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ABSTRACT: We present a novel machine learning (ML) model
for predicting saturation vapor pressures (psat), a physical property
of use to describe transport, distribution, mass transfer, and fate of
environmental toxins and contaminants. The ML model uses σ-
profiles from the conductor-like screening model (COSMO) as
molecular descriptors. The main advantages in using σ-profiles
instead of other types of molecular representations are the
relatively small size of the descriptor and the fact that the addition
of new elements does not affect the size of the descriptor. The ML
model was trained separately for liquid and solid compounds using
experimental vapor pressures at various temperatures. The 95%
confidence intervals of the error in the liquid- and solid-phase
log10(psat/Pa) are 1.02 and 1.4, respectively. Especially our solid-
phase model outperforms all group-contribution models in predicting experimental sublimation pressures of solid compounds. To
demonstrate its applicability, the model was used to predict psat of atmospherically relevant species, and the values were compared
with those obtained from a new experimental method. Here, our model provided a tool for a better description of this critical
property and gave a higher confidence in the measurements.
KEYWORDS: COSMO, extreme minimal learning machine, σ-profile, liquid, solid, volatility

■ INTRODUCTION
Saturation vapor pressure of organic compounds is a useful
thermodynamic property in many applications. For example,
saturation vapor pressures are needed to model the transport,
distribution, mass transfer, and fate of environmental toxins
and contaminants. In atmospheric research, saturation vapor
pressure is used to model the gas-to-particle partitioning of
organic compounds formed in the gas phase in order to
estimate the growth rates of aerosol particles. Various
measurement techniques exist for determining saturation
vapor pressures. However, the determination of saturation
vapor pressures of low volatility compounds is difficult, and
often different measurements give orders of magnitude
different results.1 Additionally, it is not feasible to measure
the saturation vapor pressures of all environmental contami-
nants and atmospheric trace gases.
Many empirical models exist for the estimation of saturation

vapor pressures, varying from simple equations that require
only knowledge on the elemental composition2,3 to group-
contribution models4−7 that also consider various functional
groups. More complex and time consuming quantum
chemistry-based models, such as the conductor-like screening

model for real solvents (COSMO-RS8−10), can even take the
stereoisomer into account. Recently, the COSMO-RS model
has been used to calculate saturation vapor pressures of
complex organic compounds.1,11−14 Currently, the most
advanced parametrization of the COSMO-RS model is
implemented in the commercially available BIOVIA COSMO-
therm program.15

Several studies have investigated the effect of conformer
sampling on COSMOtherm calculations of saturation vapor
pressure.1,12,14,16 Generally, different conformers can lead to
orders of magnitude differences in saturation vapor pressure
estimates. For example, Kurteń et al.16 recommended selecting
conformers of multifunctional compounds based on their
intramolecular hydrogen bonding. Especially in the condensed
phase, conformers that are able to interact with the
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surrounding system are energetically more favorable.17

Conversely, Stahn et al.14 recommended selecting a set of
lowest energy conformers for the COSMOtherm calculations.
Li et al.1 found that conformers in the COSMObase (a cosmo-
file database of common compounds) produced accurate
saturation vapor pressure estimates of mono- and dicarboxylic
acids and sugar alcohols. On the other hand, using the default
cosmo-file generation procedure of the COSMOconf pro-
gram18 did not lead to adequate agreement between
COSMOtherm-estimated and experimental saturation vapor
pressures of polyethylene glycols (PEG).1

These different findings highlight that the parametrization of
COSMOtherm is still biased toward the relatively simple
compounds that have been used in the parametrization of the
model. A more reliable and systematic way of including new
compounds is therefore needed to be able to truly predict
saturation vapor pressures of new compounds. For this reason,
a systematic way to select optimal conformers for both the
parametrization of the model and the prediction of new
compounds is crucial.
With the development of machine learning (ML)

techniques, ML models are quickly replacing quantum
chemistry calculations and traditional thermodynamic models.
Warnau et al. noted that empirical machine learning methods
are currently outperforming COSMOtherm in partition
coefficient calculations.19 Some studies have used conductor-
like screening model (COSMO20)-based ML techniques to
predict various thermodynamic properties.21−26 In these
models, the quantum chemistry output from the COSMO
model (i.e., σ-profile) is used to create a molecular
representation of each compound for the ML model.
The aim of this study was to create a COSMO-based ML

model (COSMO-ML) to predict the saturation vapor
pressures of environmentally relevant multifunctional organic
compounds. The created model was trained separately with
experimental data for vapor pressures above both the liquid
and solid phase to get a better estimate on the effect of the
solid-to-liquid phase transition. Additionally, the study includes
an evaluation of the model and a demonstration of its
applicability to atmospherically relevant compounds, showing
its usefulness in the description of the fate and behavior of low
volatility organic environmental toxins.

■ METHODS
The ideal partial vapor pressure of compound i (pi) can be
calculated from the free energy of vaporization (ΔGvap)

p T a T e( ) ( )i i
G T RT( )/ivap,= (1)

Here, R is the gas constant, T is the temperature, and ai is the
activity of the condensed-phase compound i in the mixture.
For ideal pure condensed-phase compounds, a = 1 when the
pure compound is selected as the reference state. For a real gas
containing monomers, dimers, trimers, and even larger clusters,
the presence of clusters in the gas phase should be considered
in the calculation of the free energy of vaporization.
In the COSMO-RS model, the free energy of vaporization of

a pure compound is derived from density functional theory
(DFT) calculations. In practice, the free energies are calculated
separately for the gas and condensed phases (G(g)(T) and
G(c)(T), respectively). This leads to the following equation for
the saturation vapor pressure (psat):

p e G T G T RT
sat

( ) ( ) /c g( ) ( )
= [ ]

(2)

The gas-phase free energy is obtained with a vacuum DFT
calculation. The condensed-phase liquid free energy (G(l)(T))
is calculated from the DFT COSMO energy (ECOSMO) and the
chemical potential of the pure liquid compound (μ(l)(T) from
the COSMO-RS model).

G T E T( ) ( )l l( )
COSMO

( )= + (3)

On the other hand, the condensed-phase solid free energy
(G(s)(T)) is calculated from ECOSMO, the liquid-phase μ(l)(T),
and the free energy of fusion (ΔGfus(T)).

G T E T G T( ) ( ) ( )s l( )
COSMO

( )
fus= + + (4)

It is not possible to estimate ΔGfus(T) using computational
methods. Instead, ΔGfus(T) must be derived experimentally.
For simplicity, we will use μ(T) to describe μ(l)(T) for the
liquid phase and μ(l)(T) + ΔGfus(T) for the solid phase.

In this study, we use COSMO-ML instead of COSMO-RS
to predict the values of μ(T). The target value predicted with
the ML model will be calculated using psat(T) from
experiments, and ECOSMO and G(g) from DFT calculations:

T RT p T E G( ) ln ( ) g
sat COSMO

( )= + (5)

Note that ECOSMO and G(g) are not temperature dependent,
which means that the temperature dependence of psat is
included in the μ(T) term. As μ is defined differently for liquid
and solid compounds, the COSMO-ML model needs to be
trained separately for liquid and solid compounds. It should
also be noted that the use of experimental psat as training data
means that predicted μ corresponds to an effective free energy
of vaporization instead of the actual thermodynamic free
energy of vaporization. Additionally, the COSMO-ML model
will be trained using experimental saturation vapor pressures
measured for real gas-phase mixtures containing monomers,
dimers, trimers, etc., instead of ideal gas phases containing only
monomers. The predicted values will therefore also take into
account any effects of clustering in the gas-phase on the
saturation vapor pressure.

The advantage of predicting μ, instead of psat directly, is that
the range of possible values of μ is more narrow than that of
psat. Similar approaches are often used to predict energies of
molecules or molecular cluster of different sizes. For example,
the energy is first computed at a low level of theory (fast
calculation) and a machine learning method is used to predict
the energy difference between the low level of theory and a
desired high level of theory (slow calculation). Additionally, if
the training data include compounds with an adequate range of
μ values, even predictions outside the psat range of the training
data can be accurate if the μ is within the range of the training
data.
Machine Learning Model. The machine learning model

used to predict chemical potentials is extreme minimal learning
machine (EMLM27). The EMLM model is a kernel-based
method that uses Euclidean distances as a similarity measure.
From the training data (X xi i

N N n
1

x= { }=
× , N data points in

total, nx features in the descriptor), Kref reference points are
selected to train the model. The reference points are selected
based on the Euclidean distances of the descriptors, so that the
reference points are spread evenly in the Euclidean distance
space. Once the reference points have been selected, the
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Euclidean distances between all reference points are collected
into a matrix D K Kref ref× . To train the model, a regularized
least-squares optimization problem will be solved to find the
optimal W with

J
N K

WW d W ymin ( ) 1
2 2i

N

i
T

i
T

i

K

j

n

ij
W 1

2

ref 1 1

2
K ny

y

ref

ref

= | | + | |
= = =

× (6)

Here, di
Kref contains Euclidean distances between the ith

input data point and all reference points; W K nyref × is a
weight matrix of the EMLM model; yi is the experimental
thermodynamic property value of data point i; β is a
regularization parameter; and ny is the number of target values
for each data point (here ny = 1).
The main advantage of using a distance based ML model,

such as EMLM, is that overfitting is rarely an issue.27,28

Additionally, the computational cost of EMLM is significantly
lower than, for example, of neural networks or other deep
learning methods. Another advantage of EMLM is that, unlike
other kernel-based methods, EMLM only has 2 easy to
optimize hyperparameters: (i) the number of reference points
(Kref) and (ii) the regularization parameter β describing how
closely the model should be fitted to the training data target
values. Since there are significant uncertainties in experimental
thermodynamic property values, the value of β will be tested
carefully. If the β value is too low, the model tries to represent
all training data points perfectly, leading to over-fitting. On the
other hand, higher β values allow larger differences between
the training data and the model, accounting for the
uncertainties of our experimental training data.
Descriptor. The input of the ML model was derived from

the COSMO model. In the COSMO model, each conformer of
a molecule is represented by a σ-surface. The σ-surface is a
representation of the screening charge densities of a particular
conformer of a molecule. The screening charge is the opposite
of the surface charge. For the descriptor, we created σ-profiles
(see an example in Figure 1) of each conformer. For the σ-
profiles, the screening charge densities (charges/areas) of each
compound were divided into bins. Each value of the σ-profile
(p(σ)) is the total surface area (in Å2) of the molecule that has
the screening charge density corresponding to the bin. The bin
size was optimized to find the best correlation between the
predicted and experimental saturation vapor pressures. In
addition to the σ-profile, the temperature was added as a single
value to each of the descriptor vectors. If the vapor pressure of
a compound was measured at multiple temperatures, all of the
experimental data points were added for the compound with

only the temperature changing in the descriptor. For the
machine learning model, all features in the descriptor and the
target value μ were scaled between −1 and 1. This ensures that
features with larger absolute values in the descriptor are not
prioritized in the training of the ML model.

The TURBOMOLE program package29 and the BIOVIA
COSMOconf program18 were used to obtain the σ-profiles.
First, a set of conformers was generated using the Spartan20
program30 with systematic search algorithm and MMFF force
field.31 Generally, the shape of the carbon skeleton has only a
small effect on the σ-profile (and chemical potential) of a
conformer, because carbon chains mainly contribute to the σ-
profile around the 0.00 e Å−2 charge density (see the σ-profile
of decanethiol in Figure 1). On the contrary, the charge
density of polar functional groups (i.e., negative and positive σ
values for hydrogen bond donors and acceptors, respectively)
depends strongly on the existence of intramolecular hydrogen
bonds. The maximum number of conformers was therefore
kept below 1000 by selecting only some of the torsions of long
carbon chains for conformer sampling. The geometries of all
conformers were optimized first at the BP/SV(P) and then at
the BP/TZVP level of theory using TURBOMOLE. Duplicate
conformers were omitted after both optimizations based on
similarities in the geometries using the CLUSTER_GEO-
CHECK algorithm of COSMOconf. The final single-point
cosmo-files were calculated at the BP/def2-TZVPD-FINE//
BP/def-TZVP level of theory. Gas-phase geometries were
obtained by optimizing the BP/def-TZVP COSMO geo-
metries in a vacuum, also at the BP/def-TZVP level of theory.
The final gas-phase energies were calculated at the BP/def2-
TZVPD level of theory in a vacuum.

In COSMOtherm, the highest weight in the conformer
distribution is given to the lowest free energy conformer. Here,
a single conformer was selected to represent each compound in
the COSMO-ML model. We used two different methods for
selecting the condensed-phase conformer and two different
options for gas-phase energy. For the condensed-phase
conformer, we selected the one with the lowest free energy
(calculated from the COSMO energy and the pure compound
chemical potential at 298 K). Additionally, we tested omitting
conformers with relative chemical potentials above 8 kJ/mol
(about 2 kcal/mol) from the lowest chemical potential before
selecting the lowest free energy conformer for the COSMO-
ML calculation. This was done to avoid including conformers
with high chemical potentials, as the COSMO model is known
to overestimate the effect of intramolecular hydrogen bonds on
the COSMO energy.16 Generally, strong intramolecular

Figure 1. Molecular descriptors from COSMO σ-profiles (p(σ)).
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hydrogen bonds (e.g., concerted hydrogen bonding of
dicarboxylic acids) in the condensed phase increase the
chemical potential of the pure compound. On the other
hand, the COSMO energies of conformers containing
intramolecular hydrogen bonds are significantly lower than
those of conformers that contain no intramolecular hydrogen
bonds. In COSMO-RS calculations, the gas-phase energy can
be taken from the COSMO calculation (single-point energy
calculation for the condensed-phase conformer), or from a
separate gas-phase geometry optimization. Here, we tested
using both the lowest gas-phase energy conformer (given in
the energy-file, an output file of a vacuum calculation) and the
single-point gas-phase energy of the selected COSMO
conformer (given in the cosmo-file, an output file of a
COSMO calculation). The comparison of the COSMO-ML
model performance using the different input selection is shown
in Table S1 of the Supporting Information. There is only a
small difference between the COSMO conformer selection
methods because most of the conformers are the same using
both methods. Larger differences are seen between the two
gas-phase energies. The best overall fit was found using the low
relative chemical potential conformers, and the single-point
gas-phase energy calculated for the condensed-phase geometry.
Training Data. Experimental saturation vapor pressure

values were collected from published experimental studies.
Details of the dataset used are given in Section S1, and Tables
S2 and S3 of the Supporting Information. The training dataset
contains equilibrium vapor pressures of 181 liquid-phase
compounds and 112 solid-phase compounds, providing two
models, i.e., one model for each phase. Some of the
compounds are common for both phases. Sixty four of the
liquid-phase compounds and 33 of the solid-phase compounds
have experimental saturation vapor pressures measured at
multiple temperatures. These compounds are used as test
compounds only in model optimization. For testing of the final
model, these compounds were used only as training data. In
total, the training data contain 950 points of liquid-phase psat
and 351 of solid-phase psat.
The training data have μ values (calculated using eq 5)

ranging from −9.7 to 52.7 kJ/mol for the liquid compounds
and from −33.5 to 41.3 kJ/mol for the solid compounds. This
range of μ values is similar to COSMOtherm-derived pure
compound chemical potentials calculated for a large set of
multifunctional oxidation products of α-pinene.32 Most
atmospherically relevant oxidized compounds are therefore
within the training data of our model with regard to their μ
values. The distribution of the training set in the μ-vs-T space
is shown in Figure S1 of the Supporting Information.

■ RESULTS AND DISCUSSION
Model Optimization. In the model optimization, we

tested the bin size of the descriptor σ-profile, the hyper-
parameters of the EMLM model (β and Kref), and the
conformer selection. The parameters of the COSMO-ML
model were optimized using the solid-phase data, which have
fewer data points than the liquid-phase data. It is therefore
more critical to find optimal model parameters in the solid-
phase model than in the liquid-phase model. For cross-
validation, we used the leave-one-out cross-validation, which is
a k-fold cross-validation methods that uses the total number of
data points as k (k = N), i.e., the model was trained N times by
omitting a single data point at a time and predicting the psat of
the omitted compound and temperature (here N = 334, some

of the training data were added after the parameter
optimization). This cross-validation maximizes the amount of
training data during testing of the model. It should be noted
that for the compounds with measured psat at multiple
temperatures, this type of cross-validation will only show the
ability of the COSMO-ML model to predict the effect of the
temperature, as the σ-profile of the compound is included in
the training of the model. The absolute error values in the test
calculations of this section are therefore significantly lower
than those of the final COSMO-ML model new compounds.

σ-Profile. In a σ-profile, the surface segments are divided
into bins based on their charge density. The optimal bin size
may vary, depending on the level of theory used for the
COSMO calculations. With larger bin sizes, the results become
more robust as small differences in σ values do not affect the
assignment of the charge density in the descriptor. On the
other hand, increasing the bin size will lead to loss of important
differences between similar compounds.

We tested the effect of the bin size on the prediction ability
of the COSMO-ML model. The bin size was varied from 0.001
to 0.006 e Å−2, where the common side of the two central bins
was always at the origo. The 95 % confidence interval of the
prediction error as a function of the bin size is shown in Figure
S2 of the Supporting Information. There is no large difference
in the error with bin sizes between 0.0015 and 0.0055 e Å−2.
The lowest error is found at 0.0025 e Å−2, with 26 bins in total
(between −0.0325 and 0.0325 e Å−2). A bin size of 0.0025 e
Å−2 is therefore used in further calculations.

Regularization Parameter β. The 95 % confidence interval
of the prediction error decreases when the value of β is
decreased. However, there is no significant improvement below
β = 0.01. In order to avoid over-fitting, β = 0.01 was selected
for the final model.

Number of Reference Points Kref. The reference points are
selected based on the Euclidean distances between all data
points so that the points are divided evenly in the Euclidean
distance space. Figure S3 of the Supporting Information shows
the convergence of the model with increasing Kref. The model
has converged with 50 % reference points, which corresponds
to about 1 data point for each compound and an additional 2
data points for all compounds that have multiple temperature
points in the data set. The main improvement achieved by the
increasing of reference points above 50 % is in the prediction
of temperature dependence of psat (black markers in Figure S3
of the Supporting Information). For our purpose of predicting
vapor pressures of new compounds at atmospherically relevant
temperatures, Kref = 50 % (33 % for the liquid-phase model) is
preferred to avoid bias toward compounds that are represented
by multiple temperature points during the training of the
model. However, for investigations of temperature dependence
of vapor pressures, we recommend using Kref = 100 %.
COSMO-ML Prediction Accuracy. The final testing of the

COSMO-ML models was done the same way as the
optimization of the model parameters. However, only
compounds with one temperature point were included in the
test data. Additionally, the psat values of all test compounds
were measured around room temperature (295−303.4 K). We
are therefore only testing the prediction ability of the
COSMO-ML models for new compounds around room
temperature. The COSMO-ML prediction error as a function
of experimental (a) liquid-phase saturation vapor pressures and
(b) solid-phase sublimation vapor pressures is shown in Figure
2.
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The 95% confidence interval of the prediction error of the
liquid-phase psat is 1.02 orders of magnitude. The prediction
accuracy is higher (0.67 orders of magnitude) in the high psat
range (experimental psat > 0.1 Pa) than in the low psat range
(1.8 orders of magnitude). The 95% confidence interval for the
solid-phase psat prediction (mostly low psat range) is 1.4 orders
of magnitude. Compounds that have low vapor pressures are
generally relatively large and can exist in many conformers.
Using a single conformer instead of an ensemble of favorable
conformers to represent each compound may not be sufficient
for complex multifunctional compounds, leading to larger
errors in the model predictions. It should be noted that even
small inaccuracies in the prediction of μ lead to large
inaccuracies in psat due to the exponential relation. The 95 %
confidence interval for the prediction error of μ (or free energy
of vaporization) is only 4.1 and 7.7 kJ/mol (0.97 and 1.83
kcal/mol) for the liquid and solid models, respectively.
Some of the uncertainty in the low psat range predictions

may be caused by errors in the experimental determination of
saturation vapor pressures. For example, Wania et al.33

commented on the measured psat of dinitronaphthalene and
several dihydroxynaphthalenes, suggesting that their real
liquid-phase psat are likely significantly higher than reported
by Bannan et al.34 None of the compounds measured by
Bannan et al.34 were included in the training data of our liquid-
phase model. Our predicted liquid-phase psat are similar to
those estimated using version 14 of COSMOtherm (see Table
S4 of the Supporting Information).33 In addition to the
disagreement in experimental and predicted psat of the
dinitronaphthalene and dihydroxynaphthalenes, our model
underestimates the liquid-phase psat of para-nitroaniline
reported by Bannan et al.34 by almost 3 orders of magnitude.
On the other hand, our prediction agrees with the
COSMOtherm-estimated value.33 The dinitronaphthalene,
dihydroxynaphthalenes, and para-nitroaniline were therefore
omitted from the training data of the solid-phase model as well.
Including these aromatic compounds in the training data
worsens the overall performance of the COSMO-ML model
because the speculated error in the experimental psat is 2 orders
of magnitude or higher.
Many experimental methods require high temperatures to

measure the evaporation of low psat compounds. A large
fraction of the training data is therefore high temperature psat
(see Figure S1 of the Supporting Information). However, there

are some compounds with relatively low and high calculated μ,
which have measured psat values only at room temperature
(295 or 298.15 K). For example, all of the high μ compounds
in Figure S1 are polyethylene glycols (PEG). Here, PEG9 has a
higher μ than any other solid-phase compound in our dataset
(other PEGs are liquids). This leads to a large degree of
extrapolation, and our model underestimating the psat of PEG9
by 5 orders of magnitude. PEG9 was therefore left out of the
test set. In future calculations, the accuracy of the COSMO-
ML model can be evaluated based on whether the predicted μ
is within the limits of the corresponding training data in Figure
S1.

The psat of a liquid phase is always higher than that of the
corresponding solid phase at the same temperature below the
melting point. This is due to the additional free energy needed
for the solid-to-liquid phase transition. The trained liquid-
phase COSMO-ML model was tested for the solid test
compounds to investigate if the liquid-phase model predicts a
higher psat than the solid-phase model. Most of the solid test
compounds (around 92%) have predicted liquid-phase psat
higher than the predicted solid-phase psub. This indicates that
the independently trained models are able to find differences in
the psat and psub of the same compound. For compounds that
are within the size range of the training data of both the liquid-
and solid-phase models (i.e., 6−28 nonhydrogen atoms), the
effective free energy of fusion below the melting temperature
can be estimated as the difference between μ of the liquid- and
solid-phase predictions.
Comparison with Group-Contribution Models. Next,

we compared our COSMO-ML predictions with existing
group-contribution methods calculated using the UManSy-
sProp code.35 The models include SIMPOL,5 EVAPORA-
TION,6 Myrdal and Yalkowsky,7 and Nannoolal.4 All of these
group-contribution models are commonly used in atmospheric
research to estimate the saturation vapor pressures of
multifunctional organic compounds. For this comparison, we
omitted test compounds that contain phosphorus and
bromine, as these elements are not included in the group-
contribution models. For simplicity, the psat values were
calculated at 298.15 K for all compounds, even though the
experimental temperatures vary between 295.0 and 303.4 K.

Figure S4 of the Supporting Information shows the
performance of the models in estimating saturation vapor
pressures of both solid and liquid compounds. Our COSMO-

Figure 2. Prediction errors of the (a) liquid-phase and (b) solid-phase COSMO-ML models.
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ML model outperforms all of the group-contribution models,
especially for the solid compounds. Unlike our COSMO-ML
model, none of the group-contribution models have been
parametrized separately for solid compounds.
The 95% confidence interval in the errors of the group-

contribution models vary from 1.22 (Nannoolal vapor
pressures with Nannoolal boiling points) to 3.30 orders of
magnitude (Nannoolal vapor pressures with Jopack−Reid
boiling points) for the liquid compounds and from 3.04
(Myrdal−Yalkowsky vapor pressures with Joback−Reid boiling
points) to 5.85 orders of magnitude (Myrdal−Yalkowsky vapor
pressures with Nannoolal boiling points) for the solid
compounds. The percentage of compounds that either
under- or overestimate the experimental liquid-phase satu-
ration vapor pressure value by more than 1 order of magnitude
is 11−22% for the group-contribution models and 6% for our
COSMO-ML model. The corresponding percentages for
sublimation pressure are 47−88% and 15% for the group-
contribution models and COSMO-ML, respectively. Figure S5
of the Supporting Information shows the fraction of test
compounds as a function of the difference between
experimental and calculated psat for each of the tested models.
Application to Atmospheric SOA Constituents. A

potential application of our model is to estimate the vapor
pressures of compounds that are hard to derive experimentally
using pure authentic standards. As an example, Li et al.36

recently estimated saturation vapor pressures of caric, caronic
and OH-caronic acid from gas-to-particle partitioning coef-
ficients using a filter inlet for gases and aerosols (FIGAERO)
combined with a time-of-flight chemical ionization mass
spectrometer (ToF-CIMS). These data were extracted from
an oxidation experiment of Δ3-carene. Our new model could
then directly be applied as a comparison to these measure-
ments. Here, we predicted saturation vapor pressures for the
compounds proposed by Li et al.36 using both the liquid- and
solid-phase COSMO-ML models. Table 1 shows the COSMO-
ML-derived and experimental psat values at 293.15 K. We
additionally calculated the liquid-phase psat using the
C O SMO t h e r m p r o g r a m w i t h t h e n e w e s t
BP_TZVPD_FINE_21 parametrization. In the COSMOtherm
calculation, we used sets of up to 10 lowest free energy
conformers selected the same way as the conformers for the
COSMO-ML models. For the gas phase, we used an equal
number of the lowest gas-phase energy conformers.
Both COSMO-ML models agree with the experimentally

determined psat values within about 1 order of magnitude. This
is better than SIMPOL and EVAPORATION estimates.36 The
COSMOtherm-estimated psat of caric and OH-caronic acid
agree well with the experiments, while COSMOtherm over-
estimates the experimental psat of caronic acid by a factor of 36.
One major advantage of our COSMO-ML model compared to
that of COSMOtherm is that our solid-phase model can predict
saturation vapor pressures of solid-phase compounds. In
COSMOtherm, additional experimental input is needed to
derive the free energy of fusion of each compound. The

experimental psat of caric and OH-caronic acid agree better
with our liquid-phase COSMO-ML model, while the
experimental psat of caronic acid agrees better with the solid-
phase model. However, with the uncertainties of both the
experiments and the models, it is not possible to determine the
phase of the different acids measured by Li et al.36 The solid-
to-liquid psat ratio of the COSMO-ML models is between 5
and 10, which agrees with the observations of Booth et al.37 for
similar carboxylic acids. Thus, this application of the model
illustrates its use in combination with new experimental
methods to add a higher confidence in the estimation of
thermodynamic data and our understanding of these proper-
ties.
Future Model Improvements. We have presented a

working COSMO-ML model for predicting the saturation and
sublimation vapor pressures of organic compounds. The
cosmo-files and machine learning codes are included in
https://doi.org/https://doi.org/10.23729/f2b13fc5-b3d1-
49b4-a895-53e994a8218a for further development and use of
the model. For future work, we recommend three main
developments that may improve the accuracy of the model the
most significantly.

A single conformer cannot be used to represent a realistic
conformer distribution of a compound in the condensed-phase.
Multifunctional compounds especially can have many different
hydrogen bonding patterns, which affect the energies of the
compound in the condensed and gas phases. Ideally, each
compound would be represented by the weighted sum of the
σ-profiles of a set of relevant conformers. Similar approach is
used in the COSMOtherm program.15 The selection of
appropriate conformer distributions in the COSMO-ML
models will be further investigated in future work.

When using the COSMO-ML models, the size of the
compound should be considered in order to not extrapolate
outside the trained model. Currently, the training data consist
of molecules with 3−30 (liquid) or 6−28 (solid) nonhydrogen
atoms (mainly C, O, H, N, and S). However, the number of
molecules with >20 nonhydrogen atoms is only 5 and 6 in the
training data of the liquid- and solid-phase models,
respectively. Larger compounds may have σ-profile (p(σ))
values that are outside the ranges of the training data
compounds. The size range of compounds and the accuracy
of the model can be further improved in the future by adding
more compounds to the training data set. Additionally, the
prediction accuracy of the temperature dependence of psat can
be improved with more extensive training data. Accurate
temperature dependence predictions will enable the estimation
of the heat and entropy of sublimation and vaporization.

We have demonstrated the applicability of the COSMO σ-
profiles in predicting saturation vapor pressures of multifunc-
tional organic compounds. Here we have used a single machine
learning model for our predictions. In the future, other
machine learning techniques, such as neural networks, may be
tested.

Table 1. COSMO-ML-Predicted, Experimental, and COSMOtherm-Estimated Saturation Vapor Pressures (psat in Pa) of Δ3-
Carene Oxidation Products at 293.15 K

compound molecular formula COSMO-ML, solid COSMO-ML, liquid COSMOtherm, liquid experiment, Li et al.36

caric acid C9H14O4 1.3 × 10−5 5.7 × 10−5 2.2 × 10−4 1.6 × 10−4

caronic acid C10H16O3 1.2 × 10−4 1.3 × 10−3 6.9 × 10−3 1.9 × 10−4

OH-caronic acid C10H16O4 1.3 × 10−5 2.6 × 10−4 3.7 × 10−4 2.6 × 10−4
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