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Abstract: The [ZnL(ONO2)2] 1 and [ZnL(NCS)2] 2 complexes were synthesized using self-assembly of
the s-triazine tridentate ligand (L) with Zn(NO3)2·6H2O and Zn(ClO4)2·6H2O/NH4SCN, respectively.
The Zn(II) is further coordinated by two nitrate and two isothiocyanate groups as monodentate
ligands in 1 and 2, respectively. Both complexes have distorted square pyramidal coordination
environments where the extent of distortion is found to be greater in 2 (τ5 = 0.41) than in 1 (τ5 = 0.28).
Hirshfeld calculations explored the significant C···O, C···C, N···H, and O···H contacts in the molecular
packing of both complexes. The energy framework analysis gave the total interaction energies of
−317.8 and −353.5 kJ/mol for a single molecule in a 3.8 Å cluster of 1 and 2, respectively. The
total energy diagrams exhibited a strong resemblance to the dispersion energy frameworks in both
complexes. NBO charge analysis predicted the charges of the Zn(II) in complexes 1 and 2 to be
1.217 and 1.145 e, respectively. The electronic configuration of Zn1 is predicted to be [core] 4S0.32

3d9.98 4p0.45 4d0.02 5p0.01 for 1 and [core] 4S0.34 3d9.97 4p0.53 4d0.02 for 2. The increased occupancy
of the valence orbitals is attributed to the donor→acceptor interactions from the ligand groups to
Zn(II). The Zn(II) complexes were examined for their cytotoxic and antimicrobial activities. Both 1
and 2 have good cytotoxic efficiency towards HCT-116 and A-549 cancerous cell lines. We found
that 1 is more active (IC50 = 29.53 ± 1.24 and 35.55 ± 1.69 µg/mL) than 2 (IC50 = 41.25 ± 2.91 and
55.05 ± 2.87 µg/mL) against both cell lines. Also, the selectivity indices for the Zn(II) complexes are
higher than one, indicating their suitability for use as anticancer agents. In addition, both complexes
have broad-spectrum antimicrobial activity (IC50 = 78–625 µg/mL) where the best result is found
for 2 against P. vulgaris (IC50 = 78 µg/mL). Its antibacterial activity is found to be good compared to
gentamycin (5 µg/mL) as a positive control against this microbe.

Keywords: s-Triazine; Zn(II); X-ray structure; energy framework; NBO; cytotoxicity; antimicrobial

1. Introduction

There is no doubt about the significant role of zinc in biology as it is ranked the sec-
ond most common trace metal in our bodies [1]. Also, it is included in several enzymes
as a catalyst and/or co-catalyst [2–5]. In cellular processes, zinc is primarily linked to
N, O, or S-atoms of protein residues [6] where insufficient levels of zinc are found re-
lated to cancer growth for both humans and animals [7,8]. Several zinc complexes have
interesting applications in biology [9–23]. For example, Zn(II) complexes of 3-nitro-4-
hydroxybenzoic acid were reported to have anticonvulsant activity [9]. Additionally, Zn(II)
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complexes with amino acids such as [Zn(L-Asn)2], [Zn(L-Pro)2], [Zn(L-Thr)2], and [Zn(L-
Val)2] have interesting insulin-mimetic activity which is found to be dependant on their
overall stability constants [10]. In addition, Zn(II)-Indomethacin complexes were patented
as veterinary pharmaceutics having anti-inflammatory properties [11]. Furthermore, their
in vitro antioxidant and inhibition properties versus soybean lipoxygenase were found to
be promising [18]. It is found that the Zn(II)-mefenamic acid (Hmef) complexes have higher
antioxidant activity than the free Hmef where the [Zn(mefenamic acid)2(H2O)4] complex
has the highest scavenging activity. A few of the numerous biological actions associated
with zinc complexes are their interesting antibacterial [12–17] and antitumor [20–22] prop-
erties. Also, it is beneficial in reducing the hepato-toxicity that arises from some anticancer
drugs [24]. Its low toxicity compared to other metal-based medications is one of the most
important medicinal properties of zinc complexes.

On the other hand, the development of new materials with interesting biological
properties [25–28] as antimicrobial and anticancer agents is a challenge for researchers
working in this field. Among the most promising organic scaffolds, s-triazine derivatives
attracted the attention of chemists due to their low cost and ease of preparation, in addi-
tion to their structural and biological diversities. Their activities include antiplasmodial
effects [25], antibacterial properties [26], anticancer potential [27], and function as carbonic
anhydrase inhibitors [28]. Also, they are considered as interesting multidentate ligands that
are important not only for the construction of a diverse range of supramolecular structures
but also for creating functional supplies for a lot of applications [29–32]. Many of the
s-triazine multidentate ligands play a significant role in inorganic chemistry. Interestingly,
little changes in the substituents attached to s-triazine altering their steric and electronic
properties affect their reactivity towards different metal ions [33].

In this work, an exploration of the structural properties of two Zn(II) complexes with
the s-triazine ligand (L) shown in Figure 1 is presented. The new complexes were synthe-
sized using a self-assembly technique and characterized using elemental analysis, FTIR, 1H
NMR (for complex 1) spectra, and X-ray diffraction from a single crystal. The antibacterial
and cytotoxic properties of the new compounds were also investigated. Additionally,
NBO calculations were employed to elucidate the different coordination interactions that
occurred between Zn(II) and the donor atoms coordinating it [34,35].
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Figure 1. Structure of L [34,35].

2. Results and Discussion
2.1. Synthesis and Characterizations

The reaction of L with Zn(NO3)2·6H2O or Zn(ClO4)2.6H2O/NH4SCN in ethanol
yielded the heteroleptic complexes, [ZnL(ONO2)2] (1) and [ZnL(NCS)2] (2), respectively
(Scheme 1). The FTIR spectra of 1 and 2 (Figures S1 and S2; Supplementary Data) exhibit
distinct spectral bands for the ν(C=N) vibrations at 1579 and 1588 cm−1, respectively, while
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for L this band appeared at 1584 cm−1. The ν(C=C) vibration appeared at 1513, 1502, and
1492 cm−1 in the FTIR spectra of 1, 2, and L, respectively. These shifts are attributed to the
complexation between Zn(II) and L. A new sharp band appeared at 1391 cm−1 only in 1
but did not appear in the free ligand, which is attributed to the ν(N–O) mode of the NO3

−

group. Also, the double split sharp band that appeared at 2047 and 2084 cm−1 is assigned
to the ν(SCN) vibrations in 2.
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Scheme 1. Syntheses of 1 and 2.

In addition, the 1H NMR spectra of complex 1 are recorded in DMSO as solvent
(Figure S3; Supplementary data). The 1H NMR spectra showed the methyl group as
a singlet at δ 2.33 ppm, while the free ligand appeared at δ 2.40 ppm [34]. Also, the
protons of the morpholine moiety in complex 1 appeared as two broad singlet peaks at
δ 3.71 (CH2-O-CH2) and 3.59 ppm (CH2-N-CH2) compared to δ 3.81 and 3.72 ppm for L,
respectively. The hydrogens of the pyridyl moiety showed reasonable shifts at δ 8.53, 8.06,
7.78, and 7.31 ppm compared to δ 8.20, 8.08, 7.67, and 7.20 ppm in the free L, respectively.
Also, the NH of complex 1 showed a reasonable shift as a broad singlet peak at δ 9.72
compared δ to 8.54 ppm for the NH of the free L. The 1H NMR spectral analysis of complex
1 confirmed the coordination of Zn(II) with L in solution. Furthermore, the structure of
both complexes was confirmed using X-ray single crystal diffraction (SCXRD).

2.2. X-ray Structure Description for [ZnL(ONO2)2]; 1

The structure of 1 was verified through X-ray crystallography revealing the monomeric
formula [ZnL(ONO2)2] (Figure 2). Its crystal system is orthorhombic and its space group
is P212121. The cell dimensions are a = 7.92330(10), b = 11.89480(10), and c = 24.3806(2) Å,
while the number of molecules in the unit cell is four and crystal density is 1.659 g·cm−3

(Table 1).
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Table 1. Crystal data for 1 and 2.

[ZnL(ONO2)2]; (1) [ZnL(NCS)2]; (2)

CCDC 2359261 2359262
Empirical formula C18H24N10O8Zn C20H24N10O2S2Zn

Fw 573.84 565.98
Temp (K) 120.00(10) 120.00(10)

λ (Å) 1.54184 1.54184
Cryst syst Orthorhombic Monoclinic

Space group P212121 P21/c
a (Å) 7.92330(10) 13.8914(2)
b (Å) 11.89480(10) 20.5446(2)
c (Å) 24.3806(2) 8.97020(10)

β (deg) 90 108.195(2)
V (Å3) 2297.78(4) 2432.03(6)

Z 4 4
ρcalc (Mg/m3) 1.659 1.546

µ (Mo Kα) (mm−1) 2.104 3.352
No. reflns. 25,015 25,012

Unique reflns. 4934 5007
Completeness to θ = 67.684◦ 100% 99.6%

Absolute structure parameter −0.020(6)
GOOF (F2) 1.057 1.041

Rint 0.0274 0.0246
R1

a (I ≥ 2σ) 0.0220 0.0301
wR2

b (I ≥ 2σ) 0.0587 0.0722
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.

The structure of this complex showed one [ZnL(ONO2)2] molecule as a symmetric
formula. In this neutral complex, the Zn(II) is penta-coordinated with three nitrogen atoms
from the s-triazine ligand (L). There are three different Zn-N interactions where the Zn-
N(hydrazone) is the shortest (Zn1-N2; 2.0443(19) Å) while the Zn-N(s-triazine) is the longest
(Zn1-N4; 2.1713(19) Å) (Table 2). The same trend was found in the structurally related
Mn(II) and Cu(II) complexes of the same ligand (L) [34]. In addition, there are two Zn-O
coordination interactions belonging to two monodentate nitrate groups, which are different
in their distances. The Zn1-O3 and Zn1-O6 distances are 2.0448(16) and 2.0131(17) Å,
respectively, while the angle O6-Zn1-O3 is 100.30(7)◦. Hence, the structure of the ZnN3O2
coordination sphere could be described as a highly distorted penta-coordinated system.
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The τ5 parameter is calculated to be 0.28, indicating a distorted penta-coordinated system
that is close to square pyramidal geometry [36]. The same distorted penta-coordination
environment was observed in case of the Mn(II) and Cu(II) complexes where the τ5 val-
ues were calculated to be 0.33 and 0.24, respectively [34]. Hence, the square pyramidal
configuration showed the lowest distortion in case of the Cu(II) complex. In addition, the
coordination mode of nitrate groups in this complex is described using Equation (1). The
γ values for the N(9)O3

− and N(10)O3
− groups are 0.90 and 0.86, indicating terminally

coordinated monodentate nitrate groups [37,38].

γ =
(d1 − d2)

∆
(1)

where the order of N-O distances (d) is d1 ≥ d2 ≥ d3 and ∆ = d1 − d3.

Table 2. Important bond lengths (Å) and angles (◦) for 1.

Bond Length

Zn1-O3 2.0448(16) Zn(1)-N(2) 2.0443(19)
Zn1-O6 2.0131(17) Zn(1)-N(4) 2.1713(19)
Zn1-N1 2.1416(19)

Bond Angle

O3-Zn1-N1 94.98(7) O(6)-Zn(1)-N(4) 105.96(7)
O3-Zn1-N4 101.93(7) N(1)-Zn(1)-N(4) 153.23(7)
O6-Zn1-O3 100.30(7) N(2)-Zn(1)-O(3) 136.51(7)
O6-Zn1-N1 91.02(8) N(2)-Zn(1)-N(1) 75.36(8)
O6-Zn1-N2 121.80(7) N(2)-Zn(1)-N(4) 78.09(7)

The molecular packing of the [ZnL(ONO2)2] complex showed two types of non-
covalent interactions (Table 3). The presentation of these hydrogen bond contacts is shown
in Figure 3A. There is one significant N-H···O hydrogen bond, which occurred between
the hydrazone N-H as the hydrogen bond donor and the O atoms from the nitrate ion
as the acceptor for a hydrogen bond. The hydrogen to acceptor distance is 2.15(3) Å for
N3-H3···O5 while the donor to acceptor distance is 2.915(3) Å. Furthermore, there are many
C-H···O interactions that occurred with the O atoms of the NO3

− group as the H-bond
acceptor where the hydrogen to acceptor (O) distances range from 2.36 Å (C1-H1···O4) to
2.57 Å (C2-H2···O7) while the donor (C) to acceptor (O) distances range from 3.109(3) Å
(C1-H1···O4) to 3.495(3) Å (C7-H7C···O5), respectively. The resulting packing scheme is
shown in Figure 3B. Thus, the packing of 1 could be illustrated as a network of hydrogen
bonds extended along the a-axis.

Table 3. Hydrogen bonds for 1 (Å and ◦).

D-H···A d(D-H) d(H···A) d(D···A) D-H···A
N3-H3···O5 a 0.79(3) 2.15(3) 2.915(3) 164(3)
C1-H1···O4 b 0.95 2.36 3.109(3) 135
C2-H2···O7 c 0.95 2.57 3.260(3) 130

C7-H7C···O5 a 0.98 2.56 3.495(3) 160’
C11-H11A···O8 d 0.99 2.53 3.216(3) 127
C13-H13A···O6 e 0.99 2.48 3.460(3) 171
C14-H14A···O4 a 0.99 2.50 3.372(3) 147
C17-H17A···O1 f 0.99 2.49 3.327(3) 142

a 1 − x,1/2 + y,3/2 − z; b 1 − x,−1/2 + y,3/2 − z; c −x,−1/2 + y,3/2 − z; d 1/2 + x,1/2 − y,1 − z; e x,1 + y,z;
f x,−1 + y,z.
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Aromatic–aromatic interactions are significant non-covalent intermolecular forces that
are akin to hydrogen bonding in importance. The X-ray structure analysis revealed the
existence of one π–π interaction between the pyridine and s-triazine π-systems (Figure 4A).
The C2···C9 distance is 3.237(3) Å while the ring centroids distance is 3.698 Å and the tilt
angles are ranging from 20.69 to 21.95◦ [39]. In addition, the presence of anion–π interaction
between the coordinated oxygens from the nitrate group and the π systems of pyridine is
evident. There are two anion–π interactions, which are different in their distances. The
O5···C5(pyridine) and O4···C1(pyridine) distances are 3.099(3) and 3.109(3) Å, respectively
(Figure 4B). Also, there are some C-H···π contacts between the C16-H16B of the morpholine
ring and the s-triazine π system where the C10···H16B, C9···H16B, and N5···H16B distances
are 2.807, 2.816, and 2.628 Å, respectively (Figure 4C).

Inorganics 2024, 12, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. The important H-bond contacts (A) and the packing scheme (B) for 1 along the a-axis. 

Aromatic–aromatic interactions are significant non-covalent intermolecular forces 
that are akin to hydrogen bonding in importance. The X-ray structure analysis revealed 
the existence of one π–π interaction between the pyridine and s-triazine π-systems (Fig-
ure 4A). The C2···C9 distance is 3.237(3) Å while the ring centroids distance is 3.698 Å and 
the tilt angles are ranging from 20.69 to 21.95° [39]. In addition, the presence of anion–π 
interaction between the coordinated oxygens from the nitrate group and the π systems of 
pyridine is evident. There are two anion–π interactions, which are different in their dis-
tances. The O5···C5(pyridine) and O4···C1(pyridine) distances are 3.099(3) and 3.109(3) Å, re-
spectively (Figure 4B). Also, there are some C-H···π contacts between the C16-H16B of 
the morpholine ring and the s-triazine π system where the C10···H16B, C9···H16B, and 
N5···H16B distances are 2.807, 2.816, and 2.628 Å, respectively (Figure 4C).  

 
Figure 4. The π–π (A), anion–π (B), and C-H···π (C) interactions in 1. Figure 4. The π–π (A), anion–π (B), and C-H···π (C) interactions in 1.



Inorganics 2024, 12, 176 7 of 18

2.3. X-ray Structure Description for [ZnL(NCS)2]; 2

The synthetic procedure of 2 involved the use of NH4SCN in order to examine the
coordination mode of the SCN− group. This small anion could be terminally coordinated
via its N or S atoms. Also, it could bridge metal centers, leading to polynuclear metal
complexes. The structure of 2 also comprised the monomeric neutral formula, [ZnL(NCS)2]
(Figure 5). It crystallized in the monoclinic crystal system and P21/c space group. The unit
cell parameters are a = 13.8914(2), b = 20.5446(2), c = 8.97020(10) Å, and β = 108.195(2)◦. The
number of molecules in the unit cell is four and the crystal density is 1.546 g·cm−3 (Table 1).
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Similarly, the [ZnL(NCS)2] complex has five coordinated Zn(II) in which there are
five different Zn-N interactions. There are three Zn-N bonds with the organic ligand L in
addition to two Zn-N bonds with the two isothiocyanate groups. The Zn1-N1 (1.9645(15) Å)
and Zn1-N2 (1.9466(16) Å) with the anionic NCS− groups are the shortest while the Zn1-N6
belonging to the s-triazine is longer (2.2696(14) Å) than any of the two Zn-N(pyridine) and
Zn-N(hydrazone) bonds. Hence, the same order of the Zn-N distances for L is found in
complexes 1 and 2 (Table 4). The bite angles of L are 76.18(5)◦ and 75.17(5)◦ for N4-Zn1-N6
and N4-Zn1-N3, respectively. In addition, the N1-Zn1-N2 angle is 120.51(6)◦. As a result,
the structure of the ZnN5 coordination sphere could be described as a highly distorted
penta-coordinated system (τ5 = 0.41). Hence, the coordination geometry of 2 is intermediate
between the two ideal extremes (trigonal bipyramidal and square pyramidal) [36].

Table 4. Important bond lengths (Å) and angles (◦) for 2.

Bond Length

Zn1-N4 2.0565(14) Zn1-N3 2.1813(14)
Zn1-N6 2.2696(14) Zn1-N2 1.9466(16)
Zn1-N1 1.9645(15)

Bond Angle

N4-Zn1-N6 76.18(5) N3-Zn1-N6 151.30(5)
N4-Zn1-N3 75.17(5) N2-Zn1-N4 126.46(6)
N1-Zn1-N4 112.89(6) N2-Zn1-N6 103.14(6)
N1-Zn1-N6 93.43(6) N2-Zn1-N1 120.51(6)
N1-Zn1-N3 99.10(6) N2-Zn1-N3 92.58(6)

The packing of 2 is controlled by the N-H···N and C-H···O non-covalent interactions
shown in Figure 6. The significant N5-H5···N1 hydrogen bond occurred between the
hydrazone N-H as a hydrogen bond donor and the N-atom from the isothiocyanate as



Inorganics 2024, 12, 176 8 of 18

a hydrogen bond acceptor (Figure 6B). The hydrogen to acceptor distance is 2.24(3) Å
while the donor to acceptor distance is 3.008(2) Å. In addition, the C5-H5A···O1 and
C14-H14A···O2 interactions have donor-to-acceptor distances of 3.177(2) and 3.371(2) Å,
respectively, while the H···O distances are 2.50(3) and 2.38 Å, respectively (Table 5). The
resulting packing scheme is shown in Figure 6A. Therefore, the packing of 2 could be
assigned as a network of hydrogen bonds extended along the c-axis.

Inorganics 2024, 12, x FOR PEER REVIEW 8 of 19 
 

 

The packing of 2 is controlled by the N-H···N and C-H···O non-covalent interactions 
shown in Figure 6. The significant N5-H5···N1 hydrogen bond occurred between the 
hydrazone N-H as a hydrogen bond donor and the N-atom from the isothiocyanate as a 
hydrogen bond acceptor (Figure 6B). The hydrogen to acceptor distance is 2.24(3) Å while 
the donor to acceptor distance is 3.008(2) Å. In addition, the C5-H5A···O1 and 
C14-H14A···O2 interactions have donor-to-acceptor distances of 3.177(2) and 3.371(2) Å, 
respectively, while the H···O distances are 2.50(3) and 2.38 Å, respectively (Table 5). The 
resulting packing scheme is shown in Figure 6A. Therefore, the packing of 2 could be as-
signed as a network of hydrogen bonds extended along the c-axis. 

Table 5. Hydrogen bonds for 2 (Å and °). 

D-H···A d(D-H) d(H···A) d(D···A) D-H···A 
N5-H5···N1 a 0.81(2) 2.24(3) 3.008(2) 159(2) 

C5-H5A···O1 b 0.91(3) 2.50(3) 3.177(2) 131(2) 
C14-H14A···O2 c 0.99 2.38    3.371(2) 174 

a x,1/2 − y,1/2+z; b −1+x,1/2 − y,−3/2+z; c 1 − x,−1/2+y,3/2 − z. 

 
Figure 6. The packing schemes via O···H (A) and N···H (B) interactions in 2 along the c-axis. 

2.4. Hirshfeld Analysis 
The arrangement of molecules within a crystal has a unique pattern. The 

non-covalent contacts that control this organization could be analyzed using Hirshfeld 
calculations. For 1, the dnorm map and fingerprint plots of the important contacts as well as 
the percentages of all possible contacts along with their percentages are presented in 
Figure 7. Hence, the significant interactions are O···H (A), N···H (B), C···O (C), C···H (D), 
and C···C (E). Their percentages are 39.9, 6.0, 1.6, 8.0, and 1.2%, respectively. The finger-
print plots of all these contacts are characterized by sharp spikes and wings revealing 
their importance. Many O···H contacts were noted in this crystal structure where the 
H···O distances range from 1.940 Å (O5···H3) to 2.596 Å (O2···H3A). The short C5···O5 
contact (3.099 Å) belongs to an anion–π stacking interaction between the coordinated ni-
trate and the pyridine moiety. On the other hand, the short C9···H16B (2.724 Å) and 
C10···H16B (2.741 Å) contacts refer to the C-H(methyl)···π(s-triazine) interactions. The existence 
of weak π–π interaction [39] between the s-triazine and pyridine moieties is evident from 
the relatively short C9···C2 (3.327 Å) contact. Also, the relatively long N5···H16B (2.549 Å) 
contact indicates the presence of a weak C-H(morpholie)···N(s-triazine) interaction. All these close 
contacts are depicted in Table 6. 

Figure 6. The packing schemes via O···H (A) and N···H (B) interactions in 2 along the c-axis.

Table 5. Hydrogen bonds for 2 (Å and ◦).

D-H···A d(D-H) d(H···A) d(D···A) D-H···A
N5-H5···N1 a 0.81(2) 2.24(3) 3.008(2) 159(2)

C5-H5A···O1 b 0.91(3) 2.50(3) 3.177(2) 131(2)
C14-H14A···O2 c 0.99 2.38 3.371(2) 174

a x,1/2 − y,1/2+z; b −1+x,1/2 − y,−3/2+z; c 1 − x,−1/2+y,3/2 − z.

2.4. Hirshfeld Analysis

The arrangement of molecules within a crystal has a unique pattern. The non-covalent
contacts that control this organization could be analyzed using Hirshfeld calculations. For
1, the dnorm map and fingerprint plots of the important contacts as well as the percentages
of all possible contacts along with their percentages are presented in Figure 7. Hence, the
significant interactions are O···H (A), N···H (B), C···O (C), C···H (D), and C···C (E). Their
percentages are 39.9, 6.0, 1.6, 8.0, and 1.2%, respectively. The fingerprint plots of all these
contacts are characterized by sharp spikes and wings revealing their importance. Many
O···H contacts were noted in this crystal structure where the H···O distances range from
1.940 Å (O5···H3) to 2.596 Å (O2···H3A). The short C5···O5 contact (3.099 Å) belongs to an
anion–π stacking interaction between the coordinated nitrate and the pyridine moiety. On
the other hand, the short C9···H16B (2.724 Å) and C10···H16B (2.741 Å) contacts refer to the
C-H(methyl)···π(s-triazine) interactions. The existence of weak π–π interaction [39] between
the s-triazine and pyridine moieties is evident from the relatively short C9···C2 (3.327 Å)
contact. Also, the relatively long N5···H16B (2.549 Å) contact indicates the presence of a
weak C-H(morpholie)···N(s-triazine) interaction. All these close contacts are depicted in Table 6.

In the case of 2, five important non-covalent interactions were detected. The O···H
(A), N···H (B), C···N (C), S···S (D), and C···H (E) are indicated from the corresponding fin-
gerprint plots and dnorm map (Figure 8). The O2···H14A (2.292 Å) and O1···H5A (2.392 Å)
belong to the non-classical C-H···O interactions between the morpholine O atom and the
C-H groups of the morpholine and pyridyl moieties from neighboring molecules, respec-
tively. The other short contacts N1···H5 (2.054 Å), C1···H5 (2.501 Å), S1···S1 (3.191 Å), and
C6···N2 (3.185 Å) are related to the coordinated isothiocyanate groups.
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Table 6. Interaction distances for close contacts in 1.

Interaction Distance Interaction Distance

O1···H17A 2.416 C5···O5 3.099
O6···H13A 2.386 C15···H16A 2.747
O5···H7C 2.460 C9···H16B 2.724

O4···H14A 2.424 C10···H16B 2.741
O5···H3 1.940 C16···H13A 2.739
O4···H1 2.266 N5···H16B 2.549
O7···H2 2.486 C9···C2 3.327

O8···H11A 2.472
O2···H3A 2.596
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2.5. Energy Framework Analysis

The energy framework (EFW) study is a valuable method used to analyze the topology
of molecular interactions within a crystal [40–51]. Visualization of molecular interactions
within a cluster with a radius of 3.8 Å between the central molecule under investigation and
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its neighboring molecules for 1 and 2 is shown in Figure S5 (Supplementary Data). An en-
ergy breakdown for the intermolecular interactions that occurred in 1 is depicted in Table S1
(Supplementary Data). The total interaction energy (Etot) is calculated to be −317.8 kJ/mol
involving the electrostatic (Eele = −162.8 kJ/mol), polarization (Epol = −52.1 kJ/mol), dis-
persion (Edis = −225.9 kJ/mol), and repulsion (Erep = 123.0 kJ/mol) interaction energies.
For 2, the Etot is calculated to be −353.5 kJ/mol involving Eele, Epol, Edis, and Erep of
−147.9, −66.5, −279.0, and 139.7 kJ/mol, respectively (Table S2; Supplementary Data).
In addition, the interactions between the central molecule and the −x, y+1/2, −z+1/2
symmetry molecule (light blue) for 1 and the x, −y+1/2, z+1/2 symmetry molecule (red)
for 2 are the strongest. The Etot values are −112.8 and −143.8 kJ/mol, respectively, while
their Eele, Epol, Edis, and Erep values are −70.3, −26.5, −89.5, and 95.7 kJ/mol for 1 and
−70.0, −32.4, −126.1, and 103.7 kJ/mol for 2, respectively. The next stronger interactions
are the −x, y+1/2, −z+1/2 symmetry molecule (yellow; −60.0 kJ/mol) and −x, −y, −z
symmetry molecule (purple; −77.6 kJ/mol) for 1 and 2, respectively. The total energy
diagrams exhibited a strong resemblance to the dispersion energy frameworks in the two
complexes, indicating the significant contribution of dispersion forces to the total forces in
crystal packing (Figure 9).
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2.6. NBO Charge Analysis

For the two studied Zn(II) complexes, the divalent central metal ion is coordinated with
one neutrally charged tridentate ligand and two mononegative species. The formal charges
of these species in the isolated state are +2, 0, and −1, respectively. As a consequence of
the metal–ligand Lewis acid–Lewis base interactions, the formal charges of these species
are altered (Table 7). The two nitrate anions have comparable net charges of −0.764 and
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−0.778 e, indicating negative charge transferences of 0.236 and 0.222 e to Zn(II), respectively.
The corresponding values for the NCS− groups in complex 2 are 0.247 and 0.242 e. It seems
that both anionic ligands transferred a similar amount of electron density to the central
metal ion. Also, the neutral ligand L compensated the charge of Zn(II) by 0.325 and 0.365 e
for complexes 1 and 2, respectively. As a result, the charges of the Zn(II) are changed to
1.217 and 1.145 e, respectively.

Table 7. Charge analysis for the different species in complexes 1 and 2.

Species Charge Species Charge

1 2

Ligand 0.325 Ligand 0.365
Zn1 1.217 Zn1 1.145

NO3
− a −0.764 NCS− a −0.753

NO3
− b −0.778 NCS− b −0.758

Lower a and higher b atom numbering.

2.7. NBO Analysis

Analysis of NBOs for the Zn-N and Zn-O interactions shed light on their relative
strength and also on the nature of orbitals included in these interactions. The donor and
acceptor NBOs included in the three Zn-N coordination interactions with the organic ligand
are shown in Figure 10. It is clearly seen that the acceptor LP*(6) NBO of Zn1 is included
in significant interactions with the donor NBO of the N-atoms (LP(1)N1, LP(1)N2, and
LP(1)N4). Their interaction energies are calculated to be 27.48, 36.39, and 41.27 kcal/mol,
respectively. In addition, each of these NBOs is also included in strong interactions with
LP*(9), LP*(8), and LP*(9), respectively. Their Eint values are 34.53, 32.97, and 29.10 kcal/mol,
respectively (Table S3; Supplementary Data). For complex 2, the NBOs included in the
Zn-N donor–acceptor interactions with the organic ligand are almost the same.
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compared to the respective Zn1···O4 and Zn1···O7 ones. Also, the Eint values of the
formers are generally higher than the latter ones. For example, the LP(2)O3→LP*(6)Zn1
and LP(2)O6→LP*(6)Zn1 interactions have the highest interaction energies of 40.64 and
40.42 kcal/mol, respectively, which are higher than any of the donor–acceptor interactions
included in the Zn1···O4 and Zn1···O7 interactions (Table 8 and Figure 11). Hence, the
NBO analysis confirmed, with no doubt, the monodentate coordination behavior of both
nitrate groups in 1.

Table 8. The occupancy of Zn1 acceptor NBOs in complexes 1 and 2.

Acceptor NBO 1 2

LP*(6) 0.324 0.342
LP*(7) 0.156 0.200
LP*(8) 0.148 0.168
LP*(9) 0.141 0.151
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For complex 2, the two most significant orbital interactions involved in the Zn-NCS
bonds are presented in Figure 12. The LP(1)N→LP*(6)/LP*(7)Zn interactions have Eint
values of 71.84 and 63.84 kcal/mol, respectively, for the Zn1-N1 bond and 74.15 and
53.49 kcal/mol for Zn1-N2, respectively. The net Eint values for the Zn1-N1 and Zn1-N2
bonds are 140.04 and 145.06 kcal/mol, respectively. The close interaction energies for both
Zn-NCS bonds agreed very well with the close Zn1-N1 and Zn1-N2 distances.
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In Table 8, the occupancy of the different LP* NBOs of Zn1 in both complexes is
depicted while the isolated Zn(II) ion has empty LP* NBOs. The results shown in this table
indicated the partial occupancy of these orbitals as a consequence of the donor–acceptor
interactions that occurred between the donor atoms from the ligand groups as the Lewis
base with Zn(II) NBOs as the Lewis acid. The LP*(6) of Zn1 has the highest occupancies
of 0.3236 and 0.3415 e for complexes 1 and 2, respectively (Table 8). In this regard, the



Inorganics 2024, 12, 176 13 of 18

electronic configuration of Zn1 is [core] 4S0.32 3d9.98 4p0.45 4d0.02 5p0.01 for 1 and [core]
4S0.34 3d9.97 4p0.53 4d0.02 for 2.

2.8. Antimicrobial Activity

In the light of the interesting biological activity of Zn(II) complexes for antimicro-
bial applications [12–17], the inhibition zone diameters (IZDs) and minimum inhibitory
concentrations (MICs) for complexes 1 and 2 were determined against some infectious
microbes (Table 9). Both complexes have wide-spectrum action against all the studied
bacteria except E.coli while the free ligand showed no antibacterial activity [34]. The IZDs
for the two Zn(II) complexes against bacteria and fungi range from 14 to 20 and 9 to 10 mm,
respectively. In addition, the MICs range from 78 to 625 and 312 to 625 µg/mL, respectively.
The best antibacterial action is found for complexes 1 and 2 against P.vulgaris where the
IZDs are 18 and 20 mm, respectively. In addition, MICs are found to be 156 and 78 µg/mL,
respectively. Hence, 2 slightly outperformed 1 as an antibacterial agent against P.vulgaris. It
is interesting that the activity of complex 2 against P.vulgaris is comparable to gentamycin
as a positive control (25 mm). Also, both Zn(II) complexes have good antibacterial activity
against the gram-positive bacteria S. aureus and B. subtilis where the sizes of inhibition zones
are in the range of 14–16 mm while the MICs range from 312 to 625 µg/mL. Regarding
antifungal activity, both Zn(II) complexes are active against C. albicans while 1 is active
against A. fumigatus but 2 is not (Table 9). As a result, the efficiency of Zn(II) complexes as
antimicrobial agents against gram-positive bacteria and both fungal species are considered
moderate compared to gentamycin and ketoconazole as positive controls, respectively.

Table 9. Antimicrobial activity (IZD; mm and MIC; µg/mL) for 1 and 2 compared to the structurally
related complexes a.

Microorganism L a [ZnL(ONO2)2]; 1 [ZnL(NCS)2]; 2 [Mn(L)Cl2] a [Cu(L)Cl2]*H2O a Control

S. aureus NA b (ND) c 14(625) 15(625) 11(2500) 18(625) 24(78) d

B. subtilis NA b (ND) c 15(625) 16(312) 19(312) 20(312) 26(39) d

E.coli NA b (ND) c NA b (ND) c NA b (ND) c 10(2500) NA(ND) 30(10) d

P.vulgaris NA b (ND) c 18(156) 20(78) 12(1250) 14(1250) 25(5) d

A. fumigatus NA b (ND) c 10(625) NA b (ND) c NA b (ND) c NA b (ND) c 17(5) e

C. albicans NA b (ND) c 9(625) 10(312) 8(5000) NA b (ND) c 20(5) e

a [34], b NA: No activity, c ND: (Not determined), d Gentamycin; e Ketoconazole.

For the structurally similar penta-coordinated metal (Mn(II) and Cu(II)) complexes of
L, the antimicrobial activity showed wide variations depending on the metal ion and the
nature of other coordinating ligand groups [34]. It is interesting that both Zn(II) complexes
are the best acting as antifungal agents against the infectious C. albicans while the dichloro
Mn(II) complex showed weak activity (IZD = 8 mm). In contrast, both the free L and the
dichloro Cu(II) complex are inactive against the same fungus. Also, the Zn(II) complex 1
is active against A. fumigatus while the rest of the metal(II) complexes of the same ligand
showed no activity against this infectious fungus. Regarding the antibacterial activity, the
Zn(II) complex 2 is the best acting against P.vulgaris in comparison with the Mn(II) and
Cu(II) complexes, which have inhibition zone diameters of 12 and 14 mm, respectively.

2.9. Cytotoxic Activity

Using the MTT assay, the in vitro cytotoxic effects of 1, 2, and L were evaluated versus
HCT-116 and A-549 cancerous cells (ATCC, Rockville, MD). In addition, their safety profile
was determined against human lung fibroblast normal cells (WI-38). The results indicated
that 1, 2, and L have diverse inhibition behaviors against the tested cell lines (Table 10).
The low IC50 value for a tested compound indicates its strong effect on the harmful cancer
cells. Hence, the cytotoxic activity of 1 is more than 2 against both cancerous cell lines.
The IC50 values of 1 are 29.53 ± 1.24 and 35.55 ± 1.69 µg/mL, respectively, while they are
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41.25 ± 2.91 and 55.05 ± 2.87 µg/mL, respectively, for 2. Hence, complex 1 has almost
twice the cytotoxic efficiency against both cell lines compared to 2. For the free L, the IC50
values are found to be higher compared to their Zn(II) complexes. The organic chelate
has IC50 values of 59.85 ± 2.92 and 55.84 ± 2.74 µg/mL towards HCT-116 and A-549 cells,
respectively [34]. As a result, the cytotoxic efficiency of the Zn(II) complexes is found to
be better than the free ligand. Examining the effect of the studied compounds on normal
WI-38 cell lines enabled us to judge whether these compounds could harm the normal cells
or not and to what extent. In this regard, the selectivity index of the studied compounds is
calculated. Regarding safety on normal cells, the selectivity index values (SI) for 1, 2, and L
are higher than unity, confirming their safety of use as anticancer agents.

Table 10. Cytotoxicity of 1, 2, and L against HCT-116, A-549, and WI-38 cells and their selectivity
indices (SI) utilizing MTT assay. Further details are given in Tables S4–S10 and Figures S6–S8
(Supplementary Data).

Compound HCT-116 SI A-549 SI WI-38

L 59.85 ± 2.92 a 5.4 55.84 ± 2.74 a 4.5 104.01 ± 3.61
[ZnL(ONO2)2] 29.53 ± 1.24 1.9 35.55 ± 1.69 1.6 55.95 ± 1.86
[ZnL(NCS)2] 41.25 ± 2.91 1.5 55.05 ± 2.87 1.1 61.57 ± 2.17

a [34].

In comparison with the Mn(II) and Cu(II) complexes of L, the cytotoxic activity of
these complexes is better than both Zn(II) complexes against the HCT-116 cell line [34].
Also, the Cu(II) complex has better cytotoxic activity (21.64±1.23 µg/mL) against the
A-549 cell line than both Zn(II) complexes. In contrast, the Mn(II) complex is less po-
tent (60.64 ± 3.08 µg/mL) as an anticancer agent than any of the two Zn(II) complexes
against the A-549 cell line. In comparison with the common drug cis-platin, 1, 2, and L
have lower cytotoxic activity against both cancerous cell lines (IC50 = 8.4 ± 0.8 [52] and
19.3 ± 0.8 µg/mL [53], respectively).

3. Materials and Methods
3.1. Chemicals and Instruments

All details for chemicals, solvents, and instruments are depicted in Supplemen-
tary Data.

3.2. Syntheses
3.2.1. Synthesis of [ZnL(ONO2)2]; 1

Complex 1 was synthesized by combining Zn(NO3)2·6H2O (0.2 mmol in 10 mL dist.
H2O) with L (0.2 mmol in 10 mL EtOH). After eight days, colorless crystals were formed
and collected by filtration.

[ZnL(ONO2)2]: Yield: 85%; FTIR (KBr, cm−1): 3224, 2969, 2904, 2854, 1579, 1513, 1265,
1391 (Figure S1; Supplementary Data). C18H24N10O8Zn: C, 37.68; H, 4.22; N, 24.41; Zn,
11.40%. Found: C, 37.43; H, 4.18; N, 24.29; Zn, 11.31%. 1H NMR (DMSO-d6): (Figure S3;
Supplementary Data) δ 9.72 (s, 1H, NH), 8.53 (brs, 1H, CHar), 8.06 (s, 1H, CHar), 7.78 (brs,
1H, CHar), 7.31 (brs, 1H, CHar), 3.71 (brs, 8H, 2 CH2-O-CH2), 3.59 (brs, 8H, 2 CH2-N-CH2),
2.33 (s, 3H, CH3) ppm.

3.2.2. Synthesis of [ZnL(NCS)2]; 2

Complex 2 was synthesized by mixing Zn(ClO4)2·6H2O (0.2 mmol in 10 mL dist. H2O)
with L (0.2 mmol in 10 mL EtOH). To the resulting clear solution, 1 mL of saturated aqueous
NH4SCN solution was added followed by reflux for 30 min then filtration. After ten days,
colorless crystals were collected from the solution by filtration.

[ZnL(NCS)2]: Yield: 88%; FTIR (KBr, cm−1): 3187, 2963, 2908, 2857, 2084, 2047, 1588,
1502, 1256 (Figure S2; Supplementary Data). C20H24N10O2S2Zn: C, 42.44; H, 4.27; N, 24.75;
Zn, 11.55%. Found: C, 42.30; H, 4.22; N, 24.61; Zn, 11.40%.
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3.3. X-ray Structure Determinations

The crystal structures of 1 and 2 were solved and refined as described in detail in
Supplementary Data [54–57] and a summary of crystal data is given in Table 1.

3.4. Hirshfeld Analysis

Hirshfeld analysis [58] was conducted using the Crystal Explorer Ver. 21.5 program [59].

3.5. Computational Details

NBO analysis was performed using Gaussian 09 software [60] while the Chemcraft
program [61] was used to construct the natural orbitals. The ωB97XD method employing
6–31G(d,p) basis sets for non-metal atoms and cc-pVTZ-PP for Zn [62] were used.

3.6. Biological Studies

The protocols for examining the cytotoxic activity [63] and antimicrobial efficacy [64]
are outlined in Methods S1 and S2 (Supplementary Data).

4. Conclusions

Two new highly distorted penta-coordinated complexes, [ZnL(ONO2)2] (1) and
[ZnL(NCS)2] (2), with the s-triazine derivative (L) acting as a tridentate ligand, were
synthesized and their structural, antimicrobial, and cytotoxic characteristics were explored.
The free ligand (L) is a NNN-chelate from the pyridine, hydrazone, and s-triazine moieties,
where the Zn-N of hydrazone is the shortest bond length while the Zn-N of s-triazine is the
longest in both complexes. The ZnN3O2 and ZnN5 coordination spheres have distorted
square pyramidal configurations around Zn(II) in both complexes. Their supramolecular
structure aspects were investigated using Hirshfeld surface analysis. The energy frame-
work topology analysis indicated the importance of the dispersion energy term for the
intermolecular interactions that occurred among the complex molecules, where total in-
teraction energies of −317.8 and −353.5 kJ/mol were predicted for 1 and 2, respectively.
NBO analyses were used to predict the net charges of the ligand groups and metal ions
as a consequence of the donor–acceptor interactions among them. In addition, the orbital–
orbital interactions included in the Zn-O, Zn-N, and Zn-S interactions were described on
the same basis. Complex 1 is a more potent anticancer agent than 2 against the HCT-116
and A-549 cell lines (SI >1). In contrast, the free L has higher IC50 values, indicating the
better cytotoxic properties of Zn(II) complexes compared to L. Also, both complexes have
broad-spectrum antimicrobial activity. The best antibacterial action is found for complexes
1 and 2 against P.vulgaris, and are found to be comparable to gentamycin as a positive
control. In addition, the antifungal activity of both Zn(II) complexes is better than other
metal(II) analogs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics12070176/s1. Experimental details; Figure S1. The FTIR spectra
of L (upper) and [ZnL(ONO2)2]; 1 (lower); Figure S2. The FTIR spectra of [ZnL(NCS)2]; 2; Figure S3.
The 1HNMR spectra of [ZnL(ONO2)2]; 1; Figure S4. Shape index and curvedness maps for 1; Figure
S5. Shape index and curvedness maps for 2; Figure S6. Visualization of molecular interactions within
a cluster with a radius of 3.8 Å between the central molecule under investigation and its neighboring
molecules, for 1; (A) and 2; (B); Figure S7. MTT assay of 1, 2, and their ligand L against WI-38 normal
cells; Figure S8. MTT assay of 1 and 2 against HCT-116 cancerous cells; Figure S9. MTT assay of 1
and 2 against A-549 cancerous cells; Table S1. Different interaction energiesa of the molecular pairs in
kJ/mol for 1; Table S2. Different interaction energiesa of the molecular pairs in kJ/mol for 2; Table S3.
The NBO analysis for the Zn-N and Zn-O interactions in complexes 1 and 2; Table S4. Evaluation of
cytotoxicity against the WI-38 cell line for L; Table S5. Evaluation of cytotoxicity against the WI-38 cell
line for 1; Table S6. Evaluation of cytotoxicity against the WI-38 cell line for 2; Table S7. Evaluation of
cytotoxic activity against the HCT-116 cell line for 1; Table S8. Evaluation of cytotoxic activity against
the HCT-116 cell line for 2; Table S9. Evaluation of cytotoxic activity against the A-549 cell line for 1;
Table S10. Evaluation of cytotoxic activity against the A-549 cell line for 2; Method S1. Evaluation of
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cytotoxic activity; Method S2. Evaluation of antimicrobial activity; Method S3. Energy framework
analysis protocol.
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