JYVASKYLAN YLIOPISTO
H UNIVERSITY OF JYVASKYLA

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s)' Chandramouli, Suyog; Shi, Danqing; Putkonen, Aini; De Peuter, Sebastiaan;
) Zhang, Shanshan; Jokinen, Jussi; Howes, Andrew; Oulasvirta, Antti

Title: # Workflow for Building Computationally Rational Models of Human Behavior

Year: 2024

Version: pyblished version

Copyright: © The Author(s) 2024

Rights: ccya.0
Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:

Chandramouli, S., Shi, D., Putkonen, A., De Peuter, S., Zhang, S., Jokinen, J., Howes, A., &
Oulasvirta, A. (2024). A Workflow for Building Computationally Rational Models of Human
Behavior. Computational Brain & Behavior, Early online. https://doi.org/10.1007/s42113-024-
00208-6

Computational Brain & Behavior
https://doi.org/10.1007/s42113-024-00208-6

RESEARCH f')

Check for
updates

A Workflow for Building Computationally Rational Models of Human
Behavior

Suyog Chandramouli' - Danqing Shi’ - Aini Putkonen’ - Sebastiaan De Peuter' - Shanshan Zhang? -
Jussi Jokinen3 - Andrew Howes* . Antti Oulasvirta’

Accepted: 19 June 2024
© The Author(s) 2024

Abstract

Computational rationality explains human behavior as arising due to the maximization of expected utility under the con-
straints imposed by the environment and limited cognitive resources. This simple assumption, when instantiated via partially
observable Markov decision processes (POMDPs), gives rise to a powerful approach for modeling human adaptive behavior,
within which a variety of internal models of cognition can be embedded. In particular, such an instantiation enables the use
of methods from reinforcement learning (RL) to approximate the optimal policy solution to the sequential decision-making
problems posed to the cognitive system in any given setting; this stands in contrast to requiring ad hoc hand-crafted rules
for capturing adaptive behavior in more traditional cognitive architectures. However, despite their successes and promise
for modeling human adaptive behavior across everyday tasks, computationally rational models that use RL are not easy to
build. Being a hybrid of theoretical cognitive models and machine learning (ML) necessitates that model building take into
account appropriate practices from both cognitive science and ML. The design of psychological assumptions and machine
learning decisions concerning reward specification, policy optimization, parameter inference, and model selection are all
tangled processes rife with pitfalls that can hinder the development of valid and effective models. Drawing from a decade of
work on this approach, a workflow is outlined for tackling this challenge and is accompanied by a detailed discussion of the
pros and cons at key decision points.

Keywords Computational rationality - Resource rationality - Modeling workflow - POMDPs

Introduction

Computational models have played a central role in the
field of cognitive science (McClelland, 2009; Shiffrin, 2010;
Lake et al., 2017; Kriegeskorte & Douglas, 2018; Lieder
& Griffiths, 2020). Models shed light on human behavior
by precisely describing mechanisms that link hypothesized
cognitive processes with environments and behaviors. Good
models not only help develop theoretical understanding, but
also produce useful predictions of future behavior, which

B<I Suyog Chandramouli

suyoghc @gmail.com

Aalto University, Espoo, Finland
University of Helsinki, Helsinki, Finland
University of Jyviskyla, Jyviskyld, Finland

University of Exeter, Exeter, UK

Published online: 15 August 2024

can in turn be used in applied settings such as interactive
Al However, building such models, especially in scenarios
that extend from controlled experiments in the laboratory to
real-world behavior, has turned out to be challenging. One
obstacle involves difficulties in capturing the extensive adap-
tivity that characterizes human behavior in the real world
(Oulasvirta et al., 2022). To be applied practically, models
need to account for how behavior changes as a function of
beliefs, capabilities, goals, and the environment, which is,
however, further complicated by the continual learning, adap-
tation, and exploration of individuals in their environment
(Howes et al., 2023). Successfully tackling this challenge
would advance efforts towards building computing systems
that better understand people. For safer Al that collabo-
rates better with people, we need models with control- and
explanation-amenable causal mechanisms.

Computational rationality is a theory that has recently
emerged as a candidate to address this challenge (Howes et
al., 2009; Lewis et al., 2014; Gershman et al., 2015; Lieder &

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42113-024-00208-6&domain=pdf

Computational Brain & Behavior

Griffiths, 2020; Oulasvirta et al., 2022; Howes et al., 2023).!
It draws together ideas from cognitive sciences and machine
learning to predict adaptive behavior in artificial and biolog-
ical agents. While the principle of rationality describes the
ideal solution of a problem posed to a (unbounded) rational
agent, computational rationality recognizes that biological
agents also have computational limitations and provides a
framework for describing agent behavior as a result of try-
ing to make good decisions under computational constraints.
Given our focus on human cognition in this article, the core
assumption made by computational rationality is that our
choices and behavior aim to maximize subjective expected
utility; however, we are limited in that by bounds imposed
not only by the “external environment,” but also an “internal
environment” comprising of our cognition and our bodies.
The external environment here refers to elements such as our
physical context, the task being carried out, or the devices
we interact with that shape our possible behaviors, while
the internal environment includes latent psychological con-
structs such as perception, attention, and memory that may
have capacity limits. Observed behavior is then considered
an emergent consequence of rational adaptation to the totality
of these constraints.

While there are several ways of instantiating computa-
tional rationality (Lewis et al., 2014; Lieder & Griffiths,
2020; Icard, 2023), our article is concerned with a framework
that uses partially observable Markov decision processes
(POMDPs; Sondik, 1971) to capture computational ratio-
nality as arising due to the partial observability of the
external environment and internal environments. POMDP-
based models are theoretically sound and flexibly allow for
the incorporation of a variety of models within them, includ-
ing those based on deep learning, which can be useful in
capturing the complexities of real-world environments and
behavior across a wide range of contexts. Methods from rein-
forcement learning and deep reinforcement learning can be
then used for solving the POMDPs (i.e., finding approximate
policies that predict observed behavior). As these models are
related to practices in both, cognitive science and machine
learning, we will be using terminology from both disciplines
in the article. We introduce and clarify key terms when they
come up to aid in comprehension.

The computationally rational models that we build with
reinforcement learning have some basis in traditional cog-
nitive architecture approaches (Laird et al., 1987; Anderson
et al., 1997; Bekolay et al., 2014), but vary greatly in terms
of how they model adaptive behavior. Cognitive architec-
tures assume that everyday tasks recruit multiple cognitive
capacities that need to be carefully “architected” into a model
(Card et el. 1983) and consequently model internal capaci-
ties as resource-limited modules; the architectures include

1" Also known as resource rationality and algorithmic rationality.

@ Springer

a “processor” that directs the flow of information between
modules based on a “cognitive program” or a set of “pro-
duction rules.” Although cognitive architectures have made
significant progress with respect to understanding cogni-
tion, they have sometimes been brittle as predictive models
because their “programming” was often hand-coding them
via “sophisticated guessing” (Shiffrin, 2010). Every time
a different situation or individual needs to be studied, the
vast rule base needs to be manually updated, which can
be time-consuming and contrary to its vision of producing
generally applicable models of behavior. Computationally
rational models, on the other hand, capture the essence of
cognitive architectures within the “internal environment” of
a reinforcement learning agent (Lewis et al., 2014). Adap-
tive behavior then emerges as a consequence of bounded
rational policy optimization. Boundedly optimal behavior
can be derived for different situations based only on pol-
icy optimization. When building a computationally rational
model, one specifies the environment and the agent’s goals
and characteristics; the actual behavior in a given situation,
however, emerges via a policy (;r) optimized to these bounds.
In practice, this policy is approximated by machine learning
methods, particularly from reinforcement learning. Compu-
tationally rational models are also generative in the sense that
they create stepwise simulations of an agent’s behavior in a
given setting, rather than merely predicting summary statis-
tics of empirical data. This is made possible due to parameter
inference that it allows at both the individual and the group
level, depending on the context of application. During the
last decade, the theory has been successfully applied to data
from increasingly realistic everyday tasks, including typing
(Jokinen et al., 2021a), driving (Jokinen et al., 2021b), visual
search (Radulescu et al., 2022; Jokinen et al., 2020; Todi et
al., 2019), multitasking (Gebhardt et al., 2021), menu inter-
action (Chen et al., 2015), and affordances (Liao et al., 2022),
among others including (Belousov et al., 2016; Chen et al.,
2021). We note that computational rationality models built
with reinforcement learning are distinct from reinforcement
learning-based models of human learning such as Pavlovian
learning (Rescorla, 1972; Zhang et al., 2020) and error-driven
learning (Seymour et al., 2004; Sutton, 1988).
Computationally rational models are based on a specifi-
cation of a decision-making problem that an agent faces. At
the heart of this formulation are three elements, outlined in
Fig. I: (i) the internal environment of the agent (that is, the
cognitive resources and processes involved), (ii) a reward
signal representing what is important to the agent, and (iii)
the external environment in which the agent operates. More-
over, the modeler needs to decide the internal representations
through which the agent is observing the world. This dic-
tates how external stimuli are transformed into an internally
represented state abstraction or a belief that informs the
agent’s choice of how to act. The internal environment can

Computational Brain & Behavior

Agent
Internal
Controller .
environment

[E—

Policy Cognitive
«— r — Resources

n ()

le— 0 —

External environment

Fig.1 Computational rationality assumes that people adapt their behav-
ior to maximize expected utility under cognitive bounds. To build a
computational model that instantiates this theory with reinforcement
learning, a policy (7r) needs to specify a decision problem where a pol-
icy (r) controls which action (a) to take in light of observations (o) to
maximize rewards (r). Whereas standard reinforcement learning-based

be represented in a variety of forms ranging from simple
mathematical models to end-to-end machine-learned mod-
ules, and it can also take various architectural forms, such as
hierarchical (e.g., Gebhardt et al., 2021) and modular archi-
tectures (e.g., Jokinen et al., 2020). The place where the
approach breaks decisively from cognitive architectures is
in its formulation of a sequential decision-making problem.
When the specification of the agent adheres to the assump-
tions of a Markov decision process (MDP), machine learning
methods can be used to estimate an optimal policy. Reinforce-
ment learning (RL), in particular, has been one of the most
widely used frameworks used to this end (Sutton & Barto,
2018). It learns an optimal bounded policy through trial and
error.

Despite the success of computational rationality models
framed as POMDPs, producing such models in a valid and
practically applicable manner is not straightforward. The use-
fulness of the eventual model critically depends on several
modeling decisions that are made while building them from
(i) the initial steps of specifying the rewards and cognitive
resources to implement in the model, to (ii) formulating the
task as a sequential decision-making problem, and (iii) using
RL methods to approximate the optimal policy. The impe-
tus for this paper comes from numerous struggles and dead
ends encountered in grappling with computationally rational
models of everyday behavior over a decade of research. It is
a considerable hurdle to produce such models; the validity
and applicability of these models also critically depend on
choices made on the way. While there are excellent guide-
lines for developing other types of computational models of
behavior, such as Bayesian statistical models (Gelman et al.,
2020), decision-making models (Wilson & Collins, 2019),
and reinforcement learning (Zhang et al., 2020; Patterson
et al., 2023), computational rationality comes bundled with
many unique challenges and considerations. These questions

Simulator

models applied in ML are situated directly in the external environment,
computationally rational models of human behavior are only “yoked
to it” via their internal environment, that is, cognition. Modeling the
decision-making problem, including the internal environment, as well
as its parametric variability across individuals (0), is a challenge in
cognitive science

are among its complicating factors: How to choose what
to handle via RL and what learning should occur with a
cognitive resource? Which measures of model quality are
meaningful? How does one specify the reward functions?
How does one perform model checking when the models use
interpretable theory-based components as well as tractable
data-driven components? How much value do metrics for
model parsimony offer for handling model selection in such
scenarios?

This paper fills this gap by laying out a workflow
framework that is able to guide modelers interested in com-
putational rationality (diagrammed in Fig.2). A key aspect
of the proposed workflow is its iterative stepwise structure.
This incorporates steps that are vital for cognitive model-
ing (model specification) but also elements necessitated by
ML structures (policy optimization and parameter tuning),
alongside general stages in computational modeling (check-
ing, comparison, and selection of models). Since machine
learning approaches are used in this form of cognitive mod-
eling, our article will use relevant terminology from these
disciplines.

Workflows are beneficial in and of themselves and com-
plement the progress achieved through the development of
new tools and software in the field. For instance, powerful
software libraries in statistics and machine learning have
made it easier to develop complex models of human behav-
ior. However, it has become equally possible to build models
without putting much thought into them (Hullman et al.,
2022; Kapoor et al., 2023) or to use methods such as deep
learning when there is a paucity of training data, which is the
scenario for almost all cognitive science experiments and user
modeling approaches. Such practices often result in mod-
els that are poorly specified—that is, untrustworthy models
that make patently inaccurate assumptions about the world,
and are neither useful for insight and understanding nor for
prediction and generalization. Misspecified models may fit

@ Springer

Computational Brain & Behavior

Defining the goals of modeling

Model specification
[Int. environment
Reward function |
Ext. environment|

[

Policy
optimization

Human | Parameter |, _‘ | Iterate

| data | | fitting |

- Model checking y

3

| Model selection }

Result

Fig.2 A summary of the model building steps considered in the work-
flow for developing computationally rational cognitive models with
POMDPs. The model building workflow is tangled and can proceed
in several different directions along the arrows shown, and it is itera-
tive with a series of model revisions based on model checks. Models
often start with simple specifications and they are gradually improved in
quality and complexity until they capture the key elements of empirical
human data and satisfy the modeling goals

observed data well but are fragile and break down under even
the slightest variation in the environment. However, even
though there are overheads to following a model building
workflow, the many implicit sanity checks, diagnostics, and
tests can increase the quality, usefulness, and robustness of
models. Models developed through a structured workflow
tend to be more carefully thought out, tested, and reported
upon. In addition, anchoring modeling choices to a work-
flow is also one way to be transparent about the modeling
process. Hence, we conclude that principled workflows rank
among the keys to better cognitive science, conferring ben-
efits for validity, reproducibility, and accumulating valuable
scientific results. However, we must stress that workflows
are better treated as guides rather than rigid prescriptions, to
leave flexibility for situation-specific modeling contexts and
goals.

A considerable portion of the workflow is related to
specifying the agent’s internal environment. Introducing
such causal underpinnings is especially beneficial in cases
where explanation, control, and prediction are crucial. How-
ever, this simultaneously renders computationally rational
models vulnerable to misspecification: the assumptions and
processes articulated by the model might yield poor approxi-
mations of reality or turn out to be simply wrong. This is why
our workflow’s iteration incorporates such steps as model
checking, which studies have linked to reduced misspecifi-
cation and greater robustness across multiple model classes
and modeling domains (Box, 1980; Wilson & Collins, 2019;

@ Springer

Gelman et al., 2020). Taking into account these considera-
tions, we pursue the following objectives in designing the
workflow:

1. Pre-specifying objectives: Articulating a domain of
behavior in advance (“This is what we aim to model”)
and specifying both the key phenomena in the data and
metrics for success is essential for tracking the progress of
the modeling effort. Although all modeling is explorative
and subject to change accordingly, working with clear
goals from the outset may safeguard against unhealthy
practices such as declaring modeling goals opportunisti-
cally after the fact and without validating the model for
them appropriately.

2. Separation of policy learning and parameter fitting: Some
free parameters of a computationally rational model
describe the policy, while others characterize the indi-
vidual. Though the two often get optimized jointly, they
are conceptually distinct.

3. Model checking and validation. These practices increase
the quality of models by detecting overfitting and ill-
defined structures and parameters.

4. Scaling up iteratively: Getting the model right the first
time is nearly impossible, in that success rides not only
on theory-based insight but, regrettably, also on luck (e.g.,
the policy must converge and depend on random-number
seeds). Therefore, we recommend deliberately planning
for iterative model building that starts with a minimal
goal set and expands in each iteration towards the full
scope.

Our presentation begins with a review of prior attention
to workflows for this class of modeling. Against that back-
drop, we then explicate the proposed workflow, with a focus
on each step’s major decisions. The discussion pinpoints key
considerations and highlights central choices specific to com-
putational rationality. Because of the emerging nature of this
area, many of the discussions we offer are meant to expose
their respective pros and cons choices rather than prescribing
an approach.

To anchor our discussion in a practical case, we
present a running example from recent modeling:
the gray box at the end of each section addresses an
attempt to extend state-based models of human typ-
ing behavior (Jokinen et al., 2021a) on touchscreens to
a pixel-based agent (Shi et al., 2024). Typing exem-
plifies the challenge well since it involves adapting
eye—hand coordination in accordance with external
bounds (from design, intelligent text entry, etc.) and
internal ones (e.g., working memory capacity and
noise levels). The agent, limited by partial observ-
ability (foveated vision), must decide where to direct

Computational Brain & Behavior

attention at any given time: the keyboard, the text dis-
play, the backspace key, or some other element. To be
useful, a model of typing behavior should be able to
predict the effects of changing conditions counterfac-
tually (Oulasvirta & Hornbak, 2022). For instance,
how will the user’s typing strategy and performance
change if an intelligent text entry system enters the
loop, when the user cares less about errors, or if there
is a switch in keyboard layout? Moreover, to capture
individuals’ differences, the typing model needs to be
tunable for individual-level data; this implies that we
should be able to invert them when given humans’
data.

Background: Workflows for
Rationality-Based Models of Human
Behavior

In the context of modeling, a workflow is a systematic
approach for building valid, reliable, and useful models
through a sequence of iterative model building steps. A
workflow captures both formal knowledge and tacit knowl-
edge into clear and actionable guidelines. These guidelines
may draw from numerous types of knowledge: theoretically
proven solutions, best practice identified in the literature, an
experienced colleague’s wisdom, awareness-raising reflec-
tion, etc. A workflow provides a systematic framework for
navigating the garden of forking paths of modeling choices
to produce high-quality models.

The need for workflow-based model development is
accentuated in cases that combine the two cultures of mod-
eling (Breiman, 2001)—where our model simultaneously
combines generative processes informed by psychology the-
ory with those learned from data using machine learning—
computationally rationality models that use reinforcement
learning are an example of such a hybrid approach.

Workflows for computational models often distill them
into four main steps: (i) model specification, (ii) model fitting,
(iii) model checking, and (iv) model selection. Each step
comprises sub-steps, diagnostic checks, and best practices
for model building. In this article, we do not deal with data
collection as a part of the modeling workflow, even though
data are important for modeling. We assume here that data
has already been collected in a valid and rigorous manner
and focus on the iterative model building workflow given
such data.

While the general objective behind modeling workflows
(e.g., see Schad et al., 2021; Zhang et al., 2020; Wilson &
Collins, 2019; Gelman et al., 2020; Schad et al., 2022; Pat-
terson et al., 2023; Grinsztajn et al., 2021) is to enhance

the quality of scientific research, their specific steps and
emphases differ, reflecting the distinctive goals and methods
of the respective domains. This article specifically targets the
development of computationally rational models instantiated
using reinforcement learning.

This paper extends workflows for rationality-based mod-
els of human behavior to the case of computational rational-
ity. In rational analysis (Anderson, 1991; Chater & Oaksford,
2000), the idea is that cognition adapts to requirements of the
environment. Accordingly, the modeling centers on devel-
oping agents that produce optimal behavior for a given task
and the statistical structure of its environment. Lieder and
Griffiths (2020) recently sketched out a high-level workflow
for resource-rational (computationally rational) analysis (see
also Howes et al., 2009), splitting it into five steps:

1. Start with a functional description of an aspect of cogni-
tion

2. Articulate the algorithms for cognition, with cost and util-
ity values

3. Pick the algorithm that optimally trades off cost and util-
ity

4. Compare with empirical data

5. Iterate until satisfied with the result

While this outline provides a good sense of the general
flow, the emphasis is on understanding a particular aspect of
cognition, and situating these perspectives in Marr’s levels of
analysis framework (Marr & Poggio, 1976), rather than mod-
eling behavior in complex, everyday contexts. Consequently,
it overlooks the detailed steps necessary for practical mod-
eling, especially in defining decision-making problem and
estimating the (boundedly) optimal policy of the agent (Rus-
sell & Subramanian, 1994). There is a gap in integrating these
cognitive and rationality-focused aspects of computationally
rational models with the general computational modeling
building frameworks in cognitive science, machine learn-
ing, and statistics. Our article bridges this gap by presenting
a comprehensive workflow for developing computational
rationality models using reinforcement learning. This work-
flow is informed by our experience developing such models
and integrated with established modeling approaches; it aims
to avoid common pitfalls and improve the validity and effec-
tiveness of our resultant model.

No known workflow met all of our needs when we
began work on the computationally rational typing
model. Such development requires understanding of
rational analysis, deep reinforcement learning, and
computational statistics.

@ Springer

Computational Brain & Behavior

Defining the Goals of Modeling

Before starting to build a model, it can be very useful to
explicate the goals of modeling and plans for achieving them.
Preregistration of modeling goals and procedures have been
promoted for their possible reproducibility benefits (Lee et
al., 2019; Hofman et al., 2023; Kapoor et al., 2024), but we
consider it useful for guiding the modeling workflow and
decisions made along the way, for model evaluation against
our articulated objectives, for transparency, and improved
communication behind the motivation of choices made. The
general aspects of the model worth articulating ahead of
model building include the following:

1. Purpose: Why is the model being created?

2. Scope: What theories, behavior, and data are covered, and
to what extent? Which human behaviors do we want to
reproduce, under what types of theoretical assumptions,
and in line with which data?

3. Baselines: What models can address the relevant goals
and scope?

4. Metrics: Which metrics are best suited to evaluating the
model’s quality?

Clarifying Purposes

Developing a model should start by laying out the general
goal for the model: what is its purpose, and why does it need
to be created? For example, the goals for modeling human
behavior may be theoretical—to understand and explain gen-
eral mechanisms underlying human cognition across varied
contexts, and advance scientific knowledge. Or the goals may
be practical, where they are relevant for a particular appli-
cation setting, where aspects such as predictive performance
and computational efficiency may override explanatory con-
siderations. Each modeling endeavor may have different
objectives and purposes, and it helps to articulate them before
building a model. Articulating goals upfront can serve as san-
ity checks to keep in mind as we iteratively develop a model
and make decisions throughout the model building process.

Setting the Scope

After explicitly stating the overarching purpose, we need to
define the model’s intended scope. There are three aspects to
this: (i) theory scope, (ii) behavior scope, and (iii) data scope.

The first involves specifying the psychological assump-
tions in terms of modeling decisions. For example, if we are
interested in modeling visual search of natural scenes, we
might decide to include assumptions about foveated vision
and how the ability to detect visual features drops off in
peripheral vision (Kieras & Hornof, 2014). Setting the theory
scope involves picking out the relevant aspects of cognition

@ Springer

that will form the foundation of the model: we might choose
to focus on those related to attention, memory, perception,
or goals and motivation.

Secondly, we must specify the behavior scope. Involving
the empirical phenomena and environments that the model
should cover, the behavior scope delineates the conditions
in which the model is assumed to operate and how it does
so. Often, when we model data collected in an experimental
study or a set of studies, the behavior scope can be dic-
tated by our theory scope, experiment settings, conditions,
and behaviors—the types of stimuli presented, the objectives
given to the participants, the nature of responses elicited from
them, etc. The practical application context can be another
determinant of the behavior scope. For instance, we may have
in mind a model of typing that makes predictions for novel
keyboard layouts. In that case, the behavior scope should
cover such additional keyboards.

Finally, any data and data patterns (i.e., behavioral pat-
terns) that we want the model to account for fall under data
scope. Examining and understanding the data is important
for gaining insights into the data patterns we would like the
eventual model to predict and explain. Exploratory data anal-
ysis (EDA) refers to such a process of examining the data
and its variables by various means such as visualizations and
descriptive statistics (Wilson & Collins, 2019; Gelman et
al., 2020). The objective here is to concretize the modeling
goals by grounding them within the data at hand. EDA can
also act as a check on the quality of the dataset and allow us
to examine if there are any outliers or critical errors during
data collection which reduces the usefulness of the data. Also,
one has to assess the quality of the dataset, pinning down fac-
tors such as noise and whether there are outliers or missing
data. Even more critical is the need to visualize the patterns
identified as belonging to the data scope. Tools such as scat-
terplots, violin plots, histograms, and animations can serve
this purpose. These equip us with a comparator that enables
better gauging the model’s behavior at the model checking
stage.

Defining Baselines

Choosing meaningful baseline models is important for
demonstrating the value and novelty of our proposed model
in a valid manner, within the context of existing approaches.
Hence, once interesting data patterns have been identified
and prioritized, it helps to consider existing models from the
literature that are relevant to the task and patterns we con-
sider important. Predictive performance is a key indicator of
a model’s effectiveness, and it is hence a common practice
to choose current state-of-the-art approaches in the field as a
baseline against which to compare our eventual computation-
ally rational model. In some cases, theoretically interesting
alternatives may serve as more natural baselines as they allow

Computational Brain & Behavior

us to contrast the implications of different assumptions on
model behavior. In addition to testing the effectiveness of
our eventual model, these baselines can also inspire ideas
about what to incorporate in our model and serve as a basis
on which our model can be iteratively built. The initial goal
may be to perform at least as well as the baselines, with
the ultimate aim being to surpass their performance. If the
baselines we select are available in code, we recommend try-
ing them out against the visualizations produced in the steps
above.

Establishing Model Performance Metrics and
Diagnostics

Model performance metrics are quantitative measures that
can be used to assess how well a model performs against its
objectives. For example, common metrics to measure predic-
tive performance against observed data can be metrics such as
accuracy, precision, and root mean squared error. In addition
to the broad prediction metrics, we may also be interested in
how well predictions capture qualitative data patterns that we
had declared as important to capture (e.g., in visual search,
a pattern of search times being longer when the target and
distractors are of the same color). We recommend mapping
out key metrics that align with the modeling objectives to
ensure that the workflow remains focused on the modeling
goals and to measure progress on these objectives.

Diagnostics are measures that can identify problems that
arise during modeling and often provide insight into the inner
workings of the model. For example, feature importance
(Casalicchio et al., 2019), which indicates the features most
influential for a model, can be diagnostic to determine if any
neural network components used in the model are empha-
sizing sensible features or not; sensitivity analysis, which
evaluates the model’s performance under different settings,
can provide insights into the model’s robustness and sensi-
tivity to different assumptions. It is recommended to think
of these main metrics and diagnostics up front to be used
throughout the various stages of modeling. We offer several
examples in the course of the discussion below, but in the
ideal case, one should select metrics that reflect the scope
well and pick diagnostics are maximally informative with
regard to how well the modeling is progressing.

Planning the Project

The complexity of models in this domain makes it nearly
impossible to create a valid model that fulfills all model-
ing goals in one attempt. An iterative modeling workflow
that starts with simpler accounts for observed data has sev-
eral benefits. Simpler models have fewer components and
allow us to better diagnose and debug modelling issues as

they come up. An iterative workflow also makes it easier
for modelers to gradually improve their understanding of
observed behavior and model behavior. Such an iterative
workflow structure can be strategically planned, and we turn
to the notion of a research ladder, describing a few milestones
for the modeling process in progressively higher fidelity.
Because policy optimization is often a time-consuming step,
it also makes sense to work with simpler versions of the
problem at first and ensure we are on the right track before
increasing complexity. Our planning typically defines lad-
ders with 3—4 steps, each for matching (i) a certain human
phenomenon at (ii) a certain level of fidelity (e.g., trends only
or absolute numbers). On some occasions, one may choose
the alternative strategy of starting from a higher rung of the
ladder from a known and well-understood model, and then
stepping down by simplifying its assumptions until we come
to a better understanding of how the original model needs
to be changed; thereafter, one can scale up the ladder again
until the changes yield satisfactory predictive performance
and satisfies our modeling goals.

The primary goal set for the touchscreen-typing
model was to gain insight into the behavior of human
typists and subsequently use the model to evaluate
keyboard designs. Accordingly, we specified that the
model should coordinate finger and gaze movements
for typing phrases on touchscreens in a human-like
manner. We wanted to improve accessibility by sim-
ulating users who vary in capabilities and predicting
design changes’ impact on their performance. We set
the scope for the typing model by way of three con-
siderations.

Firstly, the model should have the capacity to repli-
cate main tendencies in an empirical dataset of typing
(Jiang et al., 2020). Its policy should closely align
with human data and replicate key metrics and phe-
nomena documented in the paper. Secondly, typing
patterns vary considerably between individuals, with
some displaying faster typing, some being slower,
some making more errors, and some proofreading
more. It is vital to model these individual differ-
ences, especially for applications that support special
user groups. We aimed to replicate the distribution
of behavior that reflects a wide range of user popu-
lations, as illustrated in the figure below. Finally, we
sought a model that performs well not only for the
specific keyboard it was trained on but also with pre-
viously unseen keyboard layouts. It had to function
well across a wide range of keyboard designs, lay-
outs, and intelligent features.

@ Springer

Computational Brain & Behavior

stat
Mean
Mediar
Slowes
Fastes

.
Median 29.3 n
e 203 . o
0 ||||| |“|||I|I|.... |) _._.|||||‘ |||||II||II|

Two-finger Typing Speed (Words per minute)

Count
Count

Single-finger Typing Speed (Words per minute)
To ascertain how well the model matches real-world
eye and finger movements in terms of typing speed,
error correction, and proofreading, we chose six rep-
resentative metrics from work by Wobbrock (2007),
Arif and Stuerzlinger (2009), and Feit et al. (2016):
words per minute (WPM), inter-key interval (IKI),
amount of backspacing, error rate, number of gaze
shifts, and gaze-on-keyboard time ratio. We selected
the latest state-based RL model (Jokinen et al., 2021a)
as our baseline.
To scale up our modeling efforts, we developed a
research ladder with a simple finger-movement pat-
tern as its lowest rung. More complex eye—hand
coordination patterns were higher up the ladder. After
attending to finger behavior, specifically typing speed
(represented by WPM and IKI figures), we added
the layer of difficulty from error-correction strategy,
by incorporating error rate and Backspace presses.
Finally, we modeled gaze behavior, which involves
more complicated mechanisms connected with proof-
reading strategy (gaze-shifting, etc.).

Model Specification

In the implementations of computational rationality via
POMDPs, we model humans as agents interacting with
their external environment through the lens of their own
cognitive limitations, such as bounded rationality, limited
attention, and imperfect memory; models are conceptually
partitioned into an internal and an external environment, as
Fig. 1 illustrates. The external environment represents the
task environment encountered by the agent. For example, a
model addressing a car-driver’s external environment might
contain simulations of the steering wheel, the pedals, and
the vehicle as a dynamic object in traffic. The internal envi-
ronment, in contrast, encompasses the cognitive processes
internal to the agent, including the generation of observations
and reward signals. This internal/external division is critical.
The agent does not interact with the external environment
directly; instead, engagement is with an internal representa-
tion of the world, shaped by the agent’s cognitive processes.
The internal representation allows the agent to interact with
its environment in a way that is computationally feasible for
everyday tasks and situations (Lieder & Griffiths, 2020). A
partially observable Markov decision process, or POMDP

@ Springer

(discussed below), formalizes how these environments are
available to the agent. It translates the underlying state of
the external world, which is only partially observable, into a
form that the agent can perceive and act upon.

Specifying the Internal Environment

While optimal adaptation exclusively to the design of the
external environment would be an outcome of (unbounded)
rational behavior, optimal adaptation to the internal envi-
ronment results in a computationally rational behavior that
adapts not only to the external environment but also to
the agent’s computational bounds imposed by its cognitive
limitations. The agent’s design typically involves cognitive
processes such as memory, perception, and other facul-
ties through which it perceives and acts in its world (the
external environment). The representations produced cover
a spectrum from simple noisy perception to complex rep-
resentations of the agent’s goals, beliefs about the external
environment, tool systems usable in the external environ-
ment, and other constructs. Other factors captured within the
internal environment might consider fatigue, stress, and sim-
ilar physiological phenomena.

For a computationally rational model, hypotheses about
cognition are encoded in the internal environment. There are
various ways to implement the assumptions for the internal
environment: via symbolic approaches, Bayesian inference,
rules, or neural networks, among other mechanisms. Model-
ers express the bounds of the internal environment through
the cognitive model’s parameters. This step goes by the
term “parameter specification” and involves “fixing” rele-
vant parameters to a particular value so as to codify an
assumption we are making about the agent or environment.
For example, we may want to fix or specify the parame-
ters of not only a known external environment, but also the
psychological assumptions about the agent such as a partic-
ular working memory capacity that is generating observed
behavior. Parameters are typically fixed or specified based
on prior knowledge, known empirical findings, or theoreti-
cal considerations. With Bayesian methods, it is possible to
specify degrees of beliefs in parameters’ values by construct-
ing a prior probability distribution (Mikkola et al., 2023) and
update these prior beliefs into a posterior probability distri-
bution given data. Bayesian approaches to computationally
rational POMDP models are currently uncommon, but quite
possible—for example, Kangasrddsio et al. (2017) used a
Gaussian prior for plausible fixation durations in their menu
search model; Shi et al. (2024), placed a uniform prior dis-
tribution over a range of plausible parameter values, and
explained in the typing example. Also, see Aushev et al.
(2023). However, Bayesian approaches are not yet com-
mon in the field, due to the computing costs when using a
distribution over parameter values. After appropriately spec-

Computational Brain & Behavior

ifying any parameter’s value or prior, it is also important to
identify which parameters vary at different levels: individual-
level parameters that vary between individuals, group-level
parameters that vary between groups, and population-level
parameters that remain constant across the entire population.
While we specify theoretical assumptions by parameter spec-
ification or the specification of their priors, an agent may also
be designed to perceive some of those variables (e.g., its stress
level) and even manipulate them (choosing what to store in
working memory, etc.) as it interacts with its environments.

Designing the Reward Function

The second step in model building involves specifying these
internal reward signals. This reward can be defined based
on one of two perspectives: (i) the reward signals are con-
sidered to be generated by the external environment, and
these rewards are a proxy for internal rewards, or (ii) it
can be defined internally based on representations in the
internal environment. The former approach is the more
straightforward—from this point of view, rewards indicate
the goodness of any given action as defined by the task, and
the agent aims to maximize the long-term rewards even if
it is done in a computationally rational manner taking into
account constraints posed by both environments.

From a psychological perspective, the rewards are always
internal. External rewards can sometimes be a proxy for
internal rewards; but, when this assumption fails, we need
to explicitly specify a psychological mechanism for how
humans generate internal rewards (Lee et al., 2023). Human
policies are not completely determined by the task
environment—we use curiosity and intrinsic motivation to
explore the world even when it lacks explicit rewards.

When reward functions are specified as a feature of the
internal environment, we need to investigate the learned poli-
cies to understand the behaviors that these subjective rewards
produce. That is, the agent has goals that it is externally
expected to achieve (e.g., pressing a particular key), how-
ever, the reward function may, in fact lead to other types
of behavior (e.g., pressing no keys if mistakes are heavily
penalized). The way to verify this is via running simulations
of the model and examining whether the reward function is
leading the agent towards the desired objectives.This type of
verification differs from model checking in the sense that we
are mainly ensuring that the agent can technically achieve
the objectives it has been specified.

When a reward function is not specified accurately, we
may observe a phenomenon termed “reward hacking” (Clark
& Amodei, 2016), where the agent discovers unforeseen
shortcuts to achieve high rewards without actually learning
the desired behavior. As the agent and environment increase
in complexity, it becomes harder to design reward functions
that do not reward hack. Recent research provides subwork-
flows to prevent this phenomenon, for example, by detecting

anomalous or aberrant policies (Pan et al., 2022) or by iter-
atively shaping reward functions (Gajcin et al., 2023).

Specifying the External Environment

The third step is to specify the external environment. It
can represent a task environment, for example, a setting
where a user is supposed to type, or it can be an open
world like Minecraft. Practically, however, projects often
start with a gridworld or similar “toy environments”, which
may help focus on the bare essential aspects of the prob-
lem at hand. There is a wide variety of software available
for creating and working with external environments ranging
from physics simulators (e.g., MuJoCo) to agent simulators
(e.g., Sumo and TFAgents), as well as software emulators
(e.g., AndroidEnv), among others. What matters is that the
software that is used is (i) fast enough to permit training
policies and (ii) allows interaction: the internal environment
must be able to provide data to the perception and enact the
agent’s actions.

Defining the Agent’s Decision-making Problem

The elements defined in the previous sections, together,
specify a POMDP: a sequential decision-making problem
under partial observability. The POMDP is defined by the
tuple(S, A, O, T, O, R, y) where S is the state space, A
is the action space, O is the observation space, T : 8§ X
A x 8 — [0, 1] is the state transition probability function,
0 : 8 x A x O — [0, 1]is the observation probability func-
tion, R : 8 x A — R is the reward function and y € [0, 1] is
the discount factor. Given an action a € A and current state
s € 8, the agent transitions to a new state s’ € § with prob-
ability T (s, a, s’), receives a reward R(s, a), and observes
o € O with probability O (s, a, 0).

The POMDP formalism is designed to align with the
principles of computational rationality. It recognizes that
an agent’s knowledge of the world is often incomplete and
models this uncertainty through partial observability. The
state transition and observation probabilities, along with the
action space, encapsulate the concept of a dynamic and
probabilistic world, which an agent needs to navigate with
its limited cognitive resources. Cognitive resources can be
flexibly represented within this framework as part of the tran-
sition function, observatin, and/or actions. Finally, agents act
to maximize the sum of discounted future rewards, reflecting
the process of utility optimization.

A Note on State Abstractions

A critical design choice concerns the observation function.
Because the full state of cognition (the internal state) is
complex, a computationally rational agent typically only
observes part of it. While partial observations hold clear
value—they make exploration and policy optimization sig-

@ Springer

Computational Brain & Behavior

nificantly easier—this simplification loses information, some
of which might be relevant for the task. The choices made in
defining the observation function carry a risk of errors com-
pounding over a long planning horizon (Talvitie, 2014; Ye et
al., 2021; Starre et al., 2022). Prior work offers some guid-
ance for creating effective observations. Theoretical research
has established that observations can safely aggregate across
states that are identical in their reward and transition prob-
abilities; likewise, states with identical Q-values under the
optimal policy can be aggregated (Li et al., 2006). The liter-
ature also deals with stronger aggregations, which combine
more states together. However, policy optimization such as
Q-learning on these aggregated state spaces is not always
guaranteed to produce a policy that is optimal (under the
original state space) (Li et al., 2006). Approximate versions
of the aggregation criteria are also available to aggregate all
states with reward values and transition probabilities that are
not identical but within ¢ of each other. Though approxi-
mate aggregations introduce some error, the resulting value
loss is polynomially bounded for specific aggregation strate-
gies (Abel et al., 2016).

The model we built is a computationally rational typ-
ist (CRTypist). We designed its internal environment
to specify several crucial bounds of human vision,
motor control, and working memory. That environ-
ment functioned as a bridge between the agent and
the touchscreen. The Vision module processes infor-
mation as pixels from a small focal area and blurred
information from peripheral vision. Finger simulates
pointing to a specific pixel on the screen, which may
entail position errors stemming from rapid movement
or lack of visual guidance. Finally, Working Memory
stores information from the vision and finger move-
ments, assessing the typed text while accounting for
uncertainty due to time decay. All components of
the internal environment feature separate parameters
representing their capabilities. The agent’s controller
does not interact with the touchscreen directly. It inter-
acts with the internal environment by setting goals for
the eye and finger movements. Pursuing these goals,
the Finger and Vision modules point to a specific posi-

tion on the touchscreen.
S pixels e
——move—> -

CRTypist
move

Touchscreen

Internal environment

goal Vision

_phrase
< (J ‘
o Worki L
Supervisor belief —— mg:"g:g posjl{non

goal Finger

We design the reward function by considering the
speed—accuracy tradeoff. In essence, the reward
received is a compromise between how accurately and

@ Springer

how quickly one can type. The reward is given at the
end of each episode, upon pressing the Enter key. The
mobile touchscreen served as the external environ-
ment. We captured pixel-representation images from
a software emulator to obtain the visual information
from the keyboard and text display both.

Within the framework outlined above, we formulated
the POMDP thus:

e Within the state space, S, a state s; consists of the
pixel representation of the touchscreen display at
timestep ¢, including both the keyboard and the
text area.

e In the observation space, donated as O, an obser-
vation (o0,) consists of the beliefs from the working
memory (which stores information gathered from
foveal and peripheral vision).

e An action « in the internal environment sets tar-
get goals for both vision and finger—within the
action space, A. It leads to the behavior the typist
can execute on touchscreens—gaze movements,
tapping with a finger, etc.

e In the context of typing, the reward function R is
expressed with a speed—accuracy tradeoff in the
cognitive model of the mind: the goal is to type
correct target phrases as quickly as possible.

Policy Optimization

As with any other class of computational models, the perfor-
mance and predictions of computationally rational models
are influenced by how the models are configured. We can
divide the model-configuration variables into two types:
hyperparameters and model parameters. Hyperparameters
are variables that are external to the model and whose values
are not learned from the data but are specified by the mod-
eler to determine how the model learns. Model parameters,
on the other hand, help to form the internal structure of the
computationally rational model, and are inferred or estimated
based on the data to which the models are fitted. Appropri-
ately specifying model parameters and hyperparameters is
essential for obtaining valid inferences and predictions from
the model.

Model parameters can be further divided into three cat-
egories: (i) the parameters of the internal environment that
have a clear interpretation and a theoretical grounding, (ii) the
parameters that represent the optimal policy of the POMDP,
and (iii) parameters of the external environment, such as those
representing task distributions.

The parameters of the internal environment are psycho-
logically meaningful parameters that may either be specified

Computational Brain & Behavior

to reflect modeling assumptions (see previous section), or
they can be estimated from observed data through parameter
fitting (see next section).

On the other hand, the policy parameters parameterize
a neural network that represents the policy and, therefore,
are difficult to interpret. Given some initial values for the
POMDP, a policy repeatedly directs the internal environment
and is given a reward. Over many episodes, the policy is
trained to maximize the reward received until a given stop
condition is met, which is indicative of satisfactory level of
performance. While POMPDs have proven more useful than
MDPs as representations of human cognition, they are noto-
riously challenging to solve in practical problem instances
due to partial observability. The optimization of the POMDP
policies almost never results in exact solutions; working with
them requires a careful selection of a suitable approximation
method. At the moment of writing, there is no one-stop solu-
tion available; rather, the best method depends on a number
of factors and typically requires the attention of an ML engi-
neer.

An exhaustive review of the methods is beyond the scope
of this article. Nevertheless, we find the following attributes
of POMDPs important to consider while choosing the policy
optimization method (see also Kurniawati, 2022): (i) the size
and structure of the state and action spaces, (ii) whether the
state and action spaces are continuous or discrete, (iii) the
nature of the components embedded within POMDPs (e.g., a
neural network component), (iv) whether inference is needed
online or offline, (v) the amount of computational resources
available, and (vi) the size and structure of the observation
space.

Available RL methods for policy optimization of POMDPs
can be divided according to four dimensions relevant here:
(i) model-free vs. model-based, (ii) on-policy vs. off-policy,
(iii) deep vs. classical RL, and (iv) policy vs. value-
based approaches. Model-free methods that include deep
Q-Networks (DQN; Mnih et al., 2015), Proximal Policy
Optimization (PPO; Schulman et al., 2017) and Q-learning
(Watkins & Dayan, 1992) do not require an explicit model of
the transition function, while model-based methods do. The
benefit of a model-based approach such as Partially Observ-
able Monte Carlo Planning (POMCP; Silver & Veness, 2010)
is that planning (of actions) can be done directly using the
model; however, learning the model for POMDPs remains an
open problem, and these methods are slower to execute. On-
policy methods such as actor-critic asynchronous advantage
(A3C; Mnihetal., 2016) update policy during learning, while
off-policy methods (e.g. PPO) collect rollouts offline and
learn based on them. The best known classical method is Q-
learning. This method is limited to small state-action spaces.
Most work presently uses deep RL-based methods because of
their superior generalizability and efficiency. Nevertheless,
the use of deep-RL-based methods is a challenge due to their
generally unstable behavior during training. Policy-based

methods directly optimize the policy to maximize rewards
and can handle continuous action spaces, while value-based
methods which optimize the value functions tend to be pre-
ferred for discrete action spaces (Kurniawati, 2022).

Reward Shaping

Reinforcement learning (RL) methods, both value-based and
policy-based, aim to optimize an agent’s behavior to maxi-
mize the cumulative reward. However, in scenarios where
the reward function is sparse and where few of the state
transitions come with informative rewards, the process of
identifying reward-maximizing behavior hinges on extensive
stochastic exploration. Therefore, when the inherent reward
structure for a task is sparse (e.g., primarily a terminal reward
when the task is completed), it may be important to expedite
learning for practical reasons. This may be achieved by intro-
ducing additional rewards to guide the RL process towards
the optimal policy, by what is known as reward shaping. For
instance, we might add a distance-based reward that focuses
on exploration in parts of the policy space that are likely to
offer good models of cognition.

Reward shaping techniques need to be implemented with
careful consideration of how they impact agent behavior;
small changes to reward functions can significantly change
the optimal policy. One recommended mitigation mecha-
nism is using a potential-based shaping term: suppose that
we have a reward function R(s, a, s") rewarding a transi-
tion from state s to s’ through action a. We could specify a
shaping term Ry (s, a) = y @ (s’) — @ (s) where y is the dis-
count factor and @ is an arbitrary function. It can be shown
that the shaped reward R(s, a, s’) + R;(s, a) has the same
optimal policy as R(s, a,s’) (Ng et al., 1999). In the case
of distance-based rewards discussed above, we could, for
instance, define ®(s) as the distance from the goal state,
thereby rewarding the agent for getting closer to the goal
and penalizing moving further away from it. The more com-
mon practice of ad hoc reward design is however typically
“unsafe,” meaning that it leads to unintended or undesirable
outcomes (Knox et al., 2023; Booth et al., 2023). A particular
concern is reward shaping that is intended to increase effi-
ciency but which changes the cognitive theory. Much like the
practice of model building, designing more robust rewards
can also benefit from an iterative workflow, and continuous
refinement of the reward function, including with the help of
methods that surfaces problematic edge cases where unde-
sired behaviors are being incentivized by the shaped rewards
(He & Dragan, 2021).

Curriculum Learning

Just as humans do, RL algorithms sometimes struggle when
faced with highly complex tasks. In many cases, it is possible

@ Springer

Computational Brain & Behavior

to “kickstart” the learning by beginning with training from
a simplified version of the task and gradually increasing the
complexity of the task. This is called curriculum learning
(Wang et al., 2021; Bengio et al., 2009). Curriculum design
is essential for effective curriculum learning, yet there is little
theory-based guidance in such a design at present. In general,
it is best to adapt the curriculum to the speed at which the
RL algorithm learns to perform these increasingly complex
versions of the task, increasing the complexity only when it
has learned to handle the current step in the curriculum.

Hyperparameter Tuning

Hyperparameters—dropout rate, batch size, number of
epochs, learning rate, etc.—are of practical importance
because of their role in learning performance. To ensure that
the model can adequately account for the data, we recom-
mend careful hyperparameter tuning. The best option is to use
an optimization method that, after enough trials, guarantees
values approaching the optimum (e.g., Bayesian optimiza-
tion). The next-best option is to rely on others’ values, from
prior articles. Whatever the method of choice, open science
practices require reporting of values that were used.

We trained the typing model’s policy with the goal
of generalizability. The application goal was for it
to cope with various keyboard designs and vari-
ous individual-specific factors with links to cognitive
capabilities (e.g., related to vision, finger agility, and
working memory). To that end, the training process
employed two loops: an outer loop randomly selects
keyboard images and cognitive parameters, and an
inner loop applies RL to learn the policy for optimiz-
ing the reward. For the algorithm, we chose Proximal
Policy Optimization (Schulman et al., 2017), which
offers a reasonable compromise in terms of practical
implementation, sample complexity, and ready tun-
ing.

To “boost” the training, we employed reward shap-
ing and curriculum learning. Because the tradi-
tional Boolean feedback for correct/incorrect typed
text proved too sparse. The typing model uses the
character-error rate for a distance-based reward,
instead of a Boolean reward. This approach incen-
tivizes progress towards typing the given text accu-
rately. To facilitate initial learning, we could start with
individual characters, then proceed to word level and
ultimately advance to typing of phrases.

As for the tuning of hyperparameters, we began with
settings informed by our baseline model (Jokinen
et al., 2021a), for total timesteps, learning rate, and
batch size. We then made greedy adjustments to these

@ Springer

hyperparameters on the basis of the training-process
convergence and average episode length.

Parameter Fitting

The parameters of the internal environment are important in a
computationally rational model because they can be adjusted
to “fit” the model’s behavior to human data and generate
predictions that approximate human behavior in a given situ-
ation, by the process known as parameter fitting or parameter
inference. Parameter fitting is used to estimate the values of
free parameters based on observed data and is not relevant for
the parameters fixed to specific constant values during param-
eter specification. The fundamental assumption underlying a
computational rationality model is that the policy controlling
the internal environment is optimal. Accordingly, the policy
(and its parameters) will be derived directly from the internal
environment via an optimality condition. Adapting the model
to reproduce human behavior is therefore done by manipulat-
ing the parameters defining the internal environment. This in
turn results in a change in policy and consequently a change
in predicted behavior.

Computationally rational models generally are not
amenable to traditional parameter fitting techniques based
on maximizing the likelihood of the observations (Myung,
2003). This is because (i) calculating the observations’ like-
lihood seldom falls to these models’ techniques and (ii)
estimating it from model-output samples is generally infea-
sible due to the wide variety of behaviors possible. These
conditions necessitate a different notion of model fit, often
expressed in terms of deviation between what the model pre-
dicts and what was observed. To avoid calculating distances
between high-dimensional data, it is a generally recom-
mended practice to define this discrepancy in terms of the
difference between statistics or other summaries calculated
on both the predictions and the observations. This also lets us
strip out irrelevant differences between the observations and
predictions. Generally, any suitable distance or divergence
function can serve to express the amount of deviation.

Various automated processes exist for fitting model
parameters once the discrepancy between the model’s out-
put and real-world observations has been captured. Manual
fitting of the parameters in the traditional manner (trying out
values until the model’s predictions “look like” the training
data) might be tempting initially. However, this can turn out
to be extremely labor intensive, especially in cases involving
numerous parameters, and there is, in fact, no guarantee of
finding the optimal values for them. Automated methods, on
the other hand, do not suffer from these shortcomings.

Which automated methods are preferred? Given that map-
ping internal environment parameter values to the divergence
evident in the model’s predictions involves optimization of

Computational Brain & Behavior

the policy, calculating a gradient applicable to those param-
eters is impossible in most cases. Therefore, we confine our
discussion here to gradient-free methods. The simplest poten-
tially relevant automated technique is grid search: trying all
possible combinations of parameter values and selecting the
one that yields the smallest discrepancy. While this method
does find an optimum, doing so is prohibitively expensive
when the parameter space is large. Furthermore, parameters
with a continuous domain require us to select an appropri-
ate discretization, which is not necessarily straightforward.
An alternative is to take an Approximate Bayesian Computa-
tion (ABC) approach. This refers to a large class of methods
that can approximate a posterior over the model’s parameters
with only sampling-level access to the model (Sunnéker et al.,
2013; Aushev et al., 2023). Efficient implementations such
as BOLFI (Gutmann & Corander, 2016) can quickly iden-
tify parameter values with a high posterior density. However,
ABC is often too computationally intensive for real-time use.
When we need rapid inference of the parameters, we can
amortize the cost of these inferences. This is usually achieved
via an ML model trained to predict the correct parameters
for the model—i.e., the inference something like an ABC
method would have drawn for the given set of observations
(Moon et al., 2023).

The typing model implemented several internal
parameters related to vision, finger action, and work-
ing memory. The vision module’s parameterization
affects the speed of encoding, while finger-related
values capture movement accuracy and the final set
of parameters represents the uncertainty of the infor-
mation held in working memory. To optimize the
model for median human behavior, we fitted these
parameters to the dataset. During the optimization
process, we relied on the Jensen—Shannon divergence
when designing the acquisition function. This mea-
surement helps to accurately assess the distance at the
distribution level between the simulation- and human-
generated data. A shorter distance (less divergence)
indicates greater similarity between the model and the
human baseline.

Model Checking

Model checking refers to qualitative and quantitative proce-
dures that aid in verifying the validity of the models we build
(Gelman & Shalizi, 2013; Mayo, 2018). It involves compar-
ing model predictions with observed or expected data and
examining the model in other respects. This is an impor-
tant part of the iterative modeling workflow, and influences
the decision to modify or accept models. Model checking
is often carried out after fitting the model to empirical data,

is fundamental for any process of iterative model develop-
ment. Among the general classes of procedures available for
model checking are (i) examining prediction accuracies and
variances, (ii) graphically examining observed vs. predicted
values, (iii) and turning to residuals, etc. for clues as to where
the model is working well and where it is not.

Prior and Posterior Predictive Checks Model checking can
begin as early as when we pick prior distributions on
parameters or specify fixed parameter values. The prior pre-
dictive check involves simulating predictions based on these
specifications (known as the prior predictive) and checking
if they predict plausible data in a given experiment. If a prior
predictive check fails, we return to the drawing board to
re-specify the parameters or their priors so that they better
align with our theoretical intuitions as well as prior beliefs
about empirical data; we may even decide to change our the
model architecture if we realize that our assumptions are not
sound enough. Posterior predictive checks are similar, but
involve simulations after observing the data (known as the
posterior predictive), and carrying out parameter fitting or
inference—checks here are about whether predictions based
on the inferred parameters are able to predict the observed
data at all (Baribault & Collins, 2023). If we are dealing
with posterior distributions of parameters, predictions are
generated by sampling from the posteriors and executing the
model.

Checks for Goodness of Fit Model checking helps us assess
goodness of fit, potentially identify model misspecification,
find model refinement opportunities by detecting peculiari-
ties in the empirical data, and compare models qualitatively.
Several factors may lie behind invalidity or inaccuracy
revealed by this step, such as (i) spurious or missing data, (ii)
flaws in the model assumptions, (iii) inappropriate model
structure, (iv) coding errors, (v) overfitting/underfitting for
the data, and (vi) misapplication of theory. By iteratively
refining and checking models, we converge to a plausible
and well-scrutinized model that satisfactorily fits the data.
This step can be carried out both qualitatively by visualizing
model predictions against our data and examining the good-
ness of fit, and whether the data patterns of interest laid out
earlier are captured by the model. Quantitative methods to
assess goodness of fit often involve some measure of predic-
tion error.

Parameter Recovery Checks Parameter recovery checks
offer another powerful way to assess model behavior (Wilson
& Collins, 2019; Heathcote et al., 2015). Having generated
data from a known parameterization of the given model,
one can evaluate whether the model fitting procedure cho-
sen recovers the parameters originally used (or reproduces
their influence). Researchers commonly generate visualiza-
tions that plot the parameter values estimated against achosen
range of “ground truth” parameter values. If these recov-

@ Springer

Computational Brain & Behavior

ery plots indicate close correspondence between the two,
the parameter recovery ability is deemed sufficient. Rigorous
checking of parameter recovery dictates considering diverse
sets of parameter values and examining any regions of the
parameter space that seem particularly problematic. Among
the tools available for this step are simulation-based calibra-
tion methods (Talts et al., 2018). By these and other means,
parameter recovery checks support accounting appropriately
for outliers and for issues such as any inherent temporal
dependencies that the parameters should reflect.

Ablation Studies An ablation study tests the performance
effects of removing one of the model’s theoretical constructs
from the model (e.g., Kalman-filter-based belief updates
where that is relevant). By conducting ablation studies, we
can discern the significance and role of each component,
thereby shedding light on their relative importance and poten-
tial interactions within the system. For example, we might
want to ensure that the effects of working memory manipu-
lation in experiments are linked back to the parameter that
controls working memory size rather than an extraneous
hyperparameter. Hence, ablation studies can help with model
checking and further model improvement even when we are
observing good model fits to produce models that are actu-
ally instantiating the theories we think they are instantiating.

Outlier Analysis Even if the model clearly passes the bar of
the performance targets set, further tests are necessary, since
no model is perfect. Human behavior almost always displays
a long tail, as do models in some conditions. Accordingly, it
is important to understand the causes of pattern of outliers.
While it may be tempting to remove outliers, this is not good
practice unless they can be definitively pinned to a specific
confounding factor, such as participants misunderstanding
the task.

We followed several model checking methods, for
the multifaceted evaluation of the touchscreen-typing
model:

e We used existing empirical studies (Salvucci,
2001; Sarcar et al., 2016; Anderson et al., 1998)
to establish a plausible range of parameter values
for vision, finger, and working memory (Ex €
[0,0.05], Fk € [0,0.18],A € [0,0.3]). By
assigning the range of values to these parame-
ters and placing a uniform prior distribution over
this range, we were able to capture a variety of
plausible typing behavior that include both the
fastest and slowest typing speeds for one-finger
and two-thumb typing scenarios. The sensibility
of the specified priors was verified using a prior
predictive check using 100 independent typing

@ Springer

Count

a) Human data

episodes generated by random parameters from
the prior. The average and median performance
exhibited a right-skewed distribution, similar to
what is expected in human data.

Count

One-finger typing speed (WPM) Two-thumb typing speed (WPM)

After fitting parameters of our model to empir-
ical data, we compared the model’s posterior
predictions to data observed in our user study,
i.e., a posterior predictive check, in each itera-
tive step. To better judge its performance relative
to human data, we employed words-per-minute
values (shown in the prior predictive check figure
above), inter-key interval, number of backspac-
ing, error rate, number of gaze shifts, and gaze-
on-keyboard time ratio as metrics (see Table 1).
These simulated results can also be used to assess
the model’s goodness of fit.

Conducting an ablation study helped us evaluate
the effectiveness of the working memory design.
Our comparison entailed testing model designs
that exclude a particular feature from working
memory, to reveal the resulting impact on per-
formance.

Trajectory visualization gave us a better under-
standing of the model’s behavior by depicting
both gaze and finger movements (as shown below,
in panels a and b). The trajectories graphically
illuminated patterns of gaze and finger move-
ments during typing.

We analyzed the model’s behavior under extreme
parameter settings (for example, see panel c) to
identify any anomalous behavior.

In addition, we tested the model on unfamiliar
keyboards (see panel d). The validation process
assessed its ability to perform comparably on key-
boards it had not seen before.

b) Model prediction) Low cognitive ability d) Unseen keyboard

tarkolttko yllopistoa

W Gaze
@ Finger

Computational Brain & Behavior

Model Selection

Once model checking has filtered in at least one plausible
candidate model, model selection becomes relevant. Model
selection or model comparison refers to the process of com-
paring our candidate model(s) against each other and to other
plausible models (e.g., the baseline models identified in ear-
lier steps) to find the ones that best satisfy our modeling
goals, given our data. It is a common practice to conclude
that a model should be taken seriously because it performs
well on model selection methods compared to competing
models.

A common and important modeling goal is generalizabil-
ity, so that any inference from modeling extends beyond
the specific data samples and settings that it is fit to more
generally applicable settings. Almost all quantitative model
selection methods prioritize this goal and operationalize mea-
sures to assess generalizability. Cross-validation (Bates et al.,
2023) is a method that assesses generalizability by leaving
out data from the parameter fitting process and assessing the
predictive performance of the fitted parameters on the held-
out data. Given a set of models, the one that predicts held-out
data the best is assessed as being the one that is most gen-
eralizable. Such assessment is useful, as it is otherwise easy
to “overfit” models to random irrelevant fluctuations in the
training data, consequently hindering the model’s ability to
predict behavior accurately in new settings. Deep RL agents
for instance are especially prone to overfitting (Zhang et al.,
2018). One key aspect in implementing cross-validation is the
choice of holdout sets when training and evaluating models
of human behavior, especially the choice of study unit, i.e.
are we holding out data at the level of participants, specific
tasks, or individual trials? Ideally, we want models that gen-
eralize well at every level, the level of the participants and
their individual tasks, the level of participants across tasks,
the level of experimental groups, and the level of the popula-
tion, but this may also depend on the inference goals. Variants
of cross-validation also directly assess generalizability on a
specific target domain instead of holding out data from the
training distribution (Busemeyer & Wang, 2000).

Information criteria-based methods on the other hand
prioritize generalizability without holding out data. They
produce measures for preferring those models that best bal-
ance goodness of fit to observed data and simplicity (also
known as Occam’s razor)—to avoid both overly simplis-
tic “underfit” models and overly complex “overfit” models
and find the model that has the best chance of general-
izing to unobserved conditions. The information-criterion
scores are a combination of a score that captures goodness
of fit with another score that acts as a penalty for model
complexity; these relative overall scores are often used to
compare models, and the model with the lowest score is con-
sidered to be the “best” among the considered models. For

example, the Bayesian information criterion is calculated as
BIC = —2ln(1:) + k x [n(n), and Akaike information cri-
terion, AIC = —2in(L) + 2k, where L is the likelihood
estimate of the model, k is the number of parameters, and
n is the sample size of the data; the first term is a mea-
sure of the goodness of fit, and the second is a penalty for
model complexity measured as some function of the number
of parameters. Being calculated differently, different model
selection methods provide different results. There are several
other information criteria-based methods, deviance infor-
mation criterion (DIC), and Watanabe-Akaike information
criterion (WAIC)—see Myung and Pitt (2018) each differing
on how they calculate goodness of fit and penalize complex-
ity.

Bayes factor (Kass & Raftery, 1995; Shiffrin et al., 2016;
Schad et al., 2022) and minimum description length (Griin-
wald, 2007) are other methods that have been used in the
literature. These scores can be more valid than information-
criteria-based scores as they do not directly assume that the
number of parameters in a model is reflective of complexity,
but rather, also consider the structure of any prior distribu-
tions over parameters and the space of predictions the models
make. However, these methods as well as cross-validation are
computationally expensive, and information-criterion-based
methods hence remain popular as a heuristic for estimating
generalizability. As model selection methods use different
heuristics to implement Occam’s razor, it is sometimes a
practice to compare candidate models across several metrics
and pick one that is favorable in most of the comparisons.
This can be a good practice for transparency while selecting
between models for standardized sets of tasks and contexts.
However, we believe that ideally, the most appropriate statis-
tical model selection method for the given setting should be
emphasized after taking into consideration their advantages
and shortcomings.

A context-dependent use of model selection methods
is also needed because generalizability, while important is
merely one potential goal of modeling. Other modeling goals
can include aspects such as interpretability, causal consis-
tency, estimation speed, and fairness which may or may not
be related to generalizability (Biirkner et al., 2023; Dubova
et al., 2024). It is also possible for these goals to trade
off with each other. Thus, we believe that model selection
is best treated as a multi-objective problem. Absent robust
methods to evaluate models on a given set of goals with dif-
ferent utilities, a good practice would be to chart the relevant
measurements yielded by models across the objectives, then
analyze the tradeoffs that may exist, with our pre-defined
goals for modeling in mind. A common adage in modeling
is that “All models are wrong but some are useful” (Box,
1980); model selection in this perspective is about picking
the model most useful for our given context.

@ Springer

Computational Brain & Behavior

The first step of model comparison in our case focused
on contrasting the goodness of fit of the typing
model against the baseline model (Jokinen et al.,
2021a) for an empirical human-based typing dataset
(Jiang et al., 2020). Our model’s estimates of typing
speed (in words per minute, WPM), inter-key inter-
val (IKI, in milliseconds), number of backspaces in
a given sentence, typing error rate (percent of typed
characters that are errors), number of gaze shifts to
keyboard, and gaze-on-keyboard time ratio values all
lay within one standard deviation of the humans’ data,
and gaze shifts falls in two. Upon comparing our
model’s performance to the baseline model’s, we con-
cluded that ours did better on simple goodness of fit
assessments on these measures. It outperformed the
baseline model decisively by the last of these metrics,
which the baseline model overestimated relative to
the human data (see Table 1).

In addition to the goal of explaining the empirical data
used for training well, we also cared about how well
our model could adapt to unseen keyboard layouts.
We trained the model on 28 keyboards and tested the
model on 10 separate keyboards to evaluate its adapt-
ability to them. When we used the model parameters
optimized during training to predict performance on
these keyboard layouts, we observed that the model
performed well. It outperformed competing models
on relevant metrics and showed comparable perfor-
mance to the held-out data on the metrics (see Table 2
for an example of evaluations; the complete table for
all goals and metrics can be found in Shi et al. (2024)).

Table 1 Comparison of model predictions against baseline predictions
and observed data for one-finger typing

Metric Human data Baseline CRTypist
Typing speed (WPM) 27.2 (3.6) 25.2 28.9 (4.4)
Interkey interval (ms) 381 (51) 399 366 (30)
Backspaces per sentence 2.6 (1.8) 1.5 24 (2.5)
Typing error rate (%) 0.6 (0.7) 0.5 0.1(0.4)
Number of gaze shifts 3.9(1.5) 4.2 5.5(1.7)
Gaze on kbd (%) 70 (14) 87 71 (4)

Discussion

The traditional POMDP framework provides an elegant way
to describe interactive behavior. At its core are the decision-
making entity (for example, the human participating in a
behavior study), termed the agent, and the environment which
constitutes everything external to the agent and which the
agent interacts with (for example, the task in a behavioral
study) (Sutton & Barto, 2018). While this distinction may
seem straightforward and intuitive at first, often, the bound-
ary between agent and environment is not identical to the
physical separation between the two. The potentially tricky
matter of appropriately delineating the agent relative to the
environment in the context of the problem can be deci-
sive for the agent’s eventual policy. Delineating between the
notions of “internal” and “external” environments is similarly
tricky. Different ways of distinguishing them can influence
the model’s results considerably.

Consider the context of typing. Is the user’s finger a part
of the external environment or, rather, the internal one? We
could sensibly turn to perception for our boundary-setting
conditions: the sensory experience of the user engaging with
the screen via touch forms the limit of the internal envi-
ronment, while the absolute location of the finger in space
would be part of the external environment. Alternatively,
we could situate the boundary in terms of the manner in
which the agent receives rewards: is the reward signal directly
determined by the external environment, constructed in the
internal one, or conditioned on both? In our opinion, any
strict rule for judging what falls within which environment is
counterproductive. Instead, this design decision should con-
sider the application context; domain expertise, attention to
application scenarios, iterative development, solid testing,
and the model selection procedures all play a role in helping
determine the appropriate boundary. That said, many projects
could benefit from the development of fine-grained principles
that can inform the delineation between these environments
in computational rationality settings but also specifying the
agent—environment interface in RL operations.

Human Adaptation, in Its Many Forms After policy opti-
mization, a computationally rational model predicts behavior
that is optimally adapted to the fixed environment in which

Table 2 Assessing model
performance on autocorrection

and unseen keyboards

Novel keyboard settings Metric Human Baseline CRTypist
One-finger typing with auto-correct Typing speed (WPM) 31.2 29 30.9
Backspaces per sentence 2.46 0.1 32
One-finger typing on Gboard Typing speed (WPM) 30.5 - 28.4
Backspaces per sentence 2.0 - 3.6
One-finger typing on Swiftkey Typing speed (WPM) 32.7 - 28.3
Backspaces per sentence 2.1 - 3.7

@ Springer

Computational Brain & Behavior

it was trained. Modeling should also consider that humans
adapt continuously, however—when faced with an unfamil-
iar keyboard layout, people can slowly adapt their behavior
to the new keyboard. Yet learning and adaptation have
gone unexplored in computational rationality modeling, even
though the theory of computational rationality implies that
behavior should adjust in a computationally rational way.
One reason is the raft of methodology-related challenges
that accompany introducing a new level of complexity such
that the model is optimally prepared to adapt its behav-
ior to changes in the environment. Building and training of
the model grow harder as the line blurs between adaptation
occurring through policy optimization (primarily adjustment
to fixed elements of the environment) and adaptation taking
place after deployment (primarily adjustment to changing
elements of the environments). One option, of course, is to
make certain components of the model more elaborate, so
that it captures the relevant human learning and habitua-
tion processes. A more machine-learning-oriented solution
could use continual learning frameworks with neural net-
works and RL (Hadsell et al., 2020; Khetarpal et al., 2022).
These have already begun to show encouraging results for
handling distribution shifts that follow from changes in an
agent’s environment. Nascent research that bridges compu-
tational rationality models with continual learning is making
interesting inroads into exploring, alongside policy adapta-
tion, changes in agents’ representation of the world as their
experience grows in conditions of resource constraints (Aru-
mugam et al., 2024). As for purely ML-oriented solutions,
overparameterized neural networks are known to improve
flexibility under covariate shift (Tripuraneni et al., 2021), and
they may permit more adaptation to environmental changes
when incorporated into neural-network-based components
specified within the internal environment.

Interactive Systems that Adapt to Human Users The devel-
opment of such applications as interactive Al systems faces
a key challenge from the flipside of human adaptation: the
system’s ability to adapt to the user. By approximating a per-
son’s mental state and processes, computational rationality
models can make a highly valuable contribution to adaptive
interactive systems that strategically intervene to assist the
user; for discussion, see the work of Mozannar et al. (2023).
However, this is confounded by the recognized phenomenon
of users following a mental model of the AI system. This
model is geared for strategically steering the system towards
user-desired behavior during interaction. While systems that
comply with this steering may exhibit stronger interaction
performance (Colella et al., 2020), a more advanced system
could aim to identify and learn from users’ mental models of
Al, their refinement over the course of the interaction, and
the influence of mutable user goals on interaction behavior.
Developing such mental models of Al systems is currently a

research challenge, even more so in the context of learning
these online during interaction (Howes et al., 2023; Steyvers
& Kumar, 2022; Bansal et al., 2019). Co-operative multi-
agent setups (Celikok et al., 2019) with the user and the
Al system as interacting agents are a promising approach
to improve interactive behavior by better anticipating the
user and their strategies—doing so with computationally
rational user models would be an interesting avenue for fur-
ther research (Howes et al., 2023); these are bound to be
confronted by computational challenges in a real-time and
interactive setting. Computational efficiency and approxi-
mation to computationally rational behavior can however be
achieved by employing surrogate computational rationality
models using methods such as amortized inference (Moon et
al., 2023) or likelihood-free inference (Aushev et al., 2023;
Palestro et al., 2018; Hartig et al., 2011).

Balancing Model Complexity and Performance Researchers
need to balance the complexity of the internal environment
with the accuracy of the simulation. Enhancing the model’s
internal environment, when done right, can significantly
improve the human-like behavior of the model, especially
by simultaneously accounting for the many mental processes
at play in learning, attention, memory, choice behavior, etc.
However, the model then gets more complex, and building
it correctly becomes more challenging. For example, in the
case of the touchscreen-typing model, the current model has a
simplified design that does not include reading behavior (Just
& Carpenter, 1980) in its vision system. Neither does the
module for working memory account for long-term mem-
ory (Norris, 2017), chunking (Yamaguchi & Logan, 2014),
nor the impact of phrase sets. Incorporating these factors
could afford valuable insight into intricate patterns of human
behavior; however, tuning the hyperparameters of this type
of model correspondingly can be immensely challenging.
While one can use solid priors to simplify such procedures
as setting parameters for the internal environment’s mod-
ules, building the model still may end up overly complicated.
Hence, researchers may need to find the balance between
model complexity and performance that are appropriate for
their modeling goals and consequently often strive for the
most realistic and satisfactory simulations without making
the internal environment unduly complex.

Optimization Approaches Other than RL While we have
concentrated here on RL-based mechanisms for generating
boundedly optimal behavior, these are not the only conceiv-
able means to that end. In fact, any approach that achieves
optimal results is valid, including methods for black box com-
binatorial optimization (e.g., Sarcar et al., 2018). Naturally,
the choice of methods affects which aspects of the model-
ing workflow matter most in the case at hand. For instance,
the reward specification is crucial in RL but irrelevant in

@ Springer

Computational Brain & Behavior

active inference. Our focus on the RL setting stemmed from
a desire to contribute concretely to the state of the art: off-
the-shelf solutions for implementing an optimal policy are
widely available.

The Relationship Between Data and Modeling While the
model development aspects of realistically predicting human
behavior form the heart of our workflow, the aim, in the end,
is to estimate observed data, and these are gathered in exper-
iments. Any model, however sophisticated, is ultimately
unproductive if the experiments and the measurements made
are invalid, unreliable, or highly noisy. For successful infer-
ences, the iterative modeling workflow must go hand in hand
with a good workflow for experimentation. The two overlap
somewhat in scope, as many experiments get informed by
prior theory and model-based predictions. Therefore, they
should together constitute a fundamentally iterative data-
collection and model building system that enriches science.

Acknowledgements We thank Aditya Acharya, Patrick Ebel, Christoph
Gebhardt, Michael Hedderich, and Bai Yunpeng for their comments on
an initial draft.

Author Contribution SC wrote the initial draft. DS helped develop the
CRTypist running example. AO conceptualized the paper. All authors
(SC, DS, AP, SDP, SZ, JJ, AH, and AO) participated in edits and pro-
vided feedback on the initial draft.

Funding Open Access funding provided by Aalto University. This work
was supported by the Research Council of Finland (flagship program:
Finnish Center for Artificial Intelligence, FCAI, grants 328400, 345604,
341763; Human Automata, grant 328813; Subjective Functions, grant
357578). Machines that Understand People, grant 330347. S.C was also
supported by the Jorma Ollila Grant from Nokia Foundation.

Data Availability No datasets were generated or analyzed during the
current study.

Declarations

Ethical Approval Not applicable
Informed Consent Not applicable
Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the

@ Springer

permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abel, D., Hershkowitz, D., & Littman, M. (2016). Near optimal behav-
ior via approximate state abstraction. In M. F. Balcan, & K. Q.
Weinberger (Eds.), Proceedings of The 33rd International con-
ference on machine learning (Proceedings of Machine Learning
Research, Vol. 48) (pp. 2915-2923). PMLR, New York, New York,
USA.

Anderson, J. R. (1991). Is human cognition adaptive? Behavioral and
brain sciences, 14(3), 471-485.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An inte-
grated theory of list memory. Journal of Memory and Language,
38(4), 341-380.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of
higher level cognition and its relation to visual attention. Human-
Computer Interaction, 12(4), 439-462.

Arif, A. S., & Stuerzlinger, W. (2009). Analysis of text entry perfor-
mance metrics. In 2009 IEEE Toronto international conference
science and technology for humanity (TIC-STH) (pp. 100-105).
IEEE, New York, NY.

Arumugam, D., Ho, M. K., Goodman, N. D., & Van Roy, B. (2024).
Bayesian reinforcement learning with limited cognitive load. Open
Mind, 8, 395-438.

Aushev, A., Putkonen, A., Clarté, G., Chandramouli, S., Acerbi, L.,
Kaski, S., & Howes, A. (2023). Online simulator-based experi-
mental design for cognitive model selection. Computational Brain
& Behavior, 6(4), 719-737.

Bansal, G., Nushi, B., Kamar, E., Lasecki, W. S., Weld, D. S., & Horvitz,
E. (2019). Beyond accuracy: The role of mental models in human-
Al team performance. In Proceedings of the AAAI conference on
human computation and crowdsourcing, Vol. 7 (pp. 2—-11).

Baribault, B., & Collins, A. G. E. (2023). Troubleshooting Bayesian
cognitive models. Psychological Methods.

Bates, S., Hastie, T., & Tibshirani, R. (2023). Cross-validation: What
does it estimate and how well does it do it? Journal of the American
Statistical Association, pp. 1-12.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C.,
Rasmussen, D., Choo, X., Voelker, A. R., & Eliasmith, C. (2014).
Nengo: A Python tool for building large-scale functional brain
models. Frontiers in neuroinformatics, 7, 48.

Belousov, B., Neumann, G., Rothkopf, C.A. & Peters J.R. (2016).
Catching heuristics are optimal control policies. In Advances in
Neural Information Processing Systems 29.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Cur-
riculum learning (ICML °09) (pp. 41-48). New York, NY, USA:
Association for Computing Machinery.

Booth, S., Knox, W. B., Shah, J., Niekum, S., Stone, P., & Allievi,
A. (2023). The perils of trial-and-error reward design: misdesign
through overfitting and invalid task specifications. In Proceedings
of the AAAI Conference on Artificial Intelligence (vol. 37, no. 5,
pp- 5920-5929).

Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific mod-
elling and robustness. Journal of the Royal Statistical Society
Series A: Statistics in Society, 143(4), 383—-404.

Breiman, L. (2001). Statistical modeling: The two cultures (with com-
ments and a rejoinder by the author). Statistical science, 16(3),
199-231.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Computational Brain & Behavior

Biirkner, P.-C., Scholz, M., & Radeyv, S. T. (2023). Some models are use-
ful, but how do we know which ones? Towards a unified Bayesian
model taxonomy. Statistic Surveys, 17,216-310.

Busemeyer, J. R., & Wang, Y.-M. (2000). Model comparisons and model
selections based on generalization criterion methodology. Journal
of Mathematical Psychology, 44(1), 171-189.

Casalicchio, G., Molnar, C., & Bischl, B. (2019). Visualizing the feature
importance for black box models. In M. Berlingerio, F. Bonchi, T.
Girtner, N. Hurley & G. Ifrim (Eds.), Machine learning and knowl-
edge discovery in databases (pp. 655—670). Springer International
Publishing, Cham.

Celikok, M. M., Peltola, T., Daee, P., & Kaski, S. (2019). Interactive Al
with a Theory of Mind. arXiv preprint arXiv:1912.05284

Chater, N., & Oaksford, M. (2000). The rational analysis of mind and
behavior. Synthese, 122, 93-131.

Chen, X., Bailly, G., Brumby, D. P., Oulasvirta, A., & Howes, A. (2015).
The emergence of interactive behavior: A model of rational menu
search. In Proceedings of the 33rd Annual ACM conference on
human factors in computing systems (Seoul, Republic of Korea)
(CHI ’15) (pp. 4217-4226). Association for Computing Machin-
ery, New York, NY, USA.

Chen, H., Chang, H.J., & Howes, A. (2021). Apparently irrational
choice as optimal sequential decision making. In Proceedings of
the AAAI Conference on Artificial Intelligence (Vol. 35, No. 1, pp.
792-800).

Clark, J., & Amodei, D. (2016). Faulty reward functions in the wild.
Internet: https://blog.openai.com/faulty-reward-functions

Colella, E.,, Daee, P., Jokinen, J., Oulasvirta, A., & Kaski, S. (2020).
Human strategic steering improves performance of interactive
optimization. In Proceedings of the 28th ACM conference on user
modeling, adaptation and personalization (pp. 293-297).

Dubova, M., Chandramouli, S., Gigerenzer, G., Griinwald, P., Holmes,
W., Lombrozo, T., Marelli, M., Musslick, S., Nicenboim, B., Ross,
L., etal. (2024). Is Occam’s Razor losing its edge? New Perspec-
tives on the principle of model parsimony. OSF Preprint.

Feit, A. M., Weir, D., & Oulasvirta, A. (2016). How we type: Movement
strategies and performance in everyday typing. In Proceedings of
the 2016 chi conference on human factors in computing systems
(pp. 4262-4273).

Gajcin, J., McCarthy, J., Nair, R., Marinescu, R., Daly, E., & Dusparic,
I. (2023). Iterative reward shaping using human feedback for cor-
recting reward misspecification. arXiv preprint arXiv:2308.15969

Gebhardt, C., Oulasvirta, A., & Hilliges, O. (2021). Hierarchical
reinforcement learning explains task interleaving behavior. Com-
putational Brain & Behavior, 4, 284-304.

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter,
B., Yao, Y., Kennedy, L., Gabry, J., Biirkner, P.-C., & Modrdk, M.
(2020). Bayesian workflow. arXiv preprint arXiv:2011.01808

Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of
Bayesian statistics. British Journal of Mathematical and Statistical
Psychology, 66(1), 8-38.

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015). Computa-
tional rationality: A converging paradigm for intelligence in brains,
minds, and machines. Science, 349(6245), 273-278.

Grinsztajn, L., Semenova, E., Margossian, C. C., & Riou, J. (2021).
Bayesian workflow for disease transmission modeling in Stan.
Statistics in medicine, 40(27), 6209-6234.

Griinwald, P. D. (2007). The minimum description length principle. MIT
press.

Gutmann, M. U., & Corander, J. (2016). Bayesian optimization for
likelihood-free inference of simulator-based statistical models.
Journal of Machine Learning Research.

Hadsell, R., Rao, D., Rusu, A. A., & Pascanu, R. (2020). Embracing
change: Continual learning in deep neural networks. Trends in
cognitive sciences, 24(12), 1028-1040.

Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T., & Huth,
A. (2011). Statistical inference for stochastic simulation models-
theory and application. Ecology letters, 14(8), 816-827.

He, J. Z.-Y., & Dragan, A. D. (2021). Assisted robust reward design.
arXiv preprint arXiv:2111.09884

Heathcote, A., Brown, S. D., & Wagenmakers, E.-J. (2015). An Intro-
duction to Good Practices in Cognitive Modeling (pp. 25-48).
New York, New York, NY: Springer.

Hofman, J. M., Chatzimparmpas, A., Sharma, A., Watts, D. J., & Hull-
man, J. (2023). Pre-registration for predictive modeling. arXiv
preprint arXiv:2311.18807

Howes, A., Jokinen, J. P. P., & Oulasvirta, A. (2023). Towards machines
that understand people. Al Magazine, 44(3), 312-327.

Howes, A., Lewis, R. L., & Vera, A. (2009). Rational adaptation under
task and processing constraints: Implications for testing theories
of cognition and action. Psychological review, 116(4), 717.

Hullman, J., Kapoor, S., Nanayakkara, P., Gelman, A., & Narayanan,
A. (2022). The worst of both worlds: A comparative analysis of
errors in learning from data in psychology and machine learning.
In Proceedings of the 2022 AAAI/ACM Conference on Al, Ethics,
and Society (pp. 335-348).

Icard, T. F. (2023). Resource rationality.

Jiang, X., Li, Y., Jokinen, J. P. P,, Hirvola, V. B., Oulasvirta, A., &
Ren, X. (2020). How we type: Eye and finger movement strategies
in mobile typing. In Proceedings of the 2020 CHI conference on
human factors in computing systems (pp. 1-14).

Jokinen, J., Acharya, A., Uzair, M., Jiang, X., & Oulasvirta, A. (2021a).
Touchscreen typing as optimal supervisory control. In Proceedings
of the 2021 CHI conference on human factors in computing systems
(pp. 1-14).

Jokinen, J. P. P, Kujala, T., & Oulasvirta, A. (2021). Multitasking in
driving as optimal adaptation under uncertainty. Human factors,
63(8), 1324-1341.

Jokinen, J. P. P., Wang, Z., Sarcar, S., Oulasvirta, A., & Ren, X. (2020).
Adaptive feature guidance: Modelling visual search with graphical
layouts. International Journal of Human-Computer Studies, 136,
102376.

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye
fixations to comprehension. Psychological review, 87(4), 329.

Kangasraisio, A., Athukorala, K., Howes, A., Corander, J., Kaski, S., &
Oulasvirta, A. (2017). Inferring cognitive models from data using
approximate Bayesian computation. In Proceedings of the 2017
CHI conference on human factors in computing systems (pp. 1295—
1306).

Kapoor, S., Cantrell, E., Peng, K., Pham, T. H., Bail, C. A., Gundersen,
O. E., Hofman, J. M., Hullman, J., Lones, M. A., Malik, M. M.
et al. (2023). Reforms: Reporting standards for machine learning
based science. arXiv preprint arXiv:2308.07832

Kapoor, S., Cantrell, E. M., Peng, K., Pham, T. H., Bail, C. A., Gunder-
sen, O. E., Hofman, J. M., Hullman, J., Lones, M. A., Malik, M.
M., etal. (2024). REFORMS: Consensus-based recommendations
for machine-learning-based science. Science Advances, 10(18),
eadk3452.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
american statistical association, 90(430), 773-795.

Khetarpal, K., Riemer, M., Rish, 1., & Precup, D. (2022). Towards con-
tinual reinforcement learning: A review and perspectives. Journal
of Artificial Intelligence Research, 75, 1401-1476.

Kieras, D. E., & Hornof, A. J. (2014). Towards accurate and practical
predictive models of active-vision-based visual search. In Proceed-
ings of the SIGCHI conference on human factors in computing
systems (pp. 3875-3884).

Knox, W. B., Allievi, A., Banzhaf, H., Schmitt, E., & Stone, P. (2023).
Reward (mis) design for autonomous driving. Artificial Intelli-
gence, 316, 103829.

@ Springer

http://arxiv.org/abs/1912.05284
https://blog.openai.com/faulty-reward-functions
http://arxiv.org/abs/2308.15969
http://arxiv.org/abs/2011.01808
http://arxiv.org/abs/2111.09884
http://arxiv.org/abs/2311.18807
http://arxiv.org/abs/2308.07832

Computational Brain & Behavior

Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational
neuroscience. Nature neuroscience, 21(9), 1148-1160.

Kurniawati, H. (2022). Partially observable markov decision pro-
cesses and robotics. Annual Review of Control, Robotics, and
Autonomous Systems, 5,253-2717.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architec-
ture for general intelligence. Artificial intelligence, 33(1), 1-64.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017).
Building machines that learn and think like people. Behavioral and
brain sciences, 40, €253.

Lee, S., Oh, Y., An, H., Yoon, H., Friston, K. J., Hong, S. J., & Woo,
C.-W. (2023). Life-inspired interoceptive artificial intelligence for
autonomous and adaptive agents. arXiv preprint arXiv:2309.05999

Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F.
P., Matzke, D., Rouder, J. N., Trueblood, J. S., White, C. N.,
etal. (2019). Robust modeling in cognitive science. Computational
Brain & Behavior, 2, 141-153.

Lewis, R. L., Howes, A., & Singh, S. (2014). Computational rationality:
Linking mechanism and behavior through bounded utility maxi-
mization. Topics in cognitive science, 6(2), 279-311.

Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory
of state abstraction for MDPs. In AI&M.

Liao, Y.-C., Todi, K., Acharya, A., Keurulainen, A., Howes, A., &
Oulasvirta, A. (2022). Rediscovering affordance: A reinforcement
learning perspective. In Proceedings of the 2022 CHI conference
on human factors in computing systems (pp. 1-15).

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: Under-
standing human cognition as the optimal use of limited computa-
tional resources. Behavioral and brain sciences, 43, el.

Marr, D., & Poggio, T. (1976). From understanding computation to
understanding neural circuitry.

Mayo, D. G. (2018). Statistical inference as severe testing: How to get
beyond the statistics wars. Cambridge University Press.

McClelland, J. L. (2009). The place of modeling in cognitive science.
Topics in Cognitive Science, 1(1), 11-38.

Mikkola, P., Martin, O., Chandramouli, S. H., Hartmann, M., Pla, O. A.,
Thomas, O., Pesonen, H., Corander, J., Vehtari, A., Kaski, S., et al.
(2023). Prior knowledge elicitation: The past, present, and future.
Bayesian Analysis (pp. 1-33).

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods
for deep reinforcement learning. In International conference on
machine learning (pp. 1928-1937). PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. nature, 518(7540), 529-533.

Moon, H.-S., Oulasvirta, A., & Lee, B. (2023). Amortized inference
with user simulations. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (pp. 1-20).

Mozannar, H., Bansal, G., Fourney, A., & Horvitz, E. (2023). When
to show a suggestion? Integrating human feedback in Al-Assisted
programming. arXiv preprint arXiv:2306.04930

Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Jour-
nal of mathematical Psychology, 47(1), 90-100.

Myung, J. I., & Pitt, M. A. (2018). Model comparison in psychology.
Stevens’ handbook of experimental psychology and cognitive neu-
roscience, 5, 85-118.

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under
reward transformations: Theory and application to reward shaping.
In Ieml, Vol. 99 (pp. 278-287). Citeseer.

Norris, D. (2017). Short-term memory and long-term memory are still
different. Psychological Bulletin, 143(9), 992-1009.

Oulasvirta, A., Jokinen, J. P. P. & Howes, A. (2022). Computational
rationality as a theory of interaction. In Proceedings of the 2022

@ Springer

CHI Conference on Human Factors in Computing Systems (pp.
1-14).

Oulasvirta, A., & Hornbzk, K. (2022). Counterfactual thinking: What
theories do in design. International Journal of Human-Computer
Interaction, 38(1), 78-92.

Palestro, J. J., Sederberg, P. B, Osth, A. F,, Zandt, T. V., & Turner, B. M.
(2018). Likelihood-free methods for cognitive science. Springer.

Pan, A., Bhatia, K., & Steinhardt, J. (2022). The effects of reward mis-
specification: Mapping and mitigating misaligned models. arXiv
preprint arXiv:2201.03544

Patterson, A., Neumann, S., White, M., & White, A. (2023). Empirical
design in reinforcement learning. arXiv preprint arXiv:2304.01315

Radulescu, A., Opheusden, B. v., Callaway, F., Griffiths, T. L., & Hillis,
J. M. (2022). Modeling human eye movements during immersive
visual search. bioRxiv (pp. 2022-12).

Rescorla, R. A. (1972). A theory of Pavlovian conditioning: Variations
in the effectiveness of reinforcement and non-reinforcement. Clas-
sical conditioning, Current research and theory, 2, 64—69.

Russell, S. J., & Subramanian, D. (1994). Provably bounded-optimal
agents. Journal of Artificial Intelligence Research, 2, 575-609.

Salvucci, D. D. (2001). An integrated model of eye movements and
visual encoding. Cognitive Systems Research, 1(4), 201-220.

Sarcar, S., Joklnen, J., Oulasvirta, A., Silpasuwanchai, C., Wang, Z.,
& Ren, X. (2016). Towards ability-based optimization for aging
users. In ITAP ’16: Proceedings of the International Symposium
on Interactive Technology and Ageing Populations (pp. 77-86).
ACM.

Sarcar, S., Jokinen, J.P.P., Oulasvirta, A., Wang, Z., Silpasuwanchai, C.,
Ren, X. (2018). Ability-based optimization of touchscreen inter-
actions. IEEE Pervasive Computing, 17(1), 15-26.

Schad, D.J., Nicenboim, B., Biirkner, P.-C., Betancourt, M., & Vasishth,
S. (2022). Workflow techniques for the robust use of bayes factors.
Psychological Methods.

Schad, D. J., Betancourt, M., & Vasishth, S. (2021). Toward a principled
Bayesian workflow in cognitive science. Psychological methods,
26(1), 103.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O.
(2017). Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347

Seymour, B., O’Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A.
K., Dolan, R. J., Friston, K. J., & Frackowiak, R. S. (2004). Tem-
poral difference models describe higher-order learning in humans.
Nature, 429(6992), 664—667.

Shi, D., Zhu, Y., Jokinen, J. P. P., Acharya, A., Putkonen, A., Zhai, S., &
Oulasvirta, A. (2024). CRTypist: Simulating Touchscreen Typing
Behavior via Computational Rationality. Proceedings of the 2024
CHI Conference on Human Factors in Computing Systems.

Shiffrin, R. M. (2010). Perspectives on modeling in cognitive science.
Topics in cognitive science, 2(4), 736-750.

Shiffrin, R. M., Chandramouli, S. H., & Griinwald, P. D. (2016). Bayes
factors, relations to minimum description length, and overlapping
model classes. Journal of mathematical psychology, 72, 56-77.

Silver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs.
Advances in neural information processing systems, 23.

Sondik, E.J. (1971). The optimal control of partially observable Markov
processes. Stanford University.

Starre, R. A. N., Loog, M., & Oliehoek, F. A. (2022). Model-
based reinforcement learning with state abstraction: A survey. In
BNAIC/BeNeLearn 2022.

Steyvers, M., & Kumar, A. (2022). Three challenges for Al-Assisted
decision-making.

Sunnéker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., &
Dessimoz, C. (2013). Approximate bayesian computation. PLoS
computational biology, 9(1), €1002803.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. MIT press.

http://arxiv.org/abs/2309.05999
http://arxiv.org/abs/2306.04930
http://arxiv.org/abs/2201.03544
http://arxiv.org/abs/2304.01315
http://arxiv.org/abs/1707.06347

Computational Brain & Behavior

Sutton, R. S. (1988). Learning to predict by the methods of temporal
differences. Machine learning, 3, 9-44.

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A.
(2018). Validating Bayesian inference algorithms with simulation-
based calibration. arXiv preprint arXiv:1804.06788

Talvitie, E. (2014). Model regularization for stable sample rollouts. In
UAI (pp. 780-789).

Todi, K., Jokinen, J., Luyten, K., & Oulasvirta, A. (2019). Individualis-
ing graphical layouts with predictive visual search models. ACM
Transactions on Interactive Intelligent Systems (TiiS), 10(1), 1-24.

Tripuraneni, N., Adlam, B., & Pennington, J. (2021). Overparameteri-
zation improves robustness to covariate shift in high dimensions.
Advances in Neural Information Processing Systems, 34, 13883—
13897.

Wang, X., Chen, Y., & Zhu, W. (2021). A survey on curriculum learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(9), 4555-4576.

Watkins, C.J. C. H., & Dayan, P. (1992). Q-learning. Machine learning,
8, 279-292.

Wilson, R. C., & Collins, A. G. E. (2019). Ten simple rules for the
computational modeling of behavioral data. Elife, 8, e49547.

Wobbrock, J. O. (2007). Measures of text entry performance. Text entry
systems: Mobility, accessibility, universality (pp. 47-74).

Yamaguchi, M., & Logan, G. D. (2014). Pushing typists back on the
learning curve: Revealing chunking in skilled typewriting. Journal
of Experimental Psychology: Human Perception and Performance,
40(6), 1713-1732.

Ye, W., Liu, S., Kurutach, T., Abbeel, P, & Gao, Y. (2021). Mastering
atari games with limited data. Advances in Neural Information
Processing Systems, 34, 25476-25488.

Zhang, C., Vinyals, O., Munos, R., & Bengio, S. (2018). A study
on overfitting in deep reinforcement learning. arXiv preprint
arXiv:1804.06893

Zhang, L., Lengersdorff, L., Mikus, N., Gldscher, J., & Lamm,
C. (2020). Using reinforcement learning models in social neu-
roscience: Frameworks, pitfalls and suggestions of best prac-
tices. Social Cognitive and Affective Neuroscience, 15(6), 695—
707.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/1804.06788
http://arxiv.org/abs/1804.06893

	A Workflow for Building Computationally Rational Models of Human Behavior
	Abstract
	Introduction
	Background: Workflows for Rationality-Based Models of Human Behavior
	Defining the Goals of Modeling
	Clarifying Purposes
	Setting the Scope
	Defining Baselines
	Establishing Model Performance Metrics and Diagnostics
	Planning the Project

	Model Specification
	Specifying the Internal Environment
	Designing the Reward Function
	Specifying the External Environment
	Defining the Agent's Decision-making Problem
	A Note on State Abstractions

	Policy Optimization
	Reward Shaping
	Curriculum Learning
	Hyperparameter Tuning

	Parameter Fitting
	Model Checking
	Model Selection
	Discussion
	Acknowledgements
	References

