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Introductory Statistics with R for 
Educational Researchers 

Santtu Tikka, Juho Kopra, Merja Heinäniemi, Sonsoles López-Pernas, 
and Mohammed Saqr 

1 Introduction 

Learning analytics involves the practical application of statistical methods to 
quantitative data, which can represent various aspects of the learning process such 
as student engagement, progress, and outcomes. Thus, knowledge about basic 
statistical methods is essential. Let’s start with how statistics connects with the 
research process and how it is also linked with philosophy of science. According 
to Niiniluoto [1], the research process can be described with the following eight 
steps: 

1. Setting up a problem. 
2. Disambiguation of the problem. Building a research strategy. 
3. Collecting data. 
4. Describing the data. 
5. Analysis of data. 
6. Interpreting the analyses. 
7. Writing the report. 
8. Publishing the results. 

Steps 1 and 2 require knowledge and skills related to the applied field, but also 
general scientific aptitude. Knowledge about statistics is central in steps 3, 4, 5, and 
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6. Finally, steps 7 and 8 mostly require skills in writing and communication. Overall, 
it can be argued that a solid understanding of statistics and statistical methods is 
crucial for anyone conducting research with quantitative data. 

This chapter of the book concentrates on steps 4, 5, and 6 of the research process. 
We start with descriptive statistics, which are statistics that describe the overall 
features of the data. In contrast, inferential statistics are used to draw conclusions 
and make inferences about the population under study. Afterwards, we explain the 
basics of statistical hypothesis testing, which is the most common—although not 
the only—way to analyze data. The most common statistical tests, such as Student’s 
t-test, Chi-squared test, Analysis of variance, Levene’s test, and Shapiro-Wilk test 
are covered in this chapter. We also explain how to interpret the results of each test. 
We also present the linear regression model, which is not a statistical test but one 
of the most powerful statistical tools. Basic understanding of linear regression is 
essential for anyone interested in more advanced regression techniques, including 
logistic regression which is covered in the final section of this chapter. For a more 
in-depth view on the statistical tests covered in this chapter, we refer the reader to 
works such as [2, 3]. 

2 Descriptive Statistics 

Descriptive statistics are used to provide a meaningful quantitative overview of 
data, and to summarize potentially vast amounts of information into more easily 
comprehensible and manageable quantities. In general, descriptive statistics are used 
as a first step in a data analysis workflow. In this section we will focus on numeric 
descriptors while visualizations are the topic of Chapter 6 [4]. For this chapter, 
we will use the combined Moodle data with students’ demographics, results, and 
summarized Moodle event activity. For more information about the dataset, please 
refer to Chapter 2 in this book [5]. We begin by installing all R packages that we 
will use in this chapter. 

install.packages( 
c("car", "rio", "see", "dplyr", "tidyr", 

"broom", "report", "correlation", "performance") 
) 

We use the rio [6] package to read the data files into R via the import() 
function. The Events dataset contains log data on the student’s Moodle activity 
such as Moodle event types and names. The Demographics dataset contains 
background information on the students such as their gender and location of study 
(categorical variables). Finally, the Results data contains grades on various aspects 
of the Moodle course including the final course grade (numeric variables). We 
also create a new variable called AchievingGroup that categorizes the students
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into bottom and top 50% of achievers in terms of the final grade. We will 
leverage the dplyr [7] and tidyr [8] packages to wrangle the data into a single 
combined dataset. We begin by reading the data files and by constructing the 
AchievingGroup variable. 

library("rio") 
library("dplyr") 
library("tidyr") 
url <- "https://github.com/lamethods/data/raw/main/1_moodleLAcourse/" 
events <- import(paste0(url, "Events.xlsx"), setclass = "tibble") 
demographics <- import(paste0(url, "Demographics.xlsx"), setclass = "tibble") 
results <- import(paste0(url, "Results.xlsx"), setclass = "tibble") |> 

mutate( 
AchievingGroup = factor( 

case_when( 
ntile(Final_grade, 2) == 1 ~ "Low achiever", 
ntile(Final_grade, 2) == 2 ~ "High achiever" 

) 
) 

) 

Next, we summarize the student’s engagement based on their Moodle activity 
into three groups: Low activity, Moderate activity and High Activity. 

events_summary <- events |> 
group_by(user) |> 
tally() |> 
rename(Frequency.Total = n) |> 
mutate( 

ActivityGroup = factor( 
case_when( 

ntile(Frequency.Total, 3) == 1 ~ "Low activity", 
ntile(Frequency.Total, 3) == 2 ~ "Moderate activity", 
ntile(Frequency.Total, 3) == 3 ~ "High activity" 

) 
) 

) 

We also count the different types of Moodle events. 

events_types <- events |> 
group_by(user, Action) |> 
count(Action) |> 
pivot_wider( 

names_from = "Action", 
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names_prefix = "Frequency.", 
values_from = "n", 
values_fill = 0 

) 

Finally, we combine the data. 

all_combined <- demographics |> 
left_join(events_types, by = "user") |> 
left_join(events_summary, by = "user") |> 
left_join(results, by = "user") 

The various steps of the combined data construction are discussed in greater 
detail in Chapter 4 [9]. 

2.1 Measures of Central Tendency 

A typical way to summarize a univariate data sample is to describe its “middle point” 
using an appropriate statistic depending on the measurement scale of the data. The 
most common statistics to describe such a value are the mean, the  median, and the 
mode. 

For data on the interval or ratio scales (and sometimes also on the ordinal scale), 
the most common option is to use the arithmetic mean, which is available via the 
base R function mean(). This function takes a vector of values as its input. 

all_combined |> 
summarise( 

mean_grade = mean(Final_grade), 
mean_total = mean(Frequency.Total) 

) 

# A tibble: 1 x 2 
mean_grade mean_total 

<dbl> <dbl> 
1 7.25 736. 

The means are reported as a tibble with a single column for both variables. 
For data on the ordinal scale (or interval or ratio scales), the median can be used 

which is defined as the value that separates the lower half from the bottom half of 
the data sample, i.e., the 50% quantile. The median can be computed in R using the 
built-in median() function. Similarly to mean(), this function also takes a vector 
of values as its input.
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all_combined |> 
summarise( 

median_grade = median(Final_grade), 
median_total = median(Frequency.Total) 

) 

# A tibble: 1 x 2 
median_grade median_total 

<dbl> <dbl> 
1 7.95 606 

Just like before, the medians are reported as a tibble with each value in its own 
column. 

For data on the nominal or ordinal scale, the mode is a suitable choice as it 
describes the category with the highest number of observations. Unfortunately, there 
is no readily available function in R to compute the mode, and the reader should 
take care not to mistakenly use the mode() function, which is used to determine the 
internal storage mode of a variable (similar to the typeof() function). However, 
we can easily write our own function to compute the statistical mode as follows: 

stat_mode <- function(x) { 
u <- unique(x) 
u[which.max(tabulate(match(x, u)))] 

} 

Functions in R are written using the following syntax. First, we define the name 
of the function, just like we would define the name of a variable when assigning 
data into it, in this case the name is stat_mode. Next, we assign the function 
definition, which starts with the keyword function. Next, we describe the function 
arguments within the parentheses, in this case we call our argument x, which we 
assume contains the data vector we wish to compute the mode for. Next, we define 
the body of the function within the braces. The body determines what the function 
does and what its output should be. Within the body, we first determine the unique 
values in the data vector x, and assign the result to a variable u. Next, we need 
to count the number of occurrences of each unique value. To start, we first match 
each observed value in x to the unique values in u to get the corresponding indices, 
which we will then count using tabulate. We obtain the index of the value with 
the highest number of occurrences with the function which.max(), and finally the 
corresponding unique value by selecting it from u using the subset operator, i.e., the 
brackets. Our function will now work on all types of data. 

all_combined |> 
summarise( 

mode_gender = stat_mode(Gender), 
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mode_location = stat_mode(Location) 
) 

# A tibble: 1 x 2 
mode_gender mode_location 
<chr> <chr> 

1 F On campus 

The output is now similar to the mean and median functions that we used earlier, 
showing the modes of Gender and Location as a two-column tibble. For nominal 
variables, it is common to also compute the frequencies of each category. This can 
easily be done with the base R function table() 

table(all_combined$Gender) 

F M  
65 65 

table(all_combined$Location) 

On campus Remote 
106 24 

The function outputs the names of the categories and the frequency of each 
category as an integer vector. 

2.2 Measures of Dispersion 

For data on the interval and ratio scales (and sometimes also on the ordinal scale), 
it is also meaningful to describe how clustered or scattered the values in the sample 
are, i.e., how far apart the values are from one another. Commonly used measures of 
statistical dispersion include the variance, standard deviation, and the interquartile 
range. Typically, such measures have the value 0 when all values in the sample are 
identical, and the value increases as the dispersion in the data grows. 

All three measures can be readily computed with built-in R functions var(), 
sd(), and IQR() respectively. Like mean() and median(), these functions accept 
a vector or numeric values as input. 

all_combined |> 
summarise( 

var_grade = var(Final_grade), 
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sd_grade = sd(Final_grade), 
iqr_grade = IQR(Final_grade) 

) 

# A tibble: 1 x 3 
var_grade sd_grade iqr_grade 

<dbl> <dbl> <dbl> 
1 4.81 2.19 3.34 

The variance, standard deviation and interquartile range of the final grade are 
returned as a tibble with three columns. 

2.3 Covariance and Correlation 

Covariance and correlation measure the linear dependence between two variables. 
Correlation is a unitless measure between . −1 and 1, whereas covariance is not, and 
its scale depends on the scale of the variables. The sign of both measures indicates 
the tendency of the relationship. Positive sign means that as the value of one variable 
increases, the value of the other variable tends to increase as well. Conversely, a 
negative sign indicates that the value of the second variable tends to decrease as the 
value of the first variable increases. 

Both covariance and correlation and be computed directly in R using the 
functions cov() and cor(), respectively. 

all_combined |> 
summarise( 

cov_grade_total = cov(Final_grade, Frequency.Total), 
cor_grade_total = cor(Final_grade, Frequency.Total), 

) 

# A tibble: 1 x 2 
cov_grade_total cor_grade_total 

<dbl> <dbl> 
1 504. 0.513 

We obtain the covariance and correlation between the final grade and total 
number of Moodle events. We will familiarize ourselves with correlations in greater 
depth in Sect. 4. 

2.4 Other Common Statistics 

The extreme values of a data sample can be found using the function range(), 
which computes the minimum and maximum values of the sample as a vector. These
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values can also be computed individually with the corresponding functions min() 
and max(). Because summarise() only allows a single value as output per row, we 
use the reframe() function instead when computing the range. 

all_combined |> 
reframe( 

range_grade = range(Final_grade) 
) 

# A tibble: 2 x 1 
range_grade 

<dbl> 
1 0  
2 10  

all_combined |> 
summarise( 

min = min(Final_grade), 
max = max(Final_grade) 

) 

# A tibble: 1 x 2 
min max 

<dbl> <dbl> 
1 0 10  

With reframe(), we obtain a tibble with two rows, the first containing the 
minimum value and the second the maximum value of the final grade. If we instead 
use summarise() like before, we can only obtain one value per computed variable. 
The summary() function can also be used to quickly compute several of the most 
common descriptive statistics for all variables of a dataset. 

results |> 
select(Grade.SNA_1:Grade.Group_self) |> 
summary() 

Grade.SNA_1 Grade.SNA_2 Grade.Review Grade.Group_self 
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 
1st Qu.: 8.000 1st Qu.: 9.000 1st Qu.: 6.670 1st Qu.: 9.000 
Median : 9.000 Median :10.000 Median : 8.000 Median :10.000 
Mean : 8.346 Mean : 9.262 Mean : 7.724 Mean : 8.085 
3rd Qu.:10.000 3rd Qu.:10.000 3rd Qu.: 9.670 3rd Qu.:10.000 
Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000 

The output shows the minimum and maximum values, the quartiles, and the mean 
of each variable that we selected.
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3 Statistical Hypothesis Testing 

Statistical hypothesis testing aims to evaluate hypotheses about a population of 
interest using probabilistic inference. The starting point of any statistical test is a so-
called null hypothesis (denoted by . H0), which typically corresponds to a scenario, 
where evidence supporting a specific hypothesis is a result of pure chance. For 
example, when evaluating whether a new drug is an efficient form of treatment 
via a randomized controlled trial, the null hypothesis could be that the drug has 
no effect on the response. A null hypothesis is always associated with an alternative 
hypothesis (denoted by . H1), which is typically the inverse of the null hypothesis and 
corresponds to the hypothesis of interest, e.g., the drug has an effect on the response. 

Statistical tests operate by assuming that the null hypothesis is true, and highly 
unlikely events under this assumption are typically regarded as giving cause for 
rejecting the null hypothesis. A statistical test is associated with a test statistic, 
which is a measure of how much the observations deviate from the null hypothesis 
scenario. The distribution of the test statistic under the null hypothesis and the 
sample test statistic can be used to compute the probability of obtaining a test 
statistic as extreme or more extreme than the one observed, assuming that the 
null hypothesis is true. This probability is known as the p-value, which is often 
mischaracterized even in scientific literature. For instance, the p-value is not the 
probability that the null hypothesis is true or that the alternative hypothesis is false. 
The p-value also does not quantify the size of the observed effect, or its real-world 
importance. 

Typically, a confidence level is decided before applying a statistical test (usually 
denoted by . α), and the null hypothesis is rejected if the observed p-value is smaller 
than this confidence level. If the p-value is greater than the confidence level, the 
null hypothesis is not rejected. Traditionally, the confidence level is 0.05, but this 
convention varies by field, and should be understood as being arbitrary, i.e., there is 
nothing special about the value 0.05. If the p-value falls below the confidence level, 
the result is regarded as statistically significant. 

Hypothesis testing is a powerful tool for drawing conclusions from data, but it is 
important to use it appropriately and to understand its limitations. Every statistical 
test is associated with a set of assumptions which are often related to the distribution 
of the data sample. If these assumptions are violated, then the results of the test 
may be unreliable. In the following sections, some of the most common statistical 
tests are introduced. We will take advantage of the report [10] package and the 
corresponding function report() to showcase the results of the various statistical 
tests. For more information on the concepts and principles related to statistical 
hypothesis testing, see e.g., [2, 3].
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3.1 Student’s t-test 

Student’s t-test [11] is one of the most well-known statistical tests. It compares 
the mean values of variables either between two populations or between a single 
population and a reference level and is thus applicable to continuous variables. The 
test assumes homogeneity of variance and that the data originates from a normal 
distribution. For nonhomogeneous data, the test can still be performed by using 
an approximation [12]. In R, all variants of the t-test test can be applied using the 
function t.test(). 

Our goal is to compare the students’ Moodle activity with respect to their final 
grade. For this purpose, we use the binary variable called AchievingGroup which 
categorizes the students into top and bottom 50% achievers in terms of the final 
grade. 

3.1.1 One-Sample t-test 

The one-sample t-test compares the mean of a data sample against a reference value, 
typically defined by the null hypothesis. Let us begin by testing the hypothesis that 
the average number of Moodle events (Frequency.Total) is 600 (.H0 : μ = 600). 
The function t.test() can be used in various ways, but in this example we 
provide the function with a formula object Frequency.Total ~ 1 as the first 
argument. The formula syntax is a standard method for defining statistical models 
and other dependency structures in R. The formula defines that the left-hand side 
of the ~ symbol is a response variable which is explained by the terms on the 
right-hand side. Because we’re not conducting the test with respect to any other 
variable, the right-hand side of the formula is simply 1, which means that it is a 
constant in the R formula syntax. This does not mean for example, that our null 
hypothesis would be that the number of Moodle events is 1. The expected value 
that the test is applied against (i.e., the value we assume . μ to have under the null 
hypothesis) is defined via the argument mu, which by default has the value 0 for 
a one-sample t-test. Argument data defines in which environment the formula 
should be evaluated. By providing the all_combined data, we do not have to 
explicitly extract the FrequencyTotal variable from the data in the formula by 
writing all_combined$Frequency.Total or by using pull(). This is especially 
useful when the formula contains several variables from the same data. 

ttest_one <- t.test(Frequency.Total ~ 1, data = all_combined, mu = 600) 
ttest_one 

One Sample t-test 

data: Frequency.Total 
t = 3.4511, df = 129, p-value = 0.0007553
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alternative hypothesis: true mean is not equal to 600 
95 percent confidence interval: 
657.8530 813.3163 

sample estimates: 
mean of x 
735.5846 

As a result, we obtain the value of the test statistic (t = 3.4511), the degrees 
of freedom (df = 129), and the p-value of the test (p-value = 0.0007553). 
Because the p-value is very small (much smaller than the standard 0.05 confidence 
level), we reject the null hypothesis, which means that the average number of 
Moodle events is significantly different from 600. The output of the test result object 
also describes the alternative hypothesis . H1 under alternative hypothesis, and 
the confidence interval of the test statistic. 

We produce a summarized report of the test results with the report() function. 

report(ttest_one) 

Warning: Unable to retrieve data from htest object. 
Returning an approximate effect size using t_to_d(). 

Effect sizes were labelled following Cohen’s (1988) recommendations. 

The One Sample t-test testing the difference between Frequency.Total (mean = 
735.58) and mu = 600 suggests that the effect is positive, statistically 
significant, and small (difference = 135.58, 95% CI [657.85, 813.32], t(129) = 
3.45, p < .001; Cohen’s d = 0.30, 95% CI [0.13, 0.48]) 

This produces a description of the results of the test that is easier to read and 
interpret than the direct output of the test result object. We note that a warning is 
also produced which we can safely ignore in this case. The warning occurs because 
the test result object ttest_one does not retain the original data all_combined 
which we used to carry out the test. If non-approximate effect sizes are desired, 
the test should be carried out by supplying the variables being compared directly 
without using the formula interface of the t.test() function. For more information 
on the effect size, see e.g., [13, 14]. 

3.1.2 Two-Sample t-test 

In contrast to the one-sample t-test, the two-sample t-test compares the means of 
two data samples against one another. For example, suppose that we’re interested in 
the hypothesis that the average number of Moodle events is the same for the top and 
bottom 50% achievers (.H0 : μ1 = μ2). We can once again leverage the formula 
syntax, but instead of the constant 1 on the right-hand side of the formula, we will 
now replace it with the variable Achievement which defines the achievement level.
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ttest_two <- t.test(Frequency.Total ~ AchievingGroup, data = all_combined) 
ttest_two 

Welch Two Sample t-test 

data: Frequency.Total by AchievingGroup 
t = 4.4749, df = 95.988, p-value = 2.102e-05 
alternative hypothesis: 
true difference in means between group 1 and group 2 is not equal to 0 
95 percent confidence interval: 
182.6427 473.8496 

sample estimates: 
mean in group High achiever mean in group Low achiever 

899.7077 571.4615 

The contents of the result object are mostly the same as in the case of the one-
sample t-test. The result is again statistically significant (using the 0.05 confidence 
level) meaning that according to the test, the average number of Moodle events is 
higher for the top 50% achievers. The report() function can be used to produce a 
similar summary as in the case of the one-sample t-test. 

report(ttest_two) 

Warning: Unable to retrieve data from htest object. 
Returning an approximate effect size using t_to_d(). 

Effect sizes were labelled following Cohen’s (1988) recommendations. 

The Welch Two Sample t-test testing the difference of Frequency.Total by 
AchievingGroup (mean in group High achiever = 899.71, mean in group Low achiever = 
571.46) suggests that the effect is positive, statistically significant, and large 
(difference = 328.25, 95% CI [182.64, 473.85], t(95.99) = 4.47, p < .001; Cohen’s d 
= 0.91, 95% CI [0.49, 1.33]) 

This produces the same warning as before in the one-sample case, but we can 
safely ignore it again. 

3.1.3 Paired Two-Sample t-test 

Instead of directly comparing the means of two groups, it may sometimes be of 
interest to compare differences between pairs of measurements. Such a scenario 
typically arises in an experiment, where subjects are paired, or two sets of 
measurements are taken from the same subjects. While our Moodle event data 
does not contain such measurement pairs, we could still imagine that our data was 
organized such that each student in the bottom 50% achievers was paired with a
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student in the top 50% achievers and that there is a one-to-one correspondence 
between the two achievement groups. This dependency between the two groups is 
the key difference between the paired test and the two-sample test. 

A more suitable approach for paired data is to test the differences between the 
pairs, e.g., the differences between the number of Moodle events in our scenario. 
We supply the t.test() function with the argument paired = TRUE so that it 
will take the measurement pairs into account. In this test, the null hypothesis is that 
the mean difference between the student pairs is zero (.H0 : μd = 0). 

ttest_paired <- t.test( 
Frequency.Total ~ AchievingGroup, data = all_combined, paired = TRUE 

) 
ttest_paired 

Paired t-test 

data: Frequency.Total by AchievingGroup 
t = 4.3733, df = 64, p-value = 4.599e-05 
alternative hypothesis: true mean difference is not equal to 0 
95 percent confidence interval: 
178.3014 478.1910 

sample estimates: 
mean difference 

328.2462 

The result is once again statistically significant, and we reject the null hypothesis. 
Because the mean difference between the pairs is positive, this means average 
number of Moodle events is higher for the top 50% achievers of the pairs. 

Paired two-sample t-test is also supported by report(). 

report(ttest_paired) 

Warning: Unable to retrieve data from htest object. 
Returning an approximate effect size using t_to_d(). 

Effect sizes were labelled following Cohen’s (1988) recommendations. 

The Paired t-test testing the difference of Frequency.Total by AchievingGroup (mean 
difference = 328.25) suggests that the effect is positive, statistically 
significant, and medium (difference = 328.25, 95% CI [178.30, 478.19], t(64) = 
4.37, p < .001; Cohen’s d = 0.55, 95% CI [0.28, 0.81]) 

We can once again safely ignore the produced warning message.
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3.2 Chi-Squared Test 

The chi-squared test is used for the analysis of contingency tables; it tests whether 
two categorical variables are independent or not [15]. A typical use case for this test 
is to investigate differences between groups such as student attendance by location 
or gender. The basic idea of the test is to compare the observed contingency table 
to a table under the null hypothesis where the variables are independent. The chi-
squared test is based on the cell-specific differences between these two tables. As a 
general rule, the test assumes that the expected value is at least 5 in at least 80% of 
the cells, and that no expected values are below 1. If these assumptions are violated, 
the results of the test may not be reliable. In such cases, Fisher’s exact test [16] can 
be used instead via the function fisher.test(), but it may be computationally 
slow for large contingency tables. Both the chi-squared test and Fisher’s exact test 
assume that the data is a random sample from the population. 

We will use the combined Moodle data to investigate whether the achievement 
level and the activity level of the students are independent. First, we must create the 
contingency table from the individual-level data. We use the table() function for 
this purpose. 

tab <- table(all_combined$ActivityGroup, all_combined$AchievingGroup) 
tab 

High achiever Low achiever 
High activity 27 16 
Low activity 14 30 
Moderate activity 24 19 

The table shows the observed frequencies in each cell, i.e., for each combina-
tion of activity and achievement. Next, we apply the chi-squared test using the 
chisq.test() function. 

Xsq_test <- chisq.test(tab) 
Xsq_test 

Pearson’s Chi-squared test 

data: tab 
X-squared = 9.2135, df = 2, p-value = 0.009984 

Printing the test result object shows the test statistic (X-squared), the associated 
degrees of freedom (df) and the p-value (p-value). The p-value is very small, 
meaning that we reject the null hypothesis. In other words, the achievement and 
activity levels of the students are not independent. This is not a surprising result, as
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more active students are more likely to engage with the course content and perform 
better in terms of the learning outcomes. We can confirm that the assumptions of 
the test related to the expected values of the cells were not violated by using the 
test result object, which contains the expected values of the cells in the element 
expected. 

all(Xsq_test$expected >= 1) 

[1] TRUE 

mean(Xsq_test$expected >= 5) >= 0.80 

[1] TRUE 

All expected values were greater than one, and over 80% of the expected values 
were greater than 5. This means that the assumptions are satisfied for our data 
and thus the results are reliable. Here, we used the function all() which takes a 
logical vector as input and returns TRUE if all elements of the vector were TRUE. 
Otherwise, the function returns FALSE. Unfortunately, the report() function does 
not support the chi-squared test. 

3.3 Analysis of Variance 

Analysis of variance (ANOVA) [17] can be viewed as the generalization of Student’s 
t-test, where instead of one or two groups, the means of a variable are compared 
across multiple groups simultaneously. The name of the method comes from its test 
statistic, which is based on a decomposition of the total variance of the variable 
into variance within the groups and between the groups. ANOVA makes several 
assumptions: the observations are independent, the residuals of the underlying linear 
model follow a normal distribution, and that the variance of the variable is the 
same across groups (homoscedasticity). If these assumptions are violated, the results 
of the test may not be reliable. One alternative in such instances is to use the 
non-parametric Kruskal-Wallis test [18] instead, which is available in R via the 
function kruskal.test(). This test uses the ranks of the observations, and the 
null hypothesis is that the medians are the same for each group. 

We use our combined Moodle data to demonstrate ANOVA. Instead of compar-
ing the total number of Moodle events between top and bottom 50% of achievers, 
this time we will compare the final grade of the students across three activity 
groups: low activity, moderate activity, and high activity, described by the variable 
ActivityGroup. Thus the null and alternative hypotheses are in this case:

• . H0: The expected values of the final grade are the same across the three activity 
groups (.μ1 = μ2 = μ3),
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• . H1: At least one activity group has a different expected final grade (.μi �= μj for 
at least one pair .i �= j ). 

To carry out the analysis, we apply the aov function, which uses the same 
formula syntax to define the response variable and the groups as the t.test() 
function does. Next, we apply the summary() function to the aov() function return 
object fit, as the default output of aov() is not very informative. 

fit <- aov(Final_grade ~ ActivityGroup, data = all_combined) 
summary(fit) 

Df Sum Sq Mean Sq F value Pr(>F) 
ActivityGroup 2 175.7 87.87 25.11 6.47e-10 *** 
Residuals 127 444.4 3.50
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

The summary contains the following columns: Df describes the degrees of 
freedom of the F -distribution associated with the test, Sum Sq reports the sum of 
squares related to the groups and the residuals, Mean Sq reports the corresponding 
mean sum of squares, F value is the value of the test statistic, and finally Pr(>F) is 
the p-value of the test. For this example, the p-value is very small, which means that 
the null hypothesis is rejected, and there are statistically significant differences in 
the final grade between the groups according to the test. In the following sections we 
will learn how to test for the assumptions related to normality and homoscedasticity. 
The report() function can be used for the output of aov() as well. 

report(fit) 

The ANOVA (formula: Final_grade ~ ActivityGroup) suggests that:

- The main effect of ActivityGroup is statistically significant and large (F(2, 
127) = 25.11, p < .001; Eta2 = 0.28, 95% CI [0.17, 1.00]) 

Effect sizes were labelled following Field’s (2013) recommendations. 

This output also reports the degrees of freedom, the test statistic value and the 
p-value but in a more easily readable format. 

Note that ANOVA simply measures if there are differences between the groups 
but does not provide information on how these differences emerge. For example, 
there could be a single group that is different from all the rest, or two subgroups 
where the means are similar within each group, but different between the subgroups. 
Visualizations can be a helpful tool for gaining more insight into the differences, and 
post-hoc pairwise tests can be carried out to compare the pairs of groups.
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3.4 Levene’s Test 

Levene’s test is used to investigate whether the variance of a variable is the same 
across two or more groups [19]. Compared to alternatives such as Bartlett’s test [20], 
Levene’s test is less sensitive to non-normal observations. The test is not available in 
base R, but it can be found in the car package as the function leveneTest(). The  
function uses the same formula syntax as t.test() and aov(). We will investigate 
the homogeneity of the variance of the final grade between the activity groups. 

library("car") 
leveneTest(Final_grade ~ ActivityGroup, data = all_combined) 

Levene’s Test for Homogeneity of Variance (center = median) 
Df F value Pr(>F) 

group 2 5.7204 0.004181 ** 
127

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

The output of leveneTest() is analogous to the output of the ANOVA 
summary, and it contains the degrees of freedom (Df), the value of the test statistic (F 
value) and the p-value of the test (Pr(>F)). The p-value is very small, so we reject 
the null hypothesis meaning that the variance of the final grade is not the same across 
the groups according to the test. This means that the assumption of homoscedasticity 
is violated for the analysis of variance of the final grade, and thus the results may 
not be reliable. The report() function is not supported for leveneTest(). 

3.5 Shapiro-Wilk Test 

Shapiro-Wilk test tests the null hypothesis that a data sample originated from 
a normal distribution [21]. The test is available in base R as the function 
shapiro.test(). Unfortunately, this function does not support the formula syntax 
unlike the other test functions we have used thus far. The function only accepts a 
single numeric vector as its argument. Therefore, to test the normality of multiple 
groups simultaneously, the data must first be split into the groups to be tested. We 
apply the test to the final grade in each achievement group. With the help of the 
broom package [22], we wrap the test results into a tidy format. 

library("broom") 
all_combined |> 

# Performs the computations in each activity group 
group_by(ActivityGroup) |> 
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# Apply a function in each group 
group_modify(~{ 

# Apply the Shapiro test in each group and create tidy output 
shapiro.test(.$Final_grade) |> 

tidy() 
}) |> 
# Selection of variables to keep in the output 
select(ActivityGroup, statistic, p.value) 

# A tibble: 3 x 3 
# Groups: ActivityGroup [3] 

ActivityGroup statistic p.value 
<fct> <dbl> <dbl> 

1 High activity 0.918 0.00448 
2 Low activity 0.909 0.00215 
3 Moderate activity 0.862 0.000103 

This is also a great example of the tidyverse paradigm. First, we group the 
data by ActivityGroup using group_by(), and then apply a function in each 
group using group_modify(). We apply the shapiro.test() function to the 
Final_grade variable, and then we convert the test results into a tidy tibble using 
the tidy() function from the broom package. We also use the special dot notation 
. to select the final grade variable from the data in each group. Finally, we select the 
grouping variable (ActivityGroup), the test statistic (statistic) and the p-value 
(p.value) of each test using select() and print the results. The resulting object 
is a tibble with three columns: ActivityGroup, statistic and p.value, the last  
two of which give the test statistic and p-value of the test for the activity group of 
the first column. 

We can see that according to the test, the Final_grade variable is not normally 
distributed in any of the activity groups, as the p-values are very small. As a 
consequence, the results of the analysis of variance carried out earlier may not be 
reliable. 

4 Correlation 

In Sect. 2.3, we briefly described covariance and correlation, and showcased the base 
R functions to compute them. However, there are several powerful and user-friendly 
packages for the analysis and reporting of correlations, such as the correlation 
[23] package which we will demonstrate in this section. 

library("correlation")
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For example, the package can easily compute all pairwise correlations between 
the numeric variables of the data with the function correlation(). The argument 
select can be used to compute the correlations only for a subset of the variables. 

corrs <- correlation( 
all_combined, 
select = c("Frequency.Total", "Grade.Theory", "Final_grade") 

) 
corrs 

# Correlation Matrix (pearson-method) 

Parameter1 | Parameter2 | r | 95% CI | t(128) | p
-------------------------------------------------------------------------
Frequency.Total | Grade.Theory | 0.31 | [0.15, 0.46] | 3.75 | < .001*** 
Frequency.Total | Final_grade | 0.51 | [0.37, 0.63] | 6.76 | < .001*** 
Grade.Theory | Final_grade | 0.45 | [0.30, 0.58] | 5.69 | < .001*** 

p-value adjustment method: Holm (1979) 
Observations: 130 

The columns Parameter1 and Parameter2 describe the variables that the 
correlation was computed for, r is the value of the sample correlation, and the 
remaining columns report the 95% confidence interval, the value of the test 
statistic, and the p-value of the test (a t-test for correlations) along with the 
statistical significance. By default, Pearson’s correlation coefficient is calculated, 
but the package also supports many alternative correlation measures. The correlation 
coefficient to be computed can be selected with the argument method that has 
the value "pearson" by default. Selecting for example method = "spearman" 
would compute the Spearman correlation coefficient instead. We can also obtain a 
correlation matrix by using summary() 

summary(corrs) 

# Correlation Matrix (pearson-method) 

Parameter | Final_grade | Grade.Theory
--------------------------------------------
Frequency.Total | 0.51*** | 0.31*** 
Grade.Theory | 0.45*** | 

p-value adjustment method: Holm (1979) 

By default, redundant correlations are omitted, but they can be obtained by 
setting redundant = TRUE in the call to summary(). A plot of the correlation 
matrix can be produced with the help of the package see [24].
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library("see") 
corrs |> 

# Also include redundant correlations 
summary(redundant = TRUE) |> 
plot() 
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The plot shows the strength of the correlations where darker colors imply 
stronger correlations. Visualizations will be covered at greater length in Chapter 
6 [4]. 

5 Linear Regression 

Linear regression is a statistical tool where one continuous variable is explained by 
the values of other variables. The variable of interest is said to be a dependent, while 
the other variables are called predictors. Predictors may also be called explanatory 
variables, independent variables or covariates depending on the context, applied 
field, and perspective. 

Consider a very simple case, where we only have one predictor, which happens 
to be a continuous variable. In this case, fitting a linear regression model is merely 
the same as fitting a straight line to a scatterplot. It is assumed that deviations from 
this line are simply a result of random variation. 

Now, let’s go through the formal definition of a linear regression model. Let Y 
be a dependent variable with measurements .y1 . . . , yn, and let .X1, X2, . . . , Xk be 
predictor variables with measurements .x1i , . . . , xki for all .i = 1, . . . , n where i 
refers to an individual measurement. Then, the regression equation is
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. yi = β0 + β1x1i + β2x2i + · · · + βkxki + εi, εi ∼ N(0, σ 2), i = 1, . . . , n

where we have the regression coefficients .β0, β1, . . . βk and the error variance . σ 2. 
The first parameter . β0 is called the intercept that models the conditional expectation 
of Y when all the predictors have the value 0. From the regression equation, 
several assumptions become apparent. First, as the name of the model suggests, 
a linear relationship is assumed between the response and the predictors. Next, 
the variance . σ 2 of the errors . εi is constant, and does not depend on the values 
of the predictors (homoscedasticity). The errors are also assumed independent. The 
predictor variables are assumed fixed and their values perfectly measured without 
error. 

Let’s fit a linear regression model that predicts the final grade with the number 
of Moodle events of different types. To simplify the exposition, we will only 
use three types of Moodle events as predictors. We use the lm() function which 
has the same formula interface that we are already familiar with. First, we must 
define the dependent variable on the left-hand side of the formula, followed by the 
predictors on the right-hand side separated by a + sign. We must also supply the 
data argument, which tells the function where the actual values of the variables can 
be accessed. 

fit <- lm( 
Final_grade ~ Frequency.Applications + Frequency.Assignment + 

Frequency.La_types, 
data = all_combined 

) 
summary(fit) 

Call: 
lm(formula = Final_grade ~ Frequency.Applications + 

Frequency.Assignment + Frequency.La_types, data = all_combined) 

Residuals: 
Min 1Q Median 3Q Max

-7.0382 -0.8872 0.3665 1.2372 3.4422 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 5.800211 0.405963 14.288 < 2e-16 *** 
Frequency.Applications 0.076516 0.022294 3.432 0.000811 *** 
Frequency.Assignment -0.005049 0.005734 -0.881 0.380225 
Frequency.La_types 0.088252 0.027314 3.231 0.001574 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1  

Residual standard error: 1.914 on 126 degrees of freedom
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Multiple R-squared: 0.2559, Adjusted R-squared: 0.2382 
F-statistic: 14.45 on 3 and 126 DF, p-value: 3.798e-08 

The summary() function provides a compact overview of the model fit for 
lm objects. First, a summary of the residuals (i.e., the differences between the 
observed and predicted values) is provided under Residuals. Next, a summary 
of the regression coefficients . β is provided under Coefficients, including their 
estimates (Estimate), standard errors (Std. Error), test statistics for t-tests 
that test whether the coefficients are significantly different from zero (t value), 
p-values of the tests (Pr(>|t|)) and statistical significance (indicated by the 
asterisks). For instance, we see that the number of group work events is statistically 
significant. The notation used for the significance levels of the tests is described 
following Signif. codes. Estimate of the square root of the error variance . σ 2 is 
reported following Residual standard error. The two  R-squared values are 
estimates of the proportion of variance of the data that is explained by the model. 
Finally, the F-statistic reports the results of ANOVA when applied with the 
same model formula that was used for the linear regression model. 

The report() function provides a more comprehensive summary of the model 
fit and the regression coefficients: 

report(fit) 

We fitted a linear model (estimated using OLS) to predict Final_grade with 
Frequency.Applications, Frequency.Assignment and Frequency.La_types (formula: 
Final_grade ~ Frequency.Applications + Frequency.Assignment + Frequency.La_types). 
The model explains a statistically significant and moderate proportion of variance 
(R2 = 0.26, F(3, 126) = 14.45, p < .001, adj. R2 = 0.24). The model’s intercept, 
corresponding to Frequency.Applications = 0, Frequency.Assignment = 0 and 
Frequency.La_types = 0, is at 5.80 (95% CI [5.00, 6.60], t(126) = 14.29, p < .001). 
Within this model:

- The effect of Frequency Applications is statistically significant and positive 
(beta = 0.08, 95% CI [0.03, 0.12], t(126) = 3.43, p < .001; Std. beta = 0.32, 95% 
CI [0.13, 0.50])

- The effect of Frequency Assignment is statistically non-significant and negative 
(beta = -5.05e-03, 95% CI [-0.02, 6.30e-03], t(126) = -0.88, p = 0.380; Std. beta =
-0.08, 95% CI [-0.26, 0.10])

- The effect of Frequency La types is statistically significant and positive (beta 
= 0.09, 95% CI [0.03, 0.14], t(126) = 3.23, p = 0.002; Std. beta = 0.31, 95% CI 
[0.12, 0.49]) 

Standardized parameters were obtained by fitting the model on a standardized 
version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed 
using a Wald t-distribution approximation. 

Again, the report output has condensed the information about the model fit into 
a format that can be read in a straightforward manner.
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The assumption of normality of the residuals can be assessed with a quantile-
quantile plot, or q-q plot for short. The residuals of the model fit can be accessed 
with the function resid(). The function qqnorm() draws the quantiles of the 
residuals against the quantiles of the normal distribution. The function qqline() 
adds a straight line through the plot that passes through the second and third 
quantiles, by default. Ideally, the residuals should fall on this line, and large 
deviations indicate that the normality assumption may not hold. 

# Draw the quantiles of the residuals and the theoretical quantiles 
qqnorm(resid(fit)) 
# Add a line through the theoretical quantiles 
qqline(resid(fit)) 
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The vast majority of residuals fall nicely onto the line for our model. Besides the 
q-q plot, we can obtain more model diagnostics with the help of the performance 
[25] package. This package provides a wide array of tools to assess how well 
models fit to the data. The general-purpose function check_model( provides a 
visual overview of the model fit using several metrics. 

library("performance") 
check_model(fit, theme = see::theme_lucid(base_size = 10)) 
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The functions performs various tests related to the assumptions of the linear 
regression model. For example, the bottom right panel contains the same q-q 
plot that we previously constructed using the qqnorm() and qqline() functions. 
We refer the reader to the documentation of the performance package for more 
information on the remaining tests.
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6 Logistic Regression 

Logistic regression is a similar tool to linear regression, but with a binary outcome 
instead of a continuous one. Instead of modeling the outcome variable directly, a 
linear model is constructed for the logarithmic odds of the probability of “success” 
for the binary outcome, e.g., obtaining a passing grade. There is also no explicit 
error term . ε in the model, as the uncertainty in the outcome is already captured by 
the success probability. Formally, the model is 

. logit (P (yi = 1)) = β0 + β1x1i + β2x2i + · · · + βkxki, i = 1, . . . , n,

where the logit-function is defined as .logit(x) = log(x/(1 − x)). Here, the logit-
function serves as the so-called link function that connects the expected value of the 
response to the predictors. 

We fit a logistic regression model where the outcome variable is the level of 
achievement (AchievingGroup) and the predictors are the Moodle event counts of 
each type. The logistic regression model is a generalized linear model: a class of 
models that extend the linear regression model and that can be fitted in R with the 
function glm(). The syntax of glm() is analogous to lm(), but we must also specify 
the distribution of the outcome and the link function via the family argument. We 
use the function binomial() and supply the argument link = "logit" to define 
that the model should be a logistic regression model (in this case the link argument 
is optional, as "logit" is the default value). Because AchievingGroup is a factor, 
we must first convert it into a binary response that attains values 1 and 0 (or TRUE 
and FALSE). We can do this within the formula via the I() function, so that we do 
not have to modify our data. When used in a formula, this function will first compute 
its argument expression when evaluated, so that the expression is not mistaken for 
a variable name in the data (that does not exist). We select the high achievers as the 
“success” category for the outcome. 

fit_logistic <- glm( 
# Use the I() function to construct a binary response in the formula 
I(AchievingGroup == "High achiever") ~ Frequency.Applications + 

Frequency.Assignment + Frequency.La_types, 
data = all_combined, 
# Our response is binary, so we use the binomial family with logit link 
family = binomial(link = "logit") 

) 
summary(fit_logistic) 

Call: 
glm(formula = I(AchievingGroup == "High achiever") ~ Frequency.Applications + 

Frequency.Assignment + Frequency.La_types, family = binomial(link = "logit"), 
data = all_combined) 

Coefficients:
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Estimate Std. Error z value Pr(>|z|) 
(Intercept) -0.66272 0.62914 -1.053 0.29217 
Frequency.Applications 0.30443 0.07778 3.914 9.07e-05 *** 
Frequency.Assignment -0.04477 0.01402 -3.193 0.00141 ** 
Frequency.La_types 0.12245 0.04710 2.600 0.00933 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1  

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 180.22 on 129 degrees of freedom 
Residual deviance: 120.21 on 126 degrees of freedom 
AIC: 128.21 

Number of Fisher Scoring iterations: 6 

The summary of a glm() function output is very similar to the output of a lm() 
summary. First, the Call is reported, which simply restates how the model was 
fitted. Next, Coefficients reports the estimates of the regression coefficients . β, 
and their standard errors and statistical significance. Lastly, two deviance measures 
and their degrees of freedom are reported. The null deviance is twice the difference 
between the log-likelihood of the saturated model and the null model, and residual 
deviance is twice the difference between the saturated model and the model that was 
fitted. In simpler terms, the saturated model is a perfect model in a sense that there is 
a parameter for each observation. Conversely, the null model only has the intercept 
term. The deviance serves as a generalization of the residual sum of squares of the 
linear regression model, and it can be used to assess the quality of the model fit [26]. 

The report() function is applicable to models fitted with glm(). 

report(fit_logistic) 

We fitted a logistic model (estimated using ML) to predict AchievingGroup with 
Frequency.Applications, Frequency.Assignment and Frequency.La_types (formula: 
I(AchievingGroup == "High achiever") ~ Frequency.Applications + 
Frequency.Assignment + Frequency.La_types). The model’s explanatory power is 
substantial (Tjur’s R2 = 0.38). The model’s intercept, corresponding to 
Frequency.Applications = 0, Frequency.Assignment = 0 and Frequency.La_types = 0, is 
at -0.66 (95% CI [-1.94, 0.56], p = 0.292). Within this model:

- The effect of Frequency Applications is statistically significant and positive 
(beta = 0.30, 95% CI [0.17, 0.48], p < .001; Std. beta = 1.62e-14, 95% CI 
[-73784.14, 73784.14])

- The effect of Frequency Assignment is statistically significant and negative 
(beta = -0.04, 95% CI [-0.07, -0.02], p = 0.001; Std. beta = -9.05e-16, 95% CI 
[-71374.92, 71374.92])

- The effect of Frequency La types is statistically significant and positive (beta 
= 0.12, 95% CI [0.04, 0.22], p = 0.009; Std. beta = -2.52e-17, 95% CI [-75547.24, 
75547.24])
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Standardized parameters were obtained by fitting the model on a standardized 
version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed 
using a Wald z-distribution approximation. 

The output describes succinctly the model that was fitted, and the effects of the 
predictors on the response. The performance package is also applicable to models 
fitted with the glm() function. 

check_model(fit_logistic) 
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Table 1 Summary of the statistical tests, their null hypotheses, and the number of groups they 
compare simultaneously 

Test Null Hypothesis Groups R function 

Student’s t-test Equal means One, two or paired t.test() 
Chi-squared test Independence One chisq.test() 
Fisher’s test Independence One fisher.test() 
ANOVA Equal means Two or more aov() 
Kruskal-Wallis test Equal medians Two or more kruskal.test() 
Levene’s test Homoscedasticity Two or more leveneTest() 
Shapiro-Wilk test Normality One shapiro.test() 

We note that a different set of diagnostic checks is carried out for the logistic 
regression model compared to the linear regression model. For example, there is no 
assumption of homoscedasticity of variance as there is no explicit error term . ε in 
the model. Again, we refer the reader to the documentation of the performance 
package for more details on these checks. 

7 Conclusion 

Basic statistics are an essential component of learning analytics. Learning analytics 
involves the collection, analysis, and interpretation of data related to the learning 
process, and statistical methods are used to identify patterns and trends in this data 
and to draw conclusions. Basic descriptive statistics such as measures of central 
tendency, variability and correlation are crucial for analyzing, interpreting, and 
visualizing data. Understanding these concepts is important for anyone involved 
in conducting research with quantitative data in the field of learning analytics. 
Moreover, mastery of basic statistics can facilitate the comprehension of more 
advanced statistical methods that are commonly used in learning analytics, such as 
logistic regression and cluster analysis. Table 1 contains a summary of the statistical 
tests that were introduced in this chapter. 

We emphasize that when using any statistical test or a statistical model, it is 
important to keep the various assumptions related to the chosen method in mind, 
and to assess them beforehand whenever possible. If the assumptions are violated, 
the results of the method may not be reliable, and thus suitable alternatives should 
be considered. 

8 Further Reading 

This chapter scratched the surface of the full features of packages such as 
correlation, report and performance that can streamline the statistical
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analysis and reporting process. We refer the reader to the documentation of 
these packages to gain a more thorough understanding of their features. These 
packages are part of a package collection called easystats [27] (https://github.com/ 
easystats/easystats). There are several other packages in this collection that were 
not discussed in this chapter that can be useful for R users working with learning 
analytics. The book “Learning Statistics with R” by Danielle Navarro is freely 
available online and provides a comprehensive introduction to statistics using R 
(https://learningstatisticswithr.com/). For a general introductory text to statistical 
methods and inference, see e.g., [2]. 
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