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1.  INTRODUCTION

The brain is considered to operate as a network of inter-

acting, functionally specialized regions. The development 

and application of analysis tools to probe those interac-

tions in the healthy human brain from non-invasive electro-

physiological measurements has been an active area of 

research in the past few decades. Part of that work is 
grounded in the notion that interregional interactions may 
be reflected by statistical dependencies between band-
limited signal components that can be picked up from 
locally activated brain areas. One way to quantify this so-
called functional connectivity is to estimate some measure 
of relative phase consistency or phase synchrony (Varela 
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et al., 2001), for instance using the coherence coefficient, 
or a derived metric (Bastos & Schoffelen, 2016). From a 
mechanistic point of view, it has been hypothesized that 
consistent phase differences of oscillatory processes facil-
itate neuronal interactions by virtue of a mutual temporal 
alignment of cycles of increased neuronal excitability 
(Bonnefond et al., 2017; Fries, 2005, 2015). In sum, con-
nectivity estimates based on phase synchrony are a valu-
able metric in cognitive neuroscience.

It is commonly agreed that, for interpretability, con-
nectivity estimates should be assessed at the source 
level. This is because connectivity estimates are invari-
ably confounded by spatial leakage (Schoffelen & Gross, 
2009). Promising work from the early 2000s developed 
(Gross et al., 2001) and successfully applied (e.g., Pollok 
et al., 2005; Schoffelen et al., 2005) the Dynamic Imaging 
of Coherent Sources (DICS) technique, a frequency 
domain version of a beamformer for source reconstruc-
tion, to identify networks of phase-synchronized brain 
regions based on the strong physiological periodicities 
during smooth finger movements in healthy participants. 
Further studies focused on synchrony at the frequency of 
Parkinsonian or essential tremor in clinical populations 
(Pollok et  al., 2004; Timmermann et  al., 2003). In the 
decades following this early work, the research commu-
nity has also started studying envelope correlations of 
band-limited signals instead of phase synchrony. This 
latter metric has been successfully used to identify prop-
erties of networks predominantly during the brain’s rest-
ing state, yielding a body of literature with well 
interpretable and consistent findings (Baker et al., 2014; 
Brookes et al., 2011; Colclough et al., 2016; de Pasquale 
et al., 2016; Hipp et al., 2012). Despite ongoing method-
ological work to improve source reconstruction (Dalal 
et  al., 2006; Hillebrand et  al., 2012; Kuznetsova et  al., 
2021; Nunes et al., 2020; Woolrich et al., 2011) and novel 
phase synchrony based connectivity metrics (Aviyente 
et al., 2011; Ghanbari & Moradi, 2020; Vinck et al., 2011), 
neuroscientific findings employing phase synchrony 
seem to be more scarce and less consistent (Colclough 
et al., 2016; O’Neill et al., 2018).

Assuming that metrics based on phase differences tap 
into fundamental mechanisms of brain organization and 
communication (Bonnefond et  al., 2017; Fries, 2005, 
2015), then why is it seemingly so difficult to find con-
verging evidence across studies? One reason for this 
might be that the methodological adversities are larger 
than commonly assumed (Bastos & Schoffelen, 2016; He 
et al., 2019; Palva et al., 2018). One of those difficulties is 
spatial leakage, both from second-party and third-party 
sources, that is, seed-based leakage involving one of the 
two interacting sources or leakage into both interacting 
sources from a third source, respectively. Not being able 

to estimate and remove this leakage renders the lower 
bound of the true connectivity unknown. Proposed tech-
niques for leakage correction, on the other hand, can be 
too aggressive and also compromise or even remove the 
signal of interest. Furthermore, data quality might further 
impede the reliable estimation of phase difference: low 
signal-to-noise ratio (SNR) might hinder the reliable iden-
tification of seed regions of interest, while SNR differ-
ences across conditions occlude the interpretation of 
connectivity, since the estimation of phase-based con-
nectivity measures is sensitive to SNR changes.

In this paper, we propose a new method that tackles 
these problems. We propose to address the issue of sub-
optimal region of interest (ROI) or seed selection through 
consideration of the full 6-dimensional all-to-all connectiv-
ity source space, using a two-dipole constraint beam-
former. We further propose an estimation of the null 
coherence which approximates the bias in the coherence 
estimate and can be used to correct the output. Finally, we 
reduce estimation bias by aggregating over the results of 
many source reconstructions using sensor array subsam-
pling, thereby creating a more stable and robust estimate.

In the following, we will first introduce beamforming for 
source reconstruction and explain the problem of spatial 
leakage in more detail. Then, we will outline the compo-
nents of our proposed beamforming approach.

1.1.  Beamformers for source reconstruction

Non-invasive electrophysiological measurements (electric 
potential differences for electroencephalography (EEG) or 
magnetic fields (gradients) for magnetoencephalography 
(MEG)) reflect a mixture of the temporal activation profiles 
from neural and non-neural sources. To estimate the neural 
sources that contribute to the spatiotemporal mixture in the 
observed signals, source reconstruction techniques can be 
applied. These techniques have developed into a valuable 
tool for the analysis of non-invasive electrophysiological 
signals obtained during cognitive experiments. Solving the 
so-called inverse problem by combining a forward model 
with additional assumptions, source reconstruction tech-
niques aim to build models of the spatiotemporal charac-
teristics of the neural generators that underlie the measured 
signals, unmixing the observed channel-level data. The 
biologically plausible forward model (or gain matrix) descri
bes the spatial distribution of the observed signals, typi-
cally for a set of equivalent current dipole sources. The 
additional model assumptions are necessary to constrain 
the number of solutions to the inverse problem, which in 
principle are unlimited. Adaptive beamformers are a class 
of source reconstruction techniques that do not a priori 
make explicit assumptions with respect to the number or 
location of active sources, but rather assume the underlying  
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sources to be temporally uncorrelated. Usually, for each of 
a set of predefined source locations, a spatial filter is con-
structed under two constraints: 1) a unit gain constraint, 
which means that it should pass on all of the activity that 
originates from that specific location, and 2) a minimum 
variance constraint, which minimizes the variance of the 
reconstructed activity at each location. Mathematically, this 
linearly constrained minimum variance (LCMV; Van Veen 
et al., 1997) spatial filter is computed as follows:

	 w⊤ (r ) = h⊤ (r )C−1h(r )⎡⎣ ⎤⎦
−1
h⊤ (r )C−1, 	 (1)

where w(r ) is the spatial filter at source location r  and ⊤ 
refers to the transpose operation. h(r ) is the source 
location-specific gain vector (which can be thought of as 
a spatial fingerprint), and C−1 is the mathematical inverse 
of the channel covariance matrix. As an alternative to the 
channel-level covariance matrix, one can use a complex-
valued cross-spectral density (CSD) matrix, based on the 
channel Fourier coefficients for a given frequency bin, 
resulting in the DICS algorithm (Gross et al., 2001).

Beamformers have gained prominence as one of the 
most popular source reconstruction techniques because 
they typically provide relatively robust reconstructions 
of neural activity without the need of sophisticated 
parameter tweaking (Westner et al., 2022). However, some 
limiting factors exist with respect to functional connec-
tivity. In the following, we will present the typical distor-
tions when source reconstructing functional connectivity, 
as well as our approach to mitigate these.

1.2.  The effect of signal leakage on source 
connectivity estimates

In the context of connectivity estimation, an important 
concept is that of signal leakage. This refers to the fact 
that each location’s estimated activity reflects an 
unknown mixture of the true activity at this location and 
signal contributions from distant noise sources of both 
neural and non-neural origin. Mathematically, this can be 
shown as detailed below.

Considering the generative model of the sensor-level 
data, the sensor signals reflect a summation of the under-
lying source signals, each multiplied by their spatial fin-
gerprint:

	
X =

i=1

I

∑h ri,qi( )si +N.
	

(2)

Here, X is a number-of-channels by number-of-
observations matrix with complex-valued Fourier coeffi-
cients, h is the real-valued gain vector for a dipolar source 
at location ri and with orientation qi, and si  is a 1 by 

number-of-observations source activity vector, here 
assumed to be complex-valued, that is, to reflect both 
amplitude and phase for the observations. N is a number-
of-channels by number-of-observations matrix, reflecting 
the non-brain noise in the measured data.

Assume that we have computed a pair of spatial fil-
ters, w1 and w2, and we use these spatial filters to com-
pute an estimate of the source-level Fourier coefficients: 
s!1 = w1

⊤X, and s!2 = w2
⊤X. From these estimates, one can 

compute a connectivity metric, for instance the coher-
ence coefficient, for this dipole pair:

	

coh =
s!1s!2

H

s!1s!1
H( ) s!2s!2

H( )
,

	

(3)

where H denotes the conjugate transposition. Note that 
for simplicity of notation, we omit the scaling with the 
number of observations, which drops out of the equation 
anyhow. We also note that a non-zero numerator in the 
equation above suggests linear dependence between the 
estimated sources 1 and 2. Below, we inspect this quan-
tity, that is, the cross-spectral density estimate between 
the two sources, in more detail.

For the given pair of dipoles, and considering the 
data model X = h1s1+h2s2 +N with N now reflecting all 
signal contributions to the observed data that are not 
originating from the two dipole pairs-of-interest, we can 
express the cross-spectral density estimate between 
the two dipoles as:

s!1s!2
H

= w1
⊤X( ) w2

⊤X( )H

= w1
⊤ h1s1+h2s2 +N( )( ) w2

⊤ h1s1+h2s2 +N( )( )H .
	

(4)

Introducing gij as a scalar value that results from com-
puting the inner product between spatial filter w i and 
gain vector h j and which reflects the filter’s gain at loca-
tion i for a source originating from location j, we obtain:

s!1s!2
H
= (g11s1+ g12s2 +w1

⊤N)(g21s1+ g22s2 +w2
⊤N)H. � (5)

When using an inverse algorithm with a typical unit-gain 
constraint, wi

⊤hi = gii = 1, the above further reduces to:

s!1s!2
H

= s1+ g12s2 +w1
⊤N( ) g21s1+ s2 +w2

⊤N( )H
= s1+ g12s2( ) g21s1+ s2( )H + s1+ g12s2( )NHw2

+w1
⊤N g21s1+ s2( )H +w1

⊤NNHw2. �

(6)

In other words, for a given dipole pair, the estimated 
cross-spectral density between two sources does not 
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only depend on the sources’ true cross-spectral density, 
but is also affected by:

	 1.	� signal leakage from the other dipole-of-interest, 
specifically when g12 and g21 are non-negligible, 
cf. the leftmost term in the above equation

	 2.	� the interaction between the noise, projected 
through the spatial filter, and the sources’ activity, 
cf. the middle two terms in the above equation

	 3.	� the interaction between the projected noise at the 
location of the dipoles, cf. the rightmost term in 
the above equation

Note that the above reasoning is independent of the 
exact inverse algorithm used. The different types of leak-
age will also affect the estimates of the individual dipoles’ 
power. Leakage will always cause misestimation of metrics 
that are derived from the estimated source level quantities. 
This also applies to spatial maps of connectivity, which are 
typically constructed using a limited number of predefined 
seed dipole locations. Local maxima in these spatial maps 
(which are either expressed as a difference between two 
experimental conditions or in relation to a baseline) are then 
interpreted as regions that are functionally connected to 
the seed dipole. Irrespective of the specific connectivity 
metric used, spatial structure in these maps due to leakage 
may lead to inference of false positive connections. Fur-
thermore, true connections may be missed altogether, if the 
seed dipoles have been misspecified by the researcher.

1.3.  Alleviating the effect of leakage

In order to address some of the problems associated 
with leakage, it has been proposed to use connectivity 
metrics that disregard the interaction along the real-
valued axis (e.g., the imaginary part of coherency (Nolte 
et al., 2004) or the multivariate interaction measure (MIM, 
Ewald et al., 2012)), or to remove the instantaneous leak-
age originating from one or more dipoles prior to estimat-
ing the connectivity on the residuals (Brookes et al., 2012; 
Colclough et  al., 2015; Hipp et  al., 2012; Wens et  al., 
2015). Although these adjustments avoid an overinter-
pretation of leakage-affected findings, the sensitivity to 
true signal interactions at small phase differences is 
diminished. In more recent years, a few source recon-
struction techniques that mitigate this effect have been 
proposed (Hindriks, 2020; Ossadtchi et al., 2018). How-
ever, these leakage correction schemes do not eliminate 
the necessity to compare the estimated connectivity 
against a well-defined baseline. This step is usually not 
straightforward since an appropriate baseline is not avail-
able: either because of differences in the signal specific 
to condition or subject group (see, e.g., Bastos & 

Schoffelen, 2016), or because of the absence of a base-
line condition altogether (e.g., in single-group resting-
state studies). Finally, in a context where seed-based 
connectivity maps are evaluated, there is no guarantee 
that the seed regions have been appropriately specified.

In this work, we propose an analysis scheme of 
source-level connectivity (here expressed as the coher-
ence coefficient), accounting as much as possible for the 
effects of leakage but without a reduction in sensitivity for 
true interactions at small phase differences. Moreover, 
we will derive estimates of a usable lower bound of the 
estimated coherence between dipole pairs, which can be 
used as a correction to more accurately evaluate spatial 
maps of connectivity, thus avoiding the issues associ-
ated with inappropriate or absent baseline conditions. 
Using extensive simulations, we show superiority of our 
analysis scheme in comparison to other approaches.

1.4.  Proposed analysis approach

The analysis approach we outline in this paper consists 
of several elements: We make use of a two-dipole con-
straint beamformer (Brookes et  al., 2007; Dalal et  al., 
2006; Moiseev et  al., 2011; Schoffelen et  al., 2008), 
approximate and correct for the estimated bias due to 
noise leakage, and embed the approach in a sensor array 
subsampling scheme. Below, we will discuss all those 
elements in more detail.

1.4.1.  Two-dipole constraint beamformer and null 
coherence estimate

The approach is based on an all-to-all approach, where 
coherence is estimated between all pairs of beamformer 
reconstructed dipoles defined on an evenly spaced 
3-dimensional grid, covering the entire brain. Using a 
two-dipole constraint in a beamformer formulation, we 
compute pairwise spatial filters that are not corrupted by 
zero lag correlations for the dipole pair under consider-
ation.1 A beamformer with two dipoles in its spatial pass-
band has an identity gain constraint:

W⊤H =
w1
⊤

w2
⊤

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  h1h2⎡⎣ ⎤⎦=

g11 g12
g21 g22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥.

�

(7)

1  Note that, as any analysis model, the two-dipole beamformer comes with 
mathematical assumptions, specifically that the reconstructed activity always 
pertains to activity in two dipoles at the same time and therefore leads to 
slightly different estimates of activity for a given location, depending on the 
other considered location. However, the aim here is to optimally reconstruct 
the interaction between sources, and not the activity in a single source. Thus, 
the spatial filters may capitalize on different temporal aspects of single 
sources, since different aspects of the source activity may be coherent with 
different connected sources.
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As a consequence, the equation that expresses the 
estimated pairwise dipolar cross-spectral density reduces 
to the below equation, in analogy of the model formula-
tion as used in the previous section:

	 s!1s!2
H
= s1s2

H + s1N
Hw2 +w1

⊤Ns2
H +w1

⊤NNHw2. 	 (8)

Under the assumptions that the cross-terms between 
the noise (i.e., the part of the measured signal that does 
not originate from the locations of interest) and the con-
sidered sources are negligible, and if the noise covari-
ance is assumed spatially white (a scaled identity matrix), 
then the above equation reduces to:

	 s!1s!2
H
= s1s2

H + σw1
⊤w2, 	 (9)

where σ is a scalar parameter. Under the described (yet 
most likely often violated2) assumptions, if the true inter-
action strength between the two dipoles is zero, the 
expected value of s1s2

H in eq. 9 will be zero (i.e., with a 
large enough sample). Thus, the estimated cross-spectral 
density between the two sources may be approximated 
with a scaled version of the spatial filters’ inner product, 
σw1
⊤w2, where the scaling parameter is a function of the 

pair of source locations. From this follows, that the scaled 
spatial filter inner product can be used as an approxima-
tion of the bias in estimated connectivity under the 
assumption of no interaction between the considered 
sources, an estimate we call “null coherence.” Pragmati-
cally, we propose to assume the scaling parameter to be 
fixed for a given seed dipole (i.e., keeping one of the 
dipoles in the pair fixed, and scanning through the dipole 
grid for the other dipole of the pair), and thus allow for its 
estimation by fitting a regression line through a two-
dimensional point cloud, which reflects on one dimension 
the absolute value of the estimated cross-spectral den-
sity between the seed dipole and all other dipoles, and on 
the other dimension the absolute value of the inner prod-
uct between the seed dipole’s spatial filter and the other 
dipoles’ spatial filters. Repeating this fitting procedure for 
all dipoles and normalizing by the product of the esti-
mated power yields a 6-dimensional volume of null-
coherence estimates, which can be used to subtract from 

the estimated coherence (cf. Fig.  1B). The resulting 
6-dimensional differential map can subsequently be 
post-processed (e.g., thresholded) and inspected for 
local maxima, which might be indicative of truly interact-
ing dipoles.

1.4.2.  Array subsampling

As will become clear below, these difference maps may 
still exhibit spatial noise, resulting in false positive con-
nections (i.e., local maxima that do not reflect interact-
ing dipoles), and true connections being missed (i.e., 
reconstructed connectivity between locations close to 
interacting dipoles not presenting as local maxima). To 
further reduce the spatial noise in the images, we pro-
pose a sensor array subsampling approach (Schoffelen 
et al., 2012; Westner, 2017; Westner et al., 2015). We 
estimate the 6-dimensional differential connectivity 
map multiple times, each time using a different random 
subset between 50 and 150 sensors for the reconstruc-
tion (cf. Fig.  1C). The rationale behind this repeated 
subsampling and subsequent aggregating of results is 
that the variable noise across iterations will average 
out, while truly connected dipoles will be present in 
most iterations. This might first seem counterintuitive, 
since reconstructions with fewer sensors may have a 
compromised spatial resolution; however, the spatial 
noise will be variable across reconstructions and thus 
average out, while the true interactions will show up 
more consistently. This scheme is akin to the idea of 
Ensemble Methods in machine learning, such as Bagging 
(Breiman, 1996) or Random Forests (Breiman, 2001), 
where the iteractive subsampling of observations and/
or features helps reduce variance in the ultimate model. 
The aggregation of many weak learners leads to a 
strong model with reduced variance, or, in the words of 
Breiman (1996): “Bagging goes a ways toward making 
a silk purse out of a sow’s ear, especially if the sow’s 
ear is twitchy.”

2.  METHODS

All simulations and reconstructions were performed in 
MATLAB (version 2021b) on a Linux operated High Per-
formance Compute cluster, using FieldTrip (Oostenveld 
et al., 2011) and custom written code.

2.1.  MEG sensor data simulations

MEG sensor space complex-valued data matrices were 
simulated from source space activity, based on a 
275-channel axial gradiometer CTF system, as a combi-
nation of an ‘ideal’ sensor-level signal data matrix Xs and 

2  Note that the matrix N in eq.  8 reflects all signal contributions to the 
observed data that are not originating from the two dipole pairs of interest, 
that is, N =Ni +Ns, where Ni stands for the sensor-projected interfering 
sources and Ns is the sensor noise. Considering eq. 8, the last term can thus 

be written as: w1
⊤ NiNi

⊤ +NiNs
⊤ +NsNi

⊤ +NsNs
⊤( )w2. This illustrates that the 

noise terms only vanish in eq. 9 if there are not more interfering sources than 
sensors and if these interfering sources are not correlated with the sources of 
interest (although one might argue that correlated interfering sources are by 
definition not interfering anymore). A similar line of reasoning applies to the 
terms in eq. 8 that are related to the correlation between the two sources of 
interest and the noise.
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a noise data matrix Xn. These Nsensor × Nobservation matri-
ces reflect the Fourier coefficients (i.e., amplitude and 
phase information) computed for a given frequency. For 
the noise matrix we used a multitaper spectral estimate 
of a frequency band centered around 10  Hz from a 
50  second empty room measurement, recorded at the 
Donders Centre for Cognitive Neuroimaging. The empty 
room data were segmented into 1  second epochs and 
spectrally transformed, using a multitaper smoothing 
parameter of ±4 Hz (7 tapers per segment), which resulted 

Fig. 1.  Key components of the algorithm and simulation. (A) Setup of sensor data simulation, illustrating the interacting 
and non-interacting sources and signal-to-noise ratio. (B) Estimation of the null coherence across space and the 
computation of the difference maps. (C) Illustration of the sensor array subsampling procedure with a varying number 
of sensors among realizations. Note that each subsampling iteration contains the coherence reconstruction procedure 
described in (B), as well as (for the simulations only) the procedure described in (A).

in a 268 × 350 noise matrix. The number 268 reflects the 
number of active SQUIDs at the time of the empty room 
measurement, 350 the number of observations (Nepochs ×
Ntapers ). The signal data matrix was constructed using the 
generative model Xs =HS, using a precomputed forward 
model H (see below), and an Nsource× Nobservation matrix  
S. The source signals were simulated using MATLAB’s 
mvnrnd function, generating multivariate Gaussian data, 
with a mean of 0, and a parametrized covariance (cross-
spectral density) matrix, defined as:
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diag a,a, 1− a( ),…, 1− a( )( )

1 ρeiϕ 0 ! 0

ρe−iϕ 1 0 ! 0

0 0 1 ! 0
" " " # "

0 0 0 ! 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

diag a,a, 1− a( ),…, 1− a( )( ), � (10)

where ρ reflects the intended coherence coefficient 
between the first two sources, and ϕ reflects the phase 
difference. a reflects a relative amplitude parameter, 
determining the relative amplitude of the connected 
dipoles in relation to the other active sources such that 
the relative strength between connected dipoles and 
active sources can be computed as a/ 1− a( ), that is, a 
relative amplitude of 0.8 yields the connected dipoles 
being four times stronger than the other active sources. 
The procedure for simulating the sensor space data is 
illustrated in Figure  1A. For gain matrix H, we used a  
precomputed forward model, as described in Haufe and 
Ewald (2019) and the Biomag conference 2016 data anal-
ysis challenge (see https://bbci​.de​/supplementary​
/EEGconnectivity​/BBCB​.html). Briefly, source locations 
were sampled from a cortical segmentation-based trian-
gulated mesh, originally consisting of 2004 positions. A 
three-shell boundary element method (BEM) had been 
used to compute the forward solution for the 2004 dipoles 
with an orientation perpendicular to the cortical sheet, 
using Brainstorm (Tadel et al., 2011). For the simulations 
presented here, sets of 20 positions were randomly 
selected from a subset of 820 positions. This subset was 
created based on the norm of the gain vectors for the 
orientation-constrained dipoles placed at those posi-
tions: We excluded candidate locations for which the 
sensor array was relatively insensitive, for example, deep 
dipoles in the midline, or dipoles with an unfavorable ori-
entation. The matrices Xn and Xs were scaled with the 
Frobenius norm of their respective cross-spectral densi-
ties (XXH) and linearly combined using:

	 X = σXs+ 1− σ( )Xn, 	 (11)

where σ  is a parameter that determines the signal-to-
noise ratio. Table 1 summarizes the relevant parameters 
for the simulations and the values used to explore the 
different reconstruction approaches.

2.2.  Beamformer source reconstruction  
and coherence estimation

For source reconstruction we used a forward model 
defined on a regularly spaced 3-dimensional dipole grid 
(with a spacing of 8 mm). The brain compartment of this 

Table 1.  Simulation parameters.

Parameter Values

# of active sources 20 in 100 different  
configurations

# of observations 350
σ, signal-to-sensor-noise 0.5*, 0.6
a, amplitude relation 0.5*, 0.7, 0.8*
ρ, coherence coefficient 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8
π , phase difference 0, 2 / 17( )π, 4 / 17( )π, 

8 / 17( )π, 16 / 17( )π
Values marked with asterisks denote values for which the 
outcomes are reported in the Supplementary Material.

grid consisted of 4416 dipoles and was defined by the 
same anatomical MRI as the one used for the simula-
tions’ forward model. For the reconstructions’ forward 
model, we used a realistic single shell model as imple-
mented in FieldTrip (Nolte, 2003). Our detailed analysis 
required the computation of 44162  pairs of spatial filters 
for many iterations of sensor array subsamples (we used 
100 subsamples per simulation) over 8000 parameter 
combinations. Thus, we had to estimate over 15 trillion 
spatial filters in total. We wrote custom code for the effi-
cient computation of the spatial filters and the derived 
coherence. All beamformers were computed with 
FieldTrip’s fixedori constraint, which computes a fixed 
orientation forward model for each dipole, based on the 
maximization of the beamformer’s output power (Sekihara 
& Nagarajan, 2008). The mathematical inverse of the 
cross-spectral density matrices was estimated from the 
sensor signals without applying regularization.

2.3.  Evaluation criteria for the full simulation

We compared our subsampling approach to three other 
well-adopted beamforming approaches: 1) a traditional 
single dipole beamformer, 2) a two-dipole beamformer, 
and 3) a beamformer with a geometric correction scheme 
(Wens et al., 2015). We assessed the performance of the 
different approaches on the simulated scenarios with 
respect to the correct identification of the true interacting 
dipole pair (the hit rate). We evaluated the hit rate with 
respect to coherence strength and phase difference, as 
well as against the number of false positives using the 
Free-response Receiver-Operating-Characteristic (FROC). 
To further motivate our approach and show some results in 
more detail, we also include an ‘illustrative example’.

2.4.  Real data analysis

To test our method on real data, we analyzed data from a 
single subject, performing isometric extension of the left 

https://bbci.de/supplementary/EEGconnectivity/BBCB.html
https://bbci.de/supplementary/EEGconnectivity/BBCB.html
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wrist. An earlier analysis of the same data (Schoffelen 
et al., 2008) focussed on the identification of brain areas 
that are synchronized to the electromyogram (EMG) in 
the beta frequency range. The data were acquired as 
described in Schoffelen et  al. (2008), and all subjects 
included in the study gave written informed consent 
according to the Declaration of Helsinki. Due to method-
ological limitations, highlighted both in the current paper 
and the referenced work, a cortically seeded coherence 
analysis did not produce convincingly interpretable 
results. For that reason, the previous work identified the 
implicated brain areas beyond contralateral primary 
motor cortex (cM1), using cortico-muscular coherence 
(CMC) analysis in combination with a two-dipole beam-
former constraint, suppressing the correlated signal leak-
age from cM1. With the CMC approach, it was shown 
that ipsilateral cerebellum and sensorimotor areas were 
synchronized with the EMG in the beta frequency range. 
Here, we applied the subsampling technique to evaluate 
cortically-seeded coherence, in relation to the null-
coherence estimate. First, we used dynamic imaging of 
coherence sources (DICS, Gross et al., 2001) to compute 
CMC between the electromyogram and the source space 
MEG data at this subject’s optimal coherence frequency 
(24 Hz). We then used the resulting location of maximum 
coherence (contralateral primary motor cortex) as a seed 
for the subsequent analysis. Next to analyzing the 
cortico-cortical coherence using the subsampling 
approach, we computed seed-based imaginary coher-
ence using a beamformer with a geometric correction 
scheme, the difference between coherence and null 
coherence as described in the Illustrative Example. For 
the subsampling, we used 250 randomizations, with a 
random number of sensors between 40 and 120 (note 
that the data were obtained using a 151-channel MEG 
system). Source reconstruction was performed on a 
4 mm grid (resulting in 25815 sources), using a subject-
specific multisphere model as volume conduction model. 
For visualization purposes, we computed the relative dif-
ference between the average (across subsamples) of the 
estimated coherence and the estimated null coherence.

3.  RESULTS

3.1.  Illustrative example and null coherence 
estimation

This section illustrates our proposed approach. Figure 2A 
shows the spatial configuration of one instantiation of the 
simulation, where 20 dipole locations were randomly 
selected to reflect the active sources. Two of these 
sources (the bigger, orange dots in the figure, here 
denoted as a medial superior frontal (MSF) and left occip-

ital (LO) source) reflect the interacting dipoles. To illus-
trate the potential issues related to spatial leakage, we 
start by investigating different seed-based maps. In this 
example, we simulated the interaction to be at a phase 
difference of 8 / 17( )π  and the coherence strength to be 
0.5. For illustration purposes, we computed these seed-
based results on a 4 mm grid, but for the reconstruction 
of all pairwise interactions we used an 8 mm grid. For this 
example, we also simulated data using identical source 
parameters as for the above simulations, apart from the 
coherence strength, which was set to zero. This simula-
tion was intended to reflect a perfect baseline, where 
everything except the interaction strength was kept con-
stant. We start the illustration using a traditional single 
dipole beamformer. Figure  2B shows the seed-based 
estimate of coherence for truly interacting sources, using 
as a seed the grid position that was closest to the MSF 
source (indicated with a white square). Figure 2C shows 
an estimate of the coherence for the scenario in which 
the dipoles were not connected. Both estimates are 
dominated by the well-known seed blur, but also show a 
small local maximum in the vicinity of the LO source (indi-
cated with a red square) for the case of the true connec-
tivity (Fig. 2B). The difference image (Fig. 2E) shows an 
effective suppression of the leakage close to the seed 
location. Yet, there is considerable spatial structure in the 
residual image, and although there is a local maximum in 
the vicinity of the LO source, there are also other maxima 
in this image that may be mistaken for interacting sources. 
In many practical situations, an appropriate baseline con-
dition is not available. This motivated us to estimate the 
“null” coherence based on the scaled inner product of 
the spatial filters (as described above), assuming this 
scaling to be fixed for a given seed dipole, and the noise 
to be spatially white and uncorrelated with the sources. 
Figure  2D shows the computed null coherence for our 
illustrative example. The null coherence map shows 
structure with a higher amplitude than the baseline con-
dition in Figure 2C, and thus, the difference map between 
the coherence and null coherence (Fig. 2F) also exhibits 
more structure (i.e., with a substantially higher overall 
amplitude) than the difference map with the baseline con-
dition (Fig.  2E). Specifically, the seed blur in Figure  2F 
does not seem to be very well accounted for given the 
difference map’s local maximum in the vicinity of the MSF 
seed region.

Before exploring the usage of different beamformer 
analysis schemes to improve the connectivity results 
from Figure 2, let us note that Figure 2 considered a situ-
ation in which the seed dipole for the connectivity estima-
tion was well chosen, that is, it coincided roughly with 
one of the truly interacting sources. In the analysis of 
experimental data, seed locations are not known a priori, 
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thus one might happen to choose locations that are not 
truly interacting. In this case, the high spatial structure in 
the null coherence maps is replicated even for non-
interacting seeds, which evidently would be problematic 
for real data analysis. This effect is illustrated in Supple-
mentary Figure S1.

3.2.  Two-dipole beamformer and array subsampling

At this point, one may argue that the suggested null 
coherence estimate is impractical to use, given the large 
amount of residual noise in the difference images (cf. 
Fig. 1 and Supplementary Fig. S1). In other words, the 
spurious connectivity estimated between two locations 
is poorly approximated just by computing the spatial 
leakage of projected spatially white sensor noise, at 
least when using a single dipole beamformer formula-
tion. As motivated in the introduction section, the use of 
a two dipole-constraint in the beamformer formulation 
may reduce some of the leakage terms in equation  6, 
leading to a null coherence estimate that is better 
behaved. In addition, sensor array subsampling allows 
for multiple (although possibly degraded) estimates of 
the true structure in the data, while unstructured noise is 

averaged out when aggregating those estimates. Let us 
further investigate if the scaled spatial filter inner product 
might be an appropriate estimate for spurious source 
interactions when using those alternative beamformer 
approaches. Figure 3A revisits the results from Figure 2F, 
plotting the estimated null coherence (x-axis) against the 
estimated coherence (y-axis) for all dipoles in the stimu-
lation with the values for the interacting dipole pair high-
lighted with the yellow square. Figure 3B and C show the 
results for the same single dipole beamformer approach 
but with the other truly interacting source and a source 
between the two truly interacting sources as seeds, 
respectively. Ideally, for non-interacting dipoles, the data 
points should cluster on a line around the diagonal, while 
the data point(s) corresponding to the truly interacting 
dipoles should be clearly above the diagonal. Compar-
ing the single dipole beamformer (Fig. 3A and B) with the 
two-dipole beamformer (Fig. 3D and E) for the truly inter-
acting dipoles suggests that, overall, the data points 
cluster more nicely around the diagonal line in the two-
dipole beamformer case. Figure 3G-I depict the results 
of the subsampling approach. To this end, the average 
across subsamples of the estimated coherence and null 
coherence was normalized with the standard deviation 

Fig. 2.  Illustrative example. (A) Spatial configuration for simulation. Shown are 20 randomly selected dipole locations 
of active sources (small black dots) and the two truly interacting sources (bigger orange dots). (B) Estimated coherence 
for true connectivity using a single dipole beamformer. The white square denotes the seed, coinciding with one of 
the interacting sources. The yellow square denotes the location of the connected dipole. (C) Same as (B), but with no 
underlying interaction. (D) Estimate of null coherence for the same data. (E) Difference map of (B) and (C), black squares 
denote the interacting dipoles. (F) Difference map of (B) and (D).
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of their difference. Here, the subsampling boosts the 
detectability of the interacting dipole pair, by making it 
stand out clearly from all other dipole pairs. Also, for 
seed dipoles in inactive and non-interacting locations 
(bottom row), the spread of the data points around the 
diagonal is much more comparable across the different 
seed dipoles for the subsampling-based reconstruction. 
In contrast, when no subsampling is used, the deviations 

from the diagonal are substantially larger for the inactive 
seed dipole as compared to the active and interacting 
seed dipoles. This suggests that the magnitude of the 
spatial noise in the difference images varies consider-
ably, depending on the choice of the seed dipole, and 
that the approach of array subsampling mitigates this 
effect by aggregating the results of many different noise 
realizations.

Fig. 3.  Comparing different beamformer approaches. (A-C) Single dipole beamformer with (A) seed close to truly 
interacting source in left occipital cortex (LO), (B) seed close to truly interacting source in medial superior frontal cortex 
(MSF), and (C) seed in a non-active dipole located on the line between interacting dipoles LO and MSF. (D-F) Two-
dipole beamformer. (G-I) Two-dipole beamformer with array subsampling. The values for the interacting dipole pair are 
highlighted with the yellow square.
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3.3.  Evaluating all-to-all pairwise coherence

To formally evaluate how the spurious spatial structure in 
the seed-based connectivity maps interacts with accu-
rate detectability of the true interactions, we constructed 
and evaluated the all-to-all pairwise coherence matrix 
(Schoffelen & Gross, 2011). Here, each of the dipoles in 
the grid serves as a seed dipole to all other dipoles. After 
the subtraction of an estimate of the null coherence, the 
resulting 6-dimensional volume of difference in coher-
ence is thresholded, using a relative threshold keeping 
the N% largest values. We explored the following values 
of N, with the corresponding number of unique supra 
threshold edges in parentheses: 5% (9.8 ×105), 1% 
(1.95×105), 0.5% (9.8 ×104), 0.1% (1.95×104), 0.05% 
(9.8 ×103), 0.01% (1.95×103), 0.005% (975), 0.001% 
(195), 0.0005% (98).

The thresholded maps are subsequently analyzed for 
the presence of clusters of spatially connected dipoles in 
6-dimensional space. Such clusters are considered to 
reflect a potential long-distance interaction if they consist 
of two dipole assemblies that are spatially distinct from 
each other. Clusters that contain auto-connections, that 
is, dipoles that are present in both assemblies of the con-
nection, are discarded from further inspection. If the sim-
ulated interacting dipoles fall within the identified clusters, 
it is considered a hit. All remaining clusters are consid-
ered false positives. It should be noted that the number of 
false positives evidently will increase with a decreasing 

threshold when using a relative thresholding scheme as 
we do here. The total number of false positives further 
depends on the blurriness of the spatial noise and the 
degree of auto-connectedness in the data.

Figure 4 shows the clusters with the smallest distance 
to the simulated interacting dipole pair, and the number 
of distinct connections, for each of the different thresh-
olds applied. Using a single dipole beamformer (Fig. 4A), 
the true connection can be correctly identified in three 
out of the nine thresholding schemes (marked with a red 
frame). This, however, comes at the expense of additional 
false positive connections, ranging in number from 70 to 
128. Thus, in this relatively favorable context—where 
coherence is large and the phase of the interaction is 
close to 90 degrees, that is, with only a minor instanta-
neous correlation between the two sources without the 
potential corresponding distortion of the beamformer 
due to correlated sources—the actual connection may be 
correctly identified, but one has to be prepared to accept 
an additional large number of false positives.

Figure  4B shows the spatial clusters closest to the 
interacting dipole pair for the subsampling-based recon-
struction. Here, the interacting sources are correctly 
identified in the five highest thresholding schemes 
(marked with red frames), with a considerable reduction 
in the number of false positives as compared to the single 
dipole beamformer output in Figure 4A. The number of 
false positives drops to one or none for the highest two 

Fig. 4.  All-to-all pairwise coherence. Shown are the results at different cluster thresholds for the single dipole 
beamformer (A) and the two-dipole beamformer with array subsampling (B). Each result also lists the number of identified 
connections. Thresholds at which the truly interacting dipole pair was successfully identified are marked by a red frame.
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thresholds applied. As an alternative to analyzing the dif-
ference in coherence with an approximation of the esti-
mated bias under the assumption of no coherence, one 
can also investigate the magnitude of the imaginary part 
of the reconstructed coherency. Supplementary Fig-
ure  S2 in the Supplementary Material replicates the 
results from Figure 2A (using a single dipole beamformer) 
for the imaginary part of coherency. With increasing 
threshold, the true connection can still be reliably identi-
fied and the number of false positives drops to only two 
for the highest two thresholds tested. Importantly, how-
ever, the usefulness of the imaginary part of coherency is 
limited to situations in which the phase difference of the 
interaction is pointing away from 0 or 180 degrees. Fig-
ure 5 shows the results for the same interacting dipole 
pair as in all previous examples, which are now interact-
ing at a phase difference of zero. The subsampling 
approach (Fig. 5B) is still capable of detecting the inter-
acting dipole pair at high thresholds, whereas the imagi-
nary part of coherency approach (Fig.  5A) now fails at 
higher thresholds. Therefore, the subsampling approach 
with a two-dipole beamformer seems to work well regard-
less of the phase difference of the interacting dipole pair.

3.4.  Full simulation results

To test our proposed approach more thoroughly and to 
substantiate the illustrative results discussed so far, we 

employed an exhaustive simulation. Here, we compare 
the array subsampling two-dipole beamformer approach 
to three other approaches: the traditional single dipole 
beamformer, the two-dipole beamformer without subsa-
mpling, and a beamformer without subsampling, using 
a geometric correction scheme, proposed by Wens 
et al. (2015). This correction scheme uses a spatial pro-
jection heuristic to remove instantaneous leakage from 
a seed location’s estimated activity from all target loca-
tions’ estimated activity. In practice, this results in the 
real-valued component of the interaction between the 
seed and target dipoles to be suppressed, leading to a 
purely imaginary-valued coherency value. Therefore, in 
the below, we refer to this last strategy as the recon-
struction of the imaginary part of coherency. We evalu-
ate the source reconstruction results based on hit rate, 
that is, how often the chosen approach correctly identi-
fied the true interacting dipole pair. Figure 6 shows the 
simulation results for a relative amplitude of a = 0.7, 
thus, the interacting sources were 2.333 times stronger 
than the other active sources (for the results for a = 0.5 
and a = 0.8, we refer the reader to Supplementary Fig-
ures  S3 and S4, respectively). The results reported in 
the paper are based on a signal-to-sensor-noise ratio of 
0.6; the results for an SNR of 0.5 are reported in Supple-
mentary Figures S6-S8.

Figure 6 depicts the hit rate as a function of simu-
lated coherence strength, and phase difference, for the 

Fig. 5.  Impact of 0 degree phase shift. Results for interacting sources where the phase of the interaction is 0 degrees 
for the beamformer with the geometric correction scheme, which focuses on the imaginary part of coherency (A) and the 
two-dipole beamformer with array subsampling (B). Each result also lists the number of identified connections. Thresholds 
at which the truly interacting dipole pair was successfully identified are marked by a red frame.
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different reconstruction strategies. We first considered 
the situation in which application of at least one of the 
thresholds < 0.01% resulted in the detection of the 
dipole pair that was chosen for the interaction (to define 
a hit, we allowed the summed distance of the simulated 
dipoles to the closest voxel in the suprathreshold clus-
ters to be at most 2 cm). Overall, the performance of the 
single dipole approach (Fig. 6A) was quite poor, with the 
hit rate—as a function of coherence strength and phase 
difference—rarely exceeding 40%. Only at unrealisti-
cally high coherence strengths > 0.6 was the detection 
rate larger than 50%, and even then only at phase differ-
ences close to 90 degrees. The two-dipole approach 
(Fig. 6B) fared better, specifically for coherence values 
larger than 0.4. The single dipole beamformer using 
imaginary coherency (Fig. 6C) generally showed better 
performance, already at lower coherence values, but 
this performance was highly dependent on the phase 
difference of the interaction, where interactions with a 
phase difference close to 90 degrees were more readily 

detectable, reaching a hit rate of > 90% in some situa-
tions. When the phase difference of the interaction was 
close to 0 (or 180) degrees, however, the detection rate 
at higher coherence values was only slightly higher than 
for low coherence strengths, compared with the single 
and two-dipole approach. The array subsampling beam-
former (Fig. 6D) overall performed best. Even though the 
maximum detection rate was not as high as in some sit-
uations using the imaginary part of coherency (i.e., 
coherence > 0.5  and phase difference close to 90 
degrees), the detection rate at a moderate coherence of 
0.3 already exceeded 60%, independent of the phase 
difference. Thus, the array subsampling two-dipole 
beamformer outperforms the other approaches for 
almost all parameters, specifically considering the fact 
that physiologically realistic neuronal interactions are 
not constrained to phase differences close to 90 
degrees, nor are those interactions restricted to high 
coherence values. The findings depicted in Figure 6 are 
at large supported by the results of other amplitude and 

Fig. 6.  Detection rate for interacting dipole pairs. Results from the full simulation, showing the hit rates for the interacting 
dipole pair as a function of simulated coherence strength and phase difference. The relative amplitude of the interacting 
sources and the other sources was a = 0.7, that is, the interacting sources were 2.333 times stronger than the other 
active sources. The SNR was 0.6. (A) Traditional single dipole beamformer. (B) Two-dipole beamformer. (C) Single dipole 
beamformer using imaginary coherence. (D) Two-dipole beamformer with array subsampling.
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SNR values, as Supplementary Figures S4 and S6-S8 
illustrate.

Notably, in the absence of simulated true coherence, 
the different reconstruction approaches resulted in a vari-
able amount of false positive connections in the direct 
vicinity of a pair of activated dipoles (see the leftmost set 
of bars in each of the panels in Fig. 6). For the imaginary 
part of coherency, this type of false positive connection 
was present in about 30% of the simulations, and for the 
proposed subsampling approach the percentage of 
occurrence was about 10%. In general, the occurrence of 
false positives is the consequence of the fact that we 
used a relative thresholding scheme to investigate the 
spatial structure of the reconstructed connectivity maps. 
By construction, and irrespective of the numeric value of 
the connectivity estimates, the relative thresholding 
scheme always results in a collection of suprathreshold 
edges in the connectivity maps, which may be spatially 
clustered, and interpreted as interacting sources. Based 
on the spatial smoothness of the connectivity maps, and 
the number of suprathreshold edges, the number of false 
positive connections will vary as a function of the chosen 
threshold. Figure 7 shows the number of false positives 
versus the hit rate in a so-called Free-response Receiver-
Operating-Characteristic (FROC), as a function of the 
detection threshold and for a relative amplitude of  
a = 0.7. On each of the lines, the threshold is increasing 
from left to right. For all but the subsampling reconstruc-
tion method, the optimal—yet still quite low—sensitivity 
was reached at a threshold that yielded close to 100 false 
positive connections on average. For the subsampling 
reconstruction method, the highest sensitivity was com-
promised by about 10 to 20 false positive connections on 
average. Although this still may seem a rather high false 

positive rate, it is substantially lower than the false posi-
tive rate for the other approaches tested. The FROC 
curves for relative amplitudes of a = 0.5 and a = 0.8 can 
be found in the Supplementary Material (Fig.  S5) and 
show very similar patterns. For an SNR of 0.5, the results 
are reported in Supplementary Figure  S9 and at large 
support the findings for an SNR of 0.6, except for at a low 
relative amplitude of a = 0.5, the only parameter combi-
nation for which the two-dipole subsampling beamformer 
does not clearly outperform the other algorithms.

3.5.  Real data results

We used a cortico-muscular coherence dataset to test 
the subsampling approach on real data. Figure 8 shows 
the results from this analysis. We first identified the 
dipole with maximum CMC (Fig. 8A) as a seed for the 
subsequent analyses. Next, we computed seeded 
cortico-cortical coherence difference with the null 
coherence estimate (Fig. 8B) and the imaginary part of 
coherency (Fig. 8C). The coherence difference shows a 
lot of spatial structure in the vicinity of the seed dipole, 
where the local maxima could reflect genuine maxima in 
contralateral sensorimotor, pre-motor, and supplemen-
tary motor areas. Yet, given the equal magnitude of the 
surrounding negative differences, and the similar spatial 
structure as observed in the reported side lobes 
(Schoffelen et al., 2008), these results may be spurious. 
Similarly, for the imaginary coherence, the focal maxima 
surrounding the seed regions may reflect genuine inter-
actions, but could just as well be spurious side lobes. In 
contrast to the two more traditional approaches, the 
subsampling result clearly identify local maxima, distant 
to cM1, in the ipsilateral cerebellum, ipsilateral M1, con-
tralateral premotor cortex, possibly in supplementary 
motor areas, and in the thalamus.

4.  DISCUSSION AND FUTURE DIRECTIONS

Brain connectivity plays a central role in many prevalent 
hypotheses on brain functioning and organization 
(Bonnefond et  al., 2017; Fries, 2005, 2015; Jensen & 
Mazaheri, 2010). Thus, the estimation of functional connec-
tivity based on electrophysiological processes is a neces-
sary tool for the experimental assessment of those theories. 
Over the years, many different measures of brain connec-
tivity have been put forward (Aviyente et al., 2011; Ghanbari 
& Moradi, 2020; Vinck et  al., 2011) and the methods to 
apply these have been refined (Dalal et al., 2006; Hillebrand 
et al., 2012; Kuznetsova et al., 2021; Nunes et al., 2020; 
Woolrich et al., 2011). Despite these efforts, results from 
non-invasive recordings, especially phase synchrony mea-
sures, have stayed sparse and methodological challenges 

Fig. 7.  Free-response receiver-operating-characteristic. 
Hit rate plotted against the number of false positive 
connections at a relative amplitude of a = 0.7.
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remain (Bastos & Schoffelen, 2016; Colclough et al., 2016; 
He et  al., 2019; Palva et  al., 2018; Schoffelen & Gross, 
2009). In this paper, we aimed at addressing some of these 
challenges through a new beamformer-based connectivity 
estimation framework, which utilizes three key compo-
nents: a two-dipole beamformer approach to estimate all-
to-all connectivity, an estimation of the null coherence of 
the model under the assumption of no interaction, and a 
sensor array subsampling approach to further mitigate the 
influence of spatial noise. Our all-to-all approach is moti-
vated by the fact that—even in an unrealistically well-
controlled contrast—misspecification of the seed dipoles 
leads to spatial structure in connectivity difference maps 
that can be mistaken for true interactions. Moreover, 
because experimental contrasts almost invariably contain 
differences in source activations and SNR, difference maps 
of connectivity may show spatial structure that is not due to 
changes in actual interaction between sources. For this 
reason, it is desirable to estimate the spatial leakage of 
connectivity directly from the data. We explored the possi-

bility to use such null coherence estimates, based on the 
weighted inner product between pairs of spatial filters. A 
two-dipole beamformer model is motivated by the notion 
that beamformer estimates are distorted in the presence of 
underlying correlations. Furthermore, we propose to use 
sensor array subsampling in order to smooth out the spatial 
noise at the benefit of the true interactions.

Some of the key components of our approach have 
been proposed before, in one form or another, but mostly 
with a different intention, and were never combined for 
the assessment of connectivity. We compared the perfor-
mance of our approach to other all-to-all reconstruction 
schemes, which used only a subset—or none—of the key 
components.

Using an extensive set of simulations, we showed that 
our approach outperforms the other, often more tradi-
tional, all-to-all approaches tested. The overall detection 
rate, specifically at physiologically meaningful interaction 
strengths and at a wide range of phase angles, was high-
est for the proposed subsampling based method. This 

Fig. 8.  Real data analysis. (A) Cortico-muscular coherence as reported in Schoffelen et al. (2008). (B) Coherence that was 
corrected by subtracting the null coherence estimate. (C) Imaginary coherence (beamformer with the geometric correction 
scheme) with a seed in primary motor cortex. (D) Coherence derived with the subsampling beamformer, corrected by 
dividing through the null coherence estimates averaged across subsamples.
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high detection rate was accompanied by the overall low-
est false positive rate. While performance was consider-
ably affected when the relative source amplitude of 
competing, non-interacting sources was increased (Sup-
plementary Fig. S3), our approach still showed the overall 
lowest false positive rate (Fig.  S5A). Based on these 
observations, we argue that the proposed reconstruction 
approach can be a promising pipeline to be evaluated on 
real MEG data for the robust detection of phase synchro-
nization in brain networks.

In the following section, we compare our proposed 
method to a few prominent already existing methods 
which correct for spatial leakage in functional connectiv-
ity. One of the first methods for leakage correction is the 
proposal by Nolte et al. (2004) to use the imaginary part of 
coherency. By discarding the real part of the signal, this 
method corrects for linear leakage—but also misses any 
true zero-lag connectivity. Another class of approaches 
uses signal orthogonalization as a means to correct for 
leakage: Brookes et al. (2012) and Hipp et al. (2012) intro-
duced this method for pair-wise seed-based comparisons 
and Colclough et al. (2015) extended the method to sev-
eral regions-of-interest (ROIs). Lastly, Wens et al. (2015) 
use a geometric correction scheme for the suppression of 
spatial leakage which models the spatial leakage as a 
point spread function. Our proposed approach differs on 
several dimensions from the described methods. First, 
our approach allows for an estimation of all-to-all connec-
tivity, which the orthogonalization methods do not pro-
vide: since they rely on partial correlations, even the 
ROI-method of Colclough et al. (2015) limits the achiev-
able granularity as functionally overlapping ROIs need to 
be avoided. These methods thus also call for the explicit 
specification of a seed or seed region. Further, they esti-
mate signal-amplitude correlations while our relies on 
phase differences. Second, some methods such as the 
orthogonalization methods and imaginary coherence will 
potentially over-correct the signal for true zero-lag con-
nectivity. Our proposed method does not suffer from this, 
since the leakage correction is achieved via the two-
dipole spatial filter. Lastly, none of the discussed methods 
deploys measures to reduce the variance of their esti-
mate, which we achieve via the subsampling of sensors.

4.1.  Real data analysis

We then show that our approach can uncover biologi-
cally plausible coherence between the contralateral pri-
mary motor cortex and other motor areas in the brain. 
The cerebellum and ipsilateral motor cortex were also 
identified using a CMC-only approach (Schoffelen et al., 
2008). The other nodes identified putatively reflect the 
same network as identified in Gross et al. (2002), which 

used a different motor task than the one reported here. 
The observed pattern of functional connectivity was not 
revealed using the other, traditional approaches. In 
extension to our simulations, we found that a division as 
opposed to subtraction of the null coherence estimate 
in the subsampling case provided clean results. This is 
made possible since the averaging across many subsa-
mples stabilizes the null coherence estimate. We thus 
show that our subsampling approach works well on real 
data; the validation of the best correction scheme (divi-
sion or subtraction) is beyond the scope of this paper as 
this cannot be decided on a single real data set. Simi-
larly, a validation of all-to-all connectivity using our 
approach with subsequent statistical evaluation across 
participants is left for future research.

4.2.  Limitations and further exploration

4.2.1.  Number of interacting dipoles

In our simulations, we only look at cases of two interacting 
dipoles. One might argue that this is a shortcut with respect 
to our use of the two-dipole beamformer (we remind the 
reader that the two-dipole model is not only applied to  
the interacting dipoles of interest, but also all interacting 
noise sources). To demonstrate that this approach also 
fares well in different scenarios, we repeated the analysis 
for three interacting dipoles and present the results in Sup-
plementary Figure  S10. While the overall hit rate goes 
down, our method still outperforms the other algorithms in 
a comparable pattern to Figure 7. However, these results 
do not necessarily expand to more complex or distributed 
source configurations, which could be an interesting ave-
nue for future evaluation.

4.2.2.  Spatial resolution

In our approach, we increase robustness through sensor 
subsampling. A possible limitation of this could be a 
decreased spatial resolution through the reduction of num-
ber of sensors per subsampling realization. However, as in 
ensemble learning approaches (Breiman, 1996), we then 
aggregate the results across many random subsampling 
realizations, effectively using all sensors. Since our results 
yield direct information about the influence of dipole dis-
tance between the interacting dipoles, we can inspect the 
results as a function of dipole distance. In Supplementary 
Figure S11, we show that for dipoles that are further apart 
than around 1.5 cm, our proposed approach outperforms 
the other methods we tested. This further confirms that the 
subsampling of sensors does not lead to a reduction  
in resolution, but indeed acts as a way to minimize vari-
ance as proposed in ensemble learning (Breiman, 1996). 
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Ultimately, however, we do not specifically test for spatial 
resolution in this paper, as our focus lies on the robust 
identification of (further apart) interacting sources in com-
parison to established methods. A detailed investigation of 
spatial resolution is left to future work.

4.2.3.  Background noise and scaling parameter

Our simulations used 18 active background dipoles to 
simulate brain noise. To further investigate the impact of 
noise on our method, we conducted the simulations 
with a noise covariance matrix estimated from resting-
state activity of a real data set. The results of this simu-
lation are presented in Supplementary Figure S12. The 
FROC curves show that the hit rate decreased for all 
algorithms as compared to Figure 7, but the two-dipole 
subsampling beamformer approach still clearly outper-
forms the other methods. From a theoretical point of 
view, some steps taken in our approach may clearly be 
a violation of reality. For instance, the assumption that 
the influence of noise in the null coherence bias estima-
tion step can be modeled with a single scaling parame-
ter (which is equivalent to assuming a diagonal sensor 
noise covariance) is a rather large simplification. Future 
work is needed in order to investigate in detail the lim-
itations of this simplification. Our preliminary control 
analysis, presented in Supplementary Figure  S12, 
shows that the use of more realistic noise covariances is 
feasible but does not seem required.

4.2.4.  Realistic coherence values

In the current simulation, we tested a broad range of 
coherence values, starting from a value of 0.2. Physiologi-
cally meaningful neuronal interactions may lead to coher-
ence values that are lower, in the range of 0.1–0.2 (see, 
e.g., Vezoli et al., 2021). We show that our approach out-
performs the other methods also at a simulated coherence 
of 0.2, although the hit rate dropped to about 50%. Based 
on these data, our approach will be useful to detect a large 
portion of realistic interactions at the upper boundary, as 
further underlined by our analysis of real data. The perfor-
mance of our approach for lower coherence values—as 
well as method tweaks to improve performance for low 
coherence values—is open for future investigation.

4.3.  Future work

We foresee future work to explore in more detail certain 
aspects of the proposed analysis scheme. For instance, 
regarding the subsampling, we have settled on a fixed 
number of subsampled reconstructions, using a random 
number of sensors (between 50 and 150 out of 275 sensors 

for the simulations and between 40 and 120 out of 151 
sensors for the real data), and combined the reconstruc-
tions by means of averaging. Although those parameter 
choices were motivated by initial explorations, strategies to 
estimate the optimal number of sensors for the subsam-
pling, and different combinatorial strategies (e.g., by also 
taking the variance structure across subsample-based 
reconstructions into account) may further improve the per-
formance of the subsampling based approach.

Regarding statistical testing, the two-dipole subsam-
pling beamformer can output z-scores based on the vari-
ance among the subsamples (cf. Fig.  3), which can be 
used for thresholding and the comparison to the null 
coherence estimate, but also for further statistical evalu-
ation across data sets (e.g., statistical testing between or 
across participant groups). Within-data set testing could 
be possible by not only bootstrapping sensor subsets 
but also trial subsets. Our approach could thus be further 
modified to include statistical testing schemes based on 
the subsampling.

Lastly, future work could furthermore investigate if a 
similar approach is also fruitful with distributed source 
reconstruction models and compare the subsampling 
approaches to established distributed methods.

To conclude, we show a new beamformer-based con-
nectivity estimation framework, which addresses some 
well-documented challenges of functional connectivity in 
electrophysiology. We hope that our approach can be a 
useful tool in the study of connectivity within basic and 
clinical neuroscience.
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