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Visualizing and Reporting Educational 
Data with R 

Sonsoles López-Pernas, Kamila Misiejuk, Santtu Tikka, Juho Kopra, 
Merja Heinäniemi, and Mohammed Saqr 

1 Introduction 

Data visualization can be defined as “the representation and presentation of data that 
exploits our visual perception abilities in order to amplify cognition” [1]. It has the 
power to transform complex information into stories that inform and inspire action. 
Data visualization is an effective tool for learning analytics, as it helps to present 
learners’ data in a way that is easily understandable and intuitive for students, 
teachers, researchers, and other stakeholders. Through the use of graphs, charts, and 
other visual aids, it is possible to quickly identify patterns, trends, and relationships 
within data that may not be immediately apparent through purely numerical data 
analysis methods. 

Visualization in learning analytics has two distinct applications. On the one hand, 
the use of visual dashboards has become the main vehicle for putting learning 
analytics into practice. Presenting data in visually appealing and intuitive ways 
can help promote data literacy among students and other stakeholders, encouraging 
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greater engagement with data and fostering a culture of continuous improvement. 
On the other hand, learning analytics scientific production heavily relies on data 
visualization to present research findings in a clear and accessible manner, making 
it easier for readers from different scholarly backgrounds to understand and act upon 
research insights. Regardless of the context, the power of visualization in learning 
analytics lies in its ability to take complex data and turn it into meaningful insights 
that support better decision-making and drive improvement. 

In this chapter, the reader will be guided through the process of generating 
meaningful and aesthetically pleasing visualizations of different types of datasets 
using well-known R packages. Relevant plots and plot types will be demonstrated 
with an explanation of their usage and usage cases. Furthermore, learning-related 
examples will be discussed in detail. For instance, readers will learn how to visualize 
learners’ logs extracted from learning management systems (LMSs) to show how 
trace data can be used to track students’ learning activities. Other examples of 
common research scenarios in which learners’ data are visualized will be illustrated 
throughout the chapter. In addition to creating compelling plots, readers will also 
be able to generate professional-looking tables with summary statistics to report 
descriptive statistics. 

2 Visualization in Learning Analytics 

Developing visualizations is a challenging task of balancing the cognitive load 
of users while not compromising on conveying specific insights from data [2]. 
Visualizations for practice in learning analytics are mostly developed for two main 
stakeholders: learners and instructors. Depending on the target group, a visualization 
or a dashboard (i.e., a collection of visualizations depicting multiple indicators) have 
different goals. 

Learner-facing visualizations are meant to make learners aware of their own 
learning and to provide them with actionable feedback on their learning. Visual-
izations display learners’ performance on a specific metric and compare it with a 
reference frame: other peers, desirable learning achievement, or their own progress 
over time [3]. Sense-making questions triggering reflection can be added to a 
visualization [4, 5], or some elements of the visualizations can be highlighted 
and described in words using layered storytelling [6, 7]. Another option is to 
gamify a dashboard, for example, by using badges [8]. To provide feedback to 
learners, visualizations can be augmented with links to recommended resources 
[9], information about specific topics to review to close the achievement gap 
[6], or explanations of the meaning of visualizations and their implications for 
the learner [10]. Current learner-facing dashboards mostly show resource use and 
assessment data [11], compare learners to their peers [12], display descriptive 
analytics rather than predictive or prescriptive analytics [10], and use self-regulated 
learning theory as their framework [12, 13]. Some reviews found a positive effect 
on student outcomes [10], while others reported mixed results [11, 14]. Showing
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visualizations to learners can change their behavior. For example, social network 
analysis visualizations have resulted in fewer cross-group commenting [15], while a 
visualization comparing individual submission patterns with the top 25% of students 
in a class led to earlier homework submissions [16]. 

In comparison, the goal of instructor-facing visualizations is to support teachers 
and their decision-making process by tracking student progress. Two main types 
can be distinguished. Mirroring or descriptive visualizations provide insights about 
the learners on an aggregated or an individual level using either descriptive or 
comparative data. Advising or prescriptive visualizations show not only information 
about the learners but also alert the instructor to undertake a pedagogical action 
[17, 18]. Current instructor-facing visualizations mostly display course-wide infor-
mation about the learners or track group work [14]. These visualizations can support 
teachers in facilitating student collaboration [19], planning and collecting student 
feedback on learning activities [20], or obtaining insights into student interactions 
within an online environment, such as simulations, virtual labs or online games 
[21, 22]. However, interpreting dashboard information is a challenging task for 
instructors. Although some teachers use dashboards as complementary sources of 
information, others act based only on the dashboard information without further 
investigation [23]. 

A common point of criticism of learning analytics dashboards is that most of 
them are not grounded in learning theories [13, 14]. Data-driven evaluations of dash-
boards focused on dashboard acceptance, usefulness, or usability are more prevalent 
than pedagogically-focused evaluations [24]. Some approaches were developed 
to mitigate these issues. The model of user-centered learning analytics systems 
(MULAS) presents a set of recommendations on four interconnected dimensions: 
theory, design, evaluation, and feedback, and can be used to guide dashboard 
development [14]. Another approach is an iterative five-stage Learning Awareness 
Tools—User eXperience (LATUX) workflow, including problem identification, 
low-fidelity prototyping, high-fidelity prototyping, pilot studies, and classroom use, 
that can be used to develop visual analytics [25]. Finally, open learner model 
research could be used as a source of insights while developing learning analytics 
visualizations, such as dashboards [9]. 

3 Generating Plots with ggplot2 

In the previous section, we have seen how central visualization is to learning 
analytics. In the remainder of the chapter, we will learn how to create different types 
of visualizations that are relevant to different types of data related to teaching and 
learning. We will mostly rely on ggplot2, a popular data visualization package in R 
that was developed by Hadley Wickham [26]. It is based on the grammar of graphics 
[27], which is a systematic way of thinking about and constructing visualizations. 
The ggplot2 library provides a flexible and intuitive framework for creating a wide 
range of graphics, from basic scatter plots to complex visualizations with multiple
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layers. It is known for its ability to produce visually appealing and informative 
graphics with relatively few lines of code. It enables users to define aesthetics, such 
as color and size, and add layers, such as points and lines, to create customized 
and interactive plots. In addition, ggplot2 allows for easy customization of plot 
features, such as titles, axis labels, and legends. 

Overall, ggplot2 is a powerful and versatile tool for data visualization in R, and 
is widely used by data scientists, statisticians, and researchers in a variety of fields. 
In this chapter, we will cover the fundamental concepts and techniques of ggplot2, 
including how to create basic plots, and customize their appearance. We will start 
by introducing the building blocks of a ggplot2 plot, including aesthetics, layers, 
and scales. Then, we will create a plot from scratch step by step, showing how to 
customize its appearance, including how to change theme, colors, and scales. We 
will then explore the different types of plots that can be created with ggplot2, such 
as scatter plots, bar charts, and histograms. 

Throughout this section, we will use datasets of students’ learning data to 
demonstrate how to create effective visualizations for learning analytics with 
ggplot2. Please, refer to Chapter 2 of this book [28] to learn more about the 
datasets used. By the end of this section, you will have a solid foundation in 
ggplot2 and be able to create basic, yet compelling visualizations to explore your 
data. 

3.1 The ggplot2 Grammar 

The ggplot2 library is based on Wilkinson’s grammar of graphics [27]. The main 
idea is that every plot can be broken down into a set of components, each of which 
can be customized and combined in a flexible way. These components are: 

• Data: This is the data we want to visualize. It can be in the form of a dataframe, 
tibble or any other structured data format. 

• Aesthetic mapping (aes): It defines how variables in the data are mapped to 
visual properties of the plot, such as position, color, shape, size, and transparency. 

• Geometric object (geom): It represents the actual visual elements of the plot, 
such as points, lines, bars, and polygons. 

• Statistical transformation (stat): It summarizes or transforms the data in some 
way, such as by computing means, medians, or proportions, or by smoothing or 
summarizing data, or grouping them into bins. 

• Scale (scale): It maps values in the data to visual properties of the plot, such as 
color, size, or position. 

• Coordinate system (coord): It defines the spatial or geographic context in which 
the plot is displayed, such as Cartesian coordinates, polar coordinates, or maps. 

• Facet (facet): It allows to split the data into subsets and display each subset in 
a separate panel. It often useful for visualizing data with multiple categories or 
groups.
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Through the combination and customization of these components, we can create 
a wide variety of complex and informative visualizations in ggplot2. The idea 
behind the graphics grammar is to provide a consistent framework for constructing 
plots, allowing users to focus on the data and the message they want to convey, 
rather than on the technical details of the visualization. In the following section, we 
will create a plot from scratch step by step to become familiar with the most relevant 
components. 

3.2 Creating Your First Plot 

We will now create our first plot using ggplot2. Our example deals with a widely 
studied matter in learning analytics, which is the relationship between online activity 
and achievement. We will use a bar chart to represent the number of students 
that have low, moderate and high activity levels in each achievement group (high 
achievers vs. low achievers). In order to become familiar with the syntax of 
ggplot2, we will recreate the plot step by step, explaining each of the elements 
in the plot. Below is the final result we aim at accomplishing (Fig. 1): 
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Fig. 1 First plot with ggplot2
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3.2.1 Installing ggplot2 

Our first step is installing the ggplot2 library. This is usually the first step in any R 
script that makes use of external libraries. 

install.packages("ggplot2") 

To import ggplot2 we just need to use the library command and specify the 
ggplot2 library: 

library(ggplot2) 

3.2.2 Downloading the Data 

Next, we need to import the data that we are going to plot. For this chapter, we are 
using synthetic data from a blended course on learning analytics. For more details 
about this dataset, refer to Chap. 2 in this book. The data is in Excel format. We can 
use the library rio since it makes it easy to read data in several formats. We first 
install the library: 

install.packages("rio") 

And import it so we can use its functions: 

library(rio) 

Now we can download the data using the import function from rio and assign 
it to a variable named df (short for dataframe). 

demo_url = 
"https://github.com/lamethods/data/raw/main/1_moodleLAcourse/AllCombined.xlsx" 
df <- import(demo_url) 

We can use the head command to get an idea of what the dataset looks like. 
To recreate the plot above we will need the AchievingGroup column —which 
indicates whether students’ are high achievers (to 50%) or low achievers (bottom 
50%), according to their final grade— and the ActivityGroup column —which 
indicates whether students have a high level of activity (top 33%), moderate activity 
(middle 33%), or low activity (bottom 33%), according to their total number of 
events in the LMS.
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head(df) 

# A tibble: 130 x 37 
User Name Gender ActivityGroup AchievingGroup Surname Origin Birthdate 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 00a05cc62 Wan M Low activity Low achiever Tan Malay~ 12.12.19~ 
2 042b07ba1 Daniel M High activity Low achiever Tromp Aruba 28.5.1999 
3 046c35846 Sarah F Low activity Low achiever Schmit Luxem~ 25.4.1997 
4 05b604102 Lian F Low activity Low achiever Abdull~ Yemen 19.11.19~ 
5 0604ff3d3 Nina F Low activity Low achiever Borg Malta 13.6.1994 
6 077584d71 Moham~ M High activity High achiever Gamal Egypt 13.7.1998 
7 081b100cf Maxim~ M Moderate act~ High achiever Gruber Austr~ 20.12.19~ 
8 0857b3d8e Hugo M High activity High achiever Pérez Spain 22.12.19~ 
9 0af619e4b Aylin F Low activity Low achiever Barat Kazak~ 14.8.1995 

10 0ec99ce96 Polina F Moderate act~ Low achiever Novik Belar~ 9.10.1996 
# i 120 more rows 
# i 29 more variables: Location <chr>, Employment <chr>, 
# Frequency.Applications <dbl>, Frequency.Assignment <dbl>, 
# Frequency.Course_view <dbl>, Frequency.Feedback <dbl>, 
# Frequency.General <dbl>, Frequency.Group_work <dbl>, 
# Frequency.Instructions <dbl>, Frequency.La_types <dbl>, 
# Frequency.Practicals <dbl>, Frequency.Social <dbl>, ... 

3.2.3 Creating the Aesthetic Mapping 

Now that we have our data, we can pass it on to ggplot2 as follows: 

ggplot(df) 

Fig. 2 Empty plot 

We still do not see anything because we have not selected the type of chart or 
the variables of the data that we want to plot (Fig. 2). First, let us specify that 
we want to plot the AchievingGroup column (high vs. low achievers) on the x-
axis. Assigning columns of our dataset to different elements of the plot is called 
constructing an aesthetic mapping. We can do it by calling the aes function from 
ggplot2, specifying that we want to map the AchievingGroup column to the x-
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axis, and then passing this call to aes to our plot using the second argument of 
ggplot: 

3.2.4 Add the Geometry Component 

ggplot(df, aes(x =  AchievingGroup)) 

Fig. 3 Empty plot with 
AchievingGroup in x-axis 
labels 

High achiever Low achiever 
AchievingGroup 

We now see that the x-axis has the two possible values of AchievingGroup: 
“High achiever” and “Low achiever” (Fig. 3). We still need to tell ggplot2 the type 
of chart we want to use to plot the number of students of each type. To do that we 
need to add a geometrical (geom) component to our plot in which we specify that 
we want a bar chart. We do it by adding a + sign after our call to ggplot and calling 
geom_bar() (the name of the geometry that represents a bar chart). 

ggplot(df, aes(x =  AchievingGroup)) + geom_bar() 
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Fig. 4 Basic bar plot showing students by achievement group
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Now the plot can actually be called a plot. Notice that we have not specified what 
we want to plot in the y-axis. When not specified, ggplot2 assumes that we want 
to use the count of rows (Fig. 4). 

We also notice that the bars are in the wrong order. By default, ggplot2 orders 
the values in an ascending way (alphabetically in the case of text values). If we want 
to enforce our own order, we need to convert the AchievingGroup column of df 
into a factor and provide the ordered list of values to the levels argument. 

df$AchievingGroup = factor(df$AchievingGroup, 
levels = c("Low achiever", "High achiever")) 

If we generate our plot again, we see that the bars are now in the order we want 
them to be (Fig. 5): 

ggplot(df, aes(x =  AchievingGroup)) + geom_bar() 
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Fig. 5 Basic bar plot showing students by achievement group after transforming the x-axis 
variable into a factor 

3.2.5 Adding the Color Scale 

We still need to color our bar chart according to students’ activity level. We do that 
by mapping the fill aesthetic to the ActivityLevel column inside the aes. When 
we provide the fill property, ggplot will automatically create the appropriate 
legend (Fig. 6). 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + geom_bar()
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Fig. 6 Basic bar plot showing students’ activity level by achievement group and colored by 
activity level 

Again, we need to change the order of our legend so that it follows the logical 
semantic order for the activity levels (low-moderate-high): 

df$ActivityGroup = factor(df$ActivityGroup, 
levels = c("Low activity", "Moderate activity", 
"High activity")) 

If we generate the plot again, we see now that the legend is in the right order 
(Fig. 7): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + geom_bar() 
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Fig. 7 Basic bar plot showing students’ activity level by achievement group and colored by 
activity level after ordering the legend
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However, the stacks are still not in the right order, being the low activity students 
at the top of the bar, and the high activity students at the bottom, which might be 
counter-intuitive. To change this, we need to reverse the position of the bar using 
position = position_stack(reverse = TRUE) inside geom_bar (Fig. 8): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) 
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Fig. 8 Basic bar plot showing students’ activity level by achievement group and colored by 
activity level after ordering the stacks 

We are getting closer but the color scheme does not quite match our intended 
result. To add a color scheme to our plot we need to add a scale layer. In this 
case, the scale is for the fill property, which is the color of the bars in our chart. 
There are many ways to specify the color scheme. One option is to use sequential 
colors from the same palette. For that we add a new layer to our plot named 
scale_fill_brewer and we pass the palette that we want as an argument. For 
example, palette number 15 would look like this (Fig, 9): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_brewer(palette = 15) 

Another option is to provide a manual scale with the colors of our choice. For 
that we use scale_fill_manual and specify a values vector as an argument. 
We need to specify as many colors as unique elements in your scale. In this case 
we have three activity groups (for low, moderate or high activity), so we must 
provide three colors. There are tons of resources online where you can find or create 
your own palettes (e.g., Coolors, Adobe Color or Lospec). You have to provide the
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Fig. 9 Bar plot showing students’ activity level by achievement group with sequential color scale 

hexadecimal code of each color or the official color name recognized by R. Below 
is an example (Fig. 10): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_manual(values = c("#ef6461", "#7AE7C7", "#8E518D")) 
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Fig. 10 Bar plot showing students’ activity level by achievement group with manual color scale 

Lastly, a very common color scale used is Viridis. It is designed to be perceived 
by viewers with common forms of color blindness. To use it in our plot we just add 
scale_fill_viridis_d() (Fig. 11).
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ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d() 
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Fig. 11 Bar plot showing students’ activity level by achievement group with viridis color scale 

Viridis is the palette we need to replicate our target plot. However, the order of 
the color needs to be reversed so the most dense color represents the higher activity 
level. We do this by reversing the direction of the palette as follows (Fig. 12): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) 
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Fig. 12 Bar plot showing students’ activity level by achievement group with viridis color scale
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3.2.6 Working with Themes 

Now that the geometry and color scheme of the bars looks like our initial plot, we 
notice that there are still some differences. An important one is the grey background 
of the plot. To change the general appearance of our plot, we may use the ggplot2 
themes. Below are some examples (Fig. 13): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + theme_dark() 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + theme_classic() 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + theme_void() 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + theme_minimal() 
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Fig. 13 Bar plot using different themes: theme_dark (top left), theme_classic (top right), 
theme_void (bottom left), and theme_minimal (bottom right) 

We have theme_dark with a dark background and border, theme_classic 
with thick axes and no grid lines, theme_void which is completely empty, and 
theme_minimal with a minimalistic look. There are more available in the ggplot2



Visualizing and Reporting Educational Data with R 165

documentation and even more third-party implementations. To recreate our goal 
plot, we select the theme_minimal. To avoid having to add the theme to all of 
our plots from now on, we can set a default theme for our whole project by using 
theme_set: 

theme_set(theme_minimal()) 

Notice how now we get theme_minimal even when we do not specify it in our 
code (Fig. 14): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) 
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Fig. 14 Bar plot with theme minimal by default 

3.2.7 Changing the Axis Ticks 

You may have not noticed that another difference with our goal plot is the ticks in 
our y-axis. In the goal plot we count 10 by 10, whereas in our last plot we do so 20 by 
20. Just like we modified the scale of the fill aesthetic when we changed the color 
of our bars, we can also modify the y aesthetic to adjust to our needs. We use the 
scale_y_continuous layer and we try different number of breaks (n.breaks), 
until we find what we like best (Fig. 15):
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ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 15) 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 3) 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) 
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Fig. 15 Bar plot with different numbers of y.axis breaks: 15 (left), 3 (middle), and 7 (right) 

We choose 7 breaks to obtain our desired result. 

3.2.8 Titles and Labels 

Our plot is still missing some slight modifications to be 100% equal to the original 
one. For instance, the axes’ titles are not the same. To specify the y-axis label, we 
add a new layer to our plot named ylab and we pass a string with our desired label 
“Number of students” (Fig. 16): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") 
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Fig. 16 Bar plot with y-axis label 

We do the same for the x-axis using xlab, and for the legend using labs 
(Fig. 17): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") + 
xlab("Achievement group") + 
labs(fill = "Activity level") 
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Fig. 17 Bar plot with all labels
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More importantly, we are missing the overall title of the plot. To add it we use 
ggtitle and we pass our intended plot title “Activity level by achievement group”. 
Keep in mind that, whenever possible, it is better to add a caption to the image rather 
than a title on the plot. A caption is more accessible for visually impaired users since 
it is compatible with screen readers. In scientific papers, it is also more common to 
have a Figure caption than a title within the plot. In social media, it is frequent to 
see the title on the plot as images are often shared without context. However, many 
social media platforms allow to provide an alternative text which is what screen 
readers will read as a substitute for the image, and that is also the case in learning 
analytics dashboards (Fig. 18). 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") + 
xlab("Achievement group") + 
labs(fill = "Activity level") + 
ggtitle("Activity level by achievement group") 
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Fig. 18 Bar plot with title 

3.2.9 Other Cosmetic Modifications 

Lastly, we need to do some slight modifications to the overall appearance of the 
plot. We do this through the generic theme function of ggplot2. We first modify 
the position of the legend by setting legend.position to “bottom”. We then 
increase the size of the axes titles, by setting axis.title to element_text(size 
= 12). Finally, we make the plot title bigger as well and put it in bold by setting
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plot.title to element_text(size = 15, face = "bold")). With these last 
changes, we have an exact replica of our original plot (Fig. 19). 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") + 
xlab("Achievement group") + 
labs(fill = "Activity level") + 
ggtitle("Activity level by achievement group") + 
theme(legend.position = "bottom", 

axis.title = element_text(size = 12), 
plot.title = element_text(size = 15, face = "bold")) 
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Fig. 19 Bar plot with theme modifications 

3.2.10 Saving the Plot 

Since we have obtained the desired result, we may now save it as an image to be 
able to use it elsewhere. For that, we first need to assign the plot to a variable (e.g., 
myplot).
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myplot <- ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") + 
xlab("Achievement group") + 
labs(fill = "Activity level") + 
ggtitle("Activity level by achievement group") + 
theme(legend.position = "bottom", axis.title = element_text(size = 12), 

plot.title = element_text(size = 15, face = "bold")) 

We then use ggsave to save the plot to our filesystem. We need to specify the file 
path (including the extension, such as PNG, JPEG, etc.) where we want to save the 
plot (e.g., “bar.png”) as the first argument and pass the variable where we saved our 
plot (myplot) as a second argument. If we do not do this, ggplot2 assumes we want 
to save the latest plot that we created. Lastly, we may specify the width, height and 
resolution (dpi) of our plots. If we are submitting our figure to a scientific journal, 
we probably need a high resolution image. If we are using the figure in social media, 
we do not want the resolution to be so high as it would take a long time to load. 

ggsave("bar.png", myplot, width = 10000, height = 5000, units = "px", dpi = 900) 

Throughout this section, we have learned how we can create a plot from scratch 
using only the ggplot2 library and a simple dataset. We have seen the many 
customization possibilities (theme, scales, titles) that we can achieve using the 
different plot components without needing to rely on external tools for retouching 
our final graph. In the next section we will learn about new types of plots that might 
be more suitable for other types of data and their customization possibilities. 

3.3 Types of Plots 

The ggplot2 library offers many types of plots (or geoms) that you can choose from 
to visualize your data in several ways. In this section, we go over some of the most 
common types and present examples using students’ learning data. 

3.3.1 Bar Plot 

We have seen how to construct a bar plot in the previous section as an example of 
how to use ggplot2. But when should we use a bar plot? Bar plots are useful when 
we want to represent counts or any numerical variable broken down by categories. 
The y-axis would represent the count (or other continuous numerical variable) and 
the x-axis would represent the categories. Keep in mind that if the categories follow 
a natural order, the x-axis should respect it (for example: “Morning”, “Afternoon”, 
“Evening”; or “Children”, “Adults”, “Elders”). Otherwise, you can just order the 
x-axis alphabetically or from highest to lowest value in the y-axis (Fig. 20).
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ggplot(df, aes(x =  AchievingGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) 
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Fig. 20 Basic bar plot of students by achievement group 

Remember that you can add a “third dimension” to the plot by using the fill 
property. This is known as a ‘stacked’ bar chart and helps highlight the proportion 
of, in this case, students’ activity level (ActivityGroup) (Fig. 21). 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
scale_fill_viridis_d(direction = -1) + 
geom_bar(position = position_stack(reverse = TRUE)) 
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Fig. 21 Basic bar plot of students by achievement group filled by activity level
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If we care more about the actual number rather than the proportion of students 
with each activity level, instead of a stacked bar chart we can keep each ‘stack’ as a 
whole bar of their own. This plot is very useful to compare values among categories. 
We accomplish this by passing the position argument with the value “dodge” to 
the geom_bar component (Fig. 22): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
scale_fill_viridis_d(direction = -1) + geom_bar(position = "dodge") 
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Fig. 22 Basic bar plot of students by achievement group filled by activity level with position dodge 
instead of stacked 

We can now see that the highest group is represented by the low achievers with 
low activity, followed by the high achievers with high activity. 

3.3.2 Histogram 

Histograms allow us to represent the distribution of a single continuous variable. 
It is inherently a bar chart, but instead of each bar representing the count of a 
single category, it represents the count of a range of values in the x-axis (what is 
known as a bin). Let us, for example, create a histogram for students’ online activity. 
Specifically, let us see the distribution of the number of accesses to the course main 
page online. 

If we look at our dataset, we can see that the name of the variable that we are 
interested in is Frequency.Course_view:
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head(df) 

# A tibble: 130 x 37 
User Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 00a05cc62 Wan Tan Malaysia M 12.12.19~ Remote None 
2 042b07ba1 Daniel Tromp Aruba M 28.5.1999 Remote None 
3 046c35846 Sarah Schmit Luxembourg F 25.4.1997 On camp~ None 
4 05b604102 Lian Abdullah Yemen F 19.11.19~ On camp~ None 
5 0604ff3d3 Nina Borg Malta F 13.6.1994 On camp~ None 
6 077584d71 Mohamed Gamal Egypt M 13.7.1998 On camp~ Part-time 
7 081b100cf Maximilian Gruber Austria M 20.12.19~ On camp~ None 
8 0857b3d8e Hugo Pérez Spain M 22.12.19~ On camp~ None 
9 0af619e4b Aylin Barat Kazakhstan F 14.8.1995 On camp~ None 

10 0ec99ce96 Polina Novik Belarus F 9.10.1996 On camp~ None 
# i 120 more rows 
# i 29 more variables: Frequency.Applications <dbl>, 
# Frequency.Assignment <dbl>, Frequency.Course_view <dbl>, 
# Frequency.Feedback <dbl>, Frequency.General <dbl>, 
# Frequency.Group_work <dbl>, Frequency.Instructions <dbl>, 
# Frequency.La_types <dbl>, Frequency.Practicals <dbl>, 
# Frequency.Social <dbl>, Frequency.Ethics <dbl>, Frequency.Theory <dbl>, ... 

To create a histogram for this variable we may use the geom_histogram feature 
of ggplot2. We just pass our dataset and map the Frequency.Course_view 
variable to the x axis, and we add the geometry geom_histogram (Fig. 23): 

ggplot(df, mapping = aes(x =  Frequency.Total)) + geom_histogram() 
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Fig. 23 Histogram of students’ course page views 

We can provide our own value to the bins argument in geom_histogram to 
personalize how many bins we want in our plot (Fig. 24):
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ggplot(df, mapping = aes(x =  Frequency.Total)) + 
geom_histogram(bins = 50) 
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Fig. 24 Histogram of students’ course page view with 50 bins 

We can also personalize the color scheme using fill for the background of the 
bars (Fig. 25): 

ggplot(df, mapping = aes(x =  Frequency.Total)) + 
geom_histogram(bins = 20, fill = "deeppink" ) + 
scale_x_continuous(n.breaks = 10) 
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Fig. 25 Histogram of students’ course page view with color, fill and linewidth
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The histogram allows us to acknowledge that most students had around 400–500 
events, with another peak around 900–1000. Students with more than 1000 events 
were rare. 

3.3.3 Line Plot 

Another very widely used type of plot is the line plot. Like the histogram, it is 
also appropriate when we have both a numerical continuous x-axis and y-axis but it 
gives us a bit more liberty of what we plot and it is suitable for when we want to plot 
several series of data together. A very common scenario for a line plot is when we 
deal with timelines and we wish to visualize the evolution of a certain variable over 
time. Let us, for instance, plot the students’ daily events in the LMS throughout the 
course, a common plot in learning analytics dashboards. In the dataset that we have 
been using, we have the total count of events per user but not the timestamp of each 
event. We need to import the original event data from the dataset: 

ev_url <- "https://github.com/lamethods/data/raw/main/1_moodleLAcourse/Events.xlsx" 
events <- import(ev_url) 

The Events.xlsx file contains all the actions that the students enrolled in 
this course performed in the LMS (Action) with their corresponding timestamp 
(timecreated): clicking on a lecture file, viewing the assignment instructions, etc. 

head(events) 

# A tibble: 95,626 x 7 
Event.context user timecreated Component Event.name Log Action 
<chr> <chr> <dttm> <chr> <chr> <chr> <chr> 

1 Assignment: Fina~ 9d74~ 2019-10-26 09:37:12 Assignme~ Course mo~ Assi~ Assig~ 
2 Assignment: Fina~ 9148~ 2019-10-26 09:09:34 Assignme~ The statu~ Assi~ Assig~ 
3 Assignment: Fina~ 278a~ 2019-10-18 12:05:28 Assignme~ Course mo~ Assi~ Assig~ 
4 Assignment: Fina~ 53d6~ 2019-10-19 13:28:37 Assignme~ The statu~ Assi~ Assig~ 
5 Assignment: Fina~ aab7~ 2019-10-15 23:38:13 Assignme~ Course mo~ Assi~ Assig~ 
6 Assignment: Fina~ 82ed~ 2019-10-18 17:51:43 Assignme~ Course mo~ Assi~ Assig~ 
7 Assignment: Fina~ 4178~ 2019-10-18 15:22:56 Assignme~ Course mo~ Assi~ Assig~ 
8 Assignment: Fina~ 82ed~ 2019-10-22 13:46:51 Assignme~ The statu~ Assi~ Assig~ 
9 Assignment: Fina~ f2e9~ 2019-10-15 14:58:17 Assignme~ Submissio~ Assi~ Assig~ 

10 Assignment: Fina~ 53d6~ 2019-10-19 13:28:38 Assignme~ Course mo~ Assi~ Assig~ 
# i 95,616 more rows 

Instead of mapping timecreated directly to the x aesthetic, we can plot the 
timeline of the number of events per day by using as.Date(timecreated) and the 
geom_line geometry from ggplot2. Notice that, unlike geom_bar, if we do not  
provide a y aesthetic and want ggplot2 to count the number of events per day for 
us, we need to make it explicit by passing the stat argument with value "count" 
to geom_line (Fig. 26). 

ggplot(events, aes(x =  as.Date(timecreated) )) + geom_line(stat = "count")
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Fig. 26 Line plot of number of events per day 

The line plot of students’ events allows us to identify periods of increased 
activity. We can see that it was low at the very beginning of the course, with some 
peaks corresponding to the assignment deadlines and one last peak for the final 
project. When the course is over, activity begins to decrease. 

To make our plot more aesthetically pleasing, we can customize the color and 
line width. We do so by tweaking the color and linewidth properties of the 
geom_line. We can also fix the axes’ titles as we learned before (Fig. 27). For 
example: 

ggplot(events, aes(x =  as.Date(timecreated) )) + 
geom_line(stat = "count", color = "turquoise", linewidth = 2) + 
xlab ("Date") + ylab("Number of events") 
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Fig. 27 Line plot of number of events per day with color, linewidth, and custom labels
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We can also add a point to mark each date using geom_point (Fig. 28): 

ggplot(events, aes(x =  as.Date(timecreated) )) + 
geom_line(stat = "count", color = "turquoise", linewidth = 1.5) + 
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) + 
xlab ("Date") + 
ylab("Number of events") 
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Fig. 28 Line plot of number of events per hour with points every hour 

Besides visualizing the events for all the students of the course, we can pinpoint 
specific students to follow their progress and offer them personalized support. To 
do this, we would need to filter our data before handing it over to ggplot2. We can 
filter the data using the filter function from dplyr, as we learned in Chapter 4 
[29]. We first install dplyr if we do not have it: 

install.packages("dplyr") 

Then, we import it as usual: 

library(dplyr) 

We can now filter the data and pass it on to ggplot2 (Fig. 29): 

events |> filter(user == "9d744e5bf") |> ggplot(aes(x =  as.Date(timecreated) )) + 
geom_line(stat = "count", color = "turquoise", linewidth = 2) + 
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) + 
xlab ("Date") + 
ylab("Number of events") 
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Fig. 29 Line plot of number of events per date for a single student 

3.3.4 Jitter Plots 

In the previous plots we have seen aggregated information for all the cohort of 
students as well as information for a single student. However, in some occasions, 
it is very useful to see the general picture while accounting for possible individual 
differences. For example, using our original df dataset, we can plot the number of 
events on the LMS, differentiating between high achievers and low achievers. 

One option is to use geom_point to represent each students’ count of events as a 
single point. To do this, we map the Event column to the x aesthetic, the Frequency 
column to the y aesthetic, and the User column to the group aesthetic (Fig. 30): 

ggplot(df, aes(x =  AchievingGroup, y =  Frequency.Total)) + 
geom_point() + 
xlab("Achieving group") + 
ylab("Number of events") + 
theme(legend.position = "bottom", 

legend.text = element_text(size = 7), 
legend.title = element_blank()) 

However, there are many points that overlap. If we use geom_jitter instead, we 
take advantage of the horizontal gap between the event names to spread the points 
and avoid the overlap:
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Fig. 30 Jitter plot of number 
of events per achievement 
group using geom_point 
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ggplot(df, aes(x =  AchievingGroup, y =  Frequency.Total)) + 
geom_jitter() + 
xlab("Achieving group") + 
ylab("Number of events") + 
theme(legend.position = "bottom", 

legend.text = element_text(size = 7), 
legend.title = element_blank()) 

Fig. 31 Jitter plot of number 
of events per achievement 
group using geom_jitter 
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The plot shows that students that are high achievers generally have a higher 
number of events than low achievers (Fig. 31). 

3.3.5 Box Plot 

When we have too many data points, it is often more useful to visualize summary 
statistics instead of all the points. Box plots are very useful in summarizing data 
distributions. We can create a box plot for the number of events per achievement 
group using geom_boxplot:
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ggplot(df, aes(x =  AchievingGroup, y =  Frequency.Total)) + geom_boxplot() + 
xlab("Achieving group") + ylab("Number of events") 

Fig. 32 Box plot of activity 
per achievement group 
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The lower hinge of each box indicates the 25% percentile, the thick middle line is 
the median, and the top hinge is the top 75% percentile. The upper whisker extends 
from the hinge up to the maximum value within 1.5 * IQR (inter-quantile range), 
whereas the lower whisker extends to the minimum value within 1.5 * IQR of the 
hinge. The points outside the whisker represent outliers in the distribution (i.e., 
values outside of the 1.5 * IQR range). As the jitter plot already hinted, the median 
number of events is higher in the high achieving group (Fig. 32). 

3.3.6 Violin Plot 

We can also visualize the distribution of the number of events for each group using 
violin plots (geom_violin), but these are recommended when we have a large 
amount of data (Fig. 33): 

ggplot(df, aes(x =  AchievingGroup, y =  Frequency.Total)) + geom_violin() + 
xlab("Achieving group") + ylab("Number of events") 

Fig. 33 Violin plot of total 
activity per achievement 
group 
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3.3.7 Scatter Plots 

The examples we have seen so far have dealt with plotting a single variable alone 
or divided in categories. Another common scenario is to investigate the direct 
relationship between two or more variables. Scatter plots are used to visualize how 
two numerical variables relate to each other. For example, we can use them to see 
how LMS activity relates to grades (Fig. 34). 

ggplot(df, aes(x =  Frequency.Total, y =  Final_grade)) + 
geom_point() + 
ylab("Final grade") + xlab("Number of events") 

Fig. 34 Scatter plot of 
number of events vs. final 
grade 
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In the plot, each point represents a student. Students at the right side of the plot 
represent students with higher activity, while students closer to the left side of the 
plot, represent students with lower activity. At the same time, students with low 
grades are closer to the bottom of the plot, while students with high grades are 
closer to the top. Overall, se see an upward trend whereby students with higher 
activity indeed obtain better grades. 

We can add another dimension by coloring points according to another variable. 
For example, we can color the points according to high vs. low achievers (Fig. 35), 
so we can now where the division between the two groups is: 

ggplot(df, aes(x =  Frequency.Total, y =  Final_grade, color = AchievingGroup)) + 
geom_point() + 
ylab("Final grade") + xlab("Number of events") + 
labs(color = "Achievement") 
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Fig. 35 Scatter plot of number of events vs. final grade colored by achievement group 

We can add yet another dimension by mapping the size aesthetic to another 
variable, for example Frequency.Group_work which represents the number of 
events related to group work (Fig. 36). 

ggplot(df, aes(x =  Frequency.Total, y =  Final_grade, 
fill = AchievingGroup, size = Frequency.Group_work)) + 

geom_point(color = "black", pch = 21) + 
scale_size_continuous(range = c(1, 7)) + 
ylab("Final grade") + xlab("Number of events") + 
labs(size = "Group work", fill = "Achievement") 
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Fig. 36 Scatter plot of number of events vs. final grade colored by achievement group and sized 
by frequency of group work
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3.4 Advanced Features 

3.4.1 Plot Grids 

Sometimes, adding all the information in a single plot can be overwhelming and 
hard to interpret. For example, take a look at the following line plot that shows the 
number of events per day for each of the course online components (Fig. 37): 

ggplot(events, aes(x =  as.Date(timecreated), color = Action )) + 
scale_fill_viridis_d() + 
geom_line(stat = "count") + 
xlab("Date") + 
ylab("Number of events") 
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Fig. 37 Multiple series line plot 

If we had only a few (2–5) lines, the plot would probably look good, but as the 
number of categories grow, the plot becomes unintelligible. Instead of showing all 
the lines together, the plot would be easier to understand if each component had their 
own plot. To do this, instead of mapping the Action column to the color aesthetic, 
we add a new component to our plot using facet_wrap and we pass the name of 
the column as a character string ("Action"). We can change the geom_line to a 
geom_area to enhance the visualization (Fig. 38).
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ggplot(events, aes(x =  as.Date(timecreated))) + 
geom_area(stat = "count", fill = "turquoise", color = "black") + 
facet_wrap("Action") + 
xlab("Date") + 
ylab("Number of events") 
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Fig. 38 Grid of multiple plots 

3.4.2 Combining Multiple Plots 

In the previous example, we saw how to split a plot into multiple plots. But what 
happens if we want to combine multiple independent plots? For that purpose, we 
can use the library patchwork. Install it first if you do not have it already: 

install.packages("patchwork") 

We import the patchwork library:
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library(patchwork) 

We have to create the plots that we want to combine and assign each of them to a 
different variable. We can use previous examples from this chapter and assign them 
to variables named p1, p2, and p3. 

p1 <- ggplot(df, aes(x =  Frequency.Total, y =  Final_grade)) + 
geom_point() + ylab("Grade") + 
xlab("Total number of events") 

p2 <- ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup )) + 
geom_bar(position = position_fill(reverse = T)) + 
scale_fill_viridis_d(direction = -1) + 
xlab("Achievement group") + 
ylab("Number of events") + 
labs(fill = "Activity level") 

p3 <- ggplot(events, aes(x =  as.Date(timecreated) )) + 
geom_line(stat = "count", color = "turquoise", linewidth = 1.5) + 
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) + 
xlab ("Date") + 
ylab("Number of events") 

Now, if we add the three variables together separated by the + sign, the plots will 
be placed horizontally next to each other (Fig. 39): 

p1 + p2 + p3 

0.0 

2.5 

5.0 

7.5 

10.0 

500 1000 1500 2000 2500 
Total number of events 

G
ra

de
 

0.00 

0.25 

0.50 

0.75 

1.00 

Low achiever High achiever 
Achievement group 

N
um

be
r 

of
 e

ve
nt

s 

Activity level 

Low activity 

Moderate activity 

High activity 

1000 

2000 

3000 

4000 

5000 

Sep 15 Oct 01 Oct 15 
Date 

N
um

be
r 

of
 e

ve
nt

s 

Fig. 39 Multiple plots stacked horizontally
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If we use the / character side instead, we lay them out vertically (Fig. 40): 

p1 / p2 / p3 

Fig. 40 Multiple plots 
stacked vertically 
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We can use combinations of both signs and even leave blank spaces as follows 
(Fig. 41): 

(p1 + p2) / ( p3  + plot_spacer())
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Fig. 41 Multiple plots in a grid 

Putting plots side by side can be very useful to compare datasets and discuss the 
differences. Some publication venues limit the number of figures or pages of their 
articles, so combining several plots together can be very useful to overcome this 
limitation. 

4 Creating Tables with gt 

We have seen earlier in this chapter multiple types of visualizations that are suitable 
for diverse scenarios in learning analytics. However, we must not forget the other 
main way of reporting results or metrics, i.e., tables. When we display a data frame 
in Rstudio, it is by default presented as a table, but we need to be able to extract this 
table and display it in a dashboard, a report or a scientific article. The library gt can 
help us with this endeavor. First, install it if you do not have it yet: 

install.packages("gt") 

We then import it, as usual: 

library(gt) 

Let us create a table, for example, to display the descriptive statistics of students’ 
events in the LMS. Using the events dataset, we first count the number of events 
of each type (Event.name) per student (user) using  group_by and count from
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dplyr. We then group by Event.name only and use the summarize function, also 
from dplyr, to create the mean, and standard deviation of the number of events of 
each type per student, as we learned in Chapter 5 [30]. 

events |> 
group_by(user, Action) |> 
count() |> 
group_by(Action) |> 
summarize(Mean = mean(n), SD = sd(n)) 

# A tibble: 12 x 3 
Action Mean SD 
<chr> <dbl> <dbl> 

1 Applications 11.1 9.83 
2 Assignment 56.7 34.1 
3 Course_view 195. 152. 
4 Ethics 11.7 10.7 
5 Feedback 24.7 16.2 
6 General 25.7 21.4 
7 Group_work 252. 163. 
8 Instructions 49.8 40.3 
9 La_types 14.5 7.58 

10 Practicals 77.1 33.8 
11 Social 18.1 19.0 
12 Theory 11.1 6.92 

Now that we have a data frame with the shape that we like, we can use gt to create 
the formatted table by simply adding gt to the pipeline of operations (Table 1): 

events |> 
group_by(user, Action) |> 
count() |> 
group_by(Action) |> 
summarize(Mean = mean(n), SD = sd(n)) |> 
gt() 
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Table 1 Table created 
with gt 

Action Mean SD 

Applications 11.07143 9.825022 

Assignment 56.68462 34.129492 

Course_view 194.56154 151.656947 

Ethics 11.68182 10.669050 

Feedback 24.71429 16.243082 

General 25.73846 21.390991 

Group_work 251.90769 162.899810 

Instructions 49.80000 40.272213 

La_types 14.54615 7.583245 

Practicals 77.07692 33.751627 

Social 18.10744 19.034093 

Theory 11.10484 6.922120 

We might add some tweaks by forcing the numerical columns to have two 
decimals and the first column to be aligned left. You can also apply themes to the 
table using the library gtExtras (Table 2). 

events |> 
group_by(user, Action) |> 
count() |> 
group_by(Action) |> 
summarize(Mean = mean(n), SD = sd(n)) |> 
gt() |> 
fmt_number(decimals = 2, columns = where(is.numeric)) |> 
cols_align(align = "left", columns = 1) 

Table 2 Table created with 
gt with formatting 

Action Mean SD 

Applications . 11.07 . 9.83

Assignment . 56.68 . 34.13

Course_view .194.56 . 151.66

Ethics . 11.68 . 10.67

Feedback . 24.71 . 16.24

General . 25.74 . 21.39

Group_work .251.91 . 162.90

Instructions . 49.80 . 40.27

La_types . 14.55 . 7.58

Practicals . 77.08 . 33.75

Social . 18.11 . 19.03

Theory . 11.10 . 6.92
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5 Discussion 

The use of data visualization in the context of learning analytics has the potential to 
greatly enhance our understanding of student behavior and performance. Using tools 
such as ggplot2, instructors and researchers can create informative and visually 
appealing plots that highlight important patterns and trends in student activity, 
providing insights into factors that may be impacting student success and therefore 
inform instructional decisions and improve student outcomes. 

As we have already seen throughout the chapter, we often use different plots 
when dealing with categorical variables or numerical variables; when plotting a 
single variable or two (or more), etc. Moreover, on some occasions when we need 
very detailed information, a table might be more informative compared to a figure. 
As a summary for the possible visualizations, Table 3 gathers the most commonly 
used visualization types that we have seen throughout this chapter according to the 
number of variables and the data type. It also points to the ggplot2 geometry that 
is used to create each visualization. 

Table 3 Summary of the types of visualization for each data type and number of variables 

Number of variables Variable types Type of visualization ggplot2 geometry 

One variable Continuous Histogram geom_hist() 
Discrete Bar chart geom_bar() 

Two or more variables Both continuous Scatter plot geom_point() 
One discrete time and Line chart geom_line() 
one continuous Area chart geom_area() 
One discrete and one Bar chart geom_bar() 
continuous Box plot geom_boxplot() 

Jitter plot geom_jitter() 
Violin plot geom_violin() 

Both discrete Stacked bar chart geom_bar() 

Another way to decide which visualization to use is to think what kind of story 
we want to tell or which aspect of our data we want to highlight. Figure 42 shows 
a flowchart that can help choose the most suitable visualization for our data. There 
are many other decision charts online made for this purpose. For example, “From 
Data to Viz”1 leads you to the most appropriate graph for your data and also links 
to the code to build it and lists common caveats you should avoid. 

Throughout the rest of the book, we will see other forms of data visualization 
that are inherent to specific learning analytics methods. For example, in Chapter 
15 [31], we will learn how to represent students’ discussions in the form of 

1 Data to Viz https://www.data-to-viz.com/.
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Fig. 42 Flowchart to decide the most appropriate visualization for your data 

social networks, and in Chapter 10 [32], we will represent students’ sequences of 
activities using sequence analysis. The foundations learned in this chapter are key to 
understanding more complex visualizations in learning analytics and are, of course, 
transferable to other fields as well. We encourage readers to expand their knowledge 
of data visualization by referring to the recommended resources in the next section. 
Especially readers that would like to take their visualizations to the next step should 
consider using shiny,2 a web framework for R that allows creating fully interactive 
web apps for data analyses such as dashboards. 

6 Additional Material 

• Wilke, Claus. 2019. Fundamentals of Data Visualization. O’Reilly. https:// 
clauswilke.com/dataviz/. 

• Rahlf, Thomas. 2019 Data visualisation with R: 111 Examples. Springer. https:// 
doi.org/10.1007/978-3-030-28444-2. 

• Wickham, Hadley, Danielle Navarro, and Thomas Lin Pedersen. 2019. ggplot2: 
Elegant Graphics for Data Analysis (Use R) https://ggplot2-book.org/index.html. 

• Sahin, Muhittin and Dirk Ifenthaler. 2021. Visualizations and Dashboards for 
Learning Analytics. Springer. https://doi.org/10.1007/978-3-030-81222-5. 

2 Shiny https://mastering-shiny.org/.
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• Dougherty, Jack and Ilya Ilyankou. 2021. Hands-On Data Visualization: 
Interactive Storytelling from Spreadsheets to Code https://handsondataviz.org/ 
spreadsheet.html. 

• From Data to Viz. https://www.data-to-viz.com/about.html 
• Wickham, Hadley. 2021. Mastering shiny. O’Reilly. https://mastering-shiny.org/. 
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