
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Visualizing and Reporting Educational Data with R

© The Author(s) 2024

Published version

López-Pernas, Sonsoles; Misiejuk, Kamila; Tikka, Santtu; Kopra, Juho; Heinäniemi,
Merja; Saqr, Mohammed

López-Pernas, S., Misiejuk, K., Tikka, S., Kopra, J., Heinäniemi, M., & Saqr, M. (2024). Visualizing
and Reporting Educational Data with R. In M. Saqr, & S. López-Pernas (Eds.), Learning Analytics
Methods and Tutorials : A Practical Guide Using R (pp. 151-194). Springer.
https://doi.org/10.1007/978-3-031-54464-4_6

2024

Visualizing and Reporting Educational
Data with R

Sonsoles López-Pernas, Kamila Misiejuk, Santtu Tikka, Juho Kopra,
Merja Heinäniemi, and Mohammed Saqr

1 Introduction

Data visualization can be defined as “the representation and presentation of data that
exploits our visual perception abilities in order to amplify cognition” [1]. It has the
power to transform complex information into stories that inform and inspire action.
Data visualization is an effective tool for learning analytics, as it helps to present
learners’ data in a way that is easily understandable and intuitive for students,
teachers, researchers, and other stakeholders. Through the use of graphs, charts, and
other visual aids, it is possible to quickly identify patterns, trends, and relationships
within data that may not be immediately apparent through purely numerical data
analysis methods.

Visualization in learning analytics has two distinct applications. On the one hand,
the use of visual dashboards has become the main vehicle for putting learning
analytics into practice. Presenting data in visually appealing and intuitive ways
can help promote data literacy among students and other stakeholders, encouraging

S. López-Pernas (�) · J. Kopra
School of Computing, University of Eastern Finland, Joensuu, Finland
e-mail: sonsoles.lopez@uef.fi

K. Misiejuk
Centre for the Science of Learning & Technology (SLATE), University of Bergen, Bergen,
Norway

S. Tikka
Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland

M. Heinäniemi
Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland

M. Saqr
School of Computing, University of Eastern Finland, Joensuu, Finland

© The Author(s) 2024
M. Saqr, S. López-Pernas (eds.), Learning Analytics Methods and Tutorials,
https://doi.org/10.1007/978-3-031-54464-4_6

151

152 S. López-Pernas et al.

greater engagement with data and fostering a culture of continuous improvement.
On the other hand, learning analytics scientific production heavily relies on data
visualization to present research findings in a clear and accessible manner, making
it easier for readers from different scholarly backgrounds to understand and act upon
research insights. Regardless of the context, the power of visualization in learning
analytics lies in its ability to take complex data and turn it into meaningful insights
that support better decision-making and drive improvement.

In this chapter, the reader will be guided through the process of generating
meaningful and aesthetically pleasing visualizations of different types of datasets
using well-known R packages. Relevant plots and plot types will be demonstrated
with an explanation of their usage and usage cases. Furthermore, learning-related
examples will be discussed in detail. For instance, readers will learn how to visualize
learners’ logs extracted from learning management systems (LMSs) to show how
trace data can be used to track students’ learning activities. Other examples of
common research scenarios in which learners’ data are visualized will be illustrated
throughout the chapter. In addition to creating compelling plots, readers will also
be able to generate professional-looking tables with summary statistics to report
descriptive statistics.

2 Visualization in Learning Analytics

Developing visualizations is a challenging task of balancing the cognitive load
of users while not compromising on conveying specific insights from data [2].
Visualizations for practice in learning analytics are mostly developed for two main
stakeholders: learners and instructors. Depending on the target group, a visualization
or a dashboard (i.e., a collection of visualizations depicting multiple indicators) have
different goals.

Learner-facing visualizations are meant to make learners aware of their own
learning and to provide them with actionable feedback on their learning. Visual-
izations display learners’ performance on a specific metric and compare it with a
reference frame: other peers, desirable learning achievement, or their own progress
over time [3]. Sense-making questions triggering reflection can be added to a
visualization [4, 5], or some elements of the visualizations can be highlighted
and described in words using layered storytelling [6, 7]. Another option is to
gamify a dashboard, for example, by using badges [8]. To provide feedback to
learners, visualizations can be augmented with links to recommended resources
[9], information about specific topics to review to close the achievement gap
[6], or explanations of the meaning of visualizations and their implications for
the learner [10]. Current learner-facing dashboards mostly show resource use and
assessment data [11], compare learners to their peers [12], display descriptive
analytics rather than predictive or prescriptive analytics [10], and use self-regulated
learning theory as their framework [12, 13]. Some reviews found a positive effect
on student outcomes [10], while others reported mixed results [11, 14]. Showing

Visualizing and Reporting Educational Data with R 153

visualizations to learners can change their behavior. For example, social network
analysis visualizations have resulted in fewer cross-group commenting [15], while a
visualization comparing individual submission patterns with the top 25% of students
in a class led to earlier homework submissions [16].

In comparison, the goal of instructor-facing visualizations is to support teachers
and their decision-making process by tracking student progress. Two main types
can be distinguished. Mirroring or descriptive visualizations provide insights about
the learners on an aggregated or an individual level using either descriptive or
comparative data. Advising or prescriptive visualizations show not only information
about the learners but also alert the instructor to undertake a pedagogical action
[17, 18]. Current instructor-facing visualizations mostly display course-wide infor-
mation about the learners or track group work [14]. These visualizations can support
teachers in facilitating student collaboration [19], planning and collecting student
feedback on learning activities [20], or obtaining insights into student interactions
within an online environment, such as simulations, virtual labs or online games
[21, 22]. However, interpreting dashboard information is a challenging task for
instructors. Although some teachers use dashboards as complementary sources of
information, others act based only on the dashboard information without further
investigation [23].

A common point of criticism of learning analytics dashboards is that most of
them are not grounded in learning theories [13, 14]. Data-driven evaluations of dash-
boards focused on dashboard acceptance, usefulness, or usability are more prevalent
than pedagogically-focused evaluations [24]. Some approaches were developed
to mitigate these issues. The model of user-centered learning analytics systems
(MULAS) presents a set of recommendations on four interconnected dimensions:
theory, design, evaluation, and feedback, and can be used to guide dashboard
development [14]. Another approach is an iterative five-stage Learning Awareness
Tools—User eXperience (LATUX) workflow, including problem identification,
low-fidelity prototyping, high-fidelity prototyping, pilot studies, and classroom use,
that can be used to develop visual analytics [25]. Finally, open learner model
research could be used as a source of insights while developing learning analytics
visualizations, such as dashboards [9].

3 Generating Plots with ggplot2

In the previous section, we have seen how central visualization is to learning
analytics. In the remainder of the chapter, we will learn how to create different types
of visualizations that are relevant to different types of data related to teaching and
learning. We will mostly rely on ggplot2, a popular data visualization package in R
that was developed by Hadley Wickham [26]. It is based on the grammar of graphics
[27], which is a systematic way of thinking about and constructing visualizations.
The ggplot2 library provides a flexible and intuitive framework for creating a wide
range of graphics, from basic scatter plots to complex visualizations with multiple

154 S. López-Pernas et al.

layers. It is known for its ability to produce visually appealing and informative
graphics with relatively few lines of code. It enables users to define aesthetics, such
as color and size, and add layers, such as points and lines, to create customized
and interactive plots. In addition, ggplot2 allows for easy customization of plot
features, such as titles, axis labels, and legends.

Overall, ggplot2 is a powerful and versatile tool for data visualization in R, and
is widely used by data scientists, statisticians, and researchers in a variety of fields.
In this chapter, we will cover the fundamental concepts and techniques of ggplot2,
including how to create basic plots, and customize their appearance. We will start
by introducing the building blocks of a ggplot2 plot, including aesthetics, layers,
and scales. Then, we will create a plot from scratch step by step, showing how to
customize its appearance, including how to change theme, colors, and scales. We
will then explore the different types of plots that can be created with ggplot2, such
as scatter plots, bar charts, and histograms.

Throughout this section, we will use datasets of students’ learning data to
demonstrate how to create effective visualizations for learning analytics with
ggplot2. Please, refer to Chapter 2 of this book [28] to learn more about the
datasets used. By the end of this section, you will have a solid foundation in
ggplot2 and be able to create basic, yet compelling visualizations to explore your
data.

3.1 The ggplot2 Grammar

The ggplot2 library is based on Wilkinson’s grammar of graphics [27]. The main
idea is that every plot can be broken down into a set of components, each of which
can be customized and combined in a flexible way. These components are:

• Data: This is the data we want to visualize. It can be in the form of a dataframe,
tibble or any other structured data format.

• Aesthetic mapping (aes): It defines how variables in the data are mapped to
visual properties of the plot, such as position, color, shape, size, and transparency.

• Geometric object (geom): It represents the actual visual elements of the plot,
such as points, lines, bars, and polygons.

• Statistical transformation (stat): It summarizes or transforms the data in some
way, such as by computing means, medians, or proportions, or by smoothing or
summarizing data, or grouping them into bins.

• Scale (scale): It maps values in the data to visual properties of the plot, such as
color, size, or position.

• Coordinate system (coord): It defines the spatial or geographic context in which
the plot is displayed, such as Cartesian coordinates, polar coordinates, or maps.

• Facet (facet): It allows to split the data into subsets and display each subset in
a separate panel. It often useful for visualizing data with multiple categories or
groups.

Visualizing and Reporting Educational Data with R 155

Through the combination and customization of these components, we can create
a wide variety of complex and informative visualizations in ggplot2. The idea
behind the graphics grammar is to provide a consistent framework for constructing
plots, allowing users to focus on the data and the message they want to convey,
rather than on the technical details of the visualization. In the following section, we
will create a plot from scratch step by step to become familiar with the most relevant
components.

3.2 Creating Your First Plot

We will now create our first plot using ggplot2. Our example deals with a widely
studied matter in learning analytics, which is the relationship between online activity
and achievement. We will use a bar chart to represent the number of students
that have low, moderate and high activity levels in each achievement group (high
achievers vs. low achievers). In order to become familiar with the syntax of
ggplot2, we will recreate the plot step by step, explaining each of the elements
in the plot. Below is the final result we aim at accomplishing (Fig. 1):

0

10

20

30

40

50

60

Low achiever High achiever

Achievement group

N
um

be
r

of
 s

tu
de

nt
s

Activity level Low activity Moderate activity High activity

Activity level by achievement group

Fig. 1 First plot with ggplot2

156 S. López-Pernas et al.

3.2.1 Installing ggplot2

Our first step is installing the ggplot2 library. This is usually the first step in any R
script that makes use of external libraries.

install.packages("ggplot2")

To import ggplot2 we just need to use the library command and specify the
ggplot2 library:

library(ggplot2)

3.2.2 Downloading the Data

Next, we need to import the data that we are going to plot. For this chapter, we are
using synthetic data from a blended course on learning analytics. For more details
about this dataset, refer to Chap. 2 in this book. The data is in Excel format. We can
use the library rio since it makes it easy to read data in several formats. We first
install the library:

install.packages("rio")

And import it so we can use its functions:

library(rio)

Now we can download the data using the import function from rio and assign
it to a variable named df (short for dataframe).

demo_url =
"https://github.com/lamethods/data/raw/main/1_moodleLAcourse/AllCombined.xlsx"
df <- import(demo_url)

We can use the head command to get an idea of what the dataset looks like.
To recreate the plot above we will need the AchievingGroup column —which
indicates whether students’ are high achievers (to 50%) or low achievers (bottom
50%), according to their final grade— and the ActivityGroup column —which
indicates whether students have a high level of activity (top 33%), moderate activity
(middle 33%), or low activity (bottom 33%), according to their total number of
events in the LMS.

Visualizing and Reporting Educational Data with R 157

head(df)

A tibble: 130 x 37
User Name Gender ActivityGroup AchievingGroup Surname Origin Birthdate
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>

1 00a05cc62 Wan M Low activity Low achiever Tan Malay~ 12.12.19~
2 042b07ba1 Daniel M High activity Low achiever Tromp Aruba 28.5.1999
3 046c35846 Sarah F Low activity Low achiever Schmit Luxem~ 25.4.1997
4 05b604102 Lian F Low activity Low achiever Abdull~ Yemen 19.11.19~
5 0604ff3d3 Nina F Low activity Low achiever Borg Malta 13.6.1994
6 077584d71 Moham~ M High activity High achiever Gamal Egypt 13.7.1998
7 081b100cf Maxim~ M Moderate act~ High achiever Gruber Austr~ 20.12.19~
8 0857b3d8e Hugo M High activity High achiever Pérez Spain 22.12.19~
9 0af619e4b Aylin F Low activity Low achiever Barat Kazak~ 14.8.1995

10 0ec99ce96 Polina F Moderate act~ Low achiever Novik Belar~ 9.10.1996
i 120 more rows
i 29 more variables: Location <chr>, Employment <chr>,
Frequency.Applications <dbl>, Frequency.Assignment <dbl>,
Frequency.Course_view <dbl>, Frequency.Feedback <dbl>,
Frequency.General <dbl>, Frequency.Group_work <dbl>,
Frequency.Instructions <dbl>, Frequency.La_types <dbl>,
Frequency.Practicals <dbl>, Frequency.Social <dbl>, ...

3.2.3 Creating the Aesthetic Mapping

Now that we have our data, we can pass it on to ggplot2 as follows:

ggplot(df)

Fig. 2 Empty plot

We still do not see anything because we have not selected the type of chart or
the variables of the data that we want to plot (Fig. 2). First, let us specify that
we want to plot the AchievingGroup column (high vs. low achievers) on the x-
axis. Assigning columns of our dataset to different elements of the plot is called
constructing an aesthetic mapping. We can do it by calling the aes function from
ggplot2, specifying that we want to map the AchievingGroup column to the x-

158 S. López-Pernas et al.

axis, and then passing this call to aes to our plot using the second argument of
ggplot:

3.2.4 Add the Geometry Component

ggplot(df, aes(x = AchievingGroup))

Fig. 3 Empty plot with
AchievingGroup in x-axis
labels

High achiever Low achiever
AchievingGroup

We now see that the x-axis has the two possible values of AchievingGroup:
“High achiever” and “Low achiever” (Fig. 3). We still need to tell ggplot2 the type
of chart we want to use to plot the number of students of each type. To do that we
need to add a geometrical (geom) component to our plot in which we specify that
we want a bar chart. We do it by adding a + sign after our call to ggplot and calling
geom_bar() (the name of the geometry that represents a bar chart).

ggplot(df, aes(x = AchievingGroup)) + geom_bar()

0

20

40

60

High achiever Low achiever
AchievingGroup

co
un

t

Fig. 4 Basic bar plot showing students by achievement group

Visualizing and Reporting Educational Data with R 159

Now the plot can actually be called a plot. Notice that we have not specified what
we want to plot in the y-axis. When not specified, ggplot2 assumes that we want
to use the count of rows (Fig. 4).

We also notice that the bars are in the wrong order. By default, ggplot2 orders
the values in an ascending way (alphabetically in the case of text values). If we want
to enforce our own order, we need to convert the AchievingGroup column of df
into a factor and provide the ordered list of values to the levels argument.

df$AchievingGroup = factor(df$AchievingGroup,
levels = c("Low achiever", "High achiever"))

If we generate our plot again, we see that the bars are now in the order we want
them to be (Fig. 5):

ggplot(df, aes(x = AchievingGroup)) + geom_bar()

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

Fig. 5 Basic bar plot showing students by achievement group after transforming the x-axis
variable into a factor

3.2.5 Adding the Color Scale

We still need to color our bar chart according to students’ activity level. We do that
by mapping the fill aesthetic to the ActivityLevel column inside the aes. When
we provide the fill property, ggplot will automatically create the appropriate
legend (Fig. 6).

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) + geom_bar()

160 S. López-Pernas et al.

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

High activity

Low activity

Moderate activity

Fig. 6 Basic bar plot showing students’ activity level by achievement group and colored by
activity level

Again, we need to change the order of our legend so that it follows the logical
semantic order for the activity levels (low-moderate-high):

df$ActivityGroup = factor(df$ActivityGroup,
levels = c("Low activity", "Moderate activity",
"High activity"))

If we generate the plot again, we see now that the legend is in the right order
(Fig. 7):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) + geom_bar()

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 7 Basic bar plot showing students’ activity level by achievement group and colored by
activity level after ordering the legend

Visualizing and Reporting Educational Data with R 161

However, the stacks are still not in the right order, being the low activity students
at the top of the bar, and the high activity students at the bottom, which might be
counter-intuitive. To change this, we need to reverse the position of the bar using
position = position_stack(reverse = TRUE) inside geom_bar (Fig. 8):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE))

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 8 Basic bar plot showing students’ activity level by achievement group and colored by
activity level after ordering the stacks

We are getting closer but the color scheme does not quite match our intended
result. To add a color scheme to our plot we need to add a scale layer. In this
case, the scale is for the fill property, which is the color of the bars in our chart.
There are many ways to specify the color scheme. One option is to use sequential
colors from the same palette. For that we add a new layer to our plot named
scale_fill_brewer and we pass the palette that we want as an argument. For
example, palette number 15 would look like this (Fig, 9):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_brewer(palette = 15)

Another option is to provide a manual scale with the colors of our choice. For
that we use scale_fill_manual and specify a values vector as an argument.
We need to specify as many colors as unique elements in your scale. In this case
we have three activity groups (for low, moderate or high activity), so we must
provide three colors. There are tons of resources online where you can find or create
your own palettes (e.g., Coolors, Adobe Color or Lospec). You have to provide the

162 S. López-Pernas et al.

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 9 Bar plot showing students’ activity level by achievement group with sequential color scale

hexadecimal code of each color or the official color name recognized by R. Below
is an example (Fig. 10):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_manual(values = c("#ef6461", "#7AE7C7", "#8E518D"))

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 10 Bar plot showing students’ activity level by achievement group with manual color scale

Lastly, a very common color scale used is Viridis. It is designed to be perceived
by viewers with common forms of color blindness. To use it in our plot we just add
scale_fill_viridis_d() (Fig. 11).

Visualizing and Reporting Educational Data with R 163

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d()

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 11 Bar plot showing students’ activity level by achievement group with viridis color scale

Viridis is the palette we need to replicate our target plot. However, the order of
the color needs to be reversed so the most dense color represents the higher activity
level. We do this by reversing the direction of the palette as follows (Fig. 12):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1)

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 12 Bar plot showing students’ activity level by achievement group with viridis color scale

164 S. López-Pernas et al.

3.2.6 Working with Themes

Now that the geometry and color scheme of the bars looks like our initial plot, we
notice that there are still some differences. An important one is the grey background
of the plot. To change the general appearance of our plot, we may use the ggplot2
themes. Below are some examples (Fig. 13):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) + theme_dark()

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) + theme_classic()

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) + theme_void()

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) + theme_minimal()

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

ActivityGroup

Low activity

Moderate activity

High activity

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 13 Bar plot using different themes: theme_dark (top left), theme_classic (top right),
theme_void (bottom left), and theme_minimal (bottom right)

We have theme_dark with a dark background and border, theme_classic
with thick axes and no grid lines, theme_void which is completely empty, and
theme_minimal with a minimalistic look. There are more available in the ggplot2

Visualizing and Reporting Educational Data with R 165

documentation and even more third-party implementations. To recreate our goal
plot, we select the theme_minimal. To avoid having to add the theme to all of
our plots from now on, we can set a default theme for our whole project by using
theme_set:

theme_set(theme_minimal())

Notice how now we get theme_minimal even when we do not specify it in our
code (Fig. 14):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1)

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 14 Bar plot with theme minimal by default

3.2.7 Changing the Axis Ticks

You may have not noticed that another difference with our goal plot is the ticks in
our y-axis. In the goal plot we count 10 by 10, whereas in our last plot we do so 20 by
20. Just like we modified the scale of the fill aesthetic when we changed the color
of our bars, we can also modify the y aesthetic to adjust to our needs. We use the
scale_y_continuous layer and we try different number of breaks (n.breaks),
until we find what we like best (Fig. 15):

166 S. López-Pernas et al.

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) +
scale_y_continuous(n.breaks = 15)

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) +
scale_y_continuous(n.breaks = 3)

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) +
scale_y_continuous(n.breaks = 7)

0
5

10
15
20
25
30
35
40
45
50
55
60
65

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

0

30

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

0

10

20

30

40

50

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 15 Bar plot with different numbers of y.axis breaks: 15 (left), 3 (middle), and 7 (right)

We choose 7 breaks to obtain our desired result.

3.2.8 Titles and Labels

Our plot is still missing some slight modifications to be 100% equal to the original
one. For instance, the axes’ titles are not the same. To specify the y-axis label, we
add a new layer to our plot named ylab and we pass a string with our desired label
“Number of students” (Fig. 16):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) +
scale_y_continuous(n.breaks = 7) +
ylab("Number of students")

Visualizing and Reporting Educational Data with R 167

0

10

20

30

40

50

60

Low achiever High achiever
AchievingGroup

N
um

be
r

of
 s

tu
de

nt
s

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 16 Bar plot with y-axis label

We do the same for the x-axis using xlab, and for the legend using labs
(Fig. 17):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) +
scale_y_continuous(n.breaks = 7) +
ylab("Number of students") +
xlab("Achievement group") +
labs(fill = "Activity level")

0

10

20

30

40

50

60

Low achiever High achiever
Achievement group

N
um

be
r

of
 s

tu
de

nt
s

Activity level

Low activity

Moderate activity

High activity

Fig. 17 Bar plot with all labels

168 S. López-Pernas et al.

More importantly, we are missing the overall title of the plot. To add it we use
ggtitle and we pass our intended plot title “Activity level by achievement group”.
Keep in mind that, whenever possible, it is better to add a caption to the image rather
than a title on the plot. A caption is more accessible for visually impaired users since
it is compatible with screen readers. In scientific papers, it is also more common to
have a Figure caption than a title within the plot. In social media, it is frequent to
see the title on the plot as images are often shared without context. However, many
social media platforms allow to provide an alternative text which is what screen
readers will read as a substitute for the image, and that is also the case in learning
analytics dashboards (Fig. 18).

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) +
scale_y_continuous(n.breaks = 7) +
ylab("Number of students") +
xlab("Achievement group") +
labs(fill = "Activity level") +
ggtitle("Activity level by achievement group")

0

10

20

30

40

50

60

Low achiever High achiever
Achievement group

N
um

be
r

of
 s

tu
de

nt
s

Activity level

Low activity

Moderate activity

High activity

Activity level by achievement group

Fig. 18 Bar plot with title

3.2.9 Other Cosmetic Modifications

Lastly, we need to do some slight modifications to the overall appearance of the
plot. We do this through the generic theme function of ggplot2. We first modify
the position of the legend by setting legend.position to “bottom”. We then
increase the size of the axes titles, by setting axis.title to element_text(size
= 12). Finally, we make the plot title bigger as well and put it in bold by setting

Visualizing and Reporting Educational Data with R 169

plot.title to element_text(size = 15, face = "bold")). With these last
changes, we have an exact replica of our original plot (Fig. 19).

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) +
scale_y_continuous(n.breaks = 7) +
ylab("Number of students") +
xlab("Achievement group") +
labs(fill = "Activity level") +
ggtitle("Activity level by achievement group") +
theme(legend.position = "bottom",

axis.title = element_text(size = 12),
plot.title = element_text(size = 15, face = "bold"))

0

10

20

30

40

50

60

Low achiever High achiever

Achievement group

N
um

be
r

of
 s

tu
de

nt
s

Activity level Low activity Moderate activity High activity

Activity level by achievement group

Fig. 19 Bar plot with theme modifications

3.2.10 Saving the Plot

Since we have obtained the desired result, we may now save it as an image to be
able to use it elsewhere. For that, we first need to assign the plot to a variable (e.g.,
myplot).

170 S. López-Pernas et al.

myplot <- ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_stack(reverse = TRUE)) +
scale_fill_viridis_d(direction = -1) +
scale_y_continuous(n.breaks = 7) +
ylab("Number of students") +
xlab("Achievement group") +
labs(fill = "Activity level") +
ggtitle("Activity level by achievement group") +
theme(legend.position = "bottom", axis.title = element_text(size = 12),

plot.title = element_text(size = 15, face = "bold"))

We then use ggsave to save the plot to our filesystem. We need to specify the file
path (including the extension, such as PNG, JPEG, etc.) where we want to save the
plot (e.g., “bar.png”) as the first argument and pass the variable where we saved our
plot (myplot) as a second argument. If we do not do this, ggplot2 assumes we want
to save the latest plot that we created. Lastly, we may specify the width, height and
resolution (dpi) of our plots. If we are submitting our figure to a scientific journal,
we probably need a high resolution image. If we are using the figure in social media,
we do not want the resolution to be so high as it would take a long time to load.

ggsave("bar.png", myplot, width = 10000, height = 5000, units = "px", dpi = 900)

Throughout this section, we have learned how we can create a plot from scratch
using only the ggplot2 library and a simple dataset. We have seen the many
customization possibilities (theme, scales, titles) that we can achieve using the
different plot components without needing to rely on external tools for retouching
our final graph. In the next section we will learn about new types of plots that might
be more suitable for other types of data and their customization possibilities.

3.3 Types of Plots

The ggplot2 library offers many types of plots (or geoms) that you can choose from
to visualize your data in several ways. In this section, we go over some of the most
common types and present examples using students’ learning data.

3.3.1 Bar Plot

We have seen how to construct a bar plot in the previous section as an example of
how to use ggplot2. But when should we use a bar plot? Bar plots are useful when
we want to represent counts or any numerical variable broken down by categories.
The y-axis would represent the count (or other continuous numerical variable) and
the x-axis would represent the categories. Keep in mind that if the categories follow
a natural order, the x-axis should respect it (for example: “Morning”, “Afternoon”,
“Evening”; or “Children”, “Adults”, “Elders”). Otherwise, you can just order the
x-axis alphabetically or from highest to lowest value in the y-axis (Fig. 20).

Visualizing and Reporting Educational Data with R 171

ggplot(df, aes(x = AchievingGroup)) +
geom_bar(position = position_stack(reverse = TRUE))

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

Fig. 20 Basic bar plot of students by achievement group

Remember that you can add a “third dimension” to the plot by using the fill
property. This is known as a ‘stacked’ bar chart and helps highlight the proportion
of, in this case, students’ activity level (ActivityGroup) (Fig. 21).

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
scale_fill_viridis_d(direction = -1) +
geom_bar(position = position_stack(reverse = TRUE))

0

20

40

60

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 21 Basic bar plot of students by achievement group filled by activity level

172 S. López-Pernas et al.

If we care more about the actual number rather than the proportion of students
with each activity level, instead of a stacked bar chart we can keep each ‘stack’ as a
whole bar of their own. This plot is very useful to compare values among categories.
We accomplish this by passing the position argument with the value “dodge” to
the geom_bar component (Fig. 22):

ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
scale_fill_viridis_d(direction = -1) + geom_bar(position = "dodge")

0

10

20

30

Low achiever High achiever
AchievingGroup

co
un

t

ActivityGroup

Low activity

Moderate activity

High activity

Fig. 22 Basic bar plot of students by achievement group filled by activity level with position dodge
instead of stacked

We can now see that the highest group is represented by the low achievers with
low activity, followed by the high achievers with high activity.

3.3.2 Histogram

Histograms allow us to represent the distribution of a single continuous variable.
It is inherently a bar chart, but instead of each bar representing the count of a
single category, it represents the count of a range of values in the x-axis (what is
known as a bin). Let us, for example, create a histogram for students’ online activity.
Specifically, let us see the distribution of the number of accesses to the course main
page online.

If we look at our dataset, we can see that the name of the variable that we are
interested in is Frequency.Course_view:

Visualizing and Reporting Educational Data with R 173

head(df)

A tibble: 130 x 37
User Name Surname Origin Gender Birthdate Location Employment
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>

1 00a05cc62 Wan Tan Malaysia M 12.12.19~ Remote None
2 042b07ba1 Daniel Tromp Aruba M 28.5.1999 Remote None
3 046c35846 Sarah Schmit Luxembourg F 25.4.1997 On camp~ None
4 05b604102 Lian Abdullah Yemen F 19.11.19~ On camp~ None
5 0604ff3d3 Nina Borg Malta F 13.6.1994 On camp~ None
6 077584d71 Mohamed Gamal Egypt M 13.7.1998 On camp~ Part-time
7 081b100cf Maximilian Gruber Austria M 20.12.19~ On camp~ None
8 0857b3d8e Hugo Pérez Spain M 22.12.19~ On camp~ None
9 0af619e4b Aylin Barat Kazakhstan F 14.8.1995 On camp~ None

10 0ec99ce96 Polina Novik Belarus F 9.10.1996 On camp~ None
i 120 more rows
i 29 more variables: Frequency.Applications <dbl>,
Frequency.Assignment <dbl>, Frequency.Course_view <dbl>,
Frequency.Feedback <dbl>, Frequency.General <dbl>,
Frequency.Group_work <dbl>, Frequency.Instructions <dbl>,
Frequency.La_types <dbl>, Frequency.Practicals <dbl>,
Frequency.Social <dbl>, Frequency.Ethics <dbl>, Frequency.Theory <dbl>, ...

To create a histogram for this variable we may use the geom_histogram feature
of ggplot2. We just pass our dataset and map the Frequency.Course_view
variable to the x axis, and we add the geometry geom_histogram (Fig. 23):

ggplot(df, mapping = aes(x = Frequency.Total)) + geom_histogram()

0

5

10

15

500 1000 1500 2000 2500
Frequency.Total

co
un

t

Fig. 23 Histogram of students’ course page views

We can provide our own value to the bins argument in geom_histogram to
personalize how many bins we want in our plot (Fig. 24):

174 S. López-Pernas et al.

ggplot(df, mapping = aes(x = Frequency.Total)) +
geom_histogram(bins = 50)

0

5

10

15

500 1000 1500 2000 2500
Frequency.Total

co
un

t

Fig. 24 Histogram of students’ course page view with 50 bins

We can also personalize the color scheme using fill for the background of the
bars (Fig. 25):

ggplot(df, mapping = aes(x = Frequency.Total)) +
geom_histogram(bins = 20, fill = "deeppink") +
scale_x_continuous(n.breaks = 10)

0

10

20

30

300 600 900 1200 1500 1800 2100 2400
Frequency.Total

co
un

t

Fig. 25 Histogram of students’ course page view with color, fill and linewidth

Visualizing and Reporting Educational Data with R 175

The histogram allows us to acknowledge that most students had around 400–500
events, with another peak around 900–1000. Students with more than 1000 events
were rare.

3.3.3 Line Plot

Another very widely used type of plot is the line plot. Like the histogram, it is
also appropriate when we have both a numerical continuous x-axis and y-axis but it
gives us a bit more liberty of what we plot and it is suitable for when we want to plot
several series of data together. A very common scenario for a line plot is when we
deal with timelines and we wish to visualize the evolution of a certain variable over
time. Let us, for instance, plot the students’ daily events in the LMS throughout the
course, a common plot in learning analytics dashboards. In the dataset that we have
been using, we have the total count of events per user but not the timestamp of each
event. We need to import the original event data from the dataset:

ev_url <- "https://github.com/lamethods/data/raw/main/1_moodleLAcourse/Events.xlsx"
events <- import(ev_url)

The Events.xlsx file contains all the actions that the students enrolled in
this course performed in the LMS (Action) with their corresponding timestamp
(timecreated): clicking on a lecture file, viewing the assignment instructions, etc.

head(events)

A tibble: 95,626 x 7
Event.context user timecreated Component Event.name Log Action
<chr> <chr> <dttm> <chr> <chr> <chr> <chr>

1 Assignment: Fina~ 9d74~ 2019-10-26 09:37:12 Assignme~ Course mo~ Assi~ Assig~
2 Assignment: Fina~ 9148~ 2019-10-26 09:09:34 Assignme~ The statu~ Assi~ Assig~
3 Assignment: Fina~ 278a~ 2019-10-18 12:05:28 Assignme~ Course mo~ Assi~ Assig~
4 Assignment: Fina~ 53d6~ 2019-10-19 13:28:37 Assignme~ The statu~ Assi~ Assig~
5 Assignment: Fina~ aab7~ 2019-10-15 23:38:13 Assignme~ Course mo~ Assi~ Assig~
6 Assignment: Fina~ 82ed~ 2019-10-18 17:51:43 Assignme~ Course mo~ Assi~ Assig~
7 Assignment: Fina~ 4178~ 2019-10-18 15:22:56 Assignme~ Course mo~ Assi~ Assig~
8 Assignment: Fina~ 82ed~ 2019-10-22 13:46:51 Assignme~ The statu~ Assi~ Assig~
9 Assignment: Fina~ f2e9~ 2019-10-15 14:58:17 Assignme~ Submissio~ Assi~ Assig~

10 Assignment: Fina~ 53d6~ 2019-10-19 13:28:38 Assignme~ Course mo~ Assi~ Assig~
i 95,616 more rows

Instead of mapping timecreated directly to the x aesthetic, we can plot the
timeline of the number of events per day by using as.Date(timecreated) and the
geom_line geometry from ggplot2. Notice that, unlike geom_bar, if we do not
provide a y aesthetic and want ggplot2 to count the number of events per day for
us, we need to make it explicit by passing the stat argument with value "count"
to geom_line (Fig. 26).

ggplot(events, aes(x = as.Date(timecreated))) + geom_line(stat = "count")

176 S. López-Pernas et al.

1000

2000

3000

4000

5000

Sep 15 Oct 01 Oct 15
as.Date(timecreated)

co
un

t

Fig. 26 Line plot of number of events per day

The line plot of students’ events allows us to identify periods of increased
activity. We can see that it was low at the very beginning of the course, with some
peaks corresponding to the assignment deadlines and one last peak for the final
project. When the course is over, activity begins to decrease.

To make our plot more aesthetically pleasing, we can customize the color and
line width. We do so by tweaking the color and linewidth properties of the
geom_line. We can also fix the axes’ titles as we learned before (Fig. 27). For
example:

ggplot(events, aes(x = as.Date(timecreated))) +
geom_line(stat = "count", color = "turquoise", linewidth = 2) +
xlab ("Date") + ylab("Number of events")

1000

2000

3000

4000

5000

Sep 15 Oct 01 Oct 15
Date

N
um

be
r

of
 e

ve
nt

s

Fig. 27 Line plot of number of events per day with color, linewidth, and custom labels

Visualizing and Reporting Educational Data with R 177

We can also add a point to mark each date using geom_point (Fig. 28):

ggplot(events, aes(x = as.Date(timecreated))) +
geom_line(stat = "count", color = "turquoise", linewidth = 1.5) +
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) +
xlab ("Date") +
ylab("Number of events")

1000

2000

3000

4000

5000

Sep 15 Oct 01 Oct 15
Date

N
um

be
r

of
 e

ve
nt

s

Fig. 28 Line plot of number of events per hour with points every hour

Besides visualizing the events for all the students of the course, we can pinpoint
specific students to follow their progress and offer them personalized support. To
do this, we would need to filter our data before handing it over to ggplot2. We can
filter the data using the filter function from dplyr, as we learned in Chapter 4
[29]. We first install dplyr if we do not have it:

install.packages("dplyr")

Then, we import it as usual:

library(dplyr)

We can now filter the data and pass it on to ggplot2 (Fig. 29):

events |> filter(user == "9d744e5bf") |> ggplot(aes(x = as.Date(timecreated))) +
geom_line(stat = "count", color = "turquoise", linewidth = 2) +
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) +
xlab ("Date") +
ylab("Number of events")

178 S. López-Pernas et al.

0

25

50

75

100

Sep 15 Oct 01 Oct 15
Date

N
um

be
r

of
 e

ve
nt

s

Fig. 29 Line plot of number of events per date for a single student

3.3.4 Jitter Plots

In the previous plots we have seen aggregated information for all the cohort of
students as well as information for a single student. However, in some occasions,
it is very useful to see the general picture while accounting for possible individual
differences. For example, using our original df dataset, we can plot the number of
events on the LMS, differentiating between high achievers and low achievers.

One option is to use geom_point to represent each students’ count of events as a
single point. To do this, we map the Event column to the x aesthetic, the Frequency
column to the y aesthetic, and the User column to the group aesthetic (Fig. 30):

ggplot(df, aes(x = AchievingGroup, y = Frequency.Total)) +
geom_point() +
xlab("Achieving group") +
ylab("Number of events") +
theme(legend.position = "bottom",

legend.text = element_text(size = 7),
legend.title = element_blank())

However, there are many points that overlap. If we use geom_jitter instead, we
take advantage of the horizontal gap between the event names to spread the points
and avoid the overlap:

Visualizing and Reporting Educational Data with R 179

Fig. 30 Jitter plot of number
of events per achievement
group using geom_point

500

1000

1500

2000

2500

Low achiever High achiever
Achieving group

N
um

be
r

of
 e

ve
nt

s

ggplot(df, aes(x = AchievingGroup, y = Frequency.Total)) +
geom_jitter() +
xlab("Achieving group") +
ylab("Number of events") +
theme(legend.position = "bottom",

legend.text = element_text(size = 7),
legend.title = element_blank())

Fig. 31 Jitter plot of number
of events per achievement
group using geom_jitter

500

1000

1500

2000

2500

Low achiever High achiever
Achieving group

N
um

be
r

of
 e

ve
nt

s

The plot shows that students that are high achievers generally have a higher
number of events than low achievers (Fig. 31).

3.3.5 Box Plot

When we have too many data points, it is often more useful to visualize summary
statistics instead of all the points. Box plots are very useful in summarizing data
distributions. We can create a box plot for the number of events per achievement
group using geom_boxplot:

180 S. López-Pernas et al.

ggplot(df, aes(x = AchievingGroup, y = Frequency.Total)) + geom_boxplot() +
xlab("Achieving group") + ylab("Number of events")

Fig. 32 Box plot of activity
per achievement group

500

1000

1500

2000

2500

Low achiever High achiever
Achieving group

N
um

be
r

of
 e

ve
nt

s

The lower hinge of each box indicates the 25% percentile, the thick middle line is
the median, and the top hinge is the top 75% percentile. The upper whisker extends
from the hinge up to the maximum value within 1.5 * IQR (inter-quantile range),
whereas the lower whisker extends to the minimum value within 1.5 * IQR of the
hinge. The points outside the whisker represent outliers in the distribution (i.e.,
values outside of the 1.5 * IQR range). As the jitter plot already hinted, the median
number of events is higher in the high achieving group (Fig. 32).

3.3.6 Violin Plot

We can also visualize the distribution of the number of events for each group using
violin plots (geom_violin), but these are recommended when we have a large
amount of data (Fig. 33):

ggplot(df, aes(x = AchievingGroup, y = Frequency.Total)) + geom_violin() +
xlab("Achieving group") + ylab("Number of events")

Fig. 33 Violin plot of total
activity per achievement
group

500

1000

1500

2000

2500

Low achiever High achiever
Achieving group

N
um

be
r

of
 e

ve
nt

s

Visualizing and Reporting Educational Data with R 181

3.3.7 Scatter Plots

The examples we have seen so far have dealt with plotting a single variable alone
or divided in categories. Another common scenario is to investigate the direct
relationship between two or more variables. Scatter plots are used to visualize how
two numerical variables relate to each other. For example, we can use them to see
how LMS activity relates to grades (Fig. 34).

ggplot(df, aes(x = Frequency.Total, y = Final_grade)) +
geom_point() +
ylab("Final grade") + xlab("Number of events")

Fig. 34 Scatter plot of
number of events vs. final
grade

0.0

2.5

5.0

7.5

10.0

500 1000 1500 2000 2500
Number of events

F
in

al
 g

ra
de

In the plot, each point represents a student. Students at the right side of the plot
represent students with higher activity, while students closer to the left side of the
plot, represent students with lower activity. At the same time, students with low
grades are closer to the bottom of the plot, while students with high grades are
closer to the top. Overall, se see an upward trend whereby students with higher
activity indeed obtain better grades.

We can add another dimension by coloring points according to another variable.
For example, we can color the points according to high vs. low achievers (Fig. 35),
so we can now where the division between the two groups is:

ggplot(df, aes(x = Frequency.Total, y = Final_grade, color = AchievingGroup)) +
geom_point() +
ylab("Final grade") + xlab("Number of events") +
labs(color = "Achievement")

182 S. López-Pernas et al.

0.0

2.5

5.0

7.5

10.0

500 1000 1500 2000 2500
Number of events

F
in

al
 g

ra
de

Achievement

Low achiever

High achiever

Fig. 35 Scatter plot of number of events vs. final grade colored by achievement group

We can add yet another dimension by mapping the size aesthetic to another
variable, for example Frequency.Group_work which represents the number of
events related to group work (Fig. 36).

ggplot(df, aes(x = Frequency.Total, y = Final_grade,
fill = AchievingGroup, size = Frequency.Group_work)) +

geom_point(color = "black", pch = 21) +
scale_size_continuous(range = c(1, 7)) +
ylab("Final grade") + xlab("Number of events") +
labs(size = "Group work", fill = "Achievement")

0.0

2.5

5.0

7.5

10.0

500 1000 1500 2000 2500
Number of events

F
in

al
 g

ra
de

Group work

200

400

600

Achievement

Low achiever

High achiever

Fig. 36 Scatter plot of number of events vs. final grade colored by achievement group and sized
by frequency of group work

Visualizing and Reporting Educational Data with R 183

3.4 Advanced Features

3.4.1 Plot Grids

Sometimes, adding all the information in a single plot can be overwhelming and
hard to interpret. For example, take a look at the following line plot that shows the
number of events per day for each of the course online components (Fig. 37):

ggplot(events, aes(x = as.Date(timecreated), color = Action)) +
scale_fill_viridis_d() +
geom_line(stat = "count") +
xlab("Date") +
ylab("Number of events")

0

500

1000

1500

2000

2500

Sep 15 Oct 01 Oct 15
Date

N
um

be
r

of
 e

ve
nt

s

Action

Applications

Assignment

Course_view

Ethics

Feedback

General

Group_work

Instructions

La_types

Practicals

Social

Theory

Fig. 37 Multiple series line plot

If we had only a few (2–5) lines, the plot would probably look good, but as the
number of categories grow, the plot becomes unintelligible. Instead of showing all
the lines together, the plot would be easier to understand if each component had their
own plot. To do this, instead of mapping the Action column to the color aesthetic,
we add a new component to our plot using facet_wrap and we pass the name of
the column as a character string ("Action"). We can change the geom_line to a
geom_area to enhance the visualization (Fig. 38).

184 S. López-Pernas et al.

ggplot(events, aes(x = as.Date(timecreated))) +
geom_area(stat = "count", fill = "turquoise", color = "black") +
facet_wrap("Action") +
xlab("Date") +
ylab("Number of events")

La_types Practicals Social Theory

Feedback General Group_work Instructions

Applications Assignment Course_view Ethics

Sep 15 Oct 01 Oct 15 Sep 15 Oct 01 Oct 15 Sep 15 Oct 01 Oct 15 Sep 15 Oct 01 Oct 15

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

Date

N
um

be
r

of
 e

ve
nt

s

Fig. 38 Grid of multiple plots

3.4.2 Combining Multiple Plots

In the previous example, we saw how to split a plot into multiple plots. But what
happens if we want to combine multiple independent plots? For that purpose, we
can use the library patchwork. Install it first if you do not have it already:

install.packages("patchwork")

We import the patchwork library:

Visualizing and Reporting Educational Data with R 185

library(patchwork)

We have to create the plots that we want to combine and assign each of them to a
different variable. We can use previous examples from this chapter and assign them
to variables named p1, p2, and p3.

p1 <- ggplot(df, aes(x = Frequency.Total, y = Final_grade)) +
geom_point() + ylab("Grade") +
xlab("Total number of events")

p2 <- ggplot(df, aes(x = AchievingGroup, fill = ActivityGroup)) +
geom_bar(position = position_fill(reverse = T)) +
scale_fill_viridis_d(direction = -1) +
xlab("Achievement group") +
ylab("Number of events") +
labs(fill = "Activity level")

p3 <- ggplot(events, aes(x = as.Date(timecreated))) +
geom_line(stat = "count", color = "turquoise", linewidth = 1.5) +
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) +
xlab ("Date") +
ylab("Number of events")

Now, if we add the three variables together separated by the + sign, the plots will
be placed horizontally next to each other (Fig. 39):

p1 + p2 + p3

0.0

2.5

5.0

7.5

10.0

500 1000 1500 2000 2500
Total number of events

G
ra

de

0.00

0.25

0.50

0.75

1.00

Low achiever High achiever
Achievement group

N
um

be
r

of
 e

ve
nt

s

Activity level

Low activity

Moderate activity

High activity

1000

2000

3000

4000

5000

Sep 15 Oct 01 Oct 15
Date

N
um

be
r

of
 e

ve
nt

s

Fig. 39 Multiple plots stacked horizontally

186 S. López-Pernas et al.

If we use the / character side instead, we lay them out vertically (Fig. 40):

p1 / p2 / p3

Fig. 40 Multiple plots
stacked vertically

0.0

2.5

5.0

7.5

10.0

500 1000 1500 2000 2500
Total number of events

G
ra

de

0.00

0.25

0.50

0.75

1.00

Low achiever High achiever
Achievement group

N
um

be
r

of
 e

ve
nt

s

Activity level

Low activity

Moderate activity

High activity

1000

2000

3000

4000

5000

Sep 15 Oct 01 Oct 15
Date

N
um

be
r

of
 e

ve
nt

s

We can use combinations of both signs and even leave blank spaces as follows
(Fig. 41):

(p1 + p2) / (p3 + plot_spacer())

Visualizing and Reporting Educational Data with R 187

0.0

2.5

5.0

7.5

10.0

500 1000 1500 2000 2500
Total number of events

G
ra

de

0.00

0.25

0.50

0.75

1.00

Low achiever High achiever
Achievement group

N
um

be
r

of
 e

ve
nt

s

Activity level

Low activity

Moderate activity

High activity

1000

2000

3000

4000

5000

Sep 15 Oct 01 Oct 15
Date

N
um

be
r

of
 e

ve
nt

s

Fig. 41 Multiple plots in a grid

Putting plots side by side can be very useful to compare datasets and discuss the
differences. Some publication venues limit the number of figures or pages of their
articles, so combining several plots together can be very useful to overcome this
limitation.

4 Creating Tables with gt

We have seen earlier in this chapter multiple types of visualizations that are suitable
for diverse scenarios in learning analytics. However, we must not forget the other
main way of reporting results or metrics, i.e., tables. When we display a data frame
in Rstudio, it is by default presented as a table, but we need to be able to extract this
table and display it in a dashboard, a report or a scientific article. The library gt can
help us with this endeavor. First, install it if you do not have it yet:

install.packages("gt")

We then import it, as usual:

library(gt)

Let us create a table, for example, to display the descriptive statistics of students’
events in the LMS. Using the events dataset, we first count the number of events
of each type (Event.name) per student (user) using group_by and count from

188 S. López-Pernas et al.

dplyr. We then group by Event.name only and use the summarize function, also
from dplyr, to create the mean, and standard deviation of the number of events of
each type per student, as we learned in Chapter 5 [30].

events |>
group_by(user, Action) |>
count() |>
group_by(Action) |>
summarize(Mean = mean(n), SD = sd(n))

A tibble: 12 x 3
Action Mean SD
<chr> <dbl> <dbl>

1 Applications 11.1 9.83
2 Assignment 56.7 34.1
3 Course_view 195. 152.
4 Ethics 11.7 10.7
5 Feedback 24.7 16.2
6 General 25.7 21.4
7 Group_work 252. 163.
8 Instructions 49.8 40.3
9 La_types 14.5 7.58

10 Practicals 77.1 33.8
11 Social 18.1 19.0
12 Theory 11.1 6.92

Now that we have a data frame with the shape that we like, we can use gt to create
the formatted table by simply adding gt to the pipeline of operations (Table 1):

events |>
group_by(user, Action) |>
count() |>
group_by(Action) |>
summarize(Mean = mean(n), SD = sd(n)) |>
gt()

Visualizing and Reporting Educational Data with R 189

Table 1 Table created
with gt

Action Mean SD

Applications 11.07143 9.825022

Assignment 56.68462 34.129492

Course_view 194.56154 151.656947

Ethics 11.68182 10.669050

Feedback 24.71429 16.243082

General 25.73846 21.390991

Group_work 251.90769 162.899810

Instructions 49.80000 40.272213

La_types 14.54615 7.583245

Practicals 77.07692 33.751627

Social 18.10744 19.034093

Theory 11.10484 6.922120

We might add some tweaks by forcing the numerical columns to have two
decimals and the first column to be aligned left. You can also apply themes to the
table using the library gtExtras (Table 2).

events |>
group_by(user, Action) |>
count() |>
group_by(Action) |>
summarize(Mean = mean(n), SD = sd(n)) |>
gt() |>
fmt_number(decimals = 2, columns = where(is.numeric)) |>
cols_align(align = "left", columns = 1)

Table 2 Table created with
gt with formatting

Action Mean SD

Applications . 11.07 . 9.83

Assignment . 56.68 . 34.13

Course_view .194.56 . 151.66

Ethics . 11.68 . 10.67

Feedback . 24.71 . 16.24

General . 25.74 . 21.39

Group_work .251.91 . 162.90

Instructions . 49.80 . 40.27

La_types . 14.55 . 7.58

Practicals . 77.08 . 33.75

Social . 18.11 . 19.03

Theory . 11.10 . 6.92

190 S. López-Pernas et al.

5 Discussion

The use of data visualization in the context of learning analytics has the potential to
greatly enhance our understanding of student behavior and performance. Using tools
such as ggplot2, instructors and researchers can create informative and visually
appealing plots that highlight important patterns and trends in student activity,
providing insights into factors that may be impacting student success and therefore
inform instructional decisions and improve student outcomes.

As we have already seen throughout the chapter, we often use different plots
when dealing with categorical variables or numerical variables; when plotting a
single variable or two (or more), etc. Moreover, on some occasions when we need
very detailed information, a table might be more informative compared to a figure.
As a summary for the possible visualizations, Table 3 gathers the most commonly
used visualization types that we have seen throughout this chapter according to the
number of variables and the data type. It also points to the ggplot2 geometry that
is used to create each visualization.

Table 3 Summary of the types of visualization for each data type and number of variables

Number of variables Variable types Type of visualization ggplot2 geometry

One variable Continuous Histogram geom_hist()
Discrete Bar chart geom_bar()

Two or more variables Both continuous Scatter plot geom_point()
One discrete time and Line chart geom_line()
one continuous Area chart geom_area()
One discrete and one Bar chart geom_bar()
continuous Box plot geom_boxplot()

Jitter plot geom_jitter()
Violin plot geom_violin()

Both discrete Stacked bar chart geom_bar()

Another way to decide which visualization to use is to think what kind of story
we want to tell or which aspect of our data we want to highlight. Figure 42 shows
a flowchart that can help choose the most suitable visualization for our data. There
are many other decision charts online made for this purpose. For example, “From
Data to Viz”1 leads you to the most appropriate graph for your data and also links
to the code to build it and lists common caveats you should avoid.

Throughout the rest of the book, we will see other forms of data visualization
that are inherent to specific learning analytics methods. For example, in Chapter
15 [31], we will learn how to represent students’ discussions in the form of

1 Data to Viz https://www.data-to-viz.com/.

Visualizing and Reporting Educational Data with R 191

Fig. 42 Flowchart to decide the most appropriate visualization for your data

social networks, and in Chapter 10 [32], we will represent students’ sequences of
activities using sequence analysis. The foundations learned in this chapter are key to
understanding more complex visualizations in learning analytics and are, of course,
transferable to other fields as well. We encourage readers to expand their knowledge
of data visualization by referring to the recommended resources in the next section.
Especially readers that would like to take their visualizations to the next step should
consider using shiny,2 a web framework for R that allows creating fully interactive
web apps for data analyses such as dashboards.

6 Additional Material

• Wilke, Claus. 2019. Fundamentals of Data Visualization. O’Reilly. https://
clauswilke.com/dataviz/.

• Rahlf, Thomas. 2019 Data visualisation with R: 111 Examples. Springer. https://
doi.org/10.1007/978-3-030-28444-2.

• Wickham, Hadley, Danielle Navarro, and Thomas Lin Pedersen. 2019. ggplot2:
Elegant Graphics for Data Analysis (Use R) https://ggplot2-book.org/index.html.

• Sahin, Muhittin and Dirk Ifenthaler. 2021. Visualizations and Dashboards for
Learning Analytics. Springer. https://doi.org/10.1007/978-3-030-81222-5.

2 Shiny https://mastering-shiny.org/.

192 S. López-Pernas et al.

• Dougherty, Jack and Ilya Ilyankou. 2021. Hands-On Data Visualization:
Interactive Storytelling from Spreadsheets to Code https://handsondataviz.org/
spreadsheet.html.

• From Data to Viz. https://www.data-to-viz.com/about.html
• Wickham, Hadley. 2021. Mastering shiny. O’Reilly. https://mastering-shiny.org/.

References

1. Kirk A (2012) Data visualization: a successful design process. Packt Publishing, Birmingham
2. Demmans Epp C, Bull S (2015) Uncertainty representation in visualizations of learning

analytics for learners: current approaches and opportunities. IEEE Trans Learn Technol 8:242–
260. https://doi.org/10.1109/tlt.2015.2411604

3. Jivet I, Scheffel M, Drachsler H, Specht M (2017) Awareness is not enough: pitfalls of learning
analytics dashboards in the educational practice. Springer, Berlin, pp 82–96

4. Park Y, Jo I-H (2019) Factors that affect the success of learning analytics dashboards. Edu
Technol Res Develop 67:1547–1571. https://doi.org/10.1007/s11423-019-09693-0

5. Jivet I, Wong J, Scheffel M, Valle Torre M, Specht M, Drachsler H (2021) Quantum of
choice: how learners’ feedback monitoring decisions, goals and self-regulated learning skills
are related. In: LAK21: 11th international learning analytics and knowledge conference. https://
doi.org/10.1145/3448139.3448179

6. Sedrakyan G, Malmberg J, Verbert K, Järvelä S, Kirschner PA (2020) Linking learning
behavior analytics and learning science concepts: designing a learning analytics dashboard
for feedback to support learning regulation. Comput Human Behav 107:105512. https://doi.
org/10.1016/j.chb.2018.05.004

7. Martinez-Maldonado R, Echeverria V, Fernandez Nieto G, Buckingham Shum S (2020)
From data to insights: a layered storytelling approach for multimodal learning analytics. In:
Proceedings of the 2020 CHI conference on human factors in computing systems. https://doi.
org/10.1145/3313831.3376148

8. de Freitas S, Gibson D, Alvarez V, Irving L, Star K, Charleer S, Verbert K (2017) How to
use gamified dashboards and learning analytics for providing immediate student feedback and
performance tracking in higher education. In: Proceedings of the 26th international conference
on world wide web companion - WWW’17 companion. https://doi.org/10.1145/3041021.
3054175

9. Bodily R, Kay J, Aleven V, Jivet I, Davis D, Xhakaj F, Verbert K (2018) Open learner models
and learning analytics dashboards. In: Proceedings of the 8th international conference on
learning analytics and knowledge. https://doi.org/10.1145/3170358.3170409

10. Susnjak T, Ramaswami GS, Mathrani A (2022) Learning analytics dashboard: a tool for
providing actionable insights to learners. Int J Edu Technol Higher Edu 19:12. https://doi.org/
10.1186/s41239-021-00313-7

11. Bodily R, Verbert K (2017) Review of research on student-facing learning analytics dashboards
and educational recommender systems. IEEE Trans Learn Technol 10:405–418. https://doi.org/
10.1109/tlt.2017.2740172

12. Valle N, Antonenko P, Dawson K, Huggins-Manley AC (2021) Staying on target: a systematic
literature review on learner-facing learning analytics dashboards. British J Edu Technol https://
doi.org/10.1111/bjet.13089

13. Perez-Alvarez R, Jivet I, Perez-Sanagustin M, Scheffel M, Verbert K (2022) Tools designed
to support self-regulated learning in online learning environments: a systematic review. IEEE
Trans Learn Technol 15:508–522. https://doi.org/10.1109/tlt.2022.3193271

Visualizing and Reporting Educational Data with R 193

14. Matcha W, Uzir NA, Gasevic D, Pardo A (2020) A systematic review of empirical studies on
learning analytics dashboards: a self-regulated learning perspective. IEEE Trans Learn Technol
13:226–245. https://doi.org/10.1109/tlt.2019.2916802

15. Cheng J, Lei J (2020) A description of students’ commenting behaviours in an online blogging
activity. E-Learn Digit Media 18:209–225. https://doi.org/10.1177/2042753020954971

16. Duan X, Wang C, Rouamba G (2022) Designing a learning analytics dashboard to pro-
vide students with actionable feedback and evaluating its impacts. In: Proceedings of
the 14th international conference on computer supported education. https://doi.org/10.5220/
0011116400003182

17. van Leeuwen A, Rummel N (2020) Comparing teachers’ use of mirroring and advising
dashboards. In: Proceedings of the tenth international conference on learning analytics &
knowledge. https://doi.org/10.1145/3375462.3375471

18. Isaias P, Backx Noronha Viana A (2020) On the design of a teachers’ dashboard: requirements
and insights. Springer, Berlin, pp 255–269

19. Verbert K, Govaerts S, Duval E, Santos JL, Van Assche F, Parra G, Klerkx J (2013) Learning
dashboards: an overview and future research opportunities. Person Ubiq Comput 18:1499–
1514. https://doi.org/10.1007/s00779-013-0751-2

20. Chavan P, Mitra R (2022) Tcherly. J Learn Anal 9:125–151. https://doi.org/10.18608/jla.2022.
7555

21. López-Pernas S, Gordillo A, Barra E, Quemada J (2021) Escapp: a web platform for
conducting educational escape rooms. IEEE Access 9:38062–38077. https://doi.org/10.1109/
access.2021.3063711

22. López Tavares D, Perkins K, Kauzmann M, Aguirre Velez C (2019) Towards a teacher
dashboard design for interactive simulations. J Phys Conf Ser 1287:012055. https://doi.org/
10.1088/1742-6596/1287/1/012055

23. Li Y, Zhang M, Su Y, Bao H, Xing S (2022) Examining teachers’ behavior patterns in and
perceptions of using teacher dashboards for facilitating guidance in CSCL. Edu Technol Res
Develop 70:1035–1058. https://doi.org/10.1007/s11423-022-10102-2

24. Jivet I, Scheffel M, Specht M, Drachsler H (2018) License to evaluate. In: Proceedings of
the 8th international conference on learning analytics and knowledge. https://doi.org/10.1145/
3170358.3170421

25. Martinez-Maldonado R, Pardo A, Mirriahi N, Yacef K, Kay J, Clayphan A (2015) The LATUX
workflow. In: Proceedings of the fifth international conference on learning analytics and
knowledge. https://doi.org/10.1145/2723576.2723583

26. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York
27. Wilkinson L (1999) The grammar of graphics. Springer, New York
28. López-Pernas S, Saqr M, Conde J, Del-Río-Carazo L (2024) A broad collection of datasets

for educational research training and application. In: Saqr M, López-Pernas S (eds) Learning
analytics methods and tutorials: a practical guide using R. Springer, Berlin

29. Kopra J, Tikka S, Heinäniemi M, López-Pernas S, Saqr M (2024) Data cleaning and wrangling.
In: Saqr M, López-Pernas S (eds) Learning analytics methods and tutorials: a practical guide
using R. Springer, Berlin

30. Tikka S, Kopra J, Heinäniemi M, López-Pernas S, Saqr M (2024) Introductory statistics with
R for educational researchers. In: Saqr M, López-Pernas S (eds) Learning analytics methods
and tutorials: a practical guide using R. Springer, Berlin

31. Saqr M, López-Pernas S, Conde MÁ, Hernández-García Á (2024) Social network analysis:
a primer, a guide and a tutorial in R. In: Saqr M, López-Pernas S (eds) Learning analytics
methods and tutorials: a practical guide using R. Springer, Berlin

32. Saqr M, López-Pernas S, Helske S, Durand M, Murphy K, Studer M, Ritschard G (2024)
Sequence analysis in education: principles, technique, and tutorial with R. In: Saqr M, López-
Pernas S (eds) Learning analytics methods and tutorials: a practical guide using R. Springer,
Berlin

194 S. López-Pernas et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

