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Abstract

In this thesis, we look into exact simulations of first hitting times of the solutions to stochastic
differential equations with unit diffusion coefficient. While discretization schemes do represent
essential tools in SDE simulations, their inherent errors prove them to be unsuitable for fields
where precision is necessary. Through our exploration of the work done in Exact Simulation
of the First-Passage Time of Diffusions (2019) by S. Herrmann and C. Zucca, we show that it
is indeed possible to construct an algorithm which exactly simulates the first hitting time of
the solution of a stochastic differential equation. Our key tools are Girsanov’s theorem, which
allows us to shift the measure under which we are looking at the problem to put it into a frame
which is more suitable for simulations, as well as the acceptance-rejection scheme which was
originally proposed in Exact Simulation of Diffusions (2005) by A. Beskos and G. O. Roberts.
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Chapter 1

Table of Notation

We provide the reader with a list of some of the most common symbols and abbreviations we
use in this thesis.

• SDE - Stochastic Differential Equation (Definition 3.6.1)

• B = (Bt) - (standard) Brownian motion (Definition 3.5.13)

• (Ω,F ,P) - probability space with sample space Ω, σ-algebra F and probability measure
P (Definition 3.1.5)

• EP - expected value (expectation) with respect to a (probability) measure P (Defini-
tion 3.4.9)

• 1A - indicator random variable on a set A (Definition 3.1.2)

• B(E) - Borel σ-algebra on a topological space E (Definition 3.1.6)

• R := (−∞,∞) - the set of real numbers

• R := R ∪ {±∞} - the extended reals

• N = {1, 2, 3, . . .} - the set of natural numbers

• Q - a probability measure associated with the Brownian motion (see for example Theo-
rem 3.6.6)

• λ - the Lebesgue measure (Example 3.1.8).

• Lp space and ∥·∥p associated norm (Definition 3.4.7)

• E[X| · ] - conditional expectation with respect to some object (refer to Section 3.4 and
Remark 3.4.17)

• τL - first hitting time (Definition 4.2.1)

• R = (Rt) - a three-dimensional Bessel process/bridge (see for example Proposition 4.3.1)

• Lloc
2 - see Definition 3.5.18
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• In the context of SDEs σ is the diffusion coefficent and b the drift coefficient (Defini-
tion 3.6.1)

• R+ = [0,+∞)

• a.s. = almost surely (Definition 3.4.15)
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Chapter 2

Introduction

Randomness is all around us: from deciding whether or not to take an umbrella with us to
work to deciding whether or not to buy shares of a particular company. Many processes in our
world can be described using stochastic differential equations, shorthand being SDEs, which we
explore in more detail in Section 3.6. For now, we can think about them as tools that describe the
evolution of random processes. There are many different applications of SDEs: for an overview,
one can look at [KaSh2, So, St] or the many references provided in [HeZu1].

Given their prevalence, it is meaningful to find ways to solve stochastic differential equations,
but only special classes of them have actual closed-form solutions. This is why it is valuable
to find ways to solve them via simulations or, more accurately, to find ways to simulate their
sample paths. Extending these different methods allows us to not only explore the different
processes whose behavior is governed by SDEs, but to also explore associated objects such as
stopping times and exit times.

In this thesis, we follow the work of [HeZu1] and clarify many results related to exact
simulations of the first hitting times of the solutions of SDEs. While the topic of first hitting
times of solutions of SDEs is interesting in its own right, it is of particular value in fields such as
finance where it enables precise determination as to when a stock has reached a particular value.

We begin our work by going through some of the main concepts while providing explicit
theoretical details in Chapter 3. In the simplest of words, a first hitting time (see Definition 4.2.1)
is the first time the solution of an SDE, which we for the moment denote as X , reaches a
particular level L > 0. When it is impossible to determine the first hitting time directly, we
resort to simulations. In the context of a process X , a simulation represents any sort of numerical
method through which “the computer” producesX(ω) for a fixed ω ∈ Ω. This can be done either
using exact methods or via some approximate method. One of the most common approximation
methods is the Euler scheme (often also called the Euler-Maruyama approximation scheme).
Using [KlPl, Chapter 9], we give a brief overview of this method.
Let X = (Xt)t∈[t0,T ] be the solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dBt

Xt0 = x,

where x represents the initial value and (Bt)t≥0 denotes the Brownian motion (see Defini-
tion 3.5.13). We now perform a time discretization of the interval [t0, T ], i.e. we break the
interval up into the following time chunks:

t0 = θ0 < θ1 < . . . < θn < . . . < θN = T.
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Using these time steps gives us the continuous time stochastic process Y = (Yt)t∈[t0,T ] which is
defined via the following recursion:

Yt = Yn + b(θn, Yn)(t− θn) + σ(θn, Yn)(Bt −Bθn), for θn ≤ t ≤ θn+1

where n = 0, 1, 2, . . . , N − 1 and the initial value is Y0 = x. Finally, note that we are using
the convention that Yn+1 = Yθn+1 . From a computational standpoint, this is a relatively simple
procedure, but it has some drawbacks. As is beautifully illustrated in [KlPl, Sections 9.2-9.3]
the method intrinsically comes with an approximation error which, according to [HeZu1, Page
1478], leads to an overestimation of the stopping time and thus seems unsuitable for estimating
first hitting times. Another major issue with this method is the fact it is restricted to finite time
intervals: a restriction which does not necessarily hold for first hitting times.

On the other hand, exact simulations do not have such limitations. In fact, this is where
the name exact comes from: these types of simulations result in sample paths that do not have
approximation errors stemming from time discretization. We present the basic idea using [SäSo,
Section 8.8] and [BeRo]. One can apply this method to SDEs of the form

dXt = b(Xt)dt+ dBt, (2.0.1)

where b(Xt) can be expressed as a gradient of a scalar function such that b(Xt) = ∇Ψ(Xt)
and (Bt)t≥0 is the Brownian motion as before. We note that, using the Lamperti transform (see
Remark 3.6.10), we can generalize this method to SDEs with diffusion terms that are not equal
to one. The key ingredient in exact simulations is rejection sampling. We let f, g be two density
functions (see Definition 3.2.15) with respect to some measure (see Definition 3.1.4) on Rd and
we assume there exists some ϵ > 0 such that ϵf

g
≤ 1. Thus, rejection sampling works as follows:

1. We simulate a random variable Y with density g

2. We simulate a random variable U which follows the Uniform(0, 1) distribution

3. If U < ϵf
g
(Y ), we accept Y . Otherwise, go back to Step 1.

For a more formal overview of rejection sampling, we refer the reader to [BeRo, Page 3]. The
key insight that allows us to use rejection sampling is Girsanov’s theorem (see Theorem 3.6.6)
which allows us to view the solution of an SDE under a probability measure which reduces it to
the Brownian motion. The reason why this is helpful is because of the fact that the Brownian
motion, and some associated objects, are relatively easy to simulate as we show in Section 4.2.
Furthermore, for a direct example of how exact simulation outperforms the Euler scheme, check
out [BeRo, Page 19].

The work we explored in [HeZu1] relies on the ideas from exact simulation, but with one
twist: since exact simulation are computationally rather heavy when simulating the entire path,
one can choose to simulate just the skeleton of the path. In cases when one only cares about
the first hitting time, the computational complexity is substantially reduced and the resulting
algorithms outperform those by [BeRo]. Our main object of interest is the initial algorithm
proposed in [HeZu1, Section 2.2] which we formally define in Section 4.1. The validity of this
initial algorithm is justified through a detailed exploration of the key results that are formally
proved in Chapter 4. For now, we state the key results of this thesis along with the most essential
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prerequisites needed to understand them:
We begin with a stochastic process X = (Xt)t≥0 which solves the SDE:

dXt = b(Xt)dt+ σ(Xt)dBt

X0 = x ∈ R. (2.0.2)

For technical reasons, we introduce the following set of objects:

β(x) =
∫ x

0
b(y)dy, p(x) =

∫ x

0
exp (−β(y)) dy, and γ(x) := b2(x) + b′(x)

2 . (2.0.3)

Assumption 2.0.1 (Drift term and scale function assumptions). The drift term b ∈ C1((−∞, L])
and limx→−∞ p(x) = −∞.

Definition 2.0.2 (First hitting time). We denote with τL the first time the process X reaches a
level L > 0. Formally, we write:

τL := inf{t ≥ 0: Xt = L}. (2.0.4)

Proposition 2.0.3. ( [HeZu1, Proposition 2.1]) Under Assumption 2.0.1, for any bounded and
measurable function ψ : R → R, we obtain

EP[ψ(τL)1{τL<∞}] = EQ[ψ(τL)η(τL)] exp (β(L) − β(x)) , (2.0.5)

where P (respectively Q) corresponds to the distribution of X , which was defined by Equa-
tion (2.0.2), (respectively the Brownian motion B) and

η(t) := E
[
exp

(
−
∫ t

0
γ(L−Rs)ds

) ∣∣∣∣Rt = L− x
]
. (2.0.6)

Here, (Rt)t≥0 stands for a 3-dimensional Bessel process with R0 = 0.

Assumption 2.0.4 (γ ≥ 0 and τL < ∞ a.s.). We assume that γ, defined in Equation (2.0.3), is
non-negative and the first-hitting time τL is almost surely finite.

THE ALGORITHM

Let us fix the level L > x.
Step 1: Simulate a non-negative random variable T with density fT .
Step 2: Simulate a 3-dimensional Bessel process (Rt) on the time interval [0, T ] with
endpoint RT = L− x. We define by DR,T the stochastic domain:

DR,T :=
{

(t, ν) ∈ [0, T ] × R+ : ν ≤ γ(L−Rt)
}
.

This domain depends on both random elements (Rt)t∈[0,T ] and T .
Step 3: Simulate a Poisson point process N , with Lebesgue intensity measure, on the state
space [0, T ] × [0,∞), independent of the Bessel process.
Step 4: If N(DR,T ) = 0 then set Y = T . Otherwise go to Step 1.

Outcome: the random variable Y .
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Theorem 2.0.5. ( [HeZu1, Theorem 2.3]) If γ is a non-negative function then the density fY of
the outcome variable Y , as described in THE ALGORITHM above (or in Section 4.1), satisfies

fY (t) = 1
Ξη(t)fT (t), (2.0.7)

where η is given by Equation (2.0.6) and Ξ stands for the normalization coefficient

Ξ :=
∫ ∞

0
η(t)fT (t)dt. (2.0.8)

In particular, under Assumptions 2.0.1 and 2.0.4, if T
(L−x)2 has the same distribution as 1

G2 ,
where G is a standard Gaussian random variable, then Y and τL, defined as the first hitting
time in Definition 2.0.2 are identically distributed.

What follows now, in Chapter 3, is first an introduction to all the tools from stochastics we
used in this thesis. From there, we move on to presenting the mathematical framework as well as
the proofs of the key results, and some of the limitations of the associated algorithm, in Chapter 4,
which we wrap up with a short overview of recent results and further avenues of research. For
the reader’s convenience, we’ve also included a table of notation in Chapter 1, some key results
from analysis in Appendix A, and, finally, Appendix B, gives the main distributions that were
referenced in this work.
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Chapter 3

Theoretical Minimum of Stochastics

We first present the necessary theoretical background following the pedagogical approach laid out
by Stefan and Hannah Geiss in their Lecture Notes from the University of Jyväskylä [Ge1, Ge2].
A familiarity with basic analysis is assumed: for a quick overview of the essential results, as
well as a list of appropriate resources, we refer the reader to [Ga].

3.1 Basic Results in Probability
The following is an overview of the building blocks of measure-theoretic probability theory.
This section is based on [Shi, Chapter 2], [Wi1, Chapters 1-5], [Çı, Chapter 1-2], [Bi1, Chapter
2] and [Kl, Chapter 1]. At times, some inspiration in the explanations is also taken from [Mi].
For a more thorough overview of measure theory, refer to [RoFi, Ha].

Definition 3.1.1 (σ-algebra). Let Ω be a set and F be a non-empty set of subsets of Ω. The class
of sets F ⊂ 2Ω is thus called a σ-algebra (or a σ-field) if it fulfills the following three conditions:

(i) Ω ∈ F

(ii) F is closed under complements

(iii) F is closed under countable unions

Definition 3.1.2 (Indicator random variable). The indicator random variable (indicator function)
on the set A is defined as

1(A)(x) :=

1, x ∈ A

0, x /∈ A

Definition 3.1.3 (Measurable and Measure spaces). A pair (Ω,F) consisting of a nonempty set
Ω and a σ-algebra F ⊂ 2Ω is called a measurable space. The sets A ∈ F are called measurable
sets. The triplet (Ω,F , µ) is called a measure space if µ : F → [0,∞) is a measure.

Definition 3.1.4 (Measure). Let (Ω,F) be a measurable space. The mapping µ : F → [0,∞) is
called a measure if the following conditions hold:

1. µ(∅) = 0
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2. for all (pairwise) disjoint sets A1, A2, · · · ∈ F it holds that:

µ

 ∞⋃
j=1

Aj

 =
∞∑

j=1
µ(Aj).

This property is known as σ-additivity.

Definition 3.1.5 (Probability Space and Probability Measure). Let (Ω,F , µ) be a measure space
and assume that µ(Ω) = 1. The triplet (Ω,F , µ) is then called a probability space with the
standard notation being (Ω,F ,P), where P : F → [0, 1] is a probability measure.

Definition 3.1.6 (Borel σ-algebra). Let E be a topological space. Then, the smallest σ-algebra
containing all open subsets of E is called the Borel σ-algebra on E, which we shall denote as
B(E). Sets of a Borel σ-algebra are called Borel sets which, in the context of a measurable
space (E,B(E)) are measurable sets.

Remark 3.1.7 (Generating the Borel σ-algebra). There are many classes of sets that can be used
to generate the Borel σ-algebra B(Rn). For a thorough discussion, check [Kl, Theorem 1.23].

Example 3.1.8 (Lebesgue measure). Let µ := λ be a measure on (R,B(R)). This measure is
called the Lebesgue measure on R if λ(A) is equal to the length of A for every interval A. For a
deeper introduction to the Lebesgue measure, check out [Ha, Section 15].

Definition 3.1.9. (Product σ-algebra [Ge1, Definition 5.3.1]) Let I := {1, . . . , d} or I :=
{1, 2, . . .}, i.e. we consider finite or countable product spaces at the same time.
Assume measurable spaces (Ωi,Fi) for i ∈ I , where I is a non-empty index set, and let

Ω := ×
i∈I

Ωi = {(ωi)i∈I : ωi ∈ Ωi for i ∈ I}.

Then, the product σ-algebra
⊗

i∈I Fi on Ω is generated by all sets

×
i∈I

Ei := {(ωi)i∈I ∈ Ω : ωi ∈ Ei}, where Ei ∈ Fi

and where only finitely many Ei do not coincide with Ωi.

Theorem 3.1.10. (Products of probability spaces [Ge1, Theorem 5.3.2]) For I := {1, . . . , d}
or I := N assume probability spaces (Ωi,Fi,Pi), i ∈ I . Then, there is a unique probability
measure P = ⊗

i∈I Pi on (Ω,F) := {×i∈I
Ωi,

⊗
i∈I Fi} such that

P

×
i∈I

Ei

 =
∏
i∈I

Pi(Ei),

where only finitely many of the Ei ∈ Fi differ from Ωi.
The probability space (Ω,F ,P) is called product of the probability spaces (Ωi,Fi,Pi) and is
denoted by

⊗
i∈I(Ωi,Fi,Pi).
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3.2 Random Variables and Distributions
We now give an overview of the essential terminology related to random variables, measurable
maps, image measures and distributions. For a more thorough discussion, we refer the reader
to [Kl, Sections 1.4-1.5], [GrSt, Chapter 2], [Mi, Chapter 8] which were all used in writing this
section.

Definition 3.2.1 (Measurable Maps). Let (Ω1,F1) and (Ω2,F2) be two measurable spaces.

(i) A map X : Ω1 → Ω2 is said to be F1 − F2- measurable (or, just, measurable) if

X−1(F2) := {X−1(A2) : A2 ∈ F2} ⊂ F1.

This is equivalent to: X−1(A2) ∈ F1 for any A2 ∈ F2. If X is measurable, we write
X : (Ω1,F1) → (Ω2,F2).

(ii) If Ω2 = R and F2 = B(R) is the Borel σ-algebra on R, then X : (Ω1,F1) → (R,B(R))
is called an F1-measurable real map.

Remark 3.2.2 (Connecting measuable maps and measures). The key reason why measurable
maps play such a key role in stochastics is because they “transport” a measure from one space
to another.

Theorem 3.2.3. (Generated σ-algebra [Kl, Theorem 1.78]) Let (Ω2,F2) be a measurable space
and Ω1 ̸= ∅. Let X : Ω1 → Ω2 be a map. The preimage X−1(F2) := {X−1(A2) : A2 ∈ F2} is
the smallest σ-algebra with respect to which X is measurable. We say that σ(X) := X−1(F2)
is the σ-algebra on Ω1 that is generated by X .

Remark 3.2.4. (Generated σ-algebra [Kl, Definition 1.79.]) Let Ω be a nonempty set. Let I be
an arbitrary index set. For any i ∈ I , let (Ωi,Fi) be a measurable space and let Xi : Ω → Ωi

be an arbitrary map. Then

σ(Xi, i ∈ I) := σ

(⋃
i∈I

σ(Xi)
)

= σ

(⋃
i∈I

X−1
i (Fi)

)

is called the σ-algebra on Ω that is generated by (Xi, i ∈ I). This is the smallest σ-algebra with
respect to which all Xi are measurable: If there is another σ-algebra G with the property that
all Xi are G-measurable, then σ(Xi, i ∈ I) ⊆ G.

Theorem 3.2.5. (Measurability of Continuous Maps [Kl, Theorem 1.88]) Let (Ω1, τ1) and
(Ω2, τ2) be topological spaces and let X : Ω1 → Ω2 be a continuous map. Then X is B(Ω1) −
B(Ω2)-measurable.

Theorem 3.2.6. (Coordinate Maps are Measurable [Kl, Theorem 1.90]) Let (Ω,F) be a
measurable space and letX1, . . . , Xn : Ω → R be maps. DefineX := (X1, . . . , Xn) : Ω → Rn.
Then

X is F–B(Rn)-measurable ⇐⇒ each Xi is F–B(R)-measurable.

The analogous statement holds for Xi : Ω → R := R ∪ {±∞}.
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Theorem 3.2.7. ([Kl, Theorem 1.91]) Let (Ω,F) be a measurable space. Let X : (Ω,F) →
(R,B(R)) and X, Y : (Ω,F) → (Rn,B(Rn)) be measurable maps. Then also the maps X + Y ,
X − Y , X · Y and X

Y
are measurable.

Remark 3.2.8 (Note about Theorem 3.2.7). Note that in Theorem 3.2.7, we set x
0 := 0 ∀ x ∈ R.

Definition 3.2.9 (Simple Function). Let (Ω,F) be a measurable space. A map X : Ω → R is
called a simple function if there is an n ∈ N and mutually disjoint measurable setsA1, . . . , An ∈
F , as well as reals α1, . . . , αn ∈ R, such that

X =
n∑

i=1
αi1Ai

,

where 1Ai
is the indicator random variable on the set Ai.

Definition 3.2.10 (Image Measure (Push Forward Measure)). Let (Ω1,F1) and (Ω2,F2) be
measurable spaces and let µ1 be a measure on (Ω1,F1). Further, let X : (Ω1,F1) → (Ω2,F2)
be measurable. The image measure of µ1 under the map X is the measure µ ◦X−1 on (Ω2,F2)
that is defined by

µ ◦X−1 : F2 → [0,∞], A2 7→ µ(X−1(A2)),
or, written differently,

µ2(A2) := µ1(X−1(A2)),
for A2 ∈ F2. It thus follows that (Ω2,F2, µ2) is a measure space and µ1(Ω1) = µ2(Ω2).

Definition 3.2.11 (Random Variables). Let (Ω1,F1) and (Ω2,F2) be measurable spaces and let
X : Ω1 → Ω2 be measurable. Furthermore, let P be a probability measure on the measurable
space (Ω1,F1), i.e. P(Ω1) = 1.

(i) The measurable map X is called a random variable with values in (Ω2,F2). If (Ω2,F2) =
(R,B(R)), then X is called a real random variable or simply a random variable. Through-
out this thesis, when we say random variable, we are talking about real random variables,
unless otherwise specified (or if it is clear from the context).

(ii) For A2 ∈ F2, we denote {X ∈ A2} := X−1(A2) and P(X ∈ A2) := P(X−1(A2)). In
particular, we let {X ≥ 0} := X−1([0,∞)) and define {X ≤ b} similarly and so on.

Definition 3.2.12 (Distributions). Let X be a random variable.

(i) The probability measure PX := P ◦X−1 is called the distribution of X .

(ii) For a real random variable X , the map FX : x 7→ P(X ≤ x) is called the distribution
function of X (or, more accurately, of PX). This is essentially the familiar cumulative
distribution function of the random variable X . We write X ∼ µ if µ = PX and say that
X has distribution µ.

(iii) A family (Xi)i∈I of random variables is called identically distributed if PXi
= PXj

for all

i, j ∈ I . We write X d= Y if PX = PY (d for distribution).

Remark 3.2.13 (The law of the random variable X). In the context of Definition 3.2.10, in case
µ1 is a probability measure, the measure µ2 is called the law (or distribution) of the random
variable X .
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Definition 3.2.14 (Borel function). A mapping X : Ri → Rk is defined to be measurable if it is
B(Ri) − B(Rk)-measurable. Such mappings are often called Borel functions.

Definition 3.2.15. (Density of a random variable and its distribution) A random variable and
its distribution have density f with respect to the Lebesgue measure if f is a non-negative Borel
function on R1 and

P(X ∈ A) = µ(A) =
∫

A
f(x)dλ(x), A ∈ B(R1). (3.2.1)

In other words, the requirement is that µ has density f with respect to the Lebesgue measure
λ (recall Example 3.1.8). If we have not specified the measure, then we assume that the
density is taken with respect to the Lebesgue measure. Observe that, plugging in R1 for A into
Equation (3.2.1), gives us the familiar result that the density integrates to 1 over all space.

Remark 3.2.16 (On notation of measurable maps). Throughout this section, we denoted all
measurable maps with capital letters: most often X . From now on, capital letters are reserved
for random variables, unless specified otherwise.

3.3 Independence
The concept of independence is a key idea in stochastics in general and we use it many times
throughout this thesis. Below, we quote some of the essential ideas as given in [Kl, Chapter 2]

Definition 3.3.1 (Independence of Events). Let I ̸= ∅ be an arbitrary index set and let (Ai)i∈I

be an arbitrary family of events. The family (Ai)i∈I is called independent if for any finite subset
J ⊂ I the following holds:

P

⋂
j∈J

Aj

 =
∏
j∈J

P(Aj).

Definition 3.3.2 (Independence of Classes of Events). Let I ̸= ∅ be an arbitrary index set
and let Ai ⊂ F be an arbitrary family of classes of events, such as σ-algebras, for all i ∈ I .
The family (Ai)i∈I is called independent if for any finite subset J ⊂ I and any choice of
Aj ∈ Aj, j ∈ J the following holds:

P

⋂
j∈J

Aj

 =
∏
j∈J

P(Aj).

Definition 3.3.3 (Independent random variables). Let I ̸= ∅ be an arbitrary index set. For
each i ∈ I , we let (Ωi,Fi) be a measurable space and let Xi : (Ω,F) → (Ωi,Fi) be a random
variable with generated σ-algebra σ(Xi) = X−1(Fi). Now, the family (Xi)i∈I of random
variables is said to be independent if the family (σ(Xi))i∈I of σ-algebras is independent.

Remark 3.3.4 (Indicator random variables on independent events). Let (Aj)j∈J ⊆ F , where J
is an arbitrary finite index set, be a collection of independent events. Then, the indicator random
variables on those events, i.e. (1Aj

)j∈J , are also independent. Actually, one could even show
that this is an “if and only if” statement; refer to [Kl, Chapter 2] for details.
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3.4 The Lebesgue Integral, Expectation and Conditional Ex-
pectation

We now present the Lebesgue integral, some results associated with it, as well as its connection
to the concept of expectation as can be found in [Bi1, Chapter 3-4]. We then extend our
conversation to the concept of conditional expectation, following closely [Wi1, Chapter 9], from
which we naturally transition into a discussion of conditional probability as presented in [Kl,
Chapter 8].

Unless it is otherwise specified, throughout this section, we assume that we are operating
on some measure space (Ω,F , µ), that X, Y and so on are measurable maps and that ±∞ is
allowed. We also make a quick remark about calculations involving infinity.

Remark 3.4.1 (Calculations with infinity). Let x ∈ (0,+∞). We use the following conventions
when working with infinity:

(i) 0 · ∞ = ∞ · 0 = 0

(ii) x · ∞ = ∞ · x = ∞

(iii) ∞ · ∞ = ∞.

Now, what is even a Lebesgue integral and why do we care about it? In the simplest of
terms, a Lebesgue integral is any integral with respect to a general measure. In our work, we
will mostly be dealing with Lebesgue integrals evaluated with respect to the Lebesgue measure.
Actually, this is rather common and it is no surprise that some authors specifically denote the
Lebesgue integral as the integral with respect to the Lebesgue measure. You can find more
details about the terminology related to the Lebesgue integral, as well as the Lebesgue measure,
in [RoFi, Chapter 3-4].
As far as the importance of the Lebesgue integral is concerned, it offers us the ability to integrate
functions that we could not deal with using the Riemann integral: the indicator function on the
rationals is a classical example (see [Mo, Section 15.2 and Chapter 18]). We will now present
the Lebesgue integral in three steps, following the convention found in [Kl, Chapter 4] and [Ge1,
Chapter 6].

Definition 3.4.2 (Step 1: Non-negative simple functions). Let Y : Ω → R be a non-negative
simple function with representation

Y =
n∑

i=1
αi1Ai

for αi ∈ [0,∞) and Ai ∈ F . We thus let

∫
Ω
Y dµ =

∫
Ω
Y (ω)dµ(ω) :=

n∑
i=1

αiµ(Ai),

which has a unique representation (see for example [Ge1, Lemma 6.1.2]).
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Definition 3.4.3 (Step 2: Non-negative functions). Let X : Ω → R be a measurable map such
that X(ω) ≥ 0 for all ω ∈ Ω. We thus define:∫

Ω
Xdµ =

∫
Ω
X(ω)dµ(ω)

:= sup
{∫

Ω
Y dµ : 0 ≤ Y (ω) ≤ X(ω), where Y is a simple function

}
Let X be some general measurable map. We define its positive part as:

X+(ω) =

X(ω) if 0 < X(ω) ≤ ∞
0 if −∞ ≤ X(ω) ≤ 0

(3.4.1)

and, similarly, the negative part as:

X−(ω) =

−X(ω) if −∞ ≤ X(ω) < 0
0 if 0 ≤ X(ω) ≤ ∞

(3.4.2)

Note that these functions are non-negative, measurable and that we get the following decomposi-
tion

X = X+ −X−,

which now allows us to define the Lebesgue integral for the general case.

Definition 3.4.4 (Step 3: The General Case). Let X : Ω → R be a general measurable function.

(1) Existence
If
∫

Ω X
+dµ < ∞ or

∫
Ω X

−dµ < ∞, then we say that the Lebesgue integral
∫

Ω Xdµ exists
and we set ∫

Ω
Xdµ :=

∫
Ω
X+dµ−

∫
Ω
X−dµ.

(2) Integrability
The map X is integrable if∫

Ω
X+dµ < ∞ and

∫
Ω
X−dµ < ∞.

(3) Integral over a set A ∈ F
If the Lebesgue-integral

∫
Ω Xdµ exists and A ∈ F , then∫

A
Xdµ =

∫
A
X(ω)dµ(ω) :=

∫
Ω
X(ω)1A(ω)dµ(ω).

Since integrability is used very often, we isolate Definition 3.4.5 which presents some of the
most common ways to denote that X is integrable.

14



Definition 3.4.5. (Integrability (Adapted from [Bi1, Page 206])) Let X : Ω → R be a general
measurable function. We say that X is integrable if and only if:∫

Ω
|X|dµ < ∞,

which is equivalent to the requirement∫
Ω

|X|dµ =
∫

Ω
(X+ +X−)dµ < ∞.

Theorem 3.4.6. (Linearity [Bi1, Theorem 16.1(ii)]) If X and Y are integrable and α, β ∈ R,
then αX + βY is integrable and:∫

Ω
(αX + βY )dµ = α

∫
Ω
Xdµ+ β

∫
Ω
Y dµ.

Definition 3.4.7 (Lp space). Let (Ω,F , µ) be a measure space and X : Ω → R be a measurable
map. We define the Lp-norm, for p ∈ [1,∞) as:

∥X∥p =
(∫

Ω
|X|pdµ

) 1
p

.

The spaces on which the Lp-norm is finite is called the Lp space with the following definition:

Lp(Ω,F , µ) = Lp(Ω, µ) = Lp(µ) = {X : Ω → R measurable and ∥X∥p < ∞}.

Remark 3.4.8 (“Defining” a norm). In Definition 3.4.7, we said that we defined ∥ · ∥p to be a
norm. In reality, what we did is we defined the ∥ · ∥p of a particular object in a certain way, but
we cannot just will something into being a norm. However, one can show that the object ∥ · ∥p

indeed satisfies the requirements of a norm; check [Fo2, Section 4.1.] for the theoretical details
that enable us to show this result.

It turns out that the expectation is a special case of the Lebesgue integral:

Definition 3.4.9 (Expectation (expected value)). Let (Ω,F ,P) be a probability space and X a
random variable on this space. Assuming that it exists, the expectation of this random variable
is defined as:

E[X] =
∫

Ω
XdP =

∫
Ω
X(ω)P(dω).

Note that all the previous conventions, properties and results related to the Lebesgue integral
also apply to the expectation.

Remark 3.4.10 (Integrability in the language of expectation). Let X : Ω → R be a general
measurable function. We say that X is integrable if and only if:

E[|X|] < ∞.

15



Proposition 3.4.11. (Expectation and Distributions [Adapted from [Bi1, Page 274]]) Let X be
a random variable with distribution µ (in the context of Remark 3.2.13). If g is a Borel function
of a real variable, then it follows that

E[g(X)] =
∫ ∞

−∞
g(x)µ(dx).

If X has density f , then we can rewrite this as:

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dλ(x).

This result is also often refered to as the change of variable formula.

Remark 3.4.12 (Remark on notation for the Lebesgue integral). Often, when it is clear from the
context, we will use dx to mean dλ(x). This also makes sense considering how often, in our
applications at least, the Riemann integral coincides with the Lebesgue integral (refer to [RoFi,
Chapter 5, Section 3] for a more rigorous discussion of when this is truly the case).

Theorem 3.4.13. (Expectation and independence[Adapted from [Fe, Page 222]]) Let (Ω,F ,P)
be a probability space and X, Y two independent and integrable random variables. The
following two statements are true:

1. E[|XY |] < ∞

2. E[XY ] = E[X]E[Y ].

Proposition 3.4.14 (Expectation of a product of independent random variables). Let (Ω,F ,P)
be a probability space with independent, integrable random variables X1, X2, . . . , Xn. Then, it
follows that:

E[X1 ·X2 · · ·Xn] = E[X1] · E[X2] · · ·E[Xn] (3.4.3)

Proof of Proposition 3.4.14. Before beginning the proof, we must first check whether or not the
object X1 ·X2 · · ·Xn is even integrable. The easiest way to show this is via induction:

1. Base case n = 2
From the first statement of Theorem 3.4.13, we know that

E[|X1 ·X2|] < ∞

2. Inductive hypothesis n = k, where k ≥ 2 and k ∈ N
We assume that the object X1 ·X2 · · ·Xk is integrable.

3. Inductive step
We prove that the statement is valid for some n = k + 1.

E[|X1 ·X2 · · ·Xk ·Xk+1|] ≤ E[|X1 ·X2 · · ·Xk||Xk+1|] ·
≤ E[|X1 ·X2 · · ·Xk| · E[|Xk+1|] < ∞,

which proves integrability. In order to prove Equation (3.4.3), we will use induction and the
second part of Theorem 3.4.13.
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1. Base case n = 2
From Theorem 3.4.13, we know that the statement of Proposition 3.4.14 holds for two
independent random variables.

2. Inductive hypothesis n = k, where k ≥ 2 and k ∈ N
We assume that Equation (3.4.3) is valid for some n = k with properties as specified
above.

3. Inductive step
We prove that the statement is valid for some n = k + 1.

E[X1 ·X2 · · ·Xk ·Xk+1] = E[X1 ·X2 · · ·Xk] · E[Xk+1] (3.4.4)
= E[X1] · E[X2] · · ·E[Xk] · E[Xk+1], (3.4.5)

where, in Equation (3.4.4) we used the fact that the product X1 · X2 · · ·Xk is independent
of Xk+1 (refer to Section 3.3 to see that this follows from the definitions) and then applied
Theorem 3.4.13. Finally, in going to Equation (3.4.5), we just used the inductive hypothesis
which gave us the desired result.

Definition 3.4.15 (Almost everywhere and almost surely). Let (Ω,F , µ) be a measure space,
and P(ω) some sort of a property that depends on ω. We say that this property holds almost
everywhere (a.e.) if the set {ω ∈ Ω : P holds} is measurable with respect to F and µ({ω ∈
Ω : P does not hold}) = 0, meaning that the set where P is not true has measure 0. In case
µ is a probability measure, we say that the property holds almost surely (a.s.) and often write
P({ω ∈ Ω : P holds}) = 1.

Definition and Lemma 3.4.16. (Conditional Expectation [Wi1, Section 9.2]) Let (Ω,F ,P) be
a probability space, X an integrable random variable and G a sub-σ-algebra of F . Then, there
exists a random variable Y such that:

(i) Y is G-measurable

(ii) E(|Y |) < ∞

(iii) for every set G ∈ G, we have∫
G
Y dP =

∫
G
XdP, ∀G ∈ G (3.4.6)

Furthermore, the conditional expectation is almost surely unique: if Ỹ is another random
variable satisfying all of the mentioned properties, then Ỹ = Y a.s. A random variable Y with
all of these properties is said to be a version of the conditional expectation E[X|G] of X given
G and we write Y = E[X|G]. Two versions agree a.s., and, once one has become familiar with
the concept, one identifies different versions and speaks of the conditional expectation E[X|G],
but one must always keep the a.s. in mind.

Remark 3.4.17 (Conditional expectation: notation). It is common for authors to write E[X|Z]
for E[X|σ(Z)], E[X1|Z1, Z2, . . .] for E[X|σ(Z1, Z2, . . .)], and so on. Throughout this thesis, we
will use both of these notations depending on what we want to emphasise: the former when the
focus is on the behavior of a random variable at a particular time step, and the latter when the
focus is on the structure of the σ-algebra being generated by the random variables.
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Proposition 3.4.18. (Properties of conditional expectation [Wi1, Page 88]) Let X, Y be
integrable random variables on (Ω,F ,P) and let H ⊆ G ⊆ F be sub-σ-algebras of F . Then
the following holds true:

(1) Linearity:
If µ, λ ∈ R, then

E[λX + µY |G] = λE[X|G] + µE[Y |G] a.s.

(2) Monotonicity:
If X ≤ Y a.s., then E[X|G] ≤ E[Y |G] a.s.

(3) Positivity:
If Y ≥ 0 a.s., then E[Y |G] ≥ 0 a.s.

(4) Projection property :
If X is G-measurable, then E[X|G] = X a.s.

(5) Tower property:

E[E[X|G]|H] = E[E[X|H]|G] = E[X|H] a.s.

(6) “Take out what is known”
If Z : Ω → R is G-measurable and E[|XZ|] < ∞, then

E[ZX|G] = ZE[X|G] a.s.

(7) Conditional expectation on a trivial σ-algebra
If G = (∅,Ω), then E[X|G] = EX

(8) Conditional expectation: Independence
If for all B ∈ B(R) and all A ∈ G, one has that

P ({X ∈ B} ∩ A) = P(X ∈ B)P(A),

i.e. if X is independent of G, then E[X|G] = EX a.s.

Definition 3.4.19 (Conditional Probability with respect to a σ-algebra). Let (Ω,F ,P) be a
probability space, G ⊆ F and A ∈ F . We define the conditional probability of the event A with
respect to the σ-algebra G as:

P(A|G) = E[1A|G]

Lemma 3.4.20. (Factorization Lemma [Kl, Corollary 1.97]) Let (Ω2,F2) be a measurable space
and let Ω1 ̸= ∅. Let f : Ω1 → Ω2 be a map. A map g : Ω1 → R is σ(f) − B(R)- measurable if
and only if there is a measurable map ϕ : (Ω2,F2) → (R,B(R)) such that g = ϕ ◦ f .

We now present a more general definition of the conditional probability for events, as given
in [Kl, Page 180]. Let (Ω,F) be a measurable space, X a random variable with values in the
measurable space (G,G) and Z a σ(X)-measurable (real) random variable. By Lemma 3.4.20,
and setting f = X and g = Z, it follows that there is a map ϕ : G → R such that the following
conditions hold
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• ϕ is G − B(R)-measurable

• ϕ(X) = Z.

Definition 3.4.21 (Conditional Probability). Let Y ∈ L1(Ω,F ,P) and X : (Ω,F) → (G,G).
We define the conditional expectation of Y , given X = x, by E[Y |X = x] := ϕ(x), where
ϕ is the function with the properties from before with Z = E[Y |X]. Analogously, we define
P[A|X = x] = E[1A|X = x] for A ∈ F .

Example 3.4.22 (An estimate involving conditional expectation). Let X ≥ 0 a.s. and set
G = {A,Ac, ∅,Ω}. Let P(A) = p. It follows that

E[X|Ac] =
E[X1Ac ]

1 − p
≤ E[X]

1 − p
,

which we show using some tricks related to conditional expectation and conditional probability.
First of all, one can interpret the object E[X|Ac] = E[X|G]1Ac in such a way that we restrict
ourselves first to the σ-algebra G and then to the particular set Ac. Let us define E[X|G] = Y
and recall that, for a, b ∈ R, Y can be written as

Y = a1A + b1Ac .

This representation is allowed since Y is G-measurable by definition and we are allowed to write
such an object as the linear combination of partitions sets; in particular, note that Ω = A ∪ Ac.
We further write:

E[X1Ac ] = E[Y 1Ac ] = E[b1Ac ] = bP(Ac) = b(1 − p)

=⇒ b =
E[X1Ac ]

1 − p
. (3.4.7)

Similary, it follows that

E[X1A] = E[Y 1A] = E[a1A] = aP(A) = ap

=⇒ a =
E[X1A]

p
. (3.4.8)

Using Equation (3.4.8) and Equation (3.4.7), together with our discussion at the beginning of
this example, we can write:

E[X|Ac] = E[X|G]1Ac

=
(
E[X1A]

p
1A

)
1Ac +

(
E[X1Ac ]

1 − p
1Ac

)
1Ac

=
E[X1Ac ]

1 − p
1Ac

≤ E[X]
1 − p

,

where the last step follows from the monotonicity of the Lebesgue integral since X1Ac ≤ X a.e.
It is also worth noting that in the first step of both Equation (3.4.8) and Equation (3.4.7), we
used Equation (3.4.6).

Estimates such as the one in Example 3.4.22 are incredibly valuable when looking for upper
bounds in a simulation to check for efficiency. This exact estimate is crucial in [HeZu1, Theorem
3.6].
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3.5 Stochastic Analysis
Following [ChWi, Chapter 1], [IkWa, Chapter 1], [KaSu, Chapter 1-2], [LaLa, Section 3.4], [Du,
Chapter 3], and [CoTa, Chapter 2], we present the key results in stochastic analysis used in
this thesis. For the most part, we restrict ourselves to the 1-dimensional case while noting that
the results naturally extend into higher dimensions. Throughout this section, unless specified
otherwise or it is clear from the context, we assume that we are operating on some probability
space (Ω,F ,P).

Definition 3.5.1 (Stochastic Process). Let I = [0, T ] for some T ∈ (0,∞) or I = [0,∞) and
let (Ω,F ,P) be a probability space. A collection of random variables X = (Xt)t∈I , where
Xt : Ω → R, is said to be a stochastic process with index set I and state space R.

Definition 3.5.2 (Index set). We say that I is the index set if either I = [0, T ] for some
T ∈ (0,∞) or I = [0,∞).

From now on, in this section we assume that our index set is defined as in Definition 3.5.2.

Definition 3.5.3 (The trajectory of a stochastic process). For each fixed ω ∈ Ω, the function
t 7→ Xt(ω) is known as the sample path or trajectory associated with ω.

Definition 3.5.4 (Filtration (history)). The filtration F = (Ft)t∈I is a collection of σ-algebras
on Ω for which Fs ⊂ Ft ⊂ F whenever s ≤ t and s, t ∈ I . In slightly simpler terms, a filtration
is an increasing family of sub-σ-algebras.

Definition 3.5.5 (Natural history). The natural history of a stochastic process X is the history
(filtration) FX = (FX

t )t∈I and FX
t is the smallest σ-algebra for which Xs is FX

t -measurable
for all s ≤ t with s, t ∈ I . See Remark 3.2.4 for additional details.

Definition 3.5.6 (Stochastic Basis). The quadruplet (Ω,F ,P,F) represents a stochastic basis.
The terms probability field and filtered probability space are also used.

Definition 3.5.7 (Martingales and related processes). Let (Ω,F ,P,F) be a stochastic basis and
let X = (Xt)t∈I be a stochastic process, where Xt : Ω → R and s, t ∈ I . A process X is called
an (F-)martingale if

(a) Xt is Ft-measurable for all t ∈ I (we say that X is adapted or F-adapted),

(b) E[|Xt|] < ∞ for all t ∈ I and

(c) E[Xt|Fs] = Xs for all 0 ≤ s ≤ t, with s, t ∈ I .

If we keep conditions (a) and (b) as well as the original setup as given in the definition, but
modify (c) as follows

(csub) E[Xt | Fs] ≥ Xs, then X is a submartingale and

(csup) E[Xt | Fs] ≤ Xs, then X is a supermartingale.
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Definition 3.5.8 (Finite-dimensional distribution). Let X = (Xt)t∈I and Y = (Yt)t∈I be
stochastic processes on (Ω,F ,P) and (Ω1,F1,P1), respectively. We say that X and Y have the
same finite-dimensional distributions if

P((Xt1 , . . . , Xtn) ∈ B) = P1((Yt1 , . . . , Ytn) ∈ B)

for all 0 ≤ t1 < . . . < tn ∈ I , where n = 1, 2, . . . and B ∈ B(Rn).

Definition 3.5.9 (Progressively measurable). Let (Ω,F ,P,F) be a stochastic basis and X =
(Xt)t∈I a stochastic process where Xt : Ω → R. We say that such a process is progressively
measurable with respect to the filtration F if, for each s ∈ I , the map

(t, ω) 7→ Xt(ω)

from [0, s] × Ω to R is measurable with respect to B([0, s]) ⊗ Fs. We usually denote this by
writing X : (Ω × [0, s],Fs ⊗ B([0, s])) → (R,B(R)).

Definition 3.5.10 (Null sets). Let (Ω,F , µ) be a measure space. A set A ∈ F is called a µ-null
set, or simply a null set, if µ(A) = 0. By Nµ we denote the class of all subsets of µ-null sets.

Definition 3.5.11 (Complete Probability Space). A probability space (Ω,F ,P) is called com-
plete if NP ⊂ F .

Definition 3.5.12 (Usual conditions). We say that a stochastic basis (Ω,F ,P,F) satisfies the
usual conditions if the following conditions are satisfied

(i) The probability space (Ω,F ,P) is complete,

(ii) A ∈ Ft for all A ∈ F with P(A) = 0 and t ∈ I ,

(iii) the filtration (Ft)t∈I is right-continuous,i.e. Ft = ⋂
s>t,s∈I Fs for all t ∈ I .

The concepts of Definition 3.5.12 are crucial. Without them, much of the theory would fail.
For a deeper overview of this, check out [Kl, Chapter 21, Chapter 25].

Definition 3.5.13. (Brownian Motion [KaSu, Definition 2.1.1]) Let (Ω,F ,P) be a complete
probability space and B = (Bt)t∈I a stochastic process. The process B is called a standard
Brownian motion if it satisfies the following conditions:

(i) Initial condition:
B0(ω) = 0 a.s.,

(ii) Independent increments property:
for all 0 ≤ s < t < ∞ the random variable Bt − Bs is independent of (Bu)u∈[0,s],
which means that for all 0 ≤ s1 ≤ . . . ≤ sn ≤ s and A,A1, . . . , An ∈ B(R) it holds
that

P(Bs1 ∈ A1, . . . , Bsn ∈ An, Bt −Bs ∈ A) = P(Bs1 ∈ A1, . . . , Bsn ∈ An)P(Bt −Bs ∈ A),

(iii) Stationary Increments Property:
for all 0 ≤ s < t < ∞ and for all A ∈ B(R) one has that

P(Bt −Bs ∈ A) = 1√
2π(t− s)

∫
A

exp
(

− x2

2(t− s)

)
dλ(x),
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(iv) Continuity of paths:
The sample paths t 7→ Bt(ω) are almost surely continuous.

Definition 3.5.14 (Stopping time). The random variable τ : Ω → I ∪ {∞} is the stopping time
(or F-stopping time) if {τ ≤ t} ∈ Ft for all t ∈ I. Note that a stopping time is allowed to take
the value ∞.

Definition 3.5.15 (First Hitting Time). Let X = (Xt)t∈I be continuous, in the sense that it has
continuous paths, and adapted and let H be a non-empty subset of the real line. We define the
first hitting time to be

τH = inf{t ≥ 0: Xt ∈ H}.

Theorem 3.5.16. ( [Du, (3.4)Theorem]) If H in Definition 3.5.15 is a closed set, then the hitting
time is actually a stopping time.

Proposition 3.5.17. (Recurrence of the Brownian motion [JeYoCh, Proposition 1.4.2.1]) Let B
be a Brownian motion and τL the first hitting time of L, defined as τL = inf{t > 0: Bt = L}.
Then, it follows that P(τL < ∞) = 1 for every L ∈ R.

We now present Itô’s formula and some necessary definitions. Since we only care about the key
result, i.e. the formula itself, we skip over any formal introductions of the stochastic integral:
the interested reader should refer to [Kl, Chapter 25] or [KaSu, Chapter 5].

Definition 3.5.18 (Lloc
2 ). We define the space Lloc

2 as:

Lloc
2 := {H = (Ht)t≥0 : H is progressively measurable and

∫ t

0
H2

u(ω)du < ∞ a.s. for all t ≥ 0}

Proposition 3.5.19. ( [KaSu, Page 96]) Let K,H ∈ Lloc
2 and α, β ∈ R. It then follows that∫ t

0
(αKu + βHu)dBu = α

∫ t

0
KudBu + β

∫ t

0
HudBu a.s.

Definition 3.5.20 (Itô process). A continuous and adapted process X = (Xt)t≥0, Xt : Ω → R,
is called an Itô process if there exists a process H ∈ Lloc

2 and a progressively measurable
process a = (at)t≥0 where∫ t

0
|au(ω)|du < ∞ for all t ≥ 0 and ω ∈ Ω,

and x0 ∈ R such that

Xt(ω) = x0 +
(∫ t

0
HudBu

)
(ω) +

∫ t

0
au(ω)du

for t ≥ 0, a.s.

Definition 3.5.21 (The space C1,2([0,∞) × R)). A continuous function f : [0,∞) × R → R
belongs to the space C1,2([0,∞) × R) assuming all the partial derivatives ∂f

∂t
,∂f
∂x

and ∂2f
∂x2 exist

on (0,∞) × R, are continuous, and can be continuously extended to [0,∞) × R. Of course, in
order for the partial derivatives to make sense, we require that (t, x) 7→ f(t, x).

22



Theorem 3.5.22. (Itô’s formula [LaLa, Theorem 3.4.10]) Let X be as in Definition 3.5.20 and
let f ∈ C1,2([0,∞) × R). It follows that

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂u
(u,Xu) du+

∫ t

0

∂f

∂x
(u,Xu)HudBu

+
∫ t

0

∂f

∂x
(u,Xu) audu+ 1

2

∫ t

0

∂2f

∂x2 (u,Xu)H2
udu

for t ≥ 0 a.s. Note that f(t,Xt) is also itself an Itô process.

We end this section with the definition of a Radon measure and the Poisson random measure.
Random measures are beyond the scope of this thesis so we refer the interested reader to [Ka,
Chapter 10].

Definition 3.5.23 (Radon measure). Let E ⊂ Rd. A Radon measure on (E,B(E)) is a measure
µ such that for every compact measurable set A ∈ B(E), µ(A) < ∞.

Definition 3.5.24. (Poisson random measure [CoTa, Section 2.6.1]) Let (Ω,F ,P) be a probabil-
ity space, E ⊂ Rd, and µ a given (positive) Radon measure on a measurable space (E,B(E)).
For simplicity, let’s denote B(E) with E . A Poisson random measure on E with intensity measure
µ is an integer-valued random measure:

M : Ω × E → N

(ω,A) 7→ M(ω,A),

such that

1. For (almost all) ω ∈ Ω, M(ω, ·) is an integer-valued Radon measure on E: for any
bounded measurable A ⊂ E, M(A) < ∞ is an integer-valued random variable.

2. For each measurable set A ⊂ E, M(·, A) = M(A) is a Poisson random variable with
parameter µ(A):

∀k ∈ N, P (M(A) = k) = e−µ(A) (µ(A))k

k! . (3.5.1)

3. For disjoint measurable sets A1, . . . , An ∈ E , the variables M(A1), . . . ,M(An) are
independent.

3.6 Stochastic Differential Equations (SDEs)
We close our theoretical minimum with the presentation of stochastic differential equations,
further denoted as SDEs, and some associated results, as they are given in [KaSu, Chapter
6], [JeYoCh, Chapter 1], [KlPl], [ReYo, Chapters 3-4], [Wi2], [ScPaBö, Chapter 6] and [KaSh1,
Chapter 5]. Throughout this section we assume that we are working on a stochastic basis
(Ω,F ,P,F = (Ft)t≥0), that the usual conditions hold, and thatB = (Bt)t≥0 denotes a Brownian
motion. From the setup, it follows that B is F-adapted.
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Definition 3.6.1. (Strong solution of an SDE [KaSu, Adapted from Definition 6.1.1]) Let x ∈ R,
D ⊆ R be an open set, and let b, σ : [0,∞) ×D → R be continuous. We say that a stochastic
process (Xt)t≥0 is a strong solution of the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (3.6.1)

with initial condition X0 = x, if the following assertions hold:

(i) Xt(ω) ∈ D for all t ≥ 0 and ω ∈ Ω

(ii) X is F-adapted with (a.s.) continuous sample paths

(iii) For all t ≥ 0

Xt = x+
∫ t

0
b(u,Xu)du+

∫ t

0
σ(u,Xu)dBu a.s.

Note that from the continuity of X and (b, σ), it follows that∫ t

0

(
|b(u,Xu(ω))| + |σ(u,Xu(ω))|2

)
du < ∞

for all ω ∈ Ω and that σ(u,Xu) ∈ Lloc
2 . Note that σ is known as the diffusion coefficient and b

as the drift coefficient.

Definition 3.6.2 (Strong uniqueness). The SDE in (3.6.1) with initial condition X0 = x, has
a unique strong solution if, for any two strong solutions X = (Xt)t≥0 and Y = (Yt)t≥0 on
(Ω,F ,P), one has

P {ω ∈ Ω: Xt(ω) = Yt(ω) ∀t ≥ 0} = 1.

This notion of uniqueness is called strong uniqueness of solutions.

Theorem 3.6.3. (Conditions for Strong Solution [LaLa, Theorem 3.5.3]) Given all the assump-
tions so far, and letting there be some K < ∞, we can impose two conditions on b and σ to
guarantee that Equation (3.6.1) has a unique solution:

(i) Lipschitz condition:

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ K|x− y| (3.6.2)

(ii) Linear Growth Bound:

|b(t, x)| + |σ(t, x)| ≤ K(1 + |x|), (3.6.3)

for t ≥ 0 and x, y ∈ R.

Some of the conditions in Theorem 3.6.3 can be relaxed. For us, the most important one
is that we can replace the global Lipschitz condition in Equation (3.6.2) with a local one. This
means that the fixed K can be replaced with, possibly different constants, KN for |x|, |y| ≤ N
and each N > 0. For more details, refer to [KlPl, Section 4.5].
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Remark 3.6.4 (Note about weak solutions). In the theory of SDEs, we also distinguish weak
solutions. We will not really deal with them in this work, but the basic idea behind them is that,
given a problem, our goal is to construct an appropriate stochastic basis on which the problem
can be solved and find the solution itself. The only relevant piece of information for this work is
that, if a result holds for weak solutions, it will also hold for strong solutions. For more details,
refer to [KaSu, Section 6.4].

Definition 3.6.5 (L2 space). Let L2 be the set of all progressively measurable processes H =
(Ht)t≥0 where Ht : Ω → R, such that

∥H∥L2,T :=
(
E
∫ T

0
H2

t dt
) 1

2

< ∞ for all T > 0.

Theorem 3.6.6. (Girsanov’s theorem [PaRă, Adapted from Theorem 2.51]) Let H = (Ht)t≥0 ∈
L2 and assume that the process (Et)t≥0 defined by

Et := exp
(

−
∫ t

0
HudBu − 1

2

∫ t

0
H2

udu
)

is a martingale. Let T > 0 and

dQT := ET dP.

Then (Wt)t≥0 with

Wt := Bt +
∫ t

0
1[0,T ](u)Hudu

defines a Brownian motion (Wt)t≥0 with respect to the stochastic basis (Ω,F ,QT , (Ft)t≥0).

Definition 3.6.7. (Explosion Time [JeYoCh, Definition 1.5.4.10]) Suppose that X is a solution
of an SDE with locally Lipschitz coefficients. Then, a localisation argument allows to define
unambiguously, for every n, (Xt)t≤τn , where τn is the first exit time from [−n, n]. Let S = sup τn.
When S < ∞, we say that X explodes at time S.

Proposition 3.6.8. (Girsanov’s Theorem for stopping times [JeYoCh, Proposition 1.7.5.4]) Let
S be the explosion time of the solution of the SDE

dXt = b(Xt)dt+ dBt.

Then, for any stopping time τ ≤ S and for any bounded function F : C[0,∞) → R. which is
(B(C[0,∞)),B(R))-measurable, it holds

EP [F (Xt, t ≤ τ)] = EQ

[
exp

(∫ τ̂

0
b(Bu)dBu − 1

2

∫ τ̂

0
b2(Bu)du

)
F (Bt, t ≤ τ̂)

]
,

where τ̂ is the associated stopping time for (Bt)t≥0.

Remark 3.6.9 (How to prove Proposition 3.6.8?). One could prove Propostion 3.6.8 by adapting
the proof of Theorem 3.2 which can be found in [KaRu, Page 1033].
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Remark 3.6.10 (Lamperti transform). In Proposition 3.6.8, we restricted ourselves to SDEs
where the diffusion term is equal to 1. In practice, we are able to transform SDEs into SDEs
with diffusion term 1 using the Lamperti transform. The details can be found in [SäSo, Section
7.1].

What follows now is the Feller test, along with some necessary results, as given in [KaSh1,
Chapter 5].

Definition 3.6.11 (Weak solution up to an explosion time). A weak solution up to an explosion
time of the equation dXt = b(Xt)dt+ σ(Xt)dBt is a triple (X,B), (Ω,F ,P),F, where

(i) (Ω,F ,P) is a probability space and F is a filtration of sub-σ-algebras of F satisfying the
usual conditions,

(ii) X = {Xt,Ft; 0 ≤ t < ∞} is a continuous, adapted, R ∪ {±∞}-valued process with
|X0| < ∞ a.s., and {Bt,Ft; 0 ≤ t < ∞} is a standard, one-dimensional Brownian
motion

(iii) with

Sn := inf{t ≥ 0; |Xt| ≥ n}

we have

P
(∫ t∧Sn

0

{
|b(Xu)| + σ2(Xu)

}
du < ∞

)
= 1; ∀ 0 ≤ t < ∞ (3.6.4)

and

(iv)

P
(
Xt∧Sn = X0 +

∫ t

0
b(Xu)1{u≤Sn}du

+
∫ t

0 σ(Xu)1{u≤Sn}dBu; ∀ 0 ≤ t < ∞
)

= 1 (3.6.5)

valid for every n ≥ 1.

We refer to

S := lim
n→∞

Sn,

as the explosion time for X . The assumption of continuity of X in the extended real numbers
implies that

S = inf{t ≥ 0: Xt /∈ R} and XS = ±∞ a.s. on {S < ∞}.

We stipulate that Xt = XS;S ≤ t < ∞.

When dealing with explosions in a general setting, we start with an interval on the real line

I = (l, r) where − ∞ ≤ l < r ≤ ∞, (3.6.6)

and we assume that the coefficents σ : I → R and b : I → R satisfy
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(i) Nondegeneracy

σ2(x) > 0; ∀x ∈ I (3.6.7)

(ii) Local integrability

∀x ∈ I, ∃ϵ > 0 such that
∫ x+ϵ

x−ϵ

1 + |b(y)|
σ2(y) dy < ∞ (3.6.8)

Definition 3.6.12 (Weak solution in an interval). A weak solution in the interval I = (l, r) of
the equation dXt = b(Xt)dt+ σ(Xt)dBt is a triple (X,B), (Ω,F ,P),F, where

(i) (Ω,F ,P) is a probability space and F is a filtration of sub-σ-algebras of F satisfying the
usual conditions,

(ii) X = {Xt,Ft; 0 ≤ t < ∞} is a continuous, adapted, [l, r]-valued process with X0 ∈ I
a.s., and {Bt,Ft; 0 ≤ t < ∞} is a standard, one-dimensional Brownian motion,

(iii) with (ln)∞
n=1 and (rn)∞

n=1 strictly monotone sequences satisfying l < ln < rn < r,
limn→∞ ln = l, limn→∞ rn = r, and

Sn := inf{t ≥ 0: Xt /∈ (ln, rn)}; n ≥ 1,

the Equations (3.6.4) and (3.6.5) hold.

On the interval I , we define the exit time as:

S = inf{t ≥ 0: Xt /∈ (l, r)} = lim
n→∞

Sn. (3.6.9)

Proposition 3.6.13. (Feller Test I [KaSh1, 5.22 (c) Proposition]) Assume that nondegeneracy
and local integrability hold, that X is a weak solution in the context of Definition 3.6.12, on the
interval I , and that X0 = x0 ∈ I . Furthermore, for a fixed real number c and some x ∈ I , we
define the scale function as

p(x) :=
∫ x

c
exp

(
−2

∫ ξ

c

b(ζ)dζ
σ2(ζ)

)
dξ. (3.6.10)

Given all of this, if p(l+) = −∞ and p(r−) < ∞, then it holds that

P
(

lim
t↑S

Xt = r
)

= P
(

inf
0≤t<S

Xt > l
)

= 1. (3.6.11)

Proposition 3.6.14 (Feller Test II). Assume that nondegeneracy and local integrability hold. We
have that P (S < ∞) = 1 if and only if one of the following conditions holds:

(i) v(r−) < ∞ and v(l+) < ∞

(ii) v(r−) < ∞ and p(l+) = −∞

(iii) v(l+) < ∞ and p(r−) = ∞,
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where p is the scale function as before and v is defined, for a fixed real c and some x, y ∈ I , as:

v(x) =
∫ x

c
p′(y)

∫ y

c

2dz
p′(z)σ2(z)dy.

Moreover, in Case (i), one has that E[S] < ∞.

Definition 3.6.15. (Squared Bessel Process [LeGa, Page 227]) Let m ≥ 0 be a real number.
The m-dimensional squared Bessel process is the real process taking non-negative values that
solves the SDE

dXt = 2
√
XtdBt +mdt (3.6.12)

X0 = x.

If d ≥ 1 is an integer and β = (β1, . . . , βd) is a d-dimensional Brownian motion, an application
of Itô’s formula shows that the process

|βt|2 = (β1
t )2 + . . .+ (βd

t )2

is a d-dimensional squared Bessel process. For more details, see for example [La, Section 1.8.3,
Section 1.10] or [ReYo, Chapter 11].

Definition 3.6.16 (Bessel process). The m-dimensional Bessel process is obtained by setting
Yt =

√
Xt in Equation (3.6.12), and, when m = d is a positive integer, it corresponds to the

Euclidean norm of a d-dimensional Brownian motion. One can get an explicit SDE for the Bessel
process when m > 1, but it is less tractable than (3.6.12); see for Example [LeGa, Exercise
8.13].

For completion, we give the formal definition of a Bessel bridge as can be found in [ReYo,
Chapter XI]. For our purposes, however, it is enough to understand that a Bessel bridge is simply
a stochastic object which has a known beginning and an end.

Remark 3.6.17 (Bessel Bridge). Formally defining a Bessel bridge would require introducing
many concepts that are not necessary for this work so we give an intuitive definition. Let us say
that we have a Bessel process on a time interval [0, T ]. A Bessel bridge is basically a Bessel
process with fixed locations at 0 and T , i.e., we condition the Bessel process to be at certain
locations at those times. This is a practical tool when we have information about the starting
point and the ending point of a process. For a more formal introduction to Bessel bridges, one
can refer to [ReYo, Chapter XI]; in particular [ReYo, (3.1) Definition on Page 463].

Proposition 3.6.18. ( [ReYo, Page 317] or [Wi2, Section 3.6]) Let X be a three-dimensional
Bessel process starting at 0, i.e., X0 = 0 and B a Brownian motion starting at b > 0, i.e.,
B0 = b > 0. Then, if Lb = sup{t : Xt = b} and T0 = inf{t > 0: Xt = 0}, the processes
{XLb−t, 0 ≤ t ≤ Lb} and {Bt, 0 ≤ t ≤ T0} have the same law.

This concludes our theoretical overview: we are finally ready to discuss the main results of
Chapter 4.

28



Chapter 4

The Framework and Key Results

In this chapter, we present the key results: Proposition 2.0.3 and Theorem 2.0.5. We begin
by presenting the modified acceptance-rejection scheme we are working with (Section 4.1),
followed by a discussion of the general framework under which we are operating (Section 4.2),
using the terminology of Section 3.6. After that, we give a detailed proof of Proposition 2.0.3 in
Section 4.3 and Theorem 2.0.5 in Section 4.4. We complete the chapter with a discussion of the
algorithm’s shortcomings, the proposed solutions in Section 4.5 and a very brief overview of
recent research in Section 4.6. Crucially, throughout this entire chapter, we adopt the conventions
of Chapter 3 and, in particular, the framework and assumptions of Section 3.6.

4.1 The Acceptance Rejection Protocol
The key goal of this work is to “unpack” an acceptance-rejection protocol, given as Algorithm
A0 in [HeZu1, Page 1482] and inspired by the work of [BeRo]. What follows is an intuitive
introduction to the algorithm; the skipped mathematical details are discussed in the next sections.

THE ALGORITHM

Let us fix the level L > x.
Step 1: Simulate a non-negative random variable T with density fT .
Step 2: Simulate a 3-dimensional Bessel process (Rt) on the time interval [0, T ] with
endpoint RT = L− x. We define by DR,T the stochastic domain:

DR,T :=
{

(t, ν) ∈ [0, T ] × R+ : ν ≤ γ(L−Rt)
}
. (4.1.1)

This domain depends on both random elements (Rt)t∈[0,T ] and T .
Step 3: Simulate a Poisson point process N , with Lebesgue intensity measure, on the state
space [0, T ] × [0,∞), independent of the Bessel process.
Step 4: If N(DR,T ) = 0 then set Y = T . Otherwise go to Step 1.

Outcome: the random variable Y .

Let us walk through the algorithm step by step. The goal is to exactly simulate the first time the
solution of an SDE, denoted by X and starting at x, hits some positive level L. Hence, we fix
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L > x.
In the first step, we simulate a non-negative random variable T with a particular density, fT . It
being non-negative makes sense since, in this universe at least, time is non-negative.
In the second step, we use the 3-dimensional Bessel process to construct the stochastic domain
in Equation (4.1.1). One of the reasons the Bessel process is used here is because it is relatively
easy to simulate; its connection to X is explored further in Section 4.3. This stochastic domain
is crucial in defining a success, but only once we pair it up with a Poisson point process, which
we introduce in the third step.
Using the Poisson point process, we are able to encode a decaying exponential, an object that
will show up multiple times in the calculations, into our simulation. Furthermore, it also enables
the insight [HeZu1] had about using skeleton paths instead of the full sample path: since the goal
is to generate something which hits a level L, everything that is within the stochastic domain
should be rejected since it does not go high enough; this is the intuition behind N(DR,T ) = 0,
i.e. no points are in the stochastic domain, being the desired event indicating success. This is
exactly the point of the fourth step.
We now move on to the mathematical framework of our problem.

4.2 The Mathematical Framework
We begin with a stochastic process X = (Xt)t≥0 which solves the SDE:

dXt = b(Xt)dt+ σ(Xt)dBt

X0 = x ∈ R. (4.2.1)

Throughout, we will set σ ≡ 1 which is justified using the Lamperti transform that we discussed
in Remark 3.6.10. The goal is to find the exact simulation of the first time the process X reaches
the level L > 0. We formalize this now with a definition:

Definition 4.2.1 (First hitting time). We denote with τL the first time the process X reaches a
level L > 0. Formally, we write:

τL := inf{t ≥ 0: Xt = L}. (4.2.2)

Let us observe that, in some cases, we can get an explicit expression for the density of τL.
In particular, when we set b(Xt) = 0, we are reducing ourselves to the case of the Brownian
motion which has the explicit solution given by Xt = x+Bt. Note that one can interpret this
solution as the standard Brownian motion shifted by x.

Proposition 4.2.2 (Density of first hitting time of a Brownian motion starting in x). Let B0 = x
and G ∼ N (0, 1). Our claim is that:

τL
d= (L− x)2

G2

and that

fτL
(t) = L− x√

2πt3
exp

(
−(L− x)2

2t

)
.
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Proof of Proposition 4.2.2. Without loss of generality, we first assume that x = 0. This keeps
the algebra cleaner and the end result can be easily adjusted with a “shift” in x. Since our goal
is to determine the density, we begin with the distribution function since it is an easier object to
analyse: P(τL < t), where t plays the role of a sort of dummy variable. The event {τL < t} can
actually be broken up as follows:

{τL < t} = {{τL < t} ∩ {Bt < L}} ∪ {{τL < t} ∩ {Bt > L}},
which gives

P(τL < t) = P({{τL < t} ∩ {Bt < L}} ∪ {{τL < t} ∩ {Bt > L}})
= P({{τL < t} ∩ {Bt < L}}) + P({{τL < t} ∩ {Bt > L}})
= P(τL < t,Bt < L) + P(τL < t,Bt > L),

where we used σ-additivity since the events were disjoint and we rewrote the final result to keep
the notation cleaner. Now, we take a look at two different cases.

1. Case 1: τL < t and Bt < L
In this case, there is not really much to unpack about these events beyond the fact that the
Brownian motion hit L for the first time at τL and then continued to wiggle around the
level L. At this point, one needs to take a bit of an intuitive leap. We exploit the fact that a
Brownian motion starting at level L is symmetric around the level L. Let us say that B
reached L and then it moved around a little bit till it reached the level M . Going from
level L to level M is equally as likely as going from level L to the level 2L − M . This
implies that every path above L has a “twin” below L. Of course, this is not a rigorous
argument: the probability of a Brownian motion following any one particular path is zero.
However, it does lead us to the right idea that:

P(τL < t,Bt < L) = P(τL < t,Bt > L),
which we exploit to write

P(τL < t) = 2P(τL < t,Bt > L). (4.2.3)

We have now reduced ourselves to exploring only one case.

2. Case 2: τL < t and Bt > L
In this case, the Brownian motion hits L and, at the end of the day, the Brownian motion is
above L. Essentially, the event {τL < t} becomes irrelevant in determining the probability
of Bt > L i.e. P(τL < t,Bt > L) = P(Bt > L). Plugging this into Equation (4.2.3)
gives

P(τL < t) = 2P(Bt > L).

From here we write:

P(τL < t) = 2P(Bt > L)
= 2(1 − P(Bt ≤ L))
= 2 − 2P(B1

√
t ≤ L)

= 2 − 2P(B1 ≤ L√
t
)

= 2 −
√

2
π

∫ L√
t

−∞
exp

(
−y2

2

)
dy, (4.2.4)
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where the crucial insight was that B1 ∼ N (0, 1) and that Bt
d= B1

√
t. Equation (4.2.4) gives us

a useful form of the distribution function which we now differentiate, using Theorem A.0.5 to
get the density:

fτL
(t) = d

dt

−
√

2
π

∫ L√
t

−∞
exp

(
−y2

2

)
dy


= −
√

2
π

d
dt

(∫ L√
t

−∞
exp

(
−y2

2

)
dy
)

= −
√

2
π

[(∫ L√
t

−∞

∂

∂t
exp

(
−y2

2

)
dy
)

+ exp
(

−L2

2t

)(
−1

2Lt
− 3

2

)]

=
√

2
π

1
2
L√
t3

exp
(

−L2

2t

)

= L√
2πt3

exp
(

−L2

2t

)
. (4.2.5)

Our last task is to show that, under the simplification that x = 0,

τL
d= L2

G2 .

A clever way to show this is as follows

P
(
L2

G2 ≤ t

)
= P

(
L2

t
≤ G2

)

= P
(
G2 ≥ L2

t

)

= P
(

|G| ≥ L√
t

)

= 2P
(
G ≥ L√

t

)

= 2
(

1 − P
(
G <

L√
t

))

where, in the second to last step, we used the symmetry of the Gaussian distribution. After
differentiating both sides with respect to t and observing the connection to the calculations
associated with Equation (4.2.5), it follows that

τL
d= (L− x)2

G2 .

Remark 4.2.3 (Strict inequality?). The strict inequality in the way we defined the distribution
function in this problem seems to contradict our Definition 3.2.12. Sometimes, the strict
inequality is better for illustrating a proof, as was the case in this problem. The reason why it
does not mathematically matter is because, after we take the derivative to find the density, the
endpoint essentially becomes irrelevant. One could also argue that a non-strict inequality is
actually redundant since, in any case, the probability that a continuous random variable takes
on any specific value is zero anyway.
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The result given in Proposition 4.2.2 is fairly standard, but it serves to show the computational
usefulness of the Brownian motion. For a different approach to this problem, refer to [LeGa,
Section 2.4], [BhWa, Page 191] or [JeYoCh, Page 140]. Some of these books look at the
reflection principle from a much more formal standpoint than we did. For another intuitive
approach to the reflection principle, presented wonderfully in the discrete-time case and with an
application to American options, refer to [Shr1, Section 5.2-5.3].
We now delve a bit deeper into the machinery we are using in dealing with this task. The first
step is the introduction of three key objects:

β(x) =
∫ x

0
b(y)dy, (4.2.6)

p(x) =
∫ x

0
exp (−β(y)) dy, (4.2.7)

γ(x) := b2(x) + b′(x)
2 . (4.2.8)

The similarity between Equation (4.2.7) and Equation (3.6.10) is no accident and the importance
will become clear shortly.

Assumption 4.2.4 (Drift term and scale function assumptions). The drift term b ∈ C1((−∞, L])
and limx→−∞ p(x) = −∞.

Remark 4.2.5 (Negative upper limit of integration?). The careful reader notices that the latter
part of Assumption 4.2.4 leads to a negative upper limit of integration in Equation (4.2.7). It
turns out that this is not an issue: the clearest way to show this is via a u-substitution. We begin
first with the assumption that x < 0.

p(x) =
∫ x

0
exp (−β(y)) dy

=
∫ x

0
exp

(
−
∫ y

0
b(z)dz

)
dy

Substitution
y = −u, If y = x =⇒ u = −x > 0

dy = −du, If y = 0 =⇒ u = 0

=
∫ −x

0
exp

(
−
∫ −u

0
b(z)dz

)
d(−u)

= −
∫ −x

0
exp

(
−
∫ −u

0
b(z)dz

)
du

= −
∫ −x

0
exp (−β(−u)) du,

which gives us an integral with “familiar” limits.

Given Assumption 4.2.4, we now look at its implications.
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Claim 4.2.6 (Strong solution). Assumption 4.2.4 implies that Equation (4.2.1) has a strong
solution in the sense of Definition 3.6.1 and Theorem 3.6.3.

Proof of Claim 4.2.6. We focus first on b ∈ C1((−∞, L]) which means that b is continuously
differentiable on the interval (−∞, L] and b : (−∞, L] → R. From [KlPl, Page 134], or via
Theorem 3.6.3, we know that Local Lipschitz conditions are sufficient for the solution to be
strong. Thus, our job is to show that the assumption b ∈ C1((−∞, L]) guarantees local Lipschitz
conditions in the context of Equation (4.2.1). Given that σ ≡ 1, our problem is reduced to
showing that there exists some constant K > 0 such that, for some x, y ∈ (−∞, L],

|b(x) − b(y)| ≤ K|x− y|.

Now, let x, y ∈ (−∞, L]. From Theorem A.0.6, we get that there is a c ∈ (x, y) such that

|b′(c)| =
∣∣∣∣∣b(y) − b(x)

y − x

∣∣∣∣∣.
Now, b′ is a continuous function on a compact interval and thus bounded (Theorem A.0.8), i.e.
there exists some K ∈ (0,∞) such that |b′| ≤ K, so it follows that∣∣∣∣∣b(y) − b(x)

y − x

∣∣∣∣∣ ≤ K

=⇒ |b(y) − b(x)| ≤ K|y − x|,

so local Lipschitz conditions hold. Hence, the solution X satisfies the conditions of strong
uniqueness. Of course, being that we are working with local conditions, this is only valid until
the process reaches L. Fortunately for us, this is all we need since we do not care about the
process after it passes L.

Claim 4.2.7 (Nondegeneracy and local integrability). Equation (3.6.7) and Inequality (3.6.8)
are satisfied for b ∈ C1((−∞, L]) and σ ≡ 1.

Proof of Claim 4.2.7. Since we will need this later for the Feller test, we look at the complete
setup. We are working on the interval I = (−∞, L) and σ, b : (−∞, L) → R. Nondegeneracy
is satisfied since σ2(x) ≡ 1 > 0 for all x ∈ I . For local integrability, we want to show that for
all x ∈ I there exists ϵ > 0 such that Inequality (3.6.8) is satisfied. This follows from∫ x+ϵ

x−ϵ

1 + |b(y)|
σ2(y) dy =

∫ x+ϵ

x−ϵ
(1 + |b(y)|)dy

= (x+ ϵ− x+ ϵ) +
∫ x+ϵ

x−ϵ
|b(y)|dy

= 2ϵ+
∫ x+ϵ

x−ϵ
|b(y)|dy,

and now we just have to show that
∫ x+ϵ

x−ϵ |b(y)|dy is finite. It is possible to choose ϵ > 0 such that
[x+ ϵ, x− ϵ] ⊂ (−∞, L) so b is continuous on that compact interval and thus bounded which
we can denote as |b(y)| ≤ M < ∞ (Theorem A.0.4 and Theorem A.0.8). We thus rewrite the
previous integral and get ∫ x+ϵ

x−ϵ
|b(y)|dy ≤

∫ x+ϵ

x−ϵ
Mdy

= 2Mϵ.
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Finally, it follows that ∫ x+ϵ

x−ϵ

1 + |b(y)|
σ2(y) dy ≤ 2(M + 1)ϵ < ∞,

for the right choice of ϵ so local integrability holds.

The results of Claim 4.2.7 allow us to perform the Feller test in the spirit of Proposition 3.6.13.
This form of the Feller test is meaningful for us because of the setup: the goal is for the process
to escape the interval in such a way that, as it exists the interval, it hits the level L > 0. Given
Assumption 4.2.4, it is clear that p(l+) = p(−∞) = −∞. Hence, what we are left with is to
show that p(r−) = p(L) < ∞ in order to satisfy all the conditions for the Feller test.

Claim 4.2.8 (p(L) < ∞).

Proof of Claim 4.2.8. From Equation (4.2.6) and Equation (4.2.7), it follows that

p(L) :=
∫ L

0
exp

(
−
∫ y

0
b(z)dz

)
dy.

Note that this is exactly Equation (3.6.10), where we used the fact that σ ≡ 1 and we dropped
the 2 in the exponential term since it will not have an impact on the limiting behavior of the
function. Furthermore, and looking again at Equation (3.6.10), we set c ≡ 0. The rest boils
down to doing the necessary algebra while keeping in mind that, again, b(z) is bounded on [0, L],
let us say by some C > 0: this means that −C ≤ b(z) ≤ C for z ∈ [0, L]. It follows that

p(L) ≤
∫ L

0
exp

(
−
∫ y

0
(−C)dz

)
dy

=
∫ L

0
exp (Cy) dy

= 1
C

exp (Cy)
∣∣∣L
0

= 1
C

(exp (CL) − exp (C · 0))

= 1
C

(exp (CL) − 1)

= exp (CL) − 1
C

< ∞,

since all of the involved quantities are themselves finite.

Finally, this leads us to the following key claim:

Claim 4.2.9 (The solution of Equation (4.2.1) explodes and τL < S a.s.). The solution of
Equation (4.2.1) explodes in some finite time S, defined in Definition 3.6.12, which is greater
than the first hitting time.

Proof of Claim 4.2.9. The proof follows directly from the calculations done in Claim 4.2.8
and Proposition 3.6.13. In particular, Claim 4.2.8 shows that the conditions for explosion in
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Proposition 3.6.13 are satisfied. Crucially, the result shows that the process exits through the
right side of the interval I , in our case the level L > 0. Explicitly:

P
(

lim
t↑S

Xt = L
)

= P
(

inf
0≤t<S

Xt > −∞
)

= 1.

It follows directly from v(L) < ∞, which is shown in Claim 4.4.2, and Assumption 4.2.4, that
the conditions for Proposition 3.6.14 (ii) are met so S < ∞ a.s. Finally, from all of this, it
follows that τL < S < ∞ a.s.

The result of Claim 4.2.9 is crucial since it allows us to use Girsanov’s theorem in the form
of Proposition 3.6.8. Granted, Proposition 3.6.8 was stated only for stopping times, but we
observe that the event {Xt = L} is a closed set so, according to Theorem 3.5.16, τL is also
a stopping time so we are allowed to use Proposition 3.6.8. We exploit all of these results in
Section 4.3 and formally prove Proposition 2.0.3.

4.3 An Application of Girsanov’s Theorem
For the reader’s convenience, we first restate Proposition 2.0.3.

Proposition 4.3.1. ( [HeZu1, Proposition 2.1]) Under Assumption 4.2.4, for any bounded and
measurable function ψ : R → R, we obtain

EP[ψ(τL)1{τL<∞}] = EQ[ψ(τL)η(τL)] exp (β(L) − β(x)) , (4.3.1)

where P (respectively Q) corresponds to the distribution of X , which was defined by Equa-
tion (4.2.1), (respectively the Brownian motion B) and

η(t) := E
[
exp

(
−
∫ t

0
γ(L−Rs)ds

) ∣∣∣∣Rt = L− x
]
. (4.3.2)

Here, (Rt)t≥0 stands for a 3-dimensional Bessel process with R0 = 0.

Before delving into the proof, it is worth mentioning why we are interested in the bounded
and measurable function ψ. As is often the case in mathematics, it tends to be easier to prove
a result for a general class of functions instead of one particular function. In the context of
stochastics, one interesting function that is within the class of bounded and measurable functions
is an indicator function of the form 1(−∞,x](X). Taking the expectation of 1(−∞,x](X) gives us
exactly the distribution function of the associated random variable X . This is exactly why we
care about ψ; it allows us to “pin down” the distribution function. We are now ready to proceed
with the proof.

Proof of Proposition 4.3.1.

EP[ψ(τL)1{τL<∞}]
Prop. 3.6.8= EQ

[
ψ(τ̂L) exp

(∫ τ̂L

0
b(Bu)dBu − 1

2

∫ τ̂L

0
b2(Bu)du

)]
. (4.3.3)

Note that, under the measure Q, the process B is a one-dimensional Brownian motion starting
at the point x (follows from the b ≡ 0 and σ ≡ 1 case in Equation 4.2.1). Furthermore, observe
that we have changed the “lens” under which we are looking at the first hitting time. Under the
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measure P, the first hitting time was exactly the one given in Equation (4.2.2), meaning that we
were looking at the first time the process X hits level L. However, once we change the measure,
the first hitting time is observed under the measure Q which interprets it as the first time the
Brownian motion hits the level L which is why, after the application of Proposition 4.3.1, we
use τ̂L. Crucially, τ̂L = inf{t ≥ 0: Bt = L} < ∞ a.s. according to Proposition 3.5.17
and Bτ̂L

= L by construction. The next step now is to apply Itô’s formula, in the sense of
Theorem 3.5.22, to the function β(z), with z playing the role of a dummy variable, where we
choose our process to be Bτ̂L

. It is worth remembering that a Brownian motion can be rewritten
in such a way to make it explicit that it is an Itô process in the sense of Definition 3.5.20:

Bt = 0 +
∫ t

0
1 · dBu +

∫ t

0
0 · du, (4.3.4)

which is useful since it directly gives us that Hu ≡ 1 and au ≡ 0. We now write

β(Bτ̂L
) = β(x) +

∫ τ̂L

0

∂β

∂u
(u,Bu) du

+
∫ τ̂L

0

∂β

∂z
(u,Bu) dBu + 0 + 1

2

∫ τ̂L

0

∂2β

∂z2 (u,Bu) du.

Evaluating the derivatives and using Theorem A.0.7 gives

β(Bτ̂L
) = β(x) +

∫ τ̂L

0
b(Bu)dBu + 1

2

∫ τ̂L

0
b′(Bu)du

=⇒
∫ τ̂L

0
b(Bu)dBu = β(Bτ̂L

) − β(x) − 1
2

∫ τ̂L

0
b′(Bu)du. (4.3.5)

We now go back to Equation (4.2.8) and integrate that from 0 to τ̂L and get:

∫ τ̂L

0
γ(Bu)du =

∫ τ̂L

0

b2(Bu)
2 du+

∫ τ̂L

0

b′(Bu)
2 du

=⇒ −
∫ τ̂L

0

b2(Bu)
2 du =

∫ τ̂L

0

b′(Bu)
2 du−

∫ τ̂L

0
γ(Bu)du. (4.3.6)

Adding up together Equation (4.3.5) and Equation (4.3.6) gives∫ τ̂L

0
b(Bu)dBu − 1

2

∫ τ̂L

0
b2(Bu)du = β(Bτ̂L

) − β(x) −
∫ τ̂L

0
γ(Bu)du,

which, after plugging it into Equation (4.3.3), leads to

EP[ψ(τL)1{τL<∞}] = EQ

[
ψ(τ̂L) exp

(
β(Bτ̂L

) − β(x) −
∫ τ̂L

0
γ(Bu)du

)]
. (4.3.7)

The truly beautiful thing about going from Equation (4.3.3) to Equation (4.3.7) is that we went
from having to deal with stochastic integrals to standard Lebesgue integrals. Using this insight,
along with the standard properties of the Lebesgue integral, we can simplify Equation (4.3.7)
even further:

EP[ψ(τL)1{τL<∞}] = exp (β(Bτ̂L
) − β(x))EQ

[
ψ(τ̂L) exp

(
−
∫ τ̂L

0
γ(Bu)du

)]
, (4.3.8)
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where we used the fact that exp (β(Bτ̂L
) − β(x)) is just a scalar and can thus be pulled out. We

shift our focus now just to the expectation with respect to the measure Q.

EQ

[
ψ(τ̂L) exp

(
−
∫ τ̂L

0
γ(Bu)du

)]
= EQ

[
ψ(τ̂L) exp

(
−
∫ τ̂L

0
γ(Bu)du

) ∣∣∣∣{∅,Ω}
]

= EQ

[
EQ

[
ψ(τ̂L) exp

(
−
∫ τ̂L

0
γ(Bu)du

) ∣∣∣∣σ(τ̂L)
] ∣∣∣∣{∅,Ω}

]

= EQ

[
ψ(τ̂L)EQ

[
exp

(
−
∫ τ̂L

0
γ(Bu)du

) ∣∣∣∣σ(τ̂L)
]]
, (4.3.9)

where we first used Proposition 3.4.18 (7) (conditional expectation on a trivial σ-algebra), then
Proposition 3.4.18 (5) (the tower property) and finally Proposition 3.4.18 (6) and (7) (take
out what is known and conditional expectation on a trivial σ-algebra). By the definition of
conditional expectation, EQ

[
exp

(
−
∫ τ̂L

0 γ(Bu)du
)

|σ(τ̂L)
]

is σ(τ̂L)-measurable. Thus, by the
Factorization Lemma (3.4.20), there exists an η such that

η(τ̂L) = EQ

[
exp

(
−
∫ τ̂L

0
γ(Bu)du

) ∣∣∣∣σ(τ̂L)
]
,

which, once we condition on the event {τ̂L = t} gives

η(t) := EQ

[
exp

(
−
∫ t

0
γ(Bu)du

) ∣∣∣∣{τ̂L = t}
]
. (4.3.10)

Plugging this back into Equation (4.3.9), combining it with Equation (4.3.8) and using that
Bτ̂L

= L gives us

EP[ψ(τL)1{τL<∞}] = exp (β(Bτ̂L
) − β(x))EQ [ψ(τ̂L)η(τ̂L)] , (4.3.11)

which means that, essentially, we get all the information about the distribution of τL from the
functional form of η. However, the form of Equation (4.3.10) is not that practical since it is
being conditioned on what we are trying to determine: the first hitting time. We now rewrite
Equation (4.3.10) in such a way that we can exploit the two pieces of information we have about
the process: where it starts, x, and where it ends, L.
Let ρ0,x denote a three-dimensional Bessel process that, at time 0 is at point x. We recall from
Definition 3.6.16 that one can connect the Bessel process and the Brownian motion which we
exploit now to write:

ρ0,x
s =

∥∥∥B̃0,a
s

∥∥∥,
where ∥·∥ represents the Euclidean norm and ∥a∥ = x ≥ 0. Writing it out component-wise, in
the spirit of Definition 3.6.15, we can say that

B̃0,a
s = a+ (B1

s , B
2
s , B

3
s ) and a ∈ R3.

We further define (Rx→L
s )s∈[0,t] to be the Bessel bridge from a point x to L . Note that we are

working with respect to the measure Q so recall that now τ̂L = inf{s ≥ 0: B0,x
s = L}. In order

to apply Proposition 3.6.18, we now shift the Bessel bridge to begin at 0 and end at L−x, where
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we recall that, naturally, L > x. Furthermore, applying a time reversal allows us to go from
a supremum to the infimum in Proposition 3.6.18 so we can connect the Bessel bridge to the
Brownian motion. Explicitly, defining also τ̃L := {s ≥ 0: ρ0,x

s = L}, we write:

(R0→L−x
s )s∈[0,t] = {L−

∥∥∥B̃0,a
t−s

∥∥∥ : 0 ≤ s ≤ τ̃L} given {τ̃L = t}
d= {L−Bt−s : 0 ≤ s ≤ τ̂L} given {τ̂L = t},

which essentially says that, given {τL = t},

Rs := L−Bt−s, (4.3.12)

is a Bessel bridge going from 0 to L − x for s ∈ [0, t]. Note again that B0 = x in our case.
Plugging Equation (4.3.12) into Equation (4.3.10) gives us

η(t) := EQ

[
exp

(
−
∫ t

0
γ(L−Ru)du

) ∣∣∣∣Rt = L− x
]
, (4.3.13)

which concludes our proof.

Remark 4.3.2 (On notation for the first hitting time). In this section, we made sure to differentiate
between first hitting times on the basis of the different measures under which we are observing
it. However, the common practice is to use a single notation and let the reader deduce from
the context with respect to which measure we are viewing the first hitting time: outside of this
section, as well as in the statements of the main results, this is the approach we adopt.

The result of Propositon 4.3.1 thus shows that simulating the first hitting time becomes
straightforward once the function η is well-known. However, this is not the case in practice,
which is why we need an algorithm in order to deal with η. This is explored in Section 4.4 in
which we also prove Theorem 2.0.5.

4.4 Justifying the Algorithm
Throughout this section, we will be operating under the following assumption:

Assumption 4.4.1 (γ ≥ 0 and τL < ∞ a.s.). We assume that γ, defined in Equation (4.2.8), is
non-negative and the first-hitting time τL is almost surely finite.

We have already shown through Claim 4.2.9 that τL < ∞ a.s. for a particular set of
conditions. However, we can show this claim holds true also for the following:

Claim 4.4.2 (τL < ∞ a.s. for limx→−∞ v(x) < ∞). Let v(x) be defined as in Proposition 3.6.14.
Choosing c = 0, and working on the interval I = (−∞, L) while being mindful that σ ≡ 1, we
get that:

v(x) :=
∫ x

0

∫ y

0

2p′(y)
p′(z) dzdy. (4.4.1)

It follows that, if limx→−∞ v(x) < ∞, then τL < ∞ a.s.
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Proof of Claim 4.4.2. We will show this is true by using Proposition 3.6.14 (i). First of all, note
that we have already demonstrated through the proof of Claim 4.2.7 that nondegeneracy and
local integrability hold for our set of conditions. Furthermore, from the assumption, it holds that
v(−∞) < ∞. Hence, we only have to show that v(L) < ∞. We first recall the definition of p(x)
which we slightly rewrite to make it clear what are the “dummy variables” in the integration.

p(x) =
∫ x

0
exp

(
−
∫ ζ

0
b(θ)dθ

)
dζ.

We now use Theorem A.0.7 and the fact that for x, y, z ∈ I , as before, b can be bounded by
some M > 0, to write:

p′(y) ≤ exp
(

−
∫ y

0
(−M)dθ

)
= exp (My)

p′(z) ≤ exp
(

−
∫ z

0
(−M)dθ

)
= exp (Mz) ,

from which it follows that

2p′(y)
p′(z) ≤ 2 exp (My) exp (−Mz) ,

which, after plugging into Equation (4.4.1) gives:

v(L) ≤
∫ L

0

(∫ y

0
2 exp (My) exp (−Mz) dz

)
dy

= − 2
M

∫ L

0
(1 − exp (My)) dy

= − 2
M

[
L− 1

M
(exp (ML) − 1)

]
< ∞,

due to all the objects and their functions being bounded. Finally, from Proposition 3.6.14 it
follows that S < ∞ a.s. and thus τL < ∞ a.s. which completes our proof.

Claim 4.4.3 (η(t) is a probability of rejection in the algorithm). Given γ ≥ 0, it follows that
η(t) ∈ [0, 1].

Proof of Claim 4.4.3. We refer to Equation (4.3.13):

η(t) := EQ

[
exp

(
−
∫ t

0
γ(L−Ru)du

) ∣∣∣∣Rt = L− x
]
.

In particular, our object of interest is exp
(
−
∫ t

0 γ(L−Ru)du
)
. Since γ ≥ 0, it follows that we

have a decaying exponential for t ≥ 0, thus η(t) ∈ [0, 1].

We move now to proving Theorem 2.0.5 which we now restate for the reader’s convenience
as Theorem 4.4.4.

Theorem 4.4.4. ( [HeZu1, Theorem 2.3]) If γ is a non-negative function then the density fY of
the outcome variable Y , as described in THE ALGORITHM of Section 4.1, satisfies

fY (t) = 1
Ξη(t)fT (t), (4.4.2)
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where η is given by Equation (2.0.6) and Ξ stands for the normalization coefficient

Ξ :=
∫ ∞

0
η(t)fT (t)dt. (4.4.3)

In particular, under Assumptions 4.2.4 and 4.4.1, if T
(L−x)2 has the same distribution as 1

G2 ,
where G is a standard Gaussian random variable, then Y and τL, defined as the first hitting
time in Definition 4.2.1 are identically distributed.

Example 4.4.5 (The special case). Before we move to the formal proof, it is wortwhile to
look at the normalization coefficient when T ∼ (L−x)2

G2 which is a case familiar to us from
Proposition 4.2.2. We refer to Equation (4.3.1) where we set ψ ≡ 1 from which it follows that

EP

[
1{τL < ∞}

]
= EQ[η(τL)] exp (β(L) − β(x))

=⇒ P(τL < ∞) = Ξ exp (β(L) − β(x))
=⇒ Ξ = exp (β(x) − β(L)) ,

where we used the definition of the expected value, as well as Equation (4.4.3), and our result
from the Feller Test (Claim 4.4.2).

We now proceed to the proof.

Proof of Theorem 4.4.4. Let I be the number of iterations of THE ALGORITHM. For each
iteration I = i ∈ N, we denote the following generated random variables:

1. T (i) - a non-negative random variable with density fT

2. R(i)
t - a 3-dimensional Bessel process on the interval [0, T ] and with endpoint RT = L−x

3. N (i) - a Poisson point process with the Lebesgue intensity measure.

It follows from the construction that each iteration results in random variables that are inde-
pendent of the other iterations. As in Proposition 4.3.1, we let ψ : R → R be a bounded and
measurable function. We recall also the following identity:

1 = 1Ω(ω) =
∞∑

i=1
1{I = i},

which we use below

E[ψ(Y )] = E
[
ψ(Y )

∞∑
i=1

1{I = i}

]

= E
[ ∞∑

i=1
ψ(Y )1{I = i}

]

=
∞∑

i=1
E
[
ψ(Y )1{I = i}

]
, (4.4.4)

where we used the fact that ψ(Y ) is bounded and measurable, with no dependence on i, so we
can push it into the sum. In the final step, we used the linearity of expectation to simplify the
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expression. Recall that, in the algorithm, we said that we have generated Y if N(DR,T ) = 0, so
let us define the set Ei which indicates our failure to generate the random variable at the ith step:

Ei := {N (i)(DR(i),T (i)) ̸= 0}, (4.4.5)

where DR(i),T (i) is the stochastic domain generated at the ith step (refer to Equation (4.1.1)).
Note that the family of sets (Ei)i∈I is independent due to the nature of the iterations and the
setup. A set that signifies the successful generation of the random variable Y at the ith step is
the complement set:

Ec
i = Ω \ Ei.

In the following, we assume that we successfully generated the random variable Y for the first
time on the ith try. This then implies that Y = T (i). Using this insight, along with plugging
Equation (4.4.5) into Equation (4.4.4), gives us:

E[ψ(Y )] =
∞∑

i=1
E
[
ψ(T (i))1E1 ∩ E2 ∩ . . . ∩ Ei−1 ∩ Ec

i

]
,

where the event E1 ∩ E2 ∩ . . . ∩ Ei−1 ∩ Ec
i “encodes” our previous statement that the first

successful iteration was the ith one whereas all the other ones resulted in failure. It further
follows from Remark 3.3.4 that 1E1 ∩ E2 ∩ . . . ∩ Ei−1 ∩ Ec

i
= 1E1

· 1E2
· · ·1Ei−1

· 1Ec
i
.

Finally, using Proposition 3.4.14, we get:

E[ψ(Y )] =
∞∑

i=1
E
[
ψ(T (i))1Ec

i

]
P(E1) · · ·P(Ei−1).

Now, observe that each of the events (Ej)i−1
j=1 is equally likely since, every time we iterate, we

restart the simulation. A good analogy is with tossing a coin: every particular time we toss a
coin, there is always a 50% chance to get heads. Using this idea, we rewrite our expression as:

E[ψ(Y )] =
∞∑

i=1
E
[
ψ(T (1))1Ec

1

]
P(E1)i−1

= E
[
ψ(T (1))1Ec

1

] ∞∑
i=1

P(E1)i−1

= E
[
ψ(T (1))1Ec

1

] 1
1 − P(E1)

= E
[
ψ(T (1))1Ec

1

] 1
P(Ec

1)

= 1
P(N(DR(1),T (1) = 0))E

[
ψ(T (1))1Ec

1

]

= 1
P(N(DR,T = 0))E

[
ψ(T )1Ec

]
, (4.4.6)

where we used the geometric series formula and the fact that P(E1) ∈ (0, 1) to simplify
the expression. In the last step, we dropped the iteration number for simplicity. We now
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focus on E
[
ψ(T )1Ec

]
which we can simplify using similar methods as we did with η(t) in

Equation (4.3.9).

E
[
ψ(T )1Ec

] Proposition 3.4.18 (7)= E
[
ψ(T )1Ec

∣∣∣{∅,Ω}
]

Proposition 3.4.18 (5)= E
[
E
[
ψ(T )1Ec

∣∣∣σ(T )
] ∣∣∣{∅,Ω}

]
Proposition 3.4.18 (6)= E

[
ψ(T )E

[
1Ec

∣∣∣σ(T )
] ∣∣∣{∅,Ω}

]
Definition 3.4.19= E

[
ψ(T )P(NDR,T

= 0|T )
]
. (4.4.7)

We now simplify P(NDR,T
= 0|T ) even further.

P(NDR,T
= 0|T ) Definition 3.4.21= E

[
1{NDR,T

= 0}
∣∣∣σ(T )

]
Proposition 3.4.18 (5)= E

[
E
[
1{NDR,T

= 0}
∣∣∣σ(R, T )

] ∣∣∣σ(T )
]

Definition 3.4.19= E
[
P(NDR,T

= 0|R, T )
∣∣∣T ]

Definition 3.5.24= E
[
exp (−λ(DR,T ))

∣∣∣T ] ,
so now we have to find the Lebesgue measure of the stochastic domain in Equation (4.1.1). This
is

λ(DR,T ) =
∫ T

0

(∫ γ(L−Rt)

0
1dλ(ν)

)
dλ(t)

=
∫ T

0
γ(L−Rt)dt.

This further implies that

P(NDR,T
= 0|T ) = E

[
exp

(
−
∫ T

0
γ(L−Rt)dt

) ∣∣∣T]

= E
[
exp

(
−
∫ T

0
γ(L−Rt)dt

) ∣∣∣RT = L− x, T

]
= η(T ), (4.4.8)

where the last step follows directly from the setup of the algorithm where it was assumed
that RT = L − x so we naturally construct a Bessel bridge and notice the connection to
Equation (4.3.13). Finally, plugging Equation (4.4.8) into Equation (4.4.7) and combining with
Equation (4.4.6), we get:

E[ψ(Y )] = 1
P(N(DR,T = 0))E[ψ(T )η(T )].

Notice now when we set ψ ≡ 1, we get exactly:

P(N(DR,T = 0)) = E[η(T )],

which, together with Example 4.4.5, leads us to Equation (4.4.2) as well as the theorem’s
claim.
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Remark 4.4.6 (Did Theorem 4.4.4 give us τL?). It might have been easy to miss it, but the
crucial idea behind Theorem 4.4.4 is that it is indeed possible to use THE ALGORITHM to
generate a random variable which is distributed as the first hitting time. This is a meaningful
note to make: we did not get the actual first hitting time, but rather a random variable which is
distributed like it.
Going back to the coin analogy, one can think about it as follows. Let us say you are in a group
of friends and there are two options to choose from, but you cannot really make up your mind so
it comes down to you to toss a coin. You look into your pocket expecting to find a standard US
quarter, but for some reason, you find one Finnish markka in your pocket. Do you give up on the
coin toss? Absolutely not. The Finnish markka can perfectly “simulate” a US quarter despite
not being one.

While we have shown in Section 4.3 and Section 4.4 that it is possible to construct an
algorithm that exactly simulates the first hitting time of Equation (4.2.1), we still need to
consider the feasibility of practically using this algorithm: this is the topic we briefly discuss in
Section 4.5.

4.5 Algorithm Limitations and Proposed Solutions
The problem with THE ALGORITHM is the fact that it is rather difficult to achieve in practice.
The problem is how do we deal with DR,T since the stochastic domain depends on the whole
path of (Rt)t≥0?
Herrmann and Zucca propose solutions in the forms of Algorithm (A1) and Algorithm (A2)
in [HeZu1, Page 1482-1486]. While we will not go into the details, we do mention the key
insight that allows us to modify THE ALGORITHM in a way that it becomes practically usable.
The big idea is to reduce the domain to a bounded one which resolves the problem of having to
simulate the Poisson point process on something which is essentially an infinite state space. As
for the second difficulty, the only thing we actually need to know is whether or not a particular
point is within the stochastic domain. Through a modification of how we simulate the Poisson
point process, one can avoid having to deal with the full paths of the Bessel process (Rt)t≥0.
Finally, we refer the interested reader to [HeZu1, Section 3,6] for a discussion of the efficacy of
the different algorithms.

4.6 Conclusion and Further Avenues of Research
Due to its inherent applicability in a wide range of fields, there is very active research being done
when it comes to exact simulations. An interesting contribution to the field would be a general-
ization of the problem to stochastic processes with jumps. Furthermore, as proposed in [HeZu1,
Pag 1482], one could also modify the algorithm to not only deal with time-homogeneous pro-
cesses, but also a wider range of processes. For an overview of the work currently being done in
the field, we refer the reader to [HeMa1, HeMa2, HeZu2, HeZu3].
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Appendix A

An Overview of Standard Results from
Analysis

We present for the reader some essential results in analysis that are implicitly or explicitly used
throughout this thesis. Most of these results are taken from [Fo1, Kl, Mo, RoFi, Ru] which, on
their own, provide an excellent overview of many tools used in modern analysis.

Definition A.0.1 (Topology). Let Ω ̸= ∅ be an arbitrary set. A class of sets τ ⊂ 2Ω is called a
topology on Ω if the following properties hold:

1. ∅,Ω ∈ τ

2. A ∩B ∈ τ for any A,B ∈ τ

3. (⋃A∈F A) ∈ τ for any F ⊂ τ

The pair (Ω, τ) is called a topological space. The sets A ∈ τ are called open, and the sets
A ⊂ Ω with Ac ∈ τ are closed.

Definition A.0.2 (Metric space). A metric space is a nonempty set X equipped with a function

d : X ×X → [0,∞)

(a metric) that satisfies the following three conditions:

(i) d(x, y) = d(y, x) for all x, y ∈ X .

(ii) (The triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

(iii) d(x, y) = 0 if and only if x = y.

Definition A.0.3 (Totally bounded). A subset E of a metric space X is called totally bounded if
for every ϵ > 0, E is contained in the union of finitely many balls of radius ϵ.

Theorem A.0.4. (On compactness [Fo2, 1.10 Theorem]) If E is a subset of a metric space X ,
the following conditions are equivalent.

(a) E is complete and totally bounded.
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(b) Every sequence in E has a subsequence that converges to a point of E.

(c) For every collection U of open sets in X such that E ⊂ ⋃
U∈U U , there is a finite subcol-

lection U1, . . . , Un such that E ⊂ ⋃n
j=1 Uj . (In brief: every open cover of E has a finite

subcover.)

The fact that (a) =⇒ (b) is the Bolzano-Weierstrass theorem, and the fact that (a) =⇒ (c) is
the Heine-Borel theorem. A set E that possesses the properties (a)–(c) is called compact.

Theorem A.0.5. (Leibniz’s Rule [Mo, Page 82]) Suppose that
∫ b(t)

a(t) f(x, t)dx exists, that a(t), b(t)
and f(x, t) are all continuously differentiable with respect to t, and that there is a function
g(x) ≥

∣∣∣∂f
∂t

(x, t)
∣∣∣ with

∫ b(t)
a(t) g(x, t)dx bounded. Then:

d
dt

∫ b(t)

a(t)
f(x, t)dx =

∫ b(t)

a(t)

∂f

∂t
(x, t)dx+ f(b(t), t)b′(t) − f(a(t), t)a′(t).

We allow a = −∞ or b = +∞.

Theorem A.0.6. (Mean Value Theorem [Ru, 5.10 Theorem]) If f is a real continuous function
on [a, b] which is differentiable in (a, b), then there is a point c ∈ (a, b) at which

f(b) − f(a) = (b− a)f ′(c)

Theorem A.0.7. (Fundamental Theorem of Calculus [Mo, Theorem 16.1]) let f be a continuous
function on [a, b]. The two following statements hold true:

1. d
db

∫ b
a f(x)dx = f(b)

2. If f(x) = F ′(x), then
∫ b

a f(x)dx = F (x)|ba = F (b) − F (a).

Theorem A.0.8. (Extreme Value Theorem [Si, Theorem 4.2.9]) Let A be a compact subset of R
and let f : A → R be a continuous function. Then, f has a maximum and a minimum value on
A.
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Appendix B

Relevant Distributions

B.1 Uniform Distribution
Let Ω be a finite nonempty set. By

µ(A) := #A
#Ω ,

for A ⊂ Ω, we define a probability measure on F = 2Ω. This µ is called the uniform distribution
on Ω. For this distribution, we introduce the symbol UΩ := µ. ( [Kl, Example 1.30(ii)]).

B.2 Gaussian (Normal) Distribution on R
A Gaussian (Normal) distribution with mean m ∈ R and variance σ2 is denoted by N (m,σ2).
Its density function is

f(x) := 1√
2πσ2

exp
(

−(x−m)2

2σ2

)
.
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