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Abstract
Quantum computation is growing in significance and proving to be a powerful tool in
meeting the high real-time computational demands of classical digital image process-
ing. However, extensive research has been done on quantum image processing, mainly
rooted in binary quantum systems. In this paper, we propose a new quantum ternary
image circuit based on the analysis of the existing qutrit representation of quantum
images. The proposed design utilizes ternary shift gates and ternary Muthukrishnan–
Stroud gates, with the belief that this circuit can be used for ternary quantum image
processing. This study makes a significant improvement compared to the existing
counterpart in terms of quantum cost, the number of constant inputs, and garbage
outputs, which are all essential parameters in quantum circuit design.

Keywords Quantum computation · Quantum image processing · Quantum ternary
image circuit

1 Introduction

As an innovative computing paradigm, quantum computation exploits quantum
mechanical properties, such as superposition and entangled state, in order to store,
process, and transport information [30]. In 1982, Feynman introduced the concept
of quantum computation [31], which has garnered considerable attention and inter-
est over the years. In recent years, there have been notable advances in this field in
terms of theory and experimental results. In 1994, cryptography was revolutionized by
Shor’s quantum integer factoring algorithm [33], and in 1996,Grover’s quantumsearch
algorithm demonstrated significant speedup [16]. A number of researchers have been
motivated by these two pioneering quantum algorithms and their impressive abilities
to investigate quantum computation further. It is believed that quantum computation
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will be able to surpass the constraints of classical computing. Quantum computation
has made significant contributions to a variety of computer science domains, including
information theory [5], cryptography [4], image processing [2], etc.

Digital image processing plays a crucial role in many fields of information science
[14]. Due to advances in image sensors, along with the proliferation of large image
data sets, substantial time demands have been imposed on traditional image process-
ing algorithms. Consequently, there is a need for efficient methods for storing and
processing digital images. Extensive research has been focused on combining quan-
tum computing with digital image processing to address this issue. The initial stage
of quantum image processing is quantum image representation. Numerous models for
quantum image representation have been suggested to store and process image data
[8, 9, 15, 17, 21, 32, 34, 36, 37, 39]. However, it is worth noting that most of current
quantum image representation model relies on binary logic. It is typical for original
image data to be quite expansive, which requires a considerable amount of storage.
Consequently, the challenge of storing quantum images more efficiently with lower
storage requirements is an important consideration and should be addressed. There-
fore, this problem can be overcome by multi-valued quantum systems in quantum
image processing. Information encryption with multi-valued systems is more secure,
and they require fewer qubits and less storage space [1, 22, 29]. Moreover, all quantum
algorithms can indeed be transformed into qutrit versions [13]. This transformation
not only enables the exploration of broader computational capabilities, but also offers
potential advances in quantum information processing. In [11], a quantum image cir-
cuit compression has been designed based on the qutrit representation of quantum
images (QTRQ). In this research, we have used quantum ternary Muthukrishnan and
Stroud gates and Shift gates to design a new quantum ternary circuit based on QTRQ.
Furthermore, we outline the characteristics of the suggested circuit, particularly focus-
ing on quantum costs, the number of garbage outputs, and constant input, which are
described as follows:

• Quantum cost refers to the number of ternary primitive gates, including 1-qutrit
Shift gates and 2-qutrit Muthukrishnan–Stroud gates, necessary to realize the cir-
cuit.

• The number of garbage outputs signifies the outputs generated to maintain one-
to-one mappings but contain unimportant values.

• The number of constant inputs refers to the number of inputs that need to remain
unchanged to synthesize the specified logic function.

Decreasing the above-outlined features enhances the efficiency of designing ternary
quantum reversible logic. In this work, our attention is focused on minimizing these
characteristics in order to design an efficient new quantum ternary circuit based on
QTRQ, which can significantly contribute to quantum image processing by improving
computational efficiency and resource utilization. Notably, our proposed design has
shown a 20.56% improvement in quantum cost, along with 11% and 100% improve-
ment in constant inputs and garbage outputs, respectively, compared to its counterpart
in [11].

This paper is structured as follows. In Sect. 2, a brief background on the ternary
logic and Galois field, along with a description of the quantum ternary gates used,
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is provided. In Sect. 3, the qutrit representation of quantum images is described. The
proposed quantum ternary circuit is presented in Sect. 4. In Sect. 5, the evaluation of
the proposed circuits and comparison results are discussed. Finally, the conclusion of
this work is provided in Sect. 6.

2 Preliminaries

Before formally proposing the quantum ternary circuit for qutrit representation of the
quantum image, this section provides a brief background on the ternary logic and the
Galois field. Moreover, it presents the necessary description of the quantum ternary
gates used in this work.

2.1 Ternary logic

In quantum multi-valued logic, ternary logic is one of the most popular concepts.
There have been some studies that demonstrate the multi-valued quantum system has
some advantages over the binary quantum system, such as lower power consumption
and higher fault tolerance [25]. Moreover, it is more secure to use a multi-valued
quantum system than a binary quantum system for information encryption [3, 6].
In terms of encoding, there are fewer qubits required for the multi-valued quantum
system compared to the binary quantum system, and the storage space required is
much smaller as well. In quantum ternary logic, a qutrit (quantum ternary digit) is
the unit of memory (information). Each ternary logic value (0, 1, 2) is represented
by different states (|0〉, |1〉, |2〉), which are called the computational basis states and
represented by 3× 1 vectors. The following matrices represent the qutrit vectors[28]:

|0〉 =
⎡
⎣
1
0
0

⎤
⎦ |1〉 =

⎡
⎣
0
1
0

⎤
⎦ |2〉 =

⎡
⎣
0
0
1

⎤
⎦ (1)

A qutrit is also a superposition of basis states; the following equation represents
the superposition in quantum ternary logic:

ψ = α|0〉 + β|1〉 + γ |2〉 (2)

whereα, β, and γ are complex numbers, andψ is thewave function. These interme-
diate states cannot be detected, but rather, themeasurement indicates that the qutrit is in
one of the basis states, |0〉, |1〉 or |2〉. The probability measurement of the occurrences
for state |0〉 is |α|2, state |1〉 is |β|2, and state |2〉 is |γ |2. Sum of these probabilities is
expressed as follows:

|α|2 + |β|2 + |γ |2 = 1 (3)
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Table 1 Truth table of GF3
addition operation

⊕
0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Table 2 Truth table of GF3
multiplication operation

⊙
0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

2.2 Ternary Galois field

The Galois field in ternary logic (GF3) consists of three elements, 0, 1, and 2, as well
as addition and multiplication operations, as defined in Tables 1 and 2. In these tables,
the addition and multiplication are denoted by

⊕
and

⊙
, respectively. It should be

noted that these operations are module 3, associative and commutative. Furthermore,
multiplication is distributive over addition [20, 35]. The behavior of addition and
multiplication operations in the algebraic structure is described as follows:

Addition

(A1) Associative law: a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c
(A2) Commutative law: a ⊕ b = b ⊕ a
(A3) Identity element: There is an element 0 such that a ⊕ 0 = a for all a
(A4) Additive inverse: For any a, there is an element (−a) such that a ⊕ (−a) = 0

Multiplication

(M1) Associative law: a � (b � c) = (a � b) � c
(M2) Commutative law: a � b = b � a
(M3) Identity element: There is an element 1 (not equal to 0) such that a � 1 = a

for all a
(M4) Multiplicative inverse: For any a �= 0, there is an element a−1 such that

a � a−1 = 1

2.3 Ternary shift gates

In the quantum ternary logic, there are five cases of qutrit flipping (transformations).
There is a shift gate to realize any of these transformations, which is defined below
[18, 24]:

Single-shift gate In this gate, the qutrits in the elementary state shift by 1, and the
basis states are affected as follows[10]:

[+1]|x〉 = |(x + 1) mod 3〉 (4)
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Fig. 1 Symbolic representation of quantum ternary shift gates

Table 3 Ternary shift gates and
their inverse gates

Gate Z(+1) Z(+2) Z(12) Z(01) Z(02)

Inverse gate Z(+2) Z(+1) Z(12) Z(01) Z(02)

Dual-shift gate The qutrits in the elementary state shift by 2 in this gate, and its
action on the basis states are as follows [23, 24]:

[+2]|x〉 = |(x + 2) mod 3〉 (5)

Self-shift gate In this gate, the qutrit states 1 and 2 are exchanged, and the perfor-
mance on the basis states is given by [23, 24]:

[12]|x〉 = |(2x) mod 3〉 (6)

Self-single-shift gate The qutrit states 0 and 1 are exchanged in this gate, and the
operation on the basis states as follows [23, 24]:

[01]|x〉 = |(2x + 1) mod 3〉 (7)

Self-dual-shift gate This gate exchanges the qutrit states 0 and 2 and acts on the
basis states as follows [10, 12]:

[02]|x〉 = |(2x + 2) mod 3〉 (8)

Figure 1 demonstrates the symbolic representation of quantum ternary shift gates.
According to this gate, the output P is equal to the Z transform of the input X. It should
be noted that each quantum ternary shift gate has a unitary inverse gate for restoring
the inputs which are given in Table 3 [26, 27].

2.4 Ternary Hadamard gate

The Hadamard gate can be used to interconvert mutually unbiased bases. The defini-
tions given by Wang and Di indicate in d-dimensional space, and the action of this
gate can be defined as [7, 38]

Hm |�ι〉 = 1√
d

d−1∑
k=0

ω
(ιk+(m−1)k2)
i |k〉 (9)

where

ωi = e
i2π
d , m = 1, . . . , d. (10)

Figure 2 shows the symbolic representation of the quantum ternary Hadamard gate.
Similarly to the binary, the ternary Hadamard gate is abbreviated as the H gate. An
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Fig. 2 Symbolic representation of quantum ternary Hadamard gates

expression for the matrix resulting from the action of this gate on a ternary quantum
state is:

H = 1√
3

⎛
⎜⎝
1 1 1

1 e
2π i
3 e

4π i
3

1 e
4π i
3 e

8π i
3

⎞
⎟⎠ (11)

In quantum ternary logic, the basis states are affected by the Hadamard gate as
follows:

H |0〉 = 1√
3

(|0〉 + |1〉 + |2〉) (12)

H |1〉 = 1√
3

(
|0〉 + e

2π i
3 |1〉 + e

4π i
3 |2〉

)
(13)

H |2〉 = 1√
3

(
|0〉 + e

4π i
3 |1〉 + e

8π i
3 |2〉

)
(14)

According to the above equations, it can be seen that when the ternary Hadamard
gate is applied to state 0, an equal superposition of the three basic states results without
any phase.

2.5 Ternary identity gate

The basis states 0, 1, and 2 in this gate are unchanged. It shows the elementary state
and acts like a quantum wire. The following matrix shows the action of this gate on a
ternary quantum state [11]:

I =
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ (15)

2.6 Ternary Muthukrishnan and Stroud gate

Muthukrishnan and Stroud proposed the multiple-valued quantum gates using linear
ion-trap [29]. Figure3 shows the graphical representation of the Muthukrishnan and
Stroud (M–S) gate. In this gate, the output P equals the input X, and the output Q
equals the Z transform of the input Y when X = 2; otherwise, the output Q equals the
input Y.
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Fig. 3 Graphical representation
of Muthukrishnan and Stroud
gate

Fig. 4 Graphical representation
of Toffoli gate

2.7 Ternary Toffoli gate

Khan and Perkowski in [19] present a 3-qutrit generalized Toffoli gate along with
its realization in ion-trap technology. The symbolic representation of this gate can
be observed in Fig. 4. In this gate, X ,Y and Z are the inputs and P, Q and R are
the outputs. The outputs P and Q are equal to the input X and Y , respectively. The
output R, which is the target output, is equal to the Z transform of the input Z when
X and Y are equal 2, where Z can be +1,+2, 01, 02, 12. Otherwise, the output R
is equal to the input Z . The quantum cost associated with this gate is 5 + (2 ×
{number of controlling values which are not 2}).

3 Qutrit representation of quantum image

A brief review of the existing qutrit image representation is included in this section to
make a clear comparison of our proposed circuit with the existing design.

3.1 Quantum image representation

In the novel qutrit representation of the grayscale image [11], the pixel positions
and pixel values are encoded using two entangled qutrits. In this method, six qutrits
are needed to encode the 256 shades of gray, and a number of the energy levels
remain redundant. This redundancy can facilitate error detection and correction during
information transmission. The representative expression of a 3n × 3n image is as
follows:

|I 〉 = 1

3n

3n−1∑
Y=0

3n−1∑
X=0

| f (X ,Y )〉|Y X〉 = 1

3n

3n−1∑
Y=0

3n−1∑
X=0

q−1⊗
i=0

|Ci
Y X 〉|Y X〉 (16)

where C0
Y XC

1
Y X . . .Cq−1

Y X and |Y 〉|X〉 encode the grayscale information and the
corresponding position in the image, respectively. To construct the quantum image
model for an 3n × 3n image with 3q shade of gray, q + 2n qutrits are needed. For
example, a 3 × 3 dimensional image is considered in Fig. 5, and its corresponding
quantum image state is represented in Eq. (17).
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Fig. 5 Example of a 3 ×
3-dimensional image

|I 〉 = 1

3
(|0〉 ⊗ |00〉 + |50〉 ⊗ |01〉 + |75〉 ⊗ |02〉 + |90〉 ⊗ |10〉 + |105〉 ⊗ |11〉

+ |125〉 ⊗ |12〉 + |150〉 ⊗ |20〉 + |225〉 ⊗ |21〉 + |255〉 ⊗ |22〉)
= 1

3
(|000000〉 ⊗ |00〉 + |001212〉 ⊗ |01〉 + |002210〉 ⊗ |02〉 + |010100〉 ⊗ |10〉

+ |010220〉 ⊗ |11〉
+ |011122〉 ⊗ |12〉 + |012120〉 ⊗ |20〉 + |022100〉 ⊗ |21〉 + |100110〉 ⊗ |22〉)

(17)

3.2 Quantum image preparation

It is necessary to first store the image information in a quantum state before using
quantum mechanics to process it. According to the preparation procedure for the
novel qutrit representation of grayscale image [11], preparation of q + 2n qutrits and
setting them all to 0 is the first step. The initial quantum state can be represented as
follows:

|�0〉 = |0〉q+2n (18)

The quantum circuit for the quantum image preparation process is depicted in Fig. 6.
In this figure, |C0〉, |C1〉, and |Cq−1〉 represent |C1

Y X 〉, |C2
Y X 〉, and |Cq−1

Y X 〉, respectively.
There are two steps to the preparation; the position information must be prepared as
a first step. This is achieved through the utilization of single-qutrit I and H gates.
These gates are applied to transition the initial state |�0〉 into the intermediate state
|�1〉, representing a superposition encompassing all the pixels of an empty image.
This process is interpreted by Eq. (19).

|�1〉 � 1

3n

3n−1∑
Y=0

3n−1∑
X=0

|0〉⊗q |Y X〉 (19)

In the second step, the transition from the intermediate state |�1〉 to the final state
|�2〉 results in the creation of the quantum representation of the QTRQ, representing
the final quantum image. This process is explained by Eq. (20).
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Fig. 6 Quantum image
preparation circuit

|�2〉 � 1

3n

3n−1∑
Y=0

3n−1∑
X=0

| f (X ,Y )〉|Y X〉 (20)

4 Proposed realization of ternary Toffoli gate in specific state

Section 2 provides an explanation of the Ternary Toffoli gate. One of the most usable
states for this gate occurs when the input Z is set to 0, and the transformation for
that is equal to +2. Based on the values of control inputs, the quantum cost of the
gate in this scenario can be equal to 5, 7, or 9. Here, we focus on the state when the
transformation is equal to +2, a novel realization of the Ternary Toffoli gate in this
situation is shown in Fig. 7. In this realization, when the controlling inputs are equal
to 0 and 1 no transformation will be applied on constant input 0. If both controlling
inputs are equal to 2, Z(01), Z(12) and Z(01) will be applied on constant input 0,
respectively. But if only one of the controlling inputs equals 2, the target output restores
the constant input, which is 0. Based on our suggested realization of the ternary Toffoli
gate in the mentioned state, the quantum cost can be 3, 5, or 7, depending on the values
of the inputs. If both inputs are 2, the quantum cost is 3. If one of them is 2, the quantum
cost is 5. If neither of them is 2, the quantum cost is 7. In summary, the quantum cost
can be expressed as 3 + (2 × {number of controlling values which are not2).

5 Proposed design for qutrit representation of quantum image

The truth table of the qutrit representation of the grayscale image (QTRQ) discussed
above is given in Table 4. In this table, X and Y are the input variables, while C0, C1,

Fig. 7 Realization of the Toffoli
gate in a specific state
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Table 4 Truth table of the novel
qutrit representation of the
grayscale image (QTRQ)

X Y C0 C1 C2 C3 C4 C5

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0

0 2 0 1 2 1 2 0

1 0 0 0 1 2 1 2

1 1 0 1 0 2 2 0

1 2 0 2 2 1 0 0

2 0 0 0 2 2 1 0

2 1 0 1 1 1 2 2

2 2 1 0 0 1 1 0

C2, C3, C4, and C5 represent the output variables. These outputs correspond to the
following:

C0 = Z(+1)(Y 2X2) (21)

C1 = Z(+1)(Y 1) + Z(+1)(Y 2X0) + Z(+2)(Y 2X1) (22)

C2 = Z(+1)(Y 0X1) + Z(+1)(Y 1X2) + Z(+2)(Y 0X2) + Z(+1)(Y 2X2)

+ Z(+2)(Y 2) (23)

C3 = Z(+2)(Y 1X1) + Z(+1)(Y 1) + Z(+1)(Y 2) + Z(+1)(Y 0X0)

+ Z(+2)(Y 0) + Z(+2)(Y 1X1) (24)

C4 = Z(+2)(Y 0X0) + Z(+1)(Y 0) + Z(+1)(Y 2X2) + Z(+1)(Y 1X0)

+ Z(+2)(Y 1) + Z(+2)(Y 2X0) (25)

C5 = Z(+2)(Y 0X1) + Z(+2)(Y 1X2) (26)

In order to design our proposed new quantum ternary circuit based on the qutrit
representation of the grayscale image (QTRQ) in [11] and enhance understanding, we
initially present some operations of the circuit aligned with Eqs. (21)–(26). Subse-
quently, the complete design is illustrated in Fig. 14. The realization of the first part
(C0) is depicted in Fig. 8, including three 2-qutrit Muthukrishnan–Stroud gates. In this
part, if inputs X and Y both are equal to 22, only outputC0 equals 1, which aligns with
Eq. (21). It requires 1 constant input, which is 0.
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Fig. 8 Realization of C0

Fig. 9 Realization of C1

Fig. 10 Realization of C2

The realization of the second part (C1) is depicted in Fig. 9, employing six 1-qutrit
shift gates and seven 2-qutrit Muthukrishnan–Stroud gates. In this part, when inputs
X and Y correspond to 02 or 12, the output C1 equals 1 or 2, respectively. Moreover,
if input Y is 1, output C1 equals 1, consistent with Eq. (22). It requires one constant
input, denoted as 0. In this part, two Z(+1) gates can be merged into a Z(+2) gate,
resulting in a quantum cost of 12.

The third part (C2) is illustrated in Fig. 10. As can be seen, we employed thirteen
Muthukrishnan–Stroud gates and eight shift gates, resulting in a quantum cost of 21.
However, by merging two Z(+1) gates into a Z(+2) gate and similarly merging two
Z(+2) gates into a Z(+1) gate, we can reduce the cost to 19.

The fourth part (C3) is shown in Fig. 11. As can be observed, we utilized a total
of 28 gates, including twelve Muthukrishnan–Stroud gates and sixteen shift gates. It
should be noted that in this realization, each pair of double gates within the blue boxes
can be merged into one shift gate, and the gates within the red boxes can be omitted.
Consequently, the overall quantum cost is reduced to 21.

Figure12 shows the realizationof thefifth part (C4).Weused fourteenMuthukrishnan–
Stroud gates and fourteen shift gates to construct the circuit for Eq. (25). The cost of
this part is 28, but the gates within the red boxes can be eliminated altogether. Thus,
the total quantum cost is decreased to 22.

The realization of the last part of the circuit (C5), which aligns with Eq. (26), is
shown in Fig. 13. As can be observed, we used six 1-qutrit shift gates and six 2-qutrit
Muthukrishnan–Stroud gates. In this part, when inputsX and Y correspond to 10 or 21,
the output C5 equals 2. The gates enclosed in the blue boxes can be merged, resulting
in a total quantum cost of 11.

We combined the aforementioned parts into one to create the complete design of
our proposed new quantum ternary circuit for qutrit representation of the grayscale
image (QTRQ), illustrated in Fig. 14. It should be noted that we reduced the overall
quantumcost in this combination from88 to 83bymerging and eliminating somegates,
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Fig. 11 Realization of C3

Fig. 12 Realization of C4

Fig. 13 Realization of C5

as indicated in the orange and green boxes, respectively. As can be seen, six ternary
Identity gates and two ternaryHadamard gates are used for the first step in the quantum
image preparation, and the initial state |�0〉 is transformed into the intermediate state
|�1〉. This preparation step serves as a foundation for the next step.

The principle of circuit design lies in the second step, where the quantum image
representation is modified to its final state, |�1〉. We also used 28 quantum ternary
Shift gates and 55 quantum ternary M–S gates for the second step, which represents
the final quantum image through the transformation of the intermediate state |�1〉 into
the final state |�2〉. This two-step conversion process ensures a gradual and accurate
construction of the final quantum image representation. Each output state corresponds
to specific elements of the final quantum image.

The output of the circuit yields six distinct quantum states, denoted |C0〉 to |C5〉.
These quantum output states are represented as |C0

Y X 〉, |C1
Y X 〉, |C2

Y X 〉, |C3
Y X 〉, |C4

Y X 〉,
and |C5

Y X 〉, collaboratively, forma comprehensive qutrit-basedquantum representation
of the grayscale image. This multiplicity of outputs shows a comprehensive encoding
of image information.

The quantum cost of the quantum image preparation procedure depends on the
number of gates utilized in the circuit. The quantum cost of Shift and M–S gates are 1
and 1, respectively. Consequently, the second stage of the circuit has a quantum cost
of 83, considering the use of 28 shift gates and 55M–S gates. Combined with the two
Hadamard gates from the first stage, the total quantum cost of the circuit is 85.

Moreover, this design requires 8 constant inputs and produces 0 garbage outputs.
In quantum circuit design, this optimization emphasizes efficiency and effectiveness.
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Fig. 14 Realization of the proposed quantum ternary circuit for QTRQ

6 Analysis and comparison

In current literature, for binary and grayscale images, novel-enhanced quantum repre-
sentation of images (NEQR) are frequently utilized for encoding grayscale pixel values
[39]. Inspired by NEQR, a qutrit representation of quantum images has been intro-
duced for ternary and grayscale images, which can store more information than NEQR
[11]. To the best of our knowledge, this is the only qutrit work dedicated to grayscale
images. Our objective is to minimize the crucial parameters for designing a quantum
ternary circuit for the qutrit representation of quantum images. The examination of
the quantum circuits encompasses an assessment of their quantum cost, the number
of constant inputs, and garbage outputs. These metrics hold paramount significance in
gauging the efficiency of circuits and contribute significantly to advancements in quan-
tum image processing. Table 5 provides a comparison between our newly proposed
quantum ternary circuit for the novel qutrit representation of a grayscale image, and
the one presented in reference [11]. It is evident that the proposed design in this work
boasts lower quantum cost, garbage outputs, and constant inputs when compared to
the design from [11]. Specifically, our design eliminates 22Muthukrishnan and Stroud
gates while also reducing constant inputs and garbage outputs by one, which means
there are 8 and 0 constant inputs and garbage outputs, respectively, in our proposed
design. In particular, there are improvements of 20.56% in quantum cost, 11% in
constant inputs, and 100% in garbage outputs.

Table 5 Evaluation of quantum ternary circuits for QTRQ

Quantum cost Constant input Garbage output

Design in [11] 107 9 1

Our proposed design 85 8 0

Improvement percentage 20.56% 11% 100%
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7 Conclusion

A significant and efficient strategy for addressing the demanding real-time compu-
tational requirements of traditional image processing can be achieved by integrating
quantum mechanics into the process. On the other hand, in the current era of NISQ
(noisy intermediate scale quantum) devices, optimizing the number of quantum gates
and the depth of quantum circuits is critical to reducing the impact of noise on the
output. Efficient storage of quantum images is essential and can be achieved through
the adoption of multi-valued quantum systems in quantum image processing, as they
provide greater security in information encryption and require fewer qubits and less
storage space. In the current research, our objective is to design a new quantum ternary
circuit for the novel qutrit representation of grayscale images in the existing work. The
results indicate that the proposed design outperforms its previous counterpart in terms
of quantum cost, the number of constant inputs, and garbage outputs, which are con-
sidered critical parameters in quantum circuit design, and their minimization can lead
to significant progress in quantum image processing. Quantum image processing is
still in its early stages, and there is limited research based on the ternary quantum
image model at present. Although the current circuit for qutrit representation of the
quantum image is optimized and compressed, it may not be the most effective. In
future research, it would be beneficial to explore more effective compression and
optimization strategies.
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