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Abstract
Low energy availability, particularly when problematic (i.e., prolonged and/or severe), has numerous negative consequences 
for health and sports performance as characterized in relative energy deficiency in sport. These consequences may be driven 
by disturbances in endocrine function, although scientific evidence clearly linking endocrine dysfunction to decreased sports 
performance and blunted or diminished training adaptations is limited. We describe how low energy availability-induced 
changes in sex hormones manifest as menstrual dysfunction and accompanying hormonal dysfunction in other endocrine axes 
that lead to adverse health outcomes, including negative bone health, impaired metabolic activity, undesired outcomes for body 
composition, altered immune response, problematic cardiovascular outcomes, iron deficiency, as well as impaired endurance 
performance and force production, all of which ultimately may influence athlete health and performance. Where identifiable 
menstrual dysfunction indicates hypothalamic-pituitary-ovarian axis dysfunction, concomitant disturbances in other hormonal 
axes and their impact on the athlete’s health and sports performance must be recognized as well. Given that the margin between 
podium positions and “losing” in competitive sports can be very small, several important questions regarding low energy avail-
ability, endocrinology, and the mechanisms behind impaired training adaptations and sports performance have yet to be explored.

Key Points 

There is insufficient scientific evidence in the sports 
science literature to directly link endocrine dysfunction 
(e.g., menstrual dysfunction) to decreased performance 
and blunted or decreased training adaptations. We can, 
however, derive the possible mechanistic links between 
low energy availability-induced hormonal dysfunction 
and negative health and sports performance outcomes in 
female athletes from established physiology.

Monitoring/tracking menstrual bleeding, ovulation (lute-
inizing hormone surge), and/or peak progesterone during 
the luteal phase may help to identify menstrual dys-
function associated with low energy availability (e.g., 
anovulation, luteal phase defect) before more severe 
menstrual dysfunction (amenorrhea) or marked health or 
performance decrements occur.

The endocrine consequences of low energy availability 
may negatively impact optimal training, recovery, and 
performance before or after menstrual dysfunction is 
evident. Concomitant disturbances in other hormonal 
axes and their impact on an athlete’s health and sports 
performance must be recognized.

1 Introduction

Low energy availability (LEA) is a relatively common 
challenge for physically active and athletic populations 
[1]. Low energy availability can be problematic and can 
lead to numerous health and sports performance conse-
quences described in relative energy deficiency in sport 
(REDs) [2–4]. Low energy availability refers to a mis-
match between dietary energy intake to cover the energy 
cost of exercise, resulting in suboptimal energy for other 
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physiological functions in the body, including the main-
tenance of optimal health and supporting adaptations to 
training [5]. Low energy availability can be adaptable (i.e., 
short term and accompanied by benign or even beneficial 
effects on health and performance), or problematic (i.e., 
prolonged and/or severe and accompanied by negative 
consequences for health and performance) [4]. An energy 
availability (EA) threshold of ~ 30 kcal  kg−1 fat-free mass 
(FFM)  day−1, below which disruptions to several hormonal 
secretory patterns were noted in as few as 4–5 days [6] has 
been identified in untrained adult women. Presently, a 
threshold of ~ 45 kcal  kg−1 FFM  day−1 is suggested for ath-
letes to maintain body mass and support bodily function 
[7]. Although it is understood that an absolute universal 
threshold for EA does not exist [7], thresholds can be used 
to inform both research and practice.

The most studied aspect of REDs to date has been the 
female athlete triad (Triad) or the interrelationship between 
problematic LEA, menstrual dysfunction, and poor bone 
health (low bone mineral density [BMD] and increased 
risk of bone stress injuries) [8–13]. While early research 
suggested that the hypothalamic-pituitary-ovarian (HPO) 
axis was primarily responsible for bone decrements, it has 
become clear that the whole endocrine system, with its 
numerous feedback loops and various points of physiologi-
cal interplay, influences athlete health, and ultimately, ath-
lete performance, including the outcomes outlined in REDs 
[2–4]. Although the influences of short-term, medium-term, 
and long-term LEA on performance have been described in 
male and female individuals [14], and menstrual dysfunc-
tion as a surrogate marker of problematic LEA in female 
individuals has been linked to performance decrements in 
REDs [3, 14] (see Table 1), there are only a limited num-
ber of studies that actually assess sports performance, or 
performance changes related to hormonal profiles associ-
ated with menstrual dysfunction as summarized in Table 1. 
Three of these studies are longitudinal [15–17], two are 
cross-sectional [18, 19], and two are case studies [20, 21]. 
Three of these studies relied on self-reported menstrual sta-
tus alone [17, 20, 21] while four studies used urinary or 
blood samples (or their combination) to assess endocrine 
(menstrual) function [15, 16, 18, 19]. Oligomenorrhea and 
amenorrhea were most commonly compared to natural/
eumenorrheic menstrual cycles while other types of men-
strual dysfunction were excluded [19] or not considered/
reported. Five studies assessed endurance performance using 
season best or laboratory testing [15–19], while three stud-
ies assessed measures related to strength or power [20, 21], 
and one study used a published points system [17]. Current 
research in Table 1 indicates that menstrual dysfunction 
(e.g., ovarian suppression such as amenorrhea) generally 
decreases or blunts athletic performance and development 
whereas natural/eumenorrheic menstrual cycles tend to 

support performance and athletic development. Regretta-
bly, the relatively limited scope (performance measures) 
and depth (assessment of mechanisms) of this research hin-
ders our ability to extrapolate results to larger populations 
and to draw robust conclusions regarding the links between 
hormone profiles and performance. As such, a gap exists 
in our understanding regarding the effects of the spectrum 
and progression of the hormonal profiles characteristic of 
menstrual dysfunction on sports performance. While most 
LEA and REDs literature focuses on the components of the 
Triad, athlete health and performance comprise several other 
factors, including cardiovascular and ventilatory responses, 
substrate metabolism, neuromuscular function, nervous sys-
tem activity, thermoregulation, and psychological factors, all 
of which are highly pertinent in a sports setting.

The aim of this narrative review is to describe the link 
between LEA-induced hormonal dysfunction and the vari-
ous health and sports performance outcomes in female ath-
letes. We focus on describing key evidence-based hormonal 
pathways responsible for the normal physiological function 
necessary for sports performance. The review is divided into 
two parts. Part A: Beyond Menstrual Dysfunction (Sect. 2) 
illustrates how menstrual dysfunctions (particularly func-
tional hypothalamic amenorrhea [FHA]), per se, are not in 
themselves the problem for sports performance, but rather 
that the altered endogenous hormone profiles, character-
ized by sex hormone deficiencies, contribute to dysfunction 
in mechanisms that affect both health and ultimately also 
sports performance. Part B: Beyond Menstrual Dysfunc-
tion and Sex Hormones (Sect. 3) describes how the altered 
endogenous sex hormone profiles associated with menstrual 
dysfunction are not the only hormonal challenge that arises 
from problematic LEA and how concurrent dysfunction in 
other hormonal axes contributes to impairment in mecha-
nisms that affect athlete health and sports performance. Our 
description of the endocrine consequences of LEA in female 
athletes is relatively brief, as there are already several excel-
lent reviews on this topic [22–26].

2  Part A: Beyond Menstrual Dysfunction

The HPO axis controls female reproduction via the men-
strual cycle [29]. Ideally, gonadotropin-releasing hormone 
(GnRH) from the hypothalamus stimulates the release of 
follicle-stimulating hormone (FSH) and luteinizing hor-
mone (LH) from the anterior pituitary, stimulating follicu-
lar growth and ovulation, in addition to activating the ova-
ries to produce estradiol (E2) and inhibin. After ovulation, 
the follicle remnant becomes the corpus luteum, which is 
responsible for the production of progesterone (P4). While 
LH and FSH are important for production of the E2, LH 
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also stimulates thecal cells in the ovaries to secrete testos-
terone and FSH stimulates granulosa cells in the ovarian 
follicles to produce aromatase, which then converts thecal 
cell-produced testosterone into E2. In healthy pre-menopau-
sal women, E2 is the major circulating estrogen, playing a 
fundamental role in reproduction via the menstrual cycle, 
as well as in the physiology of the cardiovascular, skeletal, 
metabolic, and central nervous systems [30–32]. Similarly, 
P4 has several non-reproductive functions related to the car-
diovascular system, central nervous system, and bone [33]. 
For example, P4 influences thermoregulation, ventilation, 
and metabolism while also having antiestrogenic and andro-
genic functions [34].

Several other hormones/systems contribute to the regu-
lation of the HPO axis. For example, kisspeptins act via 
the kisspeptin receptor to stimulate the pulsatile release of 
GnRH [29]. The kisspeptin system appears to respond to 
both metabolic status and EA [35]. Kisspeptin activity is 
decreased by LEA, which, in turn, increases orexigenic fac-
tors (ghrelin) and decreases anorexigenic factors (leptin) 
[36]. This decrease in kisspeptin leads to a downregulation 
of GnRH thus influencing downstream cascades that affect 
appetite and feeding behavior [37]. The activin-follistatin-
inhibin axis also contributes to regulation of the HPO axis, 
with activin increasing the synthesis/secretion of FSH and 
inhibin downregulating it. Inhibin secretion is reduced by 
GnRH and increased by insulin-like growth factor-1 (IGF-
1). Similarly, glucocorticoids, such as cortisol, suppress 
pituitary gonadotroph responsiveness to hypothalamic input, 
which may also result in disruptions to the HPO axis [38].

2.1  LEA and Menstrual Dysfunction

The HPO axis requires sufficient energy and nutrients to 
maintain normal menstrual function [39] or eumenor-
rhea (i.e., “normal” ovulatory cycles of approximately 
21–35 days). Both LEA and stress (emotional and/or physi-
cal) may lead to the downregulation of the HPO axis [22, 
40] both in the short term [6] and particularly when LEA 
is problematic or severe (< 10 kcal  kg−1 FFM  day−1) [41]. 
Downregulation of the HPO axis is indicated by changes in 
hormonal profiles, characteristic of menstrual dysfunction, 
that are recognized as a hallmark of problematic LEA and 
range in severity from subtle luteal phase defects to ano-
vulation, oligomenorrhea, and secondary amenorrhea (i.e., 
FHA) [42–45] (definitions and representative hormonal 
profiles of menstrual function and dysfunction in Fig. 1). 
A prolonged follicular phase and luteal phase deficiency 
characteristic of oligomenorrhea may affect fertility [46], 
while the occurrence of anovulatory cycles (which can be 
assessed using a urinary ovulation test [47, 48]) and FHA 
profoundly impact fertility [49]. Yet menstrual dysfunction 
is potentially reversible [50] if the root cause is addressed 

[50]. Regrettably, without regular monitoring/tracking hor-
mones, these changes in hormonal profiles may go unnoticed 
until attempting pregnancy.

A dose–response relationship has been reported between 
the magnitude (energy deficit of − 470 to − 810 kcal  day−1) 
of LEA and the incidence of menstrual dysfunction in exer-
cising women. However, the severity of menstrual dysfunc-
tion appears unrelated to LEA magnitude [51] and there is 
limited evidence for a specific EA threshold below which 
menstrual dysfunction is induced [52]. The prevalence of 
the more severe menstrual dysfunction, such as FHA, is 
relatively high in elite runners (self-reported = 23/36 of ath-
letes surveyed) [50] and in other endurance athletes (clini-
cally verified = 24/40 of athletes examined) [53]. As FHA 
is considered a heterogeneous group of disorders that can 
manifest similarly [54], diagnosis should only be confirmed 
after other etiologies are excluded [55]. In practice, estima-
tion of ovulation via the LH surge and confirmation of the 
mid-luteal peak in progesterone indicates normal hormonal 
function, whereas regular menstrual bleeding alone is not an 
indicator of eumenorrhea [28].

2.2  Sex Hormones and Health

While the spectrum of menstrual dysfunction (oligo/amenor-
rhea), as a manifestation of HPO axis dysfunction, is a com-
monly identified outcome of LEA in women not using hor-
monal contraceptives (HCs), the non-reproductive actions 
of suppressed hormones such as E2 and P4 also have the 
potential to affect health, training responses and adaptations, 
and ultimately sports performance. Endogenous E2 affects 
metabolism [32], cardiovascular function [56], bone [57], 
and muscle [58, 59]. Likewise, endogenous P4 influences 
thermoregulation, ventilation, and metabolism while hav-
ing antiestrogenic and androgenic functions [34]. The wide 
encompassing effects of E2 and P4 are beyond the scope of 
this review, and we will therefore focus on the effects of E2 
and P4 that are most pertinent to sports performance.

2.2.1  Bone

Energy availability and E2 independently and synergistically 
affect volumetric BMD, bone geometry, and estimates of 
bone strength [57]. Overall poor bone health is also associ-
ated with other LEA-induced hormonal disruptions includ-
ing decreases in androgens, insulin, IGF-1, triiodothyronine 
(T3), and leptin in addition to increases in fasting peptide 
YY (PYY), ghrelin, and cortisol [22, 60, 61]. Athletes and 
non-athletic women with LEA, as well as athletes with FHA, 
have lower BMD, impairments of bone microarchitecture, 
and altered markers of bone remodeling compared with 
those with adequate EA and eumenorrhea [62–64]. Ath-
letes with menstrual dysfunction (oligo/amenorrhea) also 
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have decreased bone strength estimates and higher lifetime 
fracture rates compared with both eumenorrheic athletes and 
controls [65, 66]. Women participating in leanness sports 
have higher rates of menstrual dysfunction, low BMD, and 
fracture than other sports [67, 68]. Indeed, the prevalence 
of bone stress injuries is higher in amenorrheic athletes than 
naturally menstruating athletes [68, 69], whereas even short-
term manipulation of EA (15 vs 45 kcal  kg−1 FFM  day−1) 
in naturally menstruating women performing daily endur-
ance exercise decreased bone formation and increased bone 
resorption marker concentrations [70, 71]. In practice, detri-
mental structural changes in bone resulting from low E2 and 
accompanying hormonal dysfunction induced by LEA may 
be undetected for years, but the consequences of low BMD 
and recurrent bone stress injuries have significant repercus-
sions on both health and ultimately performance (via modi-
fied and missed training days). It should be highlighted that 
the risk for bone stress injuries related to the Triad is found 
to be higher in teenage athletes than for athletes in their 
twenties [72]. Furthermore, the accrual of lost BMD when 
EA is corrected (depending on the timing and duration of 
LEA) may be difficult, if not impossible [73, 74]. As such, 
avoidance of LEA and menstrual dysfunction is essential for 
long-term bone health.

2.2.2  Body Composition

Estrogens are important for the regulation of body weight 
and body composition. Estrogens influence fat distribution 
and are associated with lower visceral fat [75]. Endogenous 
E2 is an anabolic hormone associated with muscle mass 
and strength in female athletes [59]. Estradiol plays a role 
in facilitating muscle tissue sensitivity to anabolic stimuli, 
regulating myofibrillar protein synthesis [59] and skeletal 
muscle hypertrophy [58, 76]. Endogenous E2 upregulates 
intracellular signaling pathways that stimulate muscle pro-
tein synthesis [77] and may play a role in muscle repair and 
regeneration [58]. Low energy availability-induced low E2 
may affect muscle quality, as E2 is known to protect mus-
cles from damage by acting as an antioxidant or membrane 
stabilizer or by affecting gene regulation [58] while hav-
ing antiapoptotic effects [78]. Indeed, estrogen receptors 
are found in several tissues and organs of the body and are 
known to modulate cell proliferation, differentiation, and 
survival. Estrogens also exhibit neuroprotective capabili-
ties by promoting DNA repair, stimulating growth factor 

expression, and modulating blood flow, whereas E2-depend-
ent signaling pathways are involved in neurogenic processes 
[79]. Ultimately, ineffective tissue repair and regeneration 
may impair training adaptations and athletes with low E2 
may be more susceptible to muscle damage (i.e., extended 
recovery times). Generally, lean body composition and low 
body weight are associated with performance in endurance 
sports. Lower body fat is associated with better endurance 
performance while gains in muscle mass are generally asso-
ciated with increases in performance across sports [80]. A 
decrease in body mass due to LEA may increase maximal 
aerobic capacity relative to body mass (maximum oxygen 
uptake in mL  kg−1  min−1), even in the absence of changes 
in absolute aerobic capacity (maximum oxygen uptake in 
mL  min−1); however, the benefits are likely to be transient 
when prolonged LEA and menstrual dysfunction are present. 
Indeed, lower body weight and fat mass in elite amenor-
rheic endurance athletes do not appear to result in improved 
aerobic capacity compared with eumenorrheic athletes [19].

2.2.3  Cardiovascular System

Systemic vascular circulation is an important component 
of health and performance. In a healthy blood vessel, E2 
is a potent vasodilator via nitric oxide production; it also 
mediates inflammation and oxidative stress [81]. Short-term 
perturbations in E2 might influence blood flow via disturbed 
endothelial function and low E2 associated with menstrual 
dysfunction has been linked to lower blood pressure and 
heart rate response [56]. Perturbations in circulation may 
impair the transport of oxygen and energy substrates, includ-
ing glucose and fatty acids, to skeletal muscle, while clear-
ance of metabolic waste may also be affected. Physically 
active women with low E2 demonstrate lower heart rate and 
blood pressure response to an orthostatic challenge in which 
plasma renin, angiotensin II, and aldosterone fail to increase, 
resulting in a sympathetic vasoconstrictor response to com-
pensate for blood pressure changes [56].

Importantly, LEA may cause endothelial dysfunction 
independently of low E2 [82, 83] and extreme LEA can lead 
to cardiac arrythmias [84]. The effects of P4 on the cardio-
vascular system have received less attention, although there 
is evidence that P4 lowers blood pressure, inhibits coronary 
hyperactivity, and has powerful vasodilatory and natriu-
retic effects [85]. Vascular dysfunction caused, in part, by 
reduced E2 may be accompanied by impaired/blunted nitric 
oxide production; early signs of cardiovascular dysfunction 
have been identified in young amenorrheic athletes includ-
ing an unfavorable lipid profile: higher total cholesterol and 
low-density lipoprotein cholesterol [86]. Likewise, reduced 
endothelium-dependent vasodilation [83], increased vas-
cular tone, lower shear rate, as well as impaired endothe-
lial and/or vascular smooth muscle cell responsiveness 

Fig. 1  Terminology of menstrual function and dysfunction including 
representative hormonal profiles. Of note, hormonal profiles of hor-
monal contraceptive (HC) users (including combined HCs and pro-
gestin only) may be different. The solid line represents estradiol (E2), 
the dashed line represents progesterone (P4), the dotted line repre-
sents luteinizing hormone (LH), and the drop symbol represents men-
strual bleeding.  Modified from Allaway et al. [45] with permission

◂
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to nitric oxide have been reported in female athletes with 
LEA-induced amenorrhea [82, 86–89]. Taken together, low 
E2-induced and P4-induced changes in the circulation and 
cardiovascular function may, in theory, influence training 
responses and quality, as well as subsequent adaptations and/
or performance.

Despite the unfavorable lipid profile that may present in 
athletes with LEA, it is important to remember that choles-
terol is essential for the metabolism of steroid hormones. 
Cholesterol is, for example, metabolized to pregnenolone, 
which is then further metabolized into sex steroids E2 and 
P4 [90]. As such, it is possible that the observed high choles-
terol associated with menstrual dysfunction is a compensa-
tory mechanism for decreased E2 and P4 in LEA or that the 
metabolism of cholesterol into steroid hormones is disturbed 
by LEA.

2.3  Summary Part A

Menstrual dysfunction is not in itself a problem for sports 
performance, but the altered endogenous hormone profiles, 
characterized by sex hormone deficiencies, contribute to 
dysfunction in mechanisms that affect health, training qual-
ity, and sports performance.

3  Part B: Beyond Menstrual Dysfunction 
and Sex Hormones

Beyond the HPO axis, several other hormonal axes are 
affected by LEA. Together, the hypothalamus and pituitary 
gland control downstream processes related to an athlete’s 
health and sports performance, including autonomic, endo-
crine, and somatic responses and adaptations. For example, 
the hypothalamic–pituitary–adrenal (HPA) axis regulates 
responses to stress and plays a critical role in energy metabo-
lism, particularly in relation to food intake, energy storage, 
and energy mobilization [22]. As a catabolic and glucoregu-
latory hormone, downstream cortisol is secreted in response 
to physical stress and other challenges to body homeostasis 
[91]. In turn, the hypothalamic–pituitary–thyroid axis con-
trols metabolic hormones that play a key role in regulat-
ing musculoskeletal health and function [92], while several 
other hormones, including leptin, ghrelin, insulin, and PYY 
regulate EI via appetite regulation and/or behavioral food 
intake. Some of these hormones have additional functions, 
for instance regulating gastric motility, water and electrolyte 
absorption, and immunological responses [93–95].

Hormones such as growth hormone (GH), IGF-1 and its 
binding proteins, insulin, and testosterone are important 
for anabolic processes and are major determinants of body 
composition [96]. Insulin-like growth factor-1 plays a direct 
role in whole-body glucose homeostasis, influences muscle 

hypertrophy [97], and is positively associated with muscular 
endurance and aerobic fitness [98]. Growth hormone modu-
lates insulin sensitivity, glucose homeostasis, and metabolic 
response to calorie restriction. Importantly, the GH-IGF axis 
also influences immunity and inflammation [99]. Insulin 
acts as an anabolic/anticatabolic hormone, mitigating mus-
cle protein breakdown [100, 101] with similar actions by 
GH, which primarily acts via its actions on IGF-1 [100]. 
More specifically, IGF-1 is involved in managing muscle 
protein synthesis, hypertrophy, and inhibition of muscle pro-
tein breakdown [102]. Testosterone is produced in female 
individuals by the ovary, adrenal glands, and peripheral tis-
sues via conversion of androstenedione and dehydroepian-
drosterone (pre-androgens synthesized by the ovaries and 
adrenal glands) to testosterone. Testosterone has both direct 
and indirect (via aromatization to E2) functions related to 
vasomotor tone, endothelial function, peripheral vascular 
resistance, cognition, and musculoskeletal health [103].

3.1  LEA and Endocrine Dysfunction

Short-term LEA has been shown to elevate blood cortisol 
in a non-linear pattern in naturally menstruating women. A 
decrease in EA from 45 to 30 or 20 kcal  kg−1 FFM  day−1 was 
associated with a small increase in blood cortisol, whereas 
a more notable increase (~ 150%) was observed at an EA of 
10 kcal  kg−1 FFM  day−1 [6]. However, significant changes 
in blood cortisol levels were not observed in bodybuilding 
fitness athletes after a 4-month fat-loss diet combined with 
a high training volume [104]. In elite female endurance ath-
letes with varying levels of EA, cortisol levels were highest 
in women reporting menstrual dysfunction compared with 
their regularly menstruating counterparts [53], which is con-
sistent with previous research [105, 106].

Laboratory-based interventions and cross-sectional inves-
tigations have reported decreases in T3, leptin, insulin, and 
IGF-1, as well as increased growth hormone (GH) and adi-
ponectin due to LEA [22, 23]. Short-term investigations in 
healthy sedentary women have shown decreased 24-h mean 
levels of insulin and leptin with decreasing EA (from an 
adequate EA of 45 kcal  kg−1 FFM  day−1). In fact, when EA 
decreased from 45 to 30 kcal  kg−1 FFM  day−1, there was a 
35% decrease in leptin with a further decrease (~ 70%) at an 
EA of 10 kcal  kg−1 FFM  day−1. Decreases in fasting levels 
of IGF-1 and T3 occurred at a threshold of ~ 20–25 kcal  kg−1 
FFM  day−1 [6]. More recently, short-term LEA (15 kcal  kg−1 
FFM  day−1) decreased fasting levels of insulin and leptin 
in eumenorrheic female individuals when compared with 
adequate EA [71]. Similarly, a short-term diet or exercise-
induced LEA reduced fasting levels of IGF-1, leptin, and T3 
[107]. Cross-sectional investigations comparing metabolic 
hormone profiles between amenorrheic and eumenorrheic 
female individuals confirm these findings, showing both 
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lower levels of T3 [16, 19, 69] and leptin [108, 109] in ath-
letes with menstrual dysfunction. Similarly, ghrelin levels 
were higher after 12 weeks of reduced EA that resulted in 
a minimum of 1.5 kg of weight loss, whereas no change in 
the anorexigenic PYY was observed [110]. Nevertheless, 
ghrelin and PYY have been found to be higher in amenor-
rheic versus eumenorrheic athletes [61, 111].

Research on the relationship between LEA/amenor-
rhea on androgens in female individuals has so far yielded 
equivocal results with reports of both decreased [105, 112] 
and increased [113, 114] levels of androgens. For example, 
lower levels of testosterone have been reported in amenor-
rhea and oligomenorrhea resulting from LEA and chronic 
energy deficit states [105]. Similarly, oligomenorrheic 
and amenorrheic athletes, in comparison to eumenorrheic 
athletes, had lower testosterone and dehydroepiandroster-
one (DHEA) sulfate levels, as well as higher sex hormone 
binding globulin (SHBG) levels [112]. Higher levels of tes-
tosterone in dancers with menstrual dysfunction (and low 
daily energy and carbohydrate intake) have been reported 
(in those without characteristics of hyperandrogenism/poly-
cystic ovary syndrome) [113]. Likewise, endurance athletes 
with oligomenorrhea or amenorrhea were reported to have 
higher serum levels of both free and total testosterone as 
well as androstenedione, which was accompanied by lower 
SHBG levels when compared with eumenorrheic endurance 
athletes and non-athletes [114]. Levels of SHBG may help 
explain differences in androgen availability as SHBG has a 
high affinity and specificity for binding sex hormones where 
serum levels are regulated by androgens, estrogens, thyroid 
hormones, as well as other metabolic factors including EA 
and physical activity [115]. Sex hormone binding globulin 
binds to E2, dihydrotestosterone, and testosterone, render-
ing these hormones biologically inactive. However, higher 
levels of testosterone in dancers [113] and endurance ath-
letes with menstrual dysfunction [114] could be explained 
by HPO axis suppression of FSH release, which inhibits 
aromatase production, potentially resulting in low E2 and 
high testosterone. Higher testosterone could function as a 
compensatory mechanism, as testosterone is aromatized to 
E2, but could also be the result of elevated adrenal activity 
[116] or due to a decrease in adipose tissue [117]. While the 
precise mechanisms behind these observations are unclear, 
other causes of hyperandrogenism (e.g., adrenal hyperplasia, 
polycystic ovary syndrome) should be considered, as the 
current LEA and sports science literature does not consist-
ently screen for and exclude other causes of hyperandrogen-
ism. While the effects of LEA on androgens and androgen 
precursors in women are under-studied and results are incon-
sistent [118], LEA-induced perturbations in androgen levels 
in female individuals may influence, among other things, 
musculoskeletal health [103].

3.2  Other Hormones and Health

A spectrum of downstream hormones are affected by LEA, 
leading to disturbances in normal physiological and physical 
function that manifest as metabolic and immunological chal-
lenges. These are addressed in the following sub-sections.

3.2.1  Metabolism and Management of Body Composition

In conditions of problematic LEA, the resting metabolic rate 
(RMR) is reported to decrease, thus affecting the manage-
ment of body composition in athletes. Indeed, several studies 
suggest links between problematic LEA, suppressed meta-
bolic hormones, and suppression of RMR. The body has 
several regulatory systems for mitigating weight loss [119, 
120]. For example, leptin acts on the RMR indirectly by 
suppressing T3 and the activity of the sympathetic nervous 
system. In addition, decreases in the RMR due to energy 
restriction may be a result of suppressed catecholamine and 
thyroid hormone levels [121]. Indeed, reduced RMR has 
been linked to lower T3 and leptin levels [122, 123], while 
neither body mass nor FFM appears to explain differences 
in RMR [123, 124]. Although a difference in body mass 
or relative fat mass is not consistently observed between 
amenorrheic and eumenorrheic female individuals, the for-
mer appear to have lower levels of T3 [69] and lower RMR 
[53, 125].

In conditions of LEA, exercise energy expenditure (EEE) 
tends to decrease [124], contributing to a reduction in total 
daily energy expenditure, which may affect weight man-
agement. The endocrine changes resulting from LEA also 
appear to affect muscle efficiency and EEE. For example, 
a 10% loss of body mass led to a 20% increase in skeletal 
muscle work efficiency during a bicycle ergometer test with 
light workloads (10, 25, and 50 W), accounting for ~ 75% 
of the decline in EEE [126]. Similarly, Tornberg and col-
leagues [19] reported a lower RMR, as well as lower EEE 
during cycling, concurrent with lower levels of T3 levels in 
amenorrheic versus eumenorrheic female athletes.

Prolonged concomitant reductions in RMR and EEE are 
likely to translate into an inability, or extreme difficulty, to 
maintain or lose body mass, thereby challenging the man-
agement of body composition in the athlete. Hormones are 
also major regulators of muscle protein turnover [77, 100], 
which has additional implications for the management of 
body composition, as well as the strength and power capa-
bilities of an athlete. Leanness/thinness may be associated 
with some forms of menstrual dysfunction [19, 53, 86, 109], 
but athletes in some sports perceive theoretical benefit from 
a lean body composition with lower levels of adiposity and 
higher levels of muscle mass [127, 128]. Lower fat percent-
age may not actually be beneficial, as has been reported in 
cross-sectional [129] and longitudinal [130] studies. Most 
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reports characterizing body composition in amenorrheic 
and eumenorrheic female individuals indicate lower body 
mass and fat mass in the former group [19, 53, 86, 109]. 
Whether this is an outcome of LEA, but eventually leads to 
issues including overcompensation (storage of extra energy 
as adipose tissue) to sudden increases in EA following a 
prolonged and/or severe period of LEA [119], remains to 
be elucidated. Importantly, the hormonal changes associ-
ated with long-term LEA are not favorable for maintaining 
healthy body composition.

Anabolic responses to exercise may be blunted in condi-
tions of LEA [131]. This is supported by findings of GH 
resistance along with higher levels of cortisol in women 
with anorexia nervosa [132]. Importantly, nutritional sta-
tus appears to outweigh the effects of cortisol on GH levels 
[132]. Nevertheless, glucocorticoids directly inhibit IGF-1 
induction of the molecular pathways that stimulate muscle 
protein synthesis while IGF-1 appears to at least partially 
reverse glucocorticoid-induced muscle protein breakdown 
[133]. Areta and colleagues reported a 27% reduction in 
resting muscle protein synthesis after only 5 days of EA of 
30 kcal  kg−1 FFM  day−1 in both female and male individu-
als [134]. Low glycogen, a likely consequence of LEA, has 
been demonstrated to negatively affect cellular growth and 
adaptation in response to resistance exercise independently 
of hormonal responses [135], while exercise nutrient interac-
tions influence cascades that affect protein regulatory sys-
tems during both exercise and recovery where energy is also 
needed to fuel cellular pathways [136]. Athletes experienc-
ing short-term LEA might be less prone to muscle catabo-
lism seen in long-term or the most severe forms of LEA, but 
it is expected that optimal rates of muscle protein synthesis 
will suffer [137], thus blunting responses and adaptations 
to resistance training that would otherwise result in muscle 
hypertrophy. Resistance exercise and amino acid ingestion 
are crucial to stimulate anabolism, but physiological stress, 
including LEA, attenuates these effects [138]. Concomitant 
with nutrient (amino acid and carbohydrate) deficiency, 
muscle protein synthesis, and muscle remodeling may also 
be affected by increased catabolic cortisol and decreased 
levels of anabolic hormones (GH, IGF-1, E2) [139]. Ulti-
mately, impaired muscle protein synthesis and subsequent 
effects on lean mass may have dramatic implications for 
sports performance.

3.2.2  Immune Function

The consequences of LEA-induced endocrine dysfunc-
tion may predispose athletes to illness [140, 141] as well 
as injury [69, 142], with endocrine dysfunction affect-
ing the time course of return to play. Indeed, illness and 
inflammation influence an athlete’s potential to train and 
compete, while also affecting recovery and healing. Sports 

that combine exercise training with LEA to modify weight 
and body composition appear to influence immune function 
[104, 141–146]. Importantly, LEA during recovery from ill-
ness/injury may further complicate or delay healing/immune 
processes whereas the nutritional component of healing is 
often overlooked [147]. Injury/illness alters an athlete’s 
nutritional requirements [148], where negative energy bal-
ance is known to impair wound healing [149] and increase 
muscle loss [150] due to down-regulation of muscle protein 
synthesis and associated intracellular signaling proteins, 
even during a moderate decrease in EA [134]. It is possible 
that LEA-induced alterations in hormones concurrent with 
LEA-induced nutritional deficiencies increase athletes’ sus-
ceptibility to illness/infection and injury, while predisposing 
them to injury cycles due to suboptimal healing. Although 
several mechanisms related to LEA may reduce the activa-
tion and efficacy of the immune system, the significance of 
a single factor, such as EA, remains unknown.

Many aspects of exercise-induced modifications in 
immune function may be mediated by increased levels of 
immunoregulatory hormones such as cortisol [151] while 
actions of immune cells are also known to be modulated by 
E2 [152]. Antiviral mechanisms may be modified in women 
with hormonal profiles associated with menstrual dysfunc-
tion. The literature indicates that E2 activates monocytes, 
macrophages, and neutrophils, which induce the produc-
tion of proinflammatory cytokines [152]. Similarly, E2 and 
P4 have been shown to blunt the interleukin-10 response 
[153], which is associated with more infections in athletes 
[154]. Finally, E2 promotes hydration of mucous mem-
branes, which could influence the local immune response 
[155]. The protective mechanism of E2 could be mediated by 
the increase in the production of nasal mucus that contains 
immunoglobulin A, an immunoglobin negatively associated 
with the incidence of respiratory infections in athletes [154]. 
In a related way, irritative urinary symptoms (including uri-
nary tract infections) may be problematic and indicative of 
such events in female athletes [156].

3.2.3  Gut Health

LEA can lead to gastrointestinal distress in athletes [157]. 
Gut health in the context of LEA-induced hormonal dys-
function has not been extensively addressed in the literature, 
although gut health and function are of great importance 
to athletes. The gut plays an essential role in the diges-
tion and absorption of nutrients, while also providing a 
barrier between the external environment and circulation 
(immune function). Digestion can be impaired during LEA, 
with symptoms such as constipation, diarrhea, and slowed 
gastric emptying [158]. In extreme LEA, (e.g., in patients 
with anorexia nervosa) gut microbiota diversity and rich-
ness are reduced, which has been suggested to be linked to 
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compromised bone health [159]. There appears to be a bidi-
rectional relationship between the gut microbiota and sex 
hormones, although research in athletic female populations 
is sparse [160]. Nevertheless, E2 is known to strengthen and 
protect the mucosal and epithelial barriers in the gastroin-
testinal tract while modulating both intestinal inflamma-
tion and immune response [161]. The gastrointestinal tract 
microbiome contributes to immune function, regulates sys-
temic inflammation, and appears to affect higher cognitive 
functions [162]. In this sense, gut microbiota may regulate 
to some degree oxidative stress, inflammatory responses, 
metabolism, and energy expenditure during intense exercise 
[163]. While additional research is required, cross-sectional 
studies have reported associations between physical perfor-
mance and gut microbiota status [164].

3.2.4  Iron

It has been demonstrated that LEA interacts with iron defi-
ciency [165], where prolonged LEA, concomitant with an 
inadequate iron intake, can have negative effects on iron 
stores and eventually hemoglobin, both of which can sub-
sequently affect sports performance [166]. Iron deficiency 
interacts with LEA to perturb thyroid function and reduce 
metabolic fuel availability [167]. In addition, iron deficiency 
affects reproductive function and bone metabolism [168] 
while several iron-dependent enzymes influence metabolic 
and immune responses [165]. Hepcidin response appears 
to be inversely related to EA, while an adequate EA might 
attenuate the inflammatory response to strenuous exercise 
[169]. Furthermore, decreased endogenous E2 is associated 
with higher levels of hepcidin [170].

3.3  Summary Part B

Menstrual dysfunction alone is not a problem for sports 
performance, but the underlying altered endocrine func-
tion, characterized by sex hormone deficiencies and overall 
endocrine dysfunction, contributes to impairments in mecha-
nisms that affect health and sports performance.

4  LEA‑Induced Endocrine Dysfunction Leads 
to Performance Decrements

While it is reasonable to infer that endocrine dysfunction 
caused by LEA interferes with training adaptations and 
performance measures, the research clearly linking endo-
crine dysfunction to blunted training adaptations or per-
formance decrements is limited and relies, in large part, 
on self-reported menstrual status and a limited number of 

performance measures (Table 1). Nevertheless, it is impera-
tive to understand that the impact of hormonal perturba-
tions associated with LEA can be both vast and profound, 
affecting the homeostasis of various body systems that affect 
health, as well as training responses/adaptations and sports 
performance. Healthy training days are essential for long-
term athlete development and ultimately sports performance. 
Therefore, it is important to recognize that hormonal dys-
function (concomitant with nutritional deficiencies/LEA) 
can affect training quality before menstrual dysfunction is 
identified. Importantly, adequate EA, energy stores, macro-
nutrient availability, and intermediate metabolites are critical 
for maintaining quality training sessions with appropriate 
training volume, intensity, and recovery [171]. Thus, athletes 
may experience a reduction in training quality or recovery 
even after short-term LEA [172], although more severe con-
sequences are likely to be experienced after long-term LEA.

At present, relatively little is known about the effects of 
LEA on maximal aerobic capacity and anaerobic thresholds, 
although performance decrements and impaired develop-
ment in endurance performance have been observed [15, 16], 
which may be related to impaired metabolism and cardiovas-
cular function. One possible mechanism to explain impaired 
exercise metabolism during LEA is decreased E2 [173]. 
Lower E2 levels are associated with lower levels of glycogen 
sparing and fat oxidation [174], while higher levels of E2 
promote the availability and metabolism of free fatty acids as 
well as glucose availability and uptake into type I (oxidative) 
muscle fibers, although this may be attenuated by higher 
levels of P4. Exercising at higher intensities and produc-
ing force may be hindered during LEA because of reduced 
muscle glycogen [175] while endurance capacity may be 
impaired by a decreased ability to utilize fat. Sufficient mus-
cle glycogen stores are necessary for exercise performance, 
and replenishing these stores is critical for recovery and sus-
tained training [176, 177] where insulin facilitates the trans-
port of glucose into muscle cells (at rest), a process that may 
be inhibited via decreased levels of E2 [178]. On a cellular 
level, mitochondrial biogenesis and function (metabolism 
and morphology) are also known to be influenced by E2 
[179] while regulation of mitochondrial dynamics allows the 
cell to respond and adapt to cellular energy demands [180]. 
Thyroid hormones also stimulate mitochondrial biogenesis, 
energy metabolism, and energy transfer while influencing 
recovery. Mitochondria are essential for the generation of 
ATP via oxidative phosphorylation in response to energy 
depletion via AMP-activated protein kinase [181]. Exercise/
training should enhance muscle metabolism, but reduced 
levels of E2 [28] and T3 resulting from LEA [182] could, 
in theory, blunt or block expected mitochondrial responses 
[183] and adaptations [19]. Mitochondrial oxidative func-
tions and protein translation appear to be suppressed by LEA 
and appear to recover after refeeding [184].
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Another mechanism affecting endurance perfor-
mance could be impaired hematopoiesis, as evidenced 
for example, by lower erythrocyte and platelet counts, 
and increased white blood cell count in dieting fitness 
athletes [143]. Prolonged energy restriction and intense 
exercise training can also reduce iron stores, which, as 
discussed earlier, are important for oxygen delivery and 
transport, energy metabolism, cognition, and immune 
function [165, 185]. It is important to understand that the 
hormonal changes associated with LEA may be responsi-
ble for reduced blood flow related to impaired endothelial 
function, decreased fat oxidation related to mitochondrial 
dysfunction, and decreased hematopoiesis associated with 
impaired iron metabolism or decreased iron stores. We 
suggest that the synergistic effects of low E2, low T3, and 
low glycogen may impact mitochondrial remodeling pro-
cesses, impairing aerobic metabolism and adaptations to 
endurance training in the longer term with impaired ATP 
production affecting force production in addition to the 
cellular repair required for recovery. The literature is cur-
rently lacking in studies addressing performance directly, 
but we postulate that the aforementioned hormonal per-
turbations and resulting health and functional challenges 
directly affect training quality, recovery, and performance.

LEA and nutritional deficiency appear to be strongly 
associated with impairments in muscle protein synthesis 
[131, 134, 186] and impaired neuromuscular function 
[19], which may result in blunted/decreased development 
in force production capabilities. Decreased blood glucose 
levels and hormonal disruptions in amenorrheic athletes 
have been associated with lower strength and lean mass of 
the lower extremities compared with eumenorrheic ath-
letes [19]. A decrease in glycogen due to LEA may be 
problematic for muscle contraction (myosin cross-bridge 
interaction) owing to an impaired release of calcium from 
the sarcoplasmic reticulum [187]. Likewise, amenorrhea 
may affect metabolism during exercise recovery, possibly 
impairing the ability of amenorrheic athletes to, for exam-
ple, optimally complete repeated bouts of exercise [183]. 
We might also hypothesize that LEA-induced low E2 has a 
negative influence on force production via central mecha-
nisms [188]. Neuromuscular function and fatigability of 
the knee extensors change across the menstrual cycle, 
with greater intracortical inhibition and fatigue during the 
luteal phase and greater voluntary contraction when the 
E2 level is elevated [189]. Estradiol is known to alter neu-
ronal excitability and may affect force production capacity 
via neurotransmitter receptors (direct) and ion channel-
activated (indirect) mechanisms. An excitatory neuronal 
effect is associated with E2, whereas an inhibitory effect 
is associated with P4 [190]. Thus, in theory, a decrease 
in E2 related to LEA could reduce cortical excitability 
due to decreased action on sodium channels that results in 

attenuated recruitment of excitatory interneurons [191], 
which may also influence motor control and recruitment 
of motor units, although this has not been investigated 
in females with menstrual dysfunction versus those with 
eumenorrhea. Nevertheless, reduced neuromuscular func-
tion due to LEA and LEA-induced hormonal changes may 
impair mechanical efficiency, which could also increase 
the individual’s perception of loading. Importantly, even 
short-term and adaptable LEA may not be without conse-
quences for recovery [172] and longer term adaptations. 
Differentiating between desired decreases (planned over-
reaching) and LEA-induced decreases in performance and 
recovery during training blocks may be difficult but impor-
tant for long-term athlete development.

5  Summary and Limitations

In female individuals, sex hormones are not only responsi-
ble for reproduction, but also play important roles in bone, 
muscle, and cardiovascular health and function. Menstrual 
dysfunction secondary to LEA is characterized by changes 
in hormonal profiles with the combined direct and indirect 
effects of E2 and P4 on an athlete’s ability to train and 
recover optimally [4, 14, 22]. Although menstrual dys-
function is indicative of suppression of sex hormones, the 
concomitant disturbances in other hormonal axes and their 
impact on athlete health and sports performance must be 
recognized. Indeed, the hormonal consequences of LEA 
appear to be controlled, in large part, by the hypothala-
mus, which connects the nervous system to the endocrine 
system via the pituitary gland. Low energy availability-
induced changes in the levels of several pituitary hor-
mones appear to have unfavorable downstream effects on 
structural characteristics (muscle protein turnover, adipos-
ity, bone density), energetics (resting and exercise metabo-
lism, mitochondrial function), and adaptation (strength, 
power, and endurance capacity) of the skeletal muscle and 
adipose tissue, with direct and indirect negative effects on 
sports performance (Fig. 2).

While it is understood that problematic LEA disrupts 
menstrual function, the evidence for dysfunction in other 
endocrine axes appears to be more scattered. In many cases, 
information regarding problematic LEA is drawn from stud-
ies including amenorrheic athletes or patients with anorexia 
nervosa. The endocrine system, in general, is regulated 
by several feedback loops that include various points for 
physiological crosstalk in which hormones often have pleio-
tropic effects. Given that hormones play a significant role in 
maintaining normal physiological function and supporting 
homeostasis of tissues and processes essential for health, it 
is reasonable to hypothesize, in line with REDs, that hor-
monal changes resulting from LEA may negatively affect 
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training responses, adaptations, and performance. Because 
the temporal relationship between hormonal changes and 
physiological effects is variable, it is important to recognize 
that hormonal changes may induce physiological effects that 
are not always immediate, or even in the same time frame as 
the physiological responses or adaptations.

Generally, research examining the effects of LEA on 
health has been laboratory based with a “prescribed” EA 
that may not translate directly to the field or practical “free-
living” situations [20, 69]. In addition, the long-term effects 
of LEA on performance, training adaptations, and recov-
ery have often been investigated using a cross-sectional 
approach comparing athletes who already have menstrual 
dysfunction with naturally menstruating or eumenorrheic 
athletes. Much of this existing research also relies on self-
reporting of menstrual status (i.e., “naturally menstruat-
ing” female individuals without hormonal level verification 
[28]). Finally, female individuals using HCs are not immune 
to the effects of LEA, although possible endocrine and or 

performance consequences specific to HC users have not yet 
been elucidated.

Although several ethical issues may prevent researchers 
from conducting long-term laboratory-based (especially 
long-term and severe) LEA studies in athletes, and it would 
be unethical not to intervene in free-living conditions if an 
athlete exhibits symptoms or behaviors indicating LEA, 
a schedule of regular hormonal and physical testing for 
groups of athletes could allow researchers to elucidate the 
time course of possible hormonal and performance changes 
occurring in athletes. Athletes should have access to a net-
work of specialists when faced with REDs [193].

6  Key Findings and Practical Applications

It is worth noting that the etiology behind menstrual dys-
function is not always LEA, but that menstrual dysfunction 
is indicative of marked hormonal changes that should be 

Fig. 2  Summary of Part A: beyond menstrual dysfunction and Part 
B: beyond menstrual dysfunction and sex hormones. The endocrine 
system includes various points for physiological crosstalk and hor-
mones often have pleiotropic effects (see reference [192]). Created 
with www. biore nder. com. ACTH adrenocorticotropic hormone, CRH 
corticotropin-releasing hormone, E2 estradiol, FSH follicle-stim-

ulating hormone, GH growth hormone, GHRH growth hormone-
releasing hormone, IGF-1 insulin-like growth factor 1, LH luteinizing 
hormone, P4 progesterone, PYY peptide YY, T testosterone, T3 trii-
odothyronine, TRH thyrotropin-releasing hormone, TSH thyroid-stim-
ulating hormone, ↑ increased, ↓ decreased

http://www.biorender.com
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assessed by a physician. Additionally, menstrual dysfunction 
does not immediately translate into performance decrements, 
although the changes in hormonal profiles may ultimately be 
profound and detrimental to the health and performance of 
the athlete. Identification of REDs and hormonal dysfunc-
tion should be based on a comprehensive medical evaluation 
of symptoms (involving a multidisciplinary team), hormone 
testing, and exclusion of other medical problems.

6.1  Key Findings and Practical Applications

The scientific evidence clearly linking endocrine dysfunction 
to decreased performance and blunted or decreased training 
adaptations is limited. We have described how LEA-induced 
changes in sex hormones that often manifest as menstrual 
dysfunction and concomitant hormonal dysfunction in other 
axes could result in several undesirable health outcomes 
including negative bone health, impaired metabolic activity, 
undesired outcomes for body composition, altered immune 
response and gut health, problematic cardiovascular out-
comes, and iron deficiency that both directly and indirectly 
affect training and performance. While it is possible that 
short-term LEA will not markedly affect performance, it is 
important to investigate LEA-induced outcomes and their 
mechanisms in order to better understand the performance 
decrements associated with the Triad/REDs. As such, we 
suggest that mechanisms described in this article are influ-
enced by altered endocrine function secondary to LEA and 
that these impair health and sports performance in female 
athletes. Based on the totality of the evidence, we suggest 
that researchers and practitioners:

• Explore the mechanisms by which endocrine dysfunc-
tion, including menstrual dysfunction, affects athlete 
performance, including the time course of performance 
decrements and changes in hormonal profiles.

• Recognize that present cross-sectional studies gener-
ally use only FHA as an indicator of prolonged LEA, 
although menstrual dysfunction such as oligomenorrhea 
or recurrent anovulation may indicate LEA.

• Consider the depth and breadth of LEA and the subse-
quent effects on hormonal homeostasis in free-living 
conditions (and consider the current literature) [194].

• Acknowledge that the negative effects of LEA are likely 
to begin before identifiable menstrual dysfunction, such 
as FHA. Perturbations in E2 and P4 occur even in less 
severe forms of menstrual dysfunction while other hor-
monal axes are also affected. This highlights the impor-
tance of going beyond monitoring menstrual bleeding 
alone and including methods to determine the more sub-
tle menstrual dysfunction, such as monitoring ovulation 
and/or the P4 peak in the luteal phase [28].

• Understand that gynecological age may influence 
responses to LEA. Older female individuals and female 
individuals with greater gynecological age, i.e., years 
since onset of menarche, may be more adaptable to LEA 
than younger female individuals or female individuals of 
younger gynecological age [41].

• Monitor markers of menstrual function in female indi-
viduals not using HCs (including hormonal intrauterine 
devices). This may include menstrual bleeding along 
with an LH surge associated with ovulation (using an 
ovulation test [47, 48]), P4 peak in the luteal phase, and/
or other frequent hormonal sampling [28].

• Consider the effects of LEA on HC users compared to 
non-users, as exogenous sex steroids may influence HPO 
axis function independently of other hormonal axes. 
Avoid including HC users in “mixed groups” with natu-
rally menstruating/eumenorrheic or amenorrheic partici-
pants, as this may affect the interpretation of subsequent 
results.

• Monitor HC using athletes by assessing nutritional status 
proactively.

• Consider assessing surrogate markers of LEA, includ-
ing but not limited to T3, testosterone, cortisol, IGF-1, 
and insulin, in addition to sex hormones, as well as lipid 
profiles, iron, gut health, and immune function in athletes 
with LEA or at risk of LEA.

7  Conclusions

Suppression of sex hormones secondary to problematic LEA 
often manifests as menstrual dysfunction; however, concom-
itant hormonal dysfunction occurs in other endocrine axes. 
Taken together, this LEA-induced hormonal dysfunction 
underpins adverse mechanisms and outcomes that ultimately 
affect athlete health and impair training quality, thus likely 
negatively affecting performance. The influence of LEA-
induced altered endocrine function on mechanisms of ath-
lete health and components of sports performance requires 
further research.
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