
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Getting Started with R for Education Research

© The Author(s) 2024

Published version

Tikka, Santtu; Kopra, Juho; Heinäniemi, Merja; López-Pernas, Sonsoles; Saqr,
Mohammed

Tikka, S., Kopra, J., Heinäniemi, M., López-Pernas, S., & Saqr, M. (2024). Getting Started with R
for Education Research. In M. Saqr, & S. López-Pernas (Eds.), Learning Analytics Methods and
Tutorials : A Practical Guide Using R (pp. 67-94). Springer. https://doi.org/10.1007/978-3-031-
54464-4_3

2024

Getting Started with R for Education
Research

Santtu Tikka, Juho Kopra, Merja Heinäniemi, Sonsoles López-Pernas,
and Mohammed Saqr

1 Introduction

R is a free, versatile, and open source programming language and software
environment specifically designed for statistical computing and data analysis. R has
a vast library of packages that enable data manipulation, visualization, modeling
and machine learning [1]. Such a wealth of packages enable a wide range of
functionalities that saves the users time, effort or the need to write complex code.
The fact that R is freely available makes all these functionalities accessible to all.
R has a large community of developers, users and researchers who support the
development of the platforms as well as provide support and shared knowledge on
popular sites such as StackExchange. Thereupon, R is becoming an increasingly
popular choice for students, researchers and data scientists [2].

Being open source and accessible to researchers, several packages are added
continuously to expand the possibilities and functions that R offers. Some of the R
packages included in this book have been added by researchers during the last few
years to address contemporary scientific problems and state-of-the-art innovations
[3]. For example, R software packages for the analysis of psychological networks
were developed in the past five years and ever since have grown tremendously due
to contributions from a large base of researchers [4].

S. Tikka (�)
Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland
e-mail: santtu.tikka@jyu.fi

J. Kopra · S. López-Pernas · M. Saqr
School of Computing, University of Eastern Finland, Joensuu, Finland

M. Heinäniemi
Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland

© The Author(s) 2024
M. Saqr, S. López-Pernas (eds.), Learning Analytics Methods and Tutorials,
https://doi.org/10.1007/978-3-031-54464-4_3

67

68 S. Tikka et al.

Although many of the methods described in this book can be implemented
with other software tools, it is hard to find a comprehensive platform that can be
used to perform practically all the existing learning analytics methods with such
maturity, performance and range of possibilities. For instance, Social Network
Analysis (SNA) can be performed with several programming languages (e.g.,
Python) and desktop software applications (e.g., Gephi) [5]. However, both options
provide limited capabilities compared to what R provides for the analysis of SNA.
This includes a wider range of SNA centrality measures, mathematical models,
community finding algorithms and generative models. Sequence analysis is another
example in which the possibilities offered by R are hard to match with other software
solutions.

This book does not make any assumptions about the superiority of R over any
other platform. Other languages and software platforms are indeed very helpful and
have vast capabilities for researchers. For instance, Python has remarkable tools
for machine learning and Gephi offers beautiful graphics for the visualization of
networks. Oftentimes, readers may need to learn or use other tools to do specific
tasks. Put another way, where R offers a rich toolset for researchers, there is
a space for other tools that researchers can use to accomplish certain tasks. In
summary, investing time in learning R is a worthwhile endeavor that helps interested
researchers to perform and expand their research skills and toolset. Since R is a
large platform, it represents a doorway to the vast capabilities of its ever expanding
repertoire of functions and packages.

2 Learning R

The goal of programming is to write, i.e. code, a program that performs a desired
task. A program consists of several commands, each of which does something
very simple. In the statistics and data analysis context, R is typically used to write
short programs called scripts. R is therefore not intended for developing games or
other complicated programs. R is also not a language originally intended for web
programming, although with the right packages you can also make web applications
with R.

R is a high-level programming language. This means that there are many ready-
made commands in R, which have much more code “underneath” that the R
programmer does not have to touch. For example, a statistical t-test requires several
mathematical intermediate steps, but an R programmer can perform the test with
a single command (t.test) that provides all the necessary computations and
information about the test.

The best way to learn how to use and program R code is by doing. This text has
R code embedded between the text in gray boxes, as in the example below. Lines
starting with two hashes, i.e. ##, are not code, but output generated by running the
code. Let’s first take the classic “Hello, world!” command as an example:

Getting Started with R for Education Research 69

print("Hello, world!")

[1] "Hello, world!"

The print function prints the given text to the console. It is convenient, for
example, for testing the operation of a program and monitoring the progress of
a longer program. R can also be used as a calculator. In the example below, we
calculate the price of a product after a 35% discount that was originally priced at 80
euros.

80 * (1 - 0.35)

[1] 52

However, running individual commands is usually not useful unless the results
can be saved somewhere. In programming languages, data is stored in variables,
which you will become familiar with later.

3 RStudio

R has a large array of tools and integrated development environments (IDEs) that
make writing and managing code easier and more accessible. The most widely used
R IDE is RStudio, which is a free open source software that—similarly to R—runs
on all major operating systems [6]. RStudio provides a comprehensive and user-
friendly interface for writing, running, and debugging R code, which makes it easier
for users to get started and become more productive. Together, R and RStudio allow
for the creation of reproducible research. The code and results can be easily shared
and replicated, making R and RStudio great tools for collaboration and transparency.

R and RStudio can be very useful in analyzing and visualizing different types
of data. This can help researchers, educators and administrators make data-driven
decisions and improve the learning experience for students. Whether you are
analyzing student performance, demographic data, or tracking the effectiveness of
instructional interventions, R and RStudio provide a flexible and efficient platform
for achieving your goal.

First install R (step 1) and then RStudio Desktop for your operating system. R
and RStudio are available for many operating systems. The interface of RStudio
shown in Fig. 1 has the following default components:

(1) Editor: The editor is used to write files containing R code, i.e., R scripts. Scripts
will be introduced later, but they are simply a collection of R commands that
carry out a specific task when placed together, for example analyze the data of

70 S. Tikka et al.

Fig. 1 RStudio user interface

a research project or draw figures of the finished results. A new script can be
opened from the “File” menu by selecting “New File” and then “R script”. The
same can be accomplished via a keyboard shortcut by pressing Ctrl + Shift +
N on Windows and Linux. On macOS, users can use Cmd + Shift + N. Also,
see the “Keyboard Shortcuts Help” under the “Tools” menu for all the shortcuts
available. The code written in the editor can be run line by line by pressing
Ctrl + Enter at the line. Several lines can also be selected and run at once. The
Source button at the top runs all the code in the current file. R scripts can be
saved just like other files and their file extension is .R. All the code you use
to analyze your data should be written in scripts. When you save your code in
this way, the next time you can simply run the script to perform the desired task
instead of rewriting the code from scratch.

(2) Console: R commands are executed in the console. If the code written in the
editor is run, RStudio automatically executes the commands in the console. In
the console, just pressing Enter is enough to execute a line of code. You can
try to write a calculation in the console, such as 2 * 3 and press Enter, and the
result will be printed in the console. You can also write code in the editor and
press Ctrl + Enter to accomplish the same result. Possible messages, warnings
and errors are also printed into the console. The main difference between the
console and the editor is that the commands written in the console are not saved
in any file. So if you want to keep your code, it should be written in the editor
and saved in a script file. Commands made during the same session can be
scrolled in the console with the up and down arrows. In addition, the command
history can be viewed in the History tab in RStudio.

Getting Started with R for Education Research 71

(3) Workspace: Displays the variables in the current working environment of the R
session.

(4) Files: Shows the directory structure of the operating system, by default the
working directory.

(5) Plots: Graphics drawn with R appear here.
(6) Packages: Here you can manage the installed packages (instructions for

installing the packages are below).
(7) Help: Here you can browse the R manual with instructions for every R

command. You can try running the ?print command in the editor or console,
which opens the help page for the print function.

4 Best Practices in Programming

As the word “script” already suggests, data analysis often requires a “script” of
various steps, such as reading measurements from a file, organizing a table, or
describing the results of an analysis, for example by calculating the averages of
different sample groups and drawing figures. Writing the R commands that perform
these steps in a script provides a documentation of how the analysis was done,
and it’s also easy to come back to and possibly add a few additional steps, such
as performing a t-test. The script file is also easy to share with others who work
with similar data analysis tasks, because with small modifications (file names, table
structure) the same code also works for different datasets and workflows. Comments
are often used inside the code. Comments are text written along the R commands,
which are not written in a programming language, and which are ignored when
running the code. The purpose of comments is to describe the behavior and purpose
of the code. It is good to practice to comment your own code from the beginning,
even if the code for the first tasks is very simple. In R, comments are marked with
the # symbol.

Assign arbitrary numbers to two variables
x <- 3
y <- 5
Sum of two variables
z <- x + y
Print the results
z

[1] 8

72 S. Tikka et al.

4.1 R Markdown

While scripts can only store code and comments, a more comprehensive format
called R Markdown is also available in RStudio. R Markdown is an extension of
the Markdown markup language that allows users to create dynamic reports and
interactive notebooks that can integrate text, code, and visualizations. R Markdown
documents are created in a plain text format and can be rendered into various output
formats, such as HTML, PDF, Word, or even presentations. To create a new R
Markdown document in RStudio, go to the “File” menu, select “New File” and
finally “R Markdown”. In the dialog that opens, choose the output format you want
to use, and give your document a title. Figure 2 shows the RStudio editor panel for
a default R Markdown document of R Studio.

The YAML metadata wrapped between the --- delimiters at the top of the
document can be used to customize the output and contents in various ways. For
example, you can change the title, author, or add a table of contents. In this example
we have defined the title, the output format (HTML) and the date, but many more
options are available besides these. Use Markdown syntax to format your text, and
enclose your R code in code chunks with the ```{r} and ``` tags which can also
be provided other options. For example, our first code chunk has been given the
label setup and the following option include = FALSE means that this chunk
will be executed but its output will not be printed into the final document. Within
the chunk, a global knitr option is set so that all code chunks will print (echo) their

Fig. 2 An example R Markdown document in R Studio

Getting Started with R for Education Research 73

output by default. You can also use inline chunks to quickly reference the results
of computations or other R objects. Some examples of standard markdown syntax
in the document are second level headers marked with ## (note that # is not used
for comments in an R Markdown document) and bold text denoted by wrapping the
text with **. Once you are satisfied with your document, you can render it into the
chosen output format by clicking the “Knit” button in RStudio, or use the keyboard
shortcut “Ctrl + Shift + K”. Figure 3 shows the corresponding rendered HTML
document.

This simple example shows only a fraction of the full features of R Markdown
documents and the Markdown syntax. R Markdown is a powerful tool for creating
reproducible research reports, teaching materials, or even websites. It allows users
to integrate code and output seamlessly into their written work, making it easier
to share and reproduce analyses. As an alternative to R Markdown documents, R
Studio also supports the creation of R Notebooks, which are in essence interactive
R Markdown documents. R Notebooks can be useful for example when the goal is
not to produce one comprehensive analysis report but instead to keep track of the
code and try out various approaches to a problem interactively. For an in-depth guide
to R Markdown, see [7] which is also freely available online at https://bookdown.
org/yihui/rmarkdown/.

Fig. 3 The example R
Markdown document
rendered into HTML

74 S. Tikka et al.

4.2 How Is Code Developed?

Code development typically follows similar steps:

1. Design parts of the code.
2. Start by writing a small piece of code.
3. Test whether the code you wrote works. If it doesn’t, find out why and fix it.
4. Go to the next piece of code and continue accordingly, always testing piece by

piece whether your code works.

Along with this material, many packages include a “Cheat Sheet” as a summary
of basic tasks and functions related to the package. Cheat sheets provide a quick
and easy reference for checking how something is done in R if you don’t remember
it by heart. There are cheat sheets for various R packages and other entities on the
Internet e.g., the base R cheat sheet, or the tidyr [8] cheat sheet.

In addition to the basic commands presented in this chapter of the book, practical
R programming relies to a great extent on the use of various packages developed
by the scientific community. Packages are collections of code that contain new
functions, classes and data, i.e., they extend R. Most R packages are available
from the Comprehensive R Archive Network (CRAN). They can be installed with
the install.packages() function, or via RStudio’s installation window which
in practice calls the install.packages() function. You can also install several
packages at once. The command below installs the dplyr [9] and tidyr packages:

install.packages(c("dplyr", "tidyr"))

In order to use the commands contained in an R package, the package must
be installed and attached to the R workspace. This is done with the library()
command:

library("tidyr")

Now that the tidyr package is loaded, we can use the commands it
provides, for example to manage the learning analytics data in data frame
format that we will address later. If you don’t want to attach the entire
package, you can use individual commands from packages with the format
name_of_the_package::name_of_the_command().

5 Basic Operations

Basic operations in R consist of arithmetic operations, logical operations, and
assignment. In addition, there are several commands that are often helpful when

Getting Started with R for Education Research 75

starting a new project or managing the working directory. For example, the current
working directory can be obtained with the following command:

getwd()

[1] "/home/sonsoles/labook/chapters/ch03-intro-r"

5.1 Arithmetic Operators

R can be used to compute basic arithmetic operations such as addition (+),
subtraction (-), multiplication (*), division (/), and exponentiation (ˆ). These
operations follow standard precedence rules, and additional brackets can be added
to control the evaluation order if needed.

1 + 1 # Addition

[1] 2

2 - 1 # Subtraction

[1] 1

2 * 4 # Multiplication

[1] 8

5 / 2 # Division

[1] 2.5

2 ˆ 4 # Exponentiation

[1] 16

76 S. Tikka et al.

5.2 Relational Operators

Relational operators compare objects or values to other objects or values. These
operators are often required for conditional data filtering, for example when
selecting a subset of individuals that satisfy some criterion. In R, there are six such
operators: smaller than, greater than, smaller or equal to, greater or equal to, equal
to, and not equal to. There operators have the following syntax in R:

1 < 2 # Smaller than

[1] TRUE

3 > 2 # Greater than

[1] TRUE

2 <= 2 # Smaller or equal to

[1] TRUE

3 >= 3 # Greater or equal to

[1] TRUE

5 == 5 # Equal to

[1] TRUE

1 != 2 # Equal to

[1] TRUE

In the previous example we used these operators to compare integers, but we may
also use them to compare other types of values, such as characters:

"a" == "b"

[1] FALSE

Getting Started with R for Education Research 77

5.3 Logical Operators

Similar to relational operators, logical operators are used to evaluate the logical
value of a conjunction of two logical values. In R, there are five logical operators:
negation, AND, OR, elementwise AND, and elementwise OR. These operators have
the following syntax:

!TRUE # Negation

[1] FALSE

TRUE && TRUE # Logical AND

[1] TRUE

TRUE || FALSE # Logical OR

[1] TRUE

TRUE & TRUE # Elementwise AND

[1] TRUE

TRUE | FALSE # Elementwise OR

[1] TRUE

The elementwise operators & and | can be used to compare multiple pairs of
logical values simultaneously, for example

c(TRUE, FALSE, TRUE) | c(TRUE, FALSE, FALSE)

[1] TRUE FALSE TRUE

whereas the operators && and || only accept single values. In the previous example,
we also used one of the most important operations of R: the c() function (the
letter ‘c’ is short for “combine”) which we used to combine the logical values into
a vector, i.e., an ordered sequence of values of the same type. Vectors and other
important data types will be discussed in greater details in the next section.

78 S. Tikka et al.

5.4 Special Operators

Another core functionality in R is the assignment operator <-. Assignment can be
used to store the results of computations into variables which can then be used again
in other computations without having to redo the original computations. For instance

x <- 5 # Assign value 5 into variable named x
y <- 7 # Assign value 7 into variable named y
x # Access value of x (value is printed into the

console in RStudio)

[1] 5

y # Access value of y

[1] 7

x + y # Compute the sum of x and y

[1] 12

x > y # Is x greater than y?

[1] FALSE

Here we chose the names x and y for our variables, but the names are arbitrary
with the caveat that one should avoid assigning values to objects with names that
R already uses internally, such as names of common functions like c(), exp(), or
lm() to name a few. Variables currently assigned in the working environment can
be displayed with the following command:

ls()

[1] "x" "y" "z"

It is also possible to use the equal sign = as the assignment operator, but this
is often not recommended, because the equal sign also has other purposes in
the R language and may cause confusion if used for assignment. There are also
some special instances, where the equals sign does not function identically to <-.
Therefore, we recommend always using the standard assignment operator <-.

Getting Started with R for Education Research 79

When constructing vectors, the function c() can be cumbersome in some sce-
narios. For instance, say we wanted to create a vector that contains all integers from
1 to 100. With c(), we would have to write each value individually. Fortunately,
such sequences can be constructed effortlessly using the : (colon) operator:

1:100

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
[20] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
[39] 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
[58] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
[77] 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
[96] 96 97 98 99 100

Often we may wish to select only specific values from a vector. Values in a vector
can be accessed by their index, starting from 1. This is accomplished by using the
subset operator which uses the following square bracket syntax. For example, we
could select the first value of a vector x by writing x [1]. For a more involved
example, we could simultaneously select the first, 50th and 100th value of the vector
1:100 by writing:

x <- 1:100
x[c(1, 50, 100)]

[1] 1 50 100

Essentially, we write the positions of the values that we wish to select inside the
square brackets as a vector. Alternatively, we can create a vector of logical values
that has the same length as the vector we are selecting from, and the value TRUE for
the values we wish to select, and FALSE otherwise. In the next section, we also show
how to select values based on a condition.

6 Basic Data Types and Variables

In the examples of the previous section, we already used several of the most common
data types that users are most likely to encounter in practical data analyses. Each
object in R has a type, which can be determined with the function typeof(). Types
are used to describe what kind of data our variables of interest contain and what
kind of operations can be carried out on them. Perhaps the most common type is
the numeric type, which describes values that can be interpreted as numbers. Two
special instances of the numeric type are integer and double, which correspond
to integer values and decimal values, respectively.

80 S. Tikka et al.

typeof(1.0)

[1] "double"

typeof(1L)

[1] "integer"

The capital L on the second line denotes that we mean the integer 1, and not
the decimal number 1.0. Text data is often represented by the character type.
Unlike in some other programming languages, in R the character type does not
necessarily describe individual characters as the name would suggest, but character
strings, for instance:

typeof("a")

[1] "character"

typeof("hello world!")

[1] "character"

As we can see, both have the same type.
The logical type is used to represent the boolean values TRUE and FALSE.

Logical values are typically not as common in actual data where such values may
often be represented by the integers 1 and 0 instead. However, their importance lies
in forming conditions for data filtering and manipulations that we may wish to carry
out based on a criterion that is true for only a subset of subjects in our data. For
example, suppose we have the values 1, 2, 3, 4, 5, and we wish to programmatically
select only those values that are greater than 2. We can accomplish this as follows:

some_numbers <- 1:5
some_numbers[some_numbers > 2]

[1] 3 4 5

Let’s walk through what the code above does step by step. On the first line, we
create a vector of numeric values 1 through 5 by using the : operator and assign
the result to the variable named some_numbers. On the second line, we use the
square brackets (the subset operator) to select only those values of some_numbers

Getting Started with R for Education Research 81

for which the condition some_numbers > 2 is true. Here we introduce the vector-
ization feature of R which applies to a vast majority of arithmetic and relational
operators. By writing some_numbers > 2, we actually evaluate the condition for
every value in the vector some_numbers:

some_numbers > 2

[1] FALSE FALSE TRUE TRUE TRUE

All of the aforementioned types are called atomic types, meaning that vectors
of such values can only contain values of one specific atomic type. For example, a
vector cannot contain values of both character and integer types:

c(0L, "a")

[1] "0" "a"

We see that the result was automatically converted to an atomic character vector.
Alongside type, objects in R also have a class, which can be viewed with the

class() function. For atomic types, their class is the same as their type, but for
more complicated types of variables, a class essentially describes a special instance
of a type. Objects within a specific class typically have their own set of functions
or methods that can only be applied for that specific class. A common example
of a class is factor. Factors are a special class of integer vectors designed to
represent categorical and ordinal data. Variables that are of the factor class have
levels, which differentiates factor variables from ordinary integer variables. For
example, a factor could represent group membership in a randomized experiment
indicating inclusion in the control group or the treatment group for each individual.
The levels of this factor could be called "control" and "treatment" for example.
Supposing that 0 indicates that an individual belongs in the control group and 1
indicates that an individual belongs in the treatment group, we could create such a
factor by writing

group <- c(0, 0, 1, 0, 1, 0, 1, 1)
factor(group, labels = c("control", "treatment"))

[1] control control treatment control treatment control treatment treatment

Levels: control treatment

Factors are important when fitting statistical models or when performing statis-
tical tests, because if we would simply use the corresponding integer values, they
may be erroneously interpreted as continuous. The levels of the factor also often
help to provide more informative output. In the next section we will discuss more
complicated data types including data frames, which can contain data of various
types simultaneously.

82 S. Tikka et al.

7 Basic R Objects

In this section we will discuss the concepts of data frame and tibble. Let’s assume
that your data can be stored in a two-dimensional array where the columns represent
variables and each row represents a case of measurement. In R, a data frame is a
concept for storing such a two-dimensional array of data. Let’s first study how data
frames work in R and we will then move on to see how another concept called
tibble extends the capabilities of a data frame.

A data frame which has been loaded into R under the name grades and printed
in the R console will look as follows.

grades

group grade
1 2 4.67
2 2 4.90
3 3 2.63
4 4 3.39
5 4 6.89

In the above printout we can see that R prints the data frame just as we would
expect the data to look like. One issue with a standard data frame is that if there are
very many columns or rows, then the printout may be difficult to read. In RStudio, a
neater (and more flexible) way of inspecting the data is by using a command called
View():

View(grades)

To go further with the data, we need tools for data manipulation. We begin with
the very basic tools which are commonplace in any data analysis workflow. More
comprehensive knowledge about data transforming, cleaning etc. can be found in
Chap. 2.

A data frame can be constructed directly in the R by using the function called
data.frame() and then listing variable names and their values. The grades data
above has two columns, group and grade, and each row represents a student. The
variable group is indicates the number of a group in which each person has studied.
The variable grade stores the final grade that the student has received from a course.

8 Working with Dataframes

To extract a column from a data frame, one needs to start with the name of the data
frame object and connect the column name with the name of the data frame object

Getting Started with R for Education Research 83

by using the dollar symbol ($). Thus, extracting the column group from grades
data can be accomplished by writing

grades$group

[1] 2 2 3 4 4

Next, let’s use a couple of basic functions which are often needed when
developing R code. First of all, to get a summary of every variable of a data frame,
we can call

summary(grades)

group grade
Min. :2 Min. :2.630
1st Qu.:2 1st Qu.:3.390
Median :3 Median :4.670
Mean :3 Mean :4.496
3rd Qu.:4 3rd Qu.:4.900
Max. :4 Max. :6.890

The result show us the minimum, maximum, median, mean and quartiles of both
variables. You may note that as group was intended to be a categorical variable,
so computing its mean value in the data does not make sense. We can change that
behavior by converting the group column into a factor.

grades$group <- as.factor(grades$group)
summary(grades)

group grade
2:2 Min. :2.630
3:1 1st Qu.:3.390
4:2 Median :4.670

Mean :4.496
3rd Qu.:4.900
Max. :6.890

On the other hand, we might want to calculate the mean or the sample standard
deviation of the variable grade. This can be done with functions called mean() and
sd(), respectively.

84 S. Tikka et al.

mean(grades$grade)

[1] 4.496

sd(grades$grade)

[1] 1.630178

The functions above can only take numeric vectors as input. If we tried using
another type of argument, we would encounter an error message.

sd(grades)

Error in is.data.frame(x): ’list’ object cannot be coerced to type ’double’

The above message can actually teach us a couple of things. First of all, the
error comes from the function is.data.frame(), which is called somewhere in
the definition of sd(). Second, the actual error message tells us that the object
which we gave to the function as its argument is a list object. List is an object
type of R on top of which data.frame objects have been built. We will describe
lists in greater detail later. Further, the message tells us that R has tried to coerce
the argument object into the double type. This means that the object we supplied
to the function is not of the right type and cannot easily be converted into the proper
format.

8.1 tibble

A tibble is an expansion of data.frame objects which is used in the tidyverse
programming paradigm [10]. To use tidyverse, we advise to load the tidyverse
[11] (meta)package which loads all key tidyverse packages.

load tidyverse to use as_tibble
library("tidyverse")
convert a data frame as tibble
grades2 <- as_tibble(grades)

Next, let’s see what a tibble looks like when printed in the console

Getting Started with R for Education Research 85

grades2

A tibble: 5 x 2
group grade
<fct> <dbl>

1 2 4.67
2 2 4.9
3 3 2.63
4 4 3.39
5 4 6.89

Tibbles behave similarly compared to data frames when printed, but they also
describe the dimensions of the data and the types of the columns right under the
column names. For instance, <fct> refers to a factor column and <dbl> refers to
a double column. In order to discover the column types when using data frames,
one would need to apply the class() or typeof() function to the columns, or
write str(grades) to see the types of the columns and the structure of the data.
Another useful property of tibble tables is that if a tibble has a large number of
observations or variables, then only the rows or the columns which can fit on to the
screen are printed.

Tidyverse and tibbles also support so called lazy evaluation, which is useful when
your data is stored in a database, for instance. With lazy evaluation, the commands
that you use on your data would be evaluated directly in the database (if possible).
Without lazy evaluation, the entire data would be downloaded onto your computer
only after which the commands would be evaluated. Lazy evaluation can perform
many tasks faster and it can also alleviate memory usage of the computer.

9 Pipes

Piping is a fairly recent concept in R and was very rarely used in R code just a
few years ago. The concept of a pipe originates from a package called magrittr,
and pipes are commonly used under the tidyverse programming paradigm, but the
pipe was also later added to base R. The notations for a tidyverse pipe and a native R
pipe are %>% and |>, respectively. The idea of a pipe is that you can connect multiple
function calls sequentially while keeping the code more readable. Pipes also serve
to unnest standard R code which often involves using many nested parentheses, and
can quickly become hard to read as one has to read the code based on the order
of the operations instead of reading it linearly. For example, consider the following
code where we apply a sequence of operations on a numeric vector x.

86 S. Tikka et al.

x <- 1:10
round(mean(diff(log(x))), digits = 2)

[1] 0.26

This code computes the rounded mean differences of the logarithms of the vector
x, however this description does not match the order of operations, where the
logarithm is computed first. To accomplish the same result using pipes we would
write

x <- 1:10
x |> log() |> diff() |> mean() |> round(digits = 2)

[1] 0.26

Here, the order of operations can be easily read from left to right. Next, we will
discuss the use of pipes in more detail.

9.1 magrittr pipe %>%

Let’s have a look at an example, where we call the summary() function for the
grades2 data using the magrittr pipe %>%, and we also define that results should be
printed with two digits.

grades2 %>%
summary(digits = 2)

group grade
2:2 Min. :2.6
3:1 1st Qu.:3.4
4:2 Median :4.7

Mean :4.5
3rd Qu.:4.9
Max. :6.9

In the code above, the object grades2 is taken by the pipe operator %>%
and forwarded to the first argument of the summary() function. The summary()
function also has a second argument, which is defined by digits = 2. Thus,
the pipe only takes the object mentioned before the pipe operator and forwards
it to the function after the pipe as the first free argument. It is very common and

Getting Started with R for Education Research 87

recommended to structure R code so that there is only one pipe per row and that a
new line is started after each pipe.

Although the above example is easy to understand as we already know the
summary() function, there is also a more general way to compute summarized
information following the tidyverse style. The function summarise() can be used
to compute arbitrary statistics from the data, for example the number of observations
(via the function n()) and the mean and the sample standard deviation of the
variable grade.

grades2 %>%
summarise(

n = n(),
mean = mean(grade),
sd = sd(grade)

)

A tibble: 1 x 3
n mean sd

<int> <dbl> <dbl>
1 5 4.50 1.63

The summarise() function also produces a tibble enabling further operations
via piping, if desired.

9.2 Native pipe |>

In R version 4.1, the native pipe |> was introduced to the R language, which does
not require any external packages to use. In most scenarios, it does not matter
whether the native or the magrittr pipe is used. However, there are two technical
differences between the magrittr pipe and the native pipe. First, the magrittr
pipe is actually a function

class(`%>%`)

[1] "function"

while the native pipe is not, and simply converts the written code into a non-piped
version, i.e., into a form that one would write without using the pipe:

88 S. Tikka et al.

x <- 1:5
quote(x |> sum())

sum(x)

We see that providing x to the sum function via the native pipe is exactly the same
as writing sum(x) directly. What this means in practice is that the native pipe may
have better performance for example when passing a large dataset through a large
number of pipes. The reason for this is that the magrittr pipe incurs an additional
computational function call overhead each time it is called. The second difference
between the pipes is that parentheses have to be provided for function calls when
using the native pipe, but they can be omitted when using the magrittr pipe

x %>% sum

[1] 15

x %>% sum()

[1] 15

x |> sum()

[1] 15

x |> sum # produces an error

Error: The pipe operator requires a function call
as RHS (<text>:1:6)

10 Lists

Earlier, we already briefly mentioned lists in the context of data frames. Lists are
one the most common types of data in R and they resemble basic vectors in many
aspects. Like vectors, a list is an ordered sequence of elements, but unlike vectors,
lists can contain elements of different types simultaneously and may even contain
other lists. For example, we could construct a list that contains a logical value, a
numeric value and a character value using the list() function as follows.

Getting Started with R for Education Research 89

y <- list(TRUE, 7.2, "this is a list")

Subsetting a list object works slightly differently compared to vectors. When
single brackets are used, a sublist is selected, i.e., a list object that contains the
elements at the supplied indices, for example:

y[1:2]

[[1]]
[1] TRUE

[[2]]
[1] 7.2

typeof(y[1:2])

[1] "list"

To extract an actual element of a list, double brackets should be used:

y[[2]]

[1] 7.2

The elements of a list may also be named, which enables subsetting via the
dollar sign operator similar to data frames, or by giving the element name in double
brackets instead of the index:

z <- list(bool = TRUE, num = 7.2,
description = "this is another list")

z$bool

[1] TRUE

z[["description"]]

[1] "this is another list"

90 S. Tikka et al.

One benefit of using the dollar sign is that it is not necessary to provide the full
element name, unlike when using the double brackets. It is sufficient to provide
a prefix of the element name so that the full name can be uniquely determined
from the prefix. Because all the names of our elements in the previous list z start
with a different letter, the first letter of the name suffices as the prefix. The same
functionality also applies when using the dollar sign to select columns of data
frames.

z$b

[1] TRUE

z$n

[1] 7.2

z$d

[1] "this is another list"

11 Functions

A function is a set of statements that when organized together perform a specific
task. Each function in R has a name, a set of arguments, a body and a return object.
The name of the function usually describes the purpose of the function. For example,
the base R function mean() computes the arithmetic mean of the argument vector.
The result is returned as a numeric value.

x <- 1:5
mean(x)

[1] 3

Functions are often much more complicated, which is why it is often helpful
to view the documentation of a function before using it in practice. To view the
documentation pages of a function, one can simply write the name of the function
prefixed by a question mark.

Getting Started with R for Education Research 91

?mean

In RStudio, the documentation will open in the “Help” tab in the bottom
right pane by default. Functions will only be executed when they are called, i.e.,
when arguments are supplied to them. Simply writing the function name without
parentheses will instead print the body of the function to the console, meaning the
code that the function consists of and which is executed if the function is called.

In the previous sections, we’ve already familiarized ourselves with some com-
monly used basic functions such as c(), sd(), and summary(). Base R has a wide
range of function to accomplish common tasks needed in data analysis, which is
further extended by tidyverse and other R packages. This means that one does
not typically have to write their own functions when programming in R. We will
explore several of the functions provided by the tidyverse in later chapters.

12 Conditional Statements

Sometimes we may only wish to execute a piece of code when a certain condition
is met. Conditional statements in R can be defined via the if and else clauses. The
if clause evaluates a condition, which is an R expression that evaluates to a single
logical value, and if this condition evaluates to TRUE, the expression following
the clause if executed. Further, if an else clause is also provided, the expression
following else will be executed instead if the condition evaluates to FALSE. As R
code, the syntax for these clauses is

if (cond) expr
if (cond) expr else alt_expr

where cond is the condition being evaluated, expr is the expression that will be
evaluated if cond == TRUE, and alt_expr will be evaluated if cond == FALSE.

Note that if will only evaluate a single condition. If cond is a vector, an error
will be produced:

cond <- c(TRUE, FALSE)
if (cond) {

print("This will not be printed")
}

Error in if (cond) {: the condition has length > 1

As expected, the error message tells us that the condition contained more than
one element when it was evaluated. However, there are often scenarios where we

92 S. Tikka et al.

may wish to conditionally select or define values based on a vector of conditions.
For such instances, the function ifelse() can be used. This function has three
arguments: test, yes, and no. When called, the function will pick those elements
of the vector yes for which the logical vector test evaluates to TRUE, and those
elements of the vector no for which test evaluates to FALSE:

cond <- c(TRUE, FALSE, FALSE, TRUE)
x <- 1:4
y <- -(1:4)
ifelse(cond, x, y)

[1] 1 -2 -3 4

13 Looping Constructs

In some cases, we may wish to execute the same piece of code multiple times
under varying conditions. Instead of writing the same code multiple times for each
condition, we can use a looping construct. There are two types of loops in R: the
for loop and the while loop. The main difference between the two loops is that
for always executes the code associated with the loop a fixed number of times
whereas while will continue executing the code as long as a specific condition
remains satisfied. The syntax of these loops is

for (var in seq) expr
while (cond) expr

In other words, for will execute the expression expr for every element var in
some object seq that can be indexed. For-loops are very general, and can be used
to loop over most ordered structures such as vectors and lists. Similarly, while will
execute the expression expr as long as the condition cond evaluates to TRUE. Care
must be taken when using while-loops to ensure that the condition will eventually
evaluate to FALSE, otherwise the loop will simply run indefinitely and the program
will be stuck. As an example, we will print the number 1 through 5 to the console
using both for and while loops:

x <- 1:5
for (i in x) {

print(x[i])
}

Getting Started with R for Education Research 93

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

i <- 0
while (i < length(x)) {

i <- i + 1
print(x[i])

}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

In contrast to explicit for and while loops, the so-called apply family of
functions can often be a simpler alternative (see ?apply). As the name suggests,
these functions apply an operation to each element of a list or a vector (and other
more general data structures). For example, the above loop example could also be
accomplished with the lapply() function as follows:

y <- lapply(x, print)

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

14 Discussion and Other Resources for Learning R

The main aim behind this chapter was to introduce R to new users. This chapter
is, of course, an initial step and can hardly cover all the basics. Interested users are
advised to consult other resources e.g., open access books, tutorials, cheat sheets,
and package manuals for more information. An introductory book “An Introduction
to R” packaged with each R installation can be accessed from the RStudio Help
panel by first selecting “Show R Help” and then selecting “An Introduction to R”
under “Manuals”. This book covers a wide range of topics on base R programming

94 S. Tikka et al.

in great detail. The book “R for Data Science” by Hadley Wicham and Garret
Grolemund provides a comprehensive tutorial on using R for data science under the
tidyverse paradigm. The book is free to use and readily available online at https://
r4ds.had.co.nz/. As we go further, several questions will emerge and the reader will
learn by doing and by consulting the literature and help files. In doing so, the reader
will build knowledge and experience that helps advance their skills.

References

1. R Core Team (2022) R: a language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna

2. Wickham H, Grolemund G (2016) R for data science: import, tidy, transform, visualize, and
model data. O’Reilly Media, Inc., Sebastopol

3. Wickham H (2015) R packages: organize, test, document, and share your code. O’Reilly
Media, Inc., Sebastopol

4. Epskamp S, Fried EI (2018) A tutorial on regularized partial correlation networks. Psychol
Methods 23:617–634. https://doi.org/10.1037/met0000167

5. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and
manipulating networks. In: Third international AAAI conference on weblogs and social media,
pp 361–362

6. RStudio Team (2020) RStudio: integrated development environment for R. RStudio, PBC,
Boston

7. Xie Y, Allaire JJ, Grolemund G (2019) R markdown: the definitive guide, 1st edn. Chapman &
Hall/CRC, Boca Raton

8. Wickham H, Vaughan D, Girlich M (2023) tidyr: tidy messy data. https://CRAN.R-project.org/
package=tidyr

9. Wickham H, François R, Henry L, Müller K, Vaughan D (2023) dplyr: a grammar of data
manipulation. https://CRAN.R-project.org/package=dplyr

10. Müller K, Wickham H (2023) tibble: simple data frames. https://CRAN.R-project.org/
package=tibble

11. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes
A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson
D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome
to the tidyverse. J Open Source Softw 4:1686. https://doi.org/10.21105/joss.01686

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

