal equilibrium relative to each other. For example, processes like π + π ↔ ρ

can still take place. This approach, which includes resonances, is called partial
chemical equilibrium (PCE) [148]. Additionally, there is still a small amount of
entropy production in the hadron gas phase due to viscous effects, so the number
of hadrons can still slightly increase after chemical decoupling, while the ratios
between the effective particle numbers remain constant.

Chemical decoupling can be implemented directly into the hadronic part
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FIGURE 6 Identified particle multiplicities for pions, kaons and protons in 2.76 TeV
Pb+Pb, and 200 GeV Au+Au collisions. The experimental data are from the
ALICE [151] and PHENIX [152] Collaborations. Figure from Article [PI],
reprinted under the license CC BY 4.0.

of the equation of state by introducing effective chemical potentials [148–150].
While chemical decoupling has only a slight effect on pressure as a function of
energy density, the temperature decreases significantly faster as a function of en-
ergy density than in chemical equilibrium. In heavy-ion collision simulations,
this means that a chemically decoupled system cools down faster than a system
in chemical equilibrium. This leads to less radial flow for a given temperature,
which, combined with the constant effective particle number, decreases the mean
transverse momentum of the hadrons.

When using a hydrodynamic description in the hadron gas phase of QCD
matter, chemical decoupling is usually assumed to take place at some constant
temperature Tchem. In the simulations done in Articles [PI, PV], the chemical de-
coupling temperature was Tchem = 155 MeV, while in Article [PIV] Tchem = 150
MeV was used. The most direct consequence of chemical decoupling can be seen
in the multiplicity ratios of the produced hadron species. This is illustrated in
Figure 6, where the multiplicities of pion kaons, and protons are shown as a func-
tion of centrality for Pb+Pb collisions at

√
s = 2.76 TeV. The curve denoted with

η/s = dyn corresponds to a simulation where Tchem = 155 MeV is used, while in
the other two cases Tchem = 175 MeV. In all cases, the multiplicities of the pions
are quite close to each other, while the proton multiplicity clearly increases with
increasing Tchem. The cause of this behavior is that at higher temperatures yields
of the more massive particles are enhanced according to the thermal spectra.

The chemical decoupling affects the EoS and therefore the entropy density
in chemical equilibrium sCE(T) differs from the chemically decoupled entropy
density sPCE(T). This has to be accounted for when comparing chemically decou-
pled η/s or ζ/s with the corresponding specific viscosity in chemical equilibrium.
This is demonstrated in figure 7, where η/s and ζ/s from Fig. 3 are compared
against the same viscosities scaled with the ratio of chemically decoupled and
equilibrium entropy densities. At least in the case of the simplified hadron gas,
the η is not very sensitive to the chemical decomposition of the hadron gas [153].
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FIGURE 7 The specific shear and bulk viscosities, scaled with the ratio of chemically
decoupled and equilibrium entropy densities, as a function of temperature.

That is (η/s)CE ≈ (η/s)PCE × sPCE/sCE. When T < Tchem = 155 MeV, the scaled
versions of η/s, and ζ/s are significantly larger than the corresponding PCE ver-
sions. At the temperatures T ≈ 100 MeV, the scaling makes the η/s more compa-
rable to the values obtained from the SMASH hadron transport model with the
10 mb elastic cross-sections [111].

5.2 Kinetic decoupling

The kinetic decoupling occurs when all elastic scatterings cease. After this, stable
hadrons continue propagating toward the detectors without further interactions,
while unstable particles decay into their daughter particles. At this stage, the
system is no longer near thermal equilibrium, and fluid dynamics can no longer
describe the system. Thus, the fluid needs to be converted into particles. This
process can be seen as a transition from macroscopic fluid dynamic degrees of
freedom to microscopic degrees of freedom. In the context of this thesis, fluid
conversion into the particle spectrum is performed on the kinetic decoupling hy-
persurface Σ, which is found using the Cornelius algorithm [154]

Kinetic decoupling is done using the Cooper-Frye formula [155], which pro-
vides a Lorentz-invariant particle spectrum

E
d3Ni

d3k
=
∫

Σ
d3σµkµ fi(x, k), (77)

where d3σµ is a directed surface element of the hypersurface Σ, and kµ = (E, k)
is the four-momentum. The distribution function fi(x, k) should be chosen to
reproduce the energy-momentum tensor on the decoupling surface. If the fluid
was in thermal equilibrium this would be straightforward. One could simply use
the equilibrium distribution

f0i(x, k) =
[

exp
(kµ

i uµ − µi

T

)
± 1
]−1

, (78)
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where +(−) sign should be used for fermions (bosons). However, the QGP is
not necessarily in thermal equilibrium on the decoupling surface. This causes
an ambiguity in the choice of fi(x, k) because hydrodynamics does not contain
information about all of the microscopic degrees of freedom. Since the system
is expected to be reasonably close to thermal equilibrium, a standard way is to
write the distribution function as a sum of the equilibrium part and the viscous
correction, i.e. fi = f0i + δ fi. Various forms for the viscous corrections have been
used in the past [156–159], and there is no clear consensus on the optimal form.
In Articles [PI-PV] the viscous corrections are of the form [160, 161]

δ fi = − f0i f̃0i
Cbulk

T

[
m2

i
3Ek

−
(1

3
− c2

s

)
Ek

]
Π +

f0i f̃0i

2T2(e + p)
πµνkµkν, (79)

where mi is the mass of hadron i, Ek =
√

k2 − m2 is the energy, f̃0i = 1 ± f0i,
with −(+) for fermions (bosons) and the fluid dynamic variables are defined in
Chapter 3. The coefficient Cbulk is obtained by requiring that the kinetic theory
definition of Π is consistent with the form of δ fi correction. Therefore,

1
Cbulk

= ∑
i

gim2
i

3T

∫ d3k
(2π)3k0 f0i f̃0i

[
m2

i
3Ek

−
(1

3
− c2

s

)
Ek

]
, (80)

where sum goes over all included hadrons, and gi is the degeneracy factor of a
hadron i.

In Article [PI], the integral in Eq. (77) is computed numerically, leading to
continuous spectra for all known hadrons with m < 2 GeV. The decoupling sur-
face is determined by the dynamical decoupling conditions discussed in Sec 5.3.
The two- and three-particle decays are accounted for by folding the continuous
particle spectrum of an unstable particle with the single-particle decay distribu-
tion and integrating over the allowed phase space according to Ref. [162]. The
decay products are assumed to be isotropically distributed in the rest frame of
the particles.

On the other hand, in Article [PIV], the kinetic decoupling surface was de-
termined as a constant temperature hypersurface with Tkin = 120 MeV. Instead
of performing the folding procedure described earlier to account for particle de-
cays, the particles were sampled from the continuous particle spectrum, after
which the particle decays were performed as in Ref. [163, 164]. This sampling
procedure was then repeated multiple times to obtain smooth momentum distri-
butions.

5.3 Dynamical decoupling

In the context of the hydrodynamic description of heavy-ion collisions, the kinetic
decoupling surface is often chosen as a constant temperature hypersurface. Even
though temperature can be used as a proxy for the scattering rate or mean free
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path, the constant temperature decoupling does not account for the expansion or
the finite size of the system. These effects play a major role in heavy-ion collisions
since the expansion rate and the system size are vastly different in central and
peripheral collisions. Thus, one temperature scale is insufficient for describing
the dynamics of kinetic decoupling accurately in different collision systems.

A usual way to solve this issue is to switch to a kinetic theory description
at some constant switching temperature before the decoupling takes place and
let decoupling happen automatically according to the kinetic theory. However,
switching from hydrodynamics to a transport model can easily lead to unphysical
discontinuities in the transport coefficients, as discussed in Sec. 3.2.2

In Article [PI], an alternative method, that keeps the transport coefficients
continuous, is used. Instead of switching to the kinetic theory description, hy-
drodynamics is used throughout the evolution of QCD matter. The dynamics
of the kinetic decoupling are then determined by two dynamical conditions that
take into account the expansion and the finite size of the fluid. These conditions
take inspiration from the applicability of hydrodynamics and assume that the ki-
netic decoupling happens when the applicability of hydrodynamics ends. This
is similar to Refs.[164–167]. As discussed in Sec 3.1.1, the applicability of hydro-
dynamics ends occurs when the macroscopic expansion rate exceeds the micro-
scopic scattering rate, i.e. when Kn ≡ τπθ ≈ 1. This is a local condition that takes
into account the expansion of the fluid element. The second condition is related
to the global applicability of fluid dynamics. Even though fluid dynamics would
be applicable locally, it does not automatically lead to a global applicability. The
global applicability requires an additional condition that the mean free path is
smaller than the global size of the system R. Here, the relaxation time τπ is used
as a probe for the free mean path. Thus, kinetic decoupling can be estimated to
take place based on the following dynamical conditions:

Kn = τπθ = CKn
γτπ

R
= CR,

(81)

where CKn, CR ∼ 1 are free parameters that must be adjusted to match the mea-
sured data. The additional factor γ = (1− v2)−1/2 appears in the second equation
because the size of the system is calculated in the center-of-momentum frame of
the colliding nuclei, while τπ is defined in the fluid rest frame. The size of the
system R is not uniquely defined. Note that the decoupling conditions depend
on η/s through the relaxation time τπ, as they should. In Article [PI], the size of
the system was calculated as

R =

√
A
π

, (82)

where A is the transverse plane area in which Kn < CKn, i.e., the area in which
the system has not yet decoupled according to the Knudsen number criterion. If
the system consists of multiple disconnected areas, then R is calculated for each
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FIGURE 8 The entropy flux averaged temperature as a function of centrality for the
η/s = dyn parametrization. Figure from Article [PI], reprinted under the
license CC BY 4.0.

of these areas separately. As mentioned earlier, this definition is not unique, and
the definition used here corresponds close to the maximum distance a particle
can travel from the center to the edges of the fluid. However, a lot of matter is
distributed closer to the edges of the fluid, and most of the particles are moving
toward the edges with the fluid so that the apparent size that the particles see can
be smaller than the definition of R used here. Thus, the coefficient CR might be
considerably smaller than unity. Alternatively, one could define the size of the
system as an entropy density weighted distance from the edges of the fluid or
as a local distance that a particle needs to travel along the fluid velocity before
reaching the edge of the fluid. These definitions would lead to smaller values of
R so that larger values of CR would be needed to achieve similar dynamics. In
addition to the conditions (81), it is necessary to require that at the decoupling
surface T < 150 MeV, so that the decoupling happens in the hadronic phase of
the matter.

In Article [PI], it was shown that CKn = 0.8, and CR = 0.15, together with
the viscosities shown in Fig. 3 produced a good agreement with the measured
data. This parametrization is referred to as η/s = dyn. The decoupling dynamics
can be illustrated by looking at the entropy flux averaged decoupling tempera-
ture, which is shown for η/s = dyn parametrization as a function of centrality
for various collision systems in Fig. 8. The average temperature has a strong de-
pendence on the centrality. The central collision systems decouple at much lower
temperatures than the peripheral collisions, which practically decouple immedi-
ately when the system reaches the hadronic phase. This behavior is expected due
to the smaller system sizes and larger gradients in the peripheral collisions. For
the same reason, the decoupling temperature also increases when the collision
energy or the radius of the colliding nuclei decreases.
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The impact of the dynamical decoupling is also evident in the final state
observables. The effect is most pronounced for the flow coefficients, which are
shown in Fig. 9 for 5.023 TeV Pb+Pb, 2.76 TeV Pb+Pb, 5.44 TeV Xe+Xe, and 200
GeV Au+Au collision systems. Here the η/s = dyn parametrization uses dynam-
ical decoupling, while η/s = 0.2 and η/s = param1 from Ref. [27] use constant
temperature decoupling with Tdec = 100 MeV. All of the parametrizations use
EbyE EKRT initial states introduced in Sec. 4.3, with a nucleon Gaussian width
σ = 0.43 fm. Therefore, the effects seen in the figure are caused by the dynami-
cal decoupling and not the initial state. Switching from the constant temperature
decoupling to the dynamical decoupling decreases flow coefficients in the periph-
eral collisions. The reason for this decrease is fairly easy to understand. Since the
peripheral collisions decouple at higher temperatures, hydrodynamic evolution
is shorter and there is less time for the work done by the pressure to convert the
initial state eccentricities into the final state momentum-space anisotropies.

Due to the decrease of flow in the peripheral collisions, the η/s = dyn
parametrization can describe flow coefficients well for the LHC collision systems,
while for the 200 GeV Au+Au collision system, it underestimates the amount of
flow in peripheral region. There are many different reasons which might con-
tribute to this discrepancy. The multiplicity in 200 GeV Au+Au collisions is sig-
nificantly smaller than in the LHC energies, which is why the non-flow effects
might be considerably larger in RHIC. Additionally, the thermalization time at
the 200 GeV energy can be longer, and it is unclear if the system has enough
time to thermalize sufficiently. Finally, the initial state model does not contain
some of the elements that might contribute to the small systems and low colli-
sion energies, such as initial flow, finite thickness of colliding nuclei, hotspots,
and non-zero initial πµν. Nonetheless, the results across all collision systems are
similar to the ones obtained using hadronic transport in the hadron gas phase,
see e.g. Ref. [31]. This is a good indication that even though the dynamical de-
coupling presented here may not capture all the microscopic details of the decou-
pling dynamics, it manages to capture the most essential macroscopic features
while keeping the transport coefficients continuous. Additionally, this method
offers the potential to constrain the transport properties of QCD matter in the
hadronic phase from measurements, without needing to rely on numerous un-
known cross-sections that are present in the kinetic theory models.
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FIGURE 9 Flow coefficients as a function of centrality in 200 GeV Au+Au (a), 2.76 TeV
Pb+Pb (b), 5.023 TeV Pb+Pb (c), and 5.44 TeV Xe+Xe (d) collisions. The exper-
imental data are from the STAR [168, 169] and ALICE Collaborations [170,
171]. Figure from Article [PI], reprinted under the license CC BY 4.0.



6 MACHINE LEARNING

Machine learning is a vast field in computer science that aims to teach a machine
to perform a task without explicitly programmed instructions. This enables ma-
chines to perform tasks that are beyond the guidelines given by their program-
mers. Typically, machine learning algorithms are divided into three classes: su-
pervised learning, unsupervised learning, and semi-supervised learning. In su-
pervised learning, the machine is given input and output data, and the goal of
the algorithm is to make the machine learn how to produce output data from the
input. The simplest example of supervised learning is linear regression, where
the machine tries to find the best linear fit that maps the input to the output. Un-
like supervised learning, unsupervised learning does not use any labeled data.
Instead, it relies on the recognition of features and patterns from the input data
alone. The most common examples of unsupervised learning are clustering al-
gorithms and dimensionality reduction. As the name indicates, semi-supervised
learning is a mixture of these two. It combines the usage of both labeled and
unlabeled data, in such a way that it can more efficiently handle large datasets,
while still getting some human input in the form of labeled data. Semi-supervised
learning has become very popular in the context of large language models, which
can contain enormous amounts of training data.

Machine learning tools have become widely used among different branches
of physics, including heavy-ion physics. The main reason for the rising popu-
larity of these tools is the increased computation times of the simulations and
growing data flows in the measurements which have to be preprocessed in real-
time. The first applications of machine learning in heavy-ion physics were done
already in the 90s but at that time those methods did not gain that much pop-
ularity [172–174]. The second rise of machine learning in recent years has been
driven by innovations in machine learning algorithms and increased computa-
tional power. Especially, the efficient usage of graphics processing units (GPUs)
has boosted the available computational power significantly.

Nowadays almost all the biggest experimental heavy-ion collaborations use
machine learning techniques for various applications, such as particle identifica-
tion, event selection, signal/background discrimination, jet-tagging, and correct-
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ing detector effects [175–178]. These methods are starting to become a necessity
since the measured raw data obtained during heavy-ion runs can reach rates of
over 1 TB/s.

Somewhat similar challenges are also present on the theory side. Most of
the current heavy-ion collision simulations are event-by-event simulations, and
to reach similar statistics as in measurements, one sometimes needs to perform
millions of collision simulations. Another challenge that the simulations face is
related to extracting information, like model parameters or matter properties,
from the measurements through a global analysis. The statistical method that
can be utilized to do this is called Bayesian inference. The implementation of
Bayesian inference is usually done with the Markov chain Monte Carlo (MCMC)
algorithm [179]. The drawback of MCMC is that one needs to perform simula-
tions in tens of thousands of points in the parameter space, which is computation-
ally very intensive. Due to this, machine learning tools, such as Gaussian process
emulators, are usually used as surrogate models to decrease the computation cost
of simulations [180–182]. However, even the computational cost needed to train
the Gaussian process emulators can be around 100 million CPU hours if multi-
particle flow correlations are included in the Bayesian analysis [34, 35]. The goal
of Articles [PII, PIII] is to address this problem by replacing slow event-by-event
hydrodynamic simulations with convolutional neural networks.

6.1 Neural networks

A neural network is a machine learning model originally inspired by the way bi-
ological neurons in the human brain process information. Every neural network
is constructed from layers of artificial neurons, which are connected to each other.
Like biological neurons, artificial neurons are activated if the signal exceeds some
threshold value, after which they can forward the information to the next layer
of the network. The neural networks always contain at least three layers:

1. Input layer: Contains input values given by the user,

2. Hidden layers: One or more layers that form the structure of the network,

3. Output layer: The final layer that produces the prediction of the desired
output.

Each hidden layer can contain an arbitrary number of neurons, while for input
and output layers, the number of neurons must match the input and output di-
mensions, respectively. The output of the network is determined by the weight
and bias values that connect the artificial neurons to each other. The weights de-
termine the strength of the connection between the neurons, while the biases set
an offset to neuron activation. There are plenty of different ways to implement
weights and biases to form various types of layers. The most basic layer type is
the fully connected layer. In the fully connected layer, the output value of the
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neuron k is obtained as a linear combination of the neuron values from the pre-
vious layer combined with an activation function F. If we have m neurons in a
previous layer n − 1 with outputs x(n−1)

j , then the output of neuron k is

x(n)k = F

(
m

∑
j=0

w(n)
kj x(n−1)

j + b(n)k

)
, (83)

where w(n)
kj and b(n)k are weights and biases of the neuron k in layer n. The ac-

tivation function F is introduced to add non-linearity to the network and make
it possible to describe more complex patterns. For the regression task, one often
uses a linear activation F(x) = x for the output layer and rectified linear unit
(ReLU) activation F(x) = max(0, x) for the hidden layers. In addition to the fully
connected layer, there are many other types of layers used in neural networks,
each serving a distinct purpose and being designed for specific tasks. This makes
it possible to efficiently tackle problems in various domains, such as computer vi-
sion, and natural language processing. Here, I will only focus on layers relevant
to convolutional neural networks.

6.1.1 Convolutional neural networks

A convolutional neural network (CNN) is a type of neural network specifically
designed for handling multi-dimensional structured data efficiently, and it
is widely used in computer vision tasks. The neurons in a two-dimensional
convolutional network are organized to form a H × W × N grid, where each
node corresponds to one neuron. In the case of an image, H, W, and N can
be interpreted as the image’s height, width, and number of color channels
respectively.

The key ingredients of the CNN are the convolutional and the pooling lay-
ers. Convolutional layers are used to extract features from the data, and they can
be thought of as applying filters to the image. Mathematically, the convolution
layer is defined as a convolution between kernels Kk,(n) and input x(n−1), where
the index k distinguishes different kernels in the convolutional layer n. If the in-
put has dimensions nh × nw × nc, then the kernel is a mh × mw × nc tensor. The
parameters mh and mw describe the spatial size of the filter, and they can be any
numbers as long as they are smaller than the corresponding height and width
of the input. In practice, odd values of mh, and mw are often used because the
kernel then has a clear center node. One convolutional layer can contain many
kernels, each producing one output channel, often referred to as feature maps.
The elements of the kernel are the weights of the network, i.e., Kk,(n)

ijl = wk,(n)
ijl .

The output of the convolutional layer n, with odd mh and mw, is defined as

x(n)ijk =
mh−1

∑
x=0

mw−1

∑
y=0

nc−1

∑
z=0

wk,(n)
xyz x(n−1)

x′y′z + b(n)k , (84)

where
x′ = i + x − (mh − 1)/2, y′ = j + y − (mw − 1)/2. (85)
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Note that here x′ = y′ = 0 corresponds to the bottom left corner of the input.
Since the convolution cannot be applied at the edges of the grid, the output ten-
sor y has dimensions (nh − mh + 1)× (nw − mw + 1)× mc, where mc is the num-
ber of different kernels in the convolutional layer. Often one wants to keep the
spatial dimensions of input and output equal. This can be achieved with a tech-
nique called padding. In padding, some or all elements from the previous layer
that are undefined in the sum are set to a constant value. Usually, this value is
chosen to be zero. With the padding P, the elements with nh ≤ x′ < nh + P,
−P ≤ x′ < 0, nw ≤ y′ < nw + P, and −P ≤ y′ < 0 are defined to be
zero. Usually one uses Ph = (mh − 1)/2 for height, and Pw = (mw − 1)/2 for the
width, so the input and output have the same dimensions. The convolution layer
also has a property called stride, which determines how the convolution kernel
moves across the input neurons. More precisely, if the stride is set to a value S
and padding is used, then Eq. (84) is applied only if i = Sq, and j = Sp, where
q, p ∈ N. With the padding and stride the output dimensions Oh/w are obtained
as

Oh/w =
nh/w − mh/w + 2Ph/w

S
+ 1, (86)

where the notation h/w indicates either height or width. As in the case of the
fully connected layer, the activation function is usually applied after convolution
to add non-linearity.

One of the variants of the convolutional layer is the depthwise separable
convolution. It consists of the depthwise convolution followed by the point-
wise convolution. The pointwise convolution is just a normal convolution with
mh = mw = 1. On the other hand, the depthwise convolution is similar to the
convolution in Eq. (84), but the kernel processes each channel independently by
a separate filter, i.e. Kk,(n)

ij = wk,(n)
ij , and

y(n)ijk =
mh−1

∑
x=0

mw−1

∑
y=0

wk,(n)
xy x(n−1)

x′y′k + b(n)k , (87)

where x′, and y′ are defined in Eq. (85). By first performing the depthwise con-
volution to capture spatial features, and then pointwise convolution to combine
features from different channels, the depthwise separable convolution manages
to reduce the number of trainable parameters compared to a traditional convolu-
tion with the same output dimensions.

Like the convolutional layer, the pooling layers are based on the kernel.
However, the kernel elements of the pooling layer are not trainable weights, but
instead, they are predefined. Like in the case of depthwise convolution, the pool-
ing kernel is applied separately for each input channel, so that the number of
channels remains unchanged, i.e.

x(n)ijk =
mh−1

∑
x=0

mw−1

∑
y=0

Kpool
xy x(n−1)

x′y′k , (88)
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where the size of the kernel Kpool is mh × mw. The pooling layers almost always
use no padding, and stride equal to the size of the kernel, so that the output size
is nh/mh × nw/mw × nc The most typical pooling layers used are the average and
max pooling. As the name suggests the average pooling takes the average of the
input elements in the range of the kernel, i.e. Kpool

ij = 1/(mhmw), while the max
pooling takes the maximum value of the input elements.

The main function of pooling layers is to find the most relevant informa-
tion from the feature maps after the convolution layer is applied and reduce the
spatial dimensions of the input data. Because the pooling layers do not contain
any weights or biases, they help to reduce the number of parameters in the net-
work. Additionally, alternating between the convolution and the pooling layers
helps create a feature hierarchy in the network, since the first convolutional layers
probe smaller spatial areas of the original input than later ones.

In addition to the convolution and pooling layers, CNNs often utilize batch
normalization [183]. The idea of batch normalization is to normalize hidden layer
outputs using the mean and variance of input. The batch normalization operates
slightly differently during the training and inference.

During training, the training data are divided into smaller subsets, called
batches. The batch normalization layer computes batch-wise means µ

B,(n−1)
ijk and

variances
(

σ
B,(n−1)
ijk

)2
for each input point x(n−1)

ijk preceding the batch normaliza-
tion layer n. The output of the batch normalization is given as

x(n)ijk = γ
(n)
ijk x̃(n−1)

ijk + β
(n)
ijk ,

x̃(n−1)
ijk =

x(n−1)
ijk − µ

B,(n−1)
ijk√(

σ
B,(n−1)
ijk

)2
+ ε

,
(89)

where γ
(n)
ijk , and β

(n)
ijk are trainable parameters, which allow the network to choose

an optimal normalization distribution for each input point in the layer. The pa-
rameter ε is a small constant added for numerical stability.

During the inference, there might be only a few samples, so computing the
means and variances from the inference sample set could lead to unreliable re-
sults. This issue is handled by computing moving averages and variances iter-
atively during the training phase, and using them when performing inference.
The moving mean and average describe more accurately the mean and variance
of a larger sample set, and they are defined as

µ
mov,(n)
ijk =αBµ

mov,(n)
ijk + (1 − αB)µ

B,(n)
ijk

(σ
mov,(n)
ijk )2 =αB(σ

mov,(n)
ijk )2 + (1 − αB)(σ

B,(n)
ijk )2,

(90)

where the momentum parameter αB determines how much the moving averages
and variances lag behind their actual values. The purpose of moving averages
and variances is to remove the noise due to batch-to-batch variations.
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It was shown in Ref. [183], that the batch normalization makes the training
of the network faster and more stable. This is especially true for deeper networks,
i.e. neural networks with many hidden layers, where the output scales of the lay-
ers can vary a lot. Since the mean and variance are computed batch-wise during
the training, they do not exactly reflect the true values. Therefore, the batch nor-
malization also acts as a regularization method.

6.1.2 Training

The output of the neural network is determined by the values of the weights and
biases. With proper training, these parameters are adjusted in such a way that the
neural network can reproduce the results of the training and the validation data
sets. Such a neural network can be used to accurately interpolate, or sometimes
even slightly extrapolate the training data. In this sense, the neural network can
be thought of as a fitting method with many fit parameters.

The goal of a neural network training algorithm is to to minimize the loss
function L, which describes the discrepancy between the training data, and the
neural network output. Thus, training a neural network is an optimization prob-
lem in a multi-dimensional space. Since neural networks can contain up to bil-
lions of trainable parameters, training is far from trivial. Most of the methods
used to train CNNs are based on gradient descent and backpropagation.

The idea of gradient descent is to iteratively adjust the network parameters
along the gradient of the function we want to minimize. With each iteration, the
neural network parameters θ⃗ are updated as

θ⃗ → θ⃗ − α∇L(⃗θ), (91)

where α is a learning rate that adjusts the length of the step. The algorithm is
repeated as long as the loss function keeps decreasing, and the optimal values
for parameters describing the training data are found. Choosing a proper value
for α is essential, because if it is too large then the algorithm will not have a
good enough resolution to find the minima. On the other hand, if α is too small
then the algorithm will converge slowly and can get easily stuck to local minima.
Some of the more sophisticated optimization algorithms, such as Adam [184],
are designed to be less sensitive to the choice of the learning rate. In the Adam
algorithm, this is achieved by introducing an adaptive learning rate for each indi-
vidual weight. Even though the underlying optimization algorithm in the Adam
is more effective and converges faster than the standard gradient descent, it still
needs knowledge about the gradients ∇L(⃗θ).

In principle, it could be possible to form an expression for L(θ), and com-
pute the gradient in Eq. (91) numerically. However, in practice, this is not very
efficient, since the dimensionality of θ⃗ can be enormous, and the parameters of
one layer depend on the parameters of the previous layers. Therefore, the back-
propagation algorithm is used. In simple terms, the backpropagation is just an
application chain rule to obtain derivatives ∂L/∂θi. To demonstrate this in a sim-
ple way, let us assume that we have a neural network that contains an input
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layer with inputs x(0)j , and m fully connected layers with weights w(n)
kj , and an

activation function F(n), where n denotes the layer number. For the sake of sim-
plicity assume that all the biases are zero and that we only have one output value
yout = x(m)

0 . Further denoting the outputs of neuron j in layer n before and after

the activation layer as a(n)j , and x(n)j respectively. The backpropagation algorithm
starts from the output layer, where we know the loss function as a function of the
neural network output L(yout). By using the chain rule and Eq. (83), the partial
derivative of the loss function L with respect of the weights in the output layer
wm

i1 can be written in a convenient form

∂L

∂w(m)
0i

=
∂L(yout)

∂yout
∂yout

∂a(m)
0

∂a(m)
0

∂w(m)
0i

=
∂L(yout)

∂yout F′
(m)

(
a(m)

0

)
x(m−1)

i . (92)

Note that there is only one output, so there are no other trainable weights in the
output layer. For the hidden layers, the situation is only slightly more compli-
cated. First, it is useful to notice that

∂L

∂a(n)j

=
Nn+1

∑
l=0

∂L

∂a(n+1)
l

∂a(n+1)
l

∂a(n)j

, (93)

where Nn is the number of neurons in layer n. On the other hand, for the fully
connected layer

a(n+1)
l =

Nn+1

∑
j=0

w(n+1)
l j F(n)(a(n)j ), (94)

so that
∂a(n+1)

l

∂a(n)j

= w(n+1)
l j F′

(n)(a(n)j ). (95)

Now using Eqs. (93, 95), it is possible to write formula for the backpropagation

∂L

∂a(n)j

= F′
(n)(a(n)j )

Nn+1

∑
l=0

w(n+1)
l j

∂L

∂a(n+1)
l

. (96)

Thus, the gradients of the layer n are related to the gradients in the next layer
n + 1. The partial derivatives for the weights can easily be obtained as

∂L

∂w(n)
ij

=
∂L

∂a(n)i

∂a(n)i

∂w(n)
ij

=
∂L

∂a(n)i

∂

∂w(n)
ij

(
Nn−1

∑
l=0

w(n)
il x(n−1)

l

)
=

∂L

∂a(n)i

x(n−1)
j . (97)

In the backpropagation algorithm, one then uses Eqs. (96), and (97) iteratively to
obtain all the partial derivatives of the loss function with respect to the weights
for all hidden layers. Even though this example was only for a network consisting
of fully connected layers, similar ideas can also be applied to more complicated
structures.
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Most of the time, the training data is too large to be fitted into the memory
at once, which is why the training data are usually divided into smaller subsets
called batches. The size of one batch typically varies between 16 and 512. The
optimal value of the batch size depends on the complexity of the data. Large
batch sizes can lead to a more stable and faster training process. On the other
hand, with smaller batch sizes, the gradients will oscillate more, which can make
the model generalize better to unseen data. The iterative process of training on
batches is repeated many times for the whole training data. The period of passing
the whole dataset one time is referred to as an epoch, and it usually takes at least
10 epochs to train a neural network.

One of the biggest challenges when training any supervised machine learn-
ing model is overfitting. An overfitting occurs when the model learns properties
that are only specific to the training data, which leads to poor performance in the
case of any other data. The neural networks suffer from this problem a lot since
the number of trainable parameters can be extremely large. The large number
of parameters makes it easy to describe even complex data sets precisely, with
only little ability to generalize. There are many ways to try to avoid overfitting.
The simplest one is to increase the training data or reduce the complexity of the
model. This makes it more difficult for the model to learn features specific to
the training data. However, increasing the amount of training data is not always
possible, and reducing model complexity can also reduce the performance over-
all. One other option is data augmentation. In data augmentation one generates
new training data from the existing one. This is a common technique in image
classification tasks, where one can zoom, rotate, or flip images randomly during
the training. However, one needs to be careful only to add data that are relevant
to the problem. For example, if the goal is to recognize cars driving on a road, it
is of very little use to augment data with images where the road is at the top of
the image and the car is upside down.

In the context of convolutional neural networks, one popular approach to
avoid overfitting is to add dropout layers to the network. The dropout layer
randomly disables some of its input neurons during the training, which adds
noise to the neural network. Because the disabled neurons are randomly picked
each time the weights are updated, the network cannot adapt so easily to features
specific to the training data. In a sense, the deactivation of neurons forces the
network to try out many random subsets of the original network, making the
features it learns quite robust.

In addition to the methods mentioned here, there are plenty of other meth-
ods to fight against overfitting. These include early stopping, L1/L2-regressions,
and different kinds of ensemble learning methods [185, 186]. In general, it is not
always easy to distinguish which methods are most suitable for a particular prob-
lem, and most of the time the best way to find the best solution is to test different
available options and choose ones that lead to the best performance.
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6.2 Predicting flow observables directly from the initial state

An investigation of the QCD matter properties requires a thorough compari-
son between various measured observables and those obtained from simulations.
Some of the measured multi-particle correlations need up to a few million simu-
lated collision events to obtain a statistical accuracy similar to the measurements.
The computationally slowest part of these simulations is the hydrodynamic evo-
lution and the computation of the particle spectra at the kinetic decoupling1. Per-
forming one simulation takes ∼ 30 minutes of CPU core time. Thus, there is a
need for a way to reduce the computational cost of these simulations. One possi-
bility is to replace the slow parts of the simulation with a neural network, which
is trained to predict the final state observables directly from the initial state for
each collision event separately. The input of the hydrodynamic simulations done
in Article [PI] is a two-dimensional array containing the values of the energy den-
sity in the transverse-coordinate (x, y) plane. The structure of the input makes the
convolutional neural network architecture ideal for replacing the hydrodynamic
simulations.

6.2.1 DenseNet

The Dense Convolutional Network (DenseNet) [187] is a deep convolutional neu-
ral network architecture designed to maintain maximum information flow be-
tween multiple convolutional layers, so that the initial features of the data are
not lost. Simultaneously, the DenseNet tries to address the vanishing gradients
problem, which is a general challenge the deep neural network structures face.
The vanishing gradient problem refers to the fact that when the number of se-
quential layers increases, the backpropagated gradients used in the optimization
algorithm become increasingly smaller. This makes the training of the neural
network inaccurate and inefficient.

The idea of the DenseNet is to replace the typical sequential structure of
convolutional layers with dense connections, which are obtained by concatenat-
ing channels of the convolution layer output with all outputs of previous convo-
lution layers in the block. That is, if Ci is the convolution layer operation with
some weights then the output after n convolution layers is given by

y = [x, C1(x), C2([x, C1(x)]), ..., Cn([x, C1(x), C2([x, C1(x)]), ...]], (98)

where x is the input before the block of convolution layers. The number of feature
maps each convolution layer Ci contains is called the growth rate k. Thus, the
output y contains nk more channels than the input x. For example, with 64 initial
channels and 6 densely connected convolution layers, the factor k = 32 leads to
an output with 64 + 6 × 32 = 256 channels. The DenseNet is constructed from
dense blocks and transition layers. The dense blocks contain many convolution

1 The hadronic transport can also use a significant amount of computational resources, but
it is not used in the simulations performed in the context of this thesis.
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Block Output size Layers

Convolution 134x134x64 7x7 conv, stride 2

Pooling 67x67x64 3x3 max pool, stride 2

Dense Block 67x67x256
[

1x1 conv
3x3 conv

]
x 6

Transition Layer
67x67x128 1x1 conv

33x33x128 2x2 average pooling, stride 2

Dense Block 33x33x512
[

1x1 conv
3x3 conv

]
x 12

Transition Layer
33x33x256 1x1 conv

16x16x256 2x2 average pooling, stride 2

Dense Block 16x16x896
[

1x1 conv
3x3 conv

]
x 20

Transition Layer
16x16x448 1x1 conv

8x8x448 2x2 average pooling, stride 2

Dense Block 8x8x1216
[

1x1 conv
3x3 conv

]
x 24

Output Layer
1x1x1216 8x8 global average pooling

Nout Fully connected layer with
ReLU activation

TABLE 3 The structure of the DenseNet network used in Article [PII].

layers that utilize the dense connections, while the transition layers take care of
the pooling, and they consist of a 1×1 convolutional layer followed by a 2×2
average pooling layer.

The detailed structure of DenseNet used in Article [PII] is shown in Table 3,
where "conv" refers to convolutional layer + batch normalization + ReLU activa-
tion and Nout is the number of outputs. The structure is close to the DenseNet-BC
variant in which the dense block includes an additional 1×1 convolutional layer
before each 3×3 convolution layer. The BC variant also includes compression in
a transition layer, which is implemented by reducing feature maps in a 1×1 con-
volutional layer by a factor of 2. The growth rate k = 32 is used. There are few
differences compared to the original structure from Ref. [187]. The convolution
layers with kernel sizes 3 × 3 and 7 × 7 are replaced by depthwise separable con-
volutions, which made training slightly more stable and accurate. Additionally,
at the output layer, the ReLU activation function is used.
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6.2.2 Initial energy density as an input

In Article [PII], the DenseNet neural networks were trained to predict pT inte-
grated flow observables at the mid-rapidity directly from the initial energy den-
sity profile. The training data were obtained from hydrodynamic simulations
performed in Article [PI], where the EKRT model, discussed in more detail in
Sec. 4.3, was used to generate initial energy density profiles. The energy density
profiles were discretized to a 269 × 269 grid with a resolution of 0.07 fm before
passing them to the network as an input. For each initial state input, the neural
network outputs one pT integrated flow observable. A separate neural network
was trained for the flow coefficients v2, v3, v4, v5, v6, mean transverse-momentum
[pT], and charged particle multiplicity dNch/dη. Each of these networks could
give multiple outputs corresponding to different pT integration ranges.

The training data consisted of 20k hydrodynamic events distributed evenly
between 200 GeV Au+Au, 2.76 TeV Pb+Pb, 5.023 TeV Pb+Pb, and 5.44 TeV Xe+Xe
collision systems. To make the training more efficient, neural network input was
normalized so that the input of training data has a mean of zero and a standard
deviation of one. The outputs of various neural networks are normalized to a
common scale using a constant, ensuring that the typical value of a given output
observable is approximately one. This enables the usage of the same learning
rates across different observables/networks without sacrificing the quality of the
training. However, the normalization was not used for the charged particle mul-
tiplicity network, since it uses a different loss function.

The loss function of the charged particle multiplicity network was chosen
to be a mean squared logarithmic error (MSLE),

Loss(MSLE) =
1
N ∑

i
(ln(yi,true + 1)− ln

(
yi,pred + 1

)
)2, (99)

where the sum goes over all events in the training batch of size N. In addition,
yi,pred and yi,true are the predicted and true values of an observable respectively.
For all other networks, the mean squared error (MSE) loss function was used:

Loss(MSE) =
1
N ∑

i
(yi,true − yi,pred)

2. (100)

All of the networks were trained using the Adam optimizer for 120 epochs
with a batch size of 64. The learning rate was initially set to 0.01 for the charged
particle multiplicity network while other networks used a value of 0.001. The
initial learning rate was divided by a factor of ten at epochs 75 and 110. This kind
of decaying learning rate would not be completely necessary due to the adaptive
nature of the Adam algorithm, but in this case it seemed to speed up the learning
process without sacrificing accuracy. To avoid overfitting, the training data were
augmented by applying random rotations, flips, and translations to the input.
This augmentation was possible because the flow observables do not depend on
the orientation of the initial energy density profile.
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FIGURE 10 Comparison of the event-by-event predictions from the neural network
(NN) with the results obtained from hydrodynamic simulations for vali-
dation events within the 0-80% centrality range. Figure from Article [PII],
reprinted under the license CC BY 4.0.

The training of one network took ca. 80 minutes with an Nvidia Tesla
V100 GPU. Trained neural networks can generate observables for 10 M events
in ≈ 20 hours. This is a significant speedup compared to performing full hydro-
dynamic simulations, which would take ∼ 5 M CPU core hours. Thus, with a
neural network, one can quickly generate an event-by-event distribution of flow
observables. From these it is then easy to compute various measurable quan-
tities, such as N-particle flow coefficients vn{N}, normalized symmetric cumu-
lants NSC(m, n), normalized mixed harmonic cumulants nMHC(n, m) and flow-
transverse-momentum correlations ρ(v2

n, [pT]), all of which were introduced in
Sec. 2.1. However, it is important to note that all events in the training data have
the same parameters for hydrodynamic evolution and thus the trained neural
networks cannot predict results if for example η/s(T) changes.

The accuracy of the neural networks was validated by generating 90 k ini-
tial energy density profiles independent of the training data for the 5.023 TeV
Pb+Pb collision system. These profiles were then used to compare the results of
full hydrodynamic simulations with the predictions obtained from the neural net-
works. The accuracy of the neural network is demonstrated in Fig. 10 using 2D
histograms. These histograms compare the neural network predictions against
hydrodynamic computations for each event in 0-80% centrality bin, focusing on
flow coefficients vn (n ranges from 2 to 6) and the average transverse momenta
[pT]. The color bar indicates the number of events in a histogram bin, and the
dashed black line indicates where the neural network predictions match exactly
to the hydrodynamic computations.
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FIGURE 11 The neural network predictions of flow-transverse-momentum correlations
compared against the hydrodynamic computations. The experimental data
are from the ATLAS Collaboration [188]. Figure from Article [PII], reprinted
under the license CC BY 4.0.

An excellent agreement between the neural network and hydrodynamic re-
sults is observed for v2. However, when the order of flow coefficient increases, the
performance slowly decreases. This behavior is expected since lower-order flow
coefficients and initial-state eccentricities have quite a linear dependence and are
not as sensitive to nonlinear effects arising from hydrodynamic evolution as the
higher-order flow coefficients.

Regarding the average transverse momentum [pT], the hydrodynamic re-
sults are predicted very accurately by the neural network. However, it should
be noted that event-by-event fluctuations of [pT] are very small compared to the
absolute value of [pT]. This means that relatively small errors are not necessar-
ily a guarantee that correlations involving [pT] can be correctly predicted by the
network.

Comparing the neural network and hydrodynamic results on an event-
by-event basis provides insights into the accuracy of the network. However,
measurements typically average the data over numerous events within centrality
bins. Therefore, it is necessary to evaluate the performance of the network under
these conditions. In Article [PII] it was shown that the neural network can repro-
duce hydrodynamic simulations accurately for 2-particle flow coefficients vn{2},
normalized symmetric cumulants NSC(m, n), normalized mixed harmonic cu-
mulants nMHC(n, m) and flow-transverse-momentum correlations ρ(v2

n, [pT]).
To demonstrate this, flow-transverse-momentum correlations ρ(v2

n, [pT]) as a
function of the number of participant nucleons are shown in Fig. 11.

Since the neural networks reproduce hydrodynamic simulations so accu-
rately, it is possible to use them to generate a large number of events and see how
high statistics affects flow correlations. The effect of statistics should be visible
in the case of normalized mixed harmonic cumulants since there magnitude of
correlation is quite weak. This is demonstrated in Fig. 12, where neural network
prediction with 10 million events for nMHC(n, m) is compared against full hy-
drodynamic results with 90 thousand events. The neural network prediction for
nMHC(v2

2, v4
3), based on 10 million events, falls within the statistical errors of

the hydrodynamic results. However, in central collisions, the increased number
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FIGURE 12 Comparison of normalized mixed harmonic cumulants between the neural
network prediction with 10 M collision events and hydrodynamic results
with 90 k collision events. The experimental data are from the ALICE Col-
laboration [53]. Figure from Article [PII], reprinted under the license CC BY
4.0.

of events reveals a significantly different centrality dependence, aligning closely
with the ALICE measurements. Regarding nMHC(v2

2, v6
3), increasing the event

count from 90 thousand to 10 million evens out the sharp transitions between cor-
relation and anti-correlation. The higher statistic outcome is nearly zero, except in
most peripheral collisions. This is again consistent with the measurements from
ALICE. In the cases of nMHC(v4

2, v2
3) and nMHC(v6

2, v2
3), there are statistically

significant differences between the hydrodynamic results and the high-statistic
neural network predictions. This suggests that the jackknife resampling used
in the evaluation of statistical errors may sometimes substantially underestimate
statistical errors.

These results emphasize that when constraining the QCD matter proper-
ties with the multi-particle flow correlations, it is necessary to include enough
simulated collision events in the analysis. Otherwise, the analysis might lead to
wrong conclusions. For this purpose, neural networks are ideal tools since they
can be used to reduce the computational time needed to a fraction compared to
conventional methods.

6.2.3 Additional inputs

The neural networks trained in Article [PII] have only the initial energy density
as an input. This means that every time QCD matter properties or model pa-
rameters affecting the system evolution are changed, it would be necessary to
retrain the network to correctly reproduce the results. However, this difficulty
can be avoided if the neural network is trained to take additional inputs. This
was demonstrated in Article [PIII], where shear and bulk viscosity parameters
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FIGURE 13 Schematic presentation of the neural network with energy density and
model parameter inputs. Figure from Article. [PIII].

appearing in Eqs. (42) and (43), and decoupling parameters introduced in Sec. 5.3
were added as additional inputs. This addition makes neural networks more suit-
able for Bayesian analysis, where observables need to be computed with a large
number of different model parameters. Unfortunately, generating a large number
of events with neural networks is still too slow to be directly used in an MCMC
algorithm. However, the neural networks can be used to efficiently generate the
training data for the Gaussian process emulators, which in turn can reduce the
computation time needed for the analysis by orders of magnitude.

With the additional inputs, the neural network structure needs to be slightly
modified. The modified version is schematically illustrated in Fig. 13. The initial
energy density can still be handled with the DenseNet structure like previously
2. However, the additional inputs are no longer in a suitable form for the con-
volutional layers, so they need to be processed using fully connected layers. The
output of this is then combined with the DenseNet output, after which two fully
connected layers are applied before the output. All the fully connected layers use
the ReLU activation.

The training of these neural networks was done in the same manner as the
training of the networks without additional inputs, and all used hyperparame-
ters were kept the same, with the exception of the batch size which was increased
to 128. The training data consisted of 160 k training events distributed evenly
between four collision systems and 2 k parameter points sampled with the Latin
hypercube sampling. This results in only 80 events of training data per param-
eter point, which is 250 times less data than in the training approach without
additional inputs.

In the case of neural networks with multiple inputs, referred to here as NNp,
the main focus lies on the accuracy of the network in generating new events
with identical parameter values as those in the training data. This is because the
efficient approach for Bayesian analysis involves generating a large number of
events using neural networks across a range of parameter points, computing all
observables within these points, and subsequently training the Gaussian process
emulators for these observables. Thus, the accuracy of the NNp networks was
assessed by selecting two sets of model parameter points from the training data,

2 This structure does not include the final fully connected layer.



71

100 150 200 250 300 350 400 450 500
T [MeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η/s

10×ζ/s

0 10 20 30 40 50 60 70
centrality [%]

0.0

0.2

0.4

0.6

0.8

1.0

〈v
2 4v

2 2〉/
〈v

2 4〉〈
v2 2〉
−

1

Hydro, (η/s)min ≈ 0.23
NNp, 20k validation events

ALICE

0 10 20 30 40 50 60 70
centrality [%]

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

〈v
2 3v

2 2〉/
〈v

2 3〉〈
v2 2〉
−

1

LHC5.023TeVPb + Pb
pT = [0.2 . . .5.0]GeV

0 10 20 30 40 50 60 70
centrality [%]

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

〈v
2 4v

2 3〉/
〈v

2 4〉〈
v2 3〉
−

1

100 150 200 250 300 350 400 450 500
T [MeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η/s

10×ζ/s

0 10 20 30 40 50 60 70
centrality [%]

0.0

0.2

0.4

0.6

0.8

1.0

〈v
2 4v

2 2〉/
〈v

2 4〉〈
v2 2〉
−

1

Hydro, (η/s)min ≈ 0.05
NNp, 20k validation events

ALICE

0 10 20 30 40 50 60 70
centrality [%]

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

〈v
2 3v

2 2〉/
〈v

2 3〉〈
v2 2〉
−

1

LHC5.023TeVPb + Pb
pT = [0.2 . . .5.0]GeV

0 10 20 30 40 50 60 70
centrality [%]

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

〈v
2 4v

2 3〉/
〈v

2 4〉〈
v2 3〉
−

1

FIGURE 14 Validation tests for NSC(m, n) performed using multiple input neural net-
works. The upper (lower) panels display results obtained with high (low)
specific viscosities. Both cases use 20 k validation events. The experimental
data are from the ALICE Collaboration [53]. Figure from Article [PIII].

corresponding to two vastly different viscosity values, and generating 20 k new
independent initial state profiles for both points. The validation was performed
by comparing neural network predictions with hydrodynamic computations, and
the results for the normalized symmetric cumulants are shown in Fig. 14. The
NNp networks reproduce the results from hydrodynamic simulations with high
accuracy. The only notable deviation is observed for NSC(3, 4) in the peripheral
collisions with extremely high viscosity. However, in this case, the numerical er-
rors of the hydrodynamical simulations themselves may be significant due to the
high viscosity. Thus, the neural networks with multiple inputs seem to perform
well and could be used in the Bayesian global analysis of heavy-ion observables.
This would make the addition of multi-particle correlations to the analysis much
more practical, potentially leading to more accurate constraints on QCD matter
properties.



7 SATURATION DYNAMICS OF MONTE-CARLO
EKRT WITH NEURAL NETWORKS

The Monte-Carlo EKRT initial state [PIV] discussed in Sec. 4.4 introduces ad-
ditional fluctuations compared to the midrapidity EbyE version of the EKRT
model [27]. These fluctuations, together with the interplay between momentum
conservation and saturation, lead to additional dynamics that can have an impact
on the final state observables. However, investigating these effects can be slow
and tedious. Fortunately, the neural networks discussed in Sec. 6.2.2 can signifi-
cantly reduce the computation time needed to compute and analyze midrapidity
observables.

The study performed in Article [PV], focuses on the dynamics of the MC-
EKRT initial state through midrapidity observables, and it combines all major
topics discussed in this thesis: Monte-Carlo EKRT initial state [PIV], dynamical
decoupling [PI], and neural networks [PII, PIII]. The effect of the added fluctu-
ations and dynamics in MC-EKRT was demonstrated by comparing the results
obtained with MC-EKRT against the EbyE EKRT results from Article [PI]. The
comparison was performed without altering matter properties or decoupling pa-
rameters, i.e., the MC-EKRT results use shear and bulk viscosities from Fig. 3.
Therefore, the neural networks trained in Article [PII] were used to compute the
final state observables. However, the training of these neural networks was per-
formed using EbyE EKRT initial conditions, so it is necessary to ensure that the
accuracy remains good even when using the MC-EKRT initial state.

The accuracy of neural networks with MC-EKRT initial state was tested in
Article [PV] for 5.023 TeV Pb+Pb collisions. The validation results for flow coef-
ficients v2, v3, and v4 are illustrated in Fig 15. The validation test used the MC-
EKRT initial state with κsat = 2.5, K = 2.2, and σ⊥ = 0.4 fm. In addition, the
initial state included the nucleon substructure according to Eq. (48) with param-
eters Nh = 3, and σh = 0.2 fm. The hotspot trigger (50) was used with σHS = 11.9
mb. Despite the significantly different initial state structure, the neural networks
reproduce the results from hydrodynamics simulations accurately. This is a non-
trivial test, and it illustrates the neural network’s ability to extrapolate beyond the
training data. Thus, the neural networks can be reliably used to predict midra-
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FIGURE 15 The neural network predictions of flow coefficients obtained with the MC-
EKRT initial state compared against the results from hydrodynamic sim-
ulations. The experimental data are from the ALICE Collaboration [170].
Figure from Article [PV].

pidity observables from the MC-EKRT initial state.
When trying to understand initial state effects from the final state observ-

ables, it is necessary to remember that some observables are quite sensitive to the
matter properties. For example, the magnitude of the flow coefficients depends
heavily on the η/s. However, the ratios of the flow coefficients are less sensitive
to such details, and especially the ratio between v3 and v2 can give valuable in-
formation about the geometry of the initial state [189]. Therefore, in Article [PV],
the parameter σ⊥ was adjusted to match the measured v2 in 5.023 TeV collisions.
This was possible because it was noticed that the σ⊥ had only a minuscule impact
on ratios between flow coefficients.

One interesting aspect of MC-EKRT is the interplay between the energy con-
servation and saturation filters. This is demonstrated in Fig. 16, which shows the
flow coefficients computed with various filter combinations for 5.023 TeV Pb+Pb
collisions. All the cases use K = 2.5, while the saturation parameter is adjusted
to obtain similar charged particle multiplicities in central collisions. This corre-
sponds to value κsat = 1.3 for the saturation-only case, and κsat = 1.4 for the
other two cases. The nucleon width was set to σ = 0.53 fm without any sub-
structure. The most striking feature in Fig. 16 is that the ratio between v3 and v2
is greatly affected by the strength of saturation. The saturation-only case seems
to produce the measured v2 and v3 most accurately, while simultaneously ap-
plied filters lead to an underestimation of v3. When saturation is enforced before
other filters the results get closer to the saturation-only results, as one would ex-
pect. The differences come from the different geometrical nature of saturation
and momentum conservation. The saturation suppresses the minijet production
in locations where nuclear overlap density TATB is large, while the momentum
conservation is less sensitive to nuclear overlap. It is also interesting to note that
the v3/v2 ratio is very similar between the MC-EKRT with saturation-only and
EbyE EKRT which does not have an explicit momentum conservation.

In Article [PV], the hotspots were introduced for the first time in the context
of the EKRT model. The hotspots can play an important role in the saturation
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FIGURE 16 The flow coefficients as a function of centrality, computed using various
filter settings in the MC-EKRT initial state for 5.023 TeV Pb+Pb collisions.
The experimental data are from the ALICE Collaboration [170]. Figure from
Article [PV].
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FIGURE 17 The centrality dependence of flow coefficients obtained using MC-EKRT
initial state with the hotspots. The experimental data are from the ALICE
Collaboration [170]. Figure from Article [PV].

dynamics since the nuclear overlap density TATB can reach higher values with
the narrow fluctuating hotspots than with average nucleon geometry. The effect
of hotspots on flow coefficients is shown in Fig. 17, where two different kinds
of hotspot parameterizations are shown. One parametrization uses a wide nu-
cleon (σ = 0.75 fm) with narrow hotspots (σh = 0.15 fm), while the other uses
slightly wider hotspots (σh = 0.2 fm), and the nucleon width consistent with the
H1 measurements (σ = 0.53 fm). Both parametrizations have 3 hotspots. The
saturation-first case is the same as in Fig. 16. All the initial states applied sat-
uration first, followed by momentum, and valence-quark number conservation
filters. The addition of hotspots seems to increase the amount of v3 compared
to v2, and the ratio v3/v2 obtained with σh = 0.15 fm gives the best description
of the measured data. This indicates that the interplay between hotspots, and
saturation is crucial for the ratio v3/v2.



8 CONCLUSIONS

The focus of this thesis has been the development of phenomenology and nu-
merical tools in the field of heavy-ion collisions, aiming to eventually achieve a
deeper understanding of the properties of QCD matter. The progress made in this
thesis work can be divided into three parts. First, the dynamical decoupling dis-
cussed in Article [PI] provides an alternative way to describe heavy-ion collisions
by relying on hydrodynamic evolution without a hadronic transport model. This
way unwanted discontinuities in the transport coefficients can be avoided while
capturing the essential dynamics of the kinetic decoupling. In Article [PI], it was
demonstrated that the simulations done with the dynamical decoupling can well
reproduce a wide range of measured flow observables in 5.023 TeV Pb+Pb, 2.76
TeV Pb+Pb, 5.44 TeV Xe+Xe, and 200 GeV Au+Au collision systems. Compared
to the constant temperature decoupling, the dynamical decoupling was observed
to decrease the magnitude of flow in the peripheral collisions, leading to better
agreement with the measurements.

Secondly, in Article [PII], the neural networks were trained to reproduce
the event-by-event flow observables obtained from hydrodynamic simulations
directly from the initial state. The accuracy of the neural networks was tested
by comparing the neural network predictions against the hydrodynamic simu-
lations. The neural networks were able to reproduce the hydrodynamic results
accurately, even for various multi-particle correlations. Predicting flow observ-
ables with the neural network was observed to be many orders of magnitude
faster than performing full hydrodynamic simulations. For example, generating
10 million collision events with the neural network took only around 20 GPU
hours of computing time.

The potential of the neural networks was further demonstrated in Arti-
cle [PIII], where neural networks were extended to work with additional inputs.
These inputs could contain matter properties such as shear and bulk viscosities.
With this addition, the computation time needed to determine the QCD mat-
ter properties via Bayesian analysis could be reduced to a fraction compared to
the current state-of-the-art methods. Thus, adding computationally costly multi-
particle flow correlators to the Bayesian analysis would be more achievable.
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Finally, a completely new type of Monte-Carlo version of the EKRT initial
state model was introduced in Article [PIV]. The MC-EKRT set-up added ad-
ditional saturation scale and minijet multiplicity fluctuations to the framework
and made it possible to study rapidity-dependent observables. The rapidity de-
pendence of charged particle multiplicity was studied in Article [PIV] with the
entropy-averaged MC-EKRT initial states. The results showed a promisingly
good overall agreement with the measured data across 5.023 TeV Pb+Pb, 2.76
TeV Pb+Pb, and 200 GeV Au+Au collision systems.

The fluctuating hotspots were introduced to the MC-EKRT in Article [PV],
where the saturation dynamics of the initial state was studied through final state
midrapidity observables. It was found that strong saturation is key for obtaining
a v3/v2 ratio that agrees with the measurements. The narrow fluctuating hotspots
were noticed to give the strongest saturation effects and provided the best agree-
ment with the measured flow coefficients.

While this thesis addresses several challenges in the phenomenological
modeling of heavy-ion collisions, there remains plenty of room for further
developments. Although neural networks present an efficient method for
studying QCD matter properties, they are yet to be applied in Bayesian analyses.
Furthermore, the rapidity-dependent observables obviously provide further
constraints to the matter properties, but the neural networks discussed in this
thesis are only applicable to the midrapidity observables.

Further improvements to the MC-EKRT initial state model are also possi-
ble and foreseen. Even though the MC-EKRT model generates all initial state
partons, considering high-pT observables would necessitate the addition of par-
ton shower evolution that couples thermalization of the produced partons and
eventually with the hydrodynamic evolution. Additionally, the current imple-
mentation of the model only uses the energy density component for initializing
hydrodynamics. A more detailed modeling would involve incorporating all com-
ponents of the energy-momentum tensor.
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We extend the applicability of the hydrodynamics, perturbative QCD and saturation -based EKRT (Eskola-
Kajantie-Ruuskanen-Tuominen) framework for ultrarelativistic heavy-ion collisions to peripheral collisions by
introducing dynamical freeze-out conditions. As a new ingredient compared to the previous EKRT computations
we also introduce a nonzero bulk viscosity. We compute various hadronic observables and flow correlations,
including normalized symmetric cumulants, mixed harmonic cumulants, and flow–transverse-momentum corre-
lations, and compare them against measurements from the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) . We demonstrate that the inclusion of the dynamical freeze-out and bulk
viscosity allows a better description of the measured flow coefficients in peripheral collisions and enables the
use of an extended centrality range when constraining the properties of QCD matter in the future.

DOI: 10.1103/PhysRevC.106.044913

I. INTRODUCTION

Heavy-ion collisions at ultrarelativistic energies provide
the means to produce and investigate experimentally quark-
gluon plasma (QGP), a strongly interacting fluid of quarks
and gluons. In recent years the two main collider experiments
that have investigated QGP properties are the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Labo-
ratory (BNL), and Large Hadron Collider (LHC) at CERN.
In these experiments a small, short-lived, fluid-like behaving
droplet of strongly interacting matter is created at nearly zero
net-baryon density. The matter properties of QGP such as its
equation of state (EoS) and transport coefficients are reflected
in the detailed behavior of various experimental observables;
see, e.g., Refs. [1–7].

The equation of state of strongly interacting matter at zero
net-baryon density is currently well known from lattice-QCD
computations, and the expected transition temperature Tc ≈
150–160 MeV [8–11] from hadronic matter to QGP is well
within the reach of the LHC and RHIC experiments. Currently
there are some experimental constraints on the equation of
state [12–14], but even the lattice-QCD data allows some free-
dom in the EoS parametrizations [15]. The best knowledge
about the transport properties of QCD matter is coming from
the global fits of fluid dynamical computations to the available
low-pT data from RHIC and LHC [15–22]. Currently, at least

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

within the given models, the shear viscosity at temperatures
near the QCD transition temperature is quite well constrained.
However, the same cannot be said about the bulk viscosity.
Even if the different analyses are based on very similar un-
derlying models, the final constraints on the bulk viscosity
can differ quite significantly depending on the details of the
selected data and fine details of the models.

The experimental information about the collective dy-
namics and the spatial structure of the initial conditions is
primarily encoded in the flow measurements. The most basic
quantities are the Fourier components of the azimuthal hadron
spectra, usually called the flow coefficients vn. The measured
flow coefficients reflect the collective fluid dynamical behav-
ior of the system, as they are generated during the evolution
of the system when the initial spatial inhomogeneities are
converted into momentum-space anisotropies. In the fluid
dynamical limit the driving force for this conversion is the in-
homogeneous pressure gradients, and the effectiveness of the
conversion is dictated by the EoS and the transport properties
of QCD matter.

In the actual collisions the flow coefficients fluctuate
strongly from event to event, and the fluctuations need to
be explicitly considered when modeling the collisions. The
presence of the flow fluctuations complicates the modeling,
but at the same time they offer also a possibility to probe the
initial conditions and the spacetime evolution in much greater
detail. For example, the relative fluctuation spectra of the
elliptic flow coefficient v2 are practically independent of the
QCD matter properties, and reflect mainly the initial density
fluctuations, giving thus a way to directly constrain the initial
particle production [23], at least at the LHC energies; see the
discussion in Ref. [24]. Moreover, the various observables
measuring the correlations between the flow coefficients react
to the matter properties and initial conditions in a nontrivial
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way, and offer further constraints on both of them. In partic-
ular, the correlations cannot be trivially reproduced just by
reproducing the flow coefficients themselves [25].

The aim of this paper is to calculate various measur-
able flow-correlators by using relativistic second-order fluid
dynamics with QCD-based initial conditions. The main ingre-
dients that go into the computation are the matter properties,
equation of state and transport coefficients, initial conditions
for the fluid dynamical evolution given by the primary pro-
duction of particles, and finally the conditions when the fluid
dynamical evolution ceases and the fluid decouples into free
hadrons.

The initial conditions are computed by using the per-
turbative QCD based EKRT (Eskola-Kajantie-Ruuskanen-
Tuominen) saturation model [25,26], where the primary
quantity is the minijet transverse energy computed in next-
to-leading order perturbative QCD. The low-pT production
of the particles is then controlled by a saturation conjecture,
detailed in Sec. II. The EKRT saturation model is the main
feature that gives a predictive power to our computation.
Once the framework is fixed at some collision system, e.g.,
in central Pb + Pb collisions at the LHC, the collision energy,
centrality, and nuclear mass number dependence of hadronic
observables are predictions of the model [25,27–29]

Once the initial conditions are given, the remaining inputs
to the fluid dynamical computation are the matter properties.
The EoS is provided by the s95p parametrization of lattice-
QCD results [30], and the specific shear viscosity η/s, is
parametrized such that it has a minimum around the QCD
transition temperature. As a new ingredient compared to the
previous EKRT computations we introduce nonzero bulk vis-
cosity, parametrized such that it is peaked close to Tc. The
main impact of bulk viscosity is to reduce the average pT

of hadrons [6]. This allows us to relax our earlier [25,27–
29] rather high chemical freeze-out temperature Tchem = 175
MeV, in order to better reproduce the measured identified
hadron abundances, while still reproducing the measured av-
erage transverse momentum of hadrons.

Another new feature in the computation is the dynamical
condition to decouple the system into free hadrons. The earlier
EKRT results were computed using a constant-temperature
decoupling at Tdec = 100 MeV. It can be argued that the
system decouples when the mean free path of hadrons is
larger than the size of the system. The mean free path is a
function of temperature, and if the system size is fixed the
condition gives a constant temperature. However, the system
size actually changes as function of time when the system
expands, and moreover the system size varies from colli-
sion to collision: Central nuclear collisions produce a much
larger system than peripheral ones. In order to account for
the differences in the size of the systems, we introduce two
conditions for decoupling. The global condition compares
the overall size of the system to the mean free path, or
here rather to the relaxation time in the second-order fluid
dynamics, and the local condition that requires that the Knud-
sen number Kn, the ratio of microscopic and macroscopic
length or time scales, is sufficiently small for the fluid dy-
namics to be applicable [31,32]. We note that this approach,
in particular the global condition, is slightly different from

the earlier works where dynamical decoupling was developed
[33,34].

The main advantage of using dynamical decoupling,
besides that it is physically better motivated than the constant-
temperature decoupling, is that it allows one to extend the
agreement between the fluid computation and the measured
flow coefficients towards peripheral nuclear collisions. In
particular, the success of fluid dynamics in reproducing the
flow coefficients in high-multiplicity proton-nucleus colli-
sions [35–42] suggests that fluid dynamical models should
then also describe peripheral nuclear collisions with similar
hadron multiplicities.

This paper is organized in the following way: In Sec. II
we shortly review the EKRT saturation model. In Sec. III
we introduce the second-order fluid dynamics, and give the
parametrizations of shear and bulk viscosities, and the corre-
sponding corrections to the hadron momentum distributions.
In Sec. IV we detail the dynamical freeze-out conditions, and
in Sec. V we introduce the definitions of the experimental
observables. The results from the computations are given in
Sec. VI, where we show the new results with bulk viscosity
and dynamical decoupling and compare those to the earlier
predictions of the EKRT model. Finally the summary and
conclusions are given in Sec. VII.

II. INITIAL CONDITIONS

The initial energy density profile is computed by using the
EKRT saturation model [25,26,43,44]. It is based on the next-
to-leading-order perturbative QCD (pQCD) computation of
transverse energy (ET ) production, controlled by the low-pT

cutoff scale p0 determined from the local saturation condition
[44],

dET

d2r
(TATA(r), p0,

√
sNN , A,�y, b, β ) =

(Ksat

π

)
p3

0�y, (1)

where �y is the rapidity interval, b is the impact parameter,
Ksat quantifies the uncertainty in the onset of saturation, and β

quantifies the freedom in the NLO ET definition with low-pT

cutoff. The solution p0 = psat of the saturation condition then
inherits the

√
sNN and A dependence from the NLO pQCD

computation of ET , and the nuclear geometry enters through
the product TATA of the nuclear thickness functions,

psat = psat(TATA(r),
√

sNN , A,�y, b, Ksat, β ). (2)

The local energy density at the formation time τs = 1/psat can
then be written using psat as

e(r, τs(r)) = dET (psat )

d2r
1

τs(r)�y
= Ksat

π
[psat (r)]4. (3)

At each point in the transverse plane the energy density
is further evolved into a common initialization time τ0 =
1/psat,min ≈ 0.2 fm by using (0 + 1)-dimensional Bjorken
expansion, where the minimum saturation scale psat,min =
1 GeV. Below this scale the computed energy density pro-
file is connected smoothly to the e ∝ TATA profile. As
in the earlier works, we take β = 0.8, and Ksat is fixed
from the charged particle multiplicity measured in central
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√
sNN = 2.76 TeV Pb + Pb collisions. For further details and

explicit parametrizations of psat, see Refs. [25,27,28].
The nuclear thickness functions are computed by first ran-

domly sampling the nucleon positions from the Woods-Saxon
nucleon density profiles. The Au and Pb nuclei are taken as
spherical with a radius R = 6.38(6.7) fm for Au (Pb), and a
thickness parameter d = 0.55 fm. As in Ref. [45], in the case
of Xe we take into account the deformation by introducing the
parameters β2 = 0.162 and β4 = −0.003 [46]. The Xe radius
is R = 5.49 fm and the thickness parameter d = 0.54 fm.

The nuclear thickness functions are then computed by sum-
ming up the individual nucleon thickness functions,

TA(r) =
∑

i

Tn,i(ri − r), (4)

where Tn is a Gaussian with a width σ = 0.43 fm. The event-
by-event fluctuations emerge from the random positions of
the nuclei, and impact parameter: The fluctuating TATA profile
leads to a fluctuating energy density profile through the TATA

dependence of the saturation scale in Eq. (3).
A randomly sampled collision event, i.e., the nucleon po-

sitions in the nuclei and the impact parameter between the
two nuclei, is accepted using a geometric criterion: We re-
quire that there is at least one pair of colliding nucleons
with a transverse distance less than

√
σNN/π , where σNN

is the inelastic nucleon-nucleon cross section. Here we take
σNN = 42 mb in

√
sNN = 200 GeV Au + Au, σNN = 64 mb

in
√

sNN = 2.76 TeV Pb + Pb, σNN = 70 mb in
√

sNN =
5.023 TeV Pb + Pb, and σNN = 72 mb in

√
sNN = 5.44 TeV

Xe + Xe collisions. We emphasize that this criterion is only
used as a condition that nuclear collision happens at all; it is
not needed in the computation of the initial profile.

III. FLUID DYNAMICAL EVOLUTION
AND PARTICLE SPECTRA

After the hot strongly interacting system is produced at
τ0 ∼ 1/psat, the subsequent spacetime evolution is computed
using relativistic dissipative fluid dynamics. The basic equa-
tions of fluid dynamics are the local conservation laws of
energy, momentum, and conserved charges like net-baryon
number. These can be expressed in terms of the energy-
momentum tensor and charge four-currents as ∂μT μν = 0 and
∂μNμ

i = 0. In what follows we shall neglect the conserved
charges so that it is sufficient to consider only the energy-
momentum tensor. It can be decomposed with respect to the
fluid four-velocity uμ as

T μν = euμuν − P�μν + πμν, (5)

where the fluid velocity is defined in the Landau picture,
i.e., as a timelike, normalized eigenvector of the energy mo-
mentum tensor, T μ

ν uν = euμ. Here e = T μνuμuν is the local
energy density, P = − 1

3�μνT μν is the isotropic pressure, and
πμν = T 〈μν〉 is the shear-stress tensor. The angular brackets
denote the projection operator that takes the symmetric and
traceless part of the tensor that is orthogonal to the fluid
velocity, i.e., A〈μ〉 = �μνAν and

A〈μν〉 = 1
2

[
�μ

α�ν
β + �

μ

β�ν
α − 2

3�μν�αβ

]
Aαβ, (6)

where �μν = gμν − uμuν , and gμν is the metric tensor for
which we use the gμν = diag(+,−,−,−) convention. The
bulk viscous pressure is defined as � = P − P0, where P is
the total isotropic pressure and P0 is the equilibrium pressure.

The conservation laws are exact, but they do not give suf-
ficient constraints to solve the evolution. The simplest fluid
dynamical theory follows by neglecting the dissipative effects
completely. In that case the system is always in a strict thermal
equilibrium, entropy is conserved, and the equation of state in
the form P0 = P0(e) closes the system. The dissipation plays,
however, a significant role in the evolution of the system in
heavy-ion collisions, and it cannot be readily neglected. The
dissipative effects are contained in the shear-stress tensor and
in the bulk viscous pressure. Therefore the remaining task is to
write evolution equations for them. In the formalism of Israel
and Stewart [47] the equations take the form

τ�

d

dτ
� + � = −ζθ − δ���θ + λ�ππμνσμν, (7)

τπ

d

dτ
π 〈μν〉 + πμν = 2ησμν + 2τππ 〈μ

α ων〉α

− δπππμνθ − τπππ 〈μ
α σ ν〉α

+ϕ7π
〈μ
α πν〉α + λπ��σμν, (8)

where σμν = ∇〈μuν〉 is the strain-rate tensor, ωμν =
1
2 (∇μuν − ∇νuμ) is the vorticity tensor, and θ = ∇μuμ is
the expansion rate. The shear and bulk relaxation times
are denoted by τπ and τ� respectively, while first-order
transport coefficients are the shear viscosity η and the
bulk viscosity ζ . The coefficients of the nonlinear terms
δ��, λ�π, δππ , τππ , ϕ7, λπ� are second-order transport coef-
ficients. Formally these equations can be derived from kinetic
theory [47–54], by expanding around equilibrium and keep-
ing terms up to the first order in gradients (or Knudsen
number, a ratio of microscopic and macroscopic time/length
scales, such as Kn ∼ τπ∇μuμ, [55]), second order in inverse
Reynolds number ∼πμν/P0, and product of Knudsen number
and inverse Reynolds number.

In this work the fluid dynamical setup is the same as in our
previous works [4,5,25,27,28], i.e., we assume boost-invariant
longitudinal expansion, so that it is enough to solve the
equations of motion numerically in (2 + 1) dimensions [56].
The second-order transport coefficients in the Israel-Stewart
equations are taken from the 14-moment approximation to
massless gas [48,49,51] and bulk-related coefficients are from
Ref. [57], i.e.,

δ�� = 2

3
τ�, λ�π = 8

5

(
1

3
− c2

s

)
τ�, δππ = 4

3
τπ

τππ = 10

7
τπ , ϕ7 = 9

70P0
, λπ� = 6

5
τπ , (9)

where c2
s is the speed of sound. The shear and bulk relaxation

times are given by

τπ = 5η

e + P0
, τ� =

(
15

(
1

3
− c2

s

)2

(e + P0)

)−1

ζ . (10)
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FIG. 1. Shear viscosity to entropy density ratio as a function of
temperature.

The remaining input to the equations of motion are the equa-
tion of state and the temperature dependence of the shear and
bulk viscosities.

The parametrizations of the shear viscosity to entropy
density ratio are shown in Fig. 1, where η/s = 0.20 and
η/s = param1 are the same as implemented in earlier works
[25,27,28]. The new parametrization η/s = dyn has a similar
linear QGP part as the previous parametrizations while the
hadronic part follows a power law, with power PH , reaching its
minimum (η/s)min at temperature TH followed by a constant
part with width Wmin, i.e.,

η/s(T ) =
⎧⎨
⎩

(η/s)min + SH T
((

T
TH

)−PH − 1
)
, T < TH

(η/s)min, TH � T � TQ

(η/s)min + SQ(T − TQ), T > TQ,

(11)
where SH and SQ are the slope parameters below TH and above
TQ = TH + Wmin, respectively. The bulk viscosity is included
together with the new η/s = dyn parametrization and its ratio
to entropy density is plotted as a function of temperature
in Fig. 2. Formally our paramaterization is written in the
form

ζ/s(T ) = (ζ/s)max

1 +
(

T −T ζ/s
max

w(T )

)2 , (12)

w(T ) = 2(ζ/s)width

1 + exp
(

aζ/s (T −T ζ/s
max )

(ζ/s)width

) , (13)

where (ζ/s)max, T ζ/s
max, (ζ/s)width, and aζ/s are free parameters.

The asymmetry parameter aζ/s describes the asymmetry of
the bulk viscosity peak in such a way that aζ/s = 0 gives a
completely symmetric peak. For the EoS we use the s95p
parametrization [30] of the lattice QCD results that includes
the chemical freeze-out, implemented as effective chemical
potentials in the hadronic part of the EoS [58–60]. The earlier
η/s = 0.20 and η/s = param1 parametrizations use chemical

FIG. 2. Bulk viscosity to entropy density ratio as a function of
temperature.

freeze-out temperature Tchem = 175 MeV while the η/s =
dyn parametrization uses Tchem = 155 MeV.

The transverse momentum spectra of hadrons are ob-
tained by computing the Cooper-Frye freeze-out integrals on
the kinetic decoupling surface for the hadrons included in
the hadronic part of the EoS. The two- and three-body de-
cays of unstable hadrons are accounted for. For the earlier
parametrizations η/s = 0.20 and η/s = param1 the kinetic
decoupling surface is set to a constant Tdec = 100 MeV tem-
perature hypersurface while the η/s = dyn parametrization
uses dynamical criteria (see Sec. IV for details) to determine
the decoupling surface. The Cornelius algorithm [61] is em-
ployed to find the decoupling surface. The viscous correction
δ fi to each single-particle equilibrium momentum distribu-
tion, needed in the Cooper-Frye integrals, is implemented as
in Refs. [2,62–64],

δ fi = − f0i f̃0i
Cbulk

T

[
m2

3Ek
−

(1

3
− c2

s

)
Ek

]
�

+ f0i f̃0i

2T 2(e + P0)
πμνkμkν, (14)

where kμ is the four-momentum of a given hadron, Ek = uμkμ

is the energy of the hadron in the local rest frame, f0i is its
equilibrium distribution, and f̃0i = 1 ± f0i, with + (−) for
bosons (fermions). The coefficient Cbulk is determined from

1

Cbulk
=

∑
i

gim2
i

3T

∫
d3k

(2π )3k0
f0i f̃0i

[
m2

i

3Ek
−

(1

3
− c2

s

)
Ek

]
.

(15)
Here gi is the degeneracy factor of a given hadron species i,
and the sum includes all the species in the EoS.

The fluid dynamical evolution and the transverse mo-
mentum spectra are computed for each collision event. The
events are then grouped to the centrality classes according
to the final charged particle multiplicities. However, if the
experiments report the centrality of the collision by using
the number of wounded nucleons, we can compute it by
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TABLE I. Numerical values of the
fit parameters used in the current study.

Initial state

Ksat 0.67
Shear viscosity

(η/s)min 0.11
TH (MeV) 135
SH (GeV−1) 0.025
SQ (GeV−1) 0.3
Wmin (MeV) 35
PHG 8.0

Bulk viscosity

(ζ/s)max 0.09
(ζ/s)width (MeV) 60
T ζ/s

max (MeV) 240
aζ/s −0.5

Dynamical freeze-out

CKn 0.8
CR 0.15

using the geometric collision criterion detailed at the end of
Sec. II.

Numerical values of the parameters used here for the η/s =
dyn parametrization are shown in Table I. The initial state
parameter Ksat is tuned to produce the same charged particle
multiplicity in 2.76 TeV Pb + Pb collisions as obtained in
the ALICE measurements. Parameters of the shear viscosity
and the dynamical freeze-out are iteratively adjusted to obtain
results that match with ALICE measurements of vn{2} in
2.76 TeV Pb + Pb collisions. Further tuning of the hadronic
part of the η/s parametrization is done to also match STAR
measurements of vn{2} in central to mid-central 200 GeV
Au + Au collisions. The chemical freeze-out temperature is
adjusted together with the parameters of bulk viscosity to
achieve a good simultaneous agreement of the pion average
pT and the proton multiplicity.

We note that the idea here is that bulk viscosity in hadronic
evolution is mainly described by chemical freeze-out [65–67].
In chemical freeze-out the corresponding bulk relaxation time
is formally infinite, or at least much longer than the evolution
time of the system, and the dynamics of the bulk pressure
related to the nonequilibrium chemistry in this case cannot
be readily computed using Israel-Stewart type of theory that
assumes that the relaxation times are smaller than the evolu-
tion timescale. Instead, the bulk viscosity that is parametrized
here should be thought as the residual bulk viscosity that
is not included in the partial chemical freeze-out formal-
ism [60]. In practice, the condition that low-temperature
bulk viscosity is described mainly by chemical freeze-out
is set by adjusting the asymmetry parameter aζ/s in the
parametrization such that bulk viscosity over entropy density
becomes very small near and below the chemical freeze-out
temperature.

We want to emphasize here that this is only one exam-
ple parametrization which seems to give a good agreement

with the LHC and RHIC measurements. To get more detailed
estimates of the parameters and their errors and correlations,
a global analysis of heavy-ion observables and the parameter
space is needed.

IV. DYNAMICAL FREEZE-OUT

When modeling heavy-ion collisions using hydrodynamics
the kinetic freeze-out is usually set to take place at a constant-
temperature hypersurface. The basic argument is that the fluid
decouples into free particles when the temperature dependent
mean free path of the particles becomes of the same order as
the size of the system R, i.e., λmfp(T ) ∼ R. If the system size
was a constant, this condition would give a constant freeze-
out temperature. However, in reality the system size changes
as a function of time, and moreover it can differ significantly
from collision to collision. In particular, the systems created
in central collisions are much larger than the ones created in
peripheral collisions.

A typical way to solve this issue is to connect fluid dynam-
ics to a microscopic hadronic afterburner that automatically
takes care of the freeze-out. However, a drawback in this
approach is that it can easily lead to unphysical discontinuities
in the transport coefficients, as at typical temperatures at the
switching between fluid dynamics and hadron cascade the η/s
values in the fluid evolution are O(0.1), whereas on the hadron
cascade side they are O(1) [68–70]. Instead of a coupling to
hadron cascade, in this work we treat the whole evolution,
including the hadronic phase, using fluid dynamics. This has
the specific advantage that it allows us to keep all the trans-
port coefficients continuous throughout the whole temperature
range realized in the evolution.

In order to account for the nontrivial system size de-
pendence of the freeze-out, we determine the decoupling
surface dynamically [33,34] using two different conditions.
The applicability of fluid dynamics requires that the local
Knudsen number is sufficiently small, and fluid evolution
becomes effectively free streaming when Kn 	 1. In com-
parisons between kinetic theory and fluid dynamics it was
shown that a constant Knudsen number freeze-out in fluid
dynamics catches very well the freeze-out dynamics of the
kinetic evolution [32]. On the other hand, even if the local
condition gives that fluid dynamics is applicable, the over-
all size of the system can still be small compared to the
mean free path of the particles. In order to account for this
kind of nonlocal freeze-out, we impose a second condition
that the fluid element decouples when the mean free path
is of the same order as the system size. Hence, our dy-
namical freeze-out setup is determined by the following two
conditions:

Kn = τπθ = CKn, (16)
γ τπ

R
= CR, (17)

where CKn, CR = O(1) are some proportionality constants and
R is the size of the system. Here we have assumed that the
mean free path is proportional to the relaxation time. The addi-
tional gamma factor in the second equation takes into account
that the size of the system is calculated in the center-of-
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momentum frame of the nuclear collision, while the relaxation
time is calculated in the fluid rest frame. To make sure that
we are not in the QGP phase when freeze-out happens, we
also require that at the freeze-out surface T < 150 MeV. In
order to use latter condition (17) we need to have some kind
of estimate for the system size which, however, is not uniquely
determined. In this work we define the size of the system
as

R =
√

A

π
, (18)

where A is the area in the x, y plane in which Kn < CKn.
Additionally we take into account the possibility that the
system may consist of multiple separate areas of a fluid and
calculate the system size for each of these regions separately.
We note that our approximation of the system size is close
to the maximum length that a particle must travel from the
center to the edge of the system. In practice, however, most of
the matter is distributed closer to the edges of the system and
most of the particles are moving with the fluid also towards
the edge. For this reason the actual size of the system that
the particles see can be significantly smaller than R, and as a
result the proportionality constant CR can also be significantly
smaller than 1.

In summary, here we have on the one hand reduced a pos-
sibly complicated nonequilibrium dynamics of the hadronic
evolution in the dynamical treatment of kinetic freeze-out,
and on the other hand we treat the nontrivial chemistry in
the hadronic evolution as a constant-temperature chemical
freeze-out. While such an approach may not catch the full
microscopic details of the freeze-out dynamics, the purpose
is that it would still capture its essential features. A clear
advantage is, as mentioned above, that it allows us to keep
the transport coefficients of the matter continuous throughout
the evolution, and at the same time it also allows us to get
constraints for the hadronic part of the transport coefficients.
As we can see, the physical picture of the evolution is some-
what different from the typical hybrid hydro+cascade models,
where the low viscosity QGP evolution is immediately fol-
lowed by high-viscosity hadronic evolution. In our picture the
peripheral collisions decouple practically immediately after
the hadronization, but in the central collisions there can still be
quite long low-viscosity evolution in the hadronic phase. This
is demonstrated in Fig. 3 where the entropy-flux-weighted
average freeze-out temperature is plotted as a function of
centrality for the η/s = dyn parametrization introduced in
Sec. III. We can also notice that the average freeze-out tem-
perature is sensitive to the collision energy and size of the
colliding nuclei.

V. FLOW COEFFICIENTS AND CORRELATORS

The fluid dynamical computation gives a single-particle
transverse momentum spectrum of hadrons for each event, and
its azimuthal modulation can be expressed by its pT dependent
Fourier components vn(pT ) and the phases or event-plane

FIG. 3. Average freeze-out temperature for η/s = dyn
parametrization in 200 GeV Au + Au, 2.76 TeV Pb + Pb,
5.023 TeV Pb + Pb, and 5.44 TeV Xe + Xe collisions.

angles �n(pT ),

dN

dy d p2
T dφ

= 1

2π

dN

dy d p2
T

(
1 +

∞∑
n=1

vn(pT ) cos{n[φ − �n(pT )]}
)

.

(19)

The flow coefficients can be expressed in a convenient way by
a complex flow vector Vn as

Vn(pT ) = vn(pT )ein�n (pT ) = 〈einφ〉φ, (20)

where the angular brackets denote an average:

〈· · · 〉φ =
(

dN

dy d p2
T

)−1 ∫ 2π

0
dφ

dN

dy d p2
T dφ

(· · · ). (21)

Similarly, the pT -integrated flow coefficients can be defined
as

Vn = vnein�n = 〈einφ〉φ,pT , (22)

where the average is defined as

〈· · · 〉φ,pT =
(

dN

dy

)−1∫ 2π

0
dφ

∫ pT ,max

pT ,min
d p2

T w
dN

dy d p2
T dφ

(· · · ),

(23)
and the pT -integrated multiplicity dN

dy is defined with the same
pT integration limits pT,min and pT,max as above. In addition it
is possible to use a pT or an energy dependent weight w in the
pT integration.

In the following we will write down the expressions of
various measurable pT -integrated quantities, but suppress the
rapidity, weight, and pT integration limits from the notation.
The pT limits will be denoted explicitly when we show our
results. Unless otherwise stated, the weight function w = 1.

In the fluid dynamical simulations of heavy-ion collisions
we are working directly with continuous particle distributions.
In the experiments this is not the case, but each event is
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measured as a finite number of particles. Therefore, the
definitions above are not directly applicable, but the flow
coefficients are rather defined through particle correlations.
As an example of a two-particle correlation and its continuum
limit we can write

1

Ne(Ne − 1)

∑
pairs i �= j

einφ1 e−inφ2

−→ 1

N2

∫
dφ1dφ2

dN2

dφ1dφ2
einφ1 e−inφ2 , (24)

where Ne is the number of hadrons in the event, and
dN2/dφ1dφ2 is a two-particle distribution function that can
be written as a sum of the product of the single-particle distri-
bution functions and a direct correlation

dN2

dφ1dφ2
= dN

dφ1

dN

dφ2
+ δ2(φ1, φ2), (25)

where the direct part emerges, e.g., due to hadron decays. It
is a genuine two-particle correlation that is absent if all the
correlations between the hadrons are due to the underlying
collective flow. If the direct component can be neglected, the
two-particle correlation above can be written in the continuum
limit as

1

N2

∫
dφ1dφ2

dN

dφ1

dN

dφ2
einφ1 e−inφ2 = vnein�nvne−in�n = v2

n .

(26)

In this limit the two-particle correlator can be written in terms
of the flow coefficient. This particular correlator is referred to
as the two-particle cumulant, and its average over events gives
the two-particle cumulant vn{2},

vn{2} =
√〈

v2
n

〉
ev, (27)

where 〈· · · 〉ev denotes the average over the events. A simi-
lar reasoning leads to a multitude of flow observables. Here
we write down only the continuum limit in the absence of
direct or nonflow correlations. It should be noted, however,
that although the experimental procedures try to suppress the
nonflow part by, e.g., requiring a rapidity gap between each
pair of hadrons, it is still possible that some of the observables
are still plagued by the nonflow. With the current setup we
cannot address the nonflow part theoretically, but will assume
that the experimental techniques remove them completely.

In a naive picture one may think that the flow coefficients
are generated independently as a fluid dynamical response
to the corresponding eccentricities of the initial conditions,
vn ∝ εn. In practice, however, this picture holds only for the
elliptic flow coefficient v2 and to a lesser degree for v3 [23,71],
and even then the relation between v2 and ε2 ceases to be
linear when ε2 becomes large in noncentral collisions [25].
In general, the flow coefficients are not independent of each
other, but both the correlations between the eccentricities
in the initial conditions and the nonlinear fluid dynamical
evolution generate correlations between them. The degree of
the correlation can be measured through various observables
that correlate both the magnitudes of the flow, vn, and the
event-plane angles �n [71].

A measurable way to quantify the degree of correlation
between the flow coefficients is the so called symmetric cu-
mulant [72], defined as

SC(n, m) = 〈
v2

nv
2
m

〉
ev,N4 − 〈

v2
n

〉
ev,N2

〈
v2

m

〉
ev,N2 , (28)

where it is important to notice that the event-average is per-
formed with powers of multiplicity as a weight, as denoted
in the above equation. An advantage of this definition is that
at the particle correlation level the latter term in the defini-
tion removes the direct two-particle correlations from the first
term, which in turn is a four-particle correlator at the particle
level. Thus the direct two-particle nonflow does not affect
the symmetric cumulant. The symmetric cumulant is not a
correlator in a sense that it depends not only on the degree
of correlation between vn and vm, but also on their absolute
magnitudes. On the other hand, the normalized symmetric
cumulant, defined as

NSC(n, m) = SC(n, m)〈
v2

n

〉
ev,N2

〈
v2

m

〉
ev,N2

, (29)

is a measure of only the correlation. The downside of the
normalized version is that the normalization can be affected
by the direct two-particle nonflow contributions.

The symmetric cumulants measure only correlations in-
volving two second-order flow coefficients. The more general
mixed harmonic cumulants (MHC) were introduced in
Ref. [73] to give observables that can quantify the correlations
between between more than two flow coefficients with higher-
order moments of vn’s. Like symmetric cumulants, mixed
harmonic cumulants are also constructed in such a way that
lower order correlations are removed from multiparticle corre-
lations and the definition of MHC containing two second order
flow coefficients is identical to the symmetric cumulants, i.e.,
MHC(v2

m, v2
n ) = SC(v2

m, v2
n ). Mixed harmonic cumulants for

six-particle correlations involving moments of v2 and v3 can
be defined as

MHC
(
v4

2, v
2
3

) = 〈
v4

2v
2
3

〉
6 − 4

〈
v2

2v
2
3

〉
4

〈
v2

2

〉
2

− 〈
v4

2

〉
4

〈
v2

3

〉
2 + 4

〈
v2

2

〉2
2

〈
v2

3

〉
2,

MHC
(
v2

2, v
4
3

) = 〈
v2

2v
4
3

〉
6 − 4

〈
v2

2v
2
3

〉
4

〈
v2

3

〉
2

− 〈
v2

2

〉
2

〈
v4

3

〉
4 + 4

〈
v2

2

〉
2

〈
v2

3

〉2
2, (30)

where 〈· · · 〉i = 〈· · · 〉ev,Ni . Similarly one can define mixed har-
monic cumulants for eight-particle correlations between v2

and v3 as

MHC
(
v6

2, v
2
3

) = 〈
v6

2v
2
3

〉
8 − 9

〈
v4

2v
2
3

〉
6

〈
v2

2

〉
2

− 〈
v6

2

〉
6

〈
v2

3

〉
2 − 9

〈
v4

2

〉
4

〈
v2

2v
2
3

〉
4

− 36
〈
v2

2

〉3
2

〈
v2

3

〉
2 + 18

〈
v2

2

〉
2

〈
v2

3

〉
2

〈
v4

2

〉
4,

+ 36
〈
v2

2

〉2
2

〈
v2

2v
2
3

〉
4,

MHC
(
v2

2, v
6
3

) = 〈
v2

2v
6
3

〉
8 − 9

〈
v2

2v
4
3

〉
6

〈
v2

3

〉
2

− 〈
v2

2

〉
2

〈
v6

3

〉
6 − 9

〈
v4

3

〉
4

〈
v2

2v
2
3

〉
4

− 36
〈
v2

2

〉
2

〈
v2

3

〉3
2 + 18

〈
v2

2

〉
2

〈
v2

3

〉
2

〈
v4

3

〉
4

+ 36
〈
v2

3

〉2
2

〈
v2

2v
2
3

〉
4,
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MHC
(
v4

2, v
4
3

) = 〈
v4

2v
4
3

〉
8 − 4

〈
v4

2v
2
3

〉
6

〈
v2

3

〉
2

− 4
〈
v2

2v
4
3

〉
6

〈
v2

2

〉
2 − 〈

v4
2

〉
4

〈
v4

3

〉
4

− 8
〈
v2

2v
2
3

〉2
4 − 24

〈
v2

2

〉2
2

〈
v2

3

〉2
2

+ 4
〈
v2

2

〉2
2

〈
v4

3

〉
4 + 4

〈
v4

2

〉
4

〈
v2

3

〉2
2

+ 32
〈
v2

2

〉
2

〈
v2

3

〉
2

〈
v2

2v
2
3

〉
4, (31)

and for six-particle correlations between v2, v3, and v4 as

MHC
(
v2

2, v
2
3, v

2
4

) = 〈
v2

2v
2
3v

2
4

〉
6 − 〈

v2
2v

2
3

〉
4

〈
v2

4

〉
2

− 〈
v2

2v
2
4

〉
4

〈
v2

3

〉
2 − 〈

v2
3v

2
4

〉
4

〈
v2

2

〉
2

+ 2
〈
v2

2

〉
2

〈
v2

3

〉
2

〈
v2

4

〉
2. (32)

Analogously to normalized symmetric cumulants one defines
normalized mixed harmonic cumulants as

nMHC
(
vk

n, v
l
m

) = MHC
(
vk

n, v
l
m

)
〈
vk

n

〉
k

〈
vl

m

〉
l

, (33)

nMHC
(
vk

n, v
l
m, vq

p

) = MHC
(
vk

n, v
l
m, v

q
p
)

〈
vk

n

〉
k

〈
vl

m

〉
l

〈
v

q
p
〉
q

. (34)

A complementary observable to the symmetric cumulants,
usually referred to as the event-plane correlator, is defined as
[74]

〈cos(k1�1 + · · · + nkn�n)〉SP

=
〈
v

|k1|
1 · · · v|kn|

n cos(k1�1 + · · · + nkn�n)
〉
ev√〈

v
2|k1|
1

〉
ev · · · 〈v2|kn|

n
〉
ev

, (35)

where the kn’s are integers with the property
∑

n nkn = 0 so
that the correlator is independent of the azimuthal orientation.
Despite its name it actually measures a correlation between
both the magnitudes of the flow and event-plane angle, and
in this sense provides complementary information to the sym-
metric cumulants above.

These correlations as such provide information that is in-
dependent from the flow magnitudes themselves, and give
further independent constraints to the initial conditions and
transport coefficients. However, it is interesting that the event-
plane correlations are closely related to the magnitude of
nonlinear response to the initial conditions [75]. The basic
idea in quantifying the nonlinear response is that the complex
flow vector Vn is divided into a linear part VnL that is assumed
to correlate only with the corresponding initial state eccentric-
ity εn, and into a nonlinear part that is independent of εn [71].
If we consider the simplest possible nonlinear contributions,
we can write

V4 = V4L + χ4,22(V2)2, (36)

V5 = V5L + χ5,23V2V3, (37)

V6 = V6L + χ6,222V
3

2 + χ6,33 V 2
3 (38)

where χ ’s are the nonlinear response coefficients. Note that
the nonlinear parts include only the largest flow vectors V2 and
V3 that can also, to a reasonable approximation as discussed
above, assumed to have only the linear part V2 = V2L and V3 =

V3L. If we further assume that the linear and nonlinear parts are
uncorrelated, we may express the response coefficients as

χ4,22 = Re〈V4(V ∗
2 )2〉ev

〈|V2|4〉ev
(39)

χ5,23 = Re〈V5V ∗
2 V ∗

3 〉ev

〈|V2|2|V3|2〉ev
(40)

χ6,222 = Re〈V6(V ∗
2 )3〉ev

〈|V2|6〉ev
(41)

χ6,33 = Re〈V6(V ∗
3 )2〉ev

〈|V3|4〉ev
, (42)

and the linear parts of V4 and V5 can be written as√
〈|V4L|〉2

ev =
√

(v4{2})2 − χ2
4,22〈|V2|4〉ev, (43)√

〈|V5L|〉2
ev =

√
(v5{2})2 − χ2

5,23〈|V2|2|V3|2〉ev. (44)

The connection between the event-plane correlators and the
nonlinear response coefficients can be seen by observing, e.g.,
that

χ4,22 = 〈cos(4[�4 − �2)〉SP

√√√√〈
v2

4

〉
ev〈

v4
2

〉
ev

, (45)

so that the two measures differ by a normalization factor that
depends on the magnitude of the flow, but not on correlators.
A similar connection can also be made between the other
χ ’s. A more complete list of relations can be found from
Refs. [75,76].

Even though the nonlinear response coefficients and the
correlations between the flow harmonics give information
about the initial state eccentricities and their conversion to mo-
mentum space anisotropies, they do not directly probe the size
of the initial nuclear overlap region, which is more sensitive to
the average pT fluctuations. Thus, the correlation between the
flow coefficients and the average pT is a good probe of the
initial state structure [77]. This flow–transverse-momentum
correlation is defined by a modified Pearson correlation co-
efficient [78]

ρ
(
v2

n, [pT ]
) =

〈
δ̂v2

n δ̂[pT ]
〉
ev√〈(

δ̂v2
n

)2〉
ev

〈
(δ̂[pT ])2

〉
ev

, (46)

where the event-by-event variance at a fixed multiplicity for
some observable O is defined by

δ̂O = δO − 〈δO δN〉ev

σN
δN, (47)

δO = O − 〈O〉ev, σ 2
O = 〈(δO)2〉ev. (48)

VI. RESULTS

In this section we present the results for hadron multiplici-
ties, average pT , flow coefficients, and correlations calculated
from the EKRT pQCD + hydrodynamics framework with
the bulk viscosity and the dynamical freeze-out, and compare
these against the results from our earlier works [25,27–29]
with the constant-temperature freeze-out and without the bulk
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FIG. 4. Charged hadron multiplicity in 200 GeV Au + Au,
2.76 TeV Pb + Pb, 5.023 TeV Pb + Pb, and 5.44 TeV Xe + Xe col-
lisions. The experimental data are from the ALICE [79–81], STAR
[82], and PHENIX [83] Collaborations.

viscosity. The systems we show here are 200 GeV Au + Au,
2.76 TeV Pb + Pb, 5.023 TeV Pb + Pb, and 5.44 TeV Xe +
Xe collisions. As explained in Sec. III, the initial conditions,
the transport coefficients, and the freeze-out parameters are
fixed on the basis of 200 GeV Au + Au and 2.76 TeV data
from RHIC and LHC. For both Pb + Pb collision systems
we run 40 000 event simulations to get better statistics for
the symmetric cumulants while for other collision systems
we did 20 000 event simulations. The statistical errors for
different quantities are estimated, as in Ref. [76], via jackknife
resampling.

A. Multiplicity, average pT , and flow

In Fig. 4 we show the centrality dependence of charged
hadron multiplicities for all the above systems compared to
the STAR [82], PHENIX [83], and ALICE [79–81] data. The
essential parameter that controls the multiplicity is Ksat in
the local saturation criterion. This coefficient is fixed from
the multiplicity in 0–5% 2.76 TeV Pb + Pb collisions. The
centrality,

√
sNN , and nuclear mass number dependence are

predictions of the model. The value of Ksat depends on
the chosen η/s(T ) and ζ/s(T ) parametrizations due to the
different entropy production with different shear and bulk
viscosities. However, the final results for the multiplicities are
in practice the same for all parametrizations and they agree
excellently with the experimental data across all centrality
classes and collision energies.

The centrality dependences of identified particle multiplic-
ities for 200 GeV Au + Au, 2.76 TeV Pb + Pb, and 5.023
TeV Pb + Pb collisions are shown in Fig. 5 (left). All of the
parametizations manage to produce the same pion multiplic-
ities as the ALICE and PHENIX measurements while the
kaon multiplicities differ significantly from the experimental
data. The ratio between the proton and pion multiplicities
is mostly controlled by the chemical freeze-out temperature.
Parametrizations η/s = 0.2 and η/s = param1 use Tchem =

175 MeV in order to obtain the same average pT for pions
in 2.76 TeV Pb + Pb collisions as the ALICE measure-
ments. However this comes with the drawback that the proton
multiplicities differ from the experimental data by a fac-
tor of ∼2. The addition of the bulk viscosity in the η/s =
dyn parametrization enables the possibility to use Tchem =
155 MeV, which clearly improves the proton multiplicities.
However, there is still some discrepancy left that is most
visible in the most central collisions at the LHC.

In Fig. 5 (right) we show the average pT of identified par-
ticles as a function of centrality for 200 GeV Au + Au, 2.76
TeV Pb + Pb, and 5.023 TeV Pb + Pb collisions. Compared
to the earlier results, the η/s = dyn parametrization improves
the agreement with the experimental data across both collision
systems, except for kaons at the LHC energies. In particular,
the relative change of the proton 〈pT 〉 as a function of cen-
trality is reproduced better. This improvement is not only due
to the addition of the bulk viscosity but also the dynamical
freeze-out plays a major part by affecting the lifetime of the
fluid. The centrality dependencies of the pT -integrated flow
coefficients v2{2}, v3{2}, and v4{2} in all studied systems are
shown in Fig. 6. The shear viscosity and the dynamical freeze-
out parameters of the η/s = dyn parametrization were tuned
to approximately reproduce v2{2} in 2.76 TeV Pb + Pb col-
lisions while also reproducing v2{2} in central to mid-central
200 GeV Au + Au collisions. The most essential feature of
the dynamical freeze-out is that the smaller collision systems
freeze out earlier in the hadronic phase. This means that there
is less time for the initial state eccentricities to convert to
the momentum space anisotropies in peripheral collisions.
Indeed, as seen in Fig. 6, all pT -integrated flow coefficients
for the η/s = dyn parametrization are significantly smaller in
peripheral collisions than the results of the η/s parametriza-
tions from the earlier works that used a constant-temperature
decoupling surface. As can be seen from the comparison
to measurements, the η/s = dyn parametrization reproduces
well the centrality dependence of all flow coefficients in all
LHC collision systems and clearly improves the results from
the earlier ones in peripheral collisions. The biggest discrep-
ancy with the data and the model calculation is the 40–80%
centrality range in 200 GeV Au + Au collisions. In this region
especially the predictions for the flow coefficients v3{2} and
v4{2} are well outside of the error bars of the measurements.
There are multiple possible reasons for this. First of all, due
to the lower multiplicity in the 200 GeV Au + Au collisions
it is reasonable to expect significantly larger nonflow effects
compared to the LHC systems. Additionally, the δ f correc-
tions to the particle spectra are much larger at RHIC than at
LHC, which adds additional uncertainty to the RHIC results.
Lastly, we do not include any nucleon substructure [91], initial
flow, or nonzero πμν to our initial state model, and effects of
these modifications are still under investigation. We note that
other groups report very similar flow coefficients in peripheral
RHIC collisions; see, e.g., Refs. [19,92].

The change in the magnitude of the flow coefficients is
quite modest from 2.76 to 5.023 TeV Pb + Pb collisions, and
a better way to quantify the change is to plot the ratio of
the coefficients between the two collision energies. The ratio
is also a more robust prediction from fluid dynamics and
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FIG. 5. Identified particle multiplicities (left) and average transverse momenta (right) for pions, kaons, and protons in 200 GeV Au + Au,
2.76 TeV Pb + Pb, and 5.023 TeV Pb + Pb collisions. The experimental data are from the PHENIX [84] and ALICE [85,86] Collaborations.

less sensitive to fine tuning of η/s(T ); for a discussion see
Ref. [93]. The predictions for the ratios of vn{2} in Pb + Pb
collisions at 2.76 to 5.023 TeV are shown in the upper panel of
Fig. 7. The predicted increase ranges from up to 8% for v2 to
up to 25% for v4. The predictions match well with the ALICE
measurements for central to mid-central collisions, only in
the most peripheral collisions the η/s = dyn parametrization
overestimates the data slightly, especially in the case of v4, but
there the experimental errors of the ratios are also quite large.

The situation is quite different in the case of Xe + Xe
collisions. The ratio of the flow coefficients between the 5.44
TeV Xe + Xe and 5.023 TeV Pb + Pb collisions is shown in
the lower panel of Fig. 7. The change in the flow coefficients
is significantly larger than in the previous case, even if the
collision energy is almost the same in Xe + Xe as in Pb + Pb
collisions. The reason is that the system size is quite different
when the nuclear mass number changes from A = 208 to
A = 129. The most striking feature is the strong increase of v2
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FIG. 6. Flow coefficients in 200 GeV Au + Au (a), 2.76 TeV Pb + Pb (b), 5.023 TeV Pb + Pb (c), and 5.44 TeV Xe + Xe (d) collisions.
The experimental data are from the STAR [87,88] and ALICE Collaborations [89,90].

in central Xe + Xe collisions compared to Pb + Pb collisions.
A significant factor in the increase is the shape deformation of
Xe nuclei. The deformation enhances the initial elliptic eccen-
tricity fluctuations compared to the spherical double magic Pb
nuclei. As a result the elliptic flow is 30% higher in the Xe
case. The fact that we correctly predict this increase by taking
into account the nuclear deformation is further evidence that
the azimuthal asymmetries in the pT spectra are resulting from
a fluid dynamical response to the initial geometry.

B. Event-plane correlations, cumulants, and
flow–transverse-momentum correlations

The event-plane correlations, defined in Eq. (35), quantify
the correlation between the event-plane angles �n, and also
between the flow magnitudes vn. The computed event-plane
correlations in 2.76 TeV Pb + Pb are shown in Fig. 8. Only a
slight separation between the dynamical freeze-out and earlier
η/s(T ) parametrizations can be seen and all parametrizations

are able to describe the data. The most notable exceptions are
the correlations involving the event-plane angle �6, which
are very sensitive to δ f corrections. In these, the η/s =
dyn parametrization slightly improves the agreement with
the data from the earlier works. This is mostly due the fact
that the η/s = dyn parametrization has lower shear viscosity
and thus smaller δ f corrections. The event-plane correlations
have only been measured for 2.76 TeV Pb + Pb collisions
which is why we do not show results for other collision
systems.

The symmetric cumulants, defined through Eq. (28), are
complementary to the event-plane correlators in the sense that
they depend on the correlation between the flow magnitudes
vn like the event-plane correlators, but are independent of the
event-plane angles. The symmetric cumulants themselves are
not a measure of correlation, but depend explicitly on the
magnitude of vn, and not only on the degree of correlation.
The corresponding correlation measure is defined through the
normalized symmetric cumulants, Eq. (29).
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FIG. 7. The ratio of flow coefficients vn between 5.023 and 2.76 TeV Pb + Pb collisions, and the ratio of vn between 5.44 TeV Xe + Xe
and 5.023 TeV Pb + Pb collisions. The experimental data are from the ALICE Collaboration [89,90].

The normalized symmetric cumulants in 2.76 TeV Pb + Pb
collisions are shown in Fig. 9 compared to the ALICE data
[95]. As in the case of event-plane correlations, there are only
small differences between the three η/s parametrizations. The
overall agreement between the data and the computations is
good, but with a notable exception that in peripheral collisions
we underpredict the NSC(2, 4) correlation. The collision en-
ergy dependence of the normalized symmetric cumulants is
weak, as can be seen in Fig. 10 where we show them in
5.023 TeV Pb + Pb collisions.

In Fig. 11 we show the normalized symmetric cumulants
in 200 GeV Au + Au collisions. Note that here the central-
ity of the collisions is given by the number of participants,
as reported by the STAR Collaboration [96]. Compared to
Pb + Pb collisions we see much more separation between the

dynamical freeze-out and earlier parametrizations for the
NSC(3, 4), NSC(3, 5) and NSC(4, 6) correlations. The pre-
dictions for the NSC(2, 3) correlation are in line with the
measurements while for NSC(2, 4) all the parametrizations
clearly underestimate the data in peripheral collisions.

The correlations between higher order moments of two
or three flow coefficients can be studied using the mixed
harmonic cumulants which provide information that is inde-
pendent of the normalized symmetric cumulants. The EKRT
model predictions for nMHC(v2

2, v
2
3, v

2
4 ) and nMHC(vk

2, v
l
3)

are compared against the ALICE measurements for 5.023 TeV
Pb + Pb collisions in Fig. 12. As can be seen there are
only modest differences between the parametrizations and the
statistical errors in our simulations are already quite large,
especially with nMHC(v4

2, v
4
3 ). This is expected, since the
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FIG. 8. Event-plane correlations in 2.76 TeV Pb + Pb collisions. The data are from the ATLAS Collaboration [94].

correlations between v2 and v3 are thought to be more sen-
sitive to the initial state rather than to the dynamics of the
system. Our predictions seem to agree quite well with the
data except for nMHC(v4

2, v
4
3 ), for which we predict a stronger

correlation in peripheral collisions than what is measured.

Finally in Fig. 13 we show our predictions for the
recently measured flow–transverse-momentum correlations
ρ(v2

n, [pT ]) as a function of the number of participant
nucleons in 5.023 TeV Pb + Pb collisions. These correla-
tors describe the correlation between the average transverse

FIG. 9. Normalized symmetric cumulants NSC(n, m) in 2.76 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [95].
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FIG. 10. Normalized symmetric cumulants NSC(n, m) in 5.023 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [97].

momentum and the flow coefficients and thus one would
expect it to be somewhat sensitive to the bulk viscosity and
freeze-out criterion. The EKRT model calculations confirm
this by showing an increase in all ρ(v2

n, [pT ]) correlations,
especially in the peripheral region. This also improves the
agreement with the ATLAS measurements in peripheral col-
lisions, even though the agreement with the data is still only
qualitative. Most notably the η/s = dyn parametrization gives

the same sign as the measurements for ρ(v2
4, [pT ]) in periph-

eral collisions.

C. Higher-order flow and response coefficients

In Fig. 14 we show the higher-order flow coefficients
v4, v5, and v6 compared to the ALICE data [99] in 2.76
TeV Pb + Pb collisions. As can be seen in the figure, the

FIG. 11. Normalized symmetric cumulants NSC(n, m) in 200 GeV Au + Au collisions. The data are from the STAR Collaboration [96].
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FIG. 12. Normalized mixed harmonic cumulants nMHC in 5.023 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [97].

FIG. 13. The flow–transverse-momentum correlation coefficient ρ(vn{2}, [pT ]) in 5.023 TeV Pb + Pb collisions. The data are from the
ATLAS Collaboration [98].

FIG. 14. Higher-order flow coefficients in 2.76 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [99].
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FIG. 15. Non-linear flow response coefficients in 2.76 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [99].

η/s = dyn parametrization seems to slightly underpredict the
higher order flow coefficients in peripheral collisions, while
the η/s = 0.2 parametrization manages to reproduce the data
quite well. For v6 we point out that the measured flow is larger
in 2.76 TeV than in 5.023 TeV collisions, as can be seen by
comparing measurements with Fig. 16, which is in conflict
with the behavior of the other flow coefficients. We also
note that the difference between the earlier parametrizations
η/s = 0.2 and η/s = param1 is more visible here than in the
case of lower-order flow coefficients.

The corresponding nonlinear response coefficients are
shown in Fig. 15. As explained in Sec. V they are closely re-
lated to the event-plane correlations, and the good agreement
of the calculated response coefficients with the ALICE data
is consistent with the good agreement between the calculated
and the measured ATLAS event-plane correlations in Fig. 8.

The same flow and response coefficients as above, but
for 5.023 TeV Pb + Pb collisions, are shown in Figs. 16
and 17, respectively. Together with other higher order flow
harmonics we also show v7, v8, and v9, which are only

measured for the 5.023 TeV energy. Here we see that
the parametrization that uses dynamical freeze-out predicts
the higher order flow coefficients quite well while the
parametrizations from earlier works are slightly above the
measurements.

The response coefficients are not directly proportional to
the magnitude of the flow coefficients, or the proportionality
is partly canceled by the normalization. That is to say that
the agreement in the response coefficients with the ALICE
data is similar as at the lower collision energy even though
we cannot exactly reproduce the higher order vn’s for both
collision energies simultaneously.

The overall agreement with the higher-order flow coeffi-
cients with the data is quite similar for both the earlier and
current EKRT setup. The improvements due to the dynamical
decoupling are not as clear as for v2. However, the differences
between the parametrizations are also larger, highlighting the
fact that higher-order coefficients, and their

√
sNN dependence

give important constraints on the determination of shear vis-
cosity.
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FIG. 16. Higher-order flow coefficients in 5.023 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [100].

VII. SUMMARY AND CONCLUSIONS

We have presented the results for the low-pT observables
in Pb + Pb, Au + Au, and Xe + Xe collisions at RHIC and
LHC energies from the fluid dynamical computations using
the NLO pQCD based EKRT model for the initial conditions.
Compared to the previous EKRT works in Refs. [25,27,28]
we have now added the bulk viscosity together with the dy-
namical decoupling conditions to improve the validity of our
model in peripheral collisions.

The overall agreement of the computed results with the
data is very good in particular for the

√
sNN , A, and cen-

trality dependence of the charged hadron multiplicity. This
is mainly a feature of the EKRT initial conditions. The
main uncertainty in the EKRT model is the Ksat parameter
in the saturation condition, but this can be essentially fixed
from one measurement of charged hadron multiplicity. Even
if the value of Ksat depends on the η/s parametrization through
the entropy production during the fluid dynamical evolution,
the final results for the

√
sNN , A, and centrality dependence are

practically independent of the Ksat value, making them very
robust predictions of the EKRT model.

The most significant effect of the dynamical freeze-out
can be seen in the absolute magnitude of the flow coeffi-
cients vn. We have demonstrated that we can reproduce the
experimental data for v2 and v3 across the centrality range
0–80% in all the collision systems with the exception of

peripheral RHIC collisions. This is a significant improvement
from the constant-temperature freeze-out which only manages
to describe the data up to the 30–40% centrality class. The
higher harmonics v4, v5, and v6 are quite similarly described
by both the earlier computations and the current setup, but
the differences between the η/s parametrizations are also
more pronounced. On the other hand, the relative increase of
the flow coefficients from 2.76 TeV Pb + Pb to 5.023 TeV
Pb + Pb and 5.44 TeV Xe + Xe collisions is well described
in all the centrality classes shown here. The addition of the
dynamical freeze-out together with the bulk viscosity has also
made it possible to improve the simultaneous agreement of
the identified particle multiplicities and the mean transverse
momenta with the measurements.

We have also shown the EKRT model predictions for the
most recent correlation measurements. Our results for the
symmetric cumulants, the mixed harmonic cumulants, the
response coefficients, and closely related event-plane corre-
lators are very similar to the earlier EKRT results and the
agreement with the data remains reasonably good. The most
notable differences are in NSC(2, 4) correlators in peripheral
collisions, where the predictions are visibly below the exper-
imental data. The effect of the dynamical freeze-out and the
bulk viscosity can be seen in the flow–transverse-momentum
correlators ρ(v2

n, [pT ]), where we demonstrated a better quan-
titative agreement with the experimental measurements in
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FIG. 17. Non-linear flow response coefficients in 5.023 TeV Pb + Pb collisions. The data are from the ALICE Collaboration [100].

peripheral collisions than given by the previous EKRT compu-
tations. Especially, we obtained the correct sign in ρ(v2

4, [pT ])
correlation in peripheral collisions.

In conclusion, we have introduced dynamical freeze-out
conditions to model the decoupling of the fluid to free
hadrons. In particular, the aim was to capture the essential
features of the decoupling that take into account the system
size variations at different collision energies and centralities.
The clear benefit here is that it allows us to keep the trans-
port coefficients continuous throughout the whole temperature
range, without unphysical discontinuities that can appear at
a switching between fluid dynamics and hadron cascade. At
the same time it is then possible to use the measured data
to constrain the QCD matter transport properties also in the
hadronic phase.

We emphasize that in spite of the extensive iteration work
done, the parametrizations shown here do not necessarily
represent the absolute best fit to the data. For that we would
need to do a full statistical global Bayesian analysis of the
parameter space. This we have left as a future work. However,
we have demonstrated that we can reproduce the measured

LHC and RHIC low-pT observables reasonably well, and the
dynamical decoupling leads to quite a different spacetime
picture compared to many hydro+cascade models. Instead
of a very viscous hadronic evolution directly after the low-
viscosity QGP evolution, in the picture presented here the
low-viscosity evolution can extend to quite low temperatures
on the hadronic side.
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[36] P. Bożek and W. Broniowski, Phys. Rev. C 88, 014903

(2013).
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We train a deep convolutional neural network to predict hydrodynamic results for flow coefficients, average
transverse momenta, and charged particle multiplicities in ultrarelativistic heavy-ion collisions from the initial
energy density profiles. We show that the neural network can be trained accurately enough so that it can reliably
predict the hydrodynamic results for the flow coefficients and, remarkably, also their correlations like normalized
symmetric cumulants, mixed harmonic cumulants, and flow-transverse-momentum correlations. At the same
time the required computational time decreases by several orders of magnitude. To demonstrate the advantage of
the significantly reduced computation time, we generate 107 initial energy density profiles from which we predict
the flow observables using the neural network, which is trained using 5 × 103, and validated using 9 × 104 events
per collision energy. We then show that increasing the number of collision events from 9 × 104 to 107 can have
significant effects on certain statistics-expensive flow correlations, which should be taken into account when
using these correlators as constraints in the determination of the quantum chromodynamics matter properties.

DOI: 10.1103/PhysRevC.108.034905

I. INTRODUCTION

Probing the properties of the strongly interacting matter
close to a zero net-baryon density is the primary goal of
the highest-energy ultrarelativistic heavy-ion collision exper-
iments. One of the most important tools in interpreting the
experimental data is relativistic hydrodynamics. In the hydro-
dynamic limit the matter behavior is controlled by the matter
properties like equation of state and transport coefficients,
such as shear and bulk viscosity. It has been well established
that in heavy-ion collisions flow-like signatures are seen in
azimuthal angle spectra of produced particles. This indicates
that a small droplet of deconfined phase of quantum chro-
modynamics (QCD) matter called quark-gluon plasma (QGP)
is created in these collisions, and that it exhibits a fluid-like
behavior [1–4].

Comparing the measurements with the predictions of
hydrodynamic computations gives then a possibility to de-
termine the QCD matter properties. A reliable estimate of
the QCD matter properties with well-defined error bars de-
mands a global analysis of as many experimental observables
and collision systems as possible. In the recent years, such
global analyses have given constraints on the QCD trans-
port properties [5–14]. In particular, the shear viscosity near
the QCD transition temperature T ≈ 155 MeV is rather well
constrained. For the full temperature dependence of shear

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

viscosity, and especially bulk viscosity, the uncertainties are
significantly larger.

A way to improve the analysis is to consider more observ-
ables. One challenge here is that in practice it is necessary
to compute the hydrodynamic evolution event by event, i.e.,
for each collision event separately, so that the computed ob-
servables are obtained as averages over a large number of
collisions to closely match with the actual measurements. The
nontrivial dependence of the final observables on the equa-
tion of state, transport coefficients, initial conditions, and the
details of the conversion of the fluid to particles together with
numerically demanding hydrodynamic simulations makes the
global analysis a very CPU intensive task. In particular, this is
the case when the global analysis takes into account observ-
ables that require high statistics obtained by accumulating a
large number of computed collision events.

The most basic experimental observables quantifying the
magnitude and details of the flow-like behavior are the Fourier
coefficients of an azimuthal hadron spectrum, which are usu-
ally referred to as flow coefficients vn. They are measured
as multiparticle correlations. The increased luminosity in re-
cent measurements, especially at the CERN Large Hadron
Collider (LHC), has enabled precision measurements of mul-
tiparticle correlations between flow coefficients all the way
up to the eight-particle level. Obtaining reliable estimates of
these correlations from the fluid dynamical simulation can
require gathering statistics from about 106 collision events.
Obtaining such high statistics is computationally very expen-
sive and performing computations gets even more expensive
when sampling the O(15)-dimensional parameter space of a
global analysis, where statistics should be obtained for around
300 different parametrizations. Typically one event needs
about 30 min computing time from a CPU and thus the total

2469-9985/2023/108(3)/034905(10) 034905-1 Published by the American Physical Society
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time it would take to perform high statistic global analysis is
around 0.5 × 106 × 300 ≈ 108 CPU hours.

One way to decrease the computation time would be to
convert the codes to GPU and use a modern GPU based
supercomputer to do the computing. Even though this would
significantly speed up the simulations, the task would still
require a significant amount of computing time. Another
possibility is to simplify the complicated fluid dynamical
computations and construct fast estimators that can give good
estimates of the final state observables from the initial state
alone. The simple version of such an estimator for flow coeffi-
cients could be constructed, for example, by assuming a linear
relation between initial state eccentricities and corresponding
flow coefficients. As shown in Refs. [6,15,16] this kind of lin-
ear relation works reasonably well for v2 in central collisions,
but nonlinear effects start to get noticeable in more peripheral
collisions and even more so in the case of higher-order flow
coefficients for which this kind of estimator would not work
well even to begin with.

In this article we present a way to estimate pT -integrated
flow observables and correlators directly from the initial
energy density profile based on deep convolutional neural
networks (CNN). The convolutional neural networks have
been proven to be very efficient and accurate tools when
it comes to image classification and computer vision tasks.
During the past decade, network architectures have evolved
towards deeper and deeper networks, i.e., a typical network
contains more layers than before. A modern CNN architecture
can contain hundreds of layers and tens of millions trainable
parameters. Neural networks and deep learning have been uti-
lized before in the context of heavy-ion collisions for various
different applications, such as impact parameter estimation,
identifying quenched jets, or determination of the QCD matter
phase transition [17–21]. In Ref. [22] it was shown that the
neural network can also model full hydrodynamic evolution
on short time periods, �τ ≈ 2 fm, but this kind of method has
not yet been applicable for modeling a complete space-time
evolution of QGP. The deep neural network was also applied
to estimating v2 from the kinematic information of particles
in the context of the AMPT model [23]. However, until the
current study, neural networks have not been successfully
trained to predict flow observables and correlators from the
initial state energy density.

The basic setup here is the perturbative QCD based
EKRT (Eskola-Kajantie-Ruuskanen-Tuominen) gluon satura-
tion model [24,25] for the computation of initial conditions
that, when supplemented by relativistic hydrodynamic evolu-
tion [6,26], gives a good overall description of the available
flow data from heavy-ion collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) and LHC [27–29]. The neural
network constructed here is, however, not restricted to this
particular model, but can in principle be applied to any similar
framework.

This paper is organized in the following way. In Sec. II we
briefly go through the structure of the used neural network
and give details about how it is implemented in practice. In
Sec. III we validate the accuracy of the neural network by
showing that the results obtained by the network match well
with the hydrodynamic simulations. The main results are then

TABLE I. The structure of the used DenseNet network.

Block Output size Layers

Convolution 134 × 134 ×
64

7 × 7 conv, stride 2

Pooling 67 × 67 × 64 3 × 3 max pool, stride 2

Dense block 67 × 67 × 256

[
1 × 1 conv
3 × 3 conv

]
× 6

Transition layer 67 × 67 × 128 1 × 1 conv
33 × 33 × 128 2 × 2 average pooling,

stride 2

Dense block 33 × 33 × 512

[
1 × 1 conv
3 × 3 conv

]
× 12

Transition layer 33 × 33 × 256 1 × 1 conv
16 × 16 × 256 2 × 2 average pooling,

stride 2

Dense block 16 × 16 × 896

[
1 × 1 conv
3 × 3 conv

]
× 20

Transition layer 16 × 16 × 448 1 × 1 conv
8 × 8 × 448 2 × 2 average pooling,

stride 2

Dense block 8 × 8 × 1216

[
1 × 1 conv
3 × 3 conv

]
× 24

Output layer 1 × 1 × 1216 8 × 8 global average
pooling

Nout Fully connected layer
with ReLU activation

shown in Sec. IV, where we present the neural network pre-
dictions for various different correlators with 107 generated
collision events. The summary and conclusions are then given
in Sec. V.

II. MODEL SETUP

A. DenseNet

The evolution of CNN architectures towards deeper net-
works has caused challenges to their design [30]. Very deep
networks can easily lose some information about the input.
Additionally, when propagating the gradient information from
the output back to the input, the gradients can start to approach
zero. Therefore, the optimizer leaves the network weights
close to the input nearly unchanged so that the loss function
won’t converge to the global minima. This makes the training
of a model slow and inaccurate. To solve the vanishing gra-
dient and feature loss problem a dense convolutional network
or DenseNet was introduced [31]. The DenseNet consists of
two major building blocks: dense blocks and transition layers.
The dense block solves the vanishing gradient and feature
loss problems by reusing features from the previous layers via
concatenation, so that all the proceeding layers in the dense
block use feature maps from the previous layers as inputs.
This makes it possible to maintain low complexity features
while also taking advantage of the deep network’s ability
to probe very complex features of the training data. Such a
property makes the DenseNet a great choice when the data

034905-2
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FIG. 1. The event-by-event neural network (NN) predictions versus the results from the hydrodynamic simulations for the validation events
in the 0–80% centrality range.

set is somewhat limited and overfitting becomes an issue. The
transition layers are then used to reduce the input size. It uses a
1 × 1 convolutional layer followed by a 2 × 2 average pooling
layer.

In this study we use the DenseNet-BC variant which ap-
plies a 1 × 1 convolutional bottleneck layer before each 3 × 3
convolution layer in the dense blocks and compression to the
transition layer with compression parameter θ = 0.5, which
reduces the number of feature-maps by a factor of 2. The
growth rate is set to k = 32. The DenseNet is originally de-
signed for computer vision tasks and to adapt it to a regression
task we change the softmax activation function of the output
layer to a linear activation function. The exact structure of the
model is shown in Table I, where each convolutional layer
contains convolutional layer + batch normalization + ReLU
activation. Compared to the original DenseNet model we have
changed 3 × 3 and 7 × 7 convolution layers with depthwise
separable convolution layers, which seems to improve the
stability and slightly decrease the validation loss of the model.

B. Implementation

The DenseNet model is trained using midrapidity ob-
servables obtained from the hydrodynamic simulations of
heavy-ion collisions computed in Ref. [29]. The initial energy
density profiles for the hydrodynamic evolution are calculated
from the EKRT model [6,26], where the event-by-event fluc-
tuations emerge from the random positions of nucleons inside

the colliding nuclei. The computation of the initial profiles is
very fast and takes a negligible amount of CPU time compared
to the computation of the hydrodynamic evolution and the
corresponding physical observables for each event. It is quite
easy to generate millions of initial conditions corresponding
to different collision events.

As an input, the DenseNet model uses discretized initial
energy density in the transverse-coordinate (x, y) plane cal-
culated from the EKRT-model with a grid size 269 × 269
and a resolution of 0.07 fm. The DenseNet model is trained
to reproduce a set of final state pT integrated observ-
ables vn, average transverse momentum [pT ], and charged
particle multiplicity dNch/dη for each event. The input en-
ergy density is normalized in such a way that the training
data set has a mean of zero and a standard deviation of
one.

The DenseNet model gives then a full event-by-event
distribution of these observables, and it allows us to build
a set of measurable quantities, such as event-averaged
N-particle flow coefficients vn{N}, normalized symmetric cu-
mulants NSC(m, n), normalized mixed harmonic cumulants
nMHC(n, m), and flow-transverse-momentum correlations
ρ(v2

n, [pT ]). Note that these observables are different mo-
ments of the full P (vn, [pT ], dNch/dη) distribution, e.g.,
two-particle flow coefficient vn{2} is a root-mean-square
event average of vn. It is nontrivial that the network can be
trained to a sufficient accuracy to reproduce these observ-
ables, the correlators in particular. The definitions of all these
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H. HIRVONEN, K. J. ESKOLA, AND H. NIEMI PHYSICAL REVIEW C 108, 034905 (2023)

FIG. 2. The mean absolute and relative errors between the neural network predictions and the results from the hydrodynamic simulations
for the validation events in the 0–80% centrality range.

observables and the details of the EKRT-model and hydrody-
namic computations can be found from Refs. [6,29].

We note that here all the events in a training data set use the
same parameters for hydrodynamic evolution, meaning that,
currently, the trained neural network cannot predict results
from hydrodynamic simulations that use for example different
viscosity parametrizations.

We train a separate neural network for each of the flow
coefficient v2, v3, v4, v5, v6, for the average transverse mo-
mentum [pT ], and multiplicity dNch/dη outputs using in total
of 2 × 104 hydrodynamic events in the training. However, one
network can give multiple outputs (Nout in Table I) of the
same observable with different pT integration ranges. This
is necessary since different measurements use different pT

ranges when measuring the observables.
The training events are distributed evenly (5000 events

each) between 200 GeV Au + Au, 2.76 TeV Pb + Pb, 5.023
TeV Pb + Pb, and 5.44 TeV Xe + Xe collision systems. The
outputs of different neural networks are normalized with a
constant such that the typical value of a given output observ-
able is O(1). This makes possible to set the same learning rate
for different observables without affecting the quality of the
training too much. The exception to this is the charged particle
multiplicity network for which the output is not normalized
because it uses a different loss function than the other net-
works. The training data are heavily augmented by applying
random rotations (rotation angle from 0 to 2π ), flips and
translations (shifts from −0.92 fm to 0.92 fm in both x and
y directions) to the input during the training.

All the network models above are trained using the Adam
optimizer [32] for 120 epochs with a batch size of 64. Using
larger batch sizes made the training phase faster, but at the

same time significantly decreased the accuracy of the net-
works. The learning rate is initially set to 0.001, except in
the case of the charged particle multiplicity where the initial
learning rate is 0.01, and it is divided by a factor of 10 at
epochs 75 and 110. Even though the use of a decaying learning
rate is not completely necessary because of the adaptive nature
of the Adam optimizer, we noticed that adding a learning rate
decay made the training faster without sacrificing accuracy.
Additionally, the batch normalization momentum is set to 0.1.
As a regularization method we tried both the dropout and L2
regularization, but they did not give any improvements for the
validation accuracy or made it worse. This is most likely due
to a heavy data augmentation which in itself acts as an efficient
regularization method.

For all observables except charged particle multiplicity, we
use a mean squared error (MSE) loss function which is defined
as

Loss(MSE) = 1

N

∑
i

(yi,true − yi,pred )2, (1)

where the sum is over all events in the training batch, N is the
number of events in a training batch, and yi,true and yi,pred are
the true and predicted values of an observable, respectively.
For the charged particle multiplicity we use a mean squared
logarithmic error (MSLE) loss function,

Loss(MSLE) = 1

N

∑
i

( ln(yi,true + 1) − ln(yi,pred + 1))2. (2)

The training is done using the Nvidia Tesla V100 GPU,
which has 32 GB of VRAM and 640 tensor cores. The training
time for one network is ca. 80 min. The neural network code
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FIG. 3. The distributions of flow observables from the neural network predictions and hydrodynamic simulations for the validation events
in the 0–5% centrality range.

is written in PYTHON and it is implemented using the Keras
Deep Learning API v2.10.0 [33] together with the Tensor-
flow v2.10.0 library [34]. The pretrained networks and the
code that can be used to generate EbyE flow observables
from EKRT-model initial energy density are available as the
Supplemental Material [35].

III. VALIDATION

After the training, the accuracy of the neural network needs
to be tested with an independent validation data set. Here,
we only focus on results for a 5.023 TeV Pb + Pb collision
system, but the performance of the neural network is similar
for other systems as well. The testing is done by generating
9 × 107 initial energy density profiles and comparing neural
network predictions for different observables against those
obtained from hydrodynamic simulations. We remind that
only 5000 5.023 TeV events were used in the training of the
network.

In Fig. 1, we show a two-dimensional (2D) histogram
comparing the neural network predictions against hydrody-
namic computations event by event for the flow coefficients
vn (n = 2, 3, 4, 5, 6) and average transverse momenta [pT ].
The color bar indicates the number of events in each histogram
bin and the dashed black line indicates where hydrodynamic
computations and neural network predictions match exactly.
Because the observables we are interested in are inside the

0–80% centrality range, we only show events from this
centrality range in the histogram.

For v2 we see an excellent agreement between the neu-
ral network and hydrodynamic results. The accuracy of the
network starts to slowly decrease when moving towards
higher-order flow coefficients and in the cases of v5 and v6 we
already start to see clear deviations from the hydrodynamic
results. This behavior is expected since the lower-order flow
coefficients and initial-state eccentricities have quite linear
dependence and they are not as sensitive to nonlinear effects
arising from hydrodynamic evolution as higher-order flow
coefficients. For the average transverse momentum the neu-
ral network seems to predict the hydrodynamic results very
accurately. However, one needs to note that event-by-event
fluctuations of [pT ] are very small compared to the absolute
value of [pT ]. This means that relatively small errors are
not necessarily a guarantee of that the network can correctly
predict correlations involving [pT ].

To complement the information in Fig. 1 and to give more
quantitative estimates of errors, we show the mean absolute
and the relative errors for different observables in Fig. 2.
Here, we can confirm that the relative error is indeed in-
creasing when increasing the order of the flow coefficients.
The errors are not very sensitive to the value of an ob-
servable but typically the absolute errors are smallest close
to the average value of the observable. We can also notice
that the relative error is the largest when the value of an
observable is small. The small values of flow coefficients
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FIG. 4. The comparison of the flow coefficients vn{2} between the neural network predictions and hydrodynamic computations. The
experimental data are from the ALICE Collaboration [36,37].

usually correspond to the most central or the most peripheral
collisions.

To see where the growing relative errors at the smallest
values of vn start to play a role, we compare distributions
of flow observables between the neural network predic-
tions and hydrodynamic computations in the most central
collisions. The results are shown in Fig. 3, where we

can see that the distributions are nearly identical except
for the flow coefficient v6. In this case the distribution
given by the neural network prediction is narrower than
the one obtained from the hydrodynamic computation while
the location of the peak value is very similar in both
cases. This indicates that the neural network might be able
to reproduce the average values of v6 quite well but it

FIG. 5. The comparison of normalized symmetric cumulants between the neural network predictions and hydrodynamic computations.
The experimental data are from the ALICE Collaboration [38].
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FIG. 6. The comparison of normalized mixed harmonic cumulants between the neural network predictions and hydrodynamic computa-
tions. The experimental data are from the ALICE Collaboration [38].

cannot be guaranteed to reliably predict the correlations
involving v6.

Comparing the neural network and hydrodynamic re-
sults event by event gives information about the accuracy
of the network, but the measurements average over a large
number of events in centrality bins. Consequently, it is cru-
cial to test the performance of the network in these cases
as well. To get a comprehensive view of the network’s
ability we check its performance for two-particle flow coef-
ficients vn{2}, normalized symmetric cumulants NSC(m, n),
normalized mixed harmonic cumulants nMHC(n, m), and
flow-transverse-momentum correlations ρ(v2

n, [pT ]).
The flow coefficients vn{2} are shown in Fig. 4 as a function

of centrality. We can see that the neural network results seem
to match the hydrodynamic results nearly exactly. This is
true even in the cases of v5 and v6 where the event-by-event
accuracy of networks was not as good.

Much more challenging quantities to predict are the dif-
ferent correlations between the flow coefficients. In Fig. 5 we
show the centrality dependence of the normalized symmetric
cumulants NSC(m, n). The statistical errors are estimated via
jackknife resampling as in Ref. [29]. The normalized sym-
metric cumulants are four-particle correlations between two
flow harmonics and thus are more sensitive to event-by-event
fluctuations than the flow coefficients vn{2}. This makes it
more challenging to predict them using the neural network.
Nevertheless, in the case of NSC(4, 2) we get an almost exact
agreement between the neural network and the hydrodynamic
results. For NSC(3, 2) and NSC(4, 3) there are some visible
differences between the two, but deviations are still quite
small compared to the statistical errors.

The normalized mixed harmonic cumulants nMHC(n, m),
which are six- or eight-particle correlations, are shown in

Fig. 6. The agreement between the neural network predictions
and the hydrodynamic computation is again good, even in the
cases where the correlation is very weak. Finally, in Fig. 7, we
show the flow-transverse-momentum correlations ρ(v2

n, [pT ])
as a function of the number of participant nucleons. In this
observable the biggest challenge for the neural network is not
the accuracy of the flow coefficients as one might naively
expect, but instead the accuracy of the mean transverse mo-
mentum. This is due to the fact that the correlation is very
sensitive to the mean transverse momentum fluctuations and,
as discussed earlier, catching these fluctuations requires a very
good precision from the neural network. Nevertheless, as can
be seen from Fig. 7, the neural network predictions agree well
with the hydrodynamic results.

IV. HIGH-STATISTICS PREDICTIONS

Now that the accuracy of the neural network has been es-
tablished, we can use it to estimate what happens to the above
correlations at a high-statistics limit. To do so we generate
107 events using the neural network, which takes around 20 h
with the GPU. This is a very substantial difference compared
to doing full hydrodynamic simulations using CPU, which
would take about 5 × 106 CPU hours.

The effect of increased statistics for the normalized sym-
metric cumulants can be seen in Fig. 8. In the case of
NSC(4, 2) we see slight deviations in the most central and
peripheral collisions, but the centrality dependence is very
similar to the lower statistics hydrodynamic results. This
is not surprising since the statistical errors are already rel-
atively small with 9 × 104 events. The situation is quite
different for NSC(3, 2) where the statistical errors are of
considerable size with 9 × 104 events. Here, we see that
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FIG. 7. The comparison of flow-transverse-momentum correlations between the neural network predictions and hydrodynamic computa-
tions. The experimental data are from the ATLAS Collaboration [39].

with 107 events the statistical fluctuations are negligible,
revealing the true centrality dependence from the model,
and it now gives a very similar shape as the ALICE mea-
surements, even though the neural network prediction (i.e.,
the underlying hydrodynamic simulation with which the
network was trained) underestimates the amount of anticor-
relation. For NSC(4, 3) we also see some deviations from
the lower-statistics hydrodynamic result in the most central
and peripheral collisions. We note that in the most central
collisions we see a somewhat similar difference between the
neural network and the hydrodynamic result also in the vali-
dation data set, which might indicate that this difference can
be a systematic error caused by the inaccuracy of the neural
network.

In principle, the normalized mixed harmonic cumu-
lants in Fig. 9 should be even more sensitive to
the increased event number, since correlations are usu-
ally weaker than in the case of the normalized sym-
metric cumulants. For nMHC(v2

2, v
4
3 ) the neural net-

work prediction with 107 events is inside the statistical
errors of the hydrodynamic results, but in the central collisions
the increased number of events reveals a very different kind
of centrality dependence which seems to agree well with the
ALICE measurements. In the cases of nMHC(v4

2, v
2
3 ) and

nMHC(v6
2, v

2
3 ) we see statistically significant differences be-

tween the hydrodynamic results and 107 event predictions,
which signals that the jackknife resampling can some-
times significantly underestimate the statistical errors. For
nMHC(v2

2, v
6
3 ) we see that increasing the number of events

from 9 × 104 to 107 removes the sharp changes between the
correlation and anticorrelation and the high statistic result is
nearly zero except in the most peripheral collisions. This is
again in line with the ALICE measurements.

The flow-transverse-momentum correlations for the 107

neural network prediction are shown in Fig. 10. The increased
statistics makes it now possible to use exactly the same cen-
trality bins as the ATLAS measurements without completely
ruining the accuracy. For ρ(v2

2, [pT ]) the 107 event result dif-
fers substantially from the 9 × 104 event hydrodynamic result
only in the most central collisions. This effect is mostly a
combination of different centrality binning and the fact that
correlation decreases very quickly when moving from 375 to
400 participants. The effect of statistics can be better seen in
the case of ρ(v2

3, [pT ]), where in the central collisions the 107

event result has different dependence on participant number
than the 9 × 104 event hydrodynamic result. In this region
the 107 event neural network result also agrees better with the
ALICE measurements.

FIG. 8. The neural network prediction of normalized symmetric cumulants with 107 collision events compared with the hydrodynamic
results from 9 × 104 collision events. The experimental data are from the ALICE Collaboration [38].
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FIG. 9. The neural network prediction of normalized mixed harmonic cumulants with 107 collision events compared with the hydrody-
namic results from 9 × 104 collision events. The experimental data are from the ALICE Collaboration [38].

V. CONCLUSIONS AND SUMMARY

We have trained a deep convolutional neural network to
predict a variety of flow observables from the initial state
energy density profiles. The training was done using 2 × 104

training events from 200 GeV Au + Au, 2.76 TeV Pb + Pb,
5.023 TeV Pb + Pb, and 5.44 TeV Xe + Xe collision systems,
with 5000 events for each collision system. The training data
were computed using viscous relativistic hydrodynamics with
initial conditions from the EKRT model, and using the model
and viscosity parameters from Ref. [29].

The accuracy of the network was tested against the
results from hydrodynamic simulations for two-particle
flow coefficients vn{2}, normalized symmetric cumulants
NSC(m, n), normalized mixed harmonic cumulants nMHC,
and flow-transverse-momentum correlations ρ(v2

n, [pT ]). We

emphasize that this is a nontrivial test for the accuracy of
the network, especially with the correlators. The validation
tests used in total of 9 × 104 events for each collision system,
independent of the training data, and in all of the cases the
neural network was able to predict hydrodynamic results quite
reliably. This is already a significant improvement in terms
of computational time, as only 5000 events were used per
collision system to train the network.

The neural network was then used to predict the same
flow observables but this time with 107 generated events. This
took around 20 GPU hours of computing time which is many
orders of magnitude faster than doing the same number of
hydrodynamic simulations using CPU. The increased number
of events made statistical errors negligibly small and allowed
us to estimate the observables with a higher precision. In many

FIG. 10. The neural network prediction of flow-transverse-momentum correlations with 107 collision events compared with the hydrody-
namic results from 9 × 104 collision events. The experimental data are from the ATLAS Collaboration [39].
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cases the 107 event neural network prediction differed from
the 9 × 104 event hydrodynamic computations by a quite large
margin emphasizing the importance of a large event statistics
when comparing simulations with the measurements.

As there are still considerable uncertainties in determining
QCD matter properties from the experimental data, it is im-
portant to be able to use as many measurements as possible
to constrain the properties. In particular, the current measure-
ments at the LHC give a wealth of different flow correlations
with tight error bars that provide independent information
about the matter properties. Many of the measured correlators
are rather weak, and can require millions of computed hydro-
dynamic events in order to get similar statistical errors as in
the experiments. To use these quantities as a constraint to the
QCD properties, it is then necessary to have a computationally
efficient way to generate such a large set of events, and this is
exactly what the neural network presented here can do.

Currently the neural network can predict flow observables
for different initial energy density profiles, but the predictions

always describe a hydrodynamic evolution that is identical to
the one used in the training data set, i.e., it is not possible
to change the viscosity parametrization after the network has
been trained. The network should next be constructed to be
more versatile and take viscosity parameters as additional
inputs, making the neural network an even more efficient tool
in global analysis. This is left as future work.
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Abstract. We demonstrate how deep convolutional neural networks can be
trained to predict 2+1 D hydrodynamic simulation results for flow coefficients,
mean-pT and charged particle multiplicity from the initial energy density pro-
file. We show that this method provides results that are accurate enough, so that
one can use neural networks to reliably estimate multi-particle flow correlators.
Additionally, we train networks that can take any model parameter as an ad-
ditional input and demonstrate with a few examples that the accuracy remains
good. The usage of neural networks can reduce the computation time needed
in performing Bayesian analyses with multi-particle flow correlators by many
orders of magnitude.

1 Introduction

Neural networks have proven to be an effective tool for a variety of applications in heavy-
ion physics. These range from performing pre-processing or selection of large data flows in
experiments to emulating computationally expensive simulations [1–4]. The rising popularity
of neural networks is driven by their accuracy and fast inference speed when dealing with
complex multi-dimensional data. These aspects can be crucial when performing real-time
data selection or heavy numerical simulations that need to be repeated a large number of
times.

The reduced computation time is especially needed when trying to extract the matter prop-
erties of the quark-gluon plasma (QGP) from the experimental data through hydrodynamic
simulations using a Bayesian analysis. This is due to the fact that one Bayesian analysis will
need ∼ 106−109 simulated collision events depending on which measured observables one in-
cludes in the analysis. Performing this many hydrodynamic simulations will take ∼ 105−108

CPU hours, which makes the inclusion of some multi-particle correlations impractical, even
though they could provide additional information to constrain the QCD matter properties.

In principle, all the final state information in hydrodynamic simulation is encoded into the
initial state and the matter properties of QGP. However, extracting the final state information
directly from the initial state is a highly nontrivial task since relativistic hydrodynamics is a
nonlinear theory. The convolutional networks are particularly good at detecting patterns in
structured 2-dimensional data, like images, which is why they are excellent tools when trying
to estimate the final state observables from an initial state event by event.
∗Speaker, e-mail: hevivahi@jyu.fi
∗∗e-mail: kari.eskola@jyu.fi
∗∗∗e-mail: harri.m.niemi@jyu.fi
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DenseNet
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2x Fully Connected Layer

Concatenate +
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Figure 1. Schematic presentation of neural network structure with multiple inputs.

2 Neural network

The convolutional neural networks, one for each observable, are trained to produce pT -
integrated flow coefficients vn, mean transverse momentum [pT ] and charged particle mul-
tiplicities dNch/dη. This was originally done in Ref. [4], from where one can find a detailed
description of the setup. Here we just go through the main points.

As the training data, we used 20 k EKRT (Eskola-Kajantie-Ruuskanen-Tuominen) model
[5–8] initial energy density profiles in the transverse plane and the corresponding final state
observables in these events at midrapidity. The final state observables are obtained from
the 2+1 D hydrodynamic simulations done in Ref. [9]. The training events are distributed
evenly between four different collision systems: 200 GeV Au+Au, 2.76 TeV Pb+Pb, 5.023
TeV Pb+Pb, and 5.44 TeV Xe+Xe. Even though we use one specific setup of an initial
state model combined with a hydrodynamics code to produce the training data, the methods
introduced here are expected to be applicable also with training data obtained from any other
setup of a similar type.

The neural network architecture is the DenseNet architecture [10] with slight modifica-
tions that will make it suitable for regression tasks. For a more complete description of the
architecture, see Ref. [4]. It took ∼ 1 hour to train a network that can produce one observable.
With a set of trained networks, one can generate 1 M events in ∼ 20 hours.

2.1 Model parameters as an input

A neural network that can predict a final state observable from an initial state is already a
lot faster than doing full hydrodynamic simulations, but it has a drawback: every time one
wants to change QCD matter properties or model parameters that affect time evolution of
the system, one would need to generate a new set of training data and retrain the networks.
This issue can be solved by adding all the parameters of interest as additional input to the
neural networks. Here we refer to this type of network with additional input parameters as
NNp. The architecture of NNp is demonstrated in Fig. 1. The energy density input is treated
the same way as without additional inputs and all the additional inputs are put through two
fully connected layers and then combined with the output of the DenseNet layer structure.
After this, we have included two fully connected layers from which we then obtain the final
output. The training of NNp was done using in total of 160 k training events distributed evenly
between 4 collision systems and 2 k parameter points sampled from a Latin hypercube. This
makes only 80 events of training data for one parameter point, which is 250 times more
efficient than the training in the previous case.
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Figure 2. Validation test of the neural networks for NS C(m, n) with 90 k validation events. The
experimental data are from the ALICE Collaboration [11]. Figure from Ref. [4].
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Figure 3. Neural network prediction for NS C(m, n) with 10 M events. The experimental data are from
the ALICE Collaboration [11]. Figure from Ref. [4].

3 Results and conclusions

To test the accuracy of the neural networks that were trained with one set of model parame-
ters, we generated 90 k independent EKRT initial energy density profiles and compared the
results of hydrodynamic simulations against the neural network predictions. In Fig. 2 we
show a comparison of these two for normalized symmetric cumulants NS C(m, n) as a func-
tion of centrality. We can see that the neural network can reproduce the cumulants well, even
though the size of the training data for one collision system was only 5 k events. In Fig. 3,
we demonstrate how one can then generate 10 M events with the neural networks to see how
these cumulants would look when statistical errors became insignificant. Here we can see
quite noticeable deviations from the result that used 90 k events, especially for NS C(2, 3),
for which the centrality dependence clearly changes, matching the shape of the ALICE mea-
surements better. This illustrates the importance of the number of events used when trying to
constrain the QCD matter properties with multi-particle flow correlations.

In the case of NNp networks, we are mostly interested in the network accuracy for gen-
erating new events with the same parameter values as in the training data. This is because
the most efficient way to do Bayesian analysis is to first generate a high number of events
using neural networks in a set of parameter points, compute all of the observables in these
parameter points, and then train Gaussian process emulators for these observables. Here the
accuracy of NNp networks was tested by taking two sets of model parameter points from the
training data which correspond to drastically different values of viscosities, and then generat-
ing 20 k new independent initial state profiles for both points and doing a similar validation
comparison between NNp and hydrodynamic simulations as before. The results are shown in
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Figure 4. Validation tests of NNp networks for NS C(m, n) with 20 k validation events in each case.
The upper (lower) panels show result with high (low) values of specific viscosities. The experimental
data are from the ALICE Collaboration [11].

Fig. 4, from where one can see that NNp can still very accurately reproduce the results from
hydrodynamic simulations. The only exception is the peripheral region of NS C(3, 4) in the
extremely high viscosity case, where the numerical errors of hydrodynamical simulations of
themselves might be very significant.

The goal of introducing neural networks in this work was to replace the slow hydrody-
namic simulations and make it possible to add multi-particle flow correlators to Bayesian
analysis. We have demonstrated that this is indeed possible and has the potential to cut the
computational time needed for these analyses by many orders of magnitude.
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MC-EKRT: Monte Carlo event generator with saturated minijet production for
initializing 3+1 D fluid dynamics in high energy nuclear collisions
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We present a novel Monte-Carlo implementation of the EKRT model, MC-EKRT, for computing
partonic initial states in high-energy nuclear collisions. Our new MC-EKRT event generator is based
on collinearly factorized, dynamically fluctuating pQCD minijet production, supplemented with a
saturation conjecture that controls the low-pT particle production. Previously, the EKRT model has
been very successful in describing low-pT observables at mid-rapidity in heavy-ion collisions at the
LHC and RHIC energies. As novel features, our new MC implementation gives a full 3-dimensional
initial state event-by-event, includes dynamical minijet-multiplicity fluctuations in the saturation
and particle production, introduces a new type of spatially dependent nuclear parton distribution
functions, and accounts for the conservation of energy/momentum and valence-quark number. In
this proof-of-principle study, we average a large set of event-by-event MC-EKRT initial conditions
and compute the rapidity and centrality dependence of the charged hadron multiplicities and elliptic
flow for the LHC Pb+Pb and RHIC Au+Au collisions using 3+1 D viscous fluid-dynamical evolution.
Also event-by-event fluctuations and decorrelations of initial eccentricities are studied. The good
agreement with the rapidity-dependent data suggests that the same saturation mechanism that has
been very successful in explaining the mid-rapidity observables, works well also at larger rapidities.

I. INTRODUCTION

The theory of the strong interaction, Quantum Chro-
modynamics (QCD), predicts that at very high energy
densities, at temperatures T >∼ 150 − 160 MeV and at a
vanishing baryochemical potential, strongly interacting
matter is in the form of a quark-gluon plasma (QGP) [1–
4]. Such extreme conditions can be momentarily created
and the properties of the QGP experimentally studied
in laboratory by colliding heavy ions at ultrarelativis-
tic energies at the CERN Large Hadron Collider (LHC)
and the Brookhaven National Laboratory (BNL) Rela-
tivistic Heavy Ion Collider (RHIC). In these collisions,
the "heating" of the matter necessary for the QGP for-
mation is obtained from the kinetic energy of the collid-
ing nuclei, through copious primary production of QCD
quanta, quarks and gluons [5].

The QCD system formed in ultrarelativistic heavy-ion
collisions is expected to experience various spacetime evo-
lution stages: initial formation of a nearly-thermalized
QGP, expansion and cooling of the QGP, transition of
the QGP into a hadron resonance gas (HRG), expan-
sion and cooling of the HRG, and finally decoupling of
the HRG into non-interacting hadrons, out of which the
resonances still decay before they can be detected. The
dynamical expansion stages of QCD matter can be de-
scribed with relativistic dissipative fluid dynamics [6–21]
which nowadays is a cornerstone in the event-by-event
analysis of heavy-ion observables.

The heavy-ion programs at the LHC and RHIC aim
especially at the determination of the QCD matter prop-
erties, such as the temperature dependencies of the spe-
cific shear and bulk viscosities and other transport coeffi-
cients, from the experimental data. In practice, this can
be achieved only by performing a fluid-dynamics based
"global analysis", a simultaneous study of various dif-

ferent (low-transverse-momentum) observables from as
many types of collision systems as possible. These anal-
yses have evolved from pioneering works [12, 14, 17] (see
also [22]) to those with a proper Bayesian statistical anal-
ysis and well defined uncertainty estimates [21, 23–31].
So far, the analyses have mainly focused on studies at
mid-rapidity, where one assumes a longitudinally boost
symmetric (but 3-dimensionally expanding) system de-
scribed by the 2+1 D fluid dynamical equations of mo-
tion. The studies of rapidity-dependent observables re-
quires a full 3+1 D implementation of viscous fluid dy-
namics [9–11, 32–38]. Recently, global analyses have been
also extended into this direction [39–41]. Moreover, neu-
ral networks have been developed for studying rare ob-
servables [42, 43].

In such global analyses, the results obtained for the
QCD matter properties are strongly correlated with the
the assumed fluid-dynamical initial conditions. Then,
if the initial states are obtained from an ad hoc
parametrization that is blind to QCD dynamics – as
is typically the case, see e.g. [21, 24–27, 29–31] – it
is not at all clear whether the initial densities such as
the ones extracted from the global analysis could ac-
tually be realized in the studied nuclear collisions. It
is therefore of paramount importance to try to study
and model the QCD collision dynamics responsible for
the QCD matter initial conditions. Works into this di-
rection include the developments of the IP-Sat+MUSIC
(Impact parameter dependent saturation + MUScl for
Ion Collisions) model [10, 14, 44], the EKRT (Eskola-
Kajantie-Ruuskanen-Tuominen) model [17, 45–47], the
EPOS (Energy conservation + Parallel scattering + fac-
tOrization + Saturation) model [48–53], the AMPT (A
Multi-Phase Transport) model [38, 54], and the Dynami-
cal Core-Corona Initialization model [55, 56] with initial
state generated by Pythia Angantyr [57], as well as initial
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state models such as in Refs. [58, 59].
In this work, we adopt, and significantly further de-

velop, the pQCD and saturation -based EKRT model for
computing event-by-event initial conditions of the QCD
matter produced in nucleus-nucleus collisions at the LHC
and at the highest RHIC energies. The leading idea in
the EKRT model [17, 45–47] is that at sufficiently high
collision energies the nucleus-nucleus collisions can be de-
scribed as collisions of parton clouds rather than a col-
lection of Glauber-model like nucleon-nucleon collisions.
Then, gluons and quarks that are produced with trans-
verse momenta (pT ) of the order of a few GeV, minijets,
become so copiously produced [60, 61] that their pro-
duction processes start to overlap in the transverse coor-
dinate space [62], which dynamically generates a satura-
tion scale (psat) that suppresses softer particle production
[47].

The original versions of the EKRT model [45, 46],
combined with longitudinally boost invariant 1+1 D
ideal fluid dynamics, predicted successfully the LHC and
RHIC hadron multiplicities and pT distributions at mid-
rapidity in central collisions [45, 63], and, with 2+1 D
fluid dynamics, also the centrality dependence of these
and of the elliptic flow coefficients (v2) of the azimuth-
angle asymmetries [64, 65]. Based on a well-defined
(collinear- and infrared-safe) pQCD calculation of mini-
jet transverse energy production [47, 66, 67], the model
was extended to next-to-leading order (NLO) in Ref. [47].
Combined then with shear-viscous fluid dynamics, the
NLO-improved EKRT model described well the central-
ity dependent hadron multiplicities, pT distributions and
v2 at mid-rapidity both at RHIC and LHC, systemati-
cally indicating a relatively low value for the QCD matter
shear-viscosity-to-entropy (η/s) ratio [47].

An event-by-event version of the EKRT model (EbyE-
EKRT) was developed in Ref. [17]. The pioneering global
analysis of a multitude of LHC and RHIC bulk (low-
pT ) observables presented in Ref. [17] demonstrated a
very good overall agreement with the measurements,
and resulted in improved constraints for the tempera-
ture dependence of η/s. Very interestingly (but not un-
expectedly), also the Bayesian global analysis of LHC
bulk observables of Ref. [26], which used QCD-blind
parametrized initial states, confirmed that the initial den-
sity profiles predicted by the EbyE-EKRT [17] and the
IP-Sat models [44] gave the best match with those ob-
tained from the Bayesian inference.

The first attempt to perform a Bayesian global analy-
sis of LHC and RHIC bulk observables using directly the
EKRT initial states as input for the fluid-dynamics, for
studying the effects of the EoS and for obtaining statis-
tically controlled uncertainty estimates on the tempera-
ture dependence of η/s, can be found in Ref. [28]. The
latest developments in the EKRT-initiated 2+1 D fluid-
dynamics framework are a dynamically determined de-
coupling, which improves the description of peripheral
collisions, and the inclusion of bulk viscosity. These de-
velopments are presented in Ref. [22] together with a

demonstration of a very good simultaneous global fit to
bulk observables from various collision systems at the
LHC and RHIC, and the corresponding extracted specific
shear and bulk viscosities of QCD matter. Finally, the
first study of how deep convolutional neural networks can
be trained to predict hydrodynamical bulk observables
from the EbyE-EKRT-generated energy density profiles,
and how they can significantly speed up the statistics-
expensive EbyE analysis of rare flow correlators espe-
cially, can be found in Ref. [42].

The predictive power of the EbyE-EKRT model orig-
inates from the underlying collinearly factorized NLO
pQCD calculation. The model has been remarkably suc-
cessful, especially in genuinely predicting bulk observ-
ables at mid-rapidity also for higher LHC energies, 5.02
TeV Pb+Pb collisions [68], as well as for collisions of de-
formed nuclei, 5.44 TeV Xe+Xe collisions at [69] – see
the data comparisons e.g. Refs. [22, 70]. However, there
still is a number of shortcomings with the EKRT-model
that need to be addressed.

First, for addressing also rapidity-dependent observ-
ables, the EbyE-EKRT initial state model should be ex-
tended to off-central rapidities and then coupled to 3+1
D viscous fluid dynamics.

Second, the average number of (or the average ET

from) the parton-parton collisions is thus far in the
EKRT saturation model computed as a product of a nu-
clear overlap function and (pT weighted) collinearly fac-
torized integrated minijet cross section. This assumes
essentially independent partonic collisions, and as dis-
cussed in Ref. [62], especially towards larger rapidities at
the LHC one easily violates the conservation of energy
and baryon number. This problem clearly needs to be
addressed together with the rapidity dependence.

Third, thus far in the EbyE-EKRT [17], the local fluc-
tuations of the saturation scale, and thus of the computed
energy densities, in the transverse coordinate plane are
only of a geometrical origin, i.e. they follow only from the
sampled fluctuating positions of the nucleons inside the
colliding nuclei. Dynamical, local EbyE fluctuations in
the minijet multiplicity, inducing then further local EbyE
fluctuations to the saturation scale and hence to the en-
ergy densities, should clearly be accounted for. Only by
including these fluctuations can the EKRT model be rele-
vantly applied to the studies of smaller collision systems,
i.e. proton-nucleus and perhaps even proton-proton col-
lisions.

Fourth, in an EbyE analysis the factorized minijet
cross sections must be computed using nuclear parton
distribution functions (nPDFs) that depend on the trans-
verse position (s̄) in each of the colliding nuclei. The spa-
tial dependence can be modeled in terms of a power series
of the nuclear thickness function, TA(s̄), as was done e.g.
in EPS09s nPDFs [71] that are used in EbyE-EKRT. The
EbyE fluctuating TA’s, however, often reach so large val-
ues (up to more than 3 times the largest average TA(0))
that the TA-applicability range of EPS09s is significantly
exceeded. In EbyE-EKRT this problem was solved by an
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ad-hoc extrapolation of the saturation scale towards the
larger values of TA. Clearly, this problem is not EKRT-
specific but should be addressed for the benefit of any
factorized EbyE study of centrality dependence of hard
processes, where spatial dependence of nPDFs is needed.

In this paper, we address these shortcomings and the
arising uncertainties in solving them, for the first time in
the EKRT-model framework. In particular, we introduce
a completely new Monte Carlo EKRT event-generator,
which we name MC-EKRT [72], for computing EbyE
fluctuating initial states for fluid dynamics in nuclear
collisions. We couple the MC-EKRT minijets to 3+1 D
shear-viscous fluid dynamics [73], and discuss the vari-
ous uncertainties in doing this. In this proof-of-principle
paper we do not, however, aim at a full EbyE global
analysis, yet, but instead study the model systematics by
computing averaged initial conditions for each centrality
class by summing over a large set of event-by-event MC-
EKRT initial states. Running then 3+1 D shear-viscous
fluid dynamics with these, we can meaningfully compare
the MC-EKRT results against the measured pseudora-
pidity distributions of charged hadrons in different cen-
trality classes, and also elliptic flow coefficients in semi-
central collisions in Pb+Pb collisions at the LHC and
Au+Au collisions at RHIC. We also study the decorrela-
tion of eccentricities in spacetime rapidity, which was to
our knowledge discussed first in [36, 54].

The paper is organized as follows: In Sec. II we define
the MC-EKRT model framework and discuss how the
previous shortcomings are solved. Section III discusses
our fluid-dynamics setup, and how the 3+1 D fluid dy-
namics is initialized with the computed MC-EKRT mini-
jet states. Comparisons against LHC and RHIC data,
and the results for the decorrelation of eccentricities, are
shown in Sec. IV. Finally, conclusions and outlook are
given in Sec. V.

II. MONTE CARLO EKRT MODEL SETUP

Let us first see how the geometric saturation criterion
that we will employ in the MC-EKRT set-up below, arises
using collinearly factorized lowest-order pQCD 2 → 2
gluonic processes as the basis and imagining the colliding
nuclei as parton (gluon) clouds [45, 74]. In an inelastic
nucleus-nucleus collision at an impact parameter b̄AA, the
average transverse density of the number of gluon-gluon
collisions that are producing minijets with pT above a
cut-off p0 and at rapidities y1,2, is

dN2→2
AA (b̄AA)

d2s̄
= TA(s̄1)TA(s̄2)

1

2

∫

p0

dp2T dy1dy2

× x1g(x1, Q
2)x2g(x2, Q

2)× dσ̂

dt̂

2→2

(1)

where TA(s̄) is the standard nuclear thickness function
obtained as an integral of the nuclear density over the lon-
gitudinal coordinate, s̄1,2 = s̄± b̄AA/2 are the transverse

coordinates, g(x,Q2) are the gluon PDFs, x1,2 ∼ pT /
√
s

are the longitudinal momentum fractions of the colliding
gluons and Q ∼ pT is the factorization/renormalization
scale, t̂ is a Mandelstam variable for the partonic scat-
tering and dσ̂2→2/dt̂ ∼ α2

s/p
4
T is the 2 → 2 LO pQCD

gluonic cross section.
On dimensional grounds, and ignoring the rapidity de-

pendence, we may write for a symmetric system in central
collisions [17]

dN2→2
AA (0)

d2s̄
∼ (TAxg)× (TAxg)×

(
α2
s

p20

)
, (2)

where x ∼ p0/
√
s. Correspondingly, for 3 → 2 processes,

which can be expected to become important at small x,
where the initial gluon densities become large, we would
on dimensional grounds write, assuming here the double-
PDFs from the nucleus 1 (and similarly for the other
nucleus),

dN3→2
AA (0)

d2s
∼ (TAxg)

2 × TAxg ×
αs

p20

(
α2
s

p20

)
, (3)

where we have accounted for the extra power of αs in
the numerator, and for the p20 in the denominator can-
celing the dimension of the extra TA there in the double-
PDF. Saturation effects are expected to become dom-
inant, and softer parton production suppressed, when
dN3→2

AA ∼ dN2→2
AA , i.e. when

TAxg ∼ p20
αs
. (4)

Substituting this back to Eq. (2), and integrating over
an effective nuclear transverse area πR2

A (RA being the
nuclear radius), gives the geometrical EKRT scaling law,
introduced in Ref. [45]

N2→2
AA (0)

π

p20
∼ πR2

A, (5)

where π/p20 can be interpreted as a transverse formation-
area for a produced dijet [45, 62]. Thus, the minijet pro-
duction saturates when the minijet production processes
fill the available transverse area in the nuclear collision.

In the MC-EKRT set-up introduced below, we will take
the above geometric interpretation of saturation as our
starting point, when deciding on an event-by-event and
on a parton-by-parton basis, whether the produced mini-
jet system becomes locally saturated. With the above
discussion, we would also like to emphasize that satura-
tion in the EKRT model is not fusion of produced final-
state gluons, but saturation of the minijet production
processes themselves.

Our MC-EKRT simulation of a nucleus-nucleus (A+B)
collision proceeds through the following steps, each of
which will be discussed in more detail in this and the
following sections.
1. Sample the positions of the nucleons in a ∈ A and
b ∈ B from the Woods-Saxon distribution, keeping track
of the proton/neutron identity of each nucleon (Sec. II A).
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2. Sample the impact parameter for the A+B collision
similarly as in the MC Glauber model (Sec. II B), and
check whether the chosen trigger condition for the A+B
collision is fulfilled. If it is not, start again from item 1
(Sec. II C).
3. If the A+B collision is triggered, find all the binary
ab pairs of nucleons, a ∈ A and b ∈ B. Then go through
the generated list of the ab pairs and regard each ab pair
as a possible independent source of multiple minijet pro-
duction. Sample the number of produced minijet pairs,
dijets, for each ab pair from a Poissonian probability dis-
tribution (Sec. II D 1).
4. For each produced dijet, sample the parton fla-
vors and momenta from collinearly factorized LO pQCD
cross sections (Sec. II D 2), using nuclear PDFs that de-
pend on the transverse positions of a ∈ A and b ∈ B
(Sec. II D 3). For quark-initiated processes, decide (sam-
pling the LO pQCD cross sections) whether the collid-
ing quarks are valence quarks or sea quarks (Sec. II D 2).
Sample also the transverse production point for each dijet
from a Gaussian overlap function for each nucleon pair
ab (Sec. II D 1).
5. Consider all the generated dijets as candidates for the
final minijet-state of this A+B event. For filtering away
the excess (unphysical) dijets, order the dijet candidates
according to the transverse momentum pT of the minijets
forming the dijet (Sec. II E).
6. Filter the excess dijets in the order of decreasing pT ,
by imposing a local geometric EKRT saturation crite-
rion (cf. Eq. (5)). If a dijet gets filtered, both final-state
partons are removed (Sec. II E).
7. Filter the surviving dijets further by imposing con-
servation of energy and valence quark number for each
nucleon, doing the filtering again in the order of decreas-
ing pT . Optionally, this filtering step can be ignored, or
chosen to be done simultaneously with the dijet filtering
in step 6 (Sec. II E).
8. Collect the MC-EKRT minijet output data for the
surviving dijets: the pT vector, the rapidity, and the
flavour of each minijet, along with the transverse location
of each dijet’s formation point, to be used in Sec. III B.
Order the A+B events according to the total minijet ET

(a scalar sum of minijet pT ’s) for the centrality selection
(Sec. II F).

A separate interface is then developed to initialize fluid
dynamics, with the following steps:
9. Propagate the surviving minijets as free particles to
the proper time surface τ0 = 1/p0, assuming that minijets
with momentum rapidity y move along the corresponding
spacetime rapidity ηs = y. The parameter p0 here is the
smallest partonic pT allowed in the pQCD cross sections
for the dijet candidates (Sec. III B 1).
10. Feed the minijets into 3+1 D fluid dynamics as initial
conditions at τ0: At each ηs and transverse-coordinate
grid cell, using a Gaussian smearing, convert the mini-
jet transverse energy ET into a local energy density
(Sec. III B 2).
11. Run 3+1 D viscous fluid dynamics with these mini-

jet initial conditions, in principle event by event. Note,
however, that in the present exploratory study we are
testing the model setup using averaged initial states for
each centrality class (Sec. III B 3). We do not couple the
fluid dynamics with a hadron cascade afterburner but run
fluid dynamics until the freeze-out of the system. Reso-
nance decays are accounted for, as usual (Sec. III A).
12. Form the observables for which statistics is collected
(Sec. IV).

Next, we look at the above steps in more detail, and
also specify the few parameters that the MC-EKRT mini-
jet event generator has.

A. Nucleon configurations of A and B

First, we construct the nucleon structure of the col-
liding nuclei. Here, we essentially follow the procedure
nowadays standard in the Monte Carlo Glauber approach
[75]. The distributions of the positions of the nucleons
are taken to follow the nuclear charge densities extracted
from low energy electron scattering experiments [76, 77].
The lead nucleus, Pb208 (used at the LHC) is assumed
perfectly spherical, and as the gold nucleus Au197 (used
at RHIC) is also nearly spherical, the current version of
the MC-EKRT assumes spherically symmetric nuclei A
and B. Thus, the azimuthal angle ϕ ∈ [0, 2π] and the
cosine of the polar angle cos θ ∈ [−1, 1] are sampled from
a uniform distribution, while the radial coordinate r is
sampled from the two-parameter Fermi (2pF) distribu-
tion, the Woods-Saxon distribution [78],

ρWS(r) =
ρ0

1 + exp
(
r−RA

d

) , (6)

where RA is the nuclear radius and d is the diffusion pa-
rameter. For the lead and gold nuclei we study here,
(RA, d) = (6.624, 0.550) fm and (6.380, 0.535) fm, corre-
spondingly [76]. The normalization constant ρ0 is fixed
by requiring the volume integral of ρWS(r) to give A,
but in the simulation here ρ0 has no effect. The nuclei
which have nucleons with positions closer to each other
than dmin = 0.4 fm, are discarded and sampled again.
The introduction of an exclusion radius dmin is known to
slightly deform the radial density profile [75, 79], but we
neglect this small effect here.

B. Impact parameter sampling

Next, the squared impact parameter, b̄2AB , for the
A+B collision is sampled from a uniform distribution.
As long as the colliding nuclei are spherically symmet-
ric on the average, we do not need to randomly rotate
the nuclei. We can fix the impact parameter vector, as a
vector in the transverse (x, y) plane, to be on the x-axis,
pointing from the nucleus A to the nucleus B – see Fig. 1.

Once the positions of the nucleons in each nucleus
– {s̄a} in A and {s̄b} in B – have been determined,
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A BO− b̄AB

2
b̄AB

2

s̄a
a

s̄b b

b̄abs̄
s̄1 s̄2

FIG. 1: Projection of the A+B collision system into the trans-
verse plane. The impact parameter vector b̄AB , extending
from the center-of-mass of the nucleus A to the center-of-mass
of the nucleus B, is along the x-axis (axes are not shown),
with the origin O in the middle. The location vectors of the
nucleons a ∈ A and b ∈ B are s̄a and s̄b, respectively. The
impact parameter between the nucleons a and b is b̄ab.

the center of the mass of the projectile nucleus A is
shifted to (−bAB/2, 0) and that of the target nucleus B to
(bAB/2, 0), thus fixing the origin O of the collision frame.
Finally, ZA (ZB) of the nucleons in A (B) are randomly
labeled as protons and the rest as neutrons, i.e. we ne-
glect possible effects arising from the differences of pro-
ton and neutron density distributions (such as a neutron
skin), in this study.

C. Trigger condition for the A+B collision

Next, our simulation checks whether an inelastic col-
lision between the generated nucleon configurations A
and B takes place. We devise the trigger condition for
the A+B collision as follows: Assuming a hard-sphere
scattering of two nucleons, a ∈ A and b ∈ B, with a
cross section σab

trig(sNN ) at a nucleon-nucleon center-of-
momentum system (CMS) energy

√
sNN , an A+B col-

lision takes place if for at least one of the ab pairs the
squared transverse distance between a and b does not ex-
ceed σab

trig(sNN )/π. In terms of the transverse-coordinate
vectors introduced in Fig. 1, with nucleons a ∈ A and
b ∈ B, their transverse positions at s̄a and s̄b, and impact
parameters b̄ab, the triggering condition for the A+B col-
lision is fulfilled if at least for one ab pair

|b̄ab| = |s̄b − s̄a| ≤
√
σab

trig(sNN )/π. (7)

If the above condition is not met, new nucleon configura-
tions A and B, and a new impact parameter b2AB are gen-
erated. For the triggering cross section σab

trig(sNN ) we use
the inelastic nucleon-nucleon cross section σNN

inel (sNN ),
calculated as

σNN
inel (sNN ) = σNN

tot (sNN )− σNN
el (sNN ), (8)

where the total cross section σNN
tot is obtained from a fit

by COMPETE [80],

σNN
tot (sNN )/mb = 42.6s−0.46 − 33.4s−0.545

+ 0.307 log2(s/29.1) + 35.5, (9)

and the elastic cross section from a fit by TOTEM [81],

σNN
el (sNN )/mb = −1.617 log(s) + 0.1359 log(s)2 + 11.84,

(10)
with s = sNN/GeV2. For the CMS energies

√
sNN =

5020, 2700, 200 GeV, which we study here, this gives
σNN

inel (sNN ) = 69.14, 62.96, 41.78 mb, correspondingly.
We emphasize that σNN

inel is here used only for the trig-
gering of the nuclear collision, i.e. for determining the
inelastic A+B cross-section. It does not play any other
role in what follows.

D. Multiple dijet production

1. Probability distribution and nucleon thickness function

If the trigger condition is fulfilled, the collision between
A and B takes place. The A+B collision here is assumed
to be a very high-energy one, and furthermore a collision
of two large parton clouds, which are originating from
the sampled nucleons and extending around the Lorentz
contracted nuclei. In this case, the multiple minijets orig-
inating from each ab pair are produced practically instan-
taneously around z ∼ 0, and simultaneously everywhere
in the transverse plane.

At this stage of our setup, all the ab pairs can be con-
sidered to be fully independent from each other, they just
divide the interaction of the two large nuclear parton-
clouds into ab contributions. Saturation and energy con-
servation, which will here be imposed in the order of de-
creasing minijet pT , do not depend on the ordering of the
ab pairs, either. Thus, in our setup the ordering of the
ab pairs becomes irrelevant 1.

Next, all the ab nucleon pairs will be considered as po-
tential sources for multiple minijet (dijet) production. In
each ab contribution, the candidate dijets are supposed to
be produced independently from each other, hence Pois-
sonian statistics is used in sampling the number of pro-
duced dijets. Then, the probability of producing n ≥ 0
independent dijets from the pair ab, where the locations
of a and b, in the fixed nucleon configurations of this
event, are s̄a and s̄b, correspondingly, and whose impact
parameter thus is b̄ab = s̄b − s̄a, is

Pn({s̄a}, {s̄b}, p0,
√
sNN ) =

(
N̄ab

jets
)n

n!
e−N̄ab

jets , (11)

1 Note, however, that if one models nuclear collisions as subse-
quent energy-conserving NN subcollisions (like e.g. in HIJING
[82]), then the ordering (randomization) of the ab pairs would be
important.
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where the average number of dijets produced from the
pair ab is

N̄ab
jets ≡ N̄ab

jets(p0,
√
sNN , {s̄a}, {s̄b}) (12)

= TNN (b̄ab)σ
ab
jet(p0,

√
sNN , {s̄a}, {s̄b}) (13)

where σab
jet is an integrated inclusive pQCD cross section

for producing a pair of minijets with transverse momenta
pT ≥ p0 and any rapidities (details of obtaining σab

jet will
be explained in Sec. II D 2), and with the notation {s̄a}
({s̄b}) we underline that the computed pQCD cross sec-
tion here depends both on the location s̄a (s̄b) of the
nucleon a ∈ A (b ∈ B) and on the positions of all other
nucleons in the nucleon configuration forming the nucleus
A (B) in each event. Above, TNN is the nucleon-nucleon
overlap function,

TNN (b̄ab) =

∫
d2s TN (s̄− s̄a)TN (s̄− s̄b) (14)

=

∫
d2s1 TN (s̄1)TN (s̄1 − b̄ab) (15)

where the transverse vectors s̄ − s̄a ≡ s̄1 and s̄ − s̄b =
s̄1 − b̄ab ≡ s̄2 measure the transverse distance from the
centers of the nucleons a ∈ A and b ∈ B, correspondingly,
see Fig. 1. Here, TN is the nucleon thickness function,
which is obtained from the spatial density distribution
ρN as

TN (s̄) =

∫ ∞

−∞
dzρN (x), (16)

where x = (s̄, z). Both TN and TNN are normalized to
one through the transverse integrals,

∫
d2s TN (s̄) =

∫
d3x ρN (x) = 1, (17)

∫
d2s TNN (s̄) = 1. (18)

It should also be emphasized that in writing Eq. (12)
into the form of Eq. (13), we are assuming that the PDFs
carry spatial dependence in that they do (quite strongly)
depend on the locations s̄a of a ∈ A and s̄b of b ∈ B,
as well as on the positions of all the other nucleons in A
and B (which all are fixed for one A+B collision event),
but that for each nucleon a ∈ A and b ∈ B we have fixed
PDFs that do not depend on the variable s̄ appearing in
Eq. (14). This allows us to factorize the nucleon-nucleon
overlap function TNN from the minijet cross section σab

jet
in Eq. (13).

Following Ref. [17], we extract ρN , and thereby TN ,
from exclusive J/ψ photo-production cross sections that
have been measured in γ + p → J/ψ + p collisions at
HERA [83]. As discussed e.g. in Ref. [84], the amplitude
of this process is proportional to generalized parton dis-
tribution functions (GPDs) and a two-parton form factor
FN (t) that depends on the Mandelstam variable t and is

linked to ρN via a 3D Fourier transform,

FN (t) =

∫
d3x eiq·xρN (x), (19)

where |q|2 = |t|, and FN (0) = 1. As the GPDs become
ordinary PDFs at the forward limit, and as the J/Ψ mass
scale is of the same order of magnitude as the dominant
minijet pT scale, the above ρN should to a good approx-
imation describe also the corresponding partonic spatial
density related to the PDFs we use here. The measured
HERA cross sections show a behavior dσ/dt ∝ e−b|t|,
with a slope parameter b that depends on the photon-
proton system c.m.s. energy W as

b/GeV−2 = b0 + 4α′
P log

(
W

W0

)
, (20)

where b0, α′
P and W0 are constants. Here, identifying

W =
√
sNN , our default choice is the parametrization

from Ref. [85] (also used in [84]), with b0 = 4.9, α′
P = 0.06

and W0 = 90 GeV. Then, an inverse Fourier transform
of FN (t) = exp(−b|t|/2) = exp(−b|q|2/2) results in a 3D
Gaussian density,

ρN (x) =

∫
d3q

(2π)3
e−iq·xFN (t) (21)

=

(
1

2πσ2
N

)3/2

exp

(
− |x|2
2σ2

N

)
, (22)

and a 2D Gaussian thickness function,

TN (s̄) =
1

2πσ2
N

exp

(
− |s̄|2
2σ2

N

)
, (23)

with a width parameter σ2
N ≡ b. With the parametriza-

tion (20), we have σN = 0.478 (0.472) fm, at
√
sNN =

5.02 (2.76) TeV at the LHC, and σN = 0.445 fm for√
sNN = 200 GeV at RHIC.
Then, with the Gaussian forms for TN , also the

nucleon-nucleon overlap function in Eq. (15) can be ex-
pressed in a closed form, which also becomes a Gaussian,

TNN (b̄ab) =
1

4πσ2
N

exp
(
−|b̄ab|2

4σ2
N

)
. (24)

Once the number of the independent dijet candidates
has been sampled, each dijet candidate is assigned a spa-
tial production point s̄ that is sampled from the product
distribution TN (s̄− s̄a)TN (s̄− s̄b).

The modeling here is inspired by the eikonal mini-
jet models [86, 87] which are high-energy limits of po-
tential scattering, but we emphasize the different roles
of the parameter p0 in these models. In MC-EKRT,
the impact parameter integral of the eikonal 1 − P0 =
1− exp(−TNN (b)σjet(p0)) is not normalized to an inelas-
tic NN cross section σNN

inel (sNN ) but is allowed to ob-
tain larger values. Instead, the parameter p0 needs to
be chosen so small, of the order 1 GeV, that minijets are
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produced so abundantly that they overfill the coordinate
space, so that saturation can become effective in regulat-
ing the smallest-pT minijet production. For this reason,
our results are also fairly insensitive to the value of p0,
unlike typically in the eikonal minijet models. Notice also
that as we extend the value of p0 to unphysically low val-
ues (but still keeping it in the pQCD region, p0 ≫ ΛQCD),
and since we are considering the earliest moments in the
collision, τ <∼ 1/p0, we do not include any soft particle
production component, but consider only the (semi)hard

(mini)jet production in what follows.

2. Dijet kinematics and parton chemistry

A key element in our MC-EKRT framework is the dif-
ferential LO pQCD cross section of hard parton produc-
tion [88, 89]

dσab
jet({s̄a}, {s̄b})
dp2Tdy1dy2

= K
∑

ij⟨kl⟩
x1f

a/A
i ({s̄a}, x1, Q2)x2f

b/B
j ({s̄b}, x2, Q2)

dσ̂ij→kl

dt̂

(
ŝ, t̂, û

)
, (25)

where y1 and y2 are the rapidities of the two final-state
partons, pT is the transverse momentum of each of them,
f
a/A
i ({s̄a}, x1, Q2) (f b/Bi ({s̄b}, x2, Q2)) is the nucleon-

configuration-specific PDF of a parton flavor i (j) of the
bound nucleon a ∈ A (b ∈ B) which is centered at s̄a (s̄b)
in the nucleon configuration of each event, and x1 (x2) is
the parton’s longitudinal momentum fraction, Q2 is the
factorization/renormalization scale which we set equal
to pT , and dσ̂ij→kl

dt̂ are the differential LO pQCD cross
sections, which depend on the parton-level Mandelstam
variables ŝ, t̂, and û. The notation ⟨kl⟩ indicates a sum
over pairs of final-state partons, so that, say, u1g2 → ug
and u1g2 → gu are the same process and hence are not
to be counted as two separate ones, whereas u1g2 → ug
and g1u2 → ug naturally are two different processes as
the initial-state partons originate from different nucleons.
Notice also that since we aim to follow the partons’ iden-
tities as well, we do not introduce any t, u-symmetrized
cross sections which are often used when observable jet
cross sections are studied. In the present exploratory
study, in the interest of the simulation speed and as there
anyways are various other uncertainties and scale depen-
dence present, we do not (yet) attempt to perform an
NLO calculation similar to that in [66, 67] but account

for the missing higher order terms simply by a K-factor
that is a constant for a fixed

√
sNN and that will be fitted

to the A+A data separately at the LHC and at RHIC.
Then, in LO, the momentum fractions can be expressed
in terms of the transverse momentum pT and rapidities
of each minijet as

x1,2 =
pT√
sNN

(
e±y1 + e±y2

)
, (26)

and the Mandelstam variables become

ŝ = 2p2T (1 + cosh(y1 − y2)) , (27)

t̂ = −p2T
(
1 + e−(y1−y2)

)
, (28)

û = −p2T
(
1 + e+(y1−y2)

)
. (29)

Once the spatially dependent nuclear PDFs (PDFs
of nucleons a and b) have been devised (see discus-
sion below), Eq. (25) can be integrated over the mo-
mentum phase space, to give the minijet cross section
σab

jet(p0,
√
sNN , {s̄a}, {s̄b}) which is employed in Eq. (11).

Explicitly, accounting for the symmetry factors for the
identical final-state partons, we have

σab
jet(p0,

√
sNN , {s̄a}, {s̄b}) = K

∫
dp2T dy1dy2

∑

ij⟨kl⟩

1

1 + δkl
x1f

a/A
i ({s̄a}, x1, Q2)x2f

b/B
j ({s̄b}, x2, Q2)

dσ̂ij→kl

dt̂

(
ŝ, t̂, û

)
,

(30)

where, assuming a fixed lower limit p0 = 1 GeV for pT ,
the integration limits become

p0 ≤ pT ≤ √
sNN/2, |y1| ≤ arcosh(1/xT ), (31)

− log(2/xT − e−y1) ≤ y2 ≤ log(2/xT − ey1), (32)

with xT = 2pT /
√
sNN .

With these elements, the dijet kinematics and parton
chemistry can be straightforwardly generated. Once the
number of independent dijets from an interaction of nu-
cleons a ∈ A and b ∈ B has been determined using the
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Poissonian probabilities of Eq. (11), the transverse mo-
mentum pT and rapidities y1, y2 of each (mini)jet in the
dijet are obtained with rejection sampling from the differ-
ential minijet cross section (integrand) of Eq. (30). With
the fixed kinematic variables, we then sample Eq. (30)
again for the parton process type that fixes the flavors
of the participating partons. If the parton process in-
volves a quark from either a or b, we also identify each
participating quark as a sea quark or as a valence quark
again on the basis of Eq. (30) (i.e. the PDFs, in this case,
(f

a/A
q − f

a/A
q̄ )/f

a/A
q being the probability for obtaining

a valence quark). Finally, one minijet in each dijet is as-
signed an azimuth angle ϕ from a flat distribution and its
partner is then an angle π apart in the 2 → 2 kinematics
assumed here.

3. EbyE fluctuating spatial nuclear PDFs

Systematic global analyses of collinearly factorized
nuclear PDFs (nPDFs) indicate that bound-nucleon
PDFs clearly differ from the free-proton PDFs, see e.g.
Refs. [90–95]. The resulting nuclear modifications in the
bound-proton PDFs fp/Ai can be quantified with

f
p/A
i (x,Q2) = R

p/A
i (x,Q2)fpi (x,Q

2), (33)

where i denotes the parton flavor, fpi is the free-proton
PDF and R

p/A
i is the nuclear modification. The corre-

sponding neutron PDFs are obtained using isospin sym-
metry. The above PDFs and their modifications are, how-
ever, spatial averages of the nPDFs, they do not account
for the dependence of the nuclear density and especially
not its fluctuations, i.e. for the fact that in the lowest-
density regions the nuclear effects should vanish whereas
in the high-density regions they should be larger than
in the average Rp/A

i . These spatial effects can become
significant especially in the small-x region relevant for
lowest-pT minijet production of interest here, hence they
are an important contributing factor in computing hy-
drodynamic initial density profiles that directly influence
the centrality dependence of observables like multiplici-
ties and flow coefficients. Therefore, in an EbyE simula-
tion such as MC-EKRT here, we cannot use the spatially
averaged nPDFs but need to introduce EbyE-fluctuating
spatially dependent nPDFs (snPDFs), where the nuclear
modifications are sensitive to the nucleon-density fluctu-
ations from event to event. As we will discuss below, this
turns out to be a non-trivial problem in an EbyE simu-
lation where there are large density fluctuations present.

Originally, our idea was to directly utilize the available
non-fluctuating snPDFs, such as EPS09s [71], where the
nuclear modifications are encoded in as a power series of
the average (optical Glauber) nuclear thickness function,
TWS
A (s̄) =

∫
dz ρWS(x), as follows:

f
p/A
i (s̄, x,Q2) = fpi (x,Q

2)r
p/A
i (s̄, x,Q2), (34)

where fpi again are the free-proton PDFs, and the nuclear
modification part,

r
p/A
i (s̄, x,Q2) = 1 +

4∑

n=1

cin(x,Q
2)[TWS

A (s̄)]n, (35)

where the coefficients cin are A-independent, is normal-
ized to the known (EPS09 [90]) average nuclear modifi-
cations,

R
p/A
i (x,Q2) =

1

A

∫
d2s TWS

A (s̄)r
p/A
i (s̄, x,Q2). (36)

Alternatively, as done e.g. in Refs. [96–98], one could in
the interest of the simulation speed truncate the above
power series at the second term, allow some residual A
dependence in the remaining single coefficient, and ob-
tain

f
p/A
i (s̄, x,Q2) = fpi (x,Q

2)
[
1 + ciA(x,Q

2)TWS
A (s̄)

]
,
(37)

where again the normalization to the average modifica-
tions Rp/A

i (x,Q2) would give

ciA(x,Q
2) =

A

TAA(0)

(
R

p/A
i (x,Q2)− 1

)
, (38)

with TAA(0) =
∫
d2s [TWS

A (s̄)]2. Then, with the nuclear
density fluctuations present in an EbyE simulation, one
could essentially just replace the average TWS

A by the fluc-
tuating TA(s̄) =

∑
a TN (s̄−s̄a), where TN is the Gaussian

density from Eq. (23). This procedure does not, however,
work, because in practice the maximal density at which
the above approaches are applicable is the maximum of
the average density [61], TWS

A (0) = 2ρ0d log
(
1 + eRA/d

)
,

and now with fluctuations we encounter densities that
easily exceed this (see Fig. 2 ahead), and can be even
more than 3TWS

A (0).
In particular with the latter approach above, in the

small-x nuclear shadowing region, where Rp/A
i (x,Q2) < 1

and thus ciA(x,Q
2) < 0, when a negative ciA is accompa-

nied by a large enough TA(s̄), the spatial PDFs become
negative, which cannot be allowed in LO. A possible cure
for this could be to introduce an exponentiated ansatz for
the above power series (motivated by Ref. [99]),

1 + ciA(x,Q
2)TA(s̄) → exp(ciA(x,Q

2)TA(s̄)). (39)

However, with density fluctuations, in the region where
TA(s̄) ≫ TWS

A (0), also this form leads to too fast at-
tenuating small-x parton densities in that the density
function TA(s̄)exp(ciA(x,Q

2)TA(s̄)) (whose s̄-integral is
normalized to R

p/A
i (x,Q2)), is not a monotonically ris-

ing function of TA(s̄) contrary to what it should be. This
problem can be solved by using an another ansatz func-
tion, such as

1 + ciA(x,Q
2)TA(s̄) → 1/(1− ciA(x,Q

2)TA(s̄)) (40)
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instead, which, when multiplied by TA(s̄), conveniently
gives a positive-definite function that is monotonously
rising with TA(s̄). In the antishadowing region where
ciA(x,Q

2) > 0, and where the A-dependence of the nu-
clear modification is modest in any case, such a function
would at large TA’s lead to violation of the per-nucleon
momentum sum rule that is assumed in the global PDF
analyses. We have tested that this problem can be solved
approximately (conserving momentum on a percent level)
by choosing a more modestly increasing logarithmic func-
tion

1+ ciA(x,Q
2)TA(s̄) → 1+ log(1+ ciA(x,Q

2)TA(s̄)). (41)

Equations (40) and (41) above are therefore the func-
tional choices we make in what follows.

Now, exploiting these preliminary observations, we can
construct the needed snPDFs, fa/Ai ({s̄a}, x1, Q2), which
are sensitive to the location s̄a of the nucleon a in the
nucleus A, and thereby also to the surrounding nucleon
density in each event (indicated by {s̄a}), but which do
not depend on the intra-nucleon density TN (s̄) of the
nucleon a or its fluctuations. This is the approximation
which we have used in writing Eq. (13) in its form, where
the minijet cross section depends spatially only on the
locations of the nucleons a and b but does not contain
any transverse-coordinate integrals.

First, for each fixed nucleon configuration in the nu-
cleus A (correspondingly for B), we define a nuclear
thickness function T a

A from where the contribution from

0.0 0.1 0.2 0.3 0.4 0.5
T̂a

A [ 1
mb]

1

2

3

4

5

ρ
(T̂

a A
)

A = 208

Dense
Median
Scarce

FIG. 2: Normalized distribution of the average nuclear thick-
ness function T̂ a

A experienced by a nucleon a ∈ A, defined in
Eq. (45), for the nucleus Pb208, sampled from 10 000 nuclei.
For comparison, optical Glauber TWS

A (0) ≈ 0.212/mb. The
vertical lines indicate the example-density regions to which we
refer as “dense” (dashed blue line), “median” (solid red line)
and “scarce” (dotted green line). The peak at the smallest
values of T̂ a

A arises at the edge of the nucleus where the inter-
nucleon distance becomes larger than the nucleonic width σN .

the nucleon a, whose center is at s̄a, has been excluded,

T a
A(s̄) ≡

A∑

a′ ̸=a

T a′
N (s̄− s̄a′). (42)

Then the average nuclear thickness function experienced
by the nucleon a ∈ A can be defined as

T̂ a
A({s̄a}) ≡

∫
d2s̄ TN (s̄− s̄a)T

a
A(s̄)∫

d2s̄ TN (s̄− s̄a)
(43)

=

A∑

a′ ̸=a

∫
d2s̄ TN (s̄− s̄a)T

a′
N (s̄− s̄a′) (44)

=
A∑

a′ ̸=a

T aa′
NN

(
b̄aa′

)
, (45)

where we have used the normalization of T a
N and

Eqs. (42) and (15) with b̄aa′ = s̄a′ − s̄a, and where the
overlap functions T aa′

NN (b̄aa′) are of the same Gaussian
form as that in Eq. (24). Two things are to be noted
here: First, for a specific nucleon a in a nucleus A with
a fixed (random) nucleon configuration, T̂ a

A({s̄a}) is a
fixed number, whose value depends on the positions of
the other nucleons (a′) relative to the nucleon a. Second,
the effect of the above self-exclusion is that in the region
of very low nucleon density, which is the case in an event
where a single nucleon a is far from other nucleons a′,
the density TN (s̄ − s̄a′) vanishes, bringing thus also T̂ a

A

appropriately to zero. The distribution of T̂ a
A for a lead

nucleus is shown in Fig. 2.

Now, essentially using T̂ a
A in place of TWS

A , we define
the EbyE fluctuating snPDFs for a nucleon a analogously
to the above discussion, as follows:

f
a/A
i ({s̄a}, x,Q2) = fai (x,Q

2)r
a/A
i ({s̄a}, x,Q2), (46)

where s̄a is the location of the nucleon a ∈ A, which is
fixed for each nucleon configuration (i.e., in each event),
and the nuclear modification is
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r
a/A
i ({s̄a}, x,Q2) = θ(ciA(x,Q

2))
[
1 + log(1 + ciA(x,Q

2)T̂ a
A({s̄a}))

]
+

θ(−ciA(x,Q2))

1− ciA(x,Q
2)T̂ a

A({s̄a})
, (47)

where θ is the Heaviside step function. Because of the
reasons discussed above, we have chosen the above func-
tional forms for ensuring an appropriate behaviour of the
modifications in T̂ a

A, accurate enough momentum con-
servation, and a correct small-T̂ a

A limit. As explained
above, at the limit of vanishing nucleon density, i.e. if a
is an isolated single nucleon far away from other nucleons,
T̂ a
A → 0 and thus also ra/Ai ({s̄a}, x,Q2) → 1.
The coefficient function ciA(x,Q

2) in Eq. (47) is deter-
mined for fixed x and Q2 by requiring that the average
modification, which is obtained by averaging first over
all the nucleons a in each nucleus and then averaging
over a large sample of nuclei A, becomes Rp/A

i (x,Q2) of
Eq. (33),

R
p/A
i (x,Q2) =

〈
1

A

∑

a

r
a/A
i ({s̄a}, x,Q2)

〉

{A}
(48)

≡ F
(
ciA(x,Q

2)
)
, (49)

where ⟨. . . ⟩{A} denotes the latter average. Note that here
for each parton flavor i we are summing the modifica-
tions ra/Ai that are related to the bound proton’s Rp/A

i

(e.g. related to Rp/A
uV we sum r

p/A
uV from Z protons and

r
n/A
dV

= r
p/A
uV from A − Z neutrons). Since we assume

isospin symmetry and as the locations of the protons and
neutrons are sampled from the same Woods-Saxon dis-
tribution, we do not need to keep track of the nucleon
identity here but can take all nucleons to be just protons.
The function F (ciA) is a monotonous function of ciA, so
it can be inverted to yield the normalization function

ciA(x,Q
2) = F−1

(
R

p/A
i (x,Q2)

)
. (50)

The function F can be calculated numerically for any
given ciA by sampling a large number of nuclei A. The
inverse can then be approximated by creating an interpo-
lation function for a list of numerically calculated values
of F

(
ciA(x,Q

2)
)
, and then inverting that interpolation

function. In what follows, in computing the nucleon-
configuration-specific PDFs fa/Ai ({s̄a}, x,Q2) in Eq. (46),
we obtain the coefficients ciA(x,Q

2) in Eq. (50) using the
EPS09LO average modifications [90], and the free-proton
PDFs correspondingly from the CT14LO set [100] using
the LHAPDF library [101].

In Fig. 3 we compare the spatially dependent,
nucleon-configuration-specific gluon modifications
r
a/A
g ({s̄a}, x,Q2), computed from Eq. (47), with the

average nuclear gluon modifications RA
g (x,Q

2), obtained
from the EPS09LO nPDFs, for a lead nucleus at a

scale Q2 = 1.69GeV2. To illustrate how in the densest
(scarcest) regions the nuclear effects become larger
(smaller) than in the average modification RA

g (x,Q
2),

we show the snPDF gluon modifications for three
different fixed values of the average thickness function
T̂ a
A(s̄a).

10−4 10−3 10−2 10−1 100

x

0.5

1.0

1.5
ra/

A
g

an
d

R
A g

A = 208
Q2 = 1.69 GeV2

EPS09LO

T̂A = 0.3 1
mb

T̂A = 0.14 1
mb

T̂A = 0.05 1
mb

FIG. 3: Comparison of the snPDF gluon modification
r
a/A
g ({s̄a}, x,Q2 = 1.69GeV2) of Eq. (47) (dashed blue, solid

red and dotted green curves) with the average EPS09LO [90]
gluon modification RA

g (x,Q
2 = 1.69GeV2) (dashed-dotted

black curve) for the nucleus Pb208. The fixed values
T̂ a
A({s̄a}) = 0.3, 0.14, and 0.05 1/mb, chosen here as input for

rg({s̄a}, x,Q2 = 1.69GeV2), are representatives for a nucleon
in the dense, median, and scarce density regions, correspond-
ingly, see Fig. 2.

We have now discussed the elements necessary
for obtaining the nucleon-nucleon overlap function
TNN (b̄ab) and the integrated minijet cross section
σab

jet({s̄a}, {s̄b}, p0,
√
sNN ) that go into the calculation of

the probability distributions of multiple minijet produc-
tion in nucleon-nucleon collisions in Eq. (11). Figure 4
shows examples of these distributions in Pb+Pb collisions
at

√
sNN = 5.02 TeV and p0 = 1 GeV at three differ-

ent nucleon-nucleon impact parameters b̄ab, and choos-
ing both nucleons, a ∈ A and b ∈ B, from the same
densest, scarcest and median density regions of A and
B as in Fig. 3, T̂ a

A(s̄a) = T̂ b
B(s̄b) = 0.3, 0.05, and 0.14

1/mb. The figure nicely illustrates the large fluctuations
of the minijet multiplicity due to various sources. The
minijet multiplicity is heavily sensitive not only to the
nucleon-nucleon impact parameter b̄ab (the larger b̄ab the
smaller N̄ab

jets) but also to the spatial dependence of the
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FIG. 4: Examples of the Poissonian probability distributions
Pn of Eq. (11) for multiple candidate-dijet production with
partonic pT ≥ 1GeV from a nucleon pair ab, a ∈ A and
b ∈ B, at some fixed nucleon-nucleon impact parameters b̄ab
in Pb+Pb collisions at

√
sNN = 5.02 TeV. The values used

for σab
jet (with K = 2) here are chosen so that they represent

the cases where both of the nucleons originate from the same
dense (dashed blue curves), median (solid red curves) and
scarcest (dotted green curves) density regions as in Fig. 3.

nPDFs (large fluctuations at fixed b̄ab). We also see the
role of shadowing and its spatial dependence, in that the
colliding nucleons that come from the densest (scarcest)
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FIG. 5: Minijet transverse energy in the mid-rapidity unit
as a function of the collision centrality in

√
sNN = 5.02TeV

Pb+Pb collisions, as predicted from the MC-EKRT model
using snPDFs (solid lines) and spatially averaged nPDFs
(dashed lines). Here K = 2 and κsat = 2, see Sec. II E for
the details of minijet filtering and Sec. II F for the details of
the centrality selection.

nuclear density regions produce clearly less (more) dijet
multiplicity than those who originate from the median-
density regions.

In Fig. 5, we show the centrality dependence of the pro-
duced minijet transverse energy at mid-rapidity that is
obtained from our MC-EKRT model with snPDFs and
with average nPDFs. The figure very clearly demon-
strates why it is important to account for the spatial
dependence of the nPDFs (the details of the centrality se-
lection and the imposed minijet filtering will be discussed
below). As can be seen in the figure, in central colli-
sions, where the minijet production on the average orig-
inates from the average nuclear-overlap regions (volume
effect), the spatial nuclear effects due to the snPDFs aver-
age essentially to those obtained with spatially averaged
nPDFs. Towards peripheral collisions, however, where
scarcer regions of the nuclei are colliding and where the
nuclear effects in the snPDFs become smaller, the differ-
ence to the average-nPDF results becomes increasingly
larger. As the figure shows, we can expect easily over
20 % changes relative to the average-nPDF results, which
is a significant effect when we compare the MC-EKRT re-
sults (after hydrodynamic evolution) with experimental
data (Sec. IV ahead).

E. Minijet filtering by saturation and conservation
of energy & valence quark number

After the dijet candidates have been generated from all
the nucleon–nucleon pairs as described in Sec. II D, the
next step in the MC-EKRT simulation is to filter away
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the excessive dijets on the basis of saturation, and con-
servation of energy/momentum and valence-quark num-
bers. Ideally of course the energy/momentum conserva-
tion should not be needed at all, as ideal multiparton dis-
tributions should conserve momentum, but as these are
not available, and especially not to all orders as would
be required here in the context of saturation, we have to
impose energy/momentum conservation separately from
the saturation. As we assume saturation to be the de-
cisive dynamical mechanism that regulates minijet pro-
duction at low transverse momenta, saturation-based fil-
tering is done first, and conservation of momentum only
after that. With such phenomenological details, experi-
mental data is our guide as well: we have tested, aver-
aging over the minijets falling into the mid-rapidity unit
and feeding them into 2+1 D hydrodynamics event-by-
event, that we reproduce systematically more correctly
the measured ratio of the flow coefficients v2 and v3
[102] when the energy/momentum-conservation filtering
is performed after the saturation-filtering and also when
the latter filtering has as little effect as possible.

As is obvious, any kind of filtering breaks the factor-
ization assumption of our pQCD calculation as the pro-
duced minijets are then not anymore independent of each
other. The higher-twist effects (causing saturation here)
die out in inverse powers of the virtuality Q2, so that at
the highest values of pT , factorization is expected to hold.
Also the global analysis of nPDFs [92, 94, 95] and jet pro-
duction in minimum-bias proton-nucleus collisions [103]
indicate this to be the case. Thus, to maintain factoriza-
tion at the highest values of pT , the list of all candidate
dijets in an A+B collision is next ordered in decreasing
pT . Both filterings are then done, separately, in this or-
der, starting from the jets with highest values of pT , and
rejecting all those dijets that fulfill the filtering condi-
tions.

Guided by the geometric EKRT saturation criterion,
Eq. (5), each dijet is assumed to have a spatial uncer-
tainty area of a radius ∝ 1/pT in the transverse plane
around the dijet production point. Consider a dijet can-
didate whose transverse momentum is pcand

T , and trans-
verse production point is s̄cand. All of the previously ac-
cepted dijets with corresponding parameters pT ≥ pcand

T
and s̄ are then inspected, and if for any of them

|s̄− s̄cand| < 1

κsat

(
1

pT
+

1

pcand
T

)
, (51)

the dijet candidate is rejected. The parameter κsat intro-
duced here is an external fit parameter, which acts as a
“packing factor” in determining how close to each other
the dijets can be produced. Notice that parametrically
κ2sat ∝ Ksat of Ref. [17], and that the smaller κsat the
stronger the saturation, i.e. the more dijet candidates
get rejected.

After the saturation filtering above, the remaining, still
pT -ordered, list of accepted dijets is then subjected to
the filtering according to energy/momentum conserva-
tion. Again here it is not obvious, or even clear, whether

the momentum should be conserved for each nucleon sep-
arately, or only for the whole nucleus as a parton cloud, or
something in between. Here, to be consistent with what
is typically done in the global analyses of the nPDFs,
we require energy conservation at the nucleon level as
a default. We do, however, test also the case where no
separate energy/momentum conservation is required in
addition to saturation.

To force the energy/momentum conservation (energy
conservation, for short) per nucleon for a given dijet can-
didate with momentum fractions xcand

1 in a projectile nu-
cleon a ∈ A and xcand

2 in a target nucleon b ∈ B, we pro-
ceed as follows: Assume that we have a list of n already
accepted dijets that involve the same projectile nucleon
a, and m previously accepted dijets that involve the same
target nucleon b. These dijets have momentum fractions
(x

(1)
1 , . . . , x

(n)
1 )a and (x

(1)
2 , . . . , x

(m)
2 )b associated with a

and b, respectively. Now, if either

xcand
1 +

n∑

i=1

x
(i)
1 > 1 or xcand

2 +
m∑

j=1

x
(j)
2 > 1, (52)

the dijet candidate is rejected due to the breaking of the
per-nucleon energy budget.

The third filtering, performed simultaneously with the
above energy conservation, is the forcing of the valence
quark number conservation. As explained earlier in
Sec. II D 2, we can keep track of whether each candidate
dijet involves valence quarks from the nucleons a ∈ A
and/or b ∈ B. If a candidate dijet involves a valence
quark of a specific flavor either from a or from b, and if ei-
ther a or b has already consumed all its valence quarks of
that flavor in the prior parton scatterings at pT > pcand

T ,
then the candidate dijet is rejected. For the multiplicities
and elliptic flow that we will study later in this paper,
this filtering causes a negligible effect but we nevertheless
build it in for interesting further studies in the future.

As an illustration, in Fig. 6 we show the transverse-
plane distribution of dijet production points before and
after the filterings in a single central event. The ra-
dius of each disk surrounding the production points is
1/(κsatpT ). As seen in the left panel, the candidate dijets
overoccupy the transverse plane. As a result of applying
the saturation condition of Eq. (51), none of the disks
overlap in the right panel.

F. Centrality selection

To determine which centrality percentile each A+B
collision belongs to, one needs to classify the events ac-
cording to, e.g., the produced minijet transverse energy
ET in a chosen rapidity window. Alternatively, when
running hydrodynamics with the minijet initial condi-
tions, converting ET into initial state densities, one can
use either initial state entropy or final state multiplicity
as the criterion. In this work, in the interest of simula-
tion speed, we do the centrality selection according to the
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FIG. 6: Illustration of the effects of saturation and energy-conservation in the transverse distribution of produced dijets in
one central event. Left panel shows the production points of all the candidate dijets, and the right panel the case after the
filterings. The radius of the disk surrounding each dijet production point is 1/(κsatpT ). Here for the illustration, we use K = 2,
and κsat = 0.5.
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√
sNN = 5.02TeV. Here K = 2 and κsat = 2.

total minijet ET produced (after the filterings) anywhere
in rapidity. We have checked that the results would be
very similar if e.g. a central rapidity unit would be used.
Concretely then, for a simulation of, say, 10 000 A+B
collisions, the 0-5 % centrality class refers to the collec-
tion of 500 collisions with the highest total transverse
energy.

G. Systematics of minijet filtering

Figures 7 and 8 illustrate the effect of the three fil-
ters. Figure 7 shows the rapidity distribution of the
transverse energy originating from the dijets, obtained
as a scalar sum of minijet pT ’s, plotted for 0-10 % cen-
tral (left panel) and 50-60 % central (right panel) Pb+Pb
collisions at

√
sNN = 5.02TeV, computed with K = 2,

and κsat = 2. The figure demonstrates first a consider-
able reduction of ET when going from all the candidate
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dijets (dotted brown curves) down to those who pass the
saturation filter (dashed-double-dotted blue curves), and
then a clearly smaller reduction down to those who pass
also the energy-conservation and valence quark filters in
addition (solid black curves). As expected, for this quan-
tity the effect of the valence quark filtering is very small
(see the overlapping dashed-dotted red and dashed green
curves). Interestingly, however, we notice that impos-
ing only the energy-conservation filter without saturation
(dashed-dotted red curves) would lead to a similar result
in ET as the saturation filter alone, which essentially is
a result of ordering the dijet candidates according to the
minijet pT . Here again, we note that although not visi-
ble in these plots, we have checked that the v2/v3 ratio
prefers a strongest possible saturation [102], and also that
imposing only the energy-conservation filter (when real-
ized as in here) typically leads to too narrow rapidity
distributions.

Figure 8 then, correspondingly, shows the pT distri-
bution of (mini)jets at all rapidities, originating from
the dijets which have not been filtered at all (dotted
brown curves), from those dijets that survived first the
saturation filter (dashed-double-dotted blue curves) and
then also the energy-conservation and valence-quark fil-
ters (black solid curves). In the left panel, we see – as
is expected by construction – how factorization in cen-
tral collisions (upper set of curves) remains unbroken at
pT >∼ 5 GeV, while both filters start to have an effect at
pT <∼ 5 GeV. In peripheral collisions (lower set of curves),
where the minijet multiplicities are smaller and therefore
saturation becomes effective at smaller pT , factorization
remains unbroken until slightly smaller values of pT than
in central collisions. We again also see how saturation
filter, the one imposed first, dominates here over that
of energy conservation, and also that the saturation fil-
ter tends to remove dijets at slightly larger values of pT
than the energy-conservation filter (see dashed-double-
dotted blue and the dotted-dashed red curves). Also here
the valence quark conservation causes a negligible effect.
The right panel of Fig. 8 is to demonstrate the differ-
ence of (mini)jet production in different spatial regions
of central collisions: In the dilute overlap regions (upper
set of curves) the factorization-breaking saturation and
energy-conservation effects set in at clearly smaller val-
ues of pT than in the regions of densest overlap (lower
set of curves).

Figures 9 and 10 show the minijet transverse energy
production in the central rapidity unit as a function of
centrality in Pb+Pb collisions at

√
sNN = 5.02TeV, com-

puted with various values of the fit parameters K and
κsat, with all filters imposed in Fig. 9, and with only the
saturation filter imposed Fig. 10. As can be seen from the
right panels, where κsat = 2 is fixed, changing K changes
mainly the overall normalization but essentially not the
centrality slope of the produced ET (and hence the fi-
nal multiplicities as well). The energy-conservation filter
weakens the K dependence, because with a larger K-
factor the energy-conservation filter removes more can-

didate dijets. The left panels in turn show how, for a
fixed value of K = 2, changing κsat changes both the
normalization and especially the centrality slope. Here
the energy-conservation filter in turn weakens the κsat
dependence, as with a larger κsat there is less saturation
and more minijet production and the energy conserva-
tion filter becomes more efficient in removing candidate
dijets. In any case, as long as κsat does not become too
large, and especially if only the saturation-filter is im-
posed, κsat serves as a centrality-slope parameter for the
mid-rapidity multiplicities, whereas theK-factor controls
mainly their normalization. This observation is exploited
in what follows (Sec. IV), in finding the possible values
for κsat and K with which we can reproduce the mea-
sured charged-hadron multiplicities.

III. FLUID DYNAMICAL EVOLUTION AND
PARTICLE SPECTRA

The MC-EKRT computation gives the initially pro-
duced parton state. In order to compare with the mea-
sured data, we need to first propagate the partons to a
proper time τ0 for initializing the 3+1 D fluid dynam-
ics, then compute the subsequent spacetime evolution of
the matter, and eventually determine the experimentally
measurable momentum spectra of hadrons.

A. Fluid dynamical framework

The spacetime evolution is computed using 3+1 D
fluid dynamics, applying the code package developed in
Ref. [73]. The fluid dynamical framework employed is
the relativistic dissipative second-order transient fluid
dynamics [104], originally formulated by Israel and Stew-
art [105].

The basic equations of motion governing the evolution
of a fluid are the local conservation laws for energy, mo-
mentum and conserved charges, like the net-baryon num-
ber. In the following we, however, will neglect the con-
served charges. In this case the state of the fluid is given
by its energy-momentum tensor that can be decomposed
with the help of the Landau-picture fluid 4-velocity uµ

as

Tµν = euµuν − P∆µν + πµν , (53)

where ∆µν = gµν − uµuν is a projection operator,
e = Tµνuµuν is the energy density in the local rest
frame, P = − 1

3∆µνT
µν is the isotropic pressure, and

πµν = T ⟨µν⟩ is the shear-stress tensor. The angular
brackets project the symmetric and traceless part of the
energy-momentum tensor that is orthogonal to the fluid
4-velocity. We will also neglect the bulk viscous pres-
sure, and the isotropic pressure is given by the equation
of state (EoS) of the strongly interacting matter at zero
net-baryon density, P = P (e). In the Landau picture the
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fluid 4-velocity is a time-like, normalized eigenvector of
the energy-momentum tensor, defined by Tµ

νu
ν = euµ.

The energy diffusion current Wµ = ∆µαTαβu
β is then

zero and does not contribute to the energy-momentum
tensor.

In the formalism by Israel and Stewart [105], the equa-
tions of motion for the remaining dissipative quantity,

shear-stress tensor, are given by [104, 106]

τπ
d

dτ
π⟨µν⟩ + πµν = 2ησµν + 2τππ

⟨µ
α ω

ν⟩α

−δπππµνθ − τπππ
⟨µ
α σ

ν⟩α + φ7π
⟨µ
α π

ν⟩α, (54)

where σµν = ∇⟨µuν⟩ and ωµν = 1
2 (∇µuν −∇νuµ) are

the strain-rate and vorticity tensors, respectively, θ =
∇µuµ is the volume expansion rate, and the gradient is
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FIG. 10: The same as in Fig. 9 but with only the saturation filter imposed.
.

defined as ∇µ = ∆µ
α∂

α. The coefficient η is the shear
viscosity, τπ = 5η/(e + P ) is the shear relaxation time,
and the remaining coefficients of the second-order terms
are taken from the 14-moment approximation to massless
gas [104, 106, 107], i.e. δππ = (4/3)τπ, τππ = (10/7)τπ,
and φ7 = 9/(70P ). The shear viscosity over entropy
density η/s is chosen such that it roughly reproduces
the elliptic flow in semi-central collisions. For the EoS
of strongly interacting matter we use the s95p-v1 [108]
parametrization, which interpolates between the lattice
QCD at high temperatures and the hadron resonance gas
model at low temperatures. The partial chemical freeze-
out at T = 150 MeV is encoded into the hadronic part
of the EoS as temperature-dependent chemical potentials
for each hadron, µh = µh(T ) [109].

The Israel-Stewart equations together with the conser-
vation laws are solved numerically in 3+1 dimensions [73]
using the SHASTA algorithm [110] in (τ, x, y, ηs)–
coordinates, where

τ =
√
t2 − z2 (55)

is the longitudinal proper time, and

ηs =
1

2
ln

(
t+ z

t− z

)
(56)

is the spacetime rapidity. The grid resolution is ∆ηs =
0.15, ∆x = ∆y = 0.15 fm, and ∆τ = 0.05 fm. For further
details of the algorithm, see Refs. [73, 111].

The final spectra of free hadrons are obtained by com-
puting the Cooper-Frye integrals [112] on a constant-
temperature decoupling surface, with Tdec = 130 MeV.
The momentum distributions of hadrons on the decou-
pling surface are given by the 14-moment approximation,
so that the single-particle momentum distribution func-
tion of a hadron h is

fh(p
µ, x) = f0h

(
1 + (1± f0h)

pµpνπ
µν

2T 2(e+ P )

)
, (57)

where +(−) is for bosons (fermions), pµ is the 4-
momentum of a hadron h, and f0h = f0h(T, µh) is the
corresponding Bose-Einstein or Fermi-Dirac equilibrium
distribution function. The Cooper-Frye integral is com-
puted for all the hadrons included into the hadron reso-
nance gas part of the EoS. As explained in Ref. [73], after
computing the full spectra of hadrons, dNh/dydp

2
T dϕ, the

spectra are interpreted as probability densities and they
are randomly sampled to obtain a set of hadrons with 4-
momenta pµi . For the unstable hadrons the correspond-
ing 2- and 3-particle strong and electromagnetic decays
are then computed. The sampling procedure is then re-
peated several times in order to get smooth momentum
distributions for the hadrons that are stable under strong
decays.

B. Initialization

The equations of fluid dynamics take the energy-
momentum tensor as an initial condition at a fixed initial
proper time τ0. However, an MC-EKRT event consists
of a set of partons, and we need to convert this set to the
corresponding Tµν(τ0, x, y, ηs) using the momenta of the
produced particles. There are two essential ingredients
in this. First, we need to propagate the particles to a
fixed proper time τ0 = 1/p0, and for the determination
of densities from a finite set of particles, we need to de-
fine an averaging volume where the components of the
energy-momentum tensor are computed.

Naively, the grid size, e.g. ∆x or ∆ηs in the numer-
ical algorithm to solve the Israel-Stewart theory would
provide such an averaging volume. However, the grid
defines rather a discretization of the continuous fields in
the hydrodynamic equations of motion, and in princi-
ple we should be able to take the limit to the contin-
uum, i.e. ∆x,∆ηs → 0, and at this limit densities are no
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longer well defined smooth functions. Thus, we should
distinguish between the averaging volume and the nu-
merical resolution. The procedure with which we define
the averaging volume through Gaussian smearing and ob-
tain the corresponding densities is described below. We
note that here we will eventually only construct the lo-
cal energy density from the MC-EKRT computation, and
neglect the initial velocity and shear-stress components.
Moreover, we do not take into account the event-by-event
fluctuations in the hydrodynamical phase, but compute
the initial conditions as averages over a large sample of
MC-EKRT events. However, the procedure below can
be extended to the computation of all the components
of Tµν . We will leave the studies that take into account
the event-by-event fluctuations as well as a complete Tµν

initialization as a future work.

1. Free streaming

Each parton i in an MC-EKRT event has the following
information: transverse coordinate x⊥,0i of the produc-
tion point, transverse momentum pTi, and rapidity yi.
All partons are massless in this work. We assume that
each parton is produced at the location x⊥,0i and zi = 0
at time t = 0. The partons are assumed to travel as free
particles along straight line trajectories. In this case, the
spacetime rapidity ηs,i of the parton i becomes equivalent
to its momentum rapidity yi, and longitudinal coordinate
of the propagating parton is given by zi(t) = t tanh ηs,i.
The transverse position of the parton at Cartesian co-
ordinate time t is given by x⊥i(t) = x⊥,0i + tpTi/Ei,
where Ei = pTi cosh yi. However, we need to initialize
fluid dynamics at a fixed proper time τ0 = t/ cosh ηs in
the τ -ηs coordinate system, in which case the parton’s
coordinates become (τ0,x⊥i(τ0), ηs,i), where x⊥i(τ0) =
x⊥,0i + τ0pTi/pTi.

2. Smearing

In general, the four-momentum pα = (pτ ,pT , p
η) of a

particle at a spacetime location xα = (τ,x⊥, ηs) in the
τ -ηs coordinates is obtained as

pα =
∂xα

∂x′µ
p′µ =




pT cosh(y − ηs)
pT

τ−1pT sinh(y − ηs)


 , (58)

where x′µ and p′µ are the corresponding spacetime point
and four-momentum in the Cartesian coordinates.

The total number of partons N that flow through a
surface, whose surface element 4-vector is dΣµ, can be
written as

N =

∫
dΣαN

α(τ,x⊥, ηs), (59)

where the particle 4-current Nα in the τ -ηs coordinates
can be written using Eq. (58) as

Nα(τ,x⊥, ηs) =
∫
d3p

pτ
τpαf(τ,x,p), (60)

where we defined d3p = d2pT dp
η, and f is a scalar mo-

mentum distribution function at a constant τ . For a
constant-τ surface, the surface element 4-vector has only
the τ component, dΣτ = d2x⊥dηsτ , and the total num-
ber of partons can be written as

N =

∫
d2x⊥dηsτ

∫
d2pT dp

ητf(τ,x,p). (61)

Now, following Ref. [113], the scalar momentum distri-
bution function for a set of N partons can be written
in terms of delta functions in coordinate and momentum
space as

f(τ,x,p) =

N∑

i=1

δ(3)(x− xi)δ
(3)(p− pi)/|det(g)|, (62)

where xi = (x⊥i, ηs,i) is the three-location and pi =
(pTi, p

η
i ) is the three-momentum of the particle i at

proper time τ , and det(g) = −τ2 is the determinant of
the metric tensor gµν = diag(1,−1,−1,−τ2). The sum-
mation is over all the particles. Substituting Eq. (62)
into Eq. (61), it is easy to verify that we consistently ar-
rive at the correct number of particles, i.e. in our case the
number of partons from an MC-EKRT event. Similarly,
the components of the energy-momentum tensor can be
expressed as

Tαβ(τ,x⊥, ηs) =
∫
d2pT dp

η

pτ
τpαpβf(τ,x,p). (63)

In what follows, we will assume that pηi = 0, so that
yi = ηs,i. Changing the integration variable from pη to
rapidity y using Eq. (58), the integral can be then written
as

Tαβ =
∑

i

∫
d2pT dy

pαpβ

pτ
1

τ
cosh(y − ηs) (64)

× δ(2)(x⊥ − x⊥i)δ(ηs − ηs,i)δ
(2)(pT − pTi)δ(y − ηs).

The resulting δ(y − ηs) ensures that y = ηs, i.e. initial
longitudinal scaling flow holds even after we replace the
spatial delta functions by Gaussian smearing functions
below.

To obtain a smooth density profile for relativistic hy-
drodynamics from the partons, we replace the spatial
delta functions with Gaussian distributions,

δ(2)(x⊥ − x⊥i)δ(ηs − ηs,i) → g⊥(x⊥;x⊥i)g∥(ηs; ηs,i),
(65)

with

g⊥(x⊥;x⊥i) =
C⊥
2πσ2

⊥
exp

[
− (x⊥ − x⊥i)

2

2σ2
⊥

]
, (66)

g∥(ηs; ηs,i) =
C∥√
2πσ2

∥
exp

[
− (ηs − ηs,i)

2

2σ2
∥

]
, (67)
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where σ⊥ and σ∥ are the widths of the distributions in
the transverse and longitudinal directions, respectively.
Both σ⊥ and σ∥ are considered to be free parameters of
our model. Equations (66) and (67) are normalized as

∫
d2x⊥dηsg⊥(x⊥;x⊥i)g∥(ηs; ηs,i) = 1. (68)

To reduce the computational costs, we impose a cut-off
on the smearing range to ±3σ in each direction from the
centre of the Gaussian distribution. However, the cut-off
on the integration range and the numerical error originat-
ing from the discretization of Gaussian functions violate
the normalization condition in Eq. (68). Therefore, the
constants C⊥ and C∥ in Eqs. (66) and (67) are adjusted
in every fi(τ,x,p) so that the unit normalization is en-
sured. We checked, however, that C⊥ and C∥ are almost
unity with the current parameters in the simulations.

With these choices, the initial value of the
T ττ (τ0,x⊥, ηs) component of the energy-momentum ten-
sor in hydrodynamics is given as

T ττ (τ0,x⊥, ηs) = (69)
1

τ0

∑

i

pTig⊥(x⊥;x⊥i)g∥(ηs; ηs,i).

In this exploratory study, as we do not yet consider
a more detailed spacetime picture of parton production
[114], pQCD showering and secondary collisions of par-
tons, and especially as we consider only averaged ini-
tial conditions, we follow Ref. [17] and compute only
the above initial T ττ (τ0) component, and ignore the
initial bulk pressure and shear-stress tensor, as well as
set T τi(τ0) = 0, or equivalently set the spatial compo-
nents of the four-velocity uµ(τ0) = γ(1,vT (τ0), v

η(τ0))
initially to zero. Here vη(τ0) = 0 follows from the con-
dition y = ηs that corresponds to vz = z/t in the colli-
sion frame. The remaining diagonal components of the
energy-momentum tensor are then given by the EoS as
T ij(τ0) = P (e(τ0))δ

ij , where now in the absence of initial
transverse flow, e(τ0) = T ττ (τ0).

We note that this way of initializing does not explicitly
conserve energy, but with σ∥ = 0.15 the total energy is
increased only by ∼ 1 %, while with e.g. σ∥ = 0.5 al-
ready by ∼ 13 %. On the other hand, dE/dηs with a
rapidity independent distribution of particles would be
conserved in the smearing. The MC-EKRT distribution
is not rapidity independent, but in practice dE/dηs is
almost identical before and after the smearing of parton
distribution in the mid-rapidity region. Only at larger ra-
pidities, where experimental data are not available in any
case, we start to see the the smeared case dE/dηs deviat-
ing from the unsmeared minijet dE/dηs. This is shown in
Fig. 11, where we compare event-averaged dE/dηs com-
puted from the MC-EKRT partons to those obtained af-
ter smearing with different values of σ∥.
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FIG. 11: Spacetime rapidity distribution of the event-
averaged initial energy, dE/dηs as a function of ηs, at τ = τ0
in 0-5 % central (a) and 60-70 % central (b) 5.02 TeV Pb+Pb
collisions, obtained from the minijets before the smearing
(markers) and after the smearing with a fixed transverse width
σ⊥ = 0.15 fm and with different longitudinal widths σ∥ (solid,
dashed and dotted-dashed curves). The smaller panels show
the relative difference between the smeared and unsmeared
cases.

3. Averaging initial conditions

The above construction gives us the initial energy den-
sity event-by-event. As an example, the energy density
distribution at τ = τ0 obtained from a single event is
plotted in the x-y and ηs-x planes in panels (a) and (b)
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FIG. 12: Initial energy density profile above the QCD tran-
sition temperature Tc = 0.156 GeV [115] at τ = τ0 computed
from a single MC-EKRT event in the x-y plane (a), and in
the ηs-x plane (b).

of Fig. 12, respectively. Here we, however, want to avoid
computationally very intensive 3+1D event-by-event hy-
drodynamic simulations, and therefore compute event-
averaged initial conditions. As explained in Sec. II F, we
perform first the centrality selection according to the to-
tal initial transverse energy computed from the partons,
and average the initial conditions within each centrality
class. The hydrodynamic evolution is then computed for
each event-averaged initial conditions, i.e. one hydrody-
namic simulation per centrality class.

We first convert each event-by-event initial energy-
density profile to an entropy-density profile using the
EoS, and then average the entropy-density profiles and
convert the averaged entropy density back to energy den-
sity. The reason for this is that the total initial entropy

and the final hadron multiplicity have nearly a linear re-
lation, and therefore averaging over the entropy-density
profiles rather than over the energy-density profiles is a
better approximation for obtaining the event-averaged
final multiplicities, and their centrality dependence [28].
The difference here comes from the non-linear relation
between the energy and entropy densities. The linear re-
lation between the multiplicity and the initial entropy is
somewhat broken by event-by-event fluctuations in the
entropy production due to dissipation, but those fluctu-
ations relative to total entropy production are typically
small in central and semi-central collisions [17].

IV. RESULTS

In the following, we have applied MC-EKRT to 5.02
TeV and 2.76 TeV Pb+Pb, and 200 GeV Au+Au colli-
sions. In particular, we explore here how the centrality
and pseudorapidity dependence of charged particle mul-
tiplicity at different collision energies is affected by differ-
ent choices of the Gaussian smearing and shear viscosity.
We will also discuss the role of the energy conservation
at different collision energies.

For each investigated collision system 100 000 mini-
mum bias events were produced and sorted in centrality
classes based on their initial transverse energy ET . The
Gaussian smearing widths were chosen to be σ⊥ = 0.15
or 0.4 fm in the transverse plane and the longitudinal
smearing width was fixed to σ∥ = 0.15. The ratio of
shear viscosity to entropy density η/s was taken either
as constant, tuned to approximately reproduce the ellip-
tic flow measurements at RHIC and LHC, or to follow
the temperature dependent η/s = param1 from Ref. [17]
(see Fig. 1 there).

The free parameters in the MC-EKRT model, namely
K and κsat, were tuned to approximately reproduce the
centrality dependence of charged particle multiplicity at
midrapidity. The saturation parameter κsat was kept the
same for all systems, but the pQCD K-factor was tuned
for each collision system separately. We note that the
parameter values quoted here are specific to these re-
alizations of MC-EKRT computation, and are different
for different choices of e.g. smoothing and viscosity. Also
event-by-event fluctuations would likely change these val-
ues.

A. Data comparison with event-averaged initial
state

1. Charged particle pseudorapidity distribution

Figures 13, 14, and 15 show the charged particle
pseudorapidity (η) distributions for

√
sNN = 5.02 TeV

Pb+Pb, 2.76 TeV Pb+Pb, and 200 GeV Au+Au colli-
sions, respectively. The centrality classes are quoted in
the figures. We show all the cases tested here, namely
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FIG. 13: Charged particle multiplicity dNch/dη as a function of pseudorapidity in Pb+Pb collisions at
√
sNN = 5.02 TeV,

compared with ALICE data [116] (filled markers) and [117] (open markers). Left panels show the results with all the filters
on, and the curves with markers in the right panels show the results with only the saturation filter on. The solid green and
dashed-dotted red curves are the same in the left and right panels.
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FIG. 14: Charged particle multiplicity dNch/dη as a function of pseudorapidity in Pb+Pb collisions at
√
sNN = 2.76 TeV,

compared with ALICE data [118] (filled markers) and [119] (open markers). Left panels show the results with all the filters
on, and the curves with markers in the right panels show the results with only the saturation filter on. The solid green and
dashed-dotted red curves are the same in the left and right panels.



22

−6 −4 −2 0 2 4 6

η

0

100

200

300

400

500

600

700

d
N

ch
/d
η

Au+Au 200 GeV (0-6)%

PHOBOS

σ⊥ = 0.15 fm η/s = 0.20
κsat =3.0 K = 5.5

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

−6 −4 −2 0 2 4 6

η

0

100

200

300

400

500

600

700

d
N

ch
/d
η

Au+Au 200 GeV (0-6)%

PHOBOS

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

param1 sat only K = 3.8

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

η/s = 0.16 sat only K = 2.3

−6 −4 −2 0 2 4 6

η

0

50

100

150

200

250

d
N

ch
/d
η

Au+Au 200 GeV (25-35)%

PHOBOS

σ⊥ = 0.15 fm η/s = 0.20
κsat =3.0 K = 5.5

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

−6 −4 −2 0 2 4 6

η

0

50

100

150

200

250
d
N

ch
/d
η

Au+Au 200 GeV (25-35)%

PHOBOS

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

param1 sat only K = 3.8

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

η/s = 0.16 sat only K = 2.3

−6 −4 −2 0 2 4 6

η

0

20

40

60

80

100

d
N

ch
/d
η

Au+Au 200 GeV (45-55)%

PHOBOS

σ⊥ = 0.15 fm η/s = 0.20
κsat =3.0 K = 5.5

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

−6 −4 −2 0 2 4 6

η

0

20

40

60

80

100

d
N

ch
/d
η

Au+Au 200 GeV (45-55)%

PHOBOS

σ⊥ = 0.15 fm param1
κsat =2.0 K = 6.0

param1 sat only K = 3.8

σ⊥ = 0.4 fm η/s = 0.16
κsat =4.0 K = 3.9

η/s = 0.16 sat only K = 2.3

FIG. 15: Charged particle multiplicity dNch/dη as a function of pseudorapidity in Au+Au collisions at
√
sNN = 200 GeV,

compared with PHOBOS data [120]. Left panels show the results with all the filters on, and the curves with markers in the
right panels show the results with only the saturation filter on. The solid green and dashed-dotted red curves are the same in
the left and right panels.

σ⊥ = 0.15 fm with η/s = 0.20, σ⊥ = 0.15 fm with
η/s = param1, and σ⊥ = 0.4 fm with η/s = 0.16. The
values of κsat and K for each case are indicated in the
figures. The left panels show the full results where sat-
uration, energy conservation, and valence-quark number
conservation are taken into account. The curves with

markers in the right panels show the results with satu-
ration only, demonstrating the role of saturation in the
energy conservation, as well as the role of the per-nucleon
level energy conservation in narrowing the rapidity dis-
tributions.

The values for the K factors that are needed to re-
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produce the data are increasing with decreasing collision
energy. This is in line with the expectation that NLO
corrections become increasingly important towards lower
collision energy [66, 67]. We can, however, see that the
centrality dependence of the multiplicity is well described
by collision energy independent κsat. This is already a
non-trivial result, even if we have some freedom to tune
the centrality dependence by changing κsat. The range
of the centrality dependence with different values of κsat
is, as shown in Fig. 9, quite limited. Thus, the centrality
dependence of multiplicity is relatively robust prediction
of the MC-EKRT model, and the good agreement with
the data is similar to the NLO EbyE EKRT model [17],
where 2+1 D fluid dynamics was employed.

A significant new feature in the MC-EKRT model is
that we can obtain full 3D initial conditions, and subse-
quently we can compute the pseudorapidity dependence
of the charged particle multiplicity. The overall agree-
ment with the rapidity spectra is encouragingly good.
At both LHC energies we can essentially reproduce the
measurements in all the centrality classes. Only in the
most peripheral collisions with |η| > 2, we can start to
see some more significant deviations from the shape of
the measured rapidity distribution. In the most central
collisions at RHIC the agreement is very similar as at the
LHC. In peripheral collisions we start to get too narrow
spectrum, but even then the agreement remains good up
to |η| ∼ 2.

The transverse smoothing range σ⊥ and the η/s
parametrization slightly affect both the centrality depen-
dence and the width of the rapidity spectra. The en-
ergy per unit rapidity is independent of σ⊥, but since
the conversion from energy density to entropy density is
non-linear, the final multiplicity depends on σ⊥. As a re-
sult, the rapidity spectra get wider with larger smoothing
range. Temperature dependence of η/s also affects the
width of the rapidity distribution through the entropy
production. If η/s increases with increasing tempera-
ture, the relative entropy production becomes larger at
higher temperatures or energy densities, and the rapidity
distribution becomes narrower than with a constant η/s.
Even though the main features of the rapidity spectra are
here coming from the MC-EKRT model, the finer details
of the obtained spectra depend also on the details of the
initialization and on the details of the fluid dynamical
evolution.

In the right panels of Figs. 13, 14, and 15 we show the
charged particle pseudorapidity distributions with satu-
ration only, i.e. we do not explicitly impose the nucleon-
level energy and valence-quark number conservations. As
we can see from the figures, comparing the curves with
and without the markers, the rapidity distributions be-
come wider without the per-nucleon energy conservation.
This is natural, as dijets with large rapidity carry a lot
of energy, and are thus more constrained by the energy
conservation. It is interesting to note that the saturation-
only results can also reproduce the shape of the rapid-
ity distribution in peripheral Au+Au collisions at RHIC.

On the other hand, the saturation-only distributions with
κsat = 4 at the LHC tend to get too wide in the most
central collisions.

We have checked that with the saturation-only κsat = 4
central-collision cases, i.e. with weaker saturation, the en-
ergy conservation of the contributing nucleons is violated
on the average already by ∼ 50 % at the LHC, and ∼ 20
% at RHIC. Interestingly, however, with the saturation-
only κsat = 2 central-collision cases, i.e. with stronger
saturation, the average violation is only ∼ 5 % at the
LHC, and energy is practically conserved at RHIC.

These results suggest that, given strong enough satu-
ration, the total energy budget could be conserved even
without a requirement of a tight per-nucleon energy con-
servation, supporting the view that the high-energy nu-
clear collisions can be described as collisions of two par-
ton clouds rather than as a collection of sub-collisions of
individual nucleons.

2. Charged particle elliptic flow

Figure 16 shows the pseudorapidity dependence of el-
liptic flow, the second-order Fourier coefficient v2{4} of
the azimuthal angle distribution of charged hadrons, in
semi-central 2.76 TeV Pb+Pb and 200 GeV Au+Au col-
lisions. The model results are calculated using the 4-
particle cumulant method [123]. Since our initial en-
ergy density profiles are averages over multiple events,
v2{EP} ≈ v2{2} ≈ v2{4} 2.

The η-differential flow is determined with respect to a
reference flow vector, which is typically constructed from
particles in a separate rapidity bin to avoid autocorrela-
tions. For the comparison with the ALICE data [121], the
reference flow vector is calculated using particles in the
TPC pseudorapidity acceptance |ηref | < 0.8 and in addi-
tion there is also a pT cut (0.2 < pT < 5.0) GeV. When
calculating v2(η) in the rapidity bins with |η| > 2.0, the
particles in the η bin are correlated with the full refer-
ence flow vector. For the rapidity bins with |η| < 2.0,
the particles with η < 0 are correlated with the positive-
rapidity reference particles 0 < ηref < 0.8, while the neg-
ative reference −0.8 < ηref < 0 is used for particles with
η > 0. In the PHOBOS comparison [122], the reference
flow for the η < 0 bins is determined from particles in
the pseudorapidity range 0.1 < ηref < 2.0 and the refer-
ence for η > 0 is determined from particles in the range
−2.0 < ηref < −0.1.

As our average initial energy density profiles lack
event-by-event fluctuations, at present the comparison
to v2 data has to be considered more qualitative than

2 PHOBOS states in Ref. [122] that their event plane v2{EP} re-
sults are most consistent with the 4-particle cumulant method,
so we consider v2{EP} and v2{4} to be comparable in this par-
ticular case.
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FIG. 16: Charged particle v2{4} as a function of pseudorapidity in Pb+Pb collisions at
√
sNN = 2.76 TeV, in the 20-30 %

centrality class, compared with ALICE data [121] (left panel), and in Au+Au collisions at
√
sNN = 200 GeV, in the 15-25 %

centrality class, compared with PHOBOS hit-based event plane v2 data [122] (right panel). The curves without markers show
the results with all filters on, and the ones with markers the saturation-only cases. The parameter setups and the curve labelings
are the same as in Figs. 13-15.

quantitative in nature. Nevertheless, the currently ob-
served trends look very promising; the magnitude of v2
is already close to data for both investigated collision
systems, and we observe stronger dependence on pseu-
dorapidity at 200 GeV compared to 2.76 TeV, as is also
suggested by the data. This steeper fall-off of dv2/dη at
RHIC can be understood as a sign of incomplete con-
version of spatial eccentricity into momentum anisotropy
due to the shorter lifetime of the hot QCD medium at
lower collision energies. This result is rather robust with
respect to the implementation details of the MC-EKRT
initialization. The largest effect is seen when relaxing the
energy conservation requirement, which leads to a visi-
ble decrease in v2, but in this case we have not tried to
adjust η/s to reproduce the data.

B. Event-by-event fluctuations of the initial state
eccentrities

Even though we have not performed here event-by-
event fluid dynamical evolution, we can still compute the
initial state eccentricities event-by-event, and in partic-
ular examine the decorrelation of the eccentrities as a
function of spacetime rapidity. The spatial eccentricity
vector with the magnitude ϵ2 pointing at the angle Ψ2

can be defined as a complex number constructed from a
weighted average,

ϵ2e
i2Ψ2 =

∑
k wkr

2
ke

i2ϕk

∑
k wkr2k

=

∑
k wkr

2
k(cos(2ϕk) + i sin(2ϕk))∑

k wkr2k
.

Here r and ϕ indicate the polar coordinates (radius and
angle) in the transverse plane: r2 = x̂2 + ŷ2, cos(2ϕ) =

(x̂2 − ŷ2)/r2 and sin(2ϕ) = 2x̂ŷ/r2, where we have de-
fined x̂ = x − xcm and ŷ = y − ycm with respect to the
center-of-mass point (xcm, ycm) =

(∑
k wkxk∑
k wk

,
∑

k wkyk∑
k wk

)
.

The weight wk is the initial energy density at τ = τ0 in
a hydro cell and the sum is over the cells in a transverse
slice of the hydro grid which has the width ∆ηs.

Once we have determined the eccentricities for each
event, we can compute the Pearson correlation of the
eccentricity magnitudes between different rapidity bins
ηs and ηs0,

c(ϵ2(ηs),ϵ2(ηs0))

=
⟨(ϵ2(ηs)− ⟨ϵ2(ηs)⟩)(ϵ2(ηs0)− ⟨ϵ2(ηs0)⟩)⟩

σ(ϵ2(ηs))σ(ϵ2(ηs0))
, (70)

where ⟨·⟩ indicates an average over events and σ is the
corresponding standard deviation.

In Fig. 17 we show the event-averaged eccentricities
and the Pearson correlations between the eccentricities
at finite rapidity ϵ2(ηs) and midrapidity ϵ2(ηs0 = 0) in
Pb+Pb collisions at

√
sNN = 2.76 TeV in the LHC and in

Au+Au collisions at
√
sNN = 200 GeV at RHIC. The ra-

pidity bin width was chosen to be ∆ηs = 1.0. The event-
averaged eccentricities remain nearly constant close to
midrapidity, but both at RHIC and LHC the eccentricity
starts to increase at higher rapidities. We also see that
if we relax the energy conservation, the mid-rapidity ec-
centricities decrease by ∼ 10 % at the LHC, and ∼ 15
% at RHIC, which explains the decrease in v2 in the
saturation-only cases in Fig. 16.

As seen in the right panel of Fig. 17, the Pearson corre-
lation becomes weaker at higher rapidities, and at RHIC
the eccentricity beyond |ηs| >∼ 3.5 is no longer correlated
with midrapidity, while at the LHC the correlation spans
a considerably larger rapidity range |ηs| <∼ 5.0. The de-
creasing number of particles at RHIC compared to the
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FIG. 17: Spacetime rapidity dependence of the event-averaged eccentricity (left panel) and the Pearson correlation (right
panel) between ϵ2(ηs) and ϵ2(ηs = 0) (midrapidity bin indicated by the gray band) in 20-30 % central Pb+Pb collisions at√
sNN = 2760 GeV and in 15-25 % central Au+Au collisions at

√
sNN = 200 GeV. The dashed blue and dotted red curves

show the results with all filters on, and the dashed dark blue and dotted brown curves the saturation-only cases. The errorbars
show the standard deviation of the calculation.

LHC, and also towards larger rapidities leads to larger
fluctuations of eccentricity, and therefore also to a weaker
correlation with midrapidity at RHIC and at large ra-
pidities. In the saturation-only cases the correlation is
stronger at large rapidities than in the fully filtered cases.
To our understanding, also this is a multiplicity effect,
originating from the increased multiplicities at larger ra-
pidities.

We also note that the Pearson correlation from the
EbyE initial conditions should not be directly compared
to the rapidity dependence of elliptic flow in Fig. 16. The
elliptic flow is computed from event-averaged initial con-
ditions, and all the decorrelation effects disappear in the
averaging. We rather expect that the decreasing multi-
plicity at larger rapidity leads to a shorter lifetime in the
fluid evolution, and thus the conversion from eccentric-
ity to elliptic flow is not completed at higher rapidities,
and we get smaller v2. In a full EbyE computation both
the lifetime effect and the decorrelation effect would be
present.

The CMS collaboration has defined the rapidity de-
pendent correlation ratio [124] as

r2 =
⟨v2(−η)v2(ηref) cos 2 [Ψ2(−η)−Ψ2(ηref)]⟩
⟨v2(η)v2(ηref) cos 2 [Ψ2(η)−Ψ2(ηref)]⟩

, (71)

where the η bin is somewhere in the central rapidity re-
gion 0 < η < 2.5, its negative-side counterpart is at −η,
and the reference bin will be somewhere further away
in forward rapidity ηref > 3.0 to reduce nonflow effects.
Since we have performed full MC-EKRT + fluid dynam-
ics simulations only for event-averaged initial profiles, we
are not able to study event-by-event fluctuations of v2.
We can, however, estimate r2 from the pre-averaging ec-
centricities, assuming v2(η) ≈ kϵ2(ηs) for some propor-
tionality factor k:

r2 ≈ ⟨ϵ2(−ηs)ϵ2(ηs,ref) cos 2 [Ψ2(−ηs)−Ψ2(ηs,ref)]⟩
⟨ϵ2(ηs)ϵ2(ηs,ref) cos 2 [Ψ2(ηs)−Ψ2(ηs,ref)]⟩

,

(72)
where Ψ2 is obtained from Eq. (70). Using the same
replacement v2 → ϵ2 we can also investigate the “twist
factor” Rn|n;2 ≡ R2, by the ATLAS collaboration [125]
where the ratio is controlled by the cosine term:

R2 ≈ ⟨ϵ2(−ηs,ref)ϵ2(−ηs)ϵ2(ηs)ϵ2(ηs,ref) cos 2 [Ψ2(−ηs,ref)−Ψ2(ηs,ref) + (Ψ2(−ηs)−Ψ2(ηs))]⟩
⟨ϵ2(−ηs,ref)ϵ2(−ηs)ϵ2(ηs)ϵ2(ηs,ref) cos 2 [Ψ2(−ηs,ref)−Ψ2(ηs,ref)− (Ψ2(−ηs)−Ψ2(ηs))]⟩

. (73)

We show the eccentricity correlation ratio r2 and twist
factor R2 in Fig. 18 in 20-30 % central Pb+Pb collisions
at

√
sNN = 2.76 TeV and in 15-25 % central Au+Au col-

lisions at
√
sNN = 200 GeV. Both r2 and R2 show a sim-

ilar behavior as the Pearson correlator, i.e. decorrelation
at larger rapidities, and the decorrelation is stronger at
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RHIC than at the LHC. The decreasing trend of the cal-
culated r2 and R2 is similar as seen in the CMS and AT-
LAS measurements, but the calculated r2 and R2 show
slightly stronger correlations than the measurements do.
However, as we do not perform event-by-event fluid dy-
namical evolution, a direct comparison is not really fea-
sible here [38], but our results should be rather taken as
qualitative.

V. CONCLUSIONS

We have developed a new MC-EKRT model for
computing initial particle production in ultrarelativis-
tic heavy-ion collisions. This is an extension of the
EbyE EKRT model [17], which has very successfully
predicted the midrapidity low-pT observables from 200
GeV Au+Au collisions at RHIC to the top energy LHC
Pb+Pb collisions. The essential new feature in the
new Monte-Carlo framework is the implementation of
the dynamical minijet-multiplicity-originating fluctua-
tions in the saturation and particle production. Also en-
ergy/momentum conservation and valence-quark number
conservation were implemented, together with a new type
of spatially dependent nuclear PDFs that cope with the
large density fluctuations present in an event-by-event
study. As a result, the MC-EKRT model now gives a full
3-dimensional initial state that can be coupled to 3+1 D
fluid dynamics.

We have applied the novel MC-EKRT framework to
5.02 TeV Pb+Pb, 2.76 TeV Pb+Pb, and 200 GeV Au+Au
collisions. The 3+1 D spacetime evolution is computed
with viscous relativistic hydrodynamics [73]. We have
studied the uncertainties related to converting the par-
tonic state, given by the MC-EKRT, to an initial state
of fluid dynamics, and also discussed the role of energy
conservation in rapidity distributions of charged particle
multiplicities and elliptic flow coefficients.

Although the MC-EKRT initial state model gives the
full 3–dimensional initial state that include all the EbyE
fluctuations, we have here made only an exploratory
study of the final observables. The main simplification
here is that we have first computed the initial conditions
by averaging a large number of EbyE MC-EKRT initial
states for each centrality class, and then computed the
fluid dynamical evolution only for the averaged initial
conditions. Obviously, this limits the number of observ-
ables that we can study, but it also decreases the com-
putational cost by a huge amount. The averaging of the
initial conditions is performed in such a way that the
final multiplicities resemble as closely as possible those
that would be obtained by a full EbyE computation.

The comparison with the measured charged particle
multiplicities at the LHC and RHIC shows that MC-
EKRT can describe the centrality dependence of the
multiplicity very well, practically at the same level as
the earlier EbyE EKRT implementation. Moreover, the
new framework describes the rapidity dependence as well.

The overall agreement with the measured shape of the ra-
pidity spectra is very good. This is a non-trivial result, as
it is a rather robust outcome from the MC-EKRT model,
and essentially dominated by the pQCD minijet produc-
tion and saturation. Note also that there is no parame-
ter to directly control the rapidity distribution. Only in
peripheral collisions at RHIC we start to see larger de-
viations from the data. Interestingly, we observed that
when we give up the detailed nucleon-level energy con-
servation, the agreement with the data extends all the
way to peripheral RHIC collisions. This might indicate
that in the view that ultrarelativistic nuclear collision are
rather collisions of parton clouds than collisions between
individual nucleons, the nucleon-level energy conserva-
tion is an unrealistically strict condition.

We have also computed the rapidity dependence of el-
liptic flow, and the agreement with the LHC and RHIC
data is good. The rapidity dependence of the computed
v2 is only slightly weaker than that of the data. Even
though the computation of the flow coefficients without
EbyE fluctuations should be viewed rather as qualitative
than quantitative, the fact that the computed rapidity
dependence of the elliptic flow is very similar to what
is seen in the data is very promising. Moreover, we see
that the EbyE initial state eccentricities at different ra-
pidities are slightly decorrelated. As these decorrelations
are not accounted for in the averaged initial state, our
result suggests that eventually the computation of the
true EbyE flow coefficients that include the decorrela-
tions could show a slightly stronger rapidity dependence
than the ones now computed from the averaged initial
state.

As an outlook, we can see various exciting avenues
along which the current MC-EKRT framework can be
developed further. First, similarly to Refs. [66, 67], a
well-defined NLO pQCD calculation for the integrated
minijet cross section σab

jet, which determines the multi-
plicity of the candidate dijets here, can and should be
done, and also its snPDF and scale dependencies should
be charted. Second, pQCD parton showering should be
included as a dynamical way to distribute the initially
produced parton’s energy and momentum into the phase
space. Third, also a more detailed spacetime picture of
parton production along the lines of Ref. [114] should be
studied, relaxing especially the assumption of all partons
being produced at z = 0 and thus making the initial
parton production more isotropic. Fourth, pre-thermal
evolution, i.e. the effects of the isotropizing and thermal-
izing secondary collisions of the produced partons [126–
137] should be considered. After all these developments,
an extraction of the full initial energy-momentum tensor
Tµν for 3+1 D fluid dynamics could be more realistically
done, and effects of e.g. initial velocity [36, 138, 139] and
shear-stress tensor to observables studied. Finally, we
note that the MC-EKRT framework provides a promis-
ing platform for jet-quenching studies, where both the
QCD-matter initial conditions for fluid dynamics and the
high-energy partons that are losing energy are consistenly
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obtained from the same computation, event-by-event.
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Effects of saturation and fluctuating hotspots for flow observables
in ultrarelativistic heavy-ion collisions
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We investigate the effects of saturation dynamics on midrapidity flow observables by adding fluc-
tuating hotspots into the novel Monte Carlo EKRT (MC-EKRT) event generator for high-energy
nuclear collisions. We demonstrate that the intensity of the saturation effects significantly affects
the ratio between the flow coefficients v3 and v2 at the LHC. Adding a hotspot substructure to the
nucleons enhances the saturation effects and improves the agreement with the measured data. We
show that the collision-energy dependence of the flow coefficients obtained using the MC-EKRT
initial states with hotspots is improved in comparison with the earlier event-by-event EKRT model.
In addition, we present the results for the charged hadron multiplicity distribution in Pb+Pb colli-
sions at the LHC, and show that the minijet-multiplicity originating fluctuations of the saturation
scale included in MC-EKRT, as well as the presence of hotspots, are necessary for describing the
measured large-multiplicity tail in the distribution.

I. INTRODUCTION

The highest-energy nucleus-nucleus collisions, ultrarel-
ativistic heavy-ion collisions, which are currently per-
formed at the CERN Large Hadron Collider (LHC) and
at the Brookhaven National Laboratory (BNL) Relativis-
tic Heavy Ion Collider (RHIC), aim at determining the
properties of the nearly net-baryon-free hot Quark-Gluon
Plasma (QGP). One also strives for a detailed under-
standing of the strong-interaction dynamics that is re-
sponsible for the creation and further evolution of the
QGP in these collisions. See e.g. Ref. [1] for a review.

According to lattice simulations of Quantum Chromo-
dynamics (QCD, the theory of the strong interaction) the
strongly-interacting matter takes the form of the QGP
at high temperatures of T ≳ 150 − 160 MeV [2, 3] at a
vanishing baryochemical potential. Quarks and gluons
can be produced in ultrarelativistic heavy-ion collisions
from the kinetic energy of the colliding nuclei so copiously
that the effective temperature (energy over particle ratio)
of the system clearly exceeds 160 MeV. In these condi-
tions, the normal formation of the color-confined, color-
singlet bound states, hadrons, is momentarily inhibited,
and a nearly-thermalized QGP, where the degrees of free-
dom are colored gluons, quarks and antiquarks, can be
formed. The subsequent spacetime evolution stages of
such a QCD matter – the expansion and cooling of the
QGP, the cross-over transition to a hadron gas, followed
by the expansion and cooling of the hadron gas – as well
as the simultaneous appearance of the QGP and hadron-
gas phases in different density regions of the expanding
system, are describable in terms of relativistic dissipative
fluid dynamics [4–27]. While QCD is a cornerstone of
the Standard Model of particle physics, relativistic fluid
dynamics has become a standard tool in the analysis of
heavy-ion observables.

The determination of the QCD matter properties, such
as its equation of state and transport properties like the
shear and bulk viscosities, from the measured LHC and

RHIC observables is a highly challenging task. Clearly,
a precise determination requires a simultaneous analysis
of as many heavy-ion observables as possible, from as
many collision systems and collision energies as possible
– a “global analysis” of heavy-ion observables [11, 14, 17,
28]. A proper statistical analysis, Bayesian inference [26,
29–40] is necessary for setting well-defined uncertainties
to the extracted matter properties. Interestingly, neural
networks are currently making it possible to include also
statistics-expensive observables, such as complicated rare
flow correlators, into the global analysis [41, 42] (see also
Ref. [43]).

The mentioned global analyses of heavy-ion observ-
ables are based on a fluid-dynamical description, which
takes initial densities and flow velocities of the pro-
duced QCD matter as initial conditions. One either
parametrizes these initial conditions [26, 29–33, 35–
40, 44] or tries to compute them from a QCD dynamical
model for the initial production of gluons and quarks
[14, 17, 28, 38]. In both cases there is some number of
fit parameters that characterize the initial states, and
these will obviously be correlated with the actual QCD-
matter properties extracted from the data via Bayesian
inference. It is therefore important to model the QCD-
matter initial states based on QCD dynamics as far as
is possible, in order to understand the dominant parti-
cle production mechanism, to reduce the uncertainties in
the extraction of the initial states, and to have predictive
power for moving from one system to another.

The EKRT (Eskola-Kajantie-Ruuskanen-Tuominen)
model [17, 45–47], which treats the nuclear collisions as
collisions of parton clouds, and supplements a perturba-
tive QCD (pQCD) calculation for the production of few-
GeV partons (minijets) [48, 49] with a collinear factoriza-
tion -inspired QCD saturation mechanism [17, 47] for reg-
ulating the small-pT minijet production (pT being trans-
verse momentum), is an example of such a QCD-based
initial state modeling with predictive power. The event-
by-event (EbyE) version of the model, EbyE-EKRT [17],
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has been quite successful in explaining a large collec-
tion of heavy-ion bulk observables at the LHC and RHIC
[17, 28, 34, 50–52]. The latest progress here is the novel
MC-EKRT event generator (MC for Monte Carlo), intro-
duced recently in Ref. [53], and employed in the present
article.

The new features in MC-EKRT [53] relative to EbyE-
EKRT [17] are that now the produced partonic system
contains local fluctuations of the minijet multiplicity,
which in turn induce dynamical fluctuations to the satu-
ration controlling the initial parton production. Also per-
nucleon conservation of energy and valence-quark num-
bers are accounted for. MC-EKRT also introduces a new
type of spatially dependent nuclear parton distribution
functions (snPDFs) that are specific to the nucleon con-
figuration in each event and can cope with the largest
density fluctuations of the nucleon densities. Thanks to
these new features, MC-EKRT gives initial conditions
for full 3+1 D EbyE fluid-dynamics, and thus enables
the studies of rapidity-dependent observables, such as
rapidity distributions of yields and flow coefficients of
charged hadrons in Pb+Pb collisions at the LHC and
at the highest-energy Au+Au collisions at RHIC – see
Ref. [53].

In this paper, we employ the new MC-EKRT frame-
work for computing event-by-event initial conditions for
2+1 D dissipative shear- and bulk-viscous second-order
transient fluid-dynamics in the mid-rapidity unit of 5.02
and 2.76 TeV Pb+Pb collisions at the LHC. In particu-
lar, we study the sensitivity of the flow coefficients vn to
the model details, such as the nucleonic width and sub-
structure, the Gaussian smearing in coupling the individ-
ual minijets to continuous fluid dynamics, as well as the
order in which we do the minijet filtering based on satu-
ration and conservation of energy. In addition, we show
how the added minijet multiplicity fluctuations are the
piece formerly missing from EbyE-EKRT in explaining
the behaviour of the charged multiplicity distributions
in the most central collisions. The recently developed
neural networks for predicting flow observables directly
from the initial energy density event-by-event [41, 42],
are also utilized. As the main result of this paper, we
show that a detailed simultaneous description of the vn’s
requires saturation to be the driving QCD mechanism
for initial parton production. In particular, this result
calls for further nucleonic substructure – hotspots – to
be introduced in MC-EKRT. We also implement these in
MC-EKRT and discuss their interesting interplay with
saturation, in describing the v2/v3 ratio as well as in ex-
plaining the measured charged multiplicity distributions.

II. MC-EKRT INITIAL STATE FOR FLUID
DYNAMICS

A. Minijet sampling

The MC-EKRT event generator of Ref. [53] produces
partonic initial states, i.e. saturated systems of gluons
and quarks with pT ≳ p0 ∼ 1 GeV, that can be fed as ini-

tial conditions to 3+1 D event-by-event fluid-dynamical
simulations. The generation of such MC-EKRT initial
states proceeds via the following steps (for details, see
Ref. [53]):

First, the nucleon configurations of the colliding (here
spherically symmetric) nuclei A and B are generated by
sampling the standard 2-parameter Woods-Saxon distri-
bution, and by requiring an exclusion radius of 0.4 fm.
A squared impact parameter b2AB for the A+B collision,
defining the distance between the centers of masses of the
colliding nuclei, is sampled from a uniform distribution.
In the absence of hotspots (i.e. without sub-nucleonic
density fluctuations), the A+B collision is triggered us-
ing MC Glauber-like black-disc nucleons with a trigger
cross section identical to the inelastic nucleon-nucleon
cross section σNN

inel , which is obtained from the measured
total and elastic nucleon-nucleon cross sections as a func-
tion of the nucleon-nucleon center-of-momentum (cms)
system energy

√
sNN [54, 55].

Once the A+B collision is triggered, MC-EKRT does
not consider nucleonic sub-collisions at all but pictures
the entire nuclear collision as a collision of two extensive
parton clouds. For distributing the parton sub-clouds
spatially around each nucleon, MC-EKRT assumes a
Gaussian thickness function,

TN (s̄) =
1

2πσ2
N

exp

(
− |s̄|2
2σ2

N

)
, (1)

with a width parameter σN = σN (
√
sNN ) that is

obtained from exclusive photo-production of J/Ψ in
photon-proton collisions at HERA [56, 57]. Then, mul-
tiple dijet production, i.e. the number of independent
dijets with jet transverse momentum pT ≥ p0 = 1 GeV,
that is assigned to originate from each ab pair, is sampled
from a Poissonian probability distribution with a mean

N̄ab
jets = TNN (b̄ab)σ

ab
jet(p0,

√
sNN , {s̄a}, {s̄b}), (2)

where TNN (b̄ab) is the nucleonic overlap function and b̄ab
is the impact parameter between the nucleons a and b,
while σab

jet is the integrated pQCD (mini)jet cross section,
which MC-EKRT computes using the novel snPDFs for a
and b, and all possible leading-order (LO) partonic 2 → 2
sub-processes. A cms-energy dependent multiplicative
K-factor is introduced to σab

jet as a free fit parameter, to
account for the missing higher order contributions. The
(mini)jet cross section depends on the transverse momen-
tum cut-off parameter p0, on the cms energy

√
sNN , as

well as on the transverse locations s̄a and s̄b of a and b
in the nucleon-configurations of A and B, indicated here
with {s̄a} and {s̄b}.

As explained in detail Ref. [53], the novel snPDFs
are now nucleon-configuration specific and account for
the nuclear modifications of each nucleon’s PDFs caused
by all other nucleons in the nucleus. In other words,
the MC-EKRT snPDFs are nucleon-specific and nucleon-
configuration specific. Also noteworthy is that these
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novel snPDFs can fully cope with the event-by-event den-
sity fluctuations, which was not the case with the for-
merly developed spatial nPDFs, such as those in Ref. [58].
The MC-EKRT snPDFs are normalized (averaging over
all nucleons in each nucleus and over a large number of
nuclei) to the spatially averaged nuclear PDF modifica-
tions of the EPS09LO set [59], and CT14LO [60] are em-
ployed for the free proton PDFs.

Finally, the transverse location for each produced dijet
is sampled from the product of the two overlap func-
tions TN , whose transverse integral gives the usual over-
lap function TNN . The kinematic variables and the flavor
chemistry of the produced partons, along with identify-
ing the valence quark-consuming processes, is sampled
from the differential jet sub-cross sections, as explained
in Ref. [53].

B. Minijet filtering

The next, and decisive, step in MC-EKRT is the filter-
ing of the excessive candidate-dijets, based on the EKRT
saturation [17, 45–47] and conservation of energy and va-
lence quark numbers. As explained in [17, 47, 53] satura-
tion here is expected to occur when all the higher-order
(n > 2) → 2 parton processes start to dominate over the
2 → 2 ones. For maintaining collinear factorization at
the highest values of jet transverse momenta, the filter-
ings are performed in the order of decreasing factorization
scale, which here is the jet pT . Then, the highest-pT par-
tons can remain in the system while the lower-pT ones
may get filtered away.

For the saturation filtering, MC-EKRT assigns a trans-
verse radius 1/(κsatpT ) for each dijet candidate, where
κsat is a packing factor, a free parameter to be fitted from
the data. The transverse position of each candidate dijet
is kept track of, and a candidate dijet gets filtered away if
it overlaps with any of the previously accepted dijets. As
shown in Ref. [53], after the saturation filtering the pT
distribution of surviving partons is not anymore sensitive
to the original cut-off parameter p0 but now saturation is
the dynamical and local regulation mechanism for these
distributions. This is the major difference to the tradi-
tional minijet eikonal models (and models alike) which
are employed in event generators describing multiparton
interactions, such as HIJING [61].

Similarly, MC-EKRT keeps track of all the longitudi-
nal momentum fractions and valence quarks drawn out
from their mother nucleons by the candidate dijets. If
the candidate dijet would make its mother nucleon ex-
ceed its energy or valence-quark budget, again checking
the dijet candidates in the order of decreasing pT , then
that dijet candidate gets filtered away. In the EKRT
framework, in the spirit of suggesting saturation as the
dominant QCD-mechanism that regulates and controls
initial parton production in highest-energy nuclear col-
lisions, the default is to do the saturation filtering first,
and only then the energy and valence-quark number con-

servation filterings. There is, however, an option in the
code which we utilize and consequences we study in this
paper, to have all the filterings done simultaneously.

C. Nucleon substructure and hotspot trigger

The fluctuating substructure to the nucleons of the
MC-EKRT framework is implemented as follows. While
there is clear evidence that the nucleon substructure is
necessary for describing the measured incoherent J/ψ
photo-production [62], the situation is less clear in
heavy-ion collisions. The global analyses performed in
Refs. [37, 44] provide a slight preference towards the in-
clusion of the nucleon substructure, but the evidence is
not conclusive. However, these analyses use the TRENTo
[63] initial state model, in which the effect of the sub-
structure can partly be compensated with other initial
state parameters.

In the MC-EKRT model, the addition of the nucleon
substructure enhances the saturation effects since it con-
fines the minijet production into more localized trans-
verse regions. This leads to a change in the initial geom-
etry, which might have an impact on the flow observables.
The nucleon substructure is implemented by introducing
Gaussian hotspots to the nucleon thickness function:

TN (s̄) =
1

Nh

Nh∑

i=1

1

2πσ2
h

exp

(
−
∣∣s̄− s̄hi

∣∣2

2σ2
h

)
, (3)

where Nh is the number of hotspots, and σh is the width
of the hotspot. In this article, Nh = 3 is always used
when the nucleon substructure is enabled. The hotspot
locations s̄hi are sampled from a 2-dimensional Gaussian
distribution with a width σs. The total nucleon width σN
is then related to the hotspot widths via σ2

N = σ2
s + σ2

h.
Therefore, only two of the three widths are independent.
As in Refs. [53, 57, 64], the energy dependence of the
total nucleon width is parametrized as σN =

√
b with

b/GeV−2 = b0 + 4α′
P log

(
W

W0

)
. (4)

whereW =
√
sNN , and b0, α′

P andW0 are fit parameters.
In the present paper, our default choice of parameters,
based on the H1 measurements [64], are b0 = 4.63, α′

P =
0.164 and W0 = 90 GeV. This corresponds to σN =
0.517 fm for 2.76 TeV, and σN = 0.532 fm for 5.023 TeV
collision energies.

In principle, the nucleon substructure needs to be ac-
counted for when performing the triggering of the nuclear
collision event [65, 66] since otherwise there might be
events where the collision is accepted even though there
is no hadronic interaction. As mentioned before, with-
out any substructure, the triggering is done by assuming
hard-sphere scattering between two nucleons. The event
is accepted if the distance dNN

min between any nucleons
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a ∈ A and b ∈ B satisfy

dNN
min <

√
σNN

inel
π

, (5)

where σNN
inel is the inelastic nucleon-nucleon cross section.

The same kind of geometrical criterion can be extended
to account for the locations of the hotspots. That is, the
triggering with the nucleon substructure is done based
on the minimum distance between two colliding hotspots
dHS
min, i.e.

dHS
min <

√
σHS

π
, (6)

where σHS is an effective hotspot-hotspot cross section
fitted to reproduce the same nucleus-nucleus cross section
as obtained with condition (5). Therefore, the value of
σHS will depend on the hotspot sampling-width σs and
the collision system.

Even though in principle hotspot triggering could have
a notable impact, we have noticed that in most cases all
the measured observables remain nearly unchanged in the
0-80% centrality range. The largest effects are most vis-
ible in the most peripheral charged particle multiplicity
region, where usually no measured data are given. In the
60-80% centralities, the differences in charged particle
multiplicities are only a few percent at most. However,
since in MC-EKRT we sample dijets from the same nu-
cleon configuration until at least one is produced in a
collision, the addition of hotspot triggering there speeds
up the generation of the initial states.

D. Initialization of fluid dynamics

The initial condition of fluid dynamics is the energy-
momentum tensor Tµν at some initial proper time τ0.
However, MC-EKRT produces a list of massless par-
tons with known momentum rapidities yi, transverse mo-
menta pTi, and transverse coordinates x⊥,0i. Thus, the
partons need to be propagated to the τ0 surface and con-
verted to the components of the energy-momentum ten-
sor. Here we assume that all the partons are produced
at the longitudinal location zi = 0 at time t = 0, and
that they propagate as free particles to the proper time
τ0 = 0.2 fm. Therefore, spacetime and momentum ra-
pidities are equivalent, i.e. ηs,i = yi. The spacetime co-
ordinates of the parton i are then (τ0,x⊥i(τ0), ηs,i) where
x⊥i(τ0) = x⊥,0i + τ0pTi/pTi.

The components of the energy-momentum tensor in
the τ − ηs coordinates are obtained as in Ref. [53],

Tαβ(xα) =
∑

i

∫
d2pT dy

pαpβ

pτ
1

τ
cosh(y − ηs) (7)

× δ(2)(x⊥ − x⊥i)δ(ηs − ηs,i)δ
(2)(pT − pTi)δ(y − ηs),

where the four-momentum pα = (pτ ,pT , p
η) at a space-

time location xα = (τ,x⊥, ηs) is given by

pα =




pT cosh(y − ηs)
pT

τ−1pT sinh(y − ηs)


 . (8)

Depositing all energy and momentum of a parton into
a single cell on a hydro grid as suggested by the delta
functions appearing in Eq. (7) would lead to extreme
fluctuations in energy and momentum densities. To ob-
tain smooth density distributions, smearing is required.
Here we are performing 2+1 D hydrodynamic simula-
tions, where a natural choice is to let all partons that
are produced in the midrapidity window ∆y contribute
to the fluid dynamical initial state. That is, in Eq. (7)
we replace δ(ηs − ηs,i) → θ(∆y/2 − |ηs,i|)/∆y, where θ
is the Heaviside theta function. Here we use ∆y = 1.0,
but we have tested that the final results are practically
insensitive to the choice of ∆y as long as 0.5 ≤ ∆y ≤ 2.0.
The smearing in the transverse (x, y) plane is performed
by replacement δ(2)(x⊥ − x⊥i) → g⊥(x⊥;x⊥i), where

g⊥(x⊥;x⊥i) =
C⊥
2πσ2

⊥
exp

[
− (x⊥ − x⊥i)

2

2σ2
⊥

]
(9)

is a Gaussian distribution with transverse smearing width
σ⊥ which is normalized as

∫
d2x⊥g⊥(x⊥;x⊥i) = 1. (10)

The computation cost is reduced by imposing a ±3σ⊥
cut-off on the smearing range, and the coefficient C⊥
takes care of the unit normalization.

As in Ref. [53], we only consider the local rest frame
energy density e when initializing the fluid dynamical sys-
tem, i.e. we neglect the initial transverse velocity and the
initial components of the shear-stress tensor. Therefore,
the initialization is determined by

T ττ (τ0,x⊥,∆y) =

1

τ0∆y

∑

i

pTig⊥(x⊥;x⊥i)θ(∆y/2− |yi|), (11)

which in this case coincides with e. The remaining com-
ponents are then obtained, using the equation of state,
as T ij = P (e)δij .

Finally, we emphasize that even if we utilize only the
midrapidity minijets in computing the above initial con-
ditions, the underlying MC-EKRT event generation is
fully 3 D. Thus, the midrapidity initial conditions are in-
fluenced also by the finite-rapidity effects in saturation
and in energy conservation.

III. FLUID SIMULATION FRAMEWORK

The simulations performed in this article focus on
midrapidity observables and therefore we assume that the
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longitudinal expansion of the system is boost invariant.
The same framework as in Ref. [28] is used, i.e. we evolve
the initially formed strongly interacting matter using dis-
sipative fluid dynamics, and compute the final particle
spectra at the dynamical decoupling surface. Addition-
ally, the neural networks trained in Ref. [41] are utilized
for significantly decreasing the computation time of the
simulations. In this section, we give a brief recapitulation
of each aspect of the framework.

A. Fluid dynamics

Fluid dynamics is based on the local conservation laws
for energy, momentum, and conserved charges. Here we
neglect the conserved charges, in which case the conser-
vation law for the energy-momentum tensor, ∂µTµν = 0,
controls the dynamics. The energy-momentum tensor
can be decomposed with respect to 4-velocity uµ as

Tµν = euµuν − P∆µν + πµν , (12)

where ∆µν = gµν − uµuν is a projection operator, P =
− 1

3∆µνT
µν is the total isotropic pressure, e = Tµνuµuν

is the local rest frame energy density, and πµν = T ⟨µν⟩

is the shear-stress tensor. The angular brackets denote
the symmetric, traceless part of the tensor that is or-
thogonal to the fluid 4-velocity. Here the fluid velocity
is defined in the Landau frame, i.e. Tµ

νu
ν = euµ. The

bulk viscous pressure is defined as the deviation of the
isotropic pressure P from the equilibrium pressure P0,
i.e. Π = P − P0. The equilibrium pressure is given
by the equation of state (EoS) of the QCD matter at
zero baryon density, P0 = P0(e). In this work, we use
the s95p-v1 parametrization [67] for the EoS, which in-
cludes the partial chemical decoupling at Tchem = 155
MeV. The partial chemical decoupling is implemented
by adding temperature-dependent chemical potentials for
each hadron in the hadronic part of the EoS [68–70].

The conservation laws together with the EoS are
enough to solve the evolution in equilibrium, but addi-
tional constraints are needed when dissipative effects are
present. The dissipative parts of the energy-momentum
tensor are the shear-stress tensor and the bulk viscous
pressure. In the formalism by Israel and Stewart [71],
the equations of motion for dissipative parts take a form

τΠ
d

dτ
Π+Π = −ζθ − δΠΠΠθ + λΠππ

µνσµν , (13)

τπ
d

dτ
π⟨µν⟩ + πµν = 2ησµν + 2τππ

⟨µ
α ω

ν⟩α

−δπππµνθ − τπππ
⟨µ
α σ

ν⟩α (14)

+φ7π
⟨µ
α π

ν⟩α
+ λπΠΠσ

µν ,

where θ = ∇µu
µ is the expansion rate, σµν = ∇⟨µuν⟩

is the strain-rate tensor, and ωµν = 1
2 (∇µuν −∇νuµ) is

the vorticity tensor. The first-order transport coefficients
η and ζ are called shear and bulk viscosity respectively.
In a 14-moment approximation to the massless gas [72–
75], the first-order transport coefficients are related to
the shear and bulk relaxation times as

τπ =
5η

e+ P0
, τΠ =

(
15
(1
3
− c2s

)2
(e+ P0)

)−1

ζ, (15)

and the remaining second-order transport coefficients are

δΠΠ =
2

3
τΠ, λΠπ =

8

5

(1
3
− c2s

)
τΠ, δππ =

4

3
τπ,

τππ =
10

7
τπ, φ7 =

9

70P0
, λπΠ =

6

5
τπ,

(16)

where cs is the speed of sound. The specific shear vis-
cosity η/s and specific bulk viscosity ζ/s are from the
η/s = dyn parametrization introduced in Ref. [28].

B. Decoupling and particle spectra

The fluid dynamic evolution is continued until reach-
ing the kinetic decoupling surface. Here the decoupling
surface is determined by the dynamical decoupling con-
ditions

Kn = τπθ = CKn (17)
γτπ
R

= CR, (18)

where Kn is the Knudsen number, γ is the Lorentz
gamma factor, and the coefficients CKn and CR are pro-
portionality constants of O(1) which are fitted to the
measured data. Here, values CKn = 0.8 and CR = 0.15
are used according to Ref. [28]. The size of the system R
is defined as

R =

√
A

π
, (19)

where A is the area in the transverse (x, y) plane where
Kn < CKn. Additionally, the decoupling is forced to hap-
pen in the hadronic phase of the QCD matter, i.e. when
T < 150 MeV. Given these conditions the decoupling
surface is determined using the Cornelius algorithm [76].

At the decoupling surface Σ with the directed surface
element dΣµ, the Lorentz-invariant particle spectrum for
particle type i is computed according to the Cooper-Frye
integral,

E
d3Ni

d3k
=

∫

Σ

dΣµk
µfi(x, k), (20)

where E and kµ are particles energy and 4-momentum,
respectively. The distribution function for particle
species i is decomposed into in- and out-of-equilibrium
parts as fi = f0i + δfi, where the equilibrium part is
given by
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f0i(x, k) =
[
exp

(kµi uµ − µi

T

)
± 1
]−1

, (21)

where +(−) sign is for fermions (bosons), and µi is the
chemical potential. Here, the viscous corrections to the
equilibrium distribution are of the form [6, 77–79]

δfi =− f0if̃0i
Cbulk

T

[
m2

3Ek
−
(1
3
− c2s

)
Ek

]
Π

+
f0if̃0i

2T 2(e+ P0)
πµνkµkν ,

(22)

with f̃0i = 1± f0i (+ for bosons and − for fermions) and
the coefficient

1

Cbulk
=
∑

i

gim
2
i

3T

∫
d3k

(2π)3k0
f0if̃0i

[
m2

i

3Ek
−
(1
3
−c2s

)
Ek

]
,

(23)
where gi is the degeneracy factor. After computing the
spectra from Eq. (20), the 2- and 3-body decays of un-
stable particles are computed as in Ref. [80].

C. Neural Networks

To reduce the computational cost of the simulations,
deep convolutional neural networks trained in Ref. [41]
are utilized here for predicting final state event-by-
event observables at midrapidity. Each neural network
takes the discretized initial energy density profile in the
transverse-coordinate (x, y) plane as an input, and out-
puts one pT -integrated observable. Separate neural net-
works are used to predict flow coefficients vn, charged
particle multiplicities dNch/dη, and mean transverse mo-
menta [pT ]. Predicting flow observables with neural net-
works is many orders of magnitude faster than perform-
ing full hydrodynamic simulations. For example, pre-
dicting results for 10 million events takes only around 20
hours with Nvidia Tesla V100 GPU.

As the training data for the neural networks is from
Ref. [28], and the predictions made using these networks
emulate the same dynamics as the training data, the
viscosities η/s, and ζ/s, and other parameters affecting
the fluid-dynamical evolution are the same ones as in
Ref. [28].

In Ref. [41], it was demonstrated that the neural net-
works work accurately when using the EbyE version of
the EKRT model. However, it is non-trivial that the
accuracy of the neural networks, which are trained by
the EbyE-EKRT data from Ref. [28], and not from MC-
EKRT, would extend to the MC-EKRT initial states with
hotspots, where the initial geometry can be significantly
different. Therefore, the neural networks were validated
by generating 10k MC-EKRT initial states and compar-
ing the neural network predictions against 2+1 D fluid
dynamical simulations for the 5.023 TeV Pb+Pb colli-
sion system. The validation tests for the flow coefficients

v2, v3, and v4 are shown in Fig. 1. The initial state pa-
rameters used in the validation test were κsat = 2.5,
K = 2.2, σ⊥ = 0.4 fm, and σh = 0.2 fm. The obtained
excellent agreement between the fluid dynamical simula-
tions and neural network predictions illustrates the ver-
satility of the neural networks with different initial con-
ditions. Additionally, we have verified that the accuracy
of the employed neural networks remains good for other
training observables as well.

IV. RESULTS

In this section, we present the results of fluid-
dynamical simulations with MC-EKRT initial states for
midrapidity bulk observables, and compare the results
against the earlier EbyE EKRT work [28]. All the fluid
dynamical results are generated using our neural net-
works, and they contain 50k collision events, except the
multiplicity distribution results which are obtained from
150k events. As discussed in Sec. III C, the neural net-
work results correspond to the fluid dynamical simula-
tions with the matter properties and decoupling param-
eters from Ref. [28]. Therefore, any differences between
the presented results are due to differences in the initial
states.

When examining the effects of the initial state through
final state observables, it is important to remember that
some observables are highly sensitive to the properties
of the matter. For instance, the magnitude of flow coef-
ficients is significantly influenced by the shear viscosity
to entropy density ratio η/s. In contrast, the ratios of
flow coefficients are less sensitive to such details, partic-
ularly the ratio between v3 and v2, which can provide
valuable insights into the geometry and structure of the
initial state [82].

The effect of the Gaussian smearing width σ⊥ is
demonstrated in Fig. 2, where the ratios of the flow coeffi-
cients v2, v3, and v4 in 5.023 TeV Pb+Pb collision system
are shown as a function of centrality for different smear-
ing widths. The MC-EKRT initial state parameters are
set to κsat = 1.4, and K = 2.5. Nucleon substructure is
not included in these plots. As can be seen in the left
panel, the magnitude of flow is sensitive to the Gaussian
smearing width σ⊥. However, σ⊥ has only little impact
on the ratios between the flow coefficients, as shown by
the middle and right panels. Therefore, the parameter
σ⊥ is influencing the flow coefficients in a similar man-
ner as the shear viscosity. Here, and in what follows,
we adjust σ⊥ to obtain the measured v2 in mid-central
collisions for all different MC-EKRT results. However,
we want to emphasize that this is only done to illustrate
the capabilities and uncertainties of MC-EKRT. To get
the best overall fit to all different observables, a global
analysis is needed, but this is beyond the purpose of this
study.

An intriguing aspect of the MC-EKRT model is the
interplay between the saturation and conservation-law
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FIG. 1: Neural network validation test for the flow coefficients v2{2}, v3{2}, and v4{2} in 5.023 TeV Pb+Pb collisions. The
networks were trained with the EbyE-EKRT data from Ref. [28] as described in Ref. [41]. The hydro results and the neural
network validation results were obtained from 10k MC-EKRT initial states which included hotspots and multiplicity fluctuations
that were not present in the training data. The measured data are from the ALICE Collaboration [81].
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FIG. 2: The effect of the Gaussian smearing width σ⊥ on the two-particle flow coefficient v2{2} (left panel) and the ratios
v3{2}/v2{2} (middle panel), and v4{2}/v2{2} (right panel) in 5.023 TeV Pb+Pb collisions. No nucleon substructure is included
here. The experimental data for the ratios are computed based on the ALICE measurements for the two-particle flow coeffi-
cients [81].

filters. The impact of different filters on the flow coef-
ficients in 5.023 TeV Pb+Pb collisions is illustrated in
Fig. 3. In all these scenarios, a value of K = 2.5 is
used, while the saturation parameter κsat is adjusted to
achieve roughly identical charged particle multiplicities
in central collisions. This corresponds to κsat = 1.3 for
the saturation-only case, and κsat = 1.4 for the other
cases. The nucleon width is set according to the default
parametrization from Eq. (4), i.e. σN = 0.53 fm, and no
nucleon substructure is introduced. For the saturation-
first case σ⊥ = 0.3 fm, for the case with all filters at the
same time σ⊥ = 0.4 fm, and for the saturation-only case
σ⊥ = 0.3 fm.

The most notable feature in Fig. 3 is the significant im-
pact of saturation on the ratio between v3 and v2. The

case with only saturation reproduces the measured v2
and v3 most accurately, while the simultaneous applica-
tion of all the filters leads to a clear underestimation of v3.
When saturation is applied before other filters, the results
approach those of the saturation-only scenario, as antici-
pated. The discrepancies in the v3/v2 ratio arise from the
geometrical differences in saturation and momentum con-
servation. Saturation does not allow geometrical overlap
in the transverse plane. This leads to a more evenly dis-
tributed energy density profile. Energy conservation, on
the other hand, gives no direct geometrical constraints.
The stronger the saturation the more the eccentricity ε2
is suppressed compared to the eccentricity ε3. The re-
duced eccentricity ε2 can be compensated by decreasing
the smearing width σ⊥ so that the elliptic flow v2 remains
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FIG. 3: The flow coefficients vn{2} as a function of centrality for 5.023 TeV Pb+Pb collisions. The simulation results with
different MC-EKRT filter settings are compared against the ALICE measurements [81], and the EbyE-EKRT results from
Ref. [28]. No nucleon substructure was included here.
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without nucleon substructure are compared against the ALICE measurements [81], and the EbyE-EKRT results from Ref. [28].
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nearly unchanged, while ε3 increases. This is reflected in
the shown flow coefficients. It is also noteworthy that
the v3/v2 ratio is very similar between the MC-EKRT
model with only saturation and the EbyE-EKRT model,
which does not explicitly include momentum conserva-
tion. Since strong saturation appears to be necessary for
matching the measured v3/v2 ratio, we will now focus
exclusively on the scenarios where saturation is applied
first, followed by the conservation filters. This approach
is also theoretically justified because, in principle, satu-
ration should inherently account for conservation laws.
However, achieving this would require implementing sat-
uration through momentum-conserving multiparton dis-
tributions to all orders, which is not practically feasible.

Since saturation is sensitive to the nuclear overlap
TATB (nuclear thickness function TA is the sum of TN s),
the hotspots introduce interesting dynamics. With the
hotspots, TA can reach ∼ 10 times higher values than
with the average nucleon geometry. Therefore, one would
expect the saturation strength and the v3/v2 ratio to in-
crease when hotspots are included.

The effect of hotspots on the flow coefficients is illus-
trated in Fig. 4, which compares two different hotspot
parametrizations. The first parametrization uses the de-
fault nucleon width from parametrization Eq. (4), to-
gether with hotspots with width σh = 0.2 fm. In this
case, the MC-EKRT parameters are set to κsat = 2.5,
K = 2.2, and σ⊥ = 0.4 fm. For the second parametriza-
tion, the nucleon width is obtained from Eq. (4), but
this time a significantly stronger energy dependence with
α′ = 0.6 is used. This corresponds to a nucleon width
σN = 0.75 fm for 5.023 TeV collision energy. This
nucleon width is in line with the many global analy-
ses, where values in the range ∼ 0.6 − 1.0 fm are pre-
ferred [33, 37, 44, 83]. With a wider nucleon, a narrower
hotspot with σh = 0.15 fm is used together with pa-
rameters κsat = 2.5, K = 2.4, and σ⊥ = 0.25 fm. The
saturation-first case from Fig. 3 is here left as a reference
curve.

As expected, the addition of hotspots appears to in-
crease the v3/v2 ratio. The best overall fit to the mea-
surements is obtained with the narrow hotspots, i.e.
σh = 0.15 fm, corresponding thus to the strongest sat-
uration. In this case, the centrality dependence of v2,
and v3 matches nearly perfectly to the ALICE mea-
surements [81], while maintaining a good agreement for
v4. These findings suggest that the interplay between
hotspots and saturation is crucial for the simultaneous
description of the flow coefficients and especially of the
v3/v2 ratio.

In Fig. 5, the flow coefficients are shown for 2.76 TeV
Pb+Pb collisions. The different curves correspond to the
same cases as in Fig. 4, but theK factor is adjusted to ob-
tain a reasonable agreement with the measured charged
particle multiplicity. The obtained values are K = 2.5
for the σh = 0.2 fm case, while the σh = 0.15 fm and
the no-hotspots cases both use K = 2.7. The agreement
between the data and the results is quite similar to the

5.023 TeV collision energy results. At both energies, the
narrow-hotspot case with σh = 0.15 fm can describe the
measured flow coefficients well, while the centrality de-
pendence of v2 is slightly off for the σh = 0.2 fm case.
From Figs. 4 and 5 it can be seen that MC-EKRT with
the nucleon substructure captures the energy dependence
of the flow coefficients significantly better than the EbyE-
EKRT model.

In Fig. 6, the charged particle multiplicity as a func-
tion of centrality is shown for the same initial state
parametrizations in 2.76 TeV and 5.023 TeV Pb+Pb colli-
sions. The agreement between the results and the ALICE
measurements [84, 85] is good in all cases, even though
there are some minor discrepancies in the centrality be-
havior. The initial state without hotspots seems to pro-
duce slightly too weak a centrality dependence, while,
with the hotspots, the centrality dependence is a bit too
steep. However, these are small differences, and further
improvements could be obtained by fine-tuning the mat-
ter properties and initial state parameters.

The MC-EKRT approach adds minijet-multiplicity
originating saturation-scale fluctuations to the EKRT ini-
tial state. These fluctuations, together with hotspot fluc-
tuations, should in principle increase the hadron multi-
plicity fluctuations in the most central collisions. This
effect is studied in Fig. 7, where the charged hadron mul-
tiplicity distributions from MC-EKRT with and without
hotspots are compared against the EbyE-EKRT results,
which do not contain multiplicity-originating fluctuations
of the saturation scale or hotspots. To make the re-
sults comparable with the V0 amplitude measured by
ALICE [86], they are normalized to have approximately
the same mean as the V0 amplitude. As shown also in
Ref. [17], the EbyE-EKRT results almost completely miss
the high-multiplicity tail in the distribution. The addi-
tion of the further saturation scale fluctuations indeed
enhances the high-multiplicity tail in the distribution,
and therefore improves the agreement with the measure-
ments as one would expect. The addition of the hotspots
is important also for this observable, as it increases the
fluctuations and high-multiplicity tail further, leading to
a very good agreement with the ALICE data.

V. CONCLUSIONS

In this article, we have studied the effects of the MC-
EKRT initial states on midrapidity flow observables. The
computationally slow fluid dynamics simulations were re-
placed with the neural networks, that could predict flow
observables directly from the initial state. The networks
used here did not contain any information about the MC-
EKRT initial states. Even so, the neural networks did ac-
curately describe the flow observables, emphasizing the
versatility and usefulness of the neural networks.

We found that essentially the strength of saturation
controls the ratio between two-particle flow coefficients
v3/v2. Without any nucleon substructure, the measured
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data preferred that no local momentum conservation was
enforced, so that the saturation would be the only effect
that regulates the initial low-pT parton production. The
addition of the nucleon substructure enhanced the sat-
uration strength, and led to a good agreement with the
measured data, even with the local momentum conserva-
tion imposed. Our flow coefficient results lend support
to having relatively narrow hotspots in a relatively wide
nucleon, and rather systematically saturation as the de-

cisive QCD mechanism for regulating the initial parton
production.

The results from the MC-EKRT initial state with the
nucleon substructure managed to improve the agreement
with the LHC measurements relative to the previous
EbyE-EKRT model. The novel MC-EKRT model now
captures the measured energy dependence of the flow co-
efficients better, while the added saturation scale fluc-
tuations and the inclusion of hotspots systematically im-
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proves the agreement with the measured multiplicity dis-
tribution in the most central collisions.

Overall, the MC-EKRT results presented here show an
excellent agreement with the data for the flow coefficients
and the charged particle multiplicity. We want to note
that this was achieved even without adjusting the QCD
matter properties or the dynamical decoupling conditions
from previous works, and therefore this acts as a baseline
for what can be achieved. More detailed global analysis
with more observables and collision systems should be
done to constrain the QCD matter properties. Addition-
ally, at the lower collision energies, the finite longitudi-
nal overlap area in the initial collision together with the
initial transverse flow can play an important role in the
simulations. These aspects were not considered here, but
are left as future work.
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