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1 Introduction

1.1 Geodesic dimension and curvature exponent

In a geodesic metric measure space G d, , vol( ), for a point ∈p G, a set ⊂E G, and ∈t 0, 1[ ], define the set of t-
intermediate points

≔ ∈ ∃ ∈ = = −Z p E z G q E d p z td p q d z q t d p q, : : , , , , 1 , .t( ) { ( ) ( ) ( ) ( ) ( )} (1.1)

Although our definition of set of intermediate points is not the same as in [1,21], we will clarify in Remark 3.5
that they are interchangeable in our study of geodesic dimension and curvature exponent.

We are interested in the behaviour of ↦t Z p Evol ,t( ( )) for E measurable with < < ∞E0 vol( ) . In parti-
cular, we have two characteristic exponents. First, the geodesic dimension at p is

≔
⎧
⎨
⎩

> = ∞
⎫
⎬
⎭∈ →

N p N
Z p E

t E
inf 0 : sup limsup

vol ,

vol
,

E t

t

NGEO

0F

( )
( ( ))

( )

where ≔ ⊂ < < ∞E G Ebounded, measurable with 0 volF { ( ) }.
Second, the curvature exponent at p is

≔ > ≥ ∀ ∈ ∀ ∈N p N Z p E t E t Einf 0 : vol , vol , 0, 1 , .t
N

CE F( ) { ( ( )) ( ) [ ] }

The geodesic dimension was originally introduced in [1]. The curvature exponent was originally introduced in
[19]. See also [21]. Note that we have ≥N p N pCE GEO( ) ( ) by definition.

IfG is a Lie group, d is left-invariant, and vol is a Haar measure, the choice of p does not play any role and
thus, we can focus on =p e, the identity element ofG. Consequently, we have the geodesic dimension NGEO ofG

and the curvature exponent NCE of G.
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1.2 Sard-regular Carnot group

We will give estimates for the geodesic dimension and the curvature exponent of Carnot groups. Let G be a
Carnot group with stratified Lie algebra = ⊕ = Vj

s
j1g and a fixed scalar product ⋅ ⋅,⟨ ⟩ on V1. See Section 3 for

details.
The sub-Riemannian exponential map (based at the identity element e) SExp is an analytic function from
=T G* *e g to G, where *g is the dual of the Lie algebra g. We denote by Jac SExp( ) the Jacobian determinant of

SExp. For more details, see Sections 2 and 3.

Definition 1.1. Define ⊂ *D g as the open set of all ∈ξ *g such that ≠tξJac SExp 0( )( ) for all ∈t 0, 1( ] and
↦t tξSExp( ) is the unique constant-speed length-minimizing curve → G0, 1[ ] from e to ξSExp( ).

Next define ⊂ Ge� as the image SExp D( ). Note that SExp is a diffeomorphism fromD to e� . We denote by
→ρ : e D� , the inverse of SExp on e� .

It is well known that e� is dense in G, see [3] and references therein. However, it is not known whether e�

has always full measure in G, see for instance [14]. In our study, we need e� to have full measure.

Definition 1.2. (Sard-regular) We say that a Carnot group G is Sard-regular if the set e� has full measure in G.

Note that Carnot groups of step two are Sard-regular by [19, Proposition 15]. We stress that it is an open
question whether all Carnot groups are Sard-regular, i.e., this hypothesis might be superfluous.

1.3 Sub-Riemannian exponential map

We will use the fact that the sub-Riemannian exponential map is analytic to estimate both NGEO and NCE.
The stratification = ⊕ = Vj

s
j1g of the Lie algebra of G induces a splitting = ⊕ = V* *

j
s

j1g of the dual space *g ,
where = ∈ ⊂ ∀ ≠V α V α i j* * : ker ,j ig{ }.

For ∈λ � , define →ζ : * *λ g g as

∑ ∑⎛

⎝
⎜

⎞

⎠
⎟ =

= =

−ζ ξ λ ξ .λ

j

s

j

j

s

j
j

1 1

1

Note that, when →λ 0, we have → ∈ζ ξ ξ V *λ 1 1( ) . By insight to the Hamiltonian system, we obtain in Section 3.2
that the Jacobian determinant of the sub-Riemannian exponential map satisfies

= −λξ λ ζ ξJac SExp Jac SExp .Q n
λ

2 2( )( ) ( )( ( )) (1.2)

Here =n Gdim( ) and = ∑ =Q j Vdimj

s

j1 ( ) are the topological and homogeneous dimensions of G, respectively. In
Proposition 3.8, we prove that, if G is Sard-regular, then, for every measurable ⊂E G,

∫= −

∩

Z e E λ ζ ξ ξvol , Jac SExp d .λ
Q n

ρ E

λ
2

e�

( ( )) ∣ ( )( ( ))∣

( )

(1.3)

Formula (1.3) is crucial for our estimates of NGEO and NCE.
By analyticity of the sub-Riemannian exponential map, there are analytic functions →P : *k g � such that

for every ∈ξ *g , there exists >λ 0ξ with

∑=
=

∞

ζ ξ P ξ λJac SExp ,λ

k

k
k

0

( )( ( )) ( ) (1.4)

for <λ λξ∣ ∣ . One can take ↦ξ λξ continuous. Define
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≔ ≠
≔ ∈
≔ ∈ < ∞

ξ k P ξ

G ξ ξ

G ξ ξ ξ

Γ min : 0 ,

Γ min Γ : * , and

Γ̂ sup Γ : * with Γ .

k

g

g

( ) { ( ) }

( ) { ( ) }

( ) { ( ) ( ) }

(1.5)

1.4 Main results

Our main results are the following two Theorems A and B, which we then summarize in Theorem C.

Theorem A. If G is a Sard-regular Carnot group, then

= − +N Q n G2 Γ ,GEO ( )

where =n Gdim( ) is the topological dimension, = ∑ =Q j Vdimj

s

j1 ( ) is the homogeneous dimension, and GΓ( ) is
defined in (1.5).

See Section 4 for the proof of Theorem A.

Theorem B. In a Sard-regular Carnot group, we have

− + ≤Q n G N2 Γ̂ ,CE( )

where =n Gdim( ) is the topological dimension, = ∑ =Q j Vdimj

s

j1 ( ) is the homogeneous dimension, while GΓ̂( ) is
defined in (1.5).

See Section 5 for a proof of Theorem B.
We summarize the results of Theorems A and B in the following statement:

Theorem C. In a Sard-regular Carnot group, we have

≤ ≤ = − + ≤ − + ≤n Q N Q n G Q n G N2 Γ 2 Γ̂ ,GEO CE( ) ( )

where =n Gdim( ) is the topological dimension, = ∑ =Q j Vdimj

s

j1 ( ) is the homogeneous dimension, while GΓ( ) and
GΓ̂( ) are defined in (1.5).

It is known that NCE is finite on ideal Carnot groups by Rifford [19] and by Barilari and Rizzi [7]. Then, it
was generalized to the class of so-called Lipschitz Carnot groups, which includes step-two Carnot groups [4].
The fact that ≤ ≤Q N NGEO CE was already known, see [21] or [1, Proposition 5.49]. To our best knowledge, all
known examples of sub-Riemannian Carnot groups satisfy =N NGEO CE. In particular, Juillet [11] showed that

= = −N N Q n2CE GEO on the Heisenberg group n� . Later on, the equality =N NGEO CE has been proven for all
corank 1 Carnot groups in [21] and for generalized H-type groups in [6].

In Carnot groups of step two, we will give a constructive method to compute both GΓ( ) and GΓ̂( ). As a
consequence, we will provide examples of Carnot groups of step two where <G GΓ Γ̂( ) ( ). In such cases, we
have <N NGEO CE, which answers a question posed by Rizzi [21].

Corollary 1.3. There are sub-Riemannian Carnot groups of step two where <N NGEO CE.

Borza and Tashiro have recently given examples of sub-Finsler Carnot groups with <N NGEO CE [8]. Simi-
larly with what we do, they study asymptotic behaviours of the Jacobian of the sub-Riemannian, or sub-Finsler,
exponential map. In their case, since they use pℓ -norms instead of the 2ℓ -norm we use, the value of ξΓ( ) may be
fractional.

Remark 1.4. After this study was completed, Rizzi informed us of the following results in [1]. In our framework
of Sard-regular Carnot groups, it follows from [1, Lemma 6.27] that our + +Q n λ2 Γ( ) in this study coincides

CE and GEO dimension  3



with λ� there, whose value by [1, Definition 5.44] is given by geodesic growth vector λ� . We refer to Remark 6.9
for more details about the value of λ� on step-two Carnot groups. Furthermore, in [1, Definition 5.47], the
geodesic dimension is actually defined by the minimum of those λ� , which is exactly our Theorem A. However,
our Theorem B and Corollary 1.3 remain new.

1.5 Summary

In Section 2, we give a brief description of the Hamiltonian formalism that defines the sub-Riemannian
exponential map. We then introduce Carnot groups in Section 3. Section 4 contains the proof of Theorem A,
while Section 5 contains the proof of Theorem B. In Section 6, we study more closely Carnot groups of step two,
and the sub-Riemannian exponential map thereof. Finally, in Section 7 we compute several explicit examples.

2 Hamiltonian systems on Lie groups

In this section, G denotes a Lie group with Lie algebra g. For the sake of completeness, we will describe the
standard construction of Hamiltonian systems onG given by left-invariant Hamiltonians →H T G: * � . We will
then apply this formalism to sub-Riemannian Carnot groups in Section 3.

We identify g with the tangent space T Ge of G at the identity element ∈e G. For any function →v U: g on
an open subset ⊂U G, we define the vector field ∈v TU˜ Γ( ) on U as

≔ ∈v p DL v T G˜ .p e p( ) ∣ [ ]

Similarly, if →α U: *g , we define ∈α T U˜ Γ *( ) as

= ∈−α p DL α T G˜ * * .p p p
1( ) ∣ [ ]

Note that the vector field ṽ is left-invariant if and only if the function v is constant, and similarly α̃ is left-
invariant if and only if α is constant.

We will denote by ⋅ ⋅⟨ ∣ ⟩ the pairing of a vector space with its dual, or, more generally, the pairing between
linear maps and their domain. Scalar products are usually denoted by ⋅ ⋅,⟨ ⟩.

2.1 Differential forms

For a vector space V and an open set ⊂U G, we define

≔ ∞U V C U VΩ ; ; Alt ; ,L

k k g( ) ( ( ))

where VAlt ;k g( ) is the space of k -multilinear alternating maps from g to V . Elements in U VΩ ;L

k( ) are
identified with differential forms on U as follows. Define →U V U VMC : Ω ; Ω ;k

L

k( ) ( ) by

∧ ⋯ ∧ = ∧ ⋯ ∧α p v v α p v p v pMC ˜ ˜ ˜ ˜ ,k k1 1⟨ ( )( )∣ ⟩ ⟨ ( )∣ ( ) ( )⟩

for ∈p U , ∈α U V˜ Ω ;k( ), and ∈vj g. Vice versa, if ∈α U VΩ ;L

k( ), we denote by α̃ the only element of U VΩ ;k( )

such that =α αMC ˜( ) .
We use the map MC to push the exterior derivative from U VΩ ;k( ) to U VΩ ;L

k( ). We define →d U V: Ω ;L

k( )
+

U VΩ ;L

k 1( ) as ≔α dαd MC ˜( ). Using standard formulas for the exterior differential, we obtain for ∈α U VΩ ;L

k( )

and ∈v v,…, k0 g,
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∑

∑

∧ ⋯ ∧ = − ⋅ ∧ ⋯ ∧ ∧ ⋯ ∧

+ − ∧ ∧ ⋯ ∧ ∧ ⋯ ∧ ∧ ⋯ ∧

=

<

+

α v v v α v v v

α v v v v v v

d 1 ˜ ˆ

1 , ˆ ˆ .

k

j

k

j
j j k

i j

k

i j
i j i j k

0

0

0

0

⟨ ∣ ⟩ ( ) ⟨ ( )∣ ⟩

( ) ⟨ ∣[ ] ⟩

(2.1)

2.2 Cotangent bundle and Hamiltonian mechanics

The cotangent bundle T G* of a Lie group G with Lie algebra g has a (left-)canonical group structure as direct
product ×G *g , where *g is seen as abelian Lie group. More precisely, we make T G* into a Lie group
isomorphic to ×G *g via a map × →G T GΦ : * *L g defined by

≔ = −g α α g DL αΦ , ˜ * .L g g
1( ) ( ) ∣ [ ]

This group structure allows us to use the notation from Section 2.1 for differential forms on T G* .
On T G* , we have the tautological 1-form ∈τ T GΩ *

1( ),

= ∈ ∈τ ξ w ξ Dπ w ξ T G w T T G, for * and * ,T G ξ*( )[ ] ⟨ ∣ ⟩ ( )

where →π T G G: *T G* is the bundle projection. We pull back τ to ×G *g via ΦL and we take its left version τL.
In other words, we define ∈ ×τ GΩ *;L L

1 g �( ) as

=τ τMC Φ* .L L( )

It might look abstract and complicated, but the point of this reasoning is to obtain the following formula right,
i.e., we really want to be sure that we are dealing with the standard tautological form and later with the
standard symplectic form. Indeed, the above formula and the definition of the exterior derivative on

×GΩ *;L

1 g �( ) imply

≔ − = −ω τ τd MC Φ*d .L L L( )

A short computation gives us, for all ∈ × × ×g α v μ G, , , * *g g g( ) ,

=τ g α v μ α v, , .L⟨ ( )∣( )⟩ ⟨ ∣ ⟩ (2.2)

Indeed,

= +

= +

= +

= +

=

= =

=

=

=

=

=

τ g α v μ τ g α
ε

g εv α εμ

τ α g
ε

g εv α εμ

α g Dπ
ε

g εv α εμ

α g
ε

π g εv α εμ

α g
ε

g εv

α g v g α v

, , Φ* ,
d

d
exp ,

˜
d

d
Φ exp ,

˜
d

d
Φ exp ,

˜
d

d
Φ exp ,

˜
d

d
exp

˜ ˜ .

L L

ε

ε

L

T G

ε

L

ε

T G L

ε

0

0

0

0

0

*

*

⟨ ( )∣( )⟩ ( ) ( ( ) )

( ( )) ( ( ) )

( ) ( ( ) )

( ) ( ( ) )

( ) ( )

⟨ ( )∣ ( )⟩ ⟨ ∣ ⟩

Now, we can compute the symplectic form = −ω dτL L as

∧ = − +ω g α v μ v μ μ v μ v α v v, , , , .L 0 0 1 1 1 0 0 1 0 1⟨ ( )∣( ) ( )⟩ ⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣[ ]⟩ (2.3)

Indeed, using (2.1), we easily compute
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∧ = − ⋅ + ⋅ +
= − + +

ω g α v μ v μ v μ τ v μ v μ τ v μ τ g α v μ v μ

μ v μ v α v v

, , , , ˜ , , ˜ , , , , ,

, .

L L L L0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1

0 1 1 0 0 1

⟨ ( )∣( ) ( )⟩ ( ) ⟨ ( )∣( )⟩ ( ) ⟨ ( )∣( )⟩ ⟨ ( )∣[( ) ( )]⟩

⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣[ ]⟩

If × →H G: *g � is a smooth function, we define × → ×G: * *H g g g� by the formula

∧ = +
=

ω g α g α v μ
ε

H g εv α εμ, , ,
d

d
exp , ,L H

ε

1 1

0

1 1
�⟨ ( )∣ ( ) ( )⟩ ( ( ) ) (2.4)

which is required to hold for all ∈ × × ×g α v μ G, , , * *1 1
g g g( ) . To compute H� , we write = v μ,H H H

� ( ) with
× →v G: *H g g and × →μ G: * *

H
g g . By linearity, we obtain that (2.4) is equivalent to

⎧

⎨
⎪

⎩
⎪

= +

− = −

=

=

μ v
ε

H g α εμ

μ v α v v
ε

H g εv α

d

d
, ,

,
d

d
exp , ,

H

ε

H H

ε

1

0

1

1 1

0

1

⟨ ∣ ⟩ ( )

⟨ ∣ ⟩ ⟨ ∣[ ]⟩ ( ( ) )

(2.5)

for all ∈ × × ×g α v μ G, , , * *1 1
g g g( ) .

A solution to the Hamiltonian equations is a curve ↦t g t α t,( ( ) ( )) such that

⎧
⎨
⎩

=
=

−
DL g t v g t α t

α t μ g t α t

˙ , ,

˙ , .

g t H

H

1 ( ) ( ( ) ( ))

( ) ( ( ) ( ))

( ) (2.6)

2.3 Sub-Riemannian Hamiltonian system

Let ⊂V1 g be a bracket-generating linear subspace of g and ⋅ ⋅,⟨ ⟩ be a scalar product onV1. The scalar product on
V1 induces a scalar product ⋅ ⋅, *⟨ ⟩ on the dual spaceV *

1 . We will use the standard notation ↦ ♯α α to denote the
canonical isomorphism →V V*

1 1 induced by the scalar product, and its inverse →V V *1 1 , ↦ ♭v v . For example, by
definition for every ∈α β V, *

1 we have ∈♯ ♯α β V, 1 with

= =♯ ♯ ♯α β α β α β, * , .⟨ ⟩ ⟨ ∣ ⟩ ⟨ ⟩

The Hamiltonian we are interested in is

× → =H G H g α α α: * , ,
1

2
, *.V V1 1

g � ( ) ⟨ ∣ ∣ ⟩ (2.7)

We have, for all ∈ × × ×g α v μ G, , , * *g g g( ) ,

=

+ =

=

=

ε
H g εv α

ε
H g α εμ α μ

d

d
exp , 0, and

d

d
, , *.

ε

ε

V V

0

0

1 1

( ( ) )

( ) ⟨ ∣ ∣ ⟩

Thus, equations (2.5) defining the Hamiltonian vector field H� become

⎧
⎨
⎩

=
− =

μ v α μ

μ v α v v

, *,

, 0.

H V V

H H

1 1
⟨ ∣ ⟩ ⟨ ∣ ∣ ⟩

⟨ ∣ ⟩ ⟨ ∣[ ]⟩

Solving these equations in vH and μ
H
, we obtain that

⎧
⎨
⎩

= ∈
= ∘

♯

∣ ♯

v g α α V

μ g α α

, ,

, ad .

H V

H α

1

V

1

1

( ) ( ∣ )

( ) ( )

(2.8)

Therefore, the Hamiltonian flow is given by curves g t α t,( ( ) ( )) solving (2.6), that is,

⎧
⎨
⎩

=
= ∘

− ♯

∣ ♯

DL g t α t

α t α t

˙ ,

˙ ad .

g t V

α t

1

V

1

1

( ) ( ( )∣ )

( ) ( )

( )

( ( ) )

(2.9)
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Proposition 2.1. Let → ×g α I G, : *g( ) be a solution to (2.9)with =g e0( ) , the identity element of G. Then, α t( ) is
the restriction to the curve g of a right-invariant 1-form. In other words, for all ∈t I ,

= ∘ −α α t0 Ad .g t
1( ) ( ) ( )

Proof. We show that the derivative in t of −α t Adg t
1( ) ( ) is zero. So, we first see that

+ = + +

= ∘ +

=
+

= =
+

∣
=

+

− − −

♯ − − −

ε
α t ε

ε
α t ε

ε
α t

α t
ε

α t

d

d
Ad

d

d
Ad

d

d
Ad

ad Ad
d

d
Ad Ad .

ε

g t ε

ε

g t

ε

g t ε

α t g t

ε

g t ε g t g t

0 0 0

0

V

1 1 1

1

1 1 1

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ( ) ) ( ) ( ) ( ) ( )

Since

+ = +

= − + = − = −

=

−

=

− −

=

− ♯−

ε
g t ε g t

ε
g t g t ε

ε
g t g t ε DL g t α t

d

d

d

d

d

d
˙ ,

ε ε

ε

g t V

0

1

0

1 1

0

1
1

1

( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( ( )∣ )( )

we obtain

= = −
=

+
=

− ∣ ∣− − ♯ − ♯ −
ε

α t
ε

α t α t
d

d
Ad Ad

d

d
Ad Ad ad Ad .

ε

g t ε g t g t

ε

ε α t g t α t g t

0 0

exp V V
1 1

1

1

1

1( ) ( ) ( )( ) ( ) ( ) ( ( ( ) ) ) ( ) ( ( ) ) ( )

We conclude that + =
= + −α t ε Ad 0

ε
ε

g t ε

d

d
0

1( ) ( ) , and thus

= =− −α t α αAd 0 Ad 0 .g t g 0
1 1( ) ( ) ( )( ) ( ) □

Proposition 2.1 gives a reinterpretation of the ordinary differential equation (ODE) (2.9). Indeed, given
∈α *0 g , we first take the right-invariant 1-form ≔α g αAd*

g 0( ) , then we define the horizontal vector field
= ♭v g α gH V1

( ) ( ( )∣ ) , and finally we integrate the vector field ṽH starting from e. Explicitly, ṽH is

= ♯v g DL α˜ Ad* .H g e g V0 1
( ) ∣ (( )∣ )

The ODE (2.9) has a few useful symmetries that we want to highlight.

Lemma 2.2. (Symmetries of the sub-Riemannian Hamiltonian flow: change of speed) If → ×g α I G, : *g( ) is a
solution to (2.9), then ↦t g λt λα λt,( ( ) ( )) is also a solution to (2.9), for every >λ 0.

Proof. Define =h t g λt( ) ( ) and =β t λα λt( ) ( ). Then,

= = =− − ♯ ♯DL h t λDL g λt λ α λt β t˙ ˙
h t g λt V V

1 1

1 1
( ) ( ) ( ( )∣ ) ( ( )∣ )( ) ( )

and

= = ∘ = ∘∣ ∣♯ ♯β t λ α λt λ α λt β t˙ ˙ ad ad .α λt β t
2 2

V V1 1
( ) ( ) ( ) ( )( ( ) ) ( ( ) )

Therefore, h β,( ) is a solution to (2.9). □

Lemma 2.3. (Symmetries of the sub-Riemannian Hamiltonian flow: left translations) If ∈p G and if
→ ×g α I G, : *g( ) is a solution to (2.9), then

↦t L g t α t,p( ( ( )) ( ))

is also a solution to (2.9).

Proof. The second equation in (2.9) does not depend on g t( ). In the first equation, we have

=− −
DL DL g t DL g t˙ ˙ ,pg t p g t

1 1( ( )) ( )( ) ( )

and thus, the curve L g t α t,p( ( ( )) ( )) is still a solution to (2.9). □
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Lemma 2.4. (Symmetries of the sub-Riemannian Hamiltonian flow: homotheties) Let →L G G: be a Lie group
automorphism with Lie algebra automorphism →: g gℓ . Assume that =V V1 1ℓ( ) and that there exists ∈λ �

with =v w λ v w, ,2⟨ℓ ℓ ⟩ ⟨ ⟩ for all ∈v w V, 1.
If → ×g α I G, : *g( ) is a solution to (2.9), then

↦ ∘ −t L g t λ α t, 2 1( ( ( )) ( ) ℓ ) (2.10)

is also a solution to (2.9).

In fact, the existence of a homothety like in Lemma 2.4 implies that the group is a Carnot group [13].

Proof. First of all, note that, if ∈α V *
1 , then for all ∈w V1, we have

= = = ∘♯ ♯ − − −α w λ α w λ α w λ α w, , .2 1 2 1 2 1⟨ℓ ⟩ ⟨ ℓ ⟩ ⟨ ∣ℓ ⟩ ⟨ ℓ ∣ ⟩

Therefore,

= ∘♯ − ♯α λ α .2 1ℓ ( ℓ ) (2.11)

Next define =h t L g t( ) ( ( )) and = ∘ −β t λ α t2 1( ) ( ) ℓ . Then, using both (2.11) and (2.9), we have

= = = ∘ =− − ♯ − ♯ ♯DL h t DL g t α t λ α t β t˙ ˙ .h t g t V V V
1 1 2 1

1 1 1
( ) ℓ ( ) ℓ( ( )∣ ) ( ( )∣ ℓ ) ( ( )∣ )( ) ( )

Similarly,

= ∘ = ∘ ∘

= ∘ ∘

= ∘ ∘
= ∘

−
∣

−

−
∣

−
∘ ∣

∣

♯

♯

− ♯

♯

β t λ α t λ α t

λ α t

λ α t

β t

˙ ˙ ad

ad

ad

ad .

α t

α t

λ α t

β t

2 1 2 1

2 1

2 1

V

V

V

V

1

1

2 1

1

1

( ) ( ) ℓ ( ) ℓ

( ) ℓ

( ) ℓ

( )

( ( ) )

ℓ( ( ) )

( ( ) ℓ )

( ( ) )

Therefore, h β,( ) is a solution to (2.9). □

2.4 Sub-Riemannian exponential map

Note that the Hamiltonian vector field H� defined in (2.4) is complete. Indeed, by Proposition 2.1, we only need
to show that if → ×g α a b G, : , *g( ) ( ) is an integral curve of H� , then →g a b G: ,( ) can be continuously
extended to the closed interval a b,[ ]. We know that the curve g is a length-minimizing curve parametrized by
constant speed with respect to a left-invariant sub-Riemannian distance onG, see for instance [2,17]. Since such
a distance is complete, the curve g has a continuous extension to the closed interval a b,[ ]. It follows that H� is
a complete vector field.

Definition 2.5. Given a Lie group G with Lie algebra g and a bracket generating subspace ⊂V1 g endowed with
a scalar product ⋅ ⋅,⟨ ⟩. We consider the left-invariant Hamiltonian function × →H G: *g � defined as in (2.7).
The sub-Riemannian exponential map is the function

→ GSExp : *g

that maps every ∈ =ξ T G* *
eg to the end point =ξ gSExp 1( ) ( ) of the solution →g α T G, : 0, 1 *( ) [ ] of the

Hamiltonian system (2.6), which becomes in this case (2.9), with =g e0( ) and =α ξ0( ) .

Note that SExp is an analytic function defined on the whole space *g . Indeed, since the Hamiltonian H is
analytic, the Hamiltonian vector field H� defined in (2.4) is also analytic. By the Cauchy-Kovalevskaya theorem,
the flow of H� on T G* is analytic. Since SExp is the restriction of the flow of H� to T G*

e composed with the
bundle projection →T G G* , we conclude that SExp is an analytic function.
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3 Preliminaries on Carnot groups

3.1 Carnot groups

For a more detailed introduction to Carnot groups, we suggest to consult [12]. A Carnot group is a connected
and simply connected Lie group G whose Lie algebra g has a fixed stratification = ⊕ = Vj

s
j1g and a fixed scalar

product ⋅ ⋅,⟨ ⟩ on V1. A stratification is a linear splitting = ⊕ = Vj
s

j1g where = +V V V, j j1 1[ ] for ∈ −j s1, …, 1{ }

and =V V, 0s1[ ] { }.
Since V1 Lie generates g, the left-invariant horizontal vector bundle ⊂V TG1̃ is bracket generating and

together with the scalar product ⋅ ⋅,⟨ ⟩ on V1, a sub-Riemannian distance is determined on G [12]. Although we
will not directly deal with distances in this article, when we will speak of length-minimizing curves we mean
with respect to the sub-Riemannian distance induced by the choice of V1 and of ⋅ ⋅,⟨ ⟩ on V1.

Since G turns out to be a nilpotent group, the group exponential map → Gexp:g is a global diffeo-
morphism. Furthermore, the Haar measure vol onG is just the pushforward measure of the Lebesgue measure
on g by exp.

We assume ≠V 0s { }, and so G has step s. The (topological) dimension of G is = ∑ =n Vdimj

s

j1 ( ); the homo-

geneous dimension of G is = ∑ =Q j Vdimj

s

j1 ( ).
The dual space *g inherits a splitting = ⊕ = V* *

j
s

j1g , where = ∈ ⊂ ∀ ≠V α V α i j* * : ker ,j ig{ }.
For ∈λ � , dilation of factor λ on G is the group automorphism →δ G G:λ whose induced Lie algebra

automorphism →δ
*

:λ g g( ) is the linear map =δ v λ v
*

λ
j( ) for ∈v Vj. We usually denote δ

*
λ( ) again by δλ.

3.2 Symmetries of the sub-Riemannian exponential map on Carnot groups

Lemma 2.4 translates to symmetries of the sub-Riemannian exponential map on Carnot groups. For ∈ ⧹λ 0� { },
define →η : * *

λ
g g as

∑ ∑⎛

⎝
⎜

⎞

⎠
⎟ ≔

= =

−η ξ λ ξ .
λ

j

s

j

j

s

j
j

1 1

2

From Lemma 2.4, we obtain, for all ∈ξ *g and ∈ ⧹λ 0� { },

=η ξ δ ξSExp SExp .
λ λ( ) ( ) (3.1)

Taking the Jacobian determinant in (3.1), we also obtain for ∈ ⧹λ 0� { }

=−λ η ξ λ ξJac SExp Jac SExp ,n Q

λ

Q2 ( )( ( )) ( )( ) (3.2)

where we used the fact that = =∕
−η λ δ λdet det

λ

n
λ

n Q2
1

2( ) ( ) .

Remark 3.1. For the precise meaning of the Jacobian determinant here, we first fix coordinates on *g and g

(thus on G by the group exponential map exp) which preserve the Carnot group stratification, respectively.
Then the Jacobian determinant can be calculated in the usual Euclidean sense. Although different choices of
the coordinates will change the value of the Jacobian determinant by multiplying a nonzero constant, it turns
out that our definitions of ξΓ( ), GΓ( ), and GΓ̂( ) in (1.5) are independent of the choice of the coordinates and our
proofs below remain the same. Furthermore, noting by definition the geodesic dimension NGEO and the
curvature exponent NCE are independent of the choice of the Haar measure, in the following we can assume
the Haar measure vol on G is exactly the pushforward measure of the Lebesgue measure induced by the fixed
coordinates on g without loss of generality.

For ∈λ � , define →ζ : * *λ g g as
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∑ ∑⎛

⎝
⎜

⎞

⎠
⎟ ≔

= =

−ζ ξ λ ξ .λ

j

s

j

j

s

j
j

1 1

1

Then, =λξ η ζ ξ
λ λ( ) for all ∈ ⧹λ 0� { }. If we substitute ξ with ζ ξλ( ) in (3.2), we obtain

= −λξ λ ζ ξJac SExp Jac SExp ,Q n
λ

2 2( )( ) ( )( ( )) (3.3)

for all ∈λ � . Note that, when →λ 0, we have → ∈ζ ξ ξ V *λ 1 1( ) .
Recall Definition 1.1: ⊂ *D g is the open set of all ∈ξ *g such that ≠tξJac SExp 0( )( ) for all ∈t 0, 1( ] and

↦t tξSExp( ) is the unique constant-speed length-minimizing curve → G0, 1[ ] from e to ξSExp( ). From this
definition, it follows that if ∈ξ D, then ∈tξ D for all ∈t 0, 1( ].

We have defined ⊂ Ge� as the image SExp D( ), so that SExp is a diffeomorphism fromD to e� . We denote
by →ρ : e D� the inverse of SExp on e� . It is well known that e� is dense in G, although it is not known
whether it has full measure.

Lemma 3.2. If ∈ξ D, then ∈ζ ξλ D( ) for all ∈λ 0, 1( ].

Proof. We will apply Definition 1.1 itself. Fix ∈ξ D and ∈λ 0, 1( ].
First, from (3.3), we have for all ∈t 0, 1( ],

= = ≠−tζ ξ ζ tξ
λtξ

λ
Jac SExp Jac SExp

Jac SExp
0λ λ Q n2 2

( )( ( )) ( )( ( ))
( )( )

because < ≤λt0 1.
Second, suppose that →η G: 0, 1[ ] is a constant-speed length-minimizing curve from e to ζ ξSExp λ( ( )).

Then, ≔γ t δ η tλ( ) ( ( )) is also a constant-speed length-minimizing curve from e to

= =δ ζ ξ η ζ ξ λξSExp SExp SExp ,λ λ λ λ( ( ( ))) ( ( )) ( )

where we have used (3.1). Since ∈λξ D, then =γ t tλξSExp( ) ( ). Therefore,

= = = =∕ ∕ ∕η t δ γ t δ tλξ η η ζ tξ tζ ξSExp SExp SExp .λ λ λ λ λ λ1 1 1
( ) ( ) ( ) ( ( )) ( ( ))

We have thus shown that ∈ζ ξλ D( ) . □

Since SExp is an analytic map, the function × →*g � � , ↦ξ λ ζ ξ, Jac SExp λ( ) ( )( ( )), is also analytic. In
particular, there are analytic functions →P : *k g � such that for every ⊂U *g bounded there is >λ 00

such that for all ∈ξ U and ∈ −λ λ λ,0 0( ),

∑=
=

∞

ζ ξ P ξ λJac SExp ,λ

k

k
k

0

( )( ( )) ( ) (3.4)

where the series converges absolutely and uniformly in ∈ξ U .

Lemma 3.3. Each Pk is a homogeneous polynomial of degree − +Q n k2 2 , i.e., for every ∈ξ *g and ∈μ � ,

= − +P μξ μ P ξ .k
Q n k

k
2 2( ) ( ) (3.5)

In particular, we have

= ∀ ≠ ∈μξ ξ μ ξΓ Γ , 0, *.g( ) ( ) (3.6)

Proof. Using the same notation we had for (3.4), together with the linearity of the maps ζλ and the group
property =ζ ζ ζμ λ μλ, we obtain for λ and μ small enough,
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∑

∑

= =

= =

=

∞
−

−

=

∞
− +

P μξ λ μζ ξ μ ζ ζ ξ

μ ζ ξ μ P ξ λ

Jac SExp Jac SExp

Jac SExp .

k

k
k

λ
Q n

μ λ

Q n
μλ

k

Q n k
k

k

0

2 2

2 2

0

2 2

( ) ( )( ( )) ( )( ( ))

( )( ( )) ( )

Analyticity implies that (3.5) holds for all ∈ξ *g , all ∈μ � , and all ∈k �. □

3.3 Intermediate points of a negligible set are negligible

The goal of this section is to show the following Proposition 3.4 after two auxiliary lemmas. We will then have
two consequences. First, the equivalence of Z e Evol ,λ( ( )) with standard definitions in the literature, see Remark
3.5. Next, formula (3.8) in Proposition 3.8 for the volume of Z e E,λ( ).

Proposition 3.4. Let G be a Sard-regular Carnot group. If ⊂E G has measure zero, then Z e E,t( ) has also
measure zero, for all ∈t 0, 1[ ].

Remark 3.5.We obtain from Proposition 3.4 that, in Sard-regular Carnot groups, our definition of intermediate
points (1.1) is “almost equivalent” to the definition given in [1,21].

Indeed, the set Ee λ, defined in [1, Definition 5.43] or [21, Eq.(1)] corresponds, in our notation, to
∩Z e E,λ e�( ). However, Proposition 3.4 implies that = ∩ =Z e E Z e E Evol , vol , volλ λ e e λ,�( ( )) ( ( )) ( ).

The following lemma is well known to experts. For the notions of End point map, regular, and strictly
normal curves, see [2,20]

Lemma 3.6. Let →γ G: 0, 1[ ] be a length-minimizing curve parametrized with constant speed. Suppose that
there exist ∈ξ D and t such that =γ ut uξSExp( ) ( ) for all ∈u 0, 1[ ]. Then, there exists ∈η *g such that

=γ u uηSExp( ) ( ) for all ∈u 0, 1[ ].

Proof. Since ∈ξ D, then the restriction γ t0,∣[ ] is regular for the End point map, because the image of the
differential of the End point map contains the image of the differential of the sub-Riemannian exponential
map (see the proof of Lemma 2.31 in [14]). It follows that γ is also regular for the End point map, and thus
strictly normal. In particular, there exists ∈η *g such that =γ u uηSExp( ) ( ) for all ∈u 0, 1[ ]. □

Lemma 3.7. If ⊂E G has zero measure, then ⊂− ESExp *
1 g( ) has also zero measure.

Proof. Suppose that ⊂− ESExp *
1 g( ) has positive measure. Since Jac SExp( ) is an analytic function, there is

a Lebesgue’s density point ξ of − ESExp 1( ) ([10, Theorem 1.8]) such that ≠ξJac SExp 0( )( ) . Hence, SExp

is a diffeomorphism on a neighbourhood of ξ and thus − ESExp SExp 1( ( )) has positive measure. Since
⊂− E ESExp SExp 1( ( )) , E has positive measure too. □

Proof of Proposition 3.4. Set = ⧹GSing e� . We decompose Z e E,t( ) into the following three sets:

= ∩ ∪ ∩ ∩ ∪ ∩ ∩Z e E Z e E Z e E Z e E, , , Sing Sing , Sing .t t e t t e� �( ) ( ) ( ( ) ) ( ( ) )

Case 1: volume of ∩Z e E,t e�( ). In this case, we have

∩ = ∩Z e E tρ E, SExp ,t e e� �( ) ( ( ))

where ∩ =Evol 0e�( ) and where ↦p tρ pSExp( ( )) is a diffeomorphism in a neighbourhood of ∩E e� . Since
=Evol 0( ) , ∩ =Z e Evol , 0t e�( ( )) .
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Case 2: volume of ∩ ∩Z e E, Sing Singt( ) . Since we assume G to be Sard-regular, =vol Sing 0( ) and
thus ∩ ∩ =Z e Evol , Sing Sing 0t( ( ) ) .

Case 3: volume of ∩ ∩Z e E, Singt e�( ) . We claim that

∩ ∩ ⊂ −Z e E t E, Sing SExp SExp .t e
1�( ) ( ( )) (3.7)

Indeed, let ∈ ∩ ∩z Z e E, Singt e�( ) . Then, there are a point ∈ ∩q E Sing and a length-minimizing geodesic
→γ G: 0, 1[ ] parametrized with constant speed with =γ e0( ) , =γ q1( ) , and =γ t z( ) . Since ∈z e� , there is

∈ξ D such that =ξ zSExp( ) . By the definition ofD, we have =uξ γ utSExp( ) ( ) for all ∈u 0, 1[ ]. From Lemma
3.6, it follows that there is ∈η *g such that =uη γ uSExp( ) ( ). Thus, the claim (3.7) is proven.

By Lemma 3.7, we have =−t Evol SExp SExp 01( ( ( ))) and thus, (3.7) implies that ∩ ∩ =Z e Evol , Sing 0t e�( ( ) ) . □

Proposition 3.8. If G is a Sard-regular Carnot group, then for every measurable ⊂E G,

∫= −

∩

Z e E λ ζ ξ ξvol , Jac SExp d .λ
Q n

ρ E

λ
2

e�

( ( )) ∣ ( )( ( ))∣

( )

(3.8)

Proof. From Definition 1.1 and the definition of intermediate points, we obtain that

= ∩ ∪ ⧹

= ∩ ∪ ⧹

Z e E Z e E Z e E

λρ E Z e E

, , ,

SExp , .

λ λ e λ e

e λ e

� �

� �

( ) ( ) ( )

( ( )) ( )

Proposition 3.4 says that ⧹ =Z e Evol , 0λ e�( ( )) .
Thus, by Remark 3.1, the area formula, and the identity (3.3), we conclude

∫

∫

∫

= ∩

=

=

=

∩

∩

−

∩

Z e E λρ E

ξ ξ

λ λξ ξ

λ ζ ξ ξ

vol , vol SExp

Jac SExp d

Jac SExp d

Jac SExp d .

λ e

λρ E

n

ρ E

Q n

ρ E

λ
2

e

e

e

�

�

�

�

( ( )) ( ( ( )))

∣ ( )( )∣

∣ ( )( )∣

∣ ( )( ( ))∣

( )

( )

( )

□

4 Proof of Theorem A

Thanks to Remark 3.5, we can apply the following result by Agrachev-Barilari-Rizzi.

Proposition 4.1. [1, Theorem D, page 58] For any bounded, measurable set ⊂E e� with < < +∞E0 vol( ) we have
Z e E εvol , ~ε

NGEO( ( )) for →ε 0.

Proof of Theorem A. We will give a measurable set ⊂E G with < < ∞E0 vol( ) such that

∈ +∞
→ − +

Z e E

ε
lim

vol ,
0, ,

ε

ε

Q n G
0

2 Γ

( ( ))
( )

( )
(4.1)

and then we will apply Proposition 4.1 (i.e., [1, Theorem D, page 58]) to conclude that = − +N Q n G2 ΓGEO ( ).
Since ≔ ≠ξ P ξ: 0GΓE { ( ) }( ) is open and dense in *g , the set ∩D E is open and non-empty. As a result, we

can choose ∈ ∩ξ0 D E and a compact connected neighbourhood ⊂ ∩U D E of ξ0 and an open interval ⊂I �

with ∈ I0 such that for ∈ε I and ∈ξ U , we have

∑=
=

∞

ζ ξ P ξ εJac SExp ,ε

k G

k
k

Γ

( )( ( )) ( )
( )
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where →P U:k � are analytic functions, the series is absolutely convergent and ≠P ξ 0GΓ ( )( ) for all ∈ξ U . In
particular, if >P ξ 0GΓ 0( )( ) ( <P ξ 0GΓ 0( )( ) , resp.), then there is >η 0 such that >P ξ ηGΓ ( )( ) ( < −P ξ ηGΓ ( )( ) , resp.)
for all ∈ξ U .

Let us assume >P ξ 0GΓ 0( )( ) , as the other case is similar. SinceU is compact and since ↦ε ξ,
ζ ξ

ε

Jac SExp ε

GΓ( )
( )( ( ))

( )

is analytic in a neighbourhood of × U0{ } , the limit

=
→

ζ ξ

ε
P ξlim

Jac SExp

ε

ε

G G
0

Γ Γ

( )( ( ))
( )

( ) ( )

is uniform for ∈ξ U . Therefore, there exists >ε 00 such that

> >ζ ξ
η

εJac SExp
2

0ε
GΓ( )( ( )) ( )

for all ∈ε ε0, 0( ).
Set ≔E USExp( ). For ∈ε ε0, 0( ), we obtain from Proposition 3.8

∫

∫

∫∑

=

=

=

−

−

− +

=

∞
−

Z e E ε ζ ξ ξ

ε ζ ξ ξ

ε ε P ξ ξ

vol , Jac SExp d

Jac SExp d

d .

ε
Q n

U

ε

Q n

U

ε

Q n G

k G

k G

U

k

2

2

2 Γ

Γ

Γ

( ( )) ∣ ( )( ( ))∣

( )( ( ))

( )( )

( )

( )

Since ∫ >P ξ ξd 0
U

GΓ ( )( ) from our choice of U , we have

∫= ∈ ∞
→ − +

Z e E

ε
P ξ ξlim

vol ,
d 0, ,

ε

ε

Q n G

U

G
0

2 Γ Γ

( ( ))
( ) ( )

( ) ( )

i.e., (4.1). □

5 Proof of Theorem B

Proposition 5.1. On a Sard-regular Carnot group, the following statements are equivalent for every >N 0:
(i) ≥N NCE;
(ii) ≥−λ ζ ξ λ ξJac SExp Jac SExpQ n

λ
N2 ∣ ( )( ( ))∣ ∣ ( )( )∣ for all ∈ξ D and ∈λ 0, 1[ ];

(iii) ⎡⎣ ⎤⎦ ≤
=

− + 0
λ

λ

ζ ξ

λ

d

d
1

Jac SExp
2

λ

N Q n2

( )( ( )) for all ∈ξ D;

(iv) ⎡⎣ ⎤⎦ ≤
=

− + 0
λ

λ λ

ζ ξ

λ

d

d

Jac SExp
2

λ

N Q n

0

2

( )( ( )) for all ∈ξ D and ∈λ 0, 10 ( ].

Proof. (i) ⇒ (ii) If ≥N NCE, then

≥ ∀ ∈Z p E λ E λvol , vol 0, 1 ,λ
N( ( )) ( ) [ ]

for all measurable ⊂E G with < < ∞E0 vol( ) . By Proposition 3.8, we then have, for every ⊂U D open and
bounded,

∫ ∫≥ ∀ ∈−λ ζ ξ ξ λ ξ ξ λJac SExp d Jac SExp d , 0, 1 .Q n

U

λ
N

U

2 ∣ ( )( ( ))∣ ∣ ( )( )∣ [ ]

By the Lebesgue differentiation theorem, and by the continuity in ξ of both left- and right-hand integrand
functions, (ii) follows.
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(ii)⇒ (i) By a direct application of Proposition 3.8, the pointwise estimate for Jac SExp( ) implies the volume
estimate of the definition of NCE.

(ii) ⇒ (iii) Inequality (ii) implies that the function

≔ − +f λ
ζ ξ

λ

Jac SExp

ξ

λ

N Q n2
( )

( )( ( ))

satisfies ≥f λ f 1
ξ ξ

2 2( ) ( ) for ∈λ 0, 1[ ]. Since f
ξ
is smooth, we conclude ≤

=
f λ 0

λ
λ

ξ

d

d
1

2( ) .

(iii) ⇒ (iv) Fix ∈ξ D and ∈λ 0, 10 ( ]. Note that, since = ∘ζ ζ ζλ λ λ λ0 0
, the function f λ

ξ
( ) defined above

satisfies

= − +
f λ λ f λ λ ,
ζ ξ

N Q n

ξ0

2

0
λ0

( ) ( )

for all ∈λ 0, 1( ]. Moreover, by Lemma 3.2, we have ∈ζ ξλ0
D. Therefore, from (iii) we obtain

≥ = =
=

− +

=

− + +

=λ
f λ λ

λ
f λ λ λ

λ
f λ0

d

d

d

d

d

d
.

λ
ζ ξ

N Q n

λ
ξ

N Q n

λ λ
ξ

1

2
0

2 4 2

1

2
0 0

2 4 2 1 2

λ0
0

( ) ( ) ( )

We conclude that (iv) holds.
(iv) ⇒ (ii) Hypothesis (iv) implies that f

ξ

2 is non increasing on 0, 1( ], whenever ∈ξ D. It follows that

≥f λ f 1
ξ ξ

2 2( ) ( ) for all ∈ξ D and ∈λ 0, 1( ], which is equivalent to (ii). □

Lemma 5.2. On Sard-regular Carnot group G, we have

= ∈G ξ ξΓ̂ sup Γ : .D( ) { ( ) }

Proof. Let us denote the number on the right-hand side (RHS) by K . It follows from the definition ofD that if
∈ξ D, then < ∞ξΓ( ) . Then, it follows from the original definition of GΓ̂( ) (cf. (1.5)) that ≤K GΓ̂( ).

To prove the converse inequality, by (3.6), it suffices to prove that if ∈ξ *g with < ∞ξΓ( ) , then for >μ 0

small enough, we have ∈μξ D. We check Definition 1.1 for μξ with μ small enough. Since < ∞ξΓ( ) , for μ small
and ∈t 0, 1( ], we have

∑= ≠
=

∞

ζ ξ P ξ tμJac SExp 0.tμ

k ξ

k
k

Γ

( )( ( )) ( )( )
( )

It follows from (3.3) that

= ≠ ∀ ∈−tμξ tμ ζ ξ tJac SExp Jac SExp 0, 0, 1 .Q n
tμ

2 2( )( ) ( ) ( )( ( )) ( ]

By the local minimality (cf. [2, Theorem 4.65]), for μ small enough, ↦t tμξSExp( ) is the unique constant-speed
length-minimizing curve → G0, 1[ ] from e to μξSExp( ). Thus, we have proven that ∈μξ D and this ends the
proof of the lemma. □

Proof of Theorem B. Fix ∈ξ D and assume

< − +N Q n ξ2 Γ .( ) (5.1)

For ∈λ 0, 1( ], define the analytic function

≔ − +f λ
ζ ξ

λ

Jac SExp
.

ξ

λ

N Q n2
( )

( )( ( ))

By (1.4), there is >λ 0ξ such that, for ∈λ λ0, ξ[ ),

∑= − + −

≥
+f λ λ P ξ λ .

ξ

ξ N Q n

k

ξ k
kΓ 2

0

Γ( ) ( )( )
( )

By standard rules of calculus, we have, for ∈λ λ0, ξ[ ),
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∑′ = + − + −− + − −

≥
+f λ λ ξ k N Q n P ξ λΓ 2 .

ξ

ξ N Q n

k

ξ k
kΓ 2 1

0

Γ( ) ( ( ) ) ( )( )
( )

Since + − + − >ξ k N Q nΓ 2 0( ) by (5.1), as → +λ 0 , f λ
ξ
( ) and ′f λ

ξ
( ) have the same sign as P ξξΓ ( )( ) .

We conclude that

= ′ >
λ

f λ f λ f λ
d

d
2 0

ξ ξ ξ

2 ( ) ( ) ( )

for λ positive and small enough. Proposition 5.1 implies that <N NCE.
Since N is arbitrary in − +Q n ξ0, 2 Γ( ( )) and ξ is arbitrary inD, we complete the proof of Theorem B by

Lemma 5.2. □

Remark 5.3. From the definition in (1.5) and Lemma 3.3, ξΓ( ) attains its minimum value GΓ( ) on an open, non-
empty Zariski subset of *g (see also Remark 1.4 and [1, Proposition 5.46]), which implies it is constant almost
everywhere. It seems that the curvature exponent NCE should not detect higher values of ξΓ( ) by definition.
However, (ii) of Proposition 5.1 shows that the curvature exponent NCE provides a uniform bound for the
Jacobian determinant of the sub-Riemannian exponential map while ξΓ( ) is defined in a pointwise way. Thus,
when ξ moves in the set ≠ξ P ξ: 0GΓ{ ( ) }( ) , the coefficient of the first nonzero term in (1.4), or equivalently
P ξGΓ ( )( ) , may become small and create an obstacle for the uniformity. This helps to explain why the curvature
exponent NCE could be strictly larger than the geodesic dimension NGEO.

6 Carnot groups of step two

The following construction of the sub-Riemannian exponential map in Carnot groups of step two, and in
particular the splitting given in Definition 6.6, is linked to the techniques used in [15,16] for the study of phase
function of Fourier integral operators on Carnot groups. In fact, it has been explained to the first-named
author by Alessio Martini.

6.1 Preliminary observations on Carnot groups of step two

Let = ⊕V V1 2g be a stratified Lie algebra of step two, with a scalar product ⋅ ⋅,⟨ ⟩ on V1.
If ∈μ V *

2 , let →J V V:
μ 1 1 be the linear map defined by

=J v w μ v w, , ,
μ

⟨ ⟩ ⟨ ∣[ ]⟩

for all ∈v w V, 1. Note that J
μ
is skew-symmetric, i.e.,

∈ ⋅ ⋅ = → = − ∀ ∈J V J V V Jx y x Jy x y V, , : linear, , , , , .
μ 1 1 1 1so( ⟨ ⟩) { ⟨ ⟩ ⟨ ⟩ }

Wewill fix a scalar product ⋅ ⋅,⟨ ⟩ on the whole g that extends the given one onV1 and such thatV1 andV2 are
orthogonal. We will use this scalar product to identify g with *g , via ↦ ♭v v . For instance, if ∈u V2, we have

≔ ♭J J
u u

. It follows that, for all ∈v w V, 1 and ∈u V2,

= = =♭ ♭u v w u v w J v w J v w, , , , , .
u u

⟨ [ ]⟩ ⟨ ∣[ ]⟩ ⟨ ⟩ ⟨ ⟩ (6.1)

There is a special choice of scalar product on V2: we keep this result for completeness.

Lemma 6.1. Denote by ⋅ ⋅, HS⟨ ⟩ the Hilbert–Schmidt scalar product in ⋅ ⋅V , ,1so( ⟨ ⟩), i.e.,

=A B AB, trace * ,HS⟨ ⟩ ( )

where B* is the conjugate of B with respect to the scalar product ⋅ ⋅,⟨ ⟩ on V1.

There exists a unique extension of ⋅ ⋅,⟨ ⟩ from V1 to a scalar product on g such that V1 and V2 are orthogonal
and, for every ∈v w V, 2, we have
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= ♭ ♭v w J J, , ,
v w HS⟨ ⟩ ⟨ ⟩ (6.2)

where ∋ ↦ ∈♭V x x V *2 2 is the linear isomorphism induced by the scalar product.

Proof. By definition and the fact =V V V,2 1 1[ ], it is direct to check that the map → ⋅ ⋅V V* , ,2 1so( ⟨ ⟩) defined by
↦μ J

μ
is linear and injective. Then, there is a unique scalar product ⋅ ⋅, *⟨ ⟩ onV *

2 such that for every ∈α β V, *
2 ,

=α β J J, * , .
α β HS⟨ ⟩ ⟨ ⟩ (6.3)

The scalar product ⋅ ⋅, *⟨ ⟩ onV *
2 induces a scalar product ⋅ ⋅,⟨ ⟩ onV2: combining this with the original ⋅ ⋅,⟨ ⟩ onV1,

we obtain a scalar product on the whole g such that V1 and V2 are orthogonal and (6.2) holds by definition.
Uniqueness is ensured because (6.2) is equivalent to (6.3), which in turn uniquely determines the dual

scalar product ⋅ ⋅, *⟨ ⟩ on V *
2 , and thus on V2. □

6.2 Sub-Riemannian exponential map

To integrate the first of the two equations in (2.9), we will give the following construction ofG: First, we denote
by = ⊕V V V1 2 the vector space underlying the Lie algebra g; second, we define the Lie group G as the smooth
manifold V endowed with the group operation

= + + ∈a b a b a b a b⁎
1

2
, , , .g[ ]

It follows that 0 is the identity element e, and = −−g g1 . The advantage of this construction is that we will take
derivatives as we do in the vector space V . For instance, the differential at = e0 of the left translation

→L V V:g is the linear map →DL V V:g 0∣ ,

= +DL x x g x
1

2
, .g 0∣ [ ] [ ]

Lemma 6.2. The ODE (2.9) is equivalent to

⎧

⎨

⎪
⎪

⎩

⎪
⎪

=

=

=
=

x ξ

u x ξ

ξ J ξ

μ

˙ ,

˙
1

2
, ,

˙ ,

˙ 0,

μ

[ ]
(6.4)

for curves → ⊕ ⊕ ⊕x u ξ μ I V V V V, , , : 1 2 1 2(( ) ( )) ( ) ( ). In other words, x u ξ μ, , ,(( ) ( )) is a solution to (6.4) if and
only if + ♭x u ξ μ, ,(( ) ( ) ) is solution to (2.9).

Proof. If = + ∈g x u G with ∈x V1 and ∈u V2, and if = + = + ∈♭ ♭ ♭α ξ μ ξ μ *g( ) with ∈ξ V1 and ∈μ V2, then
=♯α ξV1

( ∣ ) and

= +♯DL α ξ x ξ
1

2
, .g e V1

∣ [( ∣ ) ] [ ]

Thus, we have that the first two equations in (6.4) are equivalent to the first equation in (2.9).
Next, if = +v v v1 2 with ∈v Vj j, then

∘ = ∘ = = =∣ ♯α v α v α ξ v μ ξ v J ξ vad ad , , , , ,α ξ μ1 1V1
⟨ ∣ ⟩ ⟨ ∣ ⟩ ⟨ ∣[ ]⟩ ⟨ [ ]⟩ ⟨ ⟩( )

i.e., ∘ =∣
♭♯α J ξad α μV1

( )( ) . It follows that the second two equations in (6.4) are equivalent to the second equation
in (2.9). □
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Proposition 6.3. Given ∈ξ V0 1 and ∈μ V
0 2, the analytic solution → ⊕ ⊕ ⊕x u ξ μ V V V V, , , : 1 2 1 2�(( ) ( )) ( ) ( ) to

(6.4) with =x 0 0( ) , =u 0 0( ) , =ξ ξ0 0( ) , and =μ μ0
0

( ) is

∑

=
−

=

=
=

=

∞
−

x t
e

J
ξ

u t t B ξ μ t

ξ t e ξ

μ t μ

Id
,

, ,

,

,

tJ

μ

k

k
k

tJ

0

3

1

0 0

1

0

0

μ

μ

0

0

0

( )

( ) ( )

( )

( )

where

∑≔
+ − +=

−

B ξ μ

J ξ J ξ

m k m k
,

,

2 1 ! ! 2
.k

m

k
μ

m

μ

k m

0 0

0

0 0
0 0

( )
[ ]

( ) ( ) ( )
(6.5)

Proof. Since =μ̇ 0, then =μ t μ
0

( ) . Since =ξ J ξ˙
μ

0

, then =ξ t e ξ
tJ

0
μ0( ) . Since =x ξ˙ and =x 0 0( ) , then

∑=
−

=
+=

∞ +
x t

e

J
ξ

t

k
J ξ

Id

1 !
.

tJ

μ k

k

μ

k
0

0

1

0

μ0

0

0

( )
( )

Finally, since =u x ξ˙ ,
1

2
[ ] and =u 0 0( ) , then

∫ ∫

∫

∫

∑ ∑

∑ ∑

∑ ∑

∑ ∑

= =

=
⎡

⎣
⎢ +

⎤

⎦
⎥

=
⎡

⎣
⎢ +

⎤

⎦
⎥

=
+ + +

=
⎛

⎝
⎜ + − +

⎞

⎠
⎟

=

∞ +

=

∞

=

∞

=

∞
+ +

=

∞

=

∞
+ +

=

∞

=

−

u t u s s
x s ξ s

s

s J

a
ξ

s J

b
ξ s

J

a
ξ

J

b
ξ s s

J ξ J ξ

a b a b
t

t

J ξ J ξ

m k m k
t

˙ d
,

2
d

1

2 1 !
,

!
d

1

2 1 !
,

!
d

,

2 1 ! ! 2

,

2 1 ! ! 2
.

t t

t

a

a

μ

a

b

b

μ

b

a b

μ

a

μ

b t

a b

a b

μ

a

μ

b

a b

k m

k
μ

m

μ

k m

k

0 0

0
0

1

0

0

0

0 0

0 0

0

1

0 0

0 0
2

2

0 0

0 0

0 0

0 0

0 0

0 0

( ) ( )
[ ( ) ( )]

( )

( )

[ ]

( ) ( )

[ ]

( ) ( ) ( )

Using Bk as defined in (6.5), note that =B 00 , thus = ∑ =
∞ −u t t B tk k

k3
1

1( ) .
We claim that the series defining u is absolutely convergent for all ∈t � . Indeed, if ⋅‖ ‖ is any norm on V

and >C 0 is such that ≤ ⋅x y C x y,‖[ ]‖ ‖ ‖ ‖ ‖ for all ∈x y V, 1, then

∑

∑

∑⎜ ⎟

≤
+ + −

=
+ +

⎛
⎝

+
+

⎞
⎠

=
+

⎛
⎝

⎛
⎝

+ ⎞
⎠ −

⎞
⎠

=
+

+ −

=
−

+

=

=

=

+

+

+

B

C J ξ

k m k m

C J ξ

k k

k

m

C J ξ

k

k

m

C J ξ

k

C J ξ

k

2 2

1

1 ! !

2 2 1 !

1

1

2 2 !

1
1

2 2 !
1 1 1

2 1

2 2 !
.

k

μ

k

m

k

μ

k

m

k

μ

k

m

k

μ

k

k

μ

k k

0
2

0

0
2

0

0
2

0

1

0
2

1

0
2 1

0

0

0

0

0

‖ ‖
‖ ‖ ‖ ‖

( ) ( ) ( )

‖ ‖ ‖ ‖

( )( )

‖ ‖ ‖ ‖

( )

‖ ‖ ‖ ‖

( )
(( ) )

‖ ‖ ‖ ‖ ( )

( )

Therefore, the series defining u is absolutely convergent for all ∈t � . □
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Theorem 6.4. The analytic function →SExp : g g defined by

∑ ∑=
⎛

⎝
⎜ +

⎞

⎠
⎟

=

∞

=

∞

ξ μ

J

k
ξ B ξ μSExp ,

1 !
, ,

k

μ

k

k

k

0 1

( )
( )

( )

with

∑≔
+ + −=

−

B ξ μ
k

J ξ J ξ

m k m
,

1

2 2

,

1 ! !
k

m

k
μ

m

μ

k m

0

( )
( )

[ ]

( ) ( )

is the sub-Riemannian exponential map, after the identification ≃ = T G* *
eg g via the scalar product that extends

the given one on V1 and such that V1 and V2 are orthogonal, and after the identification ≃ Gg via the group
exponential map.

Proof. This is a direct consequence of Proposition 6.3. □

6.3 Differential of the exponential map

Theorem 6.5. The differential of the function SExp from Theorem 6.4 at a point ∈ ⊕ξ μ V V, 1 2( ) in the direction
∈ ⊕w ν V V, 1 2( ) , that is D ξ μ w νSExp , ,( )[ ], is

∑ ∑

∑ ∑ ∑

⎜ ⎟
⎛

⎝

⎜
⎜
⎜
⎜

+
⎛
⎝

+
⎞
⎠

+
−

+ − +
⎡

⎣⎢
+

⎤

⎦⎥

⎞

⎠

⎟
⎟
⎟
⎟

=

∞

=

− −

=

∞

= =

− − −

k
J w J J J ξ

k

k m

m k m
J w J J J ξ J ξ

1

1 !

1

2 2

2

1 ! 1 !
,

,
k

μ

k

m

k

μ

m

ν μ

k m

k m

k

μ

m

j

m

μ

j

ν μ

m j

μ

k m

0 1

1

1 0 1

1

( )

( ) ( ) ( )

where we use the conventions ∑ == 0j 1

0 and =J Id
0

0 .

Proof. Using the notation of Proposition 6.3, we write =ξ μ x ξ μ u ξ μSExp , , , ,( ) ( ( ) ( )). The derivative

→∂
∂ ξ μ V V, :

x

ξ 1 1( ) is the linear map

∑∂
∂

=
+=

∞
x

ξ
ξ μ

J

k
,

1 !
.

k

μ

k

0

( )
( )

An elementary computation shows that the derivative ∂
∂

x

μ
at ξ μ,( ) is the linear map →V V2 1

∑ ∑⎜ ⎟
∂
∂

↦
+

⎛
⎝

⎞
⎠=

∞

=

− −x

μ
ξ μ ν

k
J J J ξ, :

1

1 !
.

k m

k

μ

m

ν μ

k m

1 1

1( )
( )

The derivatives of the second component of SExp are

∑ ∑∂
∂

=
∂
∂

∂
∂

=
∂
∂=

∞

=

∞
u

ξ
ξ μ

ξ
B ξ μ

u

μ
ξ μ

μ
B ξ μ, , , , , .

k

k

k

k

1 1

( ) ( ) ( ) ( )

Since B ξ μ,k( ) is bilinear in ξ , the derivative ∂
∂ B ξ μ,

ξ k( ) is the linear map →V V1 2 that maps ∈w V1 to

∑

∑

∂
∂

=
+

+ − +

=
+

−
+ − +

=

− −

=

−

ξ
B ξ μ w

J w J ξ J ξ J w

m k m k

k

k m

m k m
J w J ξ

,

, ,

2 1 ! ! 2

1

2 2

2

1 ! 1 !
, .

k

m

k
μ

m

μ

k m

μ

m

μ

k m

m

k

μ

m

μ

k m

0

0

( )[ ]
[ ] [ ]

( ) ( ) ( )

( ) ( ) ( )
[ ]
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We can compute the derivative ∂
∂ B ξ μ,

μ k( ) as a linear map →V V2 2 that maps ∈ν V2 to

∑

∑ ∑

∑ ∑

∂
∂

=
+ − +

×
⎛

⎝
⎜
⎡

⎣
⎢
⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥ +

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎞

⎠
⎟

=
+

−
+ − +

⎡

⎣⎢
⎤

⎦⎥

=

=

− − −

=

−
− − −

= =

− − −

μ
B ξ μ ν

m k m k

J J J ξ J ξ J ξ J J J ξ

k

k m

m k m
J J J ξ J ξ

,
1

2 1 ! ! 2

, ,

1

2 2

2

1 ! 1 !
, .

k

m

k

j

m

μ

j

ν μ

m j

μ

k m

μ

m

j

k m

μ

j

ν μ

k m j

m

k

j

m

μ

j

ν μ

m j

μ

k m

0

1

1

1

1

0 1

1

( )[ ]
( ) ( ) ( )

( ) ( ) ( )
□

6.4 Jacobian of the sub-Riemannian exponential map

Definition 6.6. For every fixed pair ∈ ⊕ξ μ V V, 1 2( ) , we define the following vector spaces. First, we define the
following increasing sequenceUℓ of subspaces ofV1: for = 0ℓ , we set ≔ ⊂U V00

1{ } , for = 1ℓ , we set ≔U ξ1 � ,
and for > 1ℓ ,

≔ ⊂−
U ξ J ξ J ξ Vspan , , …, .

μ μ

1
1{ }ℓ ℓ

Second, we take the dual decreasing sequence Uℓ of subspaces of V2: for all ≥ 0ℓ , set

≔ ∈ =U ν V J U: 0 .
ν2{ ( ) { }}ℓ

ℓ

Third, we define the orthogonal splitting = ⊕ ⊕=
∞

∞V W Wj j2 0 by setting

≔ ∈ = ∀ ≥∞W ν V J J ξ: 0, 0 ,
ν μ2{ ( ) ℓ }ℓ

and by requiring

= ⊕+U U W .1ℓ ℓ ℓ

For example, W0 is the orthogonal complement of = ∈ =U ν V J ξ: 0
ν1 2{ }, while W1 is the orthogonal comple-

ment of = ∈ = =U ν V J ξ J J ξ: 0
ν ν μ2 2{ } in U1. See Section 7.1 for an explicit example in the Heisenberg group.

Note that

∈ ⧹ ≠ν W J J ξif 0 , then 0.
ν μ

{ } ( )ℓ
ℓ (6.6)

Since V2 is finite dimensional, only finitely many Wj’s are non-trivial. For ξ μ,( ) fixed, define

≔ ≠ ∈ ∪ ∞d Wmax : 0 �{ℓ { }} { }ℓ

and

∑≔
=

N ξ μ j W, 2 dim .

j

d

jSExp

0

( ) ( ) (6.7)

If ≠∞W 0{ }, then = ∞d and = ∞N ξ μ,SExp( ) . Note also that =N ξ μ N ξ sμ, ,SExp SExp( ) ( ) for all ≠s 0.

Theorem 6.7. Let G be a step-two Carnot group as above, and fix ∈ξ μ V,( ) .
(a) If ∈ ∞ν W , then =D ξ μ νSExp , 0, 0( )[ ] . In particular, if ≠∞W 0{ }, then =ξ εμJac SExp , 0( )( ) for all ∈ε � .
(b) If =∞W 0{ }, then, for all ∈ε � ,

=ξ εμ ε a εJac SExp , det ,N ξ μ,SExp( )( ) ( ( ))( ) (6.8)

where a ε( ) is a ×n n matrix, depending on ξ μ,( ), analytic in ε and with >adet 0 0( ( )) , and where N ξ μ,SExp( )

is as in (6.7).
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In conclusion,

=ξ μ N ξ μΓ , , ,SExp( ) ( ) (6.9)

where Γ was defined in (1.5).

A direct consequence of Theorem 6.7 is the following corollary.

Corollary 6.8. In the setting of step-two Carnot groups, we have

> ∀ ∈ξ ξJac SExp 0, .D( )( )

Remark 6.9. Fix a scalar product ⋅ ⋅,⟨ ⟩ on g as before and identify g with *g . Considering Remark 1.4, the value
of ξ μΓ ,( ) (or equivalently λ� ) can also be computed out by geodesic growth vector λ� with =λ ξ μ,( ). See [1,
Definition 5.44], where “ample” is equivalent to strictly normal in our setting. In fact, it can be shown that the
geodesic growth vector is given by = +k k, …,λ d1 2� ( ) with = −+k n Udim1 ( )ℓ ℓ for ≤ ≤ +d0 1ℓ and this
approach gives the same number.

Proof of Theorem 6.7. By inspection of the formula in Theorem 6.5, one can easily check the statement (a).
Suppose now that =∞W 0{ }. Define ≔A ε D ξ εμSExp ,( ) ( ), which is a linear map fromV toV . Using orthogonal

projections inV , we decompose these linear maps into →A ε V V:V

V

1 11

1( ) , →A ε V W:W

V

1
1 ( ) ℓℓ

, →A ε W V:V

W

11
( ) ℓ

ℓ , and

→A ε W W:W

W

r ss

r ( ) , for ≤ ≤r s d0 , ,ℓ . For example, = ∘A ε π A εW

W

s Ws

r

r
( ) ( )∣ . Here πs denotes the orthogonal projec-

tion onto Ws.
Note that if ∈w V1, ′ ∈ν Wℓ, ≥k 1, ≤ ≤m k0 are such that

≠ ′ = −−
′

−
J w J ξ ν J w J J ξ0 , , , ,
μ

m

μ

k m

μ

m

ν μ

k m⟨[ ( ) ] ⟩ ⟨ ( ) ⟩

then − ≥k m ℓ, and thus ≥k ℓ. Therefore, if ≥ 1ℓ , we have

∑ ∑

∑ ∑

⎜ ⎟

⎜ ⎟

=
⎛
⎝ +

−
+ − +

⎞
⎠

=
⎛
⎝ +

−
+ − +

⎞
⎠

=

∞

=

−

=

∞ −

=

−

A ε w π
ε

k

k m

m k m
J w J ξ

ε π
ε

k

k m

m k m
J w J ξ

2 2

2

1 ! 1 !
,

2 2

2

1 ! 1 !
, ;

W

V

k

k

m

k

μ

m

μ

k m

k

k

m

k

μ

m

μ

k m

1 0

0

1 ( )
( ) ( ) ( )

[ ( ) ]

( ) ( ) ( )
[ ( ) ]

ℓ

ℓ
ℓ

ℓ

ℓ

ℓ

while if = 0ℓ , then

∑ ∑

∑ ∑

⎜ ⎟

⎜ ⎟

=
⎛
⎝ +

−
+ − +

⎞
⎠

=
⎛
⎝ +

−
+ − +

⎞
⎠

=

∞

=

−

=

∞ −

=

−

A ε w π
ε

k

k m

m k m
J w J ξ

επ
ε

k

k m

m k m
J w J ξ

2 2

2

1 ! 1 !
,

2 2

2

1 ! 1 !
, .

W

V

k

k

m

k

μ

m

μ

k m

k

k

m

k

μ

m

μ

k m

0

1 0

0

1

1

0

0

1 ( )
( ) ( ) ( )

[ ( ) ]

( ) ( ) ( )
[ ( ) ]

Note that if ∈ν Wℓ, ≥k 1, and ≤ ≤m k1 are such that ≠−
J J ξ 0
ν μ

k m , and − ≥k m ℓ, then ≥ +k 1ℓ .
Therefore,

∑ ∑ ∑ ∑⎜ ⎟ ⎜ ⎟=
+

⎛
⎝

⎞
⎠

=
+

⎛
⎝

⎞
⎠=

∞ −

=

− −

= +

∞ − −

=

− −
A ε ν

ε

k
J J J ξ ε

ε

k
J J J ξ

1 ! 1 !
.V

W

k

k

m

k

μ

m

ν μ

k m

k

k

m

k

μ

m

ν μ

k m

1

1

1

1

1

1

1

1

1
( )

( ) ( )( )
ℓ

ℓ

ℓ

( )
ℓ

Note that if ∈ν Wr, ′ ∈ν Ws, ≥k 1, ≤ ≤m k1 , and ≤ ≤j m1 are such that

≠ ′ = −− − −
′

− − −
J J J ξ J ξ ν J J ξ J J J ξ0 , , , ,
μ

j

ν μ

m j

μ

k m

ν μ

k m

μ

j

ν μ

m j1 1⟨[ ] ⟩ ⟨ ⟩( ) ( )

then ≠−
J J ξ 0
ν μ

m j and ≠′
−

J J ξ 0
ν μ

k m , which implies − ≥k m s then − ≥m j r , and ≥ +m r 1 and ≥ + +k r s 1.
Therefore,
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∑ ∑ ∑

∑ ∑ ∑

=
⎛

⎝
⎜ +

−
+ − +

⎡

⎣
⎢
⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎞

⎠
⎟

=
⎛

⎝
⎜ +

−
+ − +

⎡

⎣
⎢
⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎞

⎠
⎟

=

∞ −

= =

− − −

+

= + +

∞ − − −

= =

− − −

A ε ν π
ε

k

k m

m k m
J J J ξ J ξ

ε π
ε

k

k m

m k m
J J J ξ J ξ

2 2

2

1 ! 1 !
,

2 2

2

1 ! 1 !
, .

W

W

s

k

k

m

k

j

m

μ

j

ν μ

m j

μ

k m

r s
s

k r s

k r s

m

k

j

m

μ

j

ν μ

m j

μ

k m

1

1

1 1

1

1

1

1 1

1

s

r ( )
( ) ( ) ( )

( ) ( ) ( )

Define the matrix a ε( ) as

= = ∕

= ∕ = ∕ +

a ε A ε a ε A ε ε

a ε A ε ε a ε A ε ε

, ,

, ,

V

V

V

V

V

W

V

W

W

V

W

V

W

W

W

W r s

s

r

s

r

1

1

1

1

1 1

1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ℓ

ℓ

ℓ ℓ

ℓ ℓ

where ≤ ≤r s d0 , ,ℓ . Clearly, ↦ε a ε( ) is an analytic map with a 0( ) given by

⎜ ⎟

=

=

= ⎛
⎝ + +

⋅ ⎞
⎠

=
+

⋅

=
+

=
+ +

− −
+ +

⋅

⋅

a

a

a π J ξ π J ξ

a J J ξ

a
r s

s r

r s
π J J ξ J ξ

0 Id

0 0

0
1

2 2 1 !
,

2 2 !
,

0
1

2 !

0
1

2 3

1

2 ! 1 !
, .

V

V

V

W

V

W

V

μ μ

V

W

μ

W

W

s μ

r

μ

s

s

r

1

1

1

0

1

1

1

( )

( )

( )
(ℓ )

ℓ

(ℓ )
[( ) ]

ℓ

(ℓ )
[( ) ]

( )
(ℓ )

( )
( ) ( ) ( )

[ ]

ℓ
ℓ

ℓ
ℓ

( )
ℓ

( )

ℓ

ℓ

(6.10)

The proof that >adet 0 0( ( )) is long, we will show it in Section 6.5: see Lemma 6.13. Finally, statement (b)
follows from the relation =A ε ε a εdet detN ξ μ,SExp( ( )) ( ( ))( ) . □

6.5 Determinant of (( ))a 0

Lemma 6.10. For ≤ ≤r s d0 , ,ℓ , define the following maps:

→ ≔

→ ≔ −

→ ≔ −

M V W M w π w J ξ

M W V M ν J J ξ

M W W M ν π J J ξ J ξ

: , , ,

: , ,

: , , .

μ

ν μ

s

r
r s s

r
s ν μ

r

μ

s

1

1

( ) [ ]

( )

( ) [ ]

ℓ ℓ ℓ ℓ
ℓ

ℓ
ℓ

ℓ ℓ

The following identities hold:

=
=
= ∘ = ∘

M M

M M

M M M M M

* ,

* ,

* ,

s

r

r

s

s

r
s r s

r

( )

( )

ℓ
ℓ

where ⋅* denotes the conjugate with respect to the scalar product ⋅ ⋅,⟨ ⟩.

Proof. Let ∈w V1 and ∈ν Wℓ. Then,

= = − =M w ν w J ξ ν w J J ξ w M ν, , , , , .
μ ν μ

⟨ ⟩ ⟨[ ] ⟩ ⟨ ⟩ ⟨ ⟩ℓ
ℓ ℓ ℓ

Therefore, =M M*( )ℓ
ℓ.

Let ∈ν Wr r and ∈ν Ws s. Then,

= − = = − =M ν ν J J ξ J ξ ν J J ξ J J ξ ν J J ξ J ξ ν M ν, , , , , , , .s

r
r s ν μ

r

μ

s
s ν μ

r

ν μ

s
r ν μ

s

μ

r
r r

s
s

r r s s
⟨ ⟩ ⟨[ ] ⟩ ⟨ ⟩ ⟨ [ ]⟩ ⟨ ⟩

Therefore, =M M*s

r

r

s( ) .

CE and GEO dimension  21



Let ∈ν Wr r. Then,

∘ = − = − =M M ν M J J ξ π J J ξ J ξ M ν, .s
r

r s ν μ

r
s ν μ

r

μ

s

s

r
r

r r
( ) [ ]

So, the last equality is also proved. □

Lemma 6.11. Define

⎜ ⎟≔ ⎛
⎝ + +

⎞
⎠ →

=

M

r s
V V

3
: .

s

r

r s

d

, 0

2 2M

The matrix M is symmetric, positive definite, and non-singular. In particular, >det 0M( ) .

Proof. Note that for all ′ ∈ν ν V, 2,

∑′ =
′

+ +=
ν ν

M π ν π ν

r s
,

,

3
.

r s

d

s

r
r s

, 0

M⟨ ⟩
⟨ ( ) ⟩

We apply Lemma 6.14 to the following spaces:V1 with the scalar product = ⋅ ⋅g ,⟨ ⟩ and +d 1� with the scalar
product h whose matrix with respect to the standard basis e e, …, d0( ) of +d 1� is

= =
+ +

=
+ + + −

h h e e
i j i j

,
1

3

1

2 2 1
,ij i j( )

( ) ( )

which is a minor of a Hilbert matrix ⎛
⎝

⎞
⎠+ −

≥
i j

i j

1

1
, 1

. By Lemma 6.14, the bilinear form = ⊗b g h is a scalar product
on ⊗ +V d

1
1� .

Let → ⊗ +V V: d
2 1

1� � be the map

∑= ⊗
=

ν M π ν e .

d

0

�( ) ( )
ℓ

ℓ
ℓ ℓ

We claim that, for ′ ∈ν ν V, 2,
′ = ′b ν ν ν ν* , , .M� ( )( ) ⟨ ⟩ (6.11)

Indeed,

∑

∑

∑

′ = ′

= ⊗ ′ ⊗

=
′

+ +

=
′

+ +
= ′

=

=

=

b ν ν b ν ν

b M π ν e M π ν e

M π ν M π ν

r s

M M π ν π ν

r s

ν ν

* , ,

,

,

3

,

3

, .

r s

d

r
r r

s
s s

r s

d r
r

s
s

r s

d

s
r

r s

, 0

, 0

, 0

M

� � �( )( ) ( )

( ( ) ( ) )

⟨ ( ) ( )⟩

⟨ ( ) ⟩

⟨ ⟩

Next, we claim that the map� is injective. Indeed, if ∈ν V2 is such that =ν 0� , then = = −M π ν J J ξ0
π ν μ

( )ℓ
ℓ

ℓ

ℓ

for all ℓ. From (6.6), we obtain that =π ν 0ℓ for all ℓ, and thus =ν 0.
Since b is positive definite and� is injective, we obtain from (6.11) thatM is symmetric, non-singular, and

positive definite. In particular, >det 0M( ) . □

The next lemma is a standard result from Linear Algebra.

Lemma 6.12. Let A B C D, , , be matrices of suitable dimensions, or linear maps between suitable spaces. Suppose
A is invertible. Then,
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⎛
⎝

⎞
⎠ = ⋅ − −A B

C D
A D CA Bdet det det .1( ) ( )

Lemma 6.13. The determinant of a 0( ) is

∏ ⎜ ⎟=
⎛

⎝
⎜ ⎛

⎝
+
+

⎞
⎠

⎞

⎠
⎟ ⋅ >

=
adet 0

1

2 !
det 0.

d W

0

dim
2

M( ( ))
ℓ

(ℓ )
( )

ℓ

ℓ

Proof. We can rewrite the map a 0( ) from (6.10) as follows:

=

=
+

= −
+

=
+ −

+ + + +

a

a M

a M

a
r s

r s r s
M

0 Id

0
2 2 !

0
1

2 !

0
1

2 3 2 ! 1 !
.

V

V

V

W

V

V

W

W

W

s

r

s

r

1

1

1

1

1

( )

( )
ℓ

(ℓ )

( )
(ℓ )

( )
( )( ) ( )

ℓ

ℓ

ℓ

ℓ

Since

= −
+ +

∘ = −
+ +

a a
s

s r
M M

s

s r
M0 0

2 2 !

1

2 ! 2 2 ! 2 !
,W

V

V

W

s
r

s

r

s

r1

1
( ) ( )

( ) ( ) ( ) ( )

we obtain from Lemma 6.12

∏

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

= −

=
⎛

⎝
⎜
⎛
⎝

+ −
+ + + +

⎞
⎠

+ ⎛
⎝ + +

⎞
⎠

⎞

⎠
⎟

=
⎛

⎝
⎜
⎛
⎝

+ +
+ + + +

⎞
⎠

⎞

⎠
⎟

=
⎛

⎝
⎜ ⎛

⎝
+
+

⎞
⎠

⎞

⎠
⎟ ⋅

⎛

⎝
⎜
⎛
⎝ + +

⎞
⎠

⎞

⎠
⎟

= = =

= =

=

= =

a a a a

r s

r s r s
M

s

s r
M

r s

r s r s
M

M

r s

det 0 det 0 0 0

det
1

2 3 2 ! 1 ! 2 2 ! 2 !

det
1 1

3 2 ! 2 !

1

2 !
det

3
.

W

W

r s

d
W

V d
V

W d

s

r

r s

d

s

r

r s

d

s

r

r s

d

d W

s

r

r s

d

, 0 0 0

, 0 , 0

, 0

0

dim
2

, 0

s

r 1

1
( ( )) (( ( )) ( ( )) ( ( )) )

( )( ) ( ) ( ) ( )

( )( )

( )( ) ( )

ℓ

(ℓ )

ℓ ℓ

ℓ

ℓ

ℓ

ℓ

□

Lemma 6.14. (A side-note on tensor product of matrices) Let V and W be two vector spaces and let g and h be
two bilinear maps on V and W, respectively. Let = ⊗b g h be the bilinear map on ⊗V W defined by

⊗ ⊗ =b v w v w g v v h w w, , ,1 1 2 2 1 2 1 2( ) ( ) ( ) for all ∈v Vi and ∈w Wi .
If g and h are symmetric and positive definite (i.e., scalar products), then b is also symmetric and positive

definite (i.e., a scalar product).

Proof. Clearly b is symmetric.
Let e e, …, d1( ) be an orthonormal basis for W h,( ). Any element of ⊗V W can be written as ∑ ⊗= v ei

d

i i1 for

some ∈v Vi . Indeed ∑ ⊗ = ∑ ⊗ ∑ = ∑ ∑ ⊗= =u w u w e w u ek k k k k i

d

k

i
i i

d

k k

i
k i1 1( ) ( ) . So if = ∑ ⊗ ∈ ⊗=x v e V Wi

d

i i1 , then

∑ ∑ ∑ ∑=
⎛

⎝
⎜ ⊗ ⊗

⎞

⎠
⎟ = = ≥

= = = =
b x x b v e v e g v v h e e g v v, , , , , 0,

i

d

i i

j

d

j j

i j

d

i j i j

i

d

i i

1 1 , 1 1

( ) ( ) ( ) ( )

and clearly =b x x, 0( ) if and only if =x 0. Therefore, b is positive definite. □
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7 Examples of Carnot groups of step two

In this section, we collect several examples of step-two Carnot groups. In Section 7.1, we recall the classical
example of Heisenberg group. Then, we give several generalizations of the Heisenberg group in Sections
7.2–7.4. In particular, in Section 7.2, we give the examples of free step-two groups on which > −N Q n2GEO .
Then, in Section 7.3, we give the main examples of the work: groups on which >N NCE GEO. Finally, in Section
7.4, we provide more examples of step-two groups where the NCE can be computed.

7.1 The Heisenberg group �

Recall that the simplest non-abelian Carnot group is the Heisenberg group � whose Lie algebra is given by
= ⊕V V1 2g with

≔ ≔V X X V Yspan , , span .1 1 2 2{ } { }

Here X X,1 2{ } is an orthonormal basis of V1 and the only nontrivial bracket relation of g is =X X Y,1 2[ ] . The
topological dimension of � is =n 3 and the homogeneous dimension is =Q 4.

By formula (6.1), we obtain that, for ∈a b c d, , , � and ∈μ V2,

− = + + = + +ad bc μ Y μ aX bX cX dX J aX bX cX dX, , , , .
μ1 2 1 2 1 2 1 2( )⟨ ⟩ ⟨ [ ]⟩ ⟨ ( ) ⟩

Since ∈a b c d, , , � are arbitrary, the matrix representation of J
μ
with respect to the orthonormal basis

X X,1 2{ } is

= ⎛
⎝

− ⎞
⎠J μ Y,

0 1

1 0
.

μ
⟨ ⟩ (7.1)

As a result (Table 1), it is easy to check with Theorem 6.7 that

= ⎧
⎨
⎩

≠
∞ =ξ μ

ξ

ξ
Γ ,

0 if 0 ,

if 0 .
( )

By Theorem A, the geodesic dimension of � is 5, in accordance with the literature. Furthermore, it follows
from the result of [11] that =N 5CE on � . See also Proposition 7.7 in Section 7.4.

Table 1: Objects from Definition 6.6 for the first Heisenberg group �

==ξ 0 ≠≠ ==ξ μ0, 0 ≠≠ ≠≠ξ μ0, 0

=U 00 { } =U 00 { } =U 00 { }

Uℓ =U 01 { } =U ξ1 � =U ξ1 �

= >U 0 , 1{ } ℓℓ = >U ξ , 1� ℓℓ = >U V , 11 ℓℓ

=U V0 2 =U V0 2 =U V0 2

Uℓ =U V1 2 =U 01 { } =U 01 { }

= >U V , 12 ℓℓ = >U 0 , 1{ } ℓℓ = >U 0 , 1{ } ℓℓ

W∞ =W V∞ 2 =W 0∞ { } =W 0∞ { }

<W j, ∞j =W 00 { } =W V0 2 =W V0 2

= ≤ <W j0 , 1 ∞j { } = ≤ <W j0 , 1 ∞j { } = ≤ <W j0 , 1 ∞j { }

=ξ μ NΓ , SExp( ) ∞ 0 0
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7.2 Free step-two Carnot group with k generators Nk ,2

One possible generalization of the Heisenberg group� is the free step-two group Nk ,2. For every ≥k 2, the Lie
algebra of Nk ,2 is = ⊕V V1 2g with

≔ ≔ −V X X V Y Y Yspan , …, , span , , …, .k k k1 1 2 1,2 1,3 1,{ } { }

Here X X, …, k1{ } is an orthonormal basis of V1 with the property = ∀ ≤ < ≤X X Y i j k, , 1i j i j,[ ] . For =k 2, N2,2 is
exactly the Heisenberg group. As before, formula (6.1) yields for every ∈μ V2:

∑ ∑ ∑ ∑− =
⎡

⎣⎢
⎤

⎦⎥
=

< = = ≤ ≤
a b a b μ Y μ a X b X a b J X X, , , ,

i j

i j j i i j

i

k

i i

j

k

j j

i j k

i j μ i j,

1 1 1 ,

( )⟨ ⟩ ⟨ ⟩

and thus, under the orthonormal basis X X, …, k1{ }

=

⎛

⎝

⎜
⎜
⎜
⎜

− − ⋯ −
− ⋯ −

⋯ −
⋮ ⋮ ⋮ ⋱ ⋮

⋯

⎞

⎠

⎟
⎟
⎟
⎟

J

μ Y μ Y μ Y

μ Y μ Y μ Y

μ Y μ Y μ Y

μ Y μ Y μ Y

0 , , ,

, 0 , ,

, , 0 ,

, , , 0

.
μ

k

k

k

k k k

1,2 1,3 1,

1,2 2,3 2,

1,3 2,3 3,

1, 2, 3,

⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩ ⟨ ⟩

Since −Y Y Y, , …, k k1,2 1,3 1,{ } is a basis, the map ↦μ J
μ
gives a linear isomorphism betweenV2 and ⋅ ⋅V , ,1so( ⟨ ⟩). Fix a

pair ∈ ⊕ξ μ V V, 1 2( ) . Recall that the spaces Uℓ, Uℓ, and Wℓ are defined in Definition 6.6.

Lemma 7.1. For ∈ ⊕ξ μ V V, 1 2( ) fixed, we have

≃ ⋅ ⋅ ≃ ⋅ ⋅ ∕ ⋅ ⋅ ∀ ≥⊥ ⊥ + ⊥U U W U U, , , , , , , , 0.1so so so(( ) ⟨ ⟩) (( ) ⟨ ⟩) (( ) ⟨ ⟩) ℓℓ
ℓ

ℓ
ℓ ℓ

On the RHS, we regard an element of ⋅ ⋅+ ⊥U , ,1so(( ) ⟨ ⟩)ℓ as an element of ⋅ ⋅⊥U , ,so(( ) ⟨ ⟩)ℓ by zero extension.

Proof. As in Definition 6.6, ≔ ∈ = ∀ ≥U ν V J U: 0 , 0
ν2{ ( ) { }} ℓℓ

ℓ . It is easy to see that if ∈ν Uℓ, then J
ν
maps ⊥U( )ℓ

to itself, or equivalently ∈ ⋅ ⋅⊥⊥J U , ,
ν U so∣ (( ) ⟨ ⟩)( )

ℓℓ . Conversely, if we start from an element in ⋅ ⋅⊥U , ,so(( ) ⟨ ⟩)ℓ ,
by zero extension we obtain a unique element ∈ν Uℓ. This gives us the isomorphism between Uℓ and

⋅ ⋅⊥U , ,so(( ) ⟨ ⟩)ℓ . Then, the rest of the lemma follows from the following commutative diagram:

where the map from ⋅ ⋅+ ⊥U , ,1so(( ) ⟨ ⟩)ℓ to ⋅ ⋅⊥U , ,so(( ) ⟨ ⟩)ℓ is given by zero extension. □

Lemma 7.2. Fix a pair ∈ ⊕ξ μ V V, 1 2( ) . If = +U U 1ℓ ℓ , then =U Uj ℓ for every ≥j ℓ.

Proof. If = +U U 1ℓ ℓ , then = ∑ =
−

J ξ a J ξ
μ i i μ

i

0

1ℓ ℓ for some ∈ai � . Therefore, = ∑ ∈ =+
=
− + +J ξ a J ξ U U

μ i i μ

i1

0

1 1 1ℓ ℓ ℓ ℓ, i.e.,
=+U U2ℓ ℓ. By induction, we obtain the lemma. □

Proposition 7.3. On free step-two group with k generators Nk ,2 with ≥k 3, we have

− =
−

<
−

+
− −

= ≤Q n
k k k k k k k

N N2
3

2

3

2

1 2

3
.

2 2

GEO CE

( )( )

Proof. For every ≥ 0ℓ , if = +U U 1ℓ ℓ , then = ≃ ⋅ ⋅∞
⊥W U U , ,so(( ) ⟨ ⟩)ℓ

ℓ , by Lemmas 7.1 and 7.2. Since ≤Udim( ) ℓℓ ,
if there is < −k 1ℓ with = +U U 1ℓ ℓ , then ≠∞W 0{ }.
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Hence, if =∞W 0{ }, then =Udim( ) ℓℓ for all < kℓ , and ∈ −U k kdim , 1( ) { }ℓ for all ≥ kℓ . It follows that
=Wdim 0( )ℓ for ≥ −k 1ℓ and, for ≤ < −k0 1ℓ ,

= ⋅ ⋅ − ⋅ ⋅

=
− − −

−
− − − −

= − −

⊥ + ⊥W U U

k k k k
k

dim dim , , dim , ,

1

2

1 2

2
1,

1so so( ) ( (( ) ⟨ ⟩)) ( (( ) ⟨ ⟩))

( ℓ)( ℓ ) ( ℓ )( ℓ )
ℓ

ℓ
ℓ ℓ

and thus = −d k 2. As a result, by (6.9) and Theorem A,

∑=
−

+ − − =
−

+
− −

=

−

N
k k

k
k k k k k3

2
2 1

3

2

1 2

3
.

k

GEO

2

1

2 2

ℓ( ℓ )
( )( )

ℓ

□

7.3 Step-two groups induced by star graphs K k1,

In [9], the following step-two stratified Lie algebras are associated with star-shaped graphs. For every ≥k 1, the
Lie algebra is given by = ⊕V V1 2g with

≔ ≔V X X X V Y Yspan , …, , span , …, ,k k1 0 1 2 1{ } { }

where the nontrivial bracket relations are =X X Y, j j0[ ] , for all ≤ ≤j k1 . We fix a scalar product on g such that
X X X Y Y, , …, , , …,k k0 1 1{ } is an orthonormal basis. We remark that =k 1 case corresponds to the Heisenberg
group � .

By formula (6.1), if ∑ ∑ ∈= =a X b X V,i

k

i i j

k

j j0 0 1 and ∈μ V2, then

∑ ∑ ∑ ∑− =
⎡

⎣⎢
⎤

⎦⎥
=

= = = ≤ ≤
a b a b μ Y μ a X b X a b J X X, , , , .

j

k

j j j

i

k

i i

j

k

j j

i j k

i j μ i j

1

0 0

0 0 0 ,

( )⟨ ⟩ ⟨ ⟩

Therefore, for every ∈μ V2 we have

=

⎛

⎝

⎜
⎜
⎜

− ⋯ −

⋮

⎞

⎠

⎟
⎟
⎟

J

μ Y μ Y

μ Y

μ Y

0 , ,

,

0

,

μ

k

k

1

1

⟨ ⟩ ⟨ ⟩

⟨ ⟩

⟨ ⟩

with respect to the orthonormal basis X X X, , …, k0 1{ }. The following proposition answers a question posed by
Rizzi in [21], i.e., it shows that there are sub-Riemannian Carnot groups such that ≠N NGEO CE.

Proposition 7.4. In the framework of step-two groups induced by star graphs K k1, with ≥k 2, the following is
true:

= < − =K k KΓ 0 2 2 Γ̂ .k k1, 1,( ) ( ) (7.2)

In particular, we have <N NGEO CE in K k1, with ≥k 2

Proof. Using the above bases for V1 and V2, we write =ξ ξ ξ, ˆ
0( ) with ∈ξ̂ k� , and ∈μ k� . Then,

= − ⋅ ∈J ξ μ ξ ξ μ Vˆ, ,
μ 0 1( )

where ⋅ denotes the standard scalar product on k� . To compute ξ μΓ ,( ), we consider three cases. First, if ≠ξ 00 ,
then = ∈ = =U ν V J ξ: 0 0

ν1 2{ } { }. This implies =∞W 0{ }, =W V0 2, and =d 0.
Second, consider the case =ξ 00 and ⋅ ≠μ ξ̂ 0. For a similar reason we have thatU1 has codimension 1 inV2

and = ∈ = = =U ν V J J ξ J ξ: 0 0
ν μ ν2 2{ } { }. This implies =∞W 0{ } as well, but in this case, =d 1, =Wdim 10( ) ,

and = −W kdim 11( ) .
In the remaining third case, when =ξ 00 and ⋅ =μ ξ̂ 0, we have =J ξ 0

μ
and thus ≠∞W 0{ }.
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In conclusion, from Theorem 6.7, we obtain

=
⎧
⎨
⎪

⎩⎪

≠
− = ⋅ ≠

∞ = ⋅ =
ξ μ

ξ

k ξ μ ξ

ξ μ ξ

Γ ,

0 if 0 ,

2 2 if 0 and ˆ 0,

if 0 and ˆ 0.

0

0

0

( )

This implies (7.2) by (1.5), and the we conclude by Theorems A and B.

7.4 Step-two groups GA

In this section, we introduce a subclass of step-two groups which are again generalizations of Heisenberg group�
but not ideal Carnot groups except for very special cases. Given a matrix of full-rank = =× ≤ ≤ ≤ ≤A A Am k ij i m j k1 ,1( )

with ≤m k , the Lie algebra of GA is given by = ⊕V V1 2g with

≔ ≔−V X X X X V Y Yspan , , …, , , span , …, ,k k m1 1 2 2 1 2 2 1{ } { }

where the nontrivial relations of the Lie algebra g are = ∑ ∀ ≤ ≤− =X X A Y j k, , 1j j i

m

ij i2 1 2 1[ ] . The topological dimension
ofGA is = +n k m2 and the homogeneous dimension is = +Q k m2 2 . This subclass of step-two groups is associated
with CRmanifolds [18]. We remark that for the case = =m k 1 and =A 1, it is nothing but the Heisenberg group� .

We fix a scalar product on g such that −X X X X Y Y, , …, , , , …,k k m1 2 2 1 2 1{ } is an orthonormal basis. In the
following, using the above basis, we write = ∈ξ ξ ξ, …, k

k
1 2

2�( ) and = ∈μ μ μ, …,
m

m

1
�( ) . Moreover, we use

⋅ to denote the standard scalar product on m� and ≔A A A, …,j j mj1( ) the jth column of the matrix A. Using
these notations, and by formula (6.1) again, we have

⎟ ⎟⎜ ⎜=
⎧
⎨
⎩
⎛
⎝

− ⋅
⋅

⎞
⎠

⎛
⎝

− ⋅
⋅

⎞
⎠
⎫
⎬
⎭

J
μ A

μ A

μ A

μ A
diag

0

0
, …,

0

0
.

μ

k

k

1

1

Observe that from the above matrix, we have =J J J J
ν μ μ ν

and as a consequence = ∈ =∞W ν V J ξ: 0
ν2{ }.

Thus, we obtain

=
⎧
⎨
⎩

∈ = =
∞ ∈ = ≠ξ μ

ν V J ξ

ν V J ξ
Γ ,

0 if : 0 0 ,

if : 0 0 ,

ν

ν

2

2

( )
{ } { }

{ } { }

which implies = − = +N Q n k m2 2 3GEO by Theorem A.
Now, we compute the explicit formula of the Jacobian of the sub-Riemannian exponential map with

respect to the basis X X Y Y, …, , , …,k m1 2 1{ }, and we use this formula to compute the curvature exponent. For
the computation on Heisenberg groups, we refer to [5,11]. In fact, using the matrix of J

μ
above, and deducing

from Lemma 6.2 again, the sub-Riemannian exponential map is represented by

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⋅
⋮

⋅

⎛

⎝
⎜⎜

⋅
⋮

⋅

⎞

⎠
⎟⎟

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−

−

ξ μ

ξ ξ μ A

ξ ξ μ A

A

ξ ξ μ A

ξ ξ μ A

SExp ,

E , ,

E , ,

E , ,

E , ,

,
k k k

k k k

1 1 2 1

1 2 1 2

2 1 2 1

2 2 1 2

( )

( )

( )

( )

( )

where

≔

⎛

⎝

⎜
⎜⎜

−
−

−
+

⎞

⎠

⎟
⎟⎟

≔
−

+w w ν

ν

ν
w

ν

ν
w

ν

ν
w

ν

ν
w

w w ν
ν ν

ν
w wE , ,

sin 1 cos

1 cos sin
and E , ,

1

2

sin
.1 1 2

1 2

1 2

2 1 2 2 1

2

2

2( ) ( ) ( )
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Define

≔ ⋅ ⋅

≔ ⋅ ⋅ ∀ ≠−

μ μ A μ A

ξ μ ξ ξ μ A ξ ξ μ A i j

J̃ diag J , …,J ,

J̃ , diag J , , , …,J , , , , 1, 1

k

i j i j i j k k k

1,1 1,1 1 1,1

, , 1 2 1 , 2 1 2

( ) { ( ) ( )}

( ) { ( ) ( )} ( ) ( )

with

≔

⎛

⎝

⎜
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−
−

−

⎞

⎠

⎟
⎟⎟

≔

⎛

⎝

⎜
⎜⎜

−
−

− +

− +
+

−

⎞

⎠

⎟
⎟⎟

≔ ⎛
⎝

− − ⎞
⎠

≔
− −

+

ν

ν

ν

ν

ν

ν

ν

ν

ν

w w ν

ν ν ν

ν
w

ν ν ν

ν
w

ν ν ν

ν
w

ν ν ν

ν
w

w w ν
ν ν

ν
w

ν ν

ν
w

w w ν
ν ν ν ν

ν
w w

J

sin 1 cos

1 cos sin
,

J , ,

cos sin sin 1 cos

sin 1 cos cos sin
,

J , ,
sin sin

,

J , ,
1

2

2 sin cos
.

1,1

1,2 1 2

2 1 2 2

2 1 2 2

2,1 1 2 2 1 2 2

2,2 1 2 3 1

2

2

2

( )

( )

( )

( ) ( )

Then, the differential is presented by

=
⎛

⎝
⎜

⎞

⎠
⎟D ξ μ

μ ξ μ A

A ξ μ A ξ μ A
SExp ,

J̃ J̃ ,

J̃ , J̃ ,
,

T

T

1,1 1,2

2,1 2,2

( )
( ) ( )

( ) ( )

whereT denotes the transpose of the matrix. In the computation below, we assume μJ̃
1,1

( ) is invertible and the
final formula (7.4) holds for all ξ μ,( ) by continuity. Then, Lemma 6.12 gives

∏= ⋅
=

ξ μ A ξ μ A μ AJac SExp , det J̃ , det J ,T

j

k

j

1

1,1
( )( ) ( ( ) ) ( ( ))

where

≔ ⋅ ⋅−ξ μ ξ ξ μ A ξ ξ μ AJ̃ , diag J , , , …,J , , ,k k k1 2 1 2 1 2( ) { ( ) ( )}

with

≔ − −w w ν w w ν w w ν ν w w νJ , , J , , J , , J J , , .1 2 2,2 1 2 2,1 1 2 1,1

1

1,2 1 2( ) ( ) ( ) ( ) ( )

In fact, we can write down the explicit formulas for ⋅J( ) and ⋅det J
1,1

( ( )):

= + = ⎛
⎝

⎞
⎠w w ν

f

f
w w ν f

ν
J , ,

4
, and det J

2
,

ν

ν1 2

1 2

2 2

1

2

2

2

1,1 2

2

( )
( )

( )
( ) ( ( ))

with two auxiliary functions f
1
and f

2
defined by

≔
−

≔f s
s s s

s
f s

s

s

sin cos
,

sin
.

1 3 2
( ) ( ) (7.3)

Now, we need the following lemma from Linear Algebra.

Lemma 7.5. (Cauchy-Binet formula) Let =A A A, …, k1( ) be an ×m k matrix and =
⎛

⎝
⎜ ⋮

⎞

⎠
⎟B

B

Bk

1

, a ×k m matrix with
≤m k . Then,

∑=
≤ <⋯< ≤

AB A A B Bdet det , …, det , …, .

i i k

i i i

T

i

T

1 m

m m

1

1 1
( ) ( ) ( )
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Applying Lemma 7.5 to =B ξ μ AJ̃ , T( ) , we obtain

∑= −

≤ <⋯< ≤
ξ μ A A ξ μJac SExp , 4 det , …, J , ,m

i i k

i i
i i

1

2 , … ,

m

m

m

1

1

1( )( ) ( ) ( ) (7.4)

where ξ μJ ,i i, … , m1 ( ) is defined by

∏ ∏⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⋅ ⎞
⎠

⎛
⎝

⋅ ⎞
⎠

⎛
⎝

⋅ ⎞
⎠ +

∉ ∈
−f

μ A
f

μ A
f

μ A
ξ ξ

2 2 2
.

j i i

j

j i i

j j

j j

, … ,

2

2

, … ,

1 2 2 1

2

2

2

m m1 1

( )
{ } { }

Lemma 7.6. On step-two groups GA, under the basis X X Y Y, …, , , …,k m1 2 1{ }, the set D in Definition 1.1 satisfies

⊂ × ⋅ < ∀ ≤ ≤μ μ A π j k: 2 , 1 .k
j

2D � { ∣ ∣ }

Proof. From definition it suffices to prove that if ⋅ =μ A π2j∣ ∣ for some ∈j k1, …,{ }, then =ξ μJac SExp , 0( )( ) .
Without loss of generality, we assume that ⋅ =μ A π21∣ ∣ . In fact, it follows from (7.3) that ± =f π 0

2
( ) , which

implies =ξ μJac SExp , 0( )( ) by (7.4). □

Proposition 7.7. On step-two groups GA, = − = +N Q n k m2 2 3CE .

Proof. By (ii) of Proposition 5.1 as well as Corollary 6.8, we only need to prove

≥ ∀ ∈ ∈ξ λμ ξ μ ξ μ λJac SExp , Jac SExp , , , , 0, 1 .D( )( ) ( )( ) ( ) [ ]

In fact, noting that the even function f
2
is decreasing on π0,[ ], we have ≥f λs f s

2 2
( ) ( ) for ∈ −s π π,[ ] and

∈λ 0, 1[ ]. For the even function f
1
, [6, Lemma 25] implies

≥ ∀ ∈ − ∈f λs f s s π π λ, , , 0, 1 .
1 1
( ) ( ) [ ] [ ]

Then, our proposition follows from the inequalities for f f,
1 2

above, Lemma 7.6, and (7.4). □
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