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Darren R. Healy 1 , Iman Zarei1, Santtu Mikkonen 2,3, Sonja Soininen 4,5, Anna Viitasalo4,
Eero A. Haapala4,6, Seppo Auriola7,8, Kati Hanhineva1,9, Marjukka Kolehmainen 1,12 &
Timo A. Lakka 4,10,11,12

Environmental and lifestyle factors, including air pollution, impaired diet, and low physical activity,
have been associated with cardiometabolic risk factors in childhood and adolescence. However,
environmental and lifestyle exposures do not exert their physiological effects in isolation. This study
investigated associations between an exposome score to measure the impact of multiple exposures,
including diet, physical activity, sleep duration, air pollution, and socioeconomic status, and serum
metabolitesmeasuredusing LC-MSandNMR, compared to the individual components of the score. A
general population of 504 children aged 6–9 years at baseline was followed up for eight years. Data
were analysed with linear mixed-effects models using the R software. The exposome score was
associated with 31 metabolites, of which 12 metabolites were not associated with any individual
exposure category. These findings highlight the value of a composite score to predict metabolic
changes associated with multiple environmental and lifestyle exposures since childhood.

Environmental and lifestyle factors, such as air pollution, unhealthy diet and
lower levels physical activity, have been associated with cardiometabolic risk
factors inchildhoodandadolescence1–6.However, environmental and lifestyle
exposures do not exert their physiological effects in isolation. Instead, there is
complex interplay between external exposures, and with their associated
internal physiological responses7–11. Thus, theremay be a need to explore and
evaluate the combined impact of environmental and lifestyle exposures on
cardiometabolic health since childhood, as opposed to just assessing indivi-
dual exposures, to increase our understanding of their ability to predict car-
diometabolic risk. This may help to identify optimal environmental and
lifestyle conditions to prevent cardiometabolic diseases since childhood.

The underlying pathophysiological processes for cardiometabolic risk
originate in early-life12, and often track from childhood to adulthood13. The
concept of an “exposome” was proposed in 2005 and represents life-course
environmental exposures14, which provides a useful framework to assess the

development of cardiometabolic diseases since childhood. However, mea-
suring the exposome can be challenging15; for example, it can be difficult to
account for the sheer number of exposures individuals are exposed to over
their life course, the different types of exposures and the tools/technologies
able to measure these exposures, and the ability to accurately capture an
individual’s personal exposure15,16. One approach used in other areas of
research that could be adopted for exposome research is the use of scores.
Scores have been used in health sciences to assess cardiometabolic health,
with the cardiometabolic risk score for children andadolescents17 and “Life’s
Essential 8”proposedby theAmericanHeartAssociation18. Sumscoreshave
also been used to assess combined lifestyle factors and their impact on
health19, however, the majority of such studies have been carried out in
adults. Along with measuring multiple aspects of health, sum scores have
also been used tomeasure diet quality, where the overall impact of the diet is
assessed as opposed to investigating single nutrients. Examples of the use of
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sum scores in nutrition research include theMediterraneanDiet Score20 and
the Baltic Sea Diet Score21.

Many of the existing health-related sum scores have focused on phy-
siological risk factors as opposed to external exposures22,23, with these scores
often incorporating physiological variables, such as bodymass index (BMI),
blood pressure and blood lipids into the score. These physiological variables
measure an individual’s response to environmental exposures and not the
exposures themselves and may therefore represent biological processes
through which combined exposures exert their adverse health effects. In
recent years, a child healthy lifestyle score was constructed for a Spanish
birth cohort, however, it only incorporated specific lifestyle behaviours that
were assessed via questionnaires filled out by parents24. In this study, we
aimed to compare the outcomes of investigating the combined effect of
multiple exposures versus individual exposure categories. To do this, we
calculated themagnitudeof exposure todiet, activity, sleep, air pollution and
socioeconomic status. These individual scores were summed together to
create a combined environmental and lifestyle exposure (“exposome”)
score. To explore the exposome score, and to facilitate the comparison with
individual exposure scores, we investigated associations of the exposome
scorewith serummetabolitesmeasuredusing LC-MS andNMR in a general
population of children tomeasure the overall impact of multiple exposures.

The advancement of metabolomics provides a platform to investigate
the metabolic effects of different exposures, which can help facilitate the
identification of key environmental and lifestyle exposures and elucidate the
biologicalmechanisms underlying their role in cardiometabolic health since
childhood25–27. Importantly, metabolomics enables the detection of envir-
onmental and lifestyle exposureswhich reflect earlymetabolic changes prior
to the clinical onset of cardiometabolic diseases25–27. The application of
metabolomics in understanding the exposome has already been proposed28,
while metabolomics has been used in exposure research, with numerous
reviews supporting the notion of a metabolic response with exposure to air
pollution29,30, physical activity31,32, diet33,34, and sleep35,36, while it has also
been demonstrated that socioeconomic status can affect the human
metabolome37. This is further supported with findings from a systematic
review suggesting that combined healthy lifestyle behaviours are associated
with a unique metabolic profile38. Two commonly used methodologies in
metabolomics are liquid chromatography–mass spectrometry (LC-MS) and
nuclear magnetic resonance (NMR), each with their own advantages and
disadvantages39. LC-MS is highly sensitive and can detect a large range of
metabolites in very low levels in biological samples. In contrast, NMR can
measure larger compounds e.g., lipoprotein particles that are not amenable
for analysis in general LC-MS procedures39,40. The combination of both
approaches would allow their complementary strengths to be utilised and
improve coverage of themetabolome40,41. Despite this, very few studies have
incorporated both LC-MS and NMR metabolomics data into their
analyses41.

We hypothesise that the net effect of multiple exposures, assessed via
the use of a composite exposure (“exposome”) score, will capture different
associations with serum metabolites measured by LC-MS and NMR than
the individual exposure components of the score. The exposome score was
associated with 31 metabolites measured by LC-MS and NMR. Of these 31
metabolites, there were 12 metabolites that were not associated with any
individual category of the exposome score. These findings support the idea
of evaluating the combined effect of multiple exposures when investigating
overall health impacts of environmental and lifestyle factors. These findings
may also help increase our understanding of the biological effects of com-
bined environmental exposures on metabolic health since childhood.

Results
Participant characteristics
Participant characteristics from baseline, 2-year follow-up, and 8-year fol-
low-up are presented in Table 1. Mean sedentary time, parental education,
household income, and concentration of the air pollutant nitrogen oxide
increased, while mean total physical activity and sleep duration decreased
over eight years. Mean concentration of the air pollutant nitrogen dioxide

increased from baseline to 2-year follow-up and decreased back to baseline
values at the 8-year follow-up. Despite these changes in exposure variables,
the mean exposome score did not change over time.

Associations of the exposome score with serummetabolites
measured by LC-MS
The exposome score was positively associated with seven and negatively
associated with nine of all 186 serummetabolites measured by LC-MS over
eight years and found to be affected by a lifestyle intervention in children
(Table 2). The exposome score was significantly associated with seven
glycerophospholipids; of these, the exposome scorewaspositively associated
with lysophosphatidylethanolamine 18:2/0:0 (LPE 18:2/0:0, p = 0.030), and
negatively associated with lysophosphatidylcholine 18:0/0:0 (LPC 18:0/0:0,
p = 0.025), lysophosphatidylcholine 20:1 (LPC 20:1, p = 0.030), lysopho-
sphatidylcholine 22:6 (LPC 22:6, p = 0.039), phosphatidylcholine 40:6 (PC
40:6, p = 0.007), phosphatidylcholine 34:3 (PC O-34:3)/phosphatidylcho-
line 34:2 (PC P-34:2) (p = 0.005), and phosphatidylethanolamine 16:0/20:4
(PE P-16:0/20:4, p = 0.020). The exposome score was negatively associated
with linoleamide (p = 0.011), a fatty amide. Of the amino acids and their
derivatives, the exposome score was positively associated with sarcosine
(p = 0.002) and indolelactic acid (p = 0.048) and negatively associated with
3-aminoisobutanoic acid (p = 0.046). The exposome score was positively
associated with three xenobiotic compounds: hydroxyferulic acid
(p = 0.015) and [2or 6] hydroxybenzothiazole (p = 0.016) and anO-glycosyl
compound (C15H28O11, p = 0.048). The exposome score was positively
associated with a sterol (C29H46O2, p = 0.030). All associations between the
exposome score and serummetabolites measured by LC-MS are presented
in Supplementary Data 1.

Associations of the exposome score with serummetabolites
measured by NMR
The exposome score was positively associated with 14 and negatively
associated with one of all 56 serum metabolites measured by NMR over
eight years and found to be affected by a lifestyle intervention in children
(Table 3).The exposome scorewaspositively associatedwith threemeasures
of triglycerides: for every one-unit increase in the exposome score, total
triglycerides increased by 0.0098mmol/L (β = 0.0098, 95% CI [0.0015,
0.0182], p = 0.019), triglycerides in low-density lipoprotein (LDL) by
0.0005mmol/L (β = 0.0005, 95% CI [0.00001, 0.0011], p = 0.044), and tri-
glycerides in very-low-density lipoprotein (VLDL) by 0.0082mmol/L
(β = 0.0082, 95% CI [0.0011, 0.0152], p = 0.021). Of the measures of fatty
acids, the exposome score was positively associated with monounsaturated
fatty acids (β = 0.0178, 95% CI [0.0055, 0.0302], p = 0.004), saturated fatty
acids (β = 0.0177, 95% CI [0.0036, 0.0317], p = 0.013) and total fatty acids
(β = 0.0440, 95% CI [0.0051, 0.0829], p = 0.026), while it was negatively
associated with acetate (β =−0.0008, 95% CI [−0.0015, −0.0002],
p = 0.010). The exposome score was positively associated with one measure
of cholesterol, with increases of 0.0047mmol/L observed in VLDL-
cholesterol for every one-unit increase in the exposome score (β = 0.0047,
95% CI [0.0004, 0.0089], p = 0.030). The exposome score was positively
associated with phospholipids in VLDL, with an increase of 0.0031mmol/L
for every one-unit increase in the exposome score (β = 0.0031, 95% CI
[0.0004, 0.0058], p = 0.023). The exposome score was positively associated
with four amino acids and their derivatives, including alanine (β = 0.0034,
95% CI [0.0016, 0.0053], p < 0.001), creatinine (β = 0.2616, 95%CI [0.0803,
0.4430], p = 0.004), isoleucine (β = 0.0003, 95% CI [<0.0001, 0.0007],
p = 0.034) and glycine (β = 0.0016, 95% CI [0.0001, 0.0030], p = 0.027). The
exposome score was positively associatedwith pyruvate, with an increase of
0.0005mmol/L for every one-unit increase in the exposome score
(β = 0.0005, 95%CI [< 0.0001, 0.0010], p = 0.035). The exposome score was
positively associated with glycoprotein acetyls, with an increase of
0.0058mmol/L for every one-unit increase in the exposome score
(β = 0.0058, 95% CI [0.0025, 0.0090], p < 0.001). All associations between
the exposome score and serum metabolites measured by NMR are pre-
sented in Supplementary Data 2.
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Comparison of the associations of the exposome score and its
individual scores with serum metabolites measured by LC-MS
and NMR
In total, the exposome score or its individual scores were associated with 99
serum metabolites measured by LC-MS (Supplementary Data 3). Of the
16 significant associations between the exposome score and metabolites
measured by LC-MS, the exposome score was associated with five meta-
bolites that were not associated with any individual score, including positive
associations with [2 or 6] hydroxybenzothiazole (p = 0.015), hydroxyferulic
acid (p = 0.004), an O-glycosyl compound (C15H28O11, p = 0.048) and
indolelactic acid (p = 0.048) and a negative association with LPC 20:1
(p = 0.025) (Supplementary Data 3). Individual exposure categories were
significantly associated with 84 metabolites that were not significantly
associatedwith the exposome score. Of these, therewere 12metabolites that
were significantly associated with two or more of the individual exposure
categories, yet not significantly associated with the exposome score (Sup-
plementary Data 3).

In total, the exposome score or its individual scores were associated
with 27 serummetabolites measured by NMR (Supplementary Data 4). Of
the 15 significant associations between the exposome score and serum

metabolites measured by NMR, the exposome score was associated with
seven metabolites that were not associated with any individual score, being
positively associated with creatinine (p = 0.005), isoleucine (p = 0.035),
monounsaturated fatty acids (p = 0.005), saturated fatty acids (p = 0.013),
total fatty acids (p = 0.026), VLDL cholesterol (p = 0.030), and VLDL
phospholipids (p = 0.023) (Supplementary Data 4). Individual exposure
categories were significantly associated with 12 metabolites that were not
significantly associated with the exposome score (Supplementary Data 4).

BMI-SDS as a mediator for the associations of the exposome
score with serummetabolites measured by LC-MS and NMR
The exposome score was positively associated with BMI-SDS (β = 0.0269,
95% CI [0.0063, 0.0476, p = 0.010). The association of the exposome score
with serum metabolites measured by LC-MS was weakened after further
adjustment for BMI-SDS for eight of the 18 serum metabolites (Supple-
mentary Data 1). The associations of the exposome score with hydro-
xyferulic acid (p = 0.294), linoleamide (p = 0.639), PC 40:6 (p = 0.063),
indolelactic acid (p = 0.107), an O-glycosyl compound (C15H28O11,
p = 0.210) and a sterol (C29H46O2, p = 0.278)were no longer significant after
further adjustment for BMI-SDS (Supplementary Data 1). After further

Table 1 | Characteristics of participants throughout the PANIC study

Characteristic Baseline (n = 504) 2-year follow-up (n = 438) 8-year follow-up (n = 277) p-value

Age (years) 7.63 ± 0.39 9.75 ± 0.43 15.80 ± 0.43 <0.001

Sex 0.649

Female 243 (48.0%) 214 (49.0%) 126 (45.0%)

Male 261 (52.0%) 223 (51.0%) 151 (55.0%)

Pubertal status <0.001

Tanner Stage 1 492 (97.6%) 322 (77.0%) 0 (0.0%)

Tanner Stage 2 12 (2.4%) 98 (23.0%) 0 (0.0%)

Tanner Stage 3 0 (0.0%) 0 (0.0%) 21 (8.7%)

Tanner Stage 4 0 (0.0%) 0 (0.0%) 139 (58.0%)

Tanner Stage 5 0 (0.0%) 0 (0.0%) 81 (34.0%)

Serum cotinine 2.64 ± 0.43 2.59 ± 0.44 3.15 ± 1.23 <0.001

BMI-SDS −0.17 ± 1.08 −0.13 ± 1.06 −0.05 ± 1.02 0.297

Finnish Children Healthy Eating Index 22.41 ± 6.51 22.49 ± 7.29 22.72 ± 6.37 0.867

Total physical activity (min/day) 626.04 ± 130.90 505.13 ± 108.79 366.33 ± 131.58 <0.001

Sedentary time (min/day) 232.43 ± 129.65 382.77 ± 106.32 606.76 ± 134.71 <0.001

Sleep duration (h/day) 9.65 ± 0.50 9.15 ± 0.56 7.63 ± 0.76 <0.001

Parental education 0.050

Vocational school or less 98 (20.0%) 64 (15.0%) 35 (14.0%)

Vocational high school 224 (45.0%) 201 (47.0%) 100 (40.0%)

University 179 (36.0%) 165 (38.0%) 112 (45.0%)

Household income <0.001

<€30,000 106 (21.0%) 70 (16.0%) 22 (9.0%)

€30,000–€60,000 206 (42.0%) 156 (37.0%) 58 (24.0%)

>€60,000 182 (37.0%) 201 (47.0%) 162 (67.0%)

Nitrogen oxide (µg/m3) 6.78 ± 5.80 11.12 ± 9.70 11.77 ± 6.43 <0.001

Nitrogen dioxide (µg/m3) 16.45 ± 7.31 24.44 ± 11.75 15.06 ± 6.57 <0.001

Particulate matter ≤ 2.5 µm (µg/m3) 7.21 ± 3.92 6.85 ± 3.21 6.55 ± 6.83 0.148

Particulate matter ≤ 10 µm (µg/m3) 14.87 ± 11.26 17.57 ± 13.96 14.16 ± 12.35 <0.001

Ozone (µg/m3) 46.54 ± 17.94 43.91 ± 16.64 51.03 ± 15.51 <0.001

Exposome score 12.51 ± 2.49 12.43 ± 2.54 11.87 ± 3.05 0.094

Values are unadjusted means ± standard deviations for continuous variables and numbers (percentages) for categorical variables. P-values have been calculated using Kruskal–Wallis rank-sum test or
Pearson’s Chi-squared test. Serum cotinine values presented here been log10 transformed. The exposome score (ranging between 5 and 20) was computed by summing up quartile scores for diet quality
(measuredby Finnish children healthy eating index), activity (combined score for total physical activity and sedentary time), pollution (combined score for nitrogen oxide, nitrogen dioxide, particulatematter
≤10 µm, particulate matter ≤2.5 µm and ozone), sleep (measured by sleep duration) and socioeconomic status (combined score for household income and parental education).
BMI-SDS body mass index standard deviation score.
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adjustment for BMI-SDS, the exposome score became significantly asso-
ciated with 85 serum metabolites that were not previously associated with
the exposome score (Supplementary Data 1).

The association of the exposome score with serum metabolites mea-
sured by NMR was weakened after further adjustment for BMI-SDS for 14
of the 15 serummetabolites (SupplementaryData 2). The associations of the
exposome score with serum metabolites measured by NMR were partly
explained by BMI-SDS, including for monounsaturated fatty acids (by
13.8%), saturated fatty acids (10.5%), total fatty acids (15.6%), LDL trigly-
cerides (9.3%), VLDL triglycerides (24.7%), total triglycerides (21.7%),
VLDL cholesterol (25.4%), VLDL phospholipids (26.1%), alanine (8.8%),
creatinine (7.8%), isoleucine (9.8%) and glycoprotein acetyls (24.9%),
acetate (4.7%) and pyruvate (2.0%) (Supplementary Data 2).

BMI-SDS as a modifier for the associations of the exposome
score with serummetabolites measured by LC-MS and NMR
The association of the exposome score was significantly modified by BMI-
SDS for 12 of the 186 serummetabolites measured by LC-MS and found to
be affected by a lifestyle intervention in children (Supplementary Data 5).
Six metabolites were found to be increasedwith a higher exposome score in
individuals with higher BMI-SDS compared to those with lower BMI-SDS;

this occurred either by an increase in individuals with higher BMI-SDS, a
decrease in individuals with lower BMI-SDS, or a combination of both.
BMI-SDS modified the associations of the exposome score with
5-aminovaleric acid betaine (p = 0.027 for the interactionbetweenBMI-SDS
and the exposome score), creatinine (p = 0.045), hexanoylcarnitine
(p = 0.018), hydroxyferulic acid (p = 0.025), serinyl-alanine peptide
(p = 0.019) and xanthine (p < 0.001) (Supplementary Data 5). In contrast,
sixmetaboliteswereobserved tobedecreasedwithhigher exposome score in
individuals with higher BMI-SDS compared to those with lower BMI-SDS;
this occurred either by a decrease in individuals with higher BMI-SDS, an
increase in individualswith lowerBMI-SDS, or a combinationof both.BMI-
SDS modified the associations of the exposome score with LPE 18:2/0:0
(p = 0.015), phosphatidylcholine 16:0/20:4 (PC 16:0/20:4, p = 0.037),
phosphatidylcholine 36:4 (PC36:4, p = 0.047), lysophosphatidylcholine 0:0/
18:2 (LPC 0:0/18:2, p = 0.046), LPC 18:2/0:0 (p = 0.022) and an amino acid
derivative (C4H7N5O2, p = 0.036) (Supplementary Data 5).

The association of the exposome score was significantly modified by
BMI-SDS for 19 of the 56 serummetabolites measured by NMR and found
to be affected by a lifestyle intervention in children (SupplementaryData 6).
Altogether, 18metabolitesmeasuredbyNMRwere observed tobe increased
with a higher exposome score in individuals with higher BMI-SDS com-
pared to those with lower BMI-SDS; this occurred either by an increase in
individualswith higherBMI-SDS, a decrease in individualswith lowerBMI-
SDS, or a combination of both. BMI-SDS positively modified the associa-
tions of the exposome scorewith creatinine (p = 0.008), cholines (p = 0.046),
leucine (p = 0.016), valine (p = 0.004), total branched chain amino acids
(p = 0.008), monounsaturated fatty acids (p = 0.001), omega-3 fatty acids
(p = 0.039), omega-6 fatty acids (p = 0.022), phosphoglycerides (p = 0.047),
remnant cholesterol (p = 0.038), polyunsaturated fatty acids (p = 0.016),
linoleic acid (p = 0.022), saturated fatty acids (p = 0.001), total fatty acids
(p = 0.001), total triglycerides (p = 0.006), total phospholipids (p = 0.033),
glycerol (p = 0.028), and glycoprotein acetyls (p = 0.002) (Supplementary
Data 6). Onemetabolite measured byNMRwas found to be decreased with
higher exposome score in individuals with higher BMI-SDS compared to
thosewith lower BMI-SDS. BMI-SDSnegativelymodified the association of
the exposome score with acetate (p = 0.023) (Supplementary Data 6).
Selected serummetabolitesmeasured by LC-MS andNMR are presented in
Fig. 1 to display the different patterns of themodification of the associations
of the exposome score with serum metabolites measured by BMI-SDS.

Sensitivity analysis
Comparison of diet scores within exposome score. The use of the
Finnish Children Healthy Eating Index, Mediterranean Diet Score, or
Baltic Sea Diet Score in the formulation of the exposome score was sig-
nificantly associated with 16, 27 and 20, respectively, serum metabolites
measured by LC-MS (Supplementary Data 1). Altogether, 11metabolites
were common to all three models. However, there were four, eight and
two unique associations when the Finnish Children Healthy Eating
Index, the Mediterranean Diet Score, and the Baltic Sea Diet Score were
used in the exposome score, respectively (Supplementary Fig. S1).

The use of the Finnish Children Healthy Eating Index, the Medi-
terranean Diet Score, or the Baltic Sea Diet Score in the formulation of
the exposome score was significantly associated with 15, 11 and 22,
respectively, serum metabolites measured by NMR (Supplementary
Data 2). Four metabolites were common to all three models. However,
there were five, two and seven unique associations when the Finnish
Children Healthy Eating Index, the Mediterranean Diet Score, and the
Baltic Sea Diet Score were used in the exposome score, respectively
(Supplementary Fig. S2).

Leave-one-out analysis. The original exposome scoremodel and leave-
out models were associated with 54 serum metabolites measured by LC-
MS (SupplementaryData 7). The directions of the significant associations
of the exposome score with serummetabolites measured by LC-MS were
consistent across the various leave-out models (Supplementary Data 7).

Table 2 | Associations between the exposome score and
serum metabolites measured by LC-MS

Annotated metabolite β (95% CI) p value

Amino acids & derivatives

Sarcosine 3979 (1389, 6569) 0.002

3-Aminoisobutanoic acid −909 (−1806, −12) 0.016

Indolelactic acid 2073 (16, 4130) 0.048

Fatty amides

Linoleamide −1,154,566
(−2,181,194,
−127,939)

0.027

Phospholipids

Lysophosphatidylcholine 18:0/0:0 −611,031
(−1,146,923,
−75,139)

0.025

Lysophosphatidylcholine 20:1 −28,083
(−53,488, −2679)

0.030

Lysophosphatidylcholine 22:6 −749 (−1463, −36) 0.039

Lysophosphatidylethanolamine 18:2/0:0 2318 (217, 4419) 0.030

Phosphatidylcholine 40:6 −286,071
(−496,681, −75,460)

0.007

Phosphatidylcholine O-34:3/Phosphati-
dylcholine P-34:2

−559,186 (−951,987,
−166,384)

0.005

Phosphatidylethanolamine P-16:0/20:4 −91,229
(−168,566, −13,893)

0.020

Sphingolipids

Sphingomyelin d18:1/12:0 −364 (−704, −23) 0.036

Sterols

Sterol with formula C29H46O2 12,241 (1122, 23,360) 0.030

Xenobiotic

[2 or 6] Hydroxybenzothiazole 410,580 (76,645,
744,515)

0.016

O-glycosyl compound with formula
C15H28O11

40,577 (451, 80,703) 0.047

Hydroxyferulic acid 7215 (1353, 13,078) 0.015

Unstandardized regression coefficients β (95% confidence intervals) are for estimated changes in
metabolite abundances for each one-unit increase in the exposome score over eight years, and p-
values are from linear mixed-effects models adjusted for time, sex, age, pubertal stage, and serum
cotinine.
LC-MS liquid chromatography–mass spectrometry.
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Table 3 | Associations between the exposome score and serum metabolites measured by NMR

Metabolite name Mean ± SD β (95% CI) p value

Amino acids & derivatives

Alanine 0.31 ± 0.07 0.0034 (0.0016, 0.0053) <0.001

Creatinine 47.74 ± 12.89 0.2616 (0.0803, 0.4430) 0.004

Glycine 0.28 ± 0.05 0.0016 (0.0001, 0.0030) 0.027

Isoleucine 0.05 ± 0.03 0.0003 (<0.0001, 0.0007) 0.034

Cholesterol

VLDL-cholesterol 0.47 ± 0.15 0.0047 (0.0004, 0.0089) 0.030

Fatty acids

Acetate 0.05 ± 0.02 −0.0008 (−0.0015, −0.0002) 0.010

Monounsaturated fatty acids 2.42 ± 0.44 0.0178 (0.0055, 0.0302) 0.004

Saturated fatty acids 3.5 ± 0.51 0.0177 (0.0036, 0.0317) 0.013

Total fatty acids 10.51 ± 1.41 0.0440 (0.0051, 0.0829) 0.026

Glycolysis related metabolites

Pyruvate 0.05 ± 0.02 0.0005 (<0.0001, 0.0010) 0.035

Inflammatory protein markers

Glycoprotein acetyls 0.76 ± 0.1 0.0058 (0.0025, 0.0090) <0.001

Phospholipids

VLDL-phospholipids 0.27 ± 0.09 0.0031 (0.0004, 0.0058) 0.023

Triglycerides

LDL-triglycerides 0.11 ± 0.02 0.0005 (<0.0001, 0.0011) 0.044

Total triglycerides 0.74 ± 0.28 0.0098 (0.0015, 0.0182) 0.019

VLDL-triglycerides 0.47 ± 0.24 0.0082 (0.0011, 0.0152) 0.021

Unstandardized regression coefficients β (95% confidence intervals) are for estimated changes in metabolite abundances for each one-unit increase in the exposome score over eight years, and p values
are from linear mixed-effects models adjusted for time, sex, age, pubertal stage, and serum cotinine.
NMR nuclear magnetic resonance, LDL low-density lipoprotein, VLDL very-low-density lipoprotein.

Fig. 1 |Modification of the association of the exposome score with selected serum
metabolites measured by LC-MS and NMR by BMI-SDS. This figure illustrates the
different patterns ofhowadiposity,measured byBMI-SDS,modified the associations of
the exposome scorewith serummetabolitesmeasured byNMR (a–d) and LC-MS (e, f).
Panels a, b and c show metabolite concentration increased in individuals with higher
BMI-SDS, while panels d, e and f showmetabolite abundance/concentration decreased
in individuals with higher BMI-SDS. The exposome score (ranging between 5 and 20)
was computed by summing up quartile scores for diet quality (measured by Finnish

children healthy eating index), activity (combined score for total physical activity and
sedentary time), pollution (combined score for nitrogen oxide, nitrogen dioxide, par-
ticulate matter ≤10 µm, particulate matter ≤2.5 µm and ozone), sleep (measured by
sleep duration) and socioeconomic status (combined score for household income and
parental education). BMI-SDSbodymass index standarddeviation score, LC-MS liquid
chromatography–mass spectrometry, NMR nuclear magnetic resonance. Medians for
BMI-SDS terciles: Lower =−1.2, Middle =−0.1 and Upper = 0.8.
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Most of the models were observed to have a similar number of significant
associations with metabolites as the original exposome score model,
ranging between 13 and 16 (Supplementary Fig. S3). The deviation to this
trend was found with the removal of the air pollution category from the
exposome score; this model had 29 significant associations with meta-
bolites, which was the largest number of such associations (Supple-
mentary Fig. S3, Supplementary Data 7).

The original exposome score model and leave-out models were
associated with 27 serum metabolites measured by NMR (Supplemen-
tary Data 8). The directions of the significant associations of the expo-
some score with serum metabolites measured by NMR were consistent
across the various leave-out models (Supplementary Data 8). In com-
parison with the original exposome score model, the leave-out models
for diet, activity, sleep, and socioeconomic status were all significantly
associated with less metabolites (8, 5, 12 and 8, respectively). The
exception to this was the leave-out-model for pollution, which was
significantly associated with 23 metabolites (Supplementary Fig. S4,
Supplementary Data 8).

Discussion
Here, we showed that the combination of environmental and lifestyle
exposures, including diet quality, activity, air pollution, sleep duration,
and socioeconomic status, was associated with numerous serum meta-
bolites measured by LC-MS and NMR in childhood and adolescence.
Furthermore, we demonstrated that this exposome score was uniquely
associated with 12 serum metabolites, corresponding to 39% of the total
number of associations between the exposome score and serum meta-
bolites.We also found that adipositymediated andmodifiedmany of the
associations of the exposome score with serum metabolites. To the best
of our knowledge, this is the first longitudinal study to investigate the
association between an exposome score and metabolic health across
childhood and adolescence.

The exposome score was associated with 16 serum metabolites mea-
sured by LC-MS in childhood and adolescence, with many of these meta-
bolites observed to be decreased in individuals with a higher exposome
score.Wealso see that, as the exposome score increases, the concentrationof
most serummetabolites measured by NMR are increased. Across both LC-
MS and NMR metabolomics data, the exposome score was associated
predominantlywith serum lipids, aminoacids, and their derivatives.Altered
lipidmetabolism has been associated with increased cardiometabolic risk in
adults42 and in children living with obesity43, with increased circulating
glycerophosphocholines and triglycerides implicated in both. In our study,
all the associations of the exposome score with serum lipids measured by
LC-MS were glycerophospholipids, with all noted to be decreased in indi-
viduals with a higher exposome score. Glycerophospholipids are a group of
lipids that have been shown tohave neuroprotective and anti-inflammatory
effects44–46. In addition to these findings, acetate, a short-chain fatty acid
producedby the gutmicrobiota, was the onlymetabolitemeasured byNMR
with which the exposome score was negatively associated. There is a large
body of mechanistic evidence from animal studies that suggest acetate can
improve cardiometabolic health through antilipolytic and anti-
inflammatory effects47, while acetate supplementation has been shown to
prevent the development of hypertension and reduce neuroinflammation in
mice48,49. Interestingly, the negative associations of the exposome score with
several compounds that exhibit anti-inflammatory effects coincide with a
positive association between the exposome score and serum glycoprotein
acetylsmeasured byNMR.Glycoprotein acetyls are a biomarker of systemic
inflammation andmetabolic dysfunction50–52, and are suggested to provide a
sensitive measure to detect increased cardiovascular risk in young people53

and predict cardiometabolic risk in adulthood54. Along with triglycerides,
total fatty acids and monounsaturated fatty acids, glycoprotein acetyls have
also been directly associated with the risk of type 2 diabetes in Asian and
European adults55.

Inflammation can lead to altered lipid metabolism56, with inflam-
mation shown to modify circulating levels of lipoproteins and

triglycerides in children and adolescents57. In this study, along with the
positive association of the exposome score with serum glycoprotein
acetyls, a measure of systemic inflammation, we found that the expo-
some score was positively associated with various serum lipid metabo-
lites measured by NMR. These include total, LDL and VLDL
triglycerides and total, saturated, and monounsaturated fatty acids. In
individuals with a higher exposome score, we also observed elevated
serum concentrations of VLDL phospholipids and VLDL cholesterol.
Serum concentration of triglycerides58 and LDL triglycerides59 have been
positively associated with insulin resistance in children, while the
Bogalusa Heart Study found that serum concentrations of total trigly-
cerides and LDL cholesterol, among others, had strong positive asso-
ciations with the development of atherosclerosis in young people60. In
addition, VLDL cholesterol has been associated with increased risk of
coronary heart disease in adults61,62.

The exposome score was also positively associated with serum
alanine, glycine, and isoleucine, measured by NMR. These amino acids
measured by NMR have been identified as potential biomarkers of
cardiometabolic disorders, including obesity25 and type 2 diabetes25, and
are involved in various metabolic pathways, such as glycine, serine, and
threonine metabolism and valine, leucine and isoleucine metabolism25.
We also found an increase in sarcosine, as measured by LC-MS, in
individuals with a higher exposome score. In a recent study, elevated
sarcosine was determined to be a marker of dyslipidemia, with the
increase in sarcosine even more pronounced across profiles that inclu-
ded further risk factors formetabolic syndrome63.We also found that the
exposome score was positively associated with serum pyruvate, which
was measured by NMR and is involved in several metabolic processes,
such as alanine, glycine, serine, and threonine metabolism, which have
been implicated in cardiometabolic diseases25. Metabolites of the gly-
colysis and gluconeogenesis pathways, including pyruvate, have also
been implicated in the pathogenesis of obesity and type 2 diabetes in
adults64–66.

Of the 31 significant associations of the exposome score with serum
metabolites measured by LC-MS and NMR, the exposome score was
associated with 12 serum metabolites that were not associated with any
individual score (fivemeasured by LC-MS, sevenmeasured byNMR), all
of which were lipids, xenobiotics, and amino acids (Supplementary
Data 3–4). As a demonstration for the potential value of using a com-
posite exposure score, we can consider the positive association of the
exposome score with [2 or 6] hydroxybenzothiazole measured by LC-
MS. In vitro studies have demonstrated that environmentally relevant
circulating concentrations of these compounds could lead to increased
levels of reactive oxygen species67,68. Increased oxidative stress, along
with systemic inflammation, is considered one of the primary initiating
mechanisms in the development of cardiometabolic diseases69–71. Fur-
thermore, benzothiazoles have been shown to interact with aryl
hydrocarbon receptors72, which have been implicated in insulin resis-
tance and impaired glucose homeostasis73. [2 or 6] hydro-
xybenzothiazole is not a naturally occurring metabolite, with
benzothiazoles widely used in the manufacture of household and con-
sumer products74. Benzothiazoles have also been detected in indoor75

and outdoor air76,77, clothing textiles78, and food and beverages, including
seafood79, tea80, drinking water81, and commercial milk products82.
Despite the fact that benzothiazoles can be found in numerous sources,
[2 or 6] hydroxybenzothiazole was not associated with any individual
exposure component of the exposome score, while it was found to be
positively associatedwith the exposome score. This underlines the added
value of the composite exposome score in depicting elevated serum levels
of this potentially harmful metabolite.

The positive associations of the exposome score with mono-
unsaturated, saturated, and total fatty acids measured by NMR can be used
as another example of the potential value of composite exposure scores. In
adults, higher levels of circulating saturated fatty acids have been associated
with an increased risk of cardiometabolic diseases in a meta-analysis by Li
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et al.83, whereasmonounsaturated fatty acids were positively associatedwith
risk of coronary artery disease in a large prospective cohort study84. The
literature on exposure research and fatty acid profiles in children is limited,
however, some studies have noted associations of environmental exposures
with fatty acid composition and metabolism; exposure to air pollution has
been associated with altered fatty acid metabolism in children85,86, while it
has also been suggested that dysregulated lipid and fatty acid metabolism
may mediate the associations of per- and polyfluoroalkyl substances with
glucose intolerance in young adults87. Furthermore, a combined diet and
physical activity intervention was reported previously to have a beneficial
effect on fatty acid composition in children who participated in the PANIC
study88. Similarly to [2 or 6] hydroxybenzothiazole, while it appears that
levels of fatty acids can be affected by environmental and lifestyle factors, we
did not observe associations of any individual exposure component of the
exposome score with fatty acids measured by NMR, while they were found
to be positively associatedwith the exposome score. Thefindings for [2 or 6]
hydroxybenzothiazole and fatty acids, along with the other eight serum
metabolites that were exclusively associated with the exposome score,
highlight the value of using a composite score of multiple environmental
and lifestyle exposures when identifying serum biomarkers of potential
relevance for cardiometabolic health, given the complex interplay between
environmental and lifestyle exposures and biological responses.

Adipositywas found tomediate several of the significant associations of
the exposome score with serummetabolites measured by NMR, explaining
from 2% to 26% of these associations. Given that energy intake was not
incorporated into the diet quality score, it is not surprising that adiposity did
not mediate a larger proportion of the associations of the exposome score
with serum metabolites. While adiposity also appeared to mediate the
association of the exposome score with some metabolites measured by LC-
MS, a potentially more relevant finding was the large number of serum
metabolites measured by LC-MS (roughly 45%), most of which were
phospholipids, that became significantly associatedwith the exposome score
after controlling for adiposity. This contrasted with the associations of the
exposome score with serum metabolites measured by NMR, where no new
significant associations were observed after controlling for adiposity. It may
be that adiposity affects many of the compounds measured by LC-MS
through different mechanisms independently of the exposures measured in
this study, and future studies should carefully consider its role in the asso-
ciations of environmental and lifestyle exposures with serum metabolites.

Adiposity was found tomodify the associations of the exposome score
with a number of serum metabolites in our study. Serum creatinine mea-
sured by LC-MS and NMR was observed to be higher in individuals with
higher adiposity. While serum creatinine is a commonly used clinical
measure of kidney functionandmarker of increased cardiovascular risk, this
is reported in adults89. Inour general populationof children andadolescents,
however, none had kidney disease. Higher serum creatinine in our parti-
cipants is likely to be ameasure of skeletalmusclemass because creatinine is
mainlyproducedby skeletalmuscle90. It hasbeen reported that childrenwith
overweight/obesity have higher amounts of skeletal muscle mass compared
to children with normal weight91,92. The higher levels of creatinine in indi-
viduals with higher adiposity may therefore be explained by a combination
of increased skeletal muscle mass and the clustering of adverse environ-
mental exposures.We also observed that adipositymodified the association
of the exposome score with serum amino acids and their derivatives mea-
sured by LC-MS and NMR. Previous research has shown strong associa-
tions of BMI with some circulating amino acids such as branched chain
amino acids, including leucine, isoleucine and valine93. Circulating con-
centrations of branched-chain amino acids have also been directly asso-
ciated with future risk of insulin resistance in children and adolescents, and
with cardiometabolic risk factors in young adults94,95. Further research is
required to determine if certain amino acids could be used as biomarkers of
disturbedmetabolic processes, andwhether this only applies to children and
adolescents living with overweight. The association between the exposome
score and serum glycoprotein acetyls, which has previously been discussed
as a biomarker for systemic inflammation and metabolic dysfunction, was

alsomodified by adiposity, with increased serum glycoprotein acetyls found
in individuals with higher adiposity. Previous studies have shown that
adiposity is positively associated with circulating biomarkers of inflamma-
tion in children96,97. Furthermore, higher levels of sedentary time and lower
levels of physical activity were associated with higher circulating levels of
inflammatory biomarkers in children with increased adiposity, which
appears concordant with our results98. This suggests that individuals with
higher adiposity are more susceptible to the inflammatory effects of envir-
onmental and lifestyle exposures deemed to be unhealthy. In individuals
with a low exposome score, regardless of adiposity, concentration of serum
glycoprotein acetyls did not appear to differ. It may be the case that indi-
viduals living with overweight may not suffer increased inflammation
should theymitigate their unhealthy exposures, such as adopting a healthier
lifestyle comprised of improved diet quality and increased physical activity;
it has previously been shown that physical fitness is negatively associated
with concentration of circulating inflammatory biomarkers independently
of BMI99.

Measuring the exposome is a major challenge, and there have been
efforts in recent years to measure multiple exposures and try to account for
the interactions between them more accurately100. One approach that has
been implemented in other fields is the use of sum scores, such as in dietary
research20,21 and the development of various health scores17,18. While com-
posite scores are widely used in research101,102, there are limitations to their
use in clinical research102, many of which are also relevant to exposome
research. Despite the limitations, it is argued that the use of scores allows the
net effect of the overall factors to be assessed103,104. To demonstrate the
challenges of developing a composite exposure score and exploring its
feasibility, we conducted a sensitivity analysis using just one component of
the exposome score (diet), where the use of different, validated, approaches
to assess diet quality were compared. The original exposome score model,
using the Finnish Children Healthy Eating Index, was compared to two
sensitivity exposome models using either the Baltic Sea Diet Score or the
MediterraneanDiet Score.While there was some overlap between the three
models, there were also a number of unique associations with serum
metabolites measured by LC-MS and NMR based on the diet score incor-
porate into the exposome score (Supplementary Figs. S1–S2). Interestingly,
when we compared the results of the sensitivity analyses using the Finnish
ChildrenHealthy Eating Index and the Baltic Sea Diet Score, both of which
have been validated in a Finnishpopulation20,21, we found that almost a third
of themetabolites measured by LC-MS andNMR that were associated with
the original exposome score were not found to be related to the exposome
score with the Baltic Sea Diet Score. Future research should consider the
suitability of selected measures to the population studied, and further
research is necessary to determine optimal approaches to assess the impact
of diet on an individuals’ overall exposome, whether this be through a diet
quality approach, or the assessment of specific foods or nutrients. Future
research should also explore the impact of ultra-processed foods,whichhave
been positively associated with obesity and other cardiometabolic risk fac-
tors in children and adolescents105. Specifically, animal-based products and
sugar-sweetened beverages should be examined, which were recently
determined as the main subgroups of ultra-processed foods associated with
cardiometabolic multimorbidity in adults across 10 European countries106.
These are insights based on the diet component of the exposome score, with
special care likely needed for all components incorporated into a composite
exposure score. This highlights the need to carefully reflect upon and select
appropriate measures, and thus researchers should be careful in the plan-
ningof composite scores tomeasuremultiple exposures, and the approaches
used to assess the components to be incorporated.

Another limitation of the use of composite scores is that it risks over-
simplifying the relationships between the various components incorporated
into the score. To assess the contribution of the individual exposure com-
ponents to the exposome score, we conducted a leave-one-out sensitivity
analysis. No individual component appeared to be influencing the direc-
tions of the associations, with the direction remaining consistent between
the exposome score and the various leave-outmodels. However, it appeared
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that the air pollution scorehad a large influence on thenumber of significant
associations, with the leave-out model for pollution significantly associated
with the largest numberofmetabolitesmeasured by bothLC-MS andNMR.
Interestingly, whenwe inspectmetabolites that were significantly associated
with the pollution score and at least one other exposure component, we can
see that thedirectionsdiffer inmost instances. It is possible that thepollution
score is exerting a small effect in the opposing direction to the other
exposures, and while not a large enough effect to be significant, it may be
enough to influence the overall exposome score, as evidence by the com-
parison of the original exposome scorewith the exposome score fromwhich
the air pollution component was removed. The assumption that there is a
consistent direction for the various factors incorporated into scores, known
as the assumption of uniform directionality, is a disadvantage of a scoring
approach107. This remains an issue formanyof thenewermethods that try to
measure the mixture effect of various exposures100, although there are
methods being developed that try to accommodate the opposing directions
of different exposures108.

Our study has several strengths. The general population of children
followed up for eight years, the use of linearmixed-effectsmodelswith three
timepoints, and the availability of several environmental and lifestyle factors
and numerous metabolites measured by LC-MS and NMR allowed us to
analyse the longitudinal associations of the exposome score with serum
metabolome from childhood to adolescence. Furthermore, we used objec-
tive measures for the variables included in the exposome score—for
example, pollutant concentrations were actual measurements from mon-
itoring stations in Kuopio, while physical activity, sedentary time and sleep
were allmeasured usingwearablemonitors. Furthermore,measuring serum
metabolites via both LC-MS and NMR provided us with different insights
and a better overall understanding of the overall biological impacts of the
environmental and lifestyle exposures. However, there were also a few
limitations in our study. Firstly, while the composite exposome score allows
for multiple external exposures to be combined and assessed, we did not
incorporate any weighting, and thus each environmental and lifestyle score
was considered to contribute equally to the overall effect; this was an issue
both within-score and between-score. Furthermore, the scoring approach
assumed a linear relationship for all variables. It is not always the case that
“more is worse/better”—for example, with sleep, both too little and too
much have been associated with impaired health. Another limitation with
the composite exposure score was that the only external environmental
exposures included were all air pollutants, and future research should
consider the impact of other factors such as temperature, green and blue
spaces, urbanization, and noise. Furthermore, since the objective was to
explore the feasibility and value of a composite exposure score, the analyses
were carried out with a subset of metabolites already identified as being
changedby the intervention.Using anarrow subset ofmetabolites leaves out
other, potentially relevant metabolites that are not affected by the inter-
vention but important in the wider exposome context. Due to issues with
data missingness, it was not possible to explore the role of early-life expo-
sures, and subsequent studies should consider early-life exposures, such as
maternal exposures during pregnancy, in the context of the exposome. It
should also be noted that therewas a large number of dropouts, around 45%
of the number of participants at baseline, which may introduce bias to the
study. Finally, when assessing the residuals of the linear mixed-effects
models for several LC-MS metabolites, it appeared that there may be a
predictor missing that would help explain some of the variance, which was
not adjusted for in the models.

In conclusion, the exposome score, comprised of environmental and
lifestyle exposures, includingdietquality, activity, sleepduration, airpollution
and socioeconomic status, was associated with a large number of serum
metabolites measured by LC-MS and NMR in childhood and adolescence.
These metabolites were predominantly phospholipids, fatty acids, amino
acids, xenobiotics, and energy-related metabolites. Furthermore, the expo-
some score was uniquely associated with several of these metabolites, high-
lighting the value of composite scores in predicting metabolic changes
associated with multiple environmental and lifestyle exposures since

childhood.However, further research is requiredon the feasibilityof a general
exposome score that can be used across populations. We have also investi-
gated associations with individual metabolites, and it may be worthwhile to
explore metabolomic profiles attributed to different exposome patterns.
Furthermore, due to differing exposure patterns as well as the different
impacts the various exposuresmay have on children compared to adults, the
use of composite exposure scores in adults still needs to be explored.

Methods
Study design and participants
The Physical Activity and Nutrition in Children (PANIC) study aims to
investigate the effects of an individualised and family-basedphysical activity
and dietary intervention on cardiometabolic risk factors and other health
outcomes in a general population of children aged 6–9 years followedup for
eight years until adolescence. The Research Ethics Committee of the Hos-
pital District of Northern Savo approved the study protocol in 2006
(Statement 69/2006). The PANIC study is registered at ClinicalTrials.gov
with the identifier NCT01803776. At baseline and 2-year follow-up, the
caregivers gave their written informed consent, and the children provided
their assent to participation. At 8-year follow-up, both caregivers and
adolescents gave theirwritten informedconsent.ThePANICstudyhas been
carried out in accordance with the principles of the Declaration of Helsinki
as revised in 2008. All ethical regulations relevant to human research par-
ticipants were followed.

Study design, recruitment, and participants have been described in
detail elsewhere109,110. In short, 504 children, aged 6–9 years, from the city of
Kuopio, Finland, participated in baseline examinations between October
2007 and December 2009. The participants were examined again two and
eight years later. A total of 438 children participated in the 2-year follow-up
examinations between 2009 and 2011, and 277 adolescents attended the
8-year follow-up examinations between 2015 and 2017.

Metabolomics analyses
Non-targeted metabolite profiling of fasting serum samples collected at
baseline, 2-year follow-up, and 8-year follow-up examinations was per-
formed using LC-MS as described previously111. Samples were analysed
utilising four LC-MS methods. Reversed-phase analyses were performed
using a ultra-high performance liquid chromatography (UHPLC)-Orbi-
trap-mass spectrometry system (Thermo Fischer Scientific, Bremen, Ger-
many),which consisted of aVanquishUHPLC systemusingZorbax Eclipse
XDB-C18 column (particle size 1.8 µm, 2.1 × 100mm; Agilent Technolo-
gies), and a Q Exactive Focus mass spectrometer. The hydrophilic inter-
action liquid chromatography was performed with a UPLC-quadrupole
time-of-flight (QTOF)-mass spectrometry system (Agilent Technologies,
Santa Clara, CA, USA), which consisted of a 1290 UPLC using Acquity
UPLC BEH amide column (2.1 × 100mm, 1.7 µm; Waters Corp., Milford,
MA, USA), and a 6540 UHD QTOFmass spectrometer. Both positive and
negative electrospray ionisation were employed, yielding four data files for
each sample111,112.

After obtaining themolecular features usingMS-DIAL v4.90 software,
where peak picking and alignment are carried out113, the data were pre-
processedusingR software (RCoreTeam, 2021, https://www.R-project.org)
and thenotamepackage111.Data fromeachof the four analyticalmodeswere
processed separately, which included correcting the molecular features for
the drift pattern, checking feature quality based on the quality control
samples, and imputing the missing values with random forest
imputation111,112. Once the preprocessing had been completed, the data was
used in statistical analyses, to focus on themolecular features observed to be
significantly affected by the physical activity and dietary intervention from
baseline to 8-year follow-up examinations in the PANIC study, with these
compounds selected for identification112.

Identification of the compounds followed the 4-level annotation
scheme proposed by the Metabolomics Standards Initiative114, with anno-
tation of the molecular features based on ms/ms spectral comparison on
databases including METLIN, MassBank of North America, Human
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Metabolome Database and LIPID MAPS, as well as published literature.
Level 1 identificationwas basedon retention time andms/ms fragmentation
match against in-housepurified standards. Themetabolites addressed in the
present analyses are thus those thatwere found to be affected by the physical
activity and dietary intervention from baseline to 8-year follow-up exam-
inations in the PANIC study112.

Serumcotinine, a nicotinemetabolitemeasuredbyLC-MS,was used as
a biomarker of environmental exposure to smoking. In addition to the
serum metabolites analysed by the LC-MS method, the Nightingale high-
throughput NMR platform was used to measure serum metabolites,
including those related to lipoprotein, triglyceride, apolipoprotein, fatty acid
and amino acid metabolism as well as systemic inflammation115.

Assessment of lifestyle factors
Dietary factors were assessed using 4-day food records, with the Finnish
Children Healthy Eating Index used to reflect overall diet quality, ranging
from 2–45, with a higher score indicative of better overall diet quality116.
Details of the methods, along with the computation of the index, are
explained elsewhere110. The Mediterranean Diet Score and the Baltic Sea
Diet Score were also computed for the purpose of a sensitivity analysis20,21,
with descriptions of the calculations of the scores described elsewhere117.

Total physical activity (sum of light, moderate, and vigorous physical
activity, measured in minutes per day), sedentary time (defined as time
spent at intensity ≤1.5 metabolic equivalents excluding sleep) and sleep
duration (hours per night)weremeasured using theActiheart heart rate and
body movement monitor (CamNTech Ltd, Cambridgeshire, United
Kingdom), with the methods explained in detail previously110,118.

Assessment of environmental factors
Air pollution was monitored across multiple measurement sites by the city
ofKuopio,with the concentrationspresented in this studyas spatial averages
of all sites.Dataused for the air pollutionvariables, includingnitrogenoxide,
nitrogen dioxide, ozone, particulate matter ≤2.5 µm and particulate matter
≤10 µm, and details of the measurements are accessible via the open data
repository of the Finnish Meteorological Institute (https://en.
ilmatieteenlaitos.fi/open-data). The averaging was deemed necessary as it
was not possible to assign specific concentrations for all participants based
on their homeaddress anddaily activities. The spatial averagingwaspossible
as the Kuopio area is rather homogeneous in terms of air pollution. Parental
education was based on the highest completed or ongoing degree (voca-
tional school or less, vocational high school, university) according to the
parent who attained the highest level. Household income was reported by
the higher earning caregiver, with participants classified according to gross
income (≤€30,000, €30,001–€60,000, >€60,000).

Assessment of body size and composition
Body height and weight were measured in the morning in a fasted state;
height was measured with a calibrated wall-mounted stadiometer to an
accuracy of 0.1 cm, while weight was measured using an Inbody 720 bioe-
lectrical impedancedevice (Biospace, Seoul, SouthKorea)with an integrated
weight scale to an accuracy of 0.1 kg. BMI was calculated using the formula
weight (kg)/[height (m)]2. Age- and sex-standardised BMI standard
deviation scores (BMI-SDS) were calculated based on Finnish references119.
Pubertal status was assessed by a research physician according to breast
development for girls (scoredM1-5) and testicular volumemeasured by an
orchidometer for boys (scoredG1-5), andwas based on the stages described
by Tanner120,121.

Computation of exposome score
To explore the overall associations of multiple exposures across childhood
and adolescence, an exposome score was created, taking inspiration from
approaches such as an “unhealthy lifestyle score” developed by Bekaert
et al.122 and a “low-risk lifestyle score” by Li et al.19. Five separate exposure
scores were created to compose the exposome score based on available
information; diet quality, activity, sleep duration, air pollution, and

socioeconomic status. This exposome score ranged between 5 and 20, with a
higher score indicating increased exposure to combined unhealthy envir-
onmental and lifestyle factors. The diet score was based on the Finnish
ChildrenHealthyEating Index,with ahigher index value corresponding to a
lower diet score. The activity score incorporated total physical activity and
sedentary time; higher total physical activity contributed to a lower activity
score,while higher sedentary time contributed to a higher activity score. The
sleep score used sleep duration, where lower sleep duration corresponded to
a higher (worse) sleep score. Air concentrations of nitrogen oxide, nitrogen
dioxide, particulate matter ≤2.5 µm, particulate matter ≤10 µm and ozone
were assessed for the air pollution score, with higher pollutant concentra-
tions attributed a higher score. Finally, the socioeconomic status score
comprised of parental education and household income, with lower edu-
cation and income given a higher score.

To construct the exposome score, quartiles were calculated for each
category, with a score of one representing the lowest-risk exposure, while a
score of four representing the highest-risk exposure. If an exposure category
consisted of more than one measurement, for example the pollution cate-
gorywithfive air pollution variables, quartile scores were calculated for each
measurement. These quartile scores were then summed, and the average
score calculated for that category. This differed for the socioeconomic score,
as these variables consisted of three categories. In this instance, values of 1–3
were assigned to each category, with 1 corresponding to highest income or
education and 3 corresponding to lowest income or education. These values
were summed together, with a summed value of 6 corresponding to a
socioeconomic score of 1, while summed values of 5, 4, 3 and 2 corre-
sponded to a socioeconomic score of 2, 3, 4 and 4, respectively. Finally, the
scores from each component were summed together to generate the
exposome score and reflect overall personal exposure.

Statistical analyses
All statistical analyses were performed using the R software (R Core Team,
2021, https://www.R-project.org) and RStudio, an Integrated Development
Environment for R, version 2022.7.1.554 (RStudio, Boston, MA, USA).
Descriptive statistics are presented as unadjusted means ± standard devia-
tions for continuous variables and numbers (percentages) for categorical
variables. The associations of the exposome score and its individual scores
(the diet score, the activity score, the air pollution score, the sleep score, and
the socioeconomic status score) with serum metabolites over eight years
were analysed using linear mixed-effects models adjusted for time, age, sex,
pubertal status, and serum cotinine, with participant included as random
effect (intercept), using the lmer package of the R software123.Model outputs
were inspected to check that the model assumptions were satisfied, and if
necessary, metabolite abundancies were log-transformed if it improved
model accuracy. We also analysed whether BMI-SDS mediated the asso-
ciations of the exposome score with serum metabolites over eight years by
using the Baron &Kennymethod124. Moreover, we analysed whether BMI-
SDS modified these associations over eight years by adding BMI-SDS and
the interaction term for BMI-SDS and the exposome score into the linear
mixed-effects models. The interactions R package was used to plot sig-
nificant interactions125. A leave-one-out sensitivity analysis was conducted
to explore if a specific exposure category was key a contributor to the
exposome score. This was done by excluding a single exposure component
from the original exposome score. This was repeated for each exposure
component, resulting in a total of five “leave-out” models. A sensitivity
analysis was also carried out to explore the impact of using different diet
scores as part of the formulation of the exposome score—this sensitivity
analysis compared the Mediterranean Diet Score and the Baltic Sea Diet
Score with the Finnish Children Healthy Eating Index. A graphical repre-
sentation of the relationships between the exposome score, serum meta-
bolites measured by LC-MS andNMR, and BMI-SDS is displayed in Fig. 2.
A p-value of <0.05 for a two-tailed test was used to indicate statistical
significance, and 95% confidence intervals were inspected to determine if
they included the null effect. P-values were also corrected for multiple
testing, with a false discovery rate of <0.1 deemed significant.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Information about the PANIC study and the variables used in the present
paper are described at www.panicstudy.fi/en/etusivu. The data are not
publicly available due to research ethical reasons and because the owner of
the data is the University of Eastern Finland and not the research group.
However, the principal investigator of the PANIC study can provide further
information on the study and its data on a reasonable request (contact:
https://uefconnect.uef.fi/en/person/timo.lakka/).
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