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The variation in parental care in the animal kingdom and even within one 
population or breeding season is great. Despite extensive research, this variation 
and the evolution of parental care remain intriguing, incompletely understood, 
and widely debated topics. In theoretical biology, game theoretic methods help 
to identify the evolutionarily stable strategies in situations where other 
individuals’ actions affect the outcome for one individual. Parental care is an 
example of such a scenario: the fitness of one parent depends not only on their 
own caring decision but also on the other parent’s decision. One of the most 
researched questions about parental care is when we should expect care to be 
female-only, male-only, or biparental. Results from studies addressing this 
question are not unanimous, which keeps this an interesting research topic. One 
common assumption in parental care models is a trade-off between mating and 
caring, which means that caring males miss out on additional mating 
opportunities. This and partial paternity are two of the most common 
explanations for female-biased care. However, male care is widespread in birds, 
for example, even in the presence of partial paternity. In this work, I built two 
models explaining parental care when there is partial paternity but no mating-
caring trade-off. In the first model, I assumed that all the females share the same 
strategy and used a traditional game theoretical method to find the 
evolutionarily stable strategies for males. I found out that both pure strategies 
(only caring or only deserting) could be evolutionarily stable, depending only on 
other parameter values. In the second model, I allowed the female strategy to 
evolve and searched for evolutionarily stable strategy pairs with the help of 
adaptive dynamics. In this model, all the evolutionarily stable strategy pairs were 
also pure strategy pairs, and it depended only on the parameter values and the 
population strategy of the opposite sex. According to my results, a better ability 
to protect one’s paternity may be enough to select for male desertion even if there 
is no mating-caring trade-off.  
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Vanhempien tarjoaman huolenpidon tyyppi vaihtelee lajien välillä, mutta myös 
yhden populaation sisällä tai lisääntymiskauden aikana. Kattavasta 
tutkimuksesta huolimatta yleispäteviä selityksiä huolenpidon evoluutiolle ei ole 
löytynyt, minkä vuoksi se pysyykin kiehtovana tutkimusaiheena.  Vanhemman 
tarjoama huolenpito on esimerkki tilanteesta, jossa populaation muiden 
yksilöiden käyttäytyminen vaikuttaa yhden yksilön fitness-hyötyyn. Tällaisissa 
tilanteissa on peliteoreettisia menetelmiä hyödyntäen mahdollista selvittää 
parhaan lopputuloksen tuottava toimintatapa eli evolutiivisesti tasapainoinen 
strategia. Yleinen huolenpitoon liittyvä tutkimuskysymys koskee sitä, kumman 
vanhemman kannattaisi huolehtia jälkeläisistä. Tutkimustulokset eivät ole aivan 
yksimielisiä, minkä vuoksi tämä on edelleen mielenkiintoinen tutkimuskysymys 
ja inspiroi siten myös tätä työtä. Yleinen oletus huolenpitoa kuvaavissa malleissa 
on ollut huolehtivien koiraiden jääminen paitsi ylimääräisistä 
lisääntymismahdollisuuksista. Tätä sekä isyyden epävarmuutta on käytetty 
selityksenä naarasvoittoiselle huolenpidolle. Kuitenkin esimerkiksi linnuilla 
esiintyy paljon myös koiraan tarjoamaa huolenpitoa isyyden epävarmuudesta 
huolimatta. Tässä työssä muodostin kaksi mallia, joissa otin huomioon isyyden 
epävarmuuden ja oletin, että sekä huolehtivat että hylkäävät koiraat kohtaavat 
yhtä todennäköisesti ylimääräisiä lisääntymistilaisuuksia. Ensimmäisessä 
mallissa oletin, että kaikki naaraat käyttävät samaa strategiaa (huolehtivat) ja 
etsin evolutiivisesti tasapainoista strategiaa vain koiraille. Ensimmäisessä 
mallissa sekä huolehtiminen että hylkääminen voivat molemmat olla 
evolutiivisesti tasapainoisia strategioita koiraille, jolloin lopputulos riippuu 
muiden parametrien arvoista. Toisessa mallissa annoin myös naaraan strategian 
muuttua ja etsin evolutiivisesti tasapainoista strategiaparia. Tässä mallissa kaikki 
puhtaat strategiaparit saattoivat olla evolutiivisesti tasapainoisia, riippuen 
muista parametrien arvoista ja vastakkaisen sukupuolen populaatiostrategiasta. 
Tulosteni mukaan hylkääminen voi olla koiraille parempi strategia, mikäli 
hylkäävät koiraat ovat parempia puolustamaan isyyttään. 
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TERMS AND ABBREVIATIONS 

Terms 
 
Anisogamy The size difference between male and female gametes 
Game theory Field of mathematics that deals with interactions 

between individuals and helps to find the best 
behavior in a specific situation 

Evolutionary game 
theory 

Game theory applied in evolutionary biology context 

Strategy The probabilities that an individual chooses different 
options expressed as a vector 

Pure strategy A strategy where the individual always chooses one 
option with probability 1 

Mixed strategy A strategy where the individual chooses different 
options with some probabilities 𝑝1, 𝑝2, … , 𝑝𝑛  so that 
0 < 𝑝𝑖 < 1 and ∑ 𝑝𝑖

𝑛
𝑖=1 = 1 

Population strategy A strategy that is adopted by every individual of the 
population 

Payoff The fitness obtained by using some strategy 
Evolutionarily stable 
strategy 

A strategy that cannot be replaced by another strategy 
under natural selection 

Evolutionarily stable 
strategy pair 

A pair of strategies that consists of a male and a female 
strategy that are evolutionarily stable 

Extra-pair copulation A copulation that does not occur between a mated pair 

 
 
 

Abbreviations 
 
ESS Evolutionarily stable strategy 
ESS pair Evolutionarily stable strategy pair 
EPC Extra-pair copulation 
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The evolution of parental care is one of the many intriguing mysteries in 
evolutionary biology because the observed variation of parental care is abundant. 
In some species, there is no observable parental care, whereas in other species 
both parents provide extensive care for the young. In addition to that, the 
methods of parental care also vary across species. 

Parental care can be broadly defined as any type of investment made by the 
parent, which increases the number of surviving offspring and inflicts some cost 
to the carer (Smiseth et al. 2013). This general definition of parental care allows it 
to include multiple types of investments that enhance the survival probability of 
the offspring. According to this definition, parental care can be as subtle as 
allocating more resources to gametes to enhance the offspring’s survival (Smiseth 
et al. 2013). One could argue that the females always provide parental care in this 
sense, as the gametes produced by the females are commonly bigger than the 
ones produced by the males and require more resources. Another form of 
parental care that occurs before fertilization is the courtship behavior the males 
(or females in some cases) of some species may express. Providing the female 
with good resources may increase the survival probability of the offspring or the 
number of eggs the female produces. For example, a study with green-veined 
white butterflies (Pieris napi) shows that increasing the amount of nutrients the 
male provides before fertilization increases the number of eggs the female 
produces (Wedell and Karlsson 2003). Other pre-fertilization behaviors, like 
choosing the breeding site, nesting site, or oviposition site, can be classified as 
parental care if the choice affects the offspring’s survival (Smiseth et al. 2013). 

Despite the examples above, parental care is often seen as behavior that is 
expressed directly towards the eggs or living offspring. This definition of 
parental care limits it to happen after fertilization and even after the offspring are 
born. Parental care after fertilization can include attending to the eggs, which 
protects them from environmental hazards such as predators (Smiseth et al. 2013). 
For example, the males of two frog species Hylophorbus rufescens and Oreophryne 
sp. A, express parental care by attending to the eggs (Bickford 2004). In addition 
to just staying with the fertilized eggs, parents can also carry the developing 
young externally or internally (Smiseth et al. 2013). In amphibians, parents can 
carry the eggs from one place to another in their dorsal pouches, vocal sacs, or 
stomachs (Crump 1996). An extreme version of carrying the fertilized eggs is 
viviparity. In viviparous animals, the fertilized eggs develop inside the female’s 
reproductive tract, and the offspring are born alive (Campbell et al. 2015). This is 
an effective way to protect the eggs from environmental hazards and is prevalent 
in mammals (Smiseth et al. 2013). Attending to and carrying the offspring may 
occur at any time during offspring development and may therefore be directed 
towards eggs, hatched offspring, or live-born young. One of the most general 
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types of parental care is provisioning food to the offspring after hatching or birth 
(Smiseth et al. 2013), which is common in birds and mammals. 

Not only does the form of parental care vary across the animal kingdom, 
but so does the caregiver’s sex. Most of the parenting tasks can theoretically be 
performed by either of the parents, but sometimes they are more easily 
performed by one particular parent. For example, female mammals provide milk 
for the young, which is not something that males are generally capable of doing. 
Exceptions are found in the Dayak fruit bats (Dyacopterus spadecius) and the 
masked flying fox (Pteropus capistrastus). In these species, male lactation has been 
observed, although the adaptivity of that behavior could not be confirmed and it 
could instead be caused by a pathogen (Kunz and Hosken 2009). 

How common is parental care across the animal kingdom, and which 
parent provides care? In mammals, the offspring always receive parental care 
because the females always provide milk for the young (Balshine 2013). The most 
common form of mammalian parental care is female-only care (90% of species), 
and the remaining 10% is biparental care (Gross 2005).  Cantoni & Brown (1997) 
found that male presence is essential for offspring survival in California mice 
(Peromyscus californicus) when foraging for food was required. Another example 
of biparental care in rodents is found in a study with Campbell’s dwarf hamster 
(Phodopus campbelli), which shows that the males assist the female during birth 
by cleaning and staying with the offspring (Jones and Wynne-Edwards 2000). 

Only a few bird species do not provide parental care, including brood 
parasites such as the common cuckoo (Cuculus canorus), while 81% of the species 
provide biparental care (Cockburn 2006). Only 8% of the species provide female-
only care, and 1% male-only care (Cockburn 2006). Bird species that provide 
male-only care include, for example, the emu (Dromaius novaehollandiae), the 
spotted sandpiper (Tringa macularia), and the Eurasian dotterel (Charadrius 
morinellus) (Owens 2002). 

In species with biparental care, the parenting tasks could be the same for 
both parents or they could be divided somehow between the parents. Dark-eyed 
junco (Junco hyemalis) is an example of a bird species with biparental care but 
differing parental tasks. Dark-eyed junco males feed and protect the offspring 
but other parental tasks are performed by the female (Ketterson and Nolan Jnr 
1994). The division between parental duties has been observed also in the 
emperor penguin (Aptenodytes forsteri). After mating, emperor penguin females 
leave to the ocean to feed, and males are left behind to incubate the eggs 
(Stonehouse 1952). Females return at the time of hatching to feed newly hatched 
chicks (Jouventin et al. 1995).   

In theory, parental care duties could be divided equally between the parents, 
and both parents could continue providing sufficient care even if the other one 
disappears. However, that is not always the case, as Schmutz et al. (2014) found 
in their observations on ferruginous hawks (Buteo regalis), rough-legged hawks 
(Buteo lagopus), and great horned owls (Bubo virginianus). They found that as 
males were used to bringing the food to the nest, they did not adapt to feeding 
the chicks when females were absent. Males did react to chicks begging for food, 
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but only by bringing more food and not attempting to feed the chicks (Schmutz 
et al. 2014). 

In fishes, any type of parental care occurs in only about 20% of the species, 
half of that being male-only care and 30% female-only care (Gross 2005). A well-
known but extreme example of a fish providing male-only care is the seahorse, 
as seahorse males are the ones that carry the fertilized eggs and care for them 
until releasing them (Vincent and Sadler 1995). An extraordinary form of 
biparental care is observed in Discus fish (Symphysodon sp.) that feed the 
offspring with mucus secretions (Buckley et al. 2010). Buckley et al. (2010) found 
that the offspring were never left alone in the first two weeks, although 
sometimes care was provided by both parents and sometimes by one parent. 

Research on amphibian parental care is not nearly as comprehensive as the 
research on avian or mammalian parental care, but new information about 
amphibian parental care is accumulating rapidly. Some estimates suggest that 
parental care occurs in around 10% – 20% of amphibian species (Schulte et al. 
2020). For example, Rosenberg’s tree frog (Hyla rosenbergi) males and one 
population of Blacksmith tree frog (Boana fiber) males guard the fertilized eggs 
when male density is high, and by doing so, protect them from other males 
(Martins et al. 1998). 

The form of parental care does not vary only between the species, but it also 
varies within species and populations of the same species. Environmental 
changes can affect the form of parental care, and it could change even within the 
individual according to the quality of the individual (Webb et al. 1999). In fact, 
environmental factors have been used to explain the emergence of parental care, 
along with different life-history characteristics (Klug et al. 2013). For parental care 
to evolve, it must increase the parent’s fitness, the trait expressing parental care 
must be heritable, and the trait must be able to spread in a population under the 
influence of natural selection (Klug et al. 2013). 

Questions regarding parental care do not focus only on the question 
“Should parental care be provided?” but also on the question “Who should 
provide parental care?”. The difference in gamete sizes (termed anisogamy) has 
been used to explain female-only care. As females already invest more in the 
gametes, they should ensure that they do not invest for nothing and thus provide 
care for the offspring (Trivers 1972). However, this is not an entirely valid 
explanation for female-only care as the caring decision should be based on future 
investment instead of past investment (Dawkins and Carlisle 1976). Both parents 
obtain the same benefit from the offspring even if their initial investment is not 
equal and the benefit depends only on the future investment the offspring 
receives. Even though the argument by Trivers is criticized, anisogamy has still 
been accounted for in models for parental care. Due to expensive eggs, females 
can produce only a limited number of them, and egg production may trade-off 
with parental care (Maynard Smith 1982; Iyer et al. 2020). Males can produce 
almost a limitless number of tiny sperm, making their reproductive success 
dependent on the availability of females (Iyer et al. 2020). To maximize their 
offspring number, males should try to mate with as many females as possible. 
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Typically, a mating-caring trade-off has been assumed as a cost of caring, 
meaning that caring males miss out on additional mating opportunities. This 
trade-off has been thought to drive the evolution of parental care towards female 
care (Trivers 1972; Queller 1997). 

Other possible explanations for the prevalence of female care arise from 
internal fertilization and paternity uncertainty. When fertilization occurs inside 
the female, males can never be sure that the offspring are indeed his biological 
offspring (Queller 1997). Male parental care has been suggested to occur more 
commonly in species with external fertilization, which allows males to defend 
their paternity more easily (Benun Sutton and Wilson 2019). To defend this 
argument, external fertilization is the norm in fishes, and half of the parental care 
found in fishes is indeed male-only care, while only 30% is female-only care. A 
correlation between fertilization mode and parental care type has been found in 
teleosts and amphibians (Gross and Shine 1981). Paternity uncertainty due to 
internal fertilization seems a reasonable explanation for female care, but male 
care is also found among birds that have internal fertilization. Clearly, paternity 
uncertainty does not rule male care out, so there must be some other factors that 
also affect the distribution of parental care roles. 

Explanations for male care include increasing one’s paternity by guarding 
the female and sexual selection. Females could prefer males who provide 
parental care, which makes them gain more additional mating opportunities 
instead of missing out on them (Alonzo 2012). Females could also be more loyal 
toward caring males, as has been seen in savannah sparrows (Passerculus 
sandwichensis). Freeman-Gallant (1996) found that most of the females mated to 
caring males were more loyal to their mates during their second breeding event, 
which means that the males had higher paternity in their second brood. This type 
of behavior may result from female preference or male guarding. Caring males 
could be better at keeping an eye on the female and preventing other males from 
mating with the same female (Kvarnemo 2006). Interestingly, males are not the 
only ones capable of guarding their mates, females have also been seen doing 
that. Female red-winged blackbirds (Agelaius phoeniceus) are aggressive towards 
other females, especially towards those who show interest in mating (Yasukawa 
and Searcy 1982). By guarding their mate from other females, they ensure 
undivided parental care by their mate (Yasukawa and Searcy 1982). 

Parental care is defined in multiple ways and different terms describing 
parental care have been used in literature. Other terms commonly used in 
parental care research are parental effort and parental investment. Trivers (1972) 
defined parental investment as any investment by the parent in an individual 
offspring that increases the offspring’s chance of surviving (and hence 
reproductive success) at the cost of the parent’s ability to invest in other 
offspring”. This definition also included pre-fertilization care, like the allocation 
of more resources to the gametes. Parental effort has been defined similarly, but 
it excludes the negative effects of providing care (Stiver and Alonzo 2009). Klug 
et al. (2013) addressed the struggle of defining parental care and defined parental 



 
 

 
 

5 

care as any behavior that occurs after fertilization and increases the offspring’s 
lifetime reproductive success. 

Since the terms and definitions used in the literature vary, it is crucial to 
define parental care clearly in every study regarding parental care. In this work, 
I define parental care as any behavior that occurs after fertilization, increases the 
offspring’s survival probability, and is directed toward the eggs/offspring. This 
definition is important to remember throughout this thesis since it directly affects 
the assumptions I make in my models. 

In the following section, I will provide a brief overview of game theory and 
its use in evolutionary biology. After that, I will discuss some previous theoretical 
work that has inspired this thesis and present the research questions and 
hypotheses. 

1.1 Game theory and its applications in evolutionary biology 

Game theory is a relatively young field of mathematics developed to explain 
reasonable frequency-dependent human actions in the economic setting 
(Neumann and Morgenstern 1947). Later game theory has been applied to 
evolutionary biology (e. g. Maynard Smith, 1982). Games in a game theoretic 
context are decision-making situations between two or more participants. Each 
participant decides independently what to do and tries to choose the option that 
yields the best payoff from the situation. 

In evolutionary game theory, the game is often between two individuals 
who have some options from which to choose. Individuals can adopt a pure 
strategy, which means that they will always choose the same option, or they can 
adopt a mixed strategy, which means that they will choose different options with 
different probabilities (McNamara and Weissing 2010). Strategies are expressed 
mathematically as vectors, where the behavioral options are the components of 
that vector. If an individual has two options from which to choose, their strategy 
could be denoted by the vector (𝑝, 1 − 𝑝), which means that the individual will 
choose the first option with probability 𝑝 and the second option with probability 
1 − 𝑝. If 0 < 𝑝 < 1, this strategy is called a mixed strategy. 

In this thesis, I will use the term population strategy to refer to the strategy 
the population has adopted. In models including only two pure strategies, this 
can be interpreted as the mean strategy of the population. For example, if the 

population strategy is (
2

3
,

1

3
), this could mean that all the individuals choose the 

first option with probability 2/3 and the second option with probability 1/3. This 
could also mean that 2/3 of the population always chooses the first pure strategy 
and 1/3 always chooses the second pure strategy. In my models, both ways of 
interpreting the population strategy are equally correct in terms of the outcome 
because the models include exactly two pure strategies, and the individuals 
interact randomly with each other (Maynard Smith 1982). 

Game theory gives tools that help to find the best strategy to maximize the 
individual’s fitness, given the strategies of other individuals in the population. 
This strategy is also the strategy towards which the population strategy is 
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expected to evolve under natural selection. Traditional game theory has focused 
on finding the theoretical ESSs and has commonly assumed that all the trait 
values in the strategy set are equally possible. However, this may not be the case 
in nature since advantageous mutations rarely happen as large changes, and 
some theoretical ESSs may even be impossible to achieve under natural selection 
(McNamara and Weissing 2010). Due to this, and due to the mathematical 
convenience of modeling mutations of small effect (δ-weak selection (Wild and 
Traulsen 2007; Lehtonen 2018)), evolutionary dynamics under small effect 
mutations are commonly considered when searching for the ESS using modern 
game theoretical methods such as adaptive dynamics (also known as e.g. 
sequential invasion analysis) (Dieckmann and Law 1996; Otto and Day 2007; 
Avila and Mullon 2023). These methods also provide tools for modeling the 
coevolution of multiple traits, which will be useful in my second model when I 
study the coevolution of male and female strategies. 

When applying game theory to parental care, the game is between a female 
and a male who have mated and must decide whether to care or desert (Maynard 
Smith 1977). The fitnesses are usually the number of surviving offspring or the 
expected lifetime reproductive success. Parental care research is an excellent 
application for game theory since fitness is usually affected by both parents’ 
strategies. Fitnesses can be presented in matrix form (Maynard Smith 1977, 1982; 
Iyer and Shukla 2021), but I have just listed them separately in tables. The 
objective of solving the game is to find an evolutionarily stable strategy (ESS). 
Maynard Smith & Price (1973) defined an ESS as a strategy that “if most of the 
members of a population adopt it, there is no “mutant” strategy that would give 
higher reproductive fitness”. This means that a population where all individuals 
use the ESS cannot be invaded by a mutant using any other strategy, but it also 
means that changing strategy unilaterally in a situation where both have adopted 
an ESS is not wise as it results in a lower payoff for the changer. 

I have noticed that the use of the term ESS can be confusing as in some cases, 
it refers to a single strategy, and in some cases, it refers to a strategy pair. In some 
cases, the ESS could be the same for both players, but due to the asymmetrical 
nature of games regarding parental care, the ESSs might be different for each 
player. Because I deal with two different models, one having only one player and 
the other having two players, I define an evolutionarily stable strategy pair (ESS 
pair) as a strategy pair that includes the ESSs for males and females. Throughout 
this thesis, I use the term male-biased (or female-biased) ESS pair to denote an 
ESS pair where the proportion of caring males is higher than caring females (or 
vice versa). 

1.2 Previous theoretical research regarding parental care 

Parental care is not by any means a new topic for theoretical research, but instead 
many mathematical models regarding parental care have been developed. 
Among the most influential models are Maynard Smith’s (1977) game theoretical 
frameworks that explain the distribution of parental roles. Instead of parental 
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care, he used the term parental investment and used the same definition as 
Trivers (1972) did. He constructed three models with slightly varying 
assumptions. In all the models, he assumed that the survival probability of the 
offspring depends on the number of caregivers, which is a basic feature of models 
regarding parental care. In the first and second models assuming discrete 
breeding seasons, he incorporated a mating-caring trade-off by assuming that 
only deserting males may mate a second time with another female. In his later 
work, he changed this assumption and let also caring males to mate again 
(Maynard Smith 1982), but this modification did not alter his fundamental 
findings. In the second model, he assumed that deserting females could lay more 
eggs and thus included the trade-off between fecundity and caring for females. 
In the third model, he assumed continuous breeding. He found that in the first 
two models, all the pure strategy combinations can be ESS pairs depending on 
the parameters, but he did not address any mixed strategy pair as an ESS pair. In 
the third model, he found two possible ESS pairs that were both uniparental care 
(Maynard Smith 1977). 

Maynard Smith’s Model 2 (1977) has inspired much further work and has 
been a very influential model about parental care evolution. Despite its 
usefulness, it has met some criticism. The lack of self-consistency, meaning that 
the females for additional mating attempts seem to appear out of thin air, has 
been pointed out on several occasions (Wade and Shuster 2002). Further work 
has focused on self-consistent versions of this model, and some mixed results 
have been achieved (Queller 1997; Webb et al. 1999; Fromhage et al. 2007; Iyer et 
al. 2020; Iyer and Shukla 2021). 

Webb et al. (1999) criticized some other assumptions of the Model 2. They 
argued that the individual quality or the stage of the breeding season could affect 
the payoff. They then built a two-stage model in which they assumed that the 
individuals could mate only two times in the breeding season, and they could 
change their caring strategy between. In their baseline model with fixed remating 
probabilities, they found the same ESS pairs as Maynard Smith, and allowing the 
remating probability to depend on the frequency of deserting females also 
yielded mixed ESS pairs. They found mixed ESS pairs also when they included 
the individual’s quality as a factor. They concluded that the relationship between 
caring decisions and the probabilities for achieving additional matings must be 
considered. Iyer and Shukla (2021) allowed the remating probability to depend 
on the proportions of deserting females and males. Fromhage et al. (2007) 
assumed that any additional matings happen as extra-pair copulations (EPCs) 
and let the remating probability depend on the proportion of deserting males. I 
will explain the details of their model in Section 2 as I am expanding and 
modifying their model in my work. 

As Webb et al. (1999) noted, the stage of the breeding season could affect 
the outcome. McNamara et el. (2000) modeled the evolution of parental care over 
the breeding season. They found that the best behavior changed during the 
breeding season and at the end of the season, the best option was always caring. 
In his model, the future expected payoff affected the best decision at the given 
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moment. The number of deserters affected the remating probability, and the 
stage of the breeding season affected the expected number of broods possible to 
rear in the remaining season. At the end of the breeding season, neither of the 
parents can expect to be able to rear any more broods, so it is beneficial to care 
for the last brood to increase their own fitness by enhancing the survival 
probability of the offspring (McNamara et al. 2000). 

Iyer et al. (2020) built several models on Maynard Smith’s model 2 and 
investigated the effect of anisogamy on parental care evolution. Like Maynard 
Smith, they assumed that due to expensive eggs, females could lay more eggs if 
they did not put resources into caring. They constructed three different games. 
In the first game, they assumed that caring males missed completely out on 
additional mating opportunities. In this game, they found that biparental care 
and biparental desertion could both be ESS pairs, and they also found a 
symmetric mixed ESS pair. In the second game, they weakened the mating-caring 
trade-off but gave deserting males an advantage at remating. In addition to 
biparental care and biparental desertion being ESS pairs, they found two 
different male-biased ESS pairs in this game. In the third game, they assumed a 
strict mating-caring trade-off and that deserting females lay more eggs in the first 
brood than caring females. In the last game, biparental desertion and biparental 
care were ESS pairs again, and in addition to these, one strategy pair biased to 
male care was an ESS pair. They also did some agent-based simulations, where 
they relaxed the assumption of breeding synchrony. In these simulations, they 
could obtain female-biased care as an ESS pair. They concluded that anisogamy 
is not a sufficient explanation for female-biased care if there are no other factors. 

Later, they expanded their model by adding partial paternity and 
constructed four different theoretical models (Iyer and Shukla 2021). In Game 1, 
they assumed that both caring and deserting males were equally likely to obtain 
extra-pair copulations (EPCs), but only deserting males could mate with other 
deserting females, who laid the additional eggs in new nests. In this situation, 
paternity uncertainty did not affect the ESS pair. In Game 2, they assumed that a 
caring male has higher paternity than a deserting male and found two mixed ESS 
pairs that were male-biased. In Game 3, they assumed a strict mating-caring 
trade-off and found two mixed ESS pairs that all were female-biased. In Game 4, 
they introduced variables for the remating probabilities and found all pure 
strategy pairs to be ESS pairs together with some mixed strategy pairs. They 
concluded that paternity uncertainty itself was not enough to weaken the 
selection for male care and a trade-off between mating and caring was necessary 
for an ESS pair to be female-biased (Iyer and Shukla 2021). 

However, as a mating-caring trade-off might not be as significant as 
previously thought, or caring males could even be preferred by females, I argue 
that some other factors may drive the selection for male desertion. Iyer and 
Shukla (2021) found that in their model paternity did not affect the ESS pair when 
a mating-caring trade-off was excluded. In this case, caring did not inflict any 
cost for the males but generally, some form of cost should be incorporated in the 
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model. What if the cost of caring is a reduced ability to protect one’s paternity 
and deserting males on average have higher paternity in their broods? 

1.3 Objectives and predictions 

In this thesis, my objective was to explore further how partial paternity affects 
the ESS in the absence of a mating-caring trade-off and if better ability to protect 
paternity could select for male desertion. I built two game theoretic models using 
the model by Fromhage et al. (2007) as a base model but assumed that there is no 
mating-caring trade-off and that deserting males are better at guarding their 
paternity. In the first model, I assumed according to Fromhage et al. (2007), that 
all the females share the same strategy, and thus the main objective was to find 
ESSs for males. I hypothesized that allowing deserting males to be better at 
guarding their paternity is enough for female-biased care to evolve. 

The second model is an expanded version of the first model and allows the 
female strategy to evolve. Most of the models regarding parental care, including 
modes by Iyer and Shukla (2021) and Maynard Smith (1977), allow both male and 
female strategies to evolve. Since they usually affect each other and evolve 
together, including the female strategy also in my model was crucial. With this 
model, I investigated how the female strategy affects the outcome and if male 
desertion could still be an ESS.  

I used a traditional game theoretic method to solve the first model and find 
analytical conditions for male desertion. To make these conditions more 
comprehensible, I used MATLAB (Mathworks 2020) to illustrate the effect of the 
parameters on the possible ESSs. I searched for analytical conditions for each 
possible ESS pair also in the second model. In addition to that, I used adaptive 
dynamics (Dieckmann and Law 1996; Avila and Mullon 2023) to model the 
simultaneous evolution of male and female strategies, their co-evolutionary 
trajectories, as well as the resulting ESS pairs. 

I used a game theoretical approach to find the evolutionarily stable strategies for 
parental care when males do not suffer from mating-caring trade-off and 
deserting males are better at guarding their paternity. I built my models using 
the same basic principles and assumptions as Maynard Smith (1977) and 
Fromhage et al. (2007) used in their models. 

As explained in Subsection 1.1, the game regarding parental care is usually 
between the individuals of a mated pair, and the behavioral options from which 
to choose are caring and deserting. Any individual could use a pure strategy, 
which means that they always choose one of the options, or a mixed strategy, 
which means that they choose one option with some probability 𝑝 and the other 
with some probability 1 − 𝑝 . If this mixed strategy is an ESS, the population 
having caring individuals at frequency 1 − 𝑝  and deserting individuals at 
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frequency 𝑝 is also stable. This generalization does not always hold but is the case 
when there are exactly two pure strategies (Maynard Smith 1982).  

The population in my models had a large population size, an even sex ratio, 
and synchronous breeding, meaning that all the individuals breed 
simultaneously. I also assumed that all individuals find a mating partner, which 
means that after the breeding event, all the individuals have mated. Even if 
females could desert, I assumed they would not lay another batch of eggs in 
another nest, meaning that all the additional mating opportunities after the main 
breeding event happened as extra-pair copulations (EPCs) when males could 
mate with another male’s mate and obtain some paternity share in their brood. I 
assumed that only one successful EPC attempt could happen per brood, and any 
following attempts were automatically unsuccessful. This means that there was 
only one nest per breeding pair, but one nest could contain offspring sired by two 
different males. 

Because I assumed the absence of a mating-caring trade-off, both caring and 
deserting males were free to seek EPCs and were equally likely to succeed in their 
EPC attempts. The success probability of an EPC attempt depended only on the 
strategy of the male whose female was involved in an EPC. Since I assumed that 
deserting males were better at guarding their paternity, the probability of a 
successful EPC attempt was lower when the EPC attempt was targeted toward a 
deserting male’s mate than when it was targeted toward a caring male’s mate. 

To make these assumptions understandable, I will introduce some 
biological explanations for them. I defined parental care as any behavior that 
happens after breeding, is directed towards the offspring, and increases the 
offspring survival probability. In my models, parental care could include, for 
example, incubating or protecting the eggs or feeding the young. Two parents 
provide better care than just one, for example, because then either one of the 
parents could be always attending to the eggs, even if the parents must leave the 
nest occasionally. Desertion is characterized by ignorance towards the offspring. 
Deserting females are free to roam around and forage without time restrictions 
and as a result, could allocate more resources towards egg production and 
produce a larger batch of eggs. Deserting males allocate their time and energy to 
guarding the female instead of caring for the offspring. Males guarding their 
mate could follow her and express hostile behavior towards other males to 
prevent EPCs. 

I built two models, the second being a broadened version of Model 1. In 
Model 1, females shared the same strategy which did not evolve, but in Model 2, 
they could choose their strategy. My previously stated assumptions hold in both 
models. In the following sections, I will describe my models in detail and 
introduce necessary mathematical expressions. 

2.1 Model 1: Only the male strategy can evolve 

Model 1 is a modification of the model Fromhage et al. (2007) constructed. 
According to their assumptions, I assumed that all the females share the same 
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strategy, but males can make their caring decisions after mating, meaning that 
some males might care for the offspring, and some might desert. Fromhage et al. 
(2007) used ρ to denote the proportion of deserting males, whereas I used 𝑚𝑑 to 
be more consistent throughout my work. 

I allowed both caring and deserting males to seek additional mating 
opportunities, meaning that every male has his own brood and a possibility for 
achieving extra-pair copulations (EPCs). Caring males missing out on additional 
mating opportunities is a common assumption (e.g., Fromhage et al., 2007; 
Maynard Smith, 1977). However, the mating-caring trade-off may not be as 
significant as thought, and caring males can be equally as good at getting 
additional mating opportunities, or there could even be a positive correlation 
between caring and mating (Stiver and Alonzo 2009). 

Since any additional matings happen as EPCs, the intruder’s payoff from a 
successful EPC must inflict a corresponding loss to the primary male’s fitness. To 
account for the paternity loss and gain due to an EPC, Fromhage et al. (2007) 
introduced functions α and β for deserting male’s expected paternity through 
EPCs with females whose partner is a caring male or a deserting male. Due to the 
formulation of these functions, they could also allow different probabilities for 
successful EPC attempts with a carer’s mate and a deserter’s mate. As this feature 
was already in the functions, modifying the functions to fit the scenario where 
deserting males were better at protecting their paternity was straightforward. 

The parents’ caring decisions affected the offspring survival probability, as 
two parents are better than one, and one is better than none. The offspring 
survival probability depended also on the EPC occurrence. I used the same 
variables for offspring survival probability as Fromhage et al. (2007) did. The 
variable 𝑉𝑐 denoted the survival probability of the offspring when the male cares 
and an EPC did not occur, and 𝑉𝑒𝑝𝑐  was the survival probability in the cases 

where an EPC occurred. There is some evidence that males may reduce their 
caring effort if an EPC has occurred and the brood contains unrelated young, 
which is why I included three different survival probabilities (e.g., Møller & 
Cuervo, 2000). 

Explanations for all parameters and functions are in Table 1. The functions 
from the model by Fromhage et al. (2007) and my modified functions and 
expressions for parameters are listed in Table 2 for comparison. I used 
parameters γ𝑐  and γ𝑑  instead of function γ(ρ)  to make differences between 
fitnesses for caring males and deserting males more distinguishable. I used γ𝑐 to 
denote the proportion of caring males’ broods in where an EPC occurs, as γ(ρ) 
denoted before. In addition to that, I used γ𝑑  to denote the proportion of 
deserting males’ broods where an EPC occurs. These differ slightly from γ(ρ), as 
these are not functions of 𝑚𝑑 like γ was the function of ρ. This is because in my 
model, all the males were allowed to make EPC attempts, thus the number of 
EPC attempts did not depend on the ratio of deserting males to caring males. 
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Table 1 Explanations of parameters and functions used in Model 1. 

𝑚𝑑 The proportion of deserting males 

𝑉𝑐, 𝑉𝑒𝑝𝑐 , 𝑉𝑑 The offspring survival probability when male cares and no 
EPC has occurred, male cares and an EPC has occurred, male 
deserts 

x Paternity share obtained through a successful EPC 

w The number of eggs the female lays 

α(𝑚𝑑) Expected paternity obtained through successful EPCs with 
partners of caring males 

β(𝑚𝑑) Expected paternity obtained through successful EPCs with 
partner of deserting males 

𝑝𝐴 
 

The probability that an EPC attempt succeeds when it is 
directed towards a caring male’s partner 

𝑝𝐵 
 

The probability that an EPC attempt succeeds when it is 
directed towards a deserting male’s partner 

γ𝑐 
 

The proportion of caring males’ broods where an EPC occurs 

γ𝑑 
 

The proportion of deserting males’ broods where an EPC 
occurs 

𝐻𝑐(𝑚𝑑) Fitness of a caring male 

𝐻𝑑(𝑚𝑑) Fitness of a deserting male 

 
As Fromhage et al. (2007), I also used the Poisson distribution to determine 

the proportion of females experiencing any given number of EPC attempts. The 
Poisson distribution gives the probabilities for discrete events that happen in a 
specific time interval and do not depend on each other (Otto and Day 2007). In 
this case, the event was an EPC attempt, and any female could potentially 
experience many EPC attempts, but the expected number of EPC attempts 
experienced was n. That was because every male made n EPC attempts, and the 
sex ratio was equal, making the average number of EPC attempts experienced by 
one female also n. The probability that any given female experiences 𝑗  EPC 
attempts is given by 

𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝑛, 𝑗) = 𝑒−𝑛
𝑛𝑗

𝑗!
. 

Using this probability for a female to experience j attempts, I calculated the 
value for γ𝑐 as follows: 

γ𝑐 = 1 − ∑ 𝑒−𝑛
𝑛𝑗

𝑗!
(1 − 𝑝𝐴)𝑗

∞

𝑗=0

. 
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The sum is the probability that the female experienced zero attempts (which were 
not successful), or one attempt that was not successful, or two attempts that were 
not successful, et cetera. Thus, γ𝑐  is the complementary event of the situation 
where none of the attempts were successful, meaning that γ𝑐  denotes the 
probability that at least one attempt was successful. Equivalently, it is also the 
proportion of carers’ broods in which an EPC occurred. I calculated the value for 
γ𝑑 in the same way as for γ𝑐: 

γ𝑑 = 1 − ∑ 𝑒−𝑛
𝑛𝑗

𝑗!
(1 − 𝑝𝐵)𝑗

∞

𝑗=0

. 

Calculating the sum simplifies the expressions for γ𝑐 and γ𝑑 to the ones in Table 
2. These are incorporated in functions α and β, which give the paternity obtained 
through successful EPCs with the partners of caring males and deserting males. 
The expression for function α is formulated by multiplying the proportion of 
females mated to caring males (1 − md), the probability for a successful EPC with 
a caring male’s mate ( 1 − 𝑒𝑛𝑝𝐴 ), and the paternity share possible to obtain 
through an EPC (𝑥). The expression for function β forms similarly, but 1 − 𝑚𝑑 is 
replaced by 𝑚𝑑 and 𝑝𝐴 is replaced by 𝑝𝐵. 

I then used the parameters γ𝑐 and γ𝑑 and the functions α and β to build the 
fitness functions for purely caring (𝐻𝑐) and purely deserting (𝐻𝑑) males. Every 
caring male could potentially have 𝑉𝑐𝑤 surviving offspring in his brood, but the 
probability of a successful EPC attempt must be accounted for in the fitness 
functions. There is a probability of 1 − γ𝑐  that an EPC does not occur and a 
probability of γ𝑐  that an EPC occurs, meaning that any caring male can, on 
average, expect to have 𝑉𝑐(1 − γ𝑐)𝑤 + 𝑉𝑒𝑝𝑐γ𝑐𝑤 surviving offspring in his brood. 

However, due to an EPC, all the surviving offspring in his brood are not his 
biological offspring. Therefore, the number of surviving offspring sired by 
another male should be subtracted from the overall number of surviving 
offspring, leaving the number of surviving biological offspring, which is 
𝑉𝑐(1 − γ𝑐)𝑤 + 𝑉𝑒𝑝𝑐γ𝑐𝑤 − γ𝑐𝑥𝑉𝑒𝑝𝑐𝑤. Because every male is now able to make EPC 

attempts, also caring males could expect some offspring through successful EPC 
attempts. They could have these with the partners of caring males (α(𝑚𝑑)𝑉𝑒𝑝𝑐𝑤) 

and/or deserting males (β(𝑚𝑑)𝑉𝑑𝑤). By adding these to the number of surviving 
biological offspring in their own brood, the overall number of a caring male’s 
surviving biological offspring is 

𝐻𝑐(𝑚𝑑) = 𝑉𝑐(1 − γ𝑐)𝑤 + 𝑉𝑒𝑝𝑐γ𝑐𝑤 − γ𝑐𝑥𝑉𝑒𝑝𝑐𝑤 + α(𝑚𝑑)𝑉𝑒𝑝𝑐𝑤 + β(𝑚𝑑)𝑉𝑑𝑤. 

I built the expression for the function 𝐻𝑑 the same way, except in that case, 
the offspring survival probability does not change if a successful EPC has 
occurred. For a deserting male, the number of surviving offspring in his own 
brood is 𝑉𝑑𝑤, and from that is subtracted the number of offspring sired by other 
males (γ𝑑𝑥𝑉𝑑𝑤). To the number of deserting male’s surviving biological offspring 
is then added the number of offspring obtained through successful EPCs 
(α(md)𝑉𝑒𝑝𝑐𝑤 + β(md)𝑉𝑑𝑤). An essential feature of this model is that this number 

is the same for both deserting and caring males due to the assumption that they 
are equally as good at obtaining EPCs. 
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The final forms of these expressions are listed below in Table 2, with 
expressions by Fromhage et al. (2007). Some differences between the two models 
are worth addressing. First, I used γ𝑑  to denote the proportion of deserting 
male’s broods in which an EPC occurs, while Fromhage et al. (2007) did not use 
anything to denote this even though it is included in their model. Second, the 
expressions for functions α and β are different because I assumed that all males 
make EPC attempts. In their model, Fromhage et al. (2007) assumed that only 
deserting males make EPC attempts, which means that for each EPC-attempting 
male ( ρ ), there were (1 − 𝜌)/ρ  females mated to caring males. My model 
assumed 1 − md females mated to caring males for each EPC attempting male. 

The expressions for fitness functions also differ, mainly because caring 
males could also gain additional offspring through EPCs. The loss terms that 
denote the number of offspring sired by another male look different between my 
model and the model by Fromhage et al. (2007) because they included the 
function α in their loss term. However, including the notation α is not necessary 
and I decided not to include it to simplify the expressions. Fromhage et al. (2007) 
could have also omitted α, as 

𝜌

1 − ρ
α(ρ)𝑉𝑒𝑝𝑐 =

ρ

1 − ρ

1 − ρ

ρ
(1 − 𝑒−𝑛ρ𝑝𝐴)𝑥𝑉𝑒𝑝𝑐 

when substituting the expression for function α. Since the factors ρ/(1 − ρ) and 
(1 − 𝜌)/ρ cancel out each other, the loss term further simplifies to 

γ(ρ)𝑥𝑉𝑒𝑝𝑐 , 

as 1 − 𝑒−𝑛ρ𝑝𝐴  is the expression for γ(ρ) . In their function 𝐻𝑑 , the loss term 
disappears because it cancels out with the benefit obtained through EPCs with 
deserting males’ partners. The loss term does not cancel out in my function, 
which is why it is still visible in the expression for function 𝐻𝑑. 

Table 2 Comparison of expressions for functions used in my model and in model by 
Fromhage et al. (2007). 

My model Fromhage et al. (2007) 

γ𝑐 = 1 − 𝑒−𝑛𝑝𝐴 γ(ρ) = 1 − 𝑒−𝑛ρ𝑝𝐴 

γ𝑑 = 1 − 𝑒−𝑛𝑝𝐵 1 − 𝑒−𝑛ρ𝑝𝐵 

α(𝑚𝑑) = (1 − 𝑚𝑑)(1 − 𝑒−𝑛𝑝𝐴)𝑥 
 

α(ρ) =
1 − ρ

ρ
(1 − 𝑒−𝑛ρ𝑝𝐴)𝑥 

β(𝑚𝑑) = 𝑚𝑑(1 − 𝑒−𝑛𝑝𝐵)𝑥 
 

β(ρ)  =  (1 − 𝑒−𝑛ρ𝑝𝐵)𝑥 
 

𝐻𝑐(𝑚𝑑) = 𝑉𝑐(1 − γ𝑐)𝑤 + 𝑉𝑒𝑝𝑐γ𝑐𝑤

− γ𝑐𝑥𝑉𝑒𝑝𝑐𝑤 + α(𝑚𝑑) 

𝑉𝑒𝑝𝑐𝑤 + β(𝑚𝑑)𝑉𝑑𝑤 

𝐻𝑐 = 𝑤 (𝑉𝑐(1 − γ(ρ)) + 𝑉𝑒𝑝𝑐γ(ρ)

−
ρα(ρ)𝑉𝑒𝑝𝑐

1 − ρ
) 

𝐻𝑑(𝑚𝑑) = 𝑉𝑑𝑤 − γ𝑑𝑥𝑉𝑑𝑤 + α(𝑚𝑑)𝑉𝑒𝑝𝑐𝑤

+ β(𝑚𝑑)𝑉𝑑𝑤 

𝐻𝑑 = 𝑉𝑑𝑤 + α(ρ)𝑉𝑒𝑝𝑐𝑤 
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After I had defined and formulated all the parameters and functions properly, I 
continued to search for evolutionarily stable strategies (ESSs). I used the same 
approach as Fromhage et al. (2007) and searched for parameter conditions that 
were needed for inequality 

𝐻𝑑(𝑚𝑑) > 𝐻𝑐(𝑚𝑑). (1) 

When 𝐻𝑑 is greater than 𝐻𝑐,  deserting male’s fitness is larger than caring male’s 
fitness, meaning that deserting is more beneficial for the male and the ESS is to 
desert. If 𝐻𝑐 is greater than 𝐻𝑑, it is better to provide care. 

After deriving the analytical conditions for male desertion to be an ESS, I 
used the software MATLAB R2020b (Mathworks 2020) to illustrate how changing 
different parameters affected the result and how the conditions for desertion 
show in the outcome. By doing several numerical computations with varying 
parameter values, I was able to visualize the effect of different parameters and 
the analytical conditions derived from inequality. 

2.2 Model 2: Both male and female strategies can evolve 

Model 2 is an expanded version of Model 1, covering situations where also 
female strategy could evolve. I used the same basic principles and assumptions 
as in Model 1 but included the proportion of deserting females as Maynard Smith 
(1977) and Iyer and Shukla (2021) did in their models. I had to introduce a 
variable for the proportion of deserting females, which I named 𝑓𝑑 to resemble 
the proportion of deserting males (𝑚𝑑). 

Males suffer from a decreased ability to protect their paternity as a cost from 
caring, whereas females suffer from reduced fecundity, meaning that caring 
females could lay fewer eggs (denoted by 𝑤). This is a general way to incorporate 
the cost of caring for females and is done similarly in other studies (Maynard 
Smith 1977, 1982; Iyer and Shukla 2021). I assumed that all the eggs are always 
laid in the same nest, meaning that even deserting females do not lay any 
additional eggs in another nest. This assumption differs from the one made by 
Iyer and Shukla (2021), as they assumed that deserting females could mate again 
and then lay any additional eggs in completely new nests. Because I assumed 
that all the additional mating opportunities happen as EPCs, it was reasonable to 
assume that instead of laying a second batch of eggs somewhere else, deserting 
females just lay more eggs (denoted by 𝑊 > 𝑤) in the same nest. Maynard Smith 
(1977) did not specify where the deserting female lays the additional eggs, but 
his assumptions suggest that the female lays all her eggs in the same nest. 

The means for obtaining additional matings differ between the models that 
have inspired this work. Maynard Smith (1977) assumed that only deserting 
males make additional mating attempts directed toward any female who has not 
mated yet. His formulation for payoffs suggests that deserting males may mate 
again with a probability 𝑝 but with a female using the same strategy as the first 
female. For example, the payoff for a deserting male whose first mate cares is 
𝑤𝑃1(1 + 𝑝), where 𝑤 is the number of eggs produced by the female and 𝑃1 is the 
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offspring survival probability when only one parent cares. It is worth noting that 
the assumptions in his models are not perfectly justified, and the source for these 
additional females is not specified. 

Iyer and Shukla (2021) noted this inconsistency in Maynard Smith’s Model 
2 (1977) and paid attention to that when building their models. In their first 
model (Game 1), they assumed that caring and deserting males could both obtain 
extra-pair offspring, but only deserting males may have completely another 
brood with a deserting female. With these assumptions, they specified the source 
for females available for a second mating and included a parameter for paternity, 
allowing them to incorporate paternity uncertainty. It is incorporated similarly 
in the model by Fromhage et al. (2007) and in my model. In addition to Game 1, 
they made other modifications in subsequent models, which allowed different 
paternities for caring and deserting males or excluded caring males from extra-
pair matings. Although resembling the assumptions made by Fromhage et al. 
(2007), these allowed females to change their strategy and included the 
assumption that deserting females lay additional eggs in other nests. 

Since I allowed females’ strategies to change too, there were four different 
kinds of strategy pairs composed of female and male pure strategies. I used the 
notation (𝑐, 𝑐) to denote the pair where both parents care, (𝑐, 𝑑) to denote the pair 
where male cares and female deserts, (𝑑, 𝑐) to denote the pair where male deserts 
and female cares, and (𝑑, 𝑑) to denote the pair where both parents desert. 

I used the same basic parameters as in Model 1 but modified the expressions 
to incorporate the varying female strategy and included additional parameters 
and functions. Instead of three different offspring survival probabilities, I used 
six different offspring survival probabilities in Model 2 (listed in Table 3). I 
assumed that 𝑉𝑐,𝑐 > 𝑉𝑒𝑝𝑐,𝑐 > 𝑉𝑑,𝑐 = 𝑉𝑐,𝑑 > 𝑉𝑒𝑝𝑐,𝑑 > 𝑉𝑑,𝑑. 

Table 3 The offspring’s survival probabilities in Model 2. 

𝑉𝑐,𝑐 The offspring’s survival probability when both parents care and 
there is no EPC 

𝑉𝑒𝑝𝑐,𝑐 The offspring’s survival probability when both parents care and 
there is an EPC 

𝑉𝑑,𝑐 The offspring’s survival probability when male deserts and 
female cares 

𝑉𝑐,𝑑 The offspring’s survival probability when male cares (no EPC) 
and female deserts 

𝑉𝑒𝑝𝑐,𝑑 The offspring’s survival probability when male cares (there is an 
EPC) and female deserts 

𝑉𝑑,𝑑 The offspring’s survival probability when both parents desert 

 
The proportions of caring males’ broods and deserting males’ broods in 

which an EPC occurs were calculated as in Model 1 since the female’s strategy 
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did not affect the probability for a successful EPC, and all females experienced, 
on average, the same number of EPC attempts. The expressions for γ𝑐 and γ𝑑 are 
in Table 4. 

Table 4 The expressions for the proportions of caring males’ and deserting males’ broods in 
which an EPC occurs. 

𝛾𝑐 = 1 − 𝑒−𝑛𝑝𝐴 The proportion of caring males’ broods in which an 
EPC occurs 

𝛾𝑑 = 1 − 𝑒−𝑛𝑝𝐵 The proportion of deserting males’ broods in which 
an EPC occurs 

 
Due to four different types of mated pairs, I had to include two functions 

(α𝑐 and α𝑑) that represent the paternity obtained through successful EPCs with 
the partners of caring males since any caring male could be mated to a caring 
female or deserting female and the female’s strategy affects the expected number 
of offspring. For the same reason, I had to include two functions representing the 
paternity obtained through successful EPCs with the partners of deserting males 
(β𝑐 and β𝑑). I modified the functions α and β  from Model 1 to fit the scenario in 
Model 2. The new functions and their expressions are in Table 5. 

Table 5 Paternities obtained through successful EPCs. 

𝛼𝑐(𝑚𝑑, 𝑓𝑑) = (1 − 𝑓𝑑)(1 − 𝑚𝑑)γ𝑐𝑥 Paternity obtained through successful 
EPCs with the females of (𝑐, 𝑐) pairs 

𝛼𝑑(𝑚𝑑, 𝑓𝑑) = 𝑓𝑑(1 − 𝑚𝑑)γ𝑐𝑥 Paternity obtained through successful 
EPCs with the females of (𝑐, 𝑑) pairs 

𝛽𝑐(𝑚𝑑, 𝑓𝑑) = (1 − 𝑓𝑑)𝑚𝑑γ𝑑𝑥 Paternity obtained through successful 
EPCs with the females of (𝑑, 𝑐) pairs 

𝛽𝑑(𝑚𝑑, 𝑓𝑑) = 𝑓𝑑𝑚𝑑γ𝑑𝑥 Paternity obtained through successful 
EPCs with the females of (𝑑, 𝑑) pairs 

 
I then determined the expected fitnesses (expressed as the number of 

surviving biological offspring) separately for females and males for all four 
strategy combinations. The fitness functions for males are in Table 6. In the fitness 
functions for males, I used the function 

𝑒𝑝𝑐(𝑚𝑑, 𝑓𝑑) = 𝑤 ⋅ (α𝑐(𝑚𝑑, 𝑓𝑑)𝑉𝑒𝑝𝑐,𝑐 + β𝑐(𝑚𝑑, 𝑓𝑑)𝑉𝑑,𝑐)

+ 𝑊(α𝑑(𝑚𝑑 , 𝑓𝑑)𝑉𝑒𝑝𝑐,𝑑 + β𝑑(𝑚𝑑, 𝑓𝑑)𝑉𝑑,𝑑) 

 to denote the fitness acquired from successful EPCs. Any male could now 
achieve EPCs with any female, so all possible situations must be included in the 
expression for function 𝑒𝑝𝑐. The number of extra-pair offspring is the same for 
all males similarly like in Model 1. 
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Table 6 Fitness functions for males in Model 2. 

𝐻𝑐,𝑐,𝑚(𝑚𝑑, 𝑓𝑑) = 𝑤 ⋅ 𝑉𝑐,𝑐(1 − γ𝑐) + 𝑤 ⋅ 𝑉𝑒𝑝𝑐,𝑐γ𝑐 − γ𝑐

⋅ 𝑥 ⋅ 𝑉𝑒𝑝𝑐,𝑐 ⋅ 𝑤 + 𝑒𝑝𝑐(𝑚𝑑, 𝑓𝑑) 

Fitness for male from (𝑐, 𝑐)-
type brood 

𝐻𝑐,𝑑,𝑚(𝑚𝑑, 𝑓𝑑) = 𝑊 ⋅ 𝑉𝑐,𝑑(1 − γ𝑐) + 𝑊 ⋅ 𝑉𝑒𝑝𝑐,𝑑γ𝑐

− γ𝑐 ⋅ 𝑥 ⋅ 𝑉𝑒𝑝𝑐,𝑑 ⋅ 𝑊 + 𝑒𝑝𝑐(𝑚𝑑, 𝑓𝑑) 

Fitness for male from 
(𝑐, 𝑑)-type brood 

𝐻𝑑,𝑐,𝑚(𝑚𝑑, 𝑓𝑑) = 𝑤 ⋅ 𝑉𝑑,𝑐 − γ𝑑 ⋅ 𝑥 ⋅ 𝑉𝑑,𝑐 ⋅ 𝑤
+ 𝑒𝑝𝑐(𝑚𝑑, 𝑓𝑑) 

Fitness for male from 
(𝑑, 𝑐)-type brood 

𝐻𝑑,𝑑,𝑚(𝑚𝑑, 𝑓𝑑)

= 𝑊 ⋅ 𝑉𝑑,𝑑 − γ𝑑 ⋅ 𝑥 ⋅ 𝑉𝑑,𝑑 ⋅ 𝑊
+ 𝑒𝑝𝑐(𝑚𝑑, 𝑓𝑑) 

Fitness for male from 
(𝑑, 𝑑)-type brood 

 
Fitness functions for males are built similarly as in Model 1 but hold some 

differences. The fitness for a male consists of the benefit from his own brood (in 
the form of surviving offspring), the loss from his own brood (offspring sired by 
another male), and the benefit from successful EPCs. The number of surviving 
biological offspring is affected by the caring decisions of both parents since the 
offspring survival probability is dependent on those and females lay different 
number of eggs depending on their caring decision. The fitness functions for 
females (listed in Table 7) are constructed similarly, but females do not have any 
loss from their brood, and neither do they have any extra-pair offspring in 
someone else’s nest. All the offspring in her nest are her biological offspring, thus 
the number of surviving biological offspring is affected only by the caring 
decisions and the probability of a successful EPC attempt. 

Table 7 Fitness functions for females in Model 2. 

𝐻𝑐,𝑐,𝑓(𝑓𝑑) = 𝑤 ⋅ 𝑉𝑐,𝑐(1 − γ𝑐) + 𝑤 ⋅ 𝑉𝑒𝑝𝑐,𝑐γ𝑐 Fitness for female from 
(𝑐, 𝑐)-type brood 

𝐻𝑐,𝑑,𝑓(𝑓𝑑) = 𝑊 ⋅ 𝑉𝑐,𝑑(1 − γ𝑐) + 𝑊 ⋅ 𝑉𝑒𝑝𝑐,𝑑γ𝑐 Fitness for female from 
(𝑐, 𝑑)-type brood 

𝐻𝑑,𝑐,𝑓(𝑓𝑑) = 𝑤 ⋅ 𝑉𝑑,𝑐 Fitness for female from 
(𝑑, 𝑐)-type brood 

𝐻𝑑,𝑑,𝑓(𝑓𝑑) = 𝑊 ⋅ 𝑉𝑑,𝑑 Fitness for female from 
(𝑑, 𝑑)-type brood 

 
To check the self-consistency of the model, I checked that the overall 

number of offspring for males and females was equal. Then, I ensured that this 
model is compatible with Model 1 when females always care. I did this by setting 
𝑓𝑑 = 0 and checking that the resulting fitness functions for male are equal to the 
fitness functions in Model 1. After these necessary steps to ensure that Model 2 
is consistent with Model 1, I searched for evolutionarily stable strategy pairs (ESS 
pairs) by adaptive dynamics (sometimes alternatively referred to as evolutionary 
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invasion analysis). Adaptive dynamics is an extension of game theory, which can 
help to find a strategy that can resist invasions (ESS), if there is one (Dieckmann 
and Law 1996; Otto and Day 2007; Avila and Mullon 2023). I used the male fitness 
functions from different types of broods to build a probability-weighted sum 
function describing the overall fitness of a male using strategy (𝑚𝑑̂, 1 − 𝑚𝑑̂) in a 
population where other males use strategy (𝑚𝑑, 1 − 𝑚𝑑) . These strategies 
indicate that the desertion probability for the focal (deviant) male is 𝑚𝑑̂ and for a 
resident male it is 𝑚𝑑. The overall fitness function for the male is: 

𝐻𝑚(𝑚𝑑̂, 𝑓𝑑 , 𝑚𝑑)
= (1 − 𝑚𝑑̂)(1 − 𝑓𝑑)𝐻𝑐,𝑐,𝑚 + 𝑚𝑑̂(1 − 𝑓𝑑)𝐻𝑑,𝑐,𝑚 + (1 − 𝑚𝑑̂)𝑓𝑑𝐻𝑐,𝑑,𝑚

+ 𝑚𝑑̂𝑓𝑑𝐻𝑑,𝑑,𝑚. 
In the same way, I used the female fitness functions to build a sum function 

describing the overall fitness of a female using strategy (𝑓𝑑̂ , 1 − 𝑓𝑑̂)  in a 

population where other females use strategy (𝑓𝑑 , 1 − 𝑓𝑑) . The overall fitness 
function for the female is: 

𝐻𝑓(𝑚𝑑, 𝑓𝑑̂ , 𝑓𝑑) = (1 − 𝑚𝑑)(1 − 𝑓𝑑̂)𝐻𝑐,𝑐,𝑓 + 𝑚𝑑(1 − 𝑓𝑑̂)𝐻𝑑,𝑐,𝑓 + (1 − 𝑚𝑑)𝑓𝑑̂𝐻𝑐,𝑑,𝑓

+ 𝑚𝑑𝑓𝑑̂𝐻𝑑,𝑑,𝑓 . 

I could then search for the maximum value for a male’s fitness by 
differentiating the male fitness function 𝐻𝑚 with respect to 𝑚𝑑̂ and finding the 
root of the derivative. I repeated the same process with the female fitness function 

𝐻𝑓. If some values of 𝑚𝑑̂ and 𝑓𝑑̂ turned out to be the root of the derivatives, these 

strategy values indicate possible maximum fitnesses and thus could potentially 
be ESSs and compose an ESS pair (Otto and Day 2007). 

In addition to searching for a mixed strategy that could potentially be an 
ESS, I also checked for conditions for any of the pure strategy pairs being an ESS 
pair. Maynard Smith (1977) did this simply by comparing the fitnesses obtained 
by using pure strategies. This approach disregards the possibility of a mixed ESS, 
but it is not problematic in his case since the fitness functions in his model are 
linear, and therefore no mixed ESSs are possible. I solved the conditions by 
differentiating the fitness functions, setting the opposite sex’s strategy equal to 
zero (always caring) or one (always deserting), and then examining the sign of 
the derivative. A positive derivative indicated that the ESS would be achieved 
with higher values of the desertion probability and vice versa with a negative 
derivative. By repeating this process for both derivatives 𝐻𝑚

′  and 𝐻𝑓
′ , I could find 

the analytical conditions for each pair type to be an ESS pair. My method was 
essentially the same as the one Maynard Smith used but allowed me to find 
mixed ESS pairs if there were any. 

Because the analytical conditions are challenging to interpret on their own, 
I also modeled the coevolution of female and male strategies using adaptive 
dynamics (Dieckmann and Law 1996; Otto and Day 2007; Avila and Mullon 2023), 
which allowed me to visualize their evolutionary trajectories and endpoints. In 
principle, the results using adaptive dynamics should be modeled using relative 
fitness, or equivalently the derivative of logarithmic fitness. However, the choice 
of using absolute versus relative fitness does not affect the results presented in 
this thesis. When solving the ESS analytically as described above, the sign of the 
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derivative is affected only by the numerator which is the derivative of the 
absolute fitness. In the adaptive dynamics models, the choice of absolute vs. 
relative fitness again makes no difference, because the mean fitness for males and 
females must be the same due to an even sex ratio, which implies that the 
evolutionary trajectories are not affected since the derivatives of both fitnesses 
are divided by the same mean fitness. Despite this fact, I still used the relative 
fitness when modeling the coevolution using adaptive dynamics in MATLAB 
R2020b (Mathworks 2020) but used the absolute fitness when solving the ESSs 
analytically. 

In this section, I present the findings of my models. The results of Models 1 and 
2 are presented separately since they required partly different approaches and 
thus yielded different types of results. I will start with the results of Model 1 and 
continue to the results of Model 2. 
 

3.1 Model 1: Only the male strategy can evolve 

I searched the conditions for desertion to be an ESS by manipulating the 
inequality 𝐻𝑑(𝑚𝑑) > 𝐻𝑐(𝑚𝑑). In that process, 𝑚𝑑  canceled out of the equation, 
meaning that the proportion of deserting males did not affect the ESS. Thus, no 
mixed strategy could be an ESS, but either one of the pure strategies could be an 
ESS, depending on the other parameters. I then continued manipulating the 
inequality (1) to find some parameter conditions for desertion to be an ESS. As a 
result, I got 

γ𝑐𝑥𝑉𝑒𝑝𝑐𝑤 − 𝛾𝑑𝑥𝑉𝑑𝑤 > 𝑉𝑐(1 − 𝛾𝑐)𝑤 + 𝑉𝑒𝑝𝑐𝛾𝑐𝑤 − 𝑉𝑑𝑤. (2) 

 
This inequality means that for desertion to be an ESS, the loss from a caring 
male’s brood must be greater than the loss from a deserting male’s brood and 
significant enough to counteract the better offspring survival probability in a 
caring male’s brood. As the loss is directly affected by the probability of a 
successful EPC attempt, the value of the parameter 𝑝𝐵 (the probability that an 
EPC attempt is successful when directed towards a deserting male’s partner) is 
significant. From the inequality (2), I was able to find a maximum value for 
variable 𝑝𝐵, as follows:   

𝑝𝐵 < −
1

𝑛
𝑙𝑜𝑔 (

𝑉𝑐(1 − γ𝑐) + γ𝑐𝑉𝑒𝑝𝑐 − 𝑥γ𝑐𝑉𝑒𝑝𝑐 − 𝑉𝑑

𝑥𝑉𝑑
+ 1). 

(3) 

 
For this expression to make sense, 𝑛 ≠  0, 𝑥 ≠ 0, and 𝑉𝑑 ≠ 0. All of these are 

reasonable conditions. If 𝑛 = 0, no EPC attempts are made, meaning that it is 
more beneficial to care since desertion can be favorable only if deserting males 
lose significantly less paternity through an EPC. If 𝑥 = 0, no paternity share is 

3 RESULTS 
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gained through a successful EPC, so caring is again beneficial. If 𝑉𝑑 = 0, the only 
surviving offspring a deserting male gets are from EPCs, and a caring male gets 
this same number of offspring in addition to the offspring from his own brood, 
so it is better to care. In addition to these conditions, the limit must belong 
between zero and one for it to be reasonable. The formulation of the limit seems 
like it would be negative, but it is, in fact, positive when 𝑉𝑐(1 − γ𝑐) + γ𝑐𝑉𝑒𝑝𝑐 −

𝑥γ𝑐𝑉𝑒𝑝𝑐 − 𝑉𝑑 is negative because then the logarithm gives out negative values that 

are multiplied by −1/𝑛, making the result positive. 
Note that the expanded expression for γ𝑐 includes the parameters 𝑝𝐴 and 𝑛, 

so the maximum value for 𝑝𝐵  depends logarithmically on the values of 
parameters 𝑝𝐴, 𝑥, 𝑛, and survival probabilities. When 𝑉𝑑 or 𝑥 increases, the limit 
for 𝑝𝐵 also increases. When 𝑉𝑒𝑝𝑐 gets closer to 𝑉𝑐, the limit for 𝑝𝐵 decreases. 

Because the conditions in symbolical form can be abstract and the effect of 
different parameters can be challenging to comprehend, I did several numerical 
computations in MATLAB to illustrate the effect of some parameters. In the 
following sections, I present three cases where I have changed the values of 
𝑉𝑑, 𝑥, 𝑝𝐴 and 𝑝𝐵 since these were the main parameters that affected the analytical 
conditions. The limit for 𝑝𝐵 is especially illustrated in Subsection 3.1.2 and the 
effect of varying paternity is addressed in Subsection 3.1.3. The values for 
parameters that remained constant across all these cases are listed below (Table 
8). Note that I used a constant desertion probability 𝑚𝑑  since my analytical 
results indicated that the proportion of deserting males does not affect the ESS. 

Table 8 The general parameter values used in all cases. 

𝑚𝑑 0.5 

𝑤 5 

𝑛 10 

 

3.1.1 Case 1: The offspring survival probabilities change 

Since the relative magnitude of offspring survival probabilities clearly affects the 
ESS, I explored how much of an effect variation in parameter 𝑉𝑑 has together with 
variation in parameter 𝑝𝐵. In this case, I let 𝑝𝐵 vary from 0 to 0.5 as 𝑝𝐴 was set 
equal to 0.5, and let 𝑉𝑑 vary from 0 to 0.9 as 𝑉𝑒𝑝𝑐 was equal to 0.9. The MATLAB 

script I used in this case is in Appendix 1. 
The outcome of this computation is presented in Figure 1. Blue marks the 

parameter combinations that yield caring as the ESS. For example, with 𝑉𝑑 = 0.4 
and 𝑝𝐵 = 0.2, caring is an ESS. Yellow then marks the parameter combinations 
when deserting was the ESS. The figure shows that as 𝑉𝑑 increased, 𝑝𝐵 could get 
closer to 𝑝𝐴, and desertion was still an ESS. In this case, 𝑉𝑑 must be at least around 
0.45 for deserting to be an ESS, even when 𝑝𝐵 is zero. This means that even if 
deserting males are able to protect their paternity completely, desertion is still 
not favorable if the survival probability of the offspring is too low. 
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Figure 1. The distribution of ESSs when 𝑝𝐵 changes from 0 to 0.5 and 𝑉𝑑 changes from 0 to 
0.9. Caring is the ESS in blue regions, and in yellow regions, deserting is 
the ESS. Other parameter values: 𝑝𝐴 = 0.5, 𝑉𝑐 = 1, 𝑉𝑒𝑝𝑐 = 0.9, 𝑥 = 0.5. 

Changing the paternity share possible to obtain through a successful EPC 
(𝑥) also influenced the results. I set 𝑥 = 0.8 and found that the boundary between 
blue and yellow regions follows a different kind of curve (Figure 2). Higher 
paternity share from an EPC allows 𝑉𝑑  to be lower without making desertion 
unfavorable. It also allows 𝑝𝐵 to be closer to 𝑝𝐴 while keeping desertion as an ESS. 
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Figure 2 ESS distribution 𝑉𝑑 changes from 0 to 0.9 and 𝑝𝐵 changes from 0 to 0.5. In blue re-
gions caring is an ESS and in yellow regions deserting is an ESS. Other 
parameter values are the same as in Figure 1, except that 𝑥 is equal to 0.8. 

3.1.2 Case 2: Probabilities for succeeding in EPC attempts change 

Next, I wanted to illustrate the analytical limit (3) I got for 𝑝𝐵, that is how much 
advantage deserting males should have at protecting their paternity for desertion 
to be more beneficial than caring. To accomplish this, I let the probabilities of 
successful EPC attempts ( 𝑝𝐴  and 𝑝𝐵 ) vary from 0 to 1 and kept the other 
parameters constant. The MATLAB script I used in this case is in Appendix 2. 

Figure 3 shows the results of this case by illustrating the limit for 𝑝𝐵 . It 
makes visible the fact that even when 𝑝𝐴 gets close to 1, 𝑝𝐵 could only increase to 
some extent for desertion to be an ESS. Note that the regions above the black line 
should be ignored because 𝑝𝐴 is smaller than 𝑝𝐵 in those regions, conflicting with 
my initial assumptions. 
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Figure 3. The distribution of ESSs when both 𝑝𝐴 and 𝑝𝐵 change from 0 to 1. Caring is the ESS 
in blue regions, and in yellow regions, deserting is the ESS. Other param-
eter values: 𝑉𝑐 = 0.8, 𝑉𝑒𝑝𝑐 = 0.7, 𝑉𝑑 = 0.5, 𝑥 = 0.7. 

When I changed 𝑉𝑑 to equal 𝑉𝑒𝑝𝑐, I found that 𝑝𝐵 could increase linearly while 𝑝𝐴 

increased, although it still had to be smaller than 𝑝𝐴 (Figure 4). This indicates a 
situation where cuckolded males do not provide care even if their initial strategy 
is to care, which is the case in model 2 by Maynard Smith (1977) and addressed 
also by Fromhage et al. (2007). With further manipulations of the inequality (2), 
I found that the difference between 𝑝𝐴 and the maximum 𝑝𝐵 depended on the 
difference between 𝑉𝑐  and 𝑉𝑑 . I solved 𝑝𝐵  from the inequality (2) and found a 
limit for the parameter 𝑝𝐵 as follows: 

𝑝𝐵 < 𝑝𝐴 −
1

𝑛
𝑙𝑜𝑔 (

𝑉𝑐 − 𝑉𝑑

𝑥𝑉𝑑
+ 1). 

For this expression to make sense, 𝑛 ≠ 0, 𝑥 ≠ 0, and 𝑉𝑑 ≠ 0. If any of these 
parameters would equal 0, it would be beneficial to care, so finding the maximum 
𝑝𝐵 for desertion would be irrelevant. When 𝑉𝑒𝑝𝑐 = 𝑉𝑑, the limit for 𝑝𝐵 does not 

depend logarithmically on 𝑝𝐴  but depends logarithmically on the difference 
between 𝑉𝑐 and 𝑉𝑑 and the paternity share possible to obtain through a successful 
EPC ( 𝑥 ). When the difference between 𝑉𝑐  and 𝑉𝑑  increases, the limit for 𝑝𝐵 
decreases. When either 𝑉𝑑 or 𝑥 increases, the limit for 𝑝𝐵 also increases. 
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Figure 4. The distribution of ESSs when 𝑝𝐴 and 𝑝𝐵 change from 0 to 1 and 𝑉𝑑 = 𝑉𝑒𝑝𝑐 = 0.5. 
Caring is the ESS in blue regions, and in yellow regions, deserting is the 
ESS. Other parameter values are the same as in Figure 3. 

3.1.3 Case 3: The paternity share obtained through a successful EPC changes 

I already found out in Case 1 that changing the paternity share possible to obtain 
from a successful EPC attempt affects the results. In this case, I explored further 
how changing 𝑥 and 𝑝𝐵 together affects the outcome. I let 𝑝𝐵 vary from 0 to 0.7 
as 𝑝𝐴 was set to 0.7, and I let x vary from 0 to 1. The MATLAB script I used in this 
case is in Appendix 3. 

The results are presented in Figure 5, which shows that with higher values 
of x, 𝑝𝐵 can get closer to 𝑝𝐴, and it is still better to desert. The maximum value of 
𝑝𝐵 increases significantly when x approaches 1. However, with low values of x, 
caring remains the better strategy even if 𝑝𝐵 is zero. 
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Figure 5 The distribution of ESSs when 𝑃𝐵 changes from 0 to 0.7 and x changes from 0 to 1. 
Caring is the ESS in blue regions, and in yellow regions, deserting is the 
ESS. Other parameter values: 𝑉𝑐 = 0.9, 𝑉𝑒𝑝𝑐 = 0.8, 𝑉𝑑 = 0.6, 𝑝𝐴 = 0.7. 

3.2 Model 2: Female strategy can also evolve 

In Model 2, I allowed the female strategy to evolve, which made me change my 
approach to solving ESSs. To investigate if any deviant male using strategy 
(1 − 𝑚𝑑̂ , 𝑚𝑑̂)  could invade the population where other males use strategy 
(1 − 𝑚𝑑 , 𝑚𝑑)  and females use strategy (1 − 𝑓𝑑 , 𝑓𝑑) , I differentiated the overall 
fitness function 𝐻𝑚 (Otto and Day 2007). As the derivative of function 𝐻𝑚, I got 

𝐻𝑚
′ (𝑚𝑑̂, 𝑚𝑑, 𝑓𝑑)

= (1 − 𝑓𝑑)(𝑉𝑑,𝑐𝑤 − 𝛾𝑑𝑥𝑉𝑑,𝑐𝑤) + 𝑓𝑑(𝑉𝑑,𝑑𝑊 − 𝛾𝑑𝑥𝑉𝑑,𝑑𝑊

− (1 − 𝑓𝑑) ((1 − 𝛾𝑐)𝑉𝑐,𝑐𝑤 + 𝛾𝑐𝑉𝑒𝑝𝑐,𝑐𝑤 − 𝛾𝑐𝑥𝑉𝑒𝑝𝑐,𝑐𝑤)

− 𝑓𝑑((1 − 𝛾𝑐)𝑉𝑐,𝑑𝑊 + 𝛾𝑐𝑉𝑒𝑝𝑐,𝑑𝑊 − 𝛾𝑐𝑥𝑉𝑒𝑝𝑐,𝑑𝑊). 

If the derivative had contained the variables 𝑚𝑑̂ or 𝑚𝑑, I could have then 
proceeded to find out the root of the derivative by setting 𝑚𝑑̂ equal to 𝑚𝑑 and 
then solving the equation 𝐻𝑚

′ (𝑚𝑑̂, 𝑚𝑑, 𝑓𝑑) = 0 with respect to 𝑚𝑑 . However, in 
this case, the derivative did not depend on the strategy of the focal (deviant) male 
or the resident male, meaning that no mixed strategy could be an ESS for males. 
Only possible ESSs were then pure strategies, and the outcome depended on the 
parameter values and the strategy of the opposite sex. I searched for the 
parameter conditions for both ESSs by setting the derivative positive or negative 
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depending on the strategy. A positive derivative means that the fitness function 
is increasing with respect to 𝑚𝑑̂, meaning that the highest fitness is achieved with 
the largest value of 𝑚𝑑̂, which would be 1, making desertion the best strategy for 
males. If the derivative is negative, the fitness function is decreasing, meaning 
that the highest fitness is achieved with the lowest 𝑚𝑑̂, which would be 0. 

I repeated the same process with the overall fitness function for a deviant 

female using strategy (1 − 𝑓𝑑̂ , 𝑓𝑑̂)  in a population where other females use 

strategy (1 − 𝑓𝑑 , 𝑓𝑑) and all the males use strategy (1 − 𝑚𝑑, 𝑚𝑑). As the derivative 
of the function 𝐻𝑓, I got 

𝐻𝑓
′(𝑓𝑑̂, 𝑚𝑑, 𝑓𝑑) = 𝑊 ((1 − 𝑚𝑑) ((1 − γ𝑐)𝑉𝑐,𝑑 + γ𝑐𝑉𝑒𝑝𝑐,𝑑) + 𝑚𝑑𝑉𝑑,𝑑)

− 𝑤 ((1 − 𝑚𝑑) ((1 − 𝛾𝑐)𝑉𝑐,𝑐 + 𝛾𝑐𝑉𝑒𝑝𝑐,𝑐) + 𝑚𝑑𝑉𝑑,𝑐). 

As in the case of male overall fitness, the derivative of female overall fitness 
did not depend on the strategy of the focal (deviant) female or on the strategy of 
the resident female. The ESS for females was then also either one of the pure 
strategies, depending on the parameter values and the male population strategy. 

As I mentioned, both derivatives depended on the strategy of the opposite 
sex. It was possible to find a value for 𝑓𝑑 that makes the derivative 𝐻𝑚

′  equal to 
zero. This situation means that all male strategies yield the same payoff, making 
any strategy equally beneficial. It does not mean that the value of 𝑓𝑑  would 
indicate any stability but shows that with some parameter combinations and 
female population strategy, it is possible to have a situation where the male 
strategy does not matter and the fitness for males is the same despite the strategy 
they use. This type of situation (the only difference is that the female strategy 
does not matter) is illustrated in Figure 7 and is discussed in detail later. 

Since I found no mixed strategies as ESS candidates, only the pure strategy 
pairs could be ESS pairs. I obtained the parameter conditions for each ESS pair 
from the derivatives by setting the desertion probability of the opposite sex equal 
to 1 or 0. Conditions for each pure strategy pair to be an ESS pair are listed in 
Table 9. The conditions for male desertion are basically the same as the conditions 
I obtained from Model 1, including only minor modifications in parameter names. 
The conditions for males and females differ in that for males, the paternity loss 
from their own brood in relation to survival probabilities is significant, and for 
females, the ratio of egg quantities compared to the ratio of survival probabilities 
is significant. 

Table 9. The conditions for each pure strategy to be an ESS pair in Model 2. 

pair type conditions for male conditions for female 

(𝑐, 𝑐) 𝑉𝑑,𝑐 − 𝛾𝑑𝑥𝑉𝑑,𝑐 < (1 − 𝛾𝑐)𝑉𝑐,𝑐

+ 𝛾𝑐𝑉𝑒𝑝𝑐,𝑐 − 𝛾𝑐𝑥𝑉𝑒𝑝𝑐,𝑐 

 

𝑊 ((1 − γ𝑐)𝑉𝑐,𝑑 + γ𝑐𝑉𝑐,𝑑)

< 𝑤 ((1 − γ𝑐)𝑉𝑐,𝑐

+ γ𝑐𝑉𝑒𝑝𝑐,𝑐) 
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(𝑐, 𝑑) 𝑉𝑑,𝑑 − 𝛾𝑑𝑥𝑉𝑑,𝑑

< (1 − 𝛾𝑐)𝑉𝑐,𝑑

+ 𝛾𝑐𝑉𝑒𝑝𝑐,𝑑

− 𝛾𝑐𝑥𝑉𝑒𝑝𝑐,𝑑 

 

𝑊 ((1 − γ𝑐)𝑉𝑐,𝑑 + γ𝑐𝑉𝑒𝑝𝑐,𝑑)

> 𝑤 ((1 − γ𝑐)𝑉𝑐,𝑐

+ γ𝑐𝑉𝑒𝑝𝑐,𝑐) 

(𝑑, 𝑐) 𝑉𝑑,𝑐 − 𝛾𝑑𝑥𝑉𝑑,𝑐 > (1 − 𝛾𝑐)𝑉𝑐,𝑐

+ 𝛾𝑐𝑉𝑒𝑝𝑐,𝑐 − 𝛾𝑐𝑥𝑉𝑒𝑝𝑐,𝑐 

 

𝑊𝑉𝑑,𝑑 < 𝑤𝑉𝑑,𝑐 
 

(𝑑, 𝑑) 𝑉𝑑,𝑑 − 𝛾𝑑𝑥𝑉𝑑,𝑑

> (1 − 𝛾𝑐)𝑉𝑐,𝑑

+ 𝛾𝑐𝑉𝑒𝑝𝑐,𝑑

− 𝛾𝑐𝑥𝑉𝑒𝑝𝑐,𝑑 

 

𝑊𝑉𝑑,𝑑 > 𝑤𝑉𝑑,𝑐 

 

 
From these conditions, I could have derived the limits for 𝑝𝐵 like I did while 

solving analytical conditions in Model 1. Similarly, I could have derived some 
conditions for other parameters, but these were not useful due to their 
complexity. That is why I only offer the general conditions here and focus on 
modeling the adaptive dynamics in MATLAB. Figure 6 contains four figures 
illustrating the evolutionary trajectories of male and female strategies. The 
arrows show the direction of higher relative fitness, and the circles represent the 
ESSs, so the figure shows which direction the strategies are presumed to evolve 
under evolutionary forces. The figure includes representations of all four pure 
strategy ESS pairs. 
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Figure 6 The evolutionary trajectories of male and female strategies in different parameter 
spaces. The arrows of the vector fields show the presumed direction of 
evolution and circles represent the ESS pairs. Figure A illustrates the situ-
ation when (𝑐, 𝑐) is an ESS pair. Figure B shows that (𝑐, 𝑑) is an ESS pair. 
Figure C shows that (𝑑, 𝑐) is an ESS pair. Figure D shows that (𝑑, 𝑑) is an 
ESS pair. Parameter values used to obtain these figures are listed in Table 
10. 

The parameter values used to obtain the vector fields in Figure 6 are listed below 
in Table 10. Some parameter values are the same in all figures, and I aimed to 
achieve distinct differences with as small changes to parameter values as possible. 
Figure A illustrates the situation where biparental care is an ESS pair, and for that 
to change towards male-only care, I increased the offspring survival probabilities 
and 𝑊. Increasing the number of eggs laid by a deserting female made desertion 
more favorable for females, and greater survival probabilities enhanced that 
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effect. To switch to female-only care, I decreased 𝑊  and 𝑝𝐵  and increased 𝑥 . 
Decreasing 𝑊 made desertion less beneficial for females, and lower 𝑝𝐵, together 
with higher 𝑥, made desertion more favorable for males. To obtain biparental 
desertion as an ESS pair, I increased 𝑉𝑑,𝑑  and 𝑊, which made desertion again 
favorable for females (as it was already favorable for males). 

Table 10 Parameter values I used to obtain the results in Figure 6. 

A 𝑉𝑐,𝑐 = 1 𝑉𝑒𝑝𝑐,𝑐 = 0.9 𝑉𝑐,𝑑 = 0.6 𝑉𝑑,𝑐 = 0.6 

 𝑉𝑒𝑝𝑐,𝑑 = 0.5 𝑉𝑑,𝑑 = 0.3 𝑥 = 0.5 𝑛 = 5 

 𝑝𝐴 = 0.8 𝑝𝐵 = 0.5 𝑤 = 5 𝑊 = 7 

B 𝑉𝑐,𝑐 = 1 𝑉𝑒𝑝𝑐,𝑑 = 0.9 𝑉𝑐,𝑑 = 0.8 𝑉𝑑,𝑐 = 0.8 

 𝑉𝑒𝑝𝑐,𝑑 = 0.7 𝑉𝑑,𝑑 = 0.5 𝑥 = 0.5 𝑛 = 5 

 𝑝𝐴 = 0.8 𝑝𝐵 = 0.5 𝑤 = 5 𝑊 = 9 

C 𝑉𝑐,𝑐 = 1 𝑉𝑒𝑝𝑐,𝑐 = 0.9 𝑉𝑐,𝑑 = 0.8 𝑉𝑑,𝑐 = 0.8 

 𝑉𝑒𝑝𝑐,𝑑 = 0.7 𝑉𝑑,𝑑 = 0.5 𝑥 = 0.7 𝑛 = 5 

 𝑝𝐴 = 0.8 𝑝𝐵 = 0.1 𝑤 = 5 𝑊 = 6 

D 𝑉𝑐,𝑐 = 1 𝑉𝑒𝑝𝑐,𝑐 = 0.9 𝑉𝑐,𝑑 = 0.8 𝑉𝑑,𝑐 = 0.8 

 𝑉𝑒𝑝𝑐,𝑑 = 0.7 𝑉𝑑,𝑑 = 0.6 𝑥 = 0.7 𝑛 = 5 

 𝑝𝐴 = 0.8 𝑝𝐵 = 0.1 𝑤 = 5 𝑊 = 8 

 
In all figures in Figure 6, the vector fields seem to converge quite neatly to 

one corner, but this was not always the case. As I mentioned previously while 
presenting the analytical solution, it was possible to analytically derive an 
expression for the opposite sex’ strategy that would make the derivative equal to 
zero. This kind of situation is illustrated below in Figure 7, where the male 
strategy seems to evolve towards complete desertion while the female strategy 
evolves towards caring, but with a high proportion of deserting males, the 
difference between fitnesses for caring and deserting females approaches zero. 
This means that either of the strategies is equally beneficial for females, making 
the female population unaffected by evolutionary forces. Basically, in this 
situation 𝐻𝑑,𝑐,𝑓 = 𝐻𝑑,𝑑,𝑓 , because 𝑤/𝑊 = 𝑉𝑑,𝑑/𝑉𝑑,𝑐 . This situation is highly 

unlikely in nature and even in this theoretical model the female strategy probably 
has enough time to fixate on caring, while the male strategy evolves toward 
desertion. However, it is theoretically possible that the female strategy could 
fixate on any strategy that is prevalent at the time when the male strategy reaches 
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equilibrium, or the female strategy could keep changing and never fixate in any 
strategy. That is why there are multiple circles representing ESS pairs in Figure 
7, even though neither of those is an actual ESS pair in this case. 

 

Figure 7. An illustration of the special case where the female fitness is the same regardless of 
their strategy after the male strategy has reached stability. Arrows indicate 
the presumed direction of evolution and circles represent the potential 
endpoints of the evolution. Parameter values: 𝑉𝑐,𝑐 = 1, 𝑉𝑒𝑝𝑐,𝑐 = 0.9, 𝑉𝑐,𝑑 =
𝑉𝑑,𝑐 = 0.7, 𝑉𝑒𝑝𝑐,𝑑 = 0.6, 𝑉𝑑,𝑑 = 0.5, 𝑥 = 0.5, 𝑛 = 5, 𝑝𝐴 = 0.7, 𝑝𝐵 = 0.2, 𝑤 =
5, 𝑊 = 7. 

As this figure shows, the mating partner’s strategy affects the benefit the focal 
individual gains by using different strategies. Due to this, different strategy pairs 
could be ESS pairs depending on the initial conditions. Figure 8 shows how the 
male population strategy influences the evolution of the female population 
strategy. With high values of 𝑚𝑑  and relatively low values of 𝑓𝑑 , females are 
selected to care and males to desert. However, female desertion and male care 
could also be an ESS pair, depending on the relationship between the initial 
values of 𝑚𝑑  and 𝑓𝑑 . In this situation, the ESS pair is always asymmetrical, 
meaning that the ESS is always uniparental care, but the caregiver’s sex depends 
on the initial conditions. 
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Figure 8. An illustration of the situation where the ESS depends on the initial proportions of 
deserting individuals. Arrows indicate the presumed direction of evolu-
tion and circles represent the possible ESS pairs. Parameter values: 𝑉𝑐,𝑐 =
1, 𝑉𝑒𝑝𝑐,𝑐 = 0.9, 𝑉𝑐,𝑑 = 𝑉𝑑,𝑐 = 0.8, 𝑉𝑒𝑝𝑐,𝑑 = 0.7, 𝑉𝑑,𝑑 = 0.4, 𝑥 = 0.3, 𝑛 = 5, 𝑝𝐴 =
0.8, 𝑝𝐵 = 0.2, 𝑤 = 5, 𝑊 = 7. 

I even found a parameter combination that made both (𝑐, 𝑐) and (𝑑, 𝑑) possible 
ESS pairs (Figure 9). This situation is characterized by the relative inefficiency of 
uniparental care compared to biparental care. In this case, the offspring’s survival 
probability when both parents desert is almost as good as when only one parent 
cares. If the initial desertion probabilities are, for example, 𝑚𝑑 = 0.8 and 𝑓𝑑 = 0.4, 
both strategies would eventually evolve towards desertion. However, if 𝑚𝑑 = 0.3 
instead of 0.8, both strategies would evolve towards caring. It seems that while 
changing the 𝑚𝑑 , the ESS for males changes too. How is that possible if the 
population strategy for any given sex should not affect the ESS for that sex? I 
argued earlier that it is always better to choose either of the pure strategies, 
depending on the other parameters (including the behavior of the other sex). This 
argument still holds because the population strategy for any given sex does not 
affect the ESS for that sex directly. However, the initial population strategies 
determine the direction of evolution and thus achievable ESS. 

In my example, changing 𝑚𝑑 from 0.8 to 0.3 changed the ESS for males, but 
that is not a realistic change as the proportion of deserting males could not 
change so drastically in a stable environment, and this kind of change in 
population strategy is not even possible under natural selection. The proportion 
of deserting males could evolve only via small mutations and due to the effect of 
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female strategy, could never reach 0.3. The reason behind this is that when 𝑚𝑑 =
0.8, the female strategy evolves towards desertion, and the male strategy evolves 
towards care for a while. However, as the proportion of deserting females 
increases, the beneficial strategy for males changes, and the population strategy 
starts to evolve towards desertion. When 𝑚𝑑 = 0.3 , both strategies evolve 
towards care, and the proportion of deserting males cannot increase under 
natural selection. Neither of the strategies evolves isolated from the other, and 
𝑚𝑑 cannot evolve from 0.8 to 0.3 without affecting the proportion of deserting 
females, which then affects the direction of male strategy evolution. 

 

Figure 9. An illustration of the situation where strategy pairs (𝑐, 𝑐) and (𝑑, 𝑑) are both possi-
ble ESS pairs, and the outcome depends on the initial proportions of de-
serting individuals. Arrows indicate the presumed direction of evolution 
and circles represent the possible ESS pairs. Parameter values: 𝑉𝑐,𝑐 =
1, 𝑉𝑒𝑝𝑐,𝑐 = 0.9, 𝑉𝑐,𝑑 = 𝑉𝑑,𝑐 = 0.7, 𝑉𝑒𝑝𝑐,𝑑 = 0.6, 𝑉𝑑,𝑑 = 0.55, 𝑥 = 0.5, 𝑛 =
5, 𝑝𝐴 = 0.6, 𝑝𝐵 = 0.3, 𝑤 = 5, 𝑊 = 7. 

Iyer and Shukla (2021) argued that in their models including partial paternity, a 
mating-caring trade-off was necessary for female-only care to be an ESS. In my 
models, I incorporated partial paternity similarly as Iyer and Shukla (2021) and 
Fromhage et al. (2007) did but assumed that there is no mating-caring trade-off 
and deserting males are better at protecting paternity. In my models, I was able 

4 DISCUSSION 
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to find all pure strategies/strategy pairs to be evolutionarily stable, including 
female-only care. This indicates that the better ability to protect their paternity 
could be enough to select for male desertion even in the absence of a mating-
caring trade-off. 

Often caring males have been assumed to have higher paternity (Iyer and 
Shukla 2021). One explanation for higher paternity is that caring behavior could 
involve some behavior that simultaneously increases the carer’s paternity 
(Kvarnemo 2006). However, assuming that deserting males could be better at 
protecting their paternity is not unreasonable. My definition of parental care 
excluded any kind of mate guarding from that, so the most straightforward way 
to assume paternity protection in my model is that deserting males allocate their 
resources to guarding the female. For the results of this thesis, it is unnecessary 
to specify how exactly deserting males are better at protecting their paternity 
since it could happen in many ways but offering some explanation might be 
helpful. In any real-life situations, the biological explanations and meanings 
should be thoroughly explained since discriminating parental care from other 
types of behavior can be challenging. 

Due to the better ability to protect their paternity, desertion could readily 
be an ESS for males. What were the conditions for this to happen? From the 
analytical condition for desertion to be an ESS, I solved a limit for parameter 𝑝𝐵, 
which was the probability that an EPC attempt succeeds if it is directed towards 
a deserting male’s partner. According to this limit, the parameter 𝑝𝐵  could 
increase only to a certain level (without destabilizing desertion) as 𝑝𝐴  (the 
probability that an EPC attempt succeeds when it is directed towards a caring 
male’s partner) increased. Because the parameters 𝑝𝐴  and 𝑝𝐵  affect the 
probability of a successful EPC attempt, they directly affect the paternity loss 
males experience from their own broods.  

Since caring and deserting males were both allowed to make EPC attempts 
and they were equally good at achieving those, the proportion of deserting males 
did not affect anything else than the fitness obtained through EPCs. This fitness 
was the same for both caring and deserting males, meaning that the fitnesses 
between deserting and caring males did not differ due to the proportion of 
deserting males and the proportion of deserting males did not affect the ESS. This 
also causes the only difference between fitness expressions for caring and 
deserting males to be the benefit obtained from their own brood. In Model 1, only 
the focal male’s own strategy affects this benefit, and the evolutionary stability 
of a given strategy depends on the difference between offspring survival 
probabilities and the amount of paternity lost due to an EPC. For a deserting male 
to have higher fitness than a caring male, the loss from a caring male’s brood 
should be large enough to outweigh the lower offspring survival probability in a 
deserting male’s brood after the loss due to an EPC is considered. 

The loss is affected by the offspring survival probabilities, the probabilities 
that an EPC attempt succeeds, and the paternity share possible to obtain through 
an EPC. When the paternity share obtained by EPC increases, the maximum limit 
for 𝑝𝐵  increases, meaning that deserting is an ESS even when the difference 
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between 𝑝𝐴  and 𝑝𝐵  decreases. Especially with extremely high values of x, 
deserting becomes more and more beneficial, and 𝑝𝐵 could get close to 𝑝𝐴. That 
is because with high values of 𝑥 , the loss from a caring male’s own brood 
becomes significantly more than the loss from a deserting male’s brood. As the 
loss is the only term that could make fitness for a caring male lower than the 
fitness for a deserting male, and higher values of 𝑥  make the loss greater, 
desertion is more favorable with high values of 𝑥. Higher x affects the deserting 
male’s loss too, but not as much since other parameters that are multiplied by 𝑥 
are smaller in value than in the loss for a caring male. The significance of x is 
illustrated in Figure 10, which shows that the loss for the carer becomes 
significantly greater when 𝑥 increases (while other parameters stay constant). 

 

Figure 10. Increasing the value 𝑥 increases the amount of paternity loss more for a caring 
male. 

In my first model, the ESS was always a pure strategy, and it did not depend 
on the male population strategy. Fromhage et al. (2007) used the same approach 
as I did in Model 1 to search for conditions when males are selected to care. They 
found that the ESS depended on the proportion of deserting males, and a mixed 
ESS could be obtained. They compared their conditions for desertion with 
conditions obtained by Maynard Smith (1977) and concluded that by aligning 
their assumptions with Maynard Smith’s assumptions, they arrived at the same 
conditions for male care as Maynard Smith did, even though he did not specify 
the source for additional females. The main difference between the conditions is 
that the conditions given by Maynard Smith (1977) for male care did not depend 
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on the proportion of deserting males or the proportion of deserting females, even 
though he incorporated the female strategy also in his model. In the model by 
Maynard Smith (1977), the proportions of deserting individuals are not 
incorporated in any way in the fitness expressions, so it makes sense that they do 
not affect the ESS. 

Differing from these results, Iyer and Shukla (2021) found several mixed 
strategy pairs to be ESS pairs, and all pure strategy pairs were not ESS pairs in all 
their models. They allowed both caring and deserting males to attempt EPCs and 
took into account the paternity loss that a successful EPC attempt inflicts. 
However, they also assumed that deserting females are free to mate again with 
only deserting males and lay any additional eggs in a new nest. The difference 
between my Model 2 and the models by Iyer & Shukla is that in my model, the 
deserting female lays more eggs in the same nest and does not seek another male 
to sire her additional offspring. This implies that in Iyer & Shukla’s model, the 
benefit for deserting males is greater as they can expect another brood in addition 
to some extra-pair offspring in other male’s broods. 

In the second model, the population strategy of the same sex did not affect 
the ESS for males or females (similarly as in Model 1), and only the population 
strategy of the other sex affected that. The ESS for males was mainly dependent 
on the offspring survival probabilities, the paternity share gained through a 
successful EPC attempt, the probabilities for succeeding in EPC attempts, and the 
proportion of deserting females. The ESS for females was mainly dependent on 
the egg numbers, the offspring survival probabilities, and the proportion of 
deserting males. In the second model, the conditions for ESSs for males were like 
the ones in the first model, only including more parameters. A sufficient 
difference between 𝑝𝐴 and 𝑝𝐵 was necessary for desertion to be favorable, and 
higher values of 𝑥 made desertion more favorable. Figure 10 is relevant also in 
the second model, even though it is constructed with the loss terms of the first 
model. The loss terms are similar between the two models, and only the offspring 
survival probability changes according to the female strategy. 

In the first model, all the females were assumed to share the same fixed 
strategy but allowing them to change their strategy did not affect the outcome 
for males. Both female care and female desertion could be ESSs with appropriate 
parameter values, and this adding the female strategy did not make some form 
of care impossible. Although the population strategy of the opposite sex affected 
the ESS, the ESS was still always pure strategy, and the ESS pair was always a 
pure strategy pair. Remember that Fromhage et al. (2007) obtained a mixed ESS 
with a similar model structure. That is due to the assumption that caring males 
do not make any EPC attempts, which causes the fitness functions to differ with 
respect to the fitness obtained through EPCs and fitness lost due to an EPC. 

Since the population strategy of the opposite sex affected the ESS in my 
second model, achieving two different ESS pairs with the same parameter values 
was possible, depending on the initial proportions of deserting individuals. This 
is an interesting feature since it also means that the population might evolve 
towards an ESS pair that gives lower fitness than some other ESS pair. This 
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illustrates the situation where some ESS pair might be unattainable because the 
population cannot evolve towards that under natural selection. 

Because the offspring in a caring male’s brood are more likely to survive 
and an EPC attempt is more likely to succeed with a caring male’s partner, any 
male can expect more surviving extra-pair offspring per EPC attempt in a caring 
male’s brood versus a deserting male’s brood. Could this drive for more EPC 
attempts to be made towards caring males’ partners? I did not allow the number 
of EPC attempts to evolve but that could be an interesting question to explore 
further, assuming males could somehow distinguish between caring and 
deserting males’ mates. 

It would have been also possible to let the probability of succeeding in an 
EPC attempt vary according to the female caring decision. I did not incorporate 
this in my Model 2, but it is an interesting question to explore further. For 
example, it would be reasonable to assume that caring females are less receptive 
towards EPC attempts, and that lowers the probability for succeeding in those. 
In addition to that, it would also be possible to allow a different number of EPC 
attempts to be made towards a caring female than a deserting female. Both would 
be intriguing modifications to add to Model 2. 

Since the models by Iyer and Shukla (2021) assumed that deserting females 
mate again and lay the resulting additional eggs in new nests, modifying my 
Model 2 according to that assumption would be interesting. This would allow a 
more direct comparison of our results, and the addition of second nests would 
make the probability of remating dependent on the proportions of deserting 
individuals and may yield mixed ESS pairs as a result. The benefit for deserting 
males could be drastically different depending on the proportion of deserting 
females and therefore the female population strategy could have a much stronger 
effect on the male ESS. 

In all these models, breeding is assumed to be synchronous, and every 
individual finds a mating partner. This leads to the situation where there are no 
unmated individuals left after the mating. In real life, this is not usually the case 
as in many species, all individuals do not mate at the same time or even find a 
mating partner. This assumption is made to simplify the models and make 
mathematical solutions attainable and is commonly made in other models too 
(Maynard Smith 1982; Fromhage et al. 2007; Iyer et al. 2020; Iyer and Shukla 2021). 
Numerical simulations may be a useful tool to investigate situations where this 
assumption has been relaxed, as Iyer et al. (2020) showed. 

 
Since so much variation in parental care exists in nature, finding all pure strategy 
pairs as possible ESS pairs in my models is not surprising. The results show some 
fundamental dependencies between different parameters that affect the outcome. 
I showed that the better ability to protect one’s paternity can be enough to select 

5 CONCLUSIONS 
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for male desertion even if there is no mating-caring trade-off. The magnitude of 
paternity share possible to obtain through an EPC also affects the ESS, meaning 
that desertion cannot be favorable if the paternity share awarded is too small. My 
results from the second model also illustrate how the population strategy of the 
opposite sex affects the ESS and how different ESS pairs could theoretically be 
possible with the same parameter values but only one can be achieved depending 
on the initial population strategies. 

A notable result is that there were no mixed ESS pairs, meaning that the 
beneficial strategy was strictly caring or strictly deserting. This results from the 
simplicity of my models as they did not include negative frequency dependance. 
That is why my model cannot explain polymorphic populations where multiple 
patterns of parental care emerge. Analyses with more complex models could 
obtain also mixed ESS pairs as previous studies have shown. 
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APPENDIX 1. MATLAB SCRIPT (CASE 3.1.1) 

In this script I have allowed 𝑝𝐵 to change from 0 to 0.5 and 𝑉𝑑 to change from 0 
to 0.9. As a result, this script produces a matrix including information about the 
ESS in every value combination of parameters 𝑝𝐵  and 𝑉𝑑  and presents it as a 
figure. 

 
% changing pB and Vd 

  

clc 

clear 

  

md = 0.5; % the proportion of deserting males 

n = 10; % the number of epc attempts per male 

w = 5; % basic number of eggs 

values = 100; % how many values of pB and Vd 

  

Vc = 1; % the offspring survival probability when male cares and 

there is no epc 

Vepc = 0.9; % the offspring survival probability when male cares 

and there is an epc 

Vd = linspace(0,Vepc,values); % the offspring survival probabil-

ity when male deserts 

x = 0.5; % the basic paternity share possible to obtain through 

an epc 

pA = 0.5; % the probability that an epc attempt succeeds with a 

caring male's mate 

pB = linspace(0,pA,values); % the probability that an epc at-

tempt succeeds with a deserting male's mate 

deserts = zeros(values); % favorable strategies in a matrix form 

  

for j = 1:length(Vd) % for each value of Vd 

    for i=1:length(pB) % for each value of pB 

        % fitnesses for caring and deserting male 

        Hc = w*(Vc*(1-gamma_c(n,pA))+Vepc*gamma_c(n,pA)-1/(1-

md)*alfa(md,gamma_c(n,pA),x)*Vepc+alfa(md,gamma_c(n,pA),x)*Vepc+

beta(md,gamma_d(n,pB(i)),x)*Vd(j)); 

        Hd = w*(Vd(j)-

1/md*beta(md,gamma_d(n,pB(i)),x)*Vd(j)+alfa(md,gamma_c(n,pA),x)*

Vepc+beta(md,gamma_d(n,pB(i)),x)*Vd(j)); 

        deserts(i,j) = Hd > Hc; % 1 if deserting is more benefi-

cial and 0 if caring is more beneficial 

    end 

end 

  

% drawing the figure 

figure(1) 

imagesc(Vd,pB,deserts) 

set(gca,'YDir','normal') 

ylabel('pB') 

xlabel('Vd')  
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APPENDIX 2. MATLAB SCRIPT (CASE 3.1.2) 

In this script I allowed both 𝑝𝐴 and 𝑝𝐵 to change from 0 to 1. As a result, this script 
produces a matrix including information about the ESS in every value 
combination of the varying parameters and presents it as a figure. 

 
% changing pA and pB 

  

clc 

clear 

  

md = 0.5; % the proportion of deserting males 

n = 10; % the number of epc attempts per male 

w = 5; % basic number of eggs 

  

Vc = 0.8; % the offspring survival probability when male cares 

and there is no epc 

Vepc = 0.7; % the offspring survival probability when male cares 

and there is an epc 

Vd = 0.5; % the offspring survival probability when male deserts 

values = 100; % how many different values of pA and pB 

x = 0.7; % the basic paternity share possible to obtain through 

an epc 

pA = linspace(0,1,values); % values for pA 

pB = linspace(0,1,values); % values for pB 

deserts = zeros(values); % matrix for favorable male strategies 

  

for j = 1:length(pA) % for each pA value 

    for i=1:length(pB) % for each pB value 

        % fitness values for caring and deserting males 

        Hc = w*(Vc*(1-gamma_c(n,pA(j)))+Vepc*gamma_c(n,pA(j))-

1/(1-

md)*alfa(md,gamma_c(n,pA(j)),x)*Vepc+alfa(md,gamma_c(n,pA(j)),x)

*Vepc+beta(md,gamma_d(n,pB(i)),x)*Vd); 

        Hd = w*(Vd-

1/md*beta(md,gamma_d(n,pB(i)),x)*Vd+alfa(md,gamma_c(n,pA(j)),x)*

Vepc+beta(md,gamma_d(n,pB(i)),x)*Vd); 

        deserts(i,j) = Hd > Hc; % 1 if deserting is more benefi-

cial and 0 if caring is more beneficial 

    end 

end 

  

% drawing figure 

figure(1) 

imagesc(pA,pB,deserts) 

hold on 

plot(pA,pB,'black') % plotting the line where pA and pB are 

equal 

set(gca,'YDir','normal') 

ylabel('pB') 

xlabel('pA') 

hold off 
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APPENDIX 3. MATLAB SCRIPT (CASE 3.1.3) 

In this script, I allowed 𝑝𝐵 to change from 0 to 0.7 and 𝑥 to change from 0 to 1. As 
a result, this script produces a matrix including information about the ESS in 
every value combination of the varying parameters and presents it as a figure. 

 
% changing pB and x 

  

clc 

clear 

  

md = 0.5; % the proportion of deserting males 

n = 10; % the number of epc attempts per male 

w = 5; % basic number of eggs 

  

values = 100; % how many different values of x and pB 

Vc = 0.9; % the offspring survival probability when male cares 

and there is no epc 

Vepc = 0.8; % the offspring survival probability when male cares 

and there is an epc 

Vd = 0.6; % the offspring survival probability when male deserts 

x = linspace(0,1,values); % the basic paternity share possible 

to obtain through an epc 

pA = 0.7; % the probability that an epc attempt succeeds with a 

caring male's mate 

pB = linspace(0,pA,values); % the probability that an epc at-

tempt succeeds with a deserting male's mate 

  

deserts = zeros(values); % favorable male strategies in a matrix 

form 

  

for i = 1:length(x) % for each value of x 

    for j=1:length(pB) % for each value of pB 

        % fitness values for caring and deserting males 

        Hc = w*(Vc*(1-gamma_c(n,pA))+Vepc*gamma_c(n,pA)-1/(1-

md)*alfa(md,gamma_c(n,pA),x(i))*Vepc+alfa(md,gamma_c(n,pA),x(i))

*Vepc+beta(md,gamma_d(n,pB(j)),x(i))*Vd); 

        Hd = w*(Vd-

1/md*beta(md,gamma_d(n,pB(j)),x(i))*Vd+alfa(md,gamma_c(n,pA),x(i

))*Vepc+beta(md,gamma_d(n,pB(j)),x(i))*Vd); 

        deserts(i,j) = Hd > Hc; % 1 if deserting is more benefi-

cial and 0 if caring is more beneficial 

    end 

end 

  

figure(1) 

imagesc(pB,x,deserts) 

set(gca,'YDir','normal') 

ylabel('x') 

xlabel('pB') 
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APPENDIX 4. MATLAB SCRIPTS FOR MODEL 2 

MATLAB script to set parameter values 
 
In this script, the parameter values are set with the initial desertion values and 
the plotting function is called. 
 
clear 

clc 

  

values = 10; % how many initial values 

  

startingm = linspace(0,1,values); % initial md values 

startingf = linspace(0,1,values); % initial fd values 

iterations = 10000; % how many iterations or "generations" 

  

% PARAMETER VALUES 

Vcc = 1; 

Vepcc = 0.9; 

Vcd = 0.8; 

Vdc = 0.8; 

Vepcd = 0.7; 

Vdd = 0.6; 

x = 0.7; 

n = 5; 

pA = 0.8; 

pB = 0.1; 

gammac = 1 - exp(-n*pA); 

gammad = 1 - exp(-n*pB); 

w = 5; 

W = 8; 

  

% LOOPS FOR PLOTTING 

for i=1:length(startingm) 

    model2plot(Vcc, Vepcc, Vcd, Vdc, Vepcd, Vdd, x, gammac, gam-

mad, w, W,startingm(i),0,iterations); 

    model2plot(Vcc, Vepcc, Vcd, Vdc, Vepcd, Vdd, x, gammac, gam-

mad, w, W,startingm(i),1,iterations); 

end 

  

  

for i=1:length(startingf) 

    model2plot(Vcc, Vepcc, Vcd, Vdc, Vepcd, Vdd, x, gammac, gam-

mad, w, W,0,startingf(i),iterations); 

    model2plot(Vcc, Vepcc, Vcd, Vdc, Vepcd, Vdd, x, gammac, gam-

mad, w, W,1,startingf(i),iterations); 

end 

 

MATLAB script for plotting function 
 
This is the script for the plotting function that plots the evolutionary trajectories 
of males and females in Figures 6-9. 
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% function for plotting the evolutionary trajectories in model 2 

  

function [ desertion_prob ] = model2plot(Vcc, Vepcc, Vdc, Vcd, 

Vepcd, Vdd, x, gammac, gammad, w, W, md0 ,fd0,iterations) 

  

  

desertion_prob = zeros(2,iterations); % contains all desertion 

probabilities from all iterations 

desertion_prob(:,1) = [md0,fd0]'; % setting the first desertion 

probabilities as the initial md and fd given as parameters 

i = 2; 

  

while i <= iterations 

  

    md = desertion_prob(1,i-1); 

    fd = desertion_prob(2,i-1); 

  

    % the relative fitness change for male 

    dm = (((-1)+fd).*((-1)+gammac).*((-1)+md).*Vcc.*w+(-1).*gam-

mac.*Vepcc.*w+fd.* ...         %Mathematicasta kopioidut deri-

vaatat (haluat varmaankin kopioida omasi tänne) 

        gammac.*Vepcc.*w+(-1).*fd.*Vcd.*W+fd.*gammac.*Vcd.*W+(-

1).*fd.*gammac.* ... 

        Vepcd.*W+md.*(((-1)+fd).*Vdc.*w+gammac.*Vepcc.*(w+(-

1).*fd.*w)+fd.*( ... 

        Vcd+(-1).*Vdd).*W+fd.*gammac.*((-1).*Vcd+Vepcd).*W)).^(-

1).*(((-1)+ ... 

        fd).*((-1)+gammac).*Vcc.*w+gammac.*Vepcc.*w+(-

1).*fd.*gammac.*Vepcc.*w+fd.* ... 

        Vcd.*W+(-1).*fd.*gammac.*Vcd.*W+(-

1).*fd.*Vdd.*W+fd.*gammac.*Vepcd.*W+ ... 

        (-1).*gammac.*Vepcc.*w.*x+fd.*gam-

mac.*Vepcc.*w.*x+fd.*gammad.*Vdd.*W.*x+(-1) ... 

        .*fd.*gammac.*Vepcd.*W.*x+(-1).*((-1)+fd).*Vdc.*w.*((-

1)+gammad.*x)); 

     

     

  

    % the relative fitness change for female 

    df = ((-1).*md.*Vdc.*w+(-1).*((-1)+md).*(((-1)+gam-

mac).*Vcc+(-1).*gammac.* ... 

        Vepcc).*w+md.*Vdd.*W+((-1)+md).*(((-1)+gammac).*Vcd+(-

1).*gammac.*Vepcd) ... 

        .*W).*((-1).*((-1)+fd).*md.*Vdc.*w+(-1).*((-1)+fd).*((-

1)+md).*(( ... 

        (-1)+gammac).*Vcc+(-1).*gam-

mac.*Vepcc).*w+fd.*md.*Vdd.*W+fd.*((-1)+md).*( ... 

        ((-1)+gammac).*Vcd+(-1).*gammac.*Vepcd).*W).^(-1); 

  

  

  

    fitgrad = [dm,df]'; % fitness gradient 

    dp = 0.01/max(abs(fitgrad)); % the "resolution" of figure, 

tells how big changes in desertion probabilities are allowed 
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    desertion_prob(:,i) = min(1,max(0,(desertion_prob(:,i-

1)+fitgrad*dp))); % setting the new desertion probabilities, not 

allowing them below 0 or over 1 

  

    i = i+1; 

end 

  

% plotting 

figure(1); 

axis square; 

plot(desertion_prob(1,:),desertion_prob(2,:),'k','LineWidth',2); 

hold on; 

plot(desertion_prob(1,iterations),desertion_prob(2,iterati-

ons),'ok','LineWidth',2); % circles at the end points 

xlabel('md') 

ylabel('fd') 

hold on;  
 
 


	1 Introduction
	1.1 Game theory and its applications in evolutionary biology
	1.2 Previous theoretical research regarding parental care
	1.3 Objectives and predictions

	2 METHODS
	2.1 Model 1: Only the male strategy can evolve
	2.2 Model 2: Both male and female strategies can evolve

	3 RESULTS
	3.1 Model 1: Only the male strategy can evolve
	3.1.1 Case 1: The offspring survival probabilities change
	3.1.2 Case 2: Probabilities for succeeding in EPC attempts change
	3.1.3 Case 3: The paternity share obtained through a successful EPC changes

	3.2 Model 2: Female strategy can also evolve

	4 DISCUSSION
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	references
	Appendix 1. matlab script (case 3.1.1)
	Appendix 2. matlab script (case 3.1.2)
	Appendix 3. matlab script (case 3.1.3)

