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Abstract
In acousto-electric tomography (AET) the goal is to reconstruct the elec-
tric conductivity in a domain from electrostatic boundary measurements of
corresponding currents and voltages, while the domain is perturbed by a time-
dependent acoustic wave, thus taking advantage of the acousto-electric effect.
We approach the AET reconstruction in two steps: First, the interior power
density is obtained from boundarymeasurements by solving a linear inverse and
ill-posed problem; second, the interior conductivity is reconstructed from the
power density by solving a non-linear and well-posed problem.Mathematically
these inverse problems are fairly well understood, and reconstruction methods
work well on synthetic data. This is in contrast to experimental findings. An
effect can indeed be observed and data can be collected. However, the acousto-
electric coupling is very weak, and consequently, the change in the measured
voltage due to the acoustic perturbation might be too small compared to the
background noise for viable reconstructions. In this paper, we take one step
towards understanding the feasibility of AET. We provide an in-silico model
of the coupled physics scenario based on standard models for the individual
phenomena. Moreover, we formulate and implement numerically a full recon-
struction method for the inverse problem via the two steps. We perform com-
putational experiments with realistically chosen parameters from the context of
medical imaging. The focus is on understanding the role of the acousto-electric
coupling parameter and the signal-to-noise ratio (SNR). The critical signal
strength is analyzed and the omnipresent Johnson–Nyquist noise is estimated.
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We obtain both positive and negative findings; we can reconstruct features even
under severe noise conditions, but we also find that the SNR one is likely to
face in practice is too low to obtain useful reconstructions.

Keywords: acousto-electric tomography, electrical impedance tomography,
hybrid data tomography, coupled physics imaging, inverse problems,
medical imaging, computational imaging

1. Introduction

In a variety of applications in imaging science, it is important to reliably image the electrical
conductivity in some object or region. In medical imaging, for instance, the electric conductiv-
ity distribution in the human body carries information about the health condition of the patient,
i.e. location of tumors, lung function, and brain function, and hence an image of the conduct-
ivity is very useful for medical imaging [22]. In other application domains such as Electrical
Brain Stimulation, it is important to have an accurate estimate of the brain’s conductivity in
order to compute the interior current density generated by exterior excitation [43].

Electrical impedance tomography (EIT) is an emerging technology for non-invasive ima-
ging that aims at reconstructing a body’s electrical conductivity from measurements of current
and voltages through electrodes at the surface of the body. It is considered a cheap, port-
able and harmless modality. It is well-known that due to the diffusive nature of electric cur-
rents, the inverse problem in EIT is highly ill-posed, thus giving rise to low-resolution images.
Applications of EIT to medical imaging are diverse and include pulmonary function mon-
itoring, early detection of breast cancer, and hemorrhagic stroke detection, see [3]. Beyond
the medical domain, EIT is also used for flow monitoring and industrial testing [27, 36].
Mathematically the problem is known as the Calderón problem [11]. See also [13, 40] for
more background on the mathematics and applications.

In recent years new ideas for conductivity imaging have been proposed that are often
referred to as coupled physics or hybrid imaging. Broadly speaking, the idea is to utilize two
separate, but coupled, physical phenomena to obtain additional information through their inter-
action thus making the reconstruction problem more well-posed. One such method that has
been subject to extensive research interest is acousto-electric tomography (AET) [45, 46]. In
AET, one perturbs the electrical conductivity of the object by acoustic waves while conduct-
ing EIT measurements. In theory, the so-called acousto-electric effect, i.e. the local change in
conductivity due to change in pressure, then allows one to obtain additional internal inform-
ation about the unknown conductivity, potentially leading to high-resolution images of the
conductivity.

There are other hybrid imaging modalities taking advantage of the acousto-electric effect
for other purposes. We highlight the promising method for the imaging of internal current
flows known as ultrasound current source density imaging [41] or ultrafast acousto-electric
imaging [9].

We approach the inverse problem of AET in two steps: first, we reconstruct the interior elec-
tric power density from a time series of boundary measurements of the acoustically perturbed
object. Second, we reconstruct the conductivity from the power density; this is the so-called
quantitative step. There is a vast literature on the mathematical and computational aspects of
AET mostly focusing on the second step. The fundamental modeling originates from [5]. In
[29, 30] idealistic wave modelling was considered and an inversion scheme using the spher-
ical Radon transform was derived. The reconstruction problem was considered in [12] using
an optimal control approach. Several different linearization methods were compared in [21]
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giving rise to the analysis of artifacts in [6]. A numerical reconstruction method based on
the Levenberg–Marquardt iteration was developed in [7, 34] and methods using an explicit
least squares optimization approach are found in [1, 2, 33, 42]; the limited angle problem was
considered in [23, 24]. See also, e.g. [28, 38, 39], for the case of anisotropic conductivities.

There is a lack of theoretical and computational studies addressing the full reconstruc-
tion procedure, i.e. first reconstructing the power density from boundary measurements from
the acoustically perturbed current-to-voltage map, and then reconstructing the conductivity
from the obtained power density. Mathematically, the (linearized) reconstruction of the power
density is straightforward and consists of solving a Fredholm integral equation of the first kind,
where the kernel is given by the pressure field. Assuming full control of the pressure field and
noise-free measurement, this leads to a mildly ill-posed problem. When the pressure field is
not fully controlled, the problem can become increasingly ill-posed. In [25] the problem with
a not-fully known pressure field is investigated. However, we will see that this is a second-
ary concern and that the main problem of the first step is the signal-to-noise (SNR) ratio. It is
questionable whether the measured signals are strong enough for reconstruction purposes, or if
the measurements are completely altered by unavoidable barriers like the inevitable Johnson-
Nyquist noise.

The aim of this paper is to conduct a computational study to clarify the feasibility of
AET, using a simple model with realistic parameters. Even though the setup is idealized and
neglects several important features of a real system, we believe such a computational study
accommodated by mathematical analysis will give insight into the challenges of AET. The
key parameter is the acousto-electric coupling constant, and we analyze the signal-to-noise
ratio with respect to Johnson-Nyquist noise as a function of the coupling strength.

Our main finding is that the acousto-electric effect in human tissue is so weak that the
measured signal is likely to be completely dominated by Johnson-Nyquist noise, and that even
though the proposed inversion procedure performs well under severe noise conditions, it is not
feasible to reconstruct the electrical conductivity in a medical imaging setting with AET.

The paper is organized as follows: In section 2 we discuss the modeling of the inverse
problem, and explain the two-step inversion procedure and its numerical implementation. In
section 3 the careful choice of physical parameters for the computational phantom is described,
and the methods and tools for numerical simulation are introduced. Then in section 4 we derive
a formula for the signal strength in terms of the relevant parameters, and compare this to an
estimate of the Johnson-Nyquist noise, before describing the chosen noise model for the com-
putational experiments. Numerical experiments are carried out in section 5 before conclusions
are drawn in section 6.

2. Mathematical model and two step inversion procedure

In this section, we outline the governing mathematical model for the forward and inverse prob-
lem including the notation. We describe both in the continuous and discrete setting the pro-
cedure for the two-step inversion first taking the boundary measurements to the interior power
densities, and next taking power densities to the conductivity.

2.1. Mathematical model

Assume that the object of interest occupies some bounded domain Ω⊂ Rd, d= 2,3, with
smooth boundary ∂Ω. The object Ω has the unknown isotropic electric conductivity σ ∈
L∞+ (Ω) (bounded from above and below by positive constants). Through electrodes attached

3



Inverse Problems 40 (2024) 075007 B Jensen et al

to the boundary, the normal current flux f is controlled, and consequently an interior electric
potential u is generated. When no interior sources or sinks of charge are present inside Ω, the
potential interior electric potential u is characterized by the generalized Laplace equation{

−∇ · (σ (x)∇u(x)) = 0, x ∈ Ω,

σ (x)∂νu(x) = f(x) , x ∈ ∂Ω.
(2.1)

Here ν denotes the outward unit normal vector to the boundary ∂Ω. We require that f ∈
L2⋄(∂Ω) = {v ∈ L2(∂Ω) :

´
∂Ω
vds= 0}, i.e. the total input current vanishes. Then by classical

theory for elliptic PDEs, (2.1) has a solution, and if we ground the potential by assuming
u|∂Ω ∈ L2⋄(∂Ω), then u ∈ H1(Ω) is uniquely determined (see e.g. [16]). In EIT the aim is to
reconstruct σ from several measurements of g= u|∂Ω corresponding to a set of different input
currents f.

In AET the object is, in addition to the EIT measurement setup, penetrated by an acoustic
wave that is generated by some source in the exterior of the domain, e.g. an ultrasound trans-
ducer. Let p(x, t) denote the acoustic pressure at point x and time t generated by the source
S(x, t). We model the wave propagation by the scalar wave equation{(

∂2
t − c2 (x)∆

)
p(x, t) = S(x, t) , (x, t) ∈ Rd×R+,

p(x,0) = ∂tp(x,0) = 0, x ∈ Rd
(2.2)

equipped with suitable decay conditions. We consider the sound speed c and the source S to be
known; then (2.2) is solvable and p is also known. When the acoustic wave travels through a
material, the material is compressed and expanded. This results in a localized, time-dependent
change in the electrical conductivity due to the so-called acousto-electric effect. We denote the
acoustically perturbed conductivity by σp(x, t). A reasonable, yet simple, model for σp is the
following [4]:

σp (x, t) = σ (x)(1+ ηp(x, t)) . (2.3)

Here, η > 0 is the acousto-electric coupling parameter. We assume throughout that η is known
and constant.

Figure 1 illustrates the acousto-electric effect. The source S(x, t) is situated outside the disk-
shaped domainΩ and generates an acoustic wave. As the wave propagates through the domain,
the conductivity is perturbed; an instantaneous image of the perturbed conductivity is seen to
the right.

The perturbation of σ gives rise to a perturbation of the electric potential. We denote by
up(x, t) this potential that for fixed t ∈ R+ solves the equation{

−∇ · (σp (x, t)∇up (x, t)) = 0, x ∈ Ω,

σp (x, t)∂νup (x, t) = f(x) , x ∈ ∂Ω,
(2.4)

again with the convention up|∂Ω ∈ L2⋄(∂Ω). The time-dependent perturbed electric measure-
ment is now gp = up|∂Ω, for t ∈ [0,T] for some sufficiently large acquisition time T.

In AET several boundary currents f and wave sources S are used, and the inverse problem
is then to reconstruct the conductivity σ from measurements of the corresponding voltages
g(x),gp(x, t), x ∈ ∂Ω, t ∈ [0,T].
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Figure 1. (a) Electric conductivity. (b) Perturbed conductivity due to the acousto-electric
effect via a wave generated from transducers on the top; the effect is exaggerated for
visibility.

2.2. Inversion step 1: from boundary measurements to power density

Multiplying (2.1) and (2.4) with up and u, respectively, subtracting, and integrating by parts
yield the time series

I(t) = 〈 f,gp− g〉L2(∂Ω)

=

ˆ
∂Ω

f(x)(gp (x, t)− g(x)) dS=−η

ˆ
Ω

p(x, t)σ (x)∇u(x) ·∇up (x, t) dx. (2.5)

Physically, I(t) represents the change in the required total electric power for maintaining the
current flux f at ∂Ω during the acoustic perturbation. Figure 2 illustrates how I behaves as an
acoustic wave travels through an object. We will refer to I(t) as the signal, and as the compu-
tation of I(t) from the measurement is trivial, I(t) will be the data from which we attempt to
solve the inverse problem. Under the assumption that ηp is small, the approximation up ≈ u in
H1(Ω) is good (first order in η), and we obtain the linear approximation

I(t)≈−η

ˆ
Ω

p(x, t)σ|∇u(x) |2 dx=−η

ˆ
Ω

p(x, t)H(x) dx. (2.6)

The function H(x) = σ|∇u(x)|2 is the interior power density. We will work in this linear
regime.

By controlling the source S (see section 5 below) we generate a sequence of waves each
with a different shape and focus in Ω. We represent all of these waves together by p(x, t)
concatenated sequentially in time. In the experiment, also the choice of boundary condition
f in (2.1) is varied f = fi, i = 1, . . . ,Nf. For each such condition there is a power density Hi

related to the corresponding time signal Ii by

Ii (t) =−η

ˆ
Ω

p(x, t)Hi (x) dx, 1⩽ i ⩽ Nf. (2.7)

Using a finite element basisφn(x), n= 1, . . . ,Nφ , we discretize in space and time, representing

Hi (x) =
Nφ∑
n=1

Hi,nφn (x) , Hi =
[
Hi,1, . . . ,Hi,Nφ

]T
, (2.8)
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Figure 2. The top image contains the graph of the function I(t) for the phantom seen
in figure 1 corresponding to the illustrated propagating wave and the boundary condi-
tion f(x,y) = x. The red labels link the timestamps to their corresponding state of wave
propagation visualized below the curve. The curve is a single wave from the numerical
experiments in section 5—the details of the simulation approach are given in section 3.2.

p(x, tj) =
Nφ∑
n=1

pj,nφn (x) , (2.9)

Ii = [Ii (t1) , . . . , Ii (tNt)]
T
. (2.10)

LetM= (am,n)m,n denote the mass matrix with elements am,n =
´
Ω
φmφn dx and P= (pj,m)m,j

the wave-matrix in which column j contains the finite elements coefficients of the wave at time
tj. Then we discretize the integral equation (2.6) by the matrix K=−PTM acting on H

ηKHi = Ii, . (2.11)

We then solve (2.11) by computing an SVD decomposition and regularize the solution by
truncation.

2.3. Inversion step 2: from power density to conductivity

The problem of reconstructing σ from the interior power density data H has been explored
in a variety of scenarios, see for example [5, 6, 17, 21, 30]. We approach this problem by
minimizing the functional

min
σ

J (σ) =

Nf∑
i=1

‖Hi (σ)− zi‖L1(Ω) +β|σ|TV, (2.12)

where zi(x) =
∑Nφ

n=1Hi,nφn(x) is the reconstructed power density from step 1. The L1 data-
fidelity term is chosen to reflect the regularity of H : when σ has discontinuities, elliptic reg-
ularity theory only guarantees L1-regularity of H; with L1+ε-regularity for sufficiently small
discontinuities, see [1].
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For reconstruction we use the algorithm described in [1]. That is, we consider the following
weighted quadratic problem arising from a linearization of (2.12),

Jσ,κ ′ (κ) =
1
2

Nf∑
i=1

ˆ
Ω

wi (σ,κ
′) |H ′

i (σ) [κ]− zi,σ|2 dx+
β

2

ˆ
Ω

w0 (σ,κ
′) |∇(σ+κ) |2 dx,

(2.13)

where zi,σ = zi −Hi(σ) and the weights are

wi (σ,κ
′) = |H ′

i (σ) [κ
′]− zi,σ|−1

ϵ , for 1⩽ i ⩽ Nf, w0 (σ,κ
′) = |∇(σ+κ ′) |−1

ϵ ,

with | · |ϵ ≡
√
| · |2 + ϵ2.

To solve (2.12) we initialize κ ′ as zero, compute the weights wi, and successively do partial
minimization of (2.13) to update κ ′ and thus the weights. After a few rounds of this, we update
σ := σ+κ ′ and restart the process. We do this following the steps outlined in [25] with the
small modification that we in each step also project σ := σ+κ to the interval [10−2,∞) since
σ cannot physically become negative or too close to 0, which would imply complete electrical
isolation.

3. Parameters and numerical modeling

In this section, we describe the parameters and phantom used in the numerical experiments.
Furthermore, we give a detailed description of the modeling and numerical simulation of the
acoustic sources and fields, the electrical potential, and the measurements.

3.1. The computational phantom

We stick to a simple two-dimensional phantom for clarity and computational efficiency. The
approach can in a straightforward way be generalized to more complex domains and structures
in two and three dimensions. The computational phantom draws inspiration from breast cancer
imaging: We assume a circular domain modeling a cross-section of the breast. The domain
consists mostly of homogeneousmaterial (in our case, normal breast tissue), and a small region
where the conductivity differed (the cancerous tissue). The phantom is illustrated in figure 3(a).

For reference the domain Ω= {x ∈ R2 : |x|< R} with R= 0.04m. The embedded region
is also circular centered at (0, 0.015)m with radius 0.01m.

3.1.1. Electrical conductivity and boundary current density. Many authors have reported
estimates of the electric conductivity in human tissue, and from [10, 20, 26] we infer that
the electrical conductivity differs by a factor in the range 5–15 between healthy and cancerous
breast tissue and experimental values for σ are reported to lie in the range 0.01–1S m−1, see,
e.g. [8, 14, 20, 26]. In our experiments, we choose a high contrast conductivity phantom taking
values in the range 0.1–1.0Sm−1.

Further, the maximum allowed input current is fmax = 1mA [14]. We enforce this by requir-
ing that

ˆ
∂Ω

f+ds⩽ fmax, where f+ (x) =max{f(x) ,0} .

7
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Figure 3. (a) The phantom conductivity. The conductivity is 1.0 in the disc inclusion
and the background is 0.1. (b) The points where the wavefronts get focused and the
transducers. Each transducer focuses waves in a subset of the focus points. The red-
ringed transducer at the top focuses in the cone of red-ringed points in the domain.
The point distribution corresponding to each transducer is rotationally symmetric. In
simulations, there are no gaps between transducer arrays and the domain.

3.1.2. Acousto-electric coupling and acoustic pressure. The value of the acousto-electric
coupling constant η is of great importance. In [35], η in a rabbit heart is found to be approxim-
ately 0.041MPa−1, i.e. η ≈ 4.1× 10−8Pa−1, while in [31, 32], values η in 0.9%NaCl solution
is reported to be of the magnitude 10−9Pa−1. The value of η for breast tissue seems not to be
known, but the mentioned values indicate a range of interest. We chose to perform our numer-
ical experiments for η = 10−8.

We choose the maximal amplitude of the acoustic pressure p to be pmax = 1.5MPa, in
accordance with clinical standards [15], and assume a constant wave speed of c0 = 1500m s−1

[15].
The acoustic wave is generated by a transducer array situated outside the phantom. The

transducer array consists of equidistant individual point sources along a line segment. Each of
the point sources excites one period of sine-wave with a frequency of 250kHz. By controlling
the time delay of the individual transducers, we can simulate many different wave patterns. We
choose to work with focusing waves, i.e. waves that at a given time approximately concentrate
at a certain point in the domain, see figures 1 and 2. We use 4 equidistant transducer positions
around the boundary (above, below, left, right) and at each position, we have a unique set of
58 focus points as illustrated in figure 3(b): blue points indicate all focus points, red points the
focus for the above positioning of the array. In table 1, we summarize our parameter choices.

Remark 3.1. We also tried a similar transducer setup but with plane waves, varying the fre-
quencies and positions. This approach was less successful and resulted in poor reconstructions
of the power density.

3.2. Simulation of the forward problem

3.2.1. Acoustic field and source terms. The expression (2.6) suggests that one could either
choose a set of acoustic fields that approximate some basis (e.g. L2(Ω)), or a set of fields that
approximate a Dirac delta distribution at a sufficiently large set of points in Ω. In this work,
we have used different focused acoustic waves to sample the power density throughout the
domain.
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Table 1. Model parameters.

Parameter Symbol Value (s) Unit

Conductivity σ 0.1–1.0 S m−1

Total boundary current flux fmax 1× 10−3 A
Acousto-electric coupling constant η 10−8 Pa−1

Max. acoustic pressure pmax 1.5× 106 Pa
Acoustic wave speed c0 1500 m s−1

Domain radius R 0.04 m

We simulate the acoustic field on a square finite difference grid containing Ω. k-Wave is
a Matlab package that uses a k-space pseudo-spectral method to effectively and accurately
solve the wave equation. For the source terms Sj of our acoustic field, we use a simplified trans-
ducermodel.Wemodel the action of the transducer as a linear array ofNp = 11 time-dependent
volume point sources. We assign to the k-Wave source function a discrete set of Np grid points
on a line segment of length ℓ= 4cm at the boundary of the domain; e.g. see figure 3(b). To
suppress errors due to artificial wave reflections at the boundary of the computational domain,
k-Wave uses the so-called perfectly matched layers as a boundary condition.

Further, we use the focus functionality to delay the individual point source signals and orient
the wave in various directions. See the k-Wave function focus.m and the k-Wavemanual [44]
for further details and explanations on this, and on how k-Wave solves the wave equation.

We simulate acoustic fields with the above parameters on a uniform 350-by-350 grid with
physical dimensions 12cm× 12cm. We place the transducer tangentially to the boundary at
4 equidistant points along the boundary. At each position, we focus the acoustic wave at a
set of 58 points distributed in a cone originating at the transducer center. The 4 positions are
illustrated in figure 3(b) where the cone of points corresponding to the top-most transducer
location is also highlighted; we describe how this cone of points was chosen in the next section.
We sample the waves equitemporally at Nt = 141 timestamps in the range 0 to T, where T is
a uniform upper bound to let the wavefront propagate through the domain. T is set by k-
Wave. The acoustic fields x 7→ p(x, tj) are then interpolated to the triangulated mesh for the
domain Ω.

3.2.2. Focus point geometry. We construct the focus points by the following procedure:
From the transducer location q we place a cone C with axis towards the center of Ω and angle
θ between the axis and cone side. We choose a minimum distance rmin between focus points
and the transducer and a focus point distance∆r.

Along each arc of the circle with center q and radius r(k) = rmin + k∆r, k= 1, . . . , which
has non-empty intersection with C∩Ω, we distribute the maximum number of points, with
arc-distance∆r between them, symmetrically across the cone-axis.

For our simulations, illustrated in figure 3(b), we used the values

rmin =
R
2
, ∆r=

R
5
, θ = tan−1

(
3
4

)
.

3.2.3. Electric potential measurements. The electric potentials are computed by solving the
PDE (2.1) using the open source computing framework FEniCS [37].

The discretization is done using a P1 FEM-basis over a 16 617-node triangulated mesh for
Ω. For each timestamp tj and corresponding acoustic field p(x, tj) we compute the perturbed
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conductivity σp(x, tj) according to (2.3). The PDE is then solved for the potential field up(x, tj)
and we take the inner product of the difference between up(x, tj) and the static field u(x) with
the Neumann-boundary f (x) on the boundary ∂Ω to obtain the derived data I(tj) as outlined
by (2.5). Throughout we work with three different boundary conditions

f1 (x,y) = x, f2 (x,y) = y, and f3 (x,y) =
x+ y√

2
, (3.1)

leading to the data Ii(tj) corresponding to fi, each set bundled in vectors Ii as outlined in (2.10).
It is known that two boundary conditions suffice [4] if cross measurements are also used; we
compensate for such cross measurements by using the third boundary condition.

4. Signal and noise magnitude

We now investigate the consequences of the small acousto-electric effect. Independent of the
precision of measurement devices and care taken to eliminate unwanted disturbances when
conducting AET, there is a source of noise that cannot be eliminated; this is the so-called
Johnson–Nyquist noise (also called thermal noise), and it is the noise due to the motion of the
free electrons in the material itself. We refer to [18, 19] for more details regarding Johnson–
Nyquist noise. If the voltage fluctuations caused by the random motion of free electrons are
comparable (or greater) than those caused by the acoustic perturbation of the current-to-voltage
map, the prospects for AET as a medical imaging technology are likely very limited.

As it is very complicated to accurately model such noise in a complex system like AET (the
modeling must also involve the measurement equipment), we choose a different strategy. We
instead derive a simple estimate for the AET signal magnitude I(t) and the Johnson-Nyquist
noise as a function of the central parameters. We then test our inversion method for vari-
ous levels of noise (relative to I(t)). This then allows us to give a quantitative bound on the
magnitude of the Johnson-Nyquist noise for which AET is feasible, given a specific set of
parameters.

4.1. AET signal magnitude in a radial geometry

We now derive a simple estimate of the difference between an acoustically perturbed and
unperturbed voltage signal. As before, let Ω be a disc in R2 of radius R and centered at the ori-
gin, and Ωp = {x ∈ Ω : |x|< Rp ⩽ R} be the part of Ω perturbed by the acoustic wave p(x, t).
Let σ0 > 0 be a constant conductivity and let σp = σ0(1+ εχΩp(x)), where χΩp(x) is the char-
acteristic function for Ωp and ε= ηpmax is small and dimensionless. For a boundary current
f ∈ L2⋄(∂Ω), let u0 be the solution of (2.1) for σ := σ0, and up the solution of (2.4) with σp. As
in (2.5) we form I(t) = 〈f,gp− g0〉L2(∂Ω) where gp = up|∂Ω and g0 = u0|∂Ω.

We want to quantify gp− g0 and I in terms of the involved parameters, especially the coup-
ling constant η. By separation of variables in polar coordinates, (see e.g. [40, pp 166–8]) we
find that

g(θ) =
∑
n∈Z

f̂n
|n|σ0

Reinθ, gp (θ) =
∑
n∈Z

f̂n
|n|σ0

Reinθ
2+ ε

(
1− (Rp/R)

2|n|
)

2+ ε
(
1+(Rp/R)

2|n|
) , 0⩽ θ < 2π,
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where f̂n is given by f̂n = (2π)−1
´ 2π
0 f(θ)e−inθdθ. We then get that

gp (θ)− g(θ) =
∑
n∈Z

f̂n
|n|σ0

Reinθ

−
2ε(Rp/R)

2|n|

2+ ε
(
1+(Rp/R)

2|n|
)
 .

The function f is the current density of the input current. Setting f = Cf eiθ we obtain the
requirement thatˆ

∂Ω

max(Re( f) ,0)dθ ⩽ fmax, (4.1)

which leads to Cf =
fmax

2R . Also, this choice for f yields

gp (θ)− g(θ) =
fmax

4πσ0
eiθ

−
2ε(Rp/R)

2

2+ ε
(
1+(Rp/R)

2
)
 . (4.2)

We define the boundary voltage amplitude A as the coefficient to eiθ:

A=
fmax

4πσ0

−
2ε(Rp/R)

2

2+ ε
(
1+(Rp/R)

2
)
 .

For ε� 1 and using the boundary inner product formula for I (2.5) and the above choice for
f and (4.1), we obtain

|A| ≈ fmax

4πσ0

(
ε(Rp/R)

2
)

and |I| ≈ f 2maxR
2σ0

(
ε(Rp/R)

2
)
.

We use the parameters in table 1 and pick the perturbation radius as one-tenth of the domain
radius Rp = R

10 . Recall that ε= ηpmax. With these values, we find that

|A| ≈ 1.2× 10−7 and |I| ≈ 3.0× 10−11.

The dependency of I on the parameters is interesting. Both pmax and η enters in ε and thus
the magnitude |I| linearly, whereas fmax enters quadratically. We can hence increase |I| through
pmax and fmax, however these quantities are constrained by health considerations in particular
in medical imaging applications.

4.2. Measurement noise and errors

As the above estimate shows that the signal magnitude is quite small, it is indeed warranted to
consider the effect of Johnson–Nyquist noise in the SNR analysis. Usually, Johnson–Nyquist
noise is modeled as a stochastic process independent of the other electrical activity going on.
In a simple resistor system, it is an additive Gaussian white noise process, and the root-mean-
square of the voltage signal of a thermal noise process is given by the formula

VRMS =
√
4kBTR∆ f, (4.3)

where kB = 1.380649× 10−23 is the Boltzmann constant, T the absolute temperature of the
resistor, R the resistance and ∆ f the effective bandwidth of the measurement gp(t).

11
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Although quantifying the thermal noise in a realistic AET scenario is immensely more
complicated than for a resistor, we rely on the resistor model to get a rough estimate. For this,
we need to assume some reasonable sizes for the involved quantities; we are mostly interested
in the orders of magnitude rather than exact numbers. The temperature T= 293.15K≈ 20◦C,
that is living room temperature. The effective bandwidth is fixed to∆f = 300 kHz; the quantity
can be estimated via the Fourier transform of the signal. Finally, the resistance R is in an EIT
system in the range 1kΩ–100kΩ. Plugging these numbers into (4.3) gives the estimate

VRMS =
√
4kBTR∆f ∈ (2.20µV, 22.0µV) .

Let’s for the moment fix VJN = 10 µV. The impact of the Johson–Nyquist noise on the I signal
can then be estimated by

IJN =

ˆ
∂Ω

VJN Cf dθ

=

ˆ
∂Ω

VJN
fmax

2R
dθ = π · 10 · 10−6 · 10−3 = π10−8W.

Comparing the estimated Johnson–Nyquist noise IJN = π × 10−8W to the calculated signal
|I| ≈ 3× 10−11W is quite discouraging. Even if these estimates are off by one or two orders
of magnitude, it shows how the AET-signal is completely dominated by the Johnson–Nyquist
noise. At best, one could by repeating the measurements improve the noise by one order of
magnitude or two, and even possibly bring the signal and noise at par. We will in the next
section numerically model the noise and work with an SNR of 0 dB and below; equivalently
a relative noise level of 100% and more.

4.3. Noise modelling

In modeling the noise in AET there is a myriad of potential sources of stochasticity including,
but not limited to, the exactness of the applied boundary current, the precision of boundary
potential measurements, the knowledge of the wave (could be related to the precision of trans-
ducer positions, transducer timing, modeling limitations, wave speed, etc) and exactness of
timestamps for measurements, etc.

We choose a simple and practical approach to noise modeling in line with what is usually
done in inverse problems. We assume that the noise enters the model as additive Gaussian
noise on the signal I.

Concretely, let Ii be the sampled true measurement of I(t), see (2.10).We then add Gaussian
noise by first generating the Gaussian vector e∼N (0,Id) and forming

Ĩi = Ii + s‖Ii‖2
(

e
‖e‖2

)
.

Here s indicates the relative noise level. In accordancewith the analysis above, wewill consider
s ∈ {0,1,5,10}, i.e. relative noise of 0%,100%,500% and 1000%.

5. Numerical results and feasibility of AET

In this section, we put the theory and numerical methods to work on simulated measurements
generated for the phantom in section 3. We first demonstrate that we can reconstruct the power
density, and then apply our method to simulated measurements for a range of noise levels.
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Figure 4. True power densities.

5.1. Step 1: reconstructing the power density

We pick the finite element basis φn, n= 1, . . . ,Nφ , from section 2 as a P1 basis on an unstruc-
tured 6065-node triangulated meshing for Ω. With this, we construct the discretized integral
operator from equation (2.11) with the discretized waves p(x, t) temporally sampled in the
timestamps corresponding to the timestamps of the given noisy data Ĩi .

We solve the equation (2.11) forHi using a truncated singular value decomposition, though
not straightforward from K. Instead, we rewrite the equation on the form

K̃H̃i = Ĩi (5.1)

where K̃= ηKL−T, H̃i = LTHi and L is the Cholesky factor of the mass matrixM= LLT.
We then take a singular value decomposition (U,Σ,VT) of K̃ and do a truncated recon-

struction of H̃i . To this end we construct the truncated pseudo-inverseΣ†
k and compute

H̃i = VΣ†
kU

TĨi,

where k is the truncation threshold. We can then recover Hi from that result by inverting LT .
This is done for each Hi corresponding to each of the boundary conditions in (3.1).

Remark 5.1. The reason for this restructuring of (2.11) before the singular value decompos-
ition is that the resulting decomposition corresponds to a decomposition for the wave matrix
PT such that if we take the matrix Ṽ= L−TV then it is the right singular vectors for PT in
a space where the inner product is 〈·, ·〉M, that is in the discretized L2(Ω) inner product; so
ṼTMṼ= Id. Hence the singular vectors of Ṽ have a meaningful visualization on our finite
element mesh.

In figure 4 we illustrate the true power densities Hi computed by solving the forward prob-
lem for the boundary conditions fi. These compare to figure 5 containing power density recon-
structions from data with varying levels of relative noise.

Different levels of truncation of the singular values have been used in the reconstruction
in order to regularize the inversion method. These power densities are later used in the recon-
struction of the conductivities. The three power density reconstructions in each row are what
goes into the reconstruction of the conductivity.

The truncation level was chosen by running the full reconstructions of the conductivity for
a limited range of choices and picking what seemed to be the best options. The search was not
exhaustive.
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Figure 5. Reconstruction of the power densities Hi from data with an added relative
noise. k is the number of singular values used in the TSVD reconstruction for H. We
denote in each row the used truncation k as well as the level of relative noise. Each
column i corresponds to boundary condition fi.

Wewould like to draw attention to the most significant features in figure 5, the peaks enclos-
ing the location of the inclusion. These are more or less defining for the ability to reconstruct
the conductivity. In the whole domain there are a lot of errors reminiscent of something like the
interference pattern of waves.While they introduce some errors in the conductivity reconstruc-
tion, they do not form singularities that may produce wrong inclusions in the final conductivity.

We remark that the colorbars are not the same for all the power density reconstructions.
The scale of the oscillations of the errors drown out more delicate features, but as we see later
for the reconstructions of the conductivities some of the important parts must remain.
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Figure 6. Reconstruction of the conductivity from data with an added relative noise. k
is the number of singular values used in the TSVD reconstruction for H.

5.2. Step 2: reconstructing the electrical conductivity

We reconstruct the conductivity using the approach outlined in section 2 following, as men-
tioned there, the steps taken in [1, 25].

The reconstructions corresponding to varying levels of relative noise are shown in figure 6.
As mentioned in the former section, they were each reconstructed from the corresponding row-
sets of power densities illustrated in figure 5.We see here how robust to noise the reconstruction
is, with us being able to discern the inclusion even at incredibly high levels of noise.

We ascribe this largely to the level of redundancy in the data from the multiple waves used
to perturb the domain. Also likely, the robustness of the model to random noise possibly exit-
ing the model’s range plays a part here. This latter aspect was also observed in [25] for defects
from reconstruction using an erroneous wave. The largely erroneous features in the power
density background were shown to have limited impact on the final reconstruction of the con-
ductivity because they lacked coherence across the multiple power densities going into the
reconstruction.

While we do observe the reconstruction quality suffers from the heavy increase in noise
levels, the inclusion remains somewhat observable even at the highest level of noise.

6. Conclusions, discussion and further work

In this manuscript, we have studied the feasibility of AET. The motivation is to better under-
stand to what extent AET can provide a modality for stable imaging of the electrical conduct-
ivity in realistic and relevant situations. Our computational phantom therefore builds from
parameters motivated by medical imaging.

We have suggested a mathematical and computational model for the complete inversion
framework for AET and tested it on synthetic data for different values of noise. Moreover, we
have analyzed the signal magnitude, a critical element in AET. There are many parameters
affecting this quantity, including the pressure of ultrasound waves and the electrical conduct-
ivity of the body. Not surprisingly, the most important factor is the strength of the acousto-
electric coupling; since the acoustic-electric coupling is very weak, both simulations and our
estimates show that the AET signal is very weak.

We have further investigated the critical and unavoidable Johnson–Nyquist noise. Due to
the small amplitude signal of AET, this low amplitude background noise needs to be accounted
for, regardless of the quality of the equipment and other forms of measurement noise; it can
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only really be dealt with by data redundancy, re-sampling, and model robustness. The precise
magnitude of the Johnson–Nyquist noise is highly system-dependent, but we have attempted
a qualified guess on the order of magnitude. Our estimate of the Johnson–Nyquist noise is
several orders of magnitude larger than the signal; this makes imaging tremendously difficult.

Despite the challenging conditions, we have tested our inversion method on simulated data
that are highly perturbed by noise. The results indicate that with an SNR of 0dB (relative error
of 100%) we achieve surprisingly good reconstructions, and even with an SNR of −10dB
(relative error of 1000%), some features remain.

The relatively good performance in these hostile noise conditions indicates that mathemat-
ically the AET reconstruction problem is fairly well-posed, and the data contain lots of redund-
ant information stemming from the choice of acoustic waves, the sampling of I, and the number
of electric boundary conditions.

Our final assessment of AET is that it is unlikely to be feasible for high-resolution medical
imaging without a large improvement of the SNR. Such an improvement can only be achieved
by a very large number of repeated experiments. This is at least the case in medical imaging,
where signal strength is (wisely) curbed by multiple health considerations. It might, however,
be possible for AET to obtain some additional and useful information for diagnostic purposes,
or for non-destructive testing in materials science, where one is allowed to use higher pressure
and current.

Clearly, our modeling suffers from many simplifications, but going to more realistic elec-
trode modeling, more complex geometries in 3D, and other realistic wave models is certainly
possible using a similar approach; we leave such interesting projects for future studies. A more
detailed modeling of the Johnson–Nyquist noise in AET is very relevant. This depends most
likely on various system settings and makes most sense when a particular system is projected
and built.
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