
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Qubernetes : Towards a unified cloud-native execution platform for hybrid classic-
quantum computing

© 2024 the Authors

Published version

Stirbu, Vlad; Kinanen, Otso; Haghparast, Majid; Mikkonen, Tommi

Stirbu, V., Kinanen, O., Haghparast, M., & Mikkonen, T. (2024). Qubernetes : Towards a unified
cloud-native execution platform for hybrid classic-quantum computing. Information and
Software Technology, 175, Article 107529. https://doi.org/10.1016/j.infsof.2024.107529

2024

Information and Software Technology 175 (2024) 107529

A
0

Q
c
V
U

A

K
Q
H
C
Q
C

1

i
s
m
k
s
A
i
w
T
c

h
H
c
u
f

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ubernetes: Towards a unified cloud-native execution platform for hybrid
lassic-quantum computing
lad Stirbu ∗, Otso Kinanen, Majid Haghparast, Tommi Mikkonen
niversity of Jyväskylä, Jyväskylä, Finland

R T I C L E I N F O

eywords:
uantum software
ybrid classical-quantum software
ontainers
uantum software development lifecycle
loud-native computing

A B S T R A C T

Context: The emergence of quantum computing proposes a revolutionary paradigm that can radically
transform numerous scientific and industrial application domains. The ability of quantum computers to scale
computations beyond what the current computers are capable of implies better performance and efficiency for
certain algorithmic tasks.
Objective: However, to benefit from such improvement, quantum computers must be integrated with existing
software systems, a process that is not straightforward. In this paper, we propose a unified execution model
that addresses the challenges that emerge from building hybrid classical-quantum applications at scale.
Method: Following the Design Science Research methodology, we proposed a convention for mapping quantum
resources and artifacts to Kubernetes concepts. Then, in an experimental Kubernetes cluster, we conducted
experiments for scheduling and executing quantum tasks on both quantum simulators and hardware.
Results: The experimental results demonstrate that the proposed platform Qubernetes (or Kubernetes for
quantum) exposes the quantum computation tasks and hardware capabilities following established cloud-native
principles, allowing seamless integration into the larger Kubernetes ecosystem.
Conclusion: The quantum computing potential cannot be realized without seamless integration into classical
computing. By validating that it is practical to execute quantum tasks in a Kubernetes infrastructure, we pave
the way for leveraging the existing Kubernetes ecosystem as an enabler for hybrid classical-quantum computing.
. Introduction

Quantum computers have demonstrated the potential to revolution-
ze various fields, including cryptography, drug discovery, materials
cience, and machine learning, by leveraging the principles of quantum
echanics. However, the current generation of quantum computers,

nown as noisy intermediate-scale quantum (NISQ) computers [1],
uffer from noise and errors, making them challenging to operate.
dditionally, the development of quantum algorithms requires special-

zed knowledge in the field of quantum mechanics and mathematics,
hich is not readily available to the majority of software professionals.
hese factors pose a significant entry barrier to leveraging the unique
apabilities of quantum systems.

For the existing base of business applications, classical computing
as already proven its capabilities across a diverse range of solutions.
owever, some of the computations they must perform can be ac-
elerated with quantum computing, much like graphical processing
nits (GPUs) are used today. Therefore, quantum systems should not
unction in isolation, but they must coexist and interoperate with

∗ Corresponding author.
E-mail address: vlad.a.stirbu@jyu.fi (V. Stirbu).

1 https://kubernetes.io/.

classical systems. To this end, the current way of building and operating
quantum computers hinders their adoption, as application developers
have to learn the bespoke way in which their programs are executed
on the hardware. To make matters worse, the quantum simulator of the
hardware target used for execution has to be explicitly selected, which
blurs the line between the development and the operational phase in a
product or software development lifecycle.

This paper proposes an approach where the focus is placed on the
orchestration of classical and quantum computations. Kubernetes,1 a
widely used system for automating deployment, scaling, and manage-
ment of containerized applications, is used as the underlying infras-
tructure. In this approach, the quantum computations are packaged
as containers that are executed on quantum-capable nodes alongside
classical computations. Constructed in this way, Qubernetes – the
quantum-enhanced Kubernetes – is tailored to fit hybrid classical-
quantum applications.

The rest of this paper is organized as follows. In Section 2, we
present the fundamental concepts of quantum computing, the quantum
vailable online 26 July 2024
950-5849/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2024.107529
eceived 6 November 2023; Received in revised form 13 May 2024; Accepted 16 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

uly 2024

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
mailto:vlad.a.stirbu@jyu.fi
https://kubernetes.io/
https://doi.org/10.1016/j.infsof.2024.107529
https://doi.org/10.1016/j.infsof.2024.107529
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 175 (2024) 107529V. Stirbu et al.

c
l

i
T
b
l
a
b
o
T
e
r
P
c
s
T
i
a

2

s
t
e
T
s
t
e
t
v
r
b
c
a

software development and key challenges faced by the developers and
the hardware operators of hybrid classic-quantum systems. In Sec-
tion 3, we introduce the methodological background of this research.
In Section 4, we introduce the objectives of the solution, crystallized
as requirements that need to be satisfied by a unified cloud-native
hybrid classical-quantum computing execution platform. In Section 5,
we introduce Qubernetes, a Kubernetes platform extension that enables
the execution of heterogeneous classic-quantum computing tasks. In
Section 6 we describe the experimental setup and the application
scenarios used to validate the Qubernetes concept. In Section 7 we
discuss how Qubernetes addresses the requirements and the needs of
software developers. In Section 8 we address the threats to validity.
Concluding remarks are provided in Section 9.

2. Background and motivation

2.1. Quantum computing fundamentals

Qubits, which stands for quantum bits, are the fundamental units
of quantum information in quantum computing. Unlike conventional
bits, which can exist in one of two states (0 or 1), qubits can exist in
multiple states simultaneously, thanks to the principles of superposition
and entanglement, which are unique to quantum mechanics [2]. This
new computing paradigm enables the development of a new breed
of algorithms [3] that leverage the qubit capabilities to speed up the
performance of computational tasks beyond what is possible with the
existing classical computers [4]. For example, factoring large numbers
using classical algorithms has exponential complexity, while using
Shor’s algorithm has polynomial complexity.

The physical implementation of quantum computers can be split
into two categories: specialized (e.g., special purpose computers de-
signed to solve optimization problems using annealing programming
approach) or general-purpose (e.g., allowing programming of individ-
ual qubits using pulses or gate programming approaches). The cur-
rent technological candidates for building gate-based general-purpose
quantum computers fit within one of the following categories: super-
onducting – tiny superconducting materials are cooled to extremely
ow temperatures to manifest their quantum properties, trapped ion –

ions are trapped within electromagnetic fields, or photonic – quantum
information stored in photons can be manipulated and transmitted
over long distances. In the longer term, the topological quantum com-
puters, leveraging the collective properties of ensembles of particles,
will overcome the current NISQ limitations and achieve fault-tolerant
operations [5]. Although these quantum computers are not yet ad-
vanced enough to achieve fault-tolerance or reach the scale required for
quantum advantage [6,7], they provide an experimentation platform to
develop new generations of hardware and quantum algorithms and val-
idate quantum technology in real-world use cases. Whether a quantum
computer is general-purpose or specialized, the selection of quantum
qubit implementation technology can enhance hardware efficiency for
specific problem classes [8,9]. To use the hardware effectively, appli-
cation developers must consider these differences when designing and
optimizing the software’s functionality and operations.

Further, the concept of distributed quantum computers [10], which
interlink multiple distinct quantum machines through quantum com-
munication networks, emerges as a potential solution to amplify the
available quantum volume [11], beyond what is possible using a single
quantum computer. Nevertheless, the intricacies inherent in the dis-
tributed quantum computers remain hidden from users, as compilers
aware of the distributed architecture of the target system shield them
from such complexities. In essence, the quantum compiler plays a vital
role in achieving the effective execution of generic quantum circuits on
existing physical hardware platforms, making the compilers an active
research area in quantum computing [12].
2

2.2. Quantum development kits

A typical hybrid classic-quantum software system is understood as
a classical program that has one or more software components that
are implemented using quantum technology, as depicted in Fig. 1. A
quantum component relies on quantum algorithms [3], which are trans-
formed into quantum circuits. The quantum circuit describes quantum
computations in a machine-independent language, such as quantum
assembly (QASM) [13]. This circuit is translated by a computer that
controls the quantum computer in a machine-specific circuit and a se-
quence of operations, such as pulses [14], that control the operation on
individual hardware qubits. The translation process, implemented using
quantum compilers, encompasses supplementary actions like break-
ing down quantum gates, optimizing quantum circuits, and providing
fault-tolerant iterations of the circuit.

Application developer use tools like Qiskit2 and Cirq3 for writ-
ing, manipulating and optimizing quantum circuits. These Python li-
braries allow researchers and application developers to interact with
nowadays’ NISQ computers, allowing them to run quantum programs
on a variety of simulators and hardware designs, abstracting away
the complexities of low-level operations and allowing researchers and
developers to focus on algorithm design and optimization.

Tools like TensorFlow Quantum4 and PennyLane5 play a crucial role
n facilitating the development of machine learning quantum software.
hese frameworks provide high-level abstractions and interfaces that
ridge the gap between quantum computing and classical machine
earning. They allow researchers and developers to integrate quantum
lgorithms seamlessly into the machine learning development process
y providing access to quantum simulators and hardware, as well as
ffering a range of quantum-friendly classical optimization techniques.
ensorFlow Quantum leverages the power of Google’s TensorFlow
cosystem, enabling the combination of classical and quantum neu-
al networks for hybrid quantum–classical machine learning models.
ennyLane offers a unified framework for developing quantum ma-
hine learning algorithms, supporting various quantum devices and
eamlessly integrating them with classical machine learning libraries.
hese tools provide a foundation for researchers to explore and exper-

ment with quantum machine learning, accelerating the progress and
doption of quantum computing in the field of machine learning.

.3. Notebooks, simulators, and proxy access to quantum hardware

Jupyter6 notebooks and quantum simulators play a vital role in
upporting developers of quantum programs. Jupyter provides an in-
eractive and collaborative environment where developers can write,
xecute, and visualize their quantum code in an accessible manner.
hey allow for the combination of code, explanatory text, and vi-
ualizations, making it easier to experiment, iterate, and document
he development process. Quantum simulators, on the other hand,
nable developers to simulate the behavior of quantum systems without
he need for physical quantum hardware. These simulators provide a
aluable testing ground for verifying and debugging quantum algo-
ithms, allowing developers to gain insights into their performance and
ehavior before running them on actual quantum devices. Developers
an iterate quickly, gain a deeper understanding of quantum concepts,
nd refine their quantum programs efficiently.

2 https://qiskit.org.
3 https://quantumai.google/cirq.
4 https://www.tensorflow.org/quantum.
5 https://pennylane.ai.
6
 https://jupyter.org.

https://qiskit.org
https://quantumai.google/cirq
https://www.tensorflow.org/quantum
https://pennylane.ai
https://jupyter.org

Information and Software Technology 175 (2024) 107529V. Stirbu et al.

p
a

u
t
m
p
p
c
a
r
a

2

q
d
p
t
a
v
o
n

Fig. 1. Quantum computing model: components and interfaces.
Traditional cloud computing providers, such as AWS Braket,7 Azure
Quantum,8 Google Quantum AI9 or IBM Quantum,10 offer comprehen-
sive quantum development services. These services are designed to op-
timize the development process with integrated tools like Jupyter note-
books and task schedulers. Developers can create quantum applications
and algorithms across multiple hardware platforms simultaneously.
This approach ensures flexibility, allowing fine-tune algorithms for
specific systems while maintaining the ability to develop applications
that are compatible with various quantum hardware platforms.

2.4. Hybrid classical-quantum computing approaches

High-Performance Computing (HPC) is the mainstream approach
for running scientific and engineering simulations at scale. Integrating
the quantum computing and HPC software stacks enables quantum
technology to accelerate parts of the simulations. Two notable ap-
proaches for integrating the two software stacks are HPC-QC [15],
which leverages the Open Message Passing Interface (OpenMPI11) com-
atible architectures, and XACC [16] approach based on the OSGi12

rchitecture.
Similarly, the existing base of cloud applications can benefit from

sing quantum computing to accelerate the appropriate computational
asks, a trend that is not overlooked by the major quantum develop-
ent toolkit providers. For example, Qiskit’s quantum-serverless [17]
roposes a cloud-based approach for running hybrid classical-quantum
rograms. The proposed programming model, conforming to the RAY13

omputing framework, makes it easy to scale Python workloads on
Kubernetes cluster in which the quantum execution environment is

epresented by a distributed Qiskit runtime that allows transparent
ccess to multiple QPUs.

.5. Development process

The software development life-cycle (SDLC) of hybrid classic-
uantum applications consists of a multi-faceted approach [18], as
epicted in Fig. 2. At the top level, the classical software development
rocess starts by identifying user needs and deriving them into sys-
em requirements. These requirements are transformed into a design
nd implemented. The result is verified against the requirements and
alidated against user needs. Once the software system enters the
perational phase, any detected anomalies are used to identify potential
ew system requirements, if necessary. A dedicated track for quantum

7 https://aws.amazon.com/braket/.
8 https://learn.microsoft.com/en-us/azure/quantum/.
9 https://quantumai.google.

10 https://quantum-computing.ibm.com.
11 https://www.open-mpi.org.
12 https://www.osgi.org.
13
3

https://www.ray.io.
components is followed within the SDLC [19], specific to the implemen-
tation of quantum technology. The requirements for these components
are converted into a design, which is subsequently implemented on
classic computers, verified on simulators or real quantum hardware,
and integrated into the larger software system. During the operational
phase, the quantum software components are executed on actual quan-
tum hardware. The scheduling ensures efficient utilization of the scarce
quantum hardware resources, while monitoring capabilities enable the
detection of anomalies throughout the operational stage.

As quantum computers are a scarce resource, it is not practical to
develop quantum software components directly on hardware. Instead,
developers can use simulators that use commonly available and less
expensive classical resources (e.g., CPUs and GPUs) for the early stages
of development and testing. As simulators become more sophisticated,
being able to simulate the noise of actual hardware, developers can
perform fast iterations with confidence. Only when the components
are mature enough the development can be continued on actual the
hardware that will be used during the execution phase. This approach
ensures that the use of quantum resources is effective.

Commercial entities, like QuantumPath [20], provide an integrated
offering that covers multiple developments, including requirements
management, editing and source code version control, and remote
execution via proxy to quantum hardware. The integrated approach has
near-term advantages as it lowers the entry barrier into a technolog-
ically complex environment. However, in the long term, as quantum
technology is integrated into existing classical applications, the devel-
opment methodologies and the tooling that support them will be inher-
ited from what is already used for classical software development by the
respective organizations. This is a particularly important concern for
regulated industries (e.g., finance or medical [21]) where regulatory-
related automation is implemented in tools like JIRA14/Polarion15 –
project and requirements management, and GitHub16/GitLab17 – ver-
sion control and code level change management.

2.6. Towards cloud-native quantum computing

Quantum technology has the ability to deliver quantum advantage
for an array of applications (e.g., machine learning [22] or optimiza-
tions [23]), that can be implemented in cloud-native environments.
When used within this context, the quantum technology must be prop-
erly integrated into the larger technological ecosystem (e.g. Kuber-
netes), and using modern DevOps practices [24], leveraging containers
as the standard way of packaging software artifacts, and a high degree
of automation employed at every stage of the SDLC.

14 https://www.atlassian.com/software/jira.
15 https://polarion.plm.automation.siemens.com.
16 https://github.com.
17
 https://about.gitlab.com.

https://aws.amazon.com/braket/
https://learn.microsoft.com/en-us/azure/quantum/
https://quantumai.google
https://quantum-computing.ibm.com
https://www.open-mpi.org
https://www.osgi.org
https://www.ray.io
https://www.atlassian.com/software/jira
https://polarion.plm.automation.siemens.com
https://github.com
https://about.gitlab.com

Information and Software Technology 175 (2024) 107529V. Stirbu et al.

3

a
T
i
w
t

Fig. 2. The software development lifecycle model for hybrid classical-quantum systems.
Fig. 3. Design science research methodology applied to Qubernetes development.
. Methodology

The Qubernetes concept was developed using the problem-centric
pproach of the Design Science Research Methodology (DSRM) [25].
he starting point was to answer the research question How to effectively
mplement hybrid classical-quantum computing? The research question
as translated into a set of six objectives that need to be met by

he solution to enable cloud-native integration. Further, in the Design
and Development phase we introduced how quantum computing con-
cepts like quantum computer and computation tasks are exposed in
to Kubernetes as quantum nodes and jobs. Then, for the Demonstration
phase, we described a test cluster, conforming to the Qubernetes con-
vention, and provided an example quantum jobs developed using the
Qiskit toolkit that is executed on all targets: CPU and GPU simulators
(e.g., Qiskit-Aer), and quantum hardware (e.g., HELMI). For the Evalu-
ation phase, we have discussed how the Qubernetes solution addresses
the objectives. The process is depicted in Fig. 3.

We have carefully considered the reproducibility of the test envi-
ronment and opted for an approach in which the essential software
artifacts are included in the paper using the established conventions
for each technology: YAML specifications for serialized Kubernetes
objects,18 Dockerfile for the container descriptions,19 and Python source
for the simple quantum test program developed using Qiskit toolkit.
The steps describing setting up a Kubernetes cluster, configuring the
internal container registry, build an publish container images to reg-
istry or interacting with the cluster using the kubectl,20 have been

18 https://kubernetes.io/docs/concepts/overview/working-with-objects/.
19 https://docs.docker.com/reference/dockerfile/.
20
4

https://kubernetes.io/docs/reference/kubectl/.
omitted for brevity, as they are covered by ample documentation
on the respective projects’ websites. Nevertheless, we have provided
throughout the manuscript, whenever necessary, footnotes with the
links that lead to the relevant online documentation. We acknowledge
that our access to the HELMI quantum computer is attributed to our
university’s membership in the consortia that owns the hardware, a
circumstance that is not easily replicable. However, the CPU and GPU
capabilities of the test cluster can be replicated by anyone with access
to general-purpose computing and an Nvidia-compatible GPU, which
are commercially available off-the-shelf products. We believe that this
approach strikes the right balance between completeness and brevity,
allowing the reader not only to replicate our results but to continue
experimentation.

4. Objectives

The shift to cloud computing has simplified the process of de-
veloping scalable applications. However, to fully harness the benefits
of cloud computing, applications must adhere to cloud-native archi-
tectural principles [26]. This entails designing applications as small,
loosely coupled components that can be bundled with their dependen-
cies into portable containers and deployed on the immutable infras-
tructure. By leveraging the service discovery, load-balancing, and self-
healing capabilities inherent in cloud platforms, development teams,
comprising both software development and operations expertise, can
automate the software development lifecycle and streamline deliv-
ery processes. Furthermore, emphasizing observability through inte-
grated monitoring and logging offers valuable insights into perfor-
mance, health, and behavior, empowering teams to swiftly respond to

potential anomalies.

https://kubernetes.io/docs/concepts/overview/working-with-objects/
https://docs.docker.com/reference/dockerfile/
https://kubernetes.io/docs/reference/kubectl/

Information and Software Technology 175 (2024) 107529V. Stirbu et al.
Fig. 4. The solution boundaries within the hybrid classical-quantum application
domain.

Kubernetes is the industry-standard container orchestration plat-
form for automating deployment, scaling, and management of con-
tainerized cloud-native applications. Developed as an open-source so-
lution by Cloud Native Computing Foundation (CNCF),21 together with
the myriad of projects that offer supporting functionality, it allows users
to deploy applications on the managed infrastructure of the major cloud
providers (e.g., AWS EKS,22 Azure AKS,23 or GCP GKE24), smaller or
regional cloud providers, or on-prem – using own infrastructure. The
reach functionality and wide industry adoption make Kubernetes the
prime candidate for developing a cloud-native execution platform for
hybrid classical-quantum computing.

Quantum computing technology holds the potential to enhance the
performance of cloud applications, particularly in domains such as
machine learning and optimizations [27]. To facilitate seamless inte-
gration, the implementation of quantum components should align with
existing development conventions and practices established in classical
applications whenever possible. It is crucial to acknowledge that cloud-
native applications are developed using a diverse array of programming
languages and frameworks. In the realm of machine learning alone,
there are various tools such as KubeFlow,25 Seldon Core,26 and RAY,
to name a few. Consequently, a cloud-native solution for exposing
quantum computing resources needs to focus on the low-level interface
between containerized workloads and simulators/hardware. Simulta-
neously, it should maintain an open high-level interface between the
classical and the quantum components, allowing for flexibility and
interworking with different programming languages and frameworks,
as illustrated in Fig. 4. The following objectives crystallize the focus on
the low-level interface described above.

O1 - Design control and SDLC: The design controls are part of a
comprehensive quality system that covers the lifetime of a product or

21 https://www.cncf.io/.
22 https://aws.amazon.com/eks/.
23 https://azure.microsoft.com/en-us/products/kubernetes-service.
24 https://cloud.google.com/kubernetes-engine.
25 https://www.kubeflow.org.
26
5

https://www.seldon.io/solutions/seldon-core.
Fig. 5. Design controls.

service. The process ensures that the user needs are met by the resulting
product or service and that the design inputs and outputs on which the
design process is based are verified through a rigorous review process,
see Fig. 5. They are based upon established quality assurance and
engineering principles [28], covering changes to the product, service,
or manufacturing process design, including those occurring long after
a device has been introduced to the market. From a quantum software
perspective, the software component developed using quantum technol-
ogy needs to be validated and packaged in a format that is appropriate
for execution during the quantum execution phase.

O2 - Runtime support: The quantum programming frameworks
(e.g., Qiskit or Cirq) employ distinct methods for exposing the quantum
hardware as backends. As the framework includes a runtime for run-
ning the code, they are responsible for converting the input circuits,
which are machine-independent, into machine-specific configurations
using an internal representation expressed in QASM. Alternatively,
an open and extensible toolchain and runtime based on intermediate
representations for quantum programs that extend the LLVM compiler
framework [29] are currently under development in the QIR Alliance.27

The QIR compiler has the ability not only to convert between the
machine-independent and the machine-dependent circuits but also to
mix intermediate representations originating from different quantum
programming languages expressed as QIR. Further, the QIR ecosystem
enables developers to create programs with complex classical and
quantum instructions via its interoperability with LLVM. These aspects
of the execution environment have to be exposed at the platform level
so that users can execute their quantum software on the appropriate
hardware.

O3 - Programming model: Gate-level and pulse-level quantum pro-
gramming are two distinct approaches used to control and manipulate
quantum computers. In gate-level programming, quantum operations
are expressed as a sequence of quantum gates that act on qubits. These
gates are akin to logic gates in classical computing and are speci-
fied in a quantum circuit. Gate-level programming provides a high-
level, hardware-independent representation of quantum algorithms.
Most quantum programming frameworks support gate-level program-
ming, e.g., Qiskit, Cirq, or TKET.28 Similarly, machine learning-oriented
quantum programming (e.g., Pennylane29) are gate-based [30]. On the
other hand, pulse-level quantum programming involves direct manipu-
lation of the microwave or laser pulses that drive the qubits. This level
of programming is hardware-centric and enables fine-grained control
over the quantum operations, providing opportunities for optimizing

27 https://www.qir-alliance.org.
28 https://www.quantinuum.com/developers/tket.
29
 https://pennylane.ai.

https://www.cncf.io/
https://aws.amazon.com/eks/
https://azure.microsoft.com/en-us/products/kubernetes-service
https://cloud.google.com/kubernetes-engine
https://www.kubeflow.org
https://www.seldon.io/solutions/seldon-core
https://www.qir-alliance.org
https://www.quantinuum.com/developers/tket
https://pennylane.ai

Information and Software Technology 175 (2024) 107529V. Stirbu et al.

S

O
r
c
a
d
v
w
s
t
s

O
s
t
b
t
w
t

O
o
o
t
m
d
i
o

5

b
r
f
t

5

i
q
t
q
t
s
h

5

s
N
1
a
t
n

p

s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
quantum algorithms. Pulse-level programming is well-suited for prac-
titioners who want to harness the full potential of quantum hardware
via specialized programming languages (e.g., Jaqal,30 Qiskit Pulse,31 or
imuQ [31]).

4 - Scheduling: The scheduler is a software component that has the
esponsibility to find the appropriate resources required for executing
orrectly a quantum software component. Besides the basic function-
lity, the scheduler might consider additional inputs that affect its
ecisions. For example, the energy requirements for completing the job
s the cost of the energy can play a significant role in deciding the time
hen to schedule the execution. Similarly, from a time perspective, the

cheduler can do more than act as a queue so that quantum executions
hat need to be completed fast are prioritized first, while the others are
cheduled when the quantum hardware utilization decreases.

5 - Execution: The execution is the phase during which the quantum
oftware component is run on the actual hardware. The execution
ypically involves the preparation of the hardware, a step performed
y the control software that runs on a classical computer. Following
he preparation, the quantum program is executed a number of times,
ith the results being collected and aggregated into a data structure

hat includes a probability distribution of the results.

6 - Monitoring: The monitoring component performs comprehensive
bservation of the system performance targeted to the users and to the
perators of the platform. Monitoring the execution allows the users
o determine if there are anomalies in the execution that can lead to
odification of the program. Similarly, monitoring allows operators to
etermine how the quantum hardware is utilized and detect how to
mprove resource utilization. Monitoring also fulfills the enabling layer
f billing.

. Qubernetes: design and concepts

Qubernetes (Q8s) is a quantum computing-aware extension of Ku-
ernetes. In this section, we describe how the quantum computing
esources are mapped to the Kubernetes native concepts, serving as the
oundation for building cloud-native hybrid classical-quantum applica-
ions.

.1. Quantum resource mapping overview

In contrast to traditional Kubernetes, Q8s introduces the follow-
ng pivotal additions: the quantum-capable node definition and the
uantum job definition that facilitates execution of quantum computa-
ions on quantum-capable nodes. Quantum nodes seamlessly integrate
uantum hardware and its associated control circuit capabilities into
he Kubernetes cluster, while the quantum-aware scheduler is able to
chedule jobs that instantiate the pods that need access to quantum
ardware on the corresponding quantum nodes, as depicted in Fig. 6.

.2. Quantum node

The quantum capable node joining the cluster is identified using
pecific labels (e.g., accelerator), and the QPU’s capacity in their
ode specification (e.g., vendor.example.com/qpu), see Listing
. The capacity indicated by the node is used by the scheduler to
llocate pods on compatible nodes. As current quantum hardware is
ypically able to execute one task at a time, the value 1 means that the
ode is able to execute a task, while the value 0 indicates that it is not.

30 https://www.sandia.gov/quantum/quantum-information-sciences/
rojects/qscout-jaqal/.
31 https://qiskit.org/documentation/apidoc/pulse.html.
6

apiVersion: v1
kind: Node
metadata:
labels:
accelerator: qpu

tatus:
capacity:
vendor.example.com/qpu: 1

Listing 1: Quantum computing capable node specification.

5.3. Quantum job

A Job in Kubernetes is a workload resource designed to spawn a
single Pod and ensure its reliable execution until completion. Given
that quantum programs typically adhere to a batch execution model,
reusing the Job workload is a well-suited choice.

apiVersion: batch/v1
kind: Job
metadata:
name: quantum-job

spec:
template:
spec:
nodeSelector:
accelerator: qpu

containers:
- name: quantum-task
image: registry.example.com/program:v1.2.3
command: ["./extrypoint.sh"]
resources:
requests:
vendor.example.com/qpu: 1

limits:
vendor.example.com/qpu: 1

Listing 2: Quantum job specification.
The specific quantum task that needs to be executed as part of the

Job is described by the spec.template key that includes a cue for
the scheduler that the pod needs to be executed on a quantum capable
node (e.g., nodeSelector), and it needs one slice of the specific
hardware capacity (e.g., vendor.example.com/qpu).

apiVersion: v1
kind: Pod
metadata:
name: quantum-pod

spec:
nodeSelector:
accelerator: qpu

containers:
- name: quantum-task
image: "registry.example.com/program:v1.2.3"
resources:
requests:
vendor.example.com/qpu: 1

limits:
vendor.example.com/qpu: 1

Listing 3: Pod specification created from the template described in
the Job.

5.4. Scheduling and execution

Kubernetes has sophisticated scheduling capabilities for classical
computing that are able to handle heterogeneous computing capabil-
ities like CPUs with different architectures (e.g., amd64 or arm64),

https://www.sandia.gov/quantum/quantum-information-sciences/projects/qscout-jaqal/
https://www.sandia.gov/quantum/quantum-information-sciences/projects/qscout-jaqal/
https://qiskit.org/documentation/apidoc/pulse.html

Information and Software Technology 175 (2024) 107529V. Stirbu et al.
Fig. 6. Qubernetes: quantum aware Kubernetes.
s
a

1 f
2 f
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 #
21 c
22

23 #
24 j
25

26 #
27 r
28

29 #
30 c
31 p

t
a
r
L

GPUs (e.g., AMD, Intel, Nvidia), or even more exotic accelerators like
TPUs (e.g., on Google Kubernetes Engine) or FPGAs. Using the labels
and capabilities exposed by the quantum capable nodes, and the node
selection preferences and the computing needs requested by pods,
the default scheduler (e.g., kube-scheduler), without being aware
of quantum computing internals, can create the pods, move them in
Pending state, and wait till the appropriate nodes become available.

Once scheduled, a Pod moves into Running state, during which the
quantum circuit is actually executed on the quantum hardware. Once
the execution ends successfully, the pod state changes to Succeeded,
and the corresponding Job becomes Completed. In case the execution
fails, the pod status changes to Failed. The Job output can be fetched
using kubectl logs jobs/quantum-job, as for any Kubernetes
jobs.

5.5. Logging and monitoring

Logging is the process of capturing, storing, and analyzing the
data generated by containers, applications, and infrastructure within a
Kubernetes cluster. It plays a crucial role in monitoring, troubleshoot-
ing, and maintaining the health and performance of containerized
applications and the underlying infrastructure. Kubernetes logging typ-
ically involves the collection of log data from various sources, such
as containers, pods, and nodes, and centralizing it for analysis and
visualization. Effective logging at the quantum node and pod level helps
Kubernetes administrators and developers gain valuable insights into
the application’s behavior, diagnose issues, and ensure the reliability
and security of the containerized quantum workloads.

Monitoring is an essential aspect of managing containerized applica-
tions within Kubernetes clusters. It involves the continuous collection,
analysis, and visualization of data related to the performance, health,
and resource utilization of both the applications and the underly-
ing infrastructure. Kubernetes monitoring provides real-time insights
into the behavior of containers, pods, nodes, and other resources,
enabling administrators to proactively identify and resolve issues, op-
timize resource allocation, and ensure the reliability and scalability
of the entire environment. Administrators can leverage tools such as
Prometheus,32 Grafana,33 or other Kubernetes-native monitoring solu-
tions to enable operators to gain a comprehensive understanding of
the cluster’s operational status by tracking metrics, setting up alerts, or
creating detailed dashboards. This data-driven approach is fundamental
for maintaining the availability and performance of applications in
dynamic, containerized environments.

6. Demonstration

This section describes the environment used to demonstrate the
use of the Qubernetes platform. We start with a description of the
experimental cluster in which the demonstration was conducted. Then
we describe the scenarios used for running quantum programs inside
the test Qubernetes cluster.

32 https://prometheus.io.
33 https://grafana.com.
7

6.1. Experimental cluster setup

The evaluation of Qubernetes was performed on a Kubernetes clus-
ter containing both classical and quantum computing resources (see
Fig. 7). The classical nodes had CPU and GPU capabilities, allowing
quantum computations to be executed in simulators, including the ones
supported by Nvidia’s cuQuantum.34 The quantum node exposed the
QPU functionality as a a virtual QPU , implemented by a classical pro-
gram (e.g., the entrypoint.sh script included in the container) that
ends commands over secure shell (ssh) to the IQM 5-qubit computer
ttached to the LUMI supercomputer operated by CSC35 in Finland.

rom qiskit import QuantumCircuit, transpile
rom qiskit_aer import AerSimulator

Use Aer’s AerSimulator
simulator = AerSimulator()

Create a Quantum Circuit acting on the q register
circuit = QuantumCircuit(2, 2)

Add a H gate on qubit 0
circuit.h(0)

Add a CX (CNOT) gate on control qubit 0 and target qubit 1
circuit.cx(0, 1)

Map the quantum measurement to the classical bits
circuit.measure([0, 1], [0, 1])

Compile the circuit for the support instruction set
(basis_gates)↪

and topology (coupling_map) of the backend
ompiled_circuit = transpile(circuit, simulator)

Execute the circuit on the aer simulator
ob = simulator.run(compiled_circuit, shots=shotsAmount)

Grab results from the job
esult = job.result()

Returns counts
ounts = result.get_counts(compiled_circuit)
rint("\nTotal count for 00 and 11 are:", counts)

Listing 4: Simplified test program intended to run on CPU.

The test application was a simple quantum program developed using
he Qiskit framework, depicted in Listing 4. The program contains
ll the structural elements expected in a typical quantum program
egardless of the programming framework used (e.g., Cirq, Penny-
ine, etc.): backend selection (line 5), quantum circuit definition (lines

34 https://developer.nvidia.com/cuquantum-sdk.
35 https://docs.csc.fi/computing/quantum-computing/overview/.

https://prometheus.io
https://grafana.com
https://developer.nvidia.com/cuquantum-sdk
https://docs.csc.fi/computing/quantum-computing/overview/

Information and Software Technology 175 (2024) 107529V. Stirbu et al.

1

2

3

4

5

6

7

8

9

Fig. 7. Experimental Qubernetes cluster setup.
Fig. 8. The representation of the quantum circuit used in the experiment.

8–17), transpilation of the machine-independent circuit to the backend-
specific circuit (line 21), execution on the backend (line 24), and using
the results (lines 27–31). The simple quantum circuit consisting of two
qubits and a 2-qubit gate (depicted in Fig. 8) is light enough in terms
of gate complexity that can be executed in all target environments
(e.g., CPU or GPU-based simulators or actual quantum computers), but
still demonstrates a measurable result of a quantum computation task.

The program is packaged as a container, together with the appropri-
ate dependencies and the entrypoint.sh script, then published to
the cluster’s internal container registry. The blueprint of the container
specification is presented in Listing 5.

FROM --platform=amd64
nvidia/cuda:11.6.2-base-ubuntu20.04↪

COPY requirements.txt .
RUN pip install - r requirements.txt

COPY test.py .
COPY entrypoint.sh .

CMD ["./entrypoint.sh"]

Listing 5: The container blueprint for executing the quantum task in
a Pod.

The program is executed in the cluster as a Job that requires the
execution completion of one Pod following the Kubernetes conventions.
The quantum jobs are submitted, and the results of the execution are
fetched using kubectl commands apply and logs, as expected in
a Kubernetes cluster.

6.2. Execute the quantum computation task in simulator

The experiment’s objective is to run a test program on a classi-
cal node within the cluster, utilizing the high-performance quantum
computing simulator qiskit-aer,36 which includes realistic noise
models. Initially, the program is executed on a node that solely relies
on CPU resources, as evident in the Job specification by the absence of
resource requests (e.g., as seen in lines 14–18 in Listing 2).

36 https://github.com/Qiskit/qiskit-aer.
8

Subsequently, the program is adapted to employ qiskit-aer-
gpu, the GPU-accelerated version of the simulator. This modified
execution takes place on a GPU-enabled node within the cluster, as
indicated by the necessary hardware specified in the Job configuration
(e.g., lines 16 and 18 in Listing 2 are altered to nvidia.com/gpu: 1).

6.3. Execute the quantum computation task on quantum hardware

The aim of the experiment is to run the test program on the
HELMI quantum computer. The test program is adjusted to utilize
the HELMI backend.37 An entrypoint.sh script that communicates
with HELMI via SSH, executes the required commands, and waits for
their completion is added to the container image. The Job submission
is scheduled to run on a designated node configured as described in
Listing 1. The Job description has additional configuration that exposes
the needed ssh keys in the running Pod, enabling entrypoint.sh
script to communicate securely with HELMI.

7. Discussion

In this section, we first discuss how Qubernetes meets the objec-
tives for a hybrid classical-quantum cloud native execution platform.
Additionally, we compare how Qubernetes compares with alternative
approaches, and propose future research directions.

7.1. QPU-capable node implementation

Within the experimental setup, the role of the quantum computer
is assumed by the HELMI computer, operated by CSC. Our approach
involves accessing the HELMI computer and executing the necessary
commands to run the quantum program through an SSH session. Given
that HELMI is an older system, this method of integrating its functional-
ity into the Kubernetes cluster serves as a proof of concept. Fortunately,
recent developments in quantum computing have seen new hardware
vendors and cloud providers offering remote APIs for their quantum
computers (e.g., Atos QML38 or AWS Braket). Further, ongoing research
initiatives like European High-Performance Computing Joint Under-
taking39 (EuroHPC JU) are working on defining Universal Quantum
Access [32], a concept that would not only enable access to various
local and remote quantum computers via standardized interfaces and
protocols, but would also facilitate the effective use of these quantum
resources. These advancements will facilitate a more straightforward
implementation of quantum resources at the node level. Overall, Ku-
bernetes has the ability to expose the runtime and hardware capa-
bilities using node labels, fulfilling the intent of objectives O2 and
O3, and collect the logs entries from the Pods to a centralized drain
(e.g., Prometheus), enabling monitoring according to objective O6.

37 https://docs.csc.fi/computing/quantum-computing/helmi/running-on-
helmi/.

38 https://pypi.org/project/qlmaas/.
39 https://eurohpc-ju.europa.eu/.

https://github.com/Qiskit/qiskit-aer
https://docs.csc.fi/computing/quantum-computing/helmi/running-on-helmi/
https://docs.csc.fi/computing/quantum-computing/helmi/running-on-helmi/
https://pypi.org/project/qlmaas/
https://eurohpc-ju.europa.eu/

Information and Software Technology 175 (2024) 107529V. Stirbu et al.
7.2. Scheduling quantum tasks

Currently, Kubernetes has native capabilities for basic scheduling,
being able to execute quantum tasks on classic nodes using simulators
and on quantum-capable nodes using actual hardware. Using the Job
metaphor enables the equivalent experience as running the program
using traditional means directly on hardware. However, the abstraction
layers are low-level and might not be appropriate for advanced usage.
More sophisticated scheduling mechanisms existing within the Kuber-
netes ecosystem can be used, e.g., Kueue.40 Overall, the Kubernetes
native scheduler and its extension points are able to fulfill the objective
O4.

7.3. Quantum task execution unit

Packaging quantum software components as containers (e.g., ob-
jective O1) provides an immutable artifact that enables Qubernetes to
execute in a consistent and repeatable fashion the respective compo-
nents. The container executed as a Pod within the context of completed
Jobs corresponds to a unit of work that can be easily understood
for monitoring purposes (e.g., objective O6), and also for billing if
needed. The approach decouples the execution from the design arti-
fact. The selection of the appropriate execution environment moves
to the quantum operational phase, implemented via scheduling. In the
experimental setup, we have separate Job specifications for each node
configuration (e.g., CPU, GPU, QPU). We can leverage configuration
management mechanisms like Kustomize41 or Helm42 to derive the
specifications from one template that serves as a single source of truth.

7.4. Quantum task abstraction level

The quantum tasks are executed in Qubernetes using the Pod and
Job-native objects. Although using kubectl to submit and execute
these run once to completion jobs is effective to demonstrate the low-
level interface, its usability might not be appropriate in all cases.
We plan to use Kubernetes’ native higher-level concepts like Ser-
vice43 to investigate how to enable more sophisticated functionality,
such as repetitive jobs triggered on demand. Though running tasks
in batch mode (e.g., either as Jobs or Services) produces the ex-
pected outcomes, the timing can be non-deterministic, contingent on
the quantum hardware’s load. To address this, rather than relying
on synchronous interaction mechanisms (e.g., run to completion for
short jobs or request–response for services), we intend to investigate
the potential of asynchronous approaches utilizing message queues
(e.g., KubeMQ44) or enterprise service bus (ESB) integration patterns
to deliver a reactive experience.

The Service abstraction would be able to handle inputs/outputs,
thus integrating the quantum components into the classical applica-
tions. However, classical cloud-native applications are developed using
a wide range of programming languages and frameworks, and their
components communicate using multiple protocols. Therefore, on the
high-level interface, rather than imposing a unified integration ap-
proach, it is more beneficial to leverage the interaction patterns and
protocols already used in the classical application context.

40 https://kueue.sigs.k8s.io.
41 https://kustomize.io.
42 https://helm.sh.
43 https://kubernetes.io/docs/concepts/services-networking/service/.
44
9

https://kubemq.io.
7.5. Kubernetes cluster management

The initial approach was to rely on a partition (e.g., namespace
in Kubernetes) of a managed cluster (e.g., Rahti45 operated by CSC
in Finland), where we had several nodes with CPUs and one node
having GPU access. Due to the difficulties of adding the node that
exposed the QPU resource to the cluster, we reverted to running our
own cluster. Quantum hardware providers may find it necessary to
manage Kubernetes clusters themselves to oversee node management,
but they can effectively utilize the namespace feature to create isolated
environments for accommodating multiple users simultaneously.

7.6. Related approaches and future research directions

For quantum technology to truly deliver its potential and have
a meaningful impact, it must seamlessly integrate into applications
seeking a computational performance advantage. Proxy access solutions
to remote hardware represent an initial step aimed at reducing entry
barriers for developers wishing to run their programs on diverse hard-
ware platforms. While effective for experimentation, these solutions
have limitations in terms of scalability and fail to address the broader
challenges of integrating and managing quantum software components
within larger systems. Nonetheless, the functionality provided by proxy
access solutions can serve as a foundation for implementing QPU-
capable quantum nodes within a Qubernetes cluster, thereby granting
users access to a more extensive array of quantum hardware resources.

Comprehensive solutions such as QuantumPath, which span multi-
ple SDLC phases, should adhere to the established practices governing
the development of applications into which quantum software com-
ponents are integrated. Given the existing fragmentation within the
landscape, not only in terms of high-level approaches (such as HPC or
cloud-native), a less opinionated and modular approach is preferred.
This approach entails seamlessly folding quantum technology and its
development practices into the existing framework of classical comput-
ing, ensuring compatibility and flexibility across various environments
and methodologies.

Similarly, even when cloud-native by design, frameworks like
quantum-serverless [17], which is highly optimized for Qiskit, has a
narrow applicability as it imposes its own programming model. In
comparison, Qubernetes provides a generic execution engine that maps
quantum tasks closer to the Kubernetes native concepts. As a result,
our approach provides more flexibility, allowing non-Qiskit tasks to be
executed on the same underlying quantum resources while event being
able to expose parts of quantum-serverless functionality (e.g., the Qiskit
multi-QPU runtime).

Looking forward, while Qubernetes demonstrates that it serves as
a solid foundation to enable the introduction of quantum technology
within the context of cloud-native applications, there are some areas
that are still brittle and require further development. First, implement-
ing the access from a quantum node to the backend requires bespoke
solutions. We see the Quantum Universal Access activity as a key
enabler for the effective use of quantum hardware also within cloud-
native classical-quantum applications. Secondly, as the exiting quantum
development kits (e.g., Qiskit, Cirq) have a monolithic architecture
and cannot be easily combined, the developer experience using them
together is poor. A compiler toolkit based on quantum intermediate rep-
resentations (QIR) can improve the reuse and composability of software
components developed with different frameworks. Finally, the more
sophisticated orchestration, monitoring capabilities, and integrations of
the cloud-native computing [33] have been identified as gaps by the
HPC community. Their response was to establish the High Performance
Software Foundation (HPSF) that aims to develop solutions that are
aligned with Cloud Native Computing Foundation (CNCF), the home
of cloud-native development. We expect that in the long term the
technical implementations of the HPC and cloud-native computing to
be much closer aligned than they are today.

45 https://rahti.csc.fi.

https://kueue.sigs.k8s.io
https://kustomize.io
https://helm.sh
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubemq.io
https://rahti.csc.fi

Information and Software Technology 175 (2024) 107529V. Stirbu et al.

c
C
w
i
p
t
q

8

t
t
w
a
s
a
m

8

K
t
l
s
r
e
R

9

e
a
q
a
f
h
o

d

c

8. Threats to validity

The threats to the validity of our study are discussed following to the
categorization provided by Wholin et al. [34], in the context of applied
research.

8.1. Internal threats

An internal threat to our study validity arises from developing the
demonstrators only using the Qiskit toolkit. The mitigation in this case
is that other popular Python toolkits (e.g., PennyLane or Cirq) have a
similar software architecture that abstracts the hardware implementa-
tion regardless the target is a real quantum computer or a simulator
implemented in CPU or GPU (leveraging the CUDA and cuQuantum
toolkits). Further, the Kubeflow MPI Operator46 demonstrates that it is
possible to run distributes tasks that typically require HPC-like infras-
tructure in Kubernetes, allowing a wider range of quantum state-vector
device simulators (e.g., Pennylane Lightning Kokkos47).

Another internal threat to validity is the use of only one quantum
omputer (e.g., HELMI) to conduct execution experiments in our study.
onsidering that most quantum computers nowadays have bespoke
ays to expose their functionality that is mapped typically to a backend

n popular QDKs, we are forced to work with what the manufacturers
rovide. The emergence of standardized APIs (e.g., Universal Quan-
um Access) will enable consistent and uniform implementations of
uantum nodes in Qubernetes clusters.

.2. External threats

A threat to the external validity of our study is that exposing quan-
um computers as nodes in the Qubernetes cluster relies on adapting
he bespoke solutions developed by their manufacturers or operators,
hich requires their cooperation. The mitigation of this threat is that
s the industry is moving towards standardized APIs (e.g., Univer-
al Quantum Access), it will become increasingly easy to integrate
nd use quantum computers in new environments without relying on
anufacturers direct support.

.3. Construct threats

A threat to construct validity is the long term viability of the
ubernetes Job as the primary mean to execute quantum computational

asks. The mitigation for this threat was to focus the study on the low-
evel interface between the containerized quantum workloads and the
imulators/hardware. This approach allows the quantum pods to be
eused into existing higher-level Kubernetes concepts (e.g., Services), or
ven develop completely new quantum-specific concepts using Custom
esource Definitions.48

. Conclusions

Qubernetes demonstrates that Kubernetes has the capabilities that
nable the development of hybrid classic-quantum at scale. Kubernetes
lready has the proper abstractions to enable both the utilization of
uantum hardware and the execution of quantum software components
long the classic software. We discussed the challenges that emerge
rom developing hybrid classical-quantum computers and proposed a
ybrid architecture model building on a unified application-level view
f software.

46 https://github.com/kubeflow/mpi-operator.
47 https://docs.pennylane.ai/projects/lightning/en/stable/lightning_kokkos/
evice.html.
48 https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
10

ustom-resources.
CRediT authorship contribution statement

Vlad Stirbu: Conceptualization, Methodology, Software, Resources,
Writing – original draft. Otso Kinanen: Conceptualization, Software,
Validation, Writing – original draft. Majid Haghparast: Conceptual-
ization, Writing – original draft. Tommi Mikkonen: Conceptualization,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work has been supported by the Academy of Finland (project
DEQSE 349945) and Business Finland (project TORQS 8582/31/2022).

References

[1] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018)
79.

[2] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, 2010.

[3] A. Montanaro, Quantum algorithms: an overview, Npj Quantum Inf. 2 (1) (2016)
15023.

[4] L. Gyongyosi, S. Imre, A survey on quantum computing technology, Comp. Sci.
Rev. 31 (2019) 51–71.

[5] S.S. Gill, A. Kumar, H. Singh, M. Singh, K. Kaur, M. Usman, R. Buyya, Quantum
computing: A taxonomy, systematic review and future directions, Softw.: Pract.
Exp. 52 (1) (2022) 66–114, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/spe.3039.

[6] B.C. Sanders, Quantum leap for quantum primacy, Physics 14 (2021) 147.
[7] Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D.

Fan, M. Gong, et al., Quantum computational advantage via 60-qubit 24-cycle
random circuit sampling, Sci. Bull. 67 (3) (2022) 240–245.

[8] P. Murali, N.M. Linke, M. Martonosi, A.J. Abhari, N.H. Nguyen, C.H. Alderete,
Full-stack, real-system quantum computer studies: architectural comparisons
and design insights, in: Proceedings of the 46th International Symposium on
Computer Architecture, ISCA ’19, Association for Computing Machinery, New
York, NY, USA, 2019, pp. 527–540.

[9] A. Suau, J. Nelson, M. Vuffray, A.Y. Lokhov, L. Cincio, C. Coffrin, Single-qubit
cross platform comparison of quantum computing hardware, in: 2023 IEEE
International Conference on Quantum Computing and Engineering, QCE, Vol.
01, 2023, pp. 1369–1377.

[10] D. Cuomo, M. Caleffi, A.S. Cacciapuoti, Towards a distributed quantum
computing ecosystem, IET Quantum Commun. 1 (1) (2020) 3–8.

[11] A.W. Cross, L.S. Bishop, S. Sheldon, P.D. Nation, J.M. Gambetta, Validating
quantum computers using randomized model circuits, Phys. Rev. A 100 (2019)
032328.

[12] M. Haghparast, T. Mikkonen, J.K. Nurminen, V. Stirbu, Quantum software en-
gineering challenges from developers’ perspective: Mapping research challenges
to the proposed workflow model, in: 2023 IEEE International Conference on
Quantum Computing and Engineering, QCE, Vol. 2, IEEE, 2023, pp. 173–176.

[13] A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap, L.S. Bishop, S. Heidel,
C.A. Ryan, P. Sivarajah, J. Smolin, J.M. Gambetta, B.R. Johnson, Openqasm 3: A
broader and deeper quantum assembly language, ACM Trans. Quantum Comput.
3 (3) (2022).

[14] T. Alexander, N. Kanazawa, D.J. Egger, L. Capelluto, C.J. Wood, A. Javadi-
Abhari, D.C. McKay, Qiskit pulse: programming quantum computers through the
cloud with pulses, Quantum Sci. Technol. 5 (4) (2020) 044006.

[15] M. Schulz, M. Ruefenacht, D. Kranzlmuller, L. Schulz, Accelerating hpc with
quantum computing: It is a software challenge too, Comput. Sci. Eng. 24 (04)
(2022) 60–64.

[16] A.J. McCaskey, D.I. Lyakh, E.F. Dumitrescu, S.S. Powers, T.S. Humble, Xacc:
a system-level software infrastructure for heterogeneous quantum–classical
computing*, Quantum Sci. Technol. 5 (2) (2020) 024002.

[17] I. Faro, I. Sitdikov, D. Valinas, F. Fernandez, C. Codella, J. Glick, Middleware for
quantum: An orchestration of hybrid quantum–classical systems, in: 2023 IEEE
International Conference on Quantum Software, QSW, IEEE Computer Society,
Los Alamitos, CA, USA, 2023, pp. 1–8.

https://github.com/kubeflow/mpi-operator
https://docs.pennylane.ai/projects/lightning/en/stable/lightning_kokkos/device.html
https://docs.pennylane.ai/projects/lightning/en/stable/lightning_kokkos/device.html
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb1
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb1
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb1
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb2
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb2
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb2
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb3
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb3
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb3
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb4
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb4
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb4
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3039
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3039
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3039
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb6
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb7
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb7
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb7
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb7
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb7
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb8
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb9
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb9
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb9
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb9
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb9
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb9
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb9
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb10
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb10
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb10
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb11
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb11
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb11
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb11
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb11
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb12
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb12
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb12
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb12
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb12
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb12
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb12
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb13
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb13
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb13
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb13
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb13
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb13
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb13
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb14
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb14
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb14
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb14
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb14
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb15
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb15
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb15
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb15
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb15
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb16
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb16
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb16
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb16
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb16
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb17
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb17
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb17
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb17
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb17
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb17
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb17

Information and Software Technology 175 (2024) 107529V. Stirbu et al.
[18] V. Stirbu, M. Haghparast, M. Waseem, N. Dayama, T. Mikkonen, Full-stack
quantum software in practice: ecosystem, stakeholders and challenges, in: 2023
IEEE International Conference on Quantum Computing and Engineering, QCE,
Vol. 2, IEEE, 2023, pp. 177–180.

[19] B. Weder, J. Barzen, F. Leymann, D. Vietz, Quantum Software Development
Lifecycle, Springer International Publishing, Cham, 2022, pp. 61–83.

[20] J.L. Hevia, G. Peterssen, M. Piattini, QuantumPath: A quantum software
development platform, Softw. - Pract. Exp. 52 (6) (2022) 1517–1530.

[21] T. Granlund, V. Stirbu, T. Mikkonen, Medical software needs calm compliance,
IEEE Softw. 39 (1) (2022) 19–28.

[22] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum
machine learning, Nature 549 (7671) (2017) 195–202.

[23] D. Gannon, R. Barga, N. Sundaresan, Cloud-native applications, IEEE Cloud
Comput. 4 (5) (2017) 16–21.

[24] C. Ebert, G. Gallardo, J. Hernantes, N. Serrano, Devops, IEEE Softw. 33 (3)
(2016) 94–100.

[25] K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, A design science
research methodology for information systems research, J. Manage. Inf. Syst.
24 (3) (2007) 45–77.

[26] T. Laszewski, K. Arora, E. Farr, P. Zonooz, Cloud Native Architectures, Packt
Publishing, Birmingham, England, 2018.
11
[27] N. Moll, P. Barkoutsos, L.S. Bishop, J.M. Chow, A. Cross, D.J. Egger, S. Filipp, A.
Fuhrer, J.M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller, W.
Riess, G. Salis, J. Smolin, I. Tavernelli, K. Temme, Quantum optimization using
variational algorithms on near-term quantum devices, Quantum Sci. Technol. 3
(3) (2018) 030503.

[28] ISO 9001:2015: Quality Management Systems - Requirements, International
Organization for Standardization, 2015.

[29] C. Lattner, V. Adve, Llvm: A compilation framework for lifelong program analysis
& transformation, in: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization,
CGO ’04, IEEE Computer Society, USA, 2004, p. 75.

[30] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, M. Troyer,
K. Svore, Quantum programming languages, Nat. Rev. Phys. 2 (12) (2020)
709–722.

[31] Y. Peng, J. Young, P. Liu, X. Wu, Simuq: A domain-specific language for quantum
simulation with analog compilation, 2023.

[32] EuroHPC Joint Undertaking, Decision of the governing board of the EuroHPc
joint undertaking No 44/2023, in: Adopting the Joint Undertaking’s Work
Programme and Budget for the Year 2024, Vol. 12, 2023.

[33] N. Zhou, H. Zhou, D. Hoppe, Containerization for high performance computing
systems: Survey and prospects, IEEE Trans. Softw. Eng. 49 (4) (2023) 2722–2740.

[34] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Planning,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 89–116.

http://refhub.elsevier.com/S0950-5849(24)00134-4/sb18
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb18
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb18
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb18
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb18
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb18
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb18
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb19
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb19
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb19
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb20
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb20
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb20
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb21
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb21
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb21
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb22
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb22
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb22
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb23
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb23
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb23
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb24
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb24
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb24
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb25
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb25
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb25
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb25
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb25
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb26
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb26
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb26
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb27
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb28
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb28
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb28
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb29
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb29
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb29
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb29
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb29
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb29
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb29
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb30
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb30
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb30
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb30
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb30
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb31
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb31
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb31
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb32
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb32
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb32
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb32
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb32
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb33
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb33
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb33
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb34
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb34
http://refhub.elsevier.com/S0950-5849(24)00134-4/sb34

	Qubernetes: Towards a unified cloud-native execution platform for hybrid classic-quantum computing
	Introduction
	Background and motivation
	Quantum computing fundamentals
	Quantum development kits
	Notebooks, simulators, and proxy access to quantum hardware
	Hybrid classical-quantum computing approaches
	Development process
	Towards cloud-native quantum computing

	Methodology
	Objectives
	Qubernetes: design and concepts
	Quantum resource mapping overview
	Quantum node
	Quantum job
	Scheduling and execution
	Logging and monitoring

	Demonstration
	Experimental cluster setup
	Execute the quantum computation task in simulator
	Execute the quantum computation task on quantum hardware

	Discussion
	QPU-capable node implementation
	Scheduling quantum tasks
	Quantum task execution unit
	Quantum task abstraction level
	Kubernetes cluster management
	Related approaches and future research directions

	Threats to validity
	Internal threats
	External threats
	Construct threats

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

