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Joint Active and Passive Beamforming for Vehicle
Localization with Reconfigurable Intelligent

Surfaces
Zhiyuan Feng, Bo Wang, Member, IEEE, Zheng Chang, Senior Member, IEEE, Timo Hämäläinen, Senior

Member, IEEE, Yanping Zhao and Fengye Hu, Senior Member, IEEE

Abstract—Future vehicle localization will be committed to
improving the positioning accuracy and energy efficiency of
localization systems in the intelligent transportation. Recently, re-
configurable intelligent surface (RIS) as an emerging technology
has gained widespread attention and is favorable to enhance the
performance of vehicle localization systems because of its capacity
of customizing the wireless channel. In this paper, in order to
minimize the transmit power, we consider the joint active and
passive beamforming problem of RIS-assisted vehicle localization
system under the constraints of the localization accuracy and
the phase shift parameters of the RIS. Specifically, we establish
the model of RIS-assisted vehicle localization system and derive
the Cramér-Rao bound (CRB) as the localization performance
metric. Next, for the scenario of single vehicle localization, we
derive the optimal RISs’ phases, and obtain the optimal solution
for joint active and passive beamforming based on semidefinite
programming relaxation of the non-convex beamforming problem
and the corresponding equivalent analysis. Lastly, aimming to
the scenario of multiple vehicles localization, we transform the
nonconvex joint active and passive beamforming problem into
semidefinite programming (SDP) and geometric programming
(GP) form subproblems through alternating optimization. Simu-
lation results verify the feasibility of the proposed methods.

Index Terms—Reconfigurable intelligent surface, vehicle lo-
calization, joint active and passive beamforming, Cramér-Rao
bound, convex optimization.

I. INTRODUCTION

VEHICLE localization is an important topic in wireless
network research and intelligent transportation system

[1]–[5]. The range-based localization through capturing the
distance and angle parameters is a common technology for ur-
ban vehicle localization [6]–[10]. Generally, the range metrics
for localization include time of arrival (TOA), time difference
of arrival (TDOA) and angle of arrival (AOA), etc [11]–[13].
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In order to improve the localization accuracy, [14] obtains the
closed form results of target localization by using the weighted
least squares method. [15] brings quadratic constraints to
solve the problem of decreased localization accuracy in high
noise scenarios. In addition, by combining two or more range
metrics, an accurate estimation of the vehicle position or
velocity can be achieved.

Although the vehicle localization technologies mentioned
above can meet basic localization needs, these methods are
only used in the scenario where the line of sight (LOS)
link exists. Once the LOS link between the transmitter or
receiver and the vehicles is obstructed, the range-based lo-
calization methods will be difficult to capture accurate range
measurements, and the position of the vehicle will become
hard to estimate. Recently, Reconfigurable Intelligent Surface
(RIS) [16]–[20] has gained widespread attention due to its
advantage of being able to customize wireless channels by
adjusting phase shift parameters. In other words, RIS can
establish a virtual line of sight (VLOS) to overcome non-line
of sight (NLOS) problems. For example, [21] proposes the
design method of time-varying reflection coefficient for RIS
under NLOS. [22] utilizes RIS components for joint local-
ization and environmental sensing in the NLOS millimeter-
wave (mmWave) communication system. In addition, RIS
can not only address NLOS issues, but also help improve
communication and localization quality. [23] conducts an
investigation into the near-field localization system assisted
by RIS, while the beamforming design scheme of the RIS-
assisted integrated sensing and communication is discussed in
[24]. [25] proposes an iterative and incremental joint multi-
user communication and environment sensing scheme based
on RIS. [26] and [27] use statistical channel state information
to discuss the performance gain of RIS in communication
system. These works show that introducing RIS into intelligent
transportation system to assist vehicle localization is a reason-
able and promising direction. Particularly, the beamforming
design of transmitter and the phase optimization of RIS are
crucial for reducing the energy consumption of localization
systems.

In recent years, the beamforming problems [28]–[32] are
extensively investigated in the fields of communication, detec-
tion, and localization. Beamforming can make the radiation
pattern of antenna array adapt to a specific target direction,
which improve the efficiency and reduce the energy con-
sumption to a certain extent. For instance, [31] proposes a
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robust digital beamforming technique based on interference
plus noise covariance matrix reconstruction. [32] investigates
the joint transmit beamforming problem of MIMO radar and
multiple user MIMO communication. The above research is
mainly about the active beamforming, while the RIS, as a
passive component, can also enable the beam to point toward
the target direction by passive beamforming. As a result, the
joint active and passive beamforming design of transmitter and
RIS is a worthwhile research topic.

However, most of the literature on beamforming focuses
on the communication and localization research of traditional
systems without RIS. In [33], the authors consider the joint
active and passive beamforming problem for RIS-assisted
radar surveillance with the goal of maximizing the target
illumination power. On the contrary, this paper concentrates
on the joint active and passive beamforming of the RIS-
assisted vehicle localization system, and utilizes the Cramér-
Rao bound (CRB) as the optimization criterion, which is
the explicit expression of the localization performance. In
addition, two RISs are respectively deployed in the near field
range of the transmitter and receiver, which can provide a
larger performance gain than the far field scenario and also
leads to a more complex system model [34]–[37]. Therefore,
the beamforming problem of RIS-assisted vehicle localization
system based on CRB and the near field model is more
complex than the other. In this paper, we investigate the joint
active and passive beamforming problems for two scenarios.
Specifically, we first of all derive the CRB of vehicle localiza-
tion assisted by RIS as the performance metric, and present the
joint active and passive beamforming results of single vehicle
scenario by using the specialized CRB. Subsequently, for the
multiple vehicles scenario, we decompose the original non-
convex optimal problem into two subproblems, and obtain the
semidefinite programming (SDP) form using convex release
to solve the passive beamforming problem. On this basis, the
active beamforming problem is transformed into a geometric
programming (GP) problem.

The major contributions of this paper are summarized below.
• Firstly, we provide the RIS-assisted vehicle localization

model and derive the CRB as performance threshold mea-
sure for vehicle position parameters. Then, we formulate
a joint active and passive beamforming problem with
the goal of minimizing total transmit power under the
constraints of localization accuracy and RISs’ phases.

• Secondly, we propose single vehicle beamforming op-
timization (SVBO) method to solve the beamforming
optimization problem in this context. The optimal results
of passive beamforming optimization are obtained by
utilizing the characteristic of maximum pointing gain in
the beamforming pattern. Then, we transform the local-
ization performance constraint CRB into a closed form
expression, and release the active beamforming problem
as a SDP problem. Furthermore, we prove that the SDP
problem is equivalent to the original active beamforming
problem to ensure that the released problem has the same
optimal solution as the original problem.

• Finally, we propose multiple vehicles beamforming al-
gorithm (MVBA) in regard to multiple vehicles local-

Fig. 1. Structure diagram of vehicle localization with RISs-assisted configu-
ration.

ization. By using alternating optimization techniques, the
original problem is split into two subproblems, i.e., the
optimization problems of RIS near the transmitter and
receiver, respectively. The passive beamforming problem
is released as a feasibility problem in SDP form, while the
active beamforming problem is solved as a GP problem
through equivalent change and perspective function.

The outline of this paper is organized as follows. In Section
II, the RIS-assisted vehicle localization model and beamform-
ing problem are elaborated. In Section III, we derive CRB
as a localization performance metric in detail. Section IV
proposes SVBO method to solve the beamforming problem in
single vehicle scenario. Section V addresses the beamforming
problem in multiple vehicles scenario. Simulation examples
are presented in Section VI. Conclusions are drawn in Section
VII.

Notation: Throughout this paper, we use (.)
T , (.)∗ and (.)

H

denote the transpose, complex conjugate, and complex conju-
gate transpose, respectively. R+ stands for the set of positive
real numbers, while Ri×j and Ci×j represent the sets of real
and complex matrix with i rows and j columns, separately.
Lowercase, bold lowercase, and bold uppercase letters are
used for scalar variable, vector, and matrix, respectively. (a, b)
denotes the open interval from a to b. [.]i,j is the ith row and
jth column entry of matrix. tr (.), diag (.), (.)

−1, ∥.∥2, |.|,
(.)

′
and E [.] stand for the trace operator, diagonal operator,

inverse operator, Euclidean norm, modulus operator, derivative
and expectation, respectively, while matrix A ⪰ B means that
A−B is positive semidefinite.

II. PROBLEM FORMULATION

A. System Model
We consider a RIS-assisted MIMO radar system for vehicle

localization shown in Fig. 1. The radar transmitter and receiver
at different locations are equipped with Nt and Nr densely
spaced elements respectively arranged in a uniform linear
array (ULA) with emitting Nt orthogonal waveforms of equal
power from each radiating element. This model is assumed
to be in a two-dimensional scenario, where the two RISs are
vertically arranged. This model is easily extended to three-
dimensional scenario in localization algorithms [38], [39]. The
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two identical RIS (which are represented as RISt and RISr)
are deployed in the near field region of the transmitter and
receiver respectively to assist the transmitter to illuminate the
intended vehicle and to help the receiver capture the power
scattered by the vehicle. The two surfaces are composed of
Nts and Nrs elements and can change their phases to establish
a virtual data link between the array units and each RIS.

Let coordinate parameters of transmitter and receiver be
pt = [ptx, pty]

T and pr = [prx, pry]
T , respectively. Suppose

that the position parameters of the center elements of RISs are
pts = [ptsx, ptsy]

T and prs = [prsx, prsy]
T as the reference

points. It is worth emphasizing that the two RISs are deployed
in the near field region of the radar transmitter and receiver
respectively [34]–[37], while the vehicle of interest is in the far
field region of the radar transmitter and receiver for meeting a
larger localization range. The vehicle system assisted by RISs
is used to locate K vehicles, where pm,k = [pmx,k, pmy,k]

T

represents the position of the vehicle k being located. Let
s (t) = [s1 (t) , s2 (t) , · · · , sK (t)]T be a K × 1 vector of
orthogonal transmitted signal (such as beat frequency divi-
sion (BFD) method), which satisfies

∫
s (t) sH (t) = IK ,

where IK represents the identity matrix of size N . We let
sk (t) , k = 1, 2, · · · ,K, be the transmitted signal to the vehi-
cle k and integrate a corresponding matrix W ∈ CNt×K as the
beamforming matrix of the transmitter. As a result, the output
signal of the transmitter is defined as Ws (t). We assume that
the signals of each vehicle are separable at the receiver based
on their distance, then the signal yk (t) ∈ CNr×1 received by
the receiver can be expressed as

yk (t) = HkWs (t) + nk (t) , k = 1, 2, · · · ,K, (1)

where Hk ∈ CNr×Nt is the channel parameter for vehicle
k, and nk (t) denotes a Gaussian vector with covariance
matrix σ2I , accounting for the additive noise. The channel
Hk takes on a more complex form due to the existence of
RIS. The MIMO radar utilizes echoes for localization and
the signal goes through the four channels: “Transmitter -
Vehicle - Receiver”, “Transmitter - RISt - Vehicle - Receiver”,
“Transmitter - Vehicle - RISr - Receiver”, and “Transmitter
- RISt - Vehicle - RISr - Receiver”. Therefore, the channel
Hk can be written in (2). Where γt,k and γr,k denote the
direct channels between the reference transmit element and
the vehicle and between the vehicle and the reference receive
element for vehicle k, respectively. γts,k and γrs,k are the two-
hop indirect channels from the reference transmit element to
the reference forward reflecting element to the vehicle and
from the vehicle to the reference backward reflecting element
to the reference receive element for vehicle k, respectively.
According to the standard radar equation, the scalar channels
γt,k, γr,k, γts,k and γrs,k can be modeled as [40], [41]

γt,k =

(
κt,k

4πd2t,k

)1/2

e−j2πdt,k/λ, (3a)

γr,k =

(
κr,kλ

2

(4π)2d2r,k

)1/2

e−j2πdr,k/λ, (3b)

γts,k =

(
κts,kςt,k

(
ρts, θts,k

)
(4π)2δ2tsd

2
ts,k

)1/2

e−j2π(δts+dts,k)/λ, (3c)

γrs,k =

(
κrs,kςr,k

(
ρrs, θrs,k

)
λ2

(4π)3δ2rsd
2
rs,k

)1/2

e−j2π(δrs+drs,k)/λ, (3d)

where θt,k, ρts and θts,k are the angles from the transmitter to
the vehicle k, from the transmitter to RISt, and from RISt
to the vehicle k, respectively, while θr,k, ρrs and θrs,k are the
angles from the receiver to the vehicle k, from the receiver
to RISr, and from RISr to the vehicle k, respectively. dt,k,
δts and dts,k denote the distances from the transmitter to the
vehicle k, from the transmitter to RISt, and from RISt to
the vehicle k, respectively. dr,k, δrs and drs,k represent the
distances from the receiver to the vehicle k, from the receiver
to RISr, and from RISr to the vehicle k, respectively. κt,k,
κr,k, κts,k and κrs,k are the gains of the transmitter and
receiver elements in the transmission direction for vehicle
k, respectively. λ is the signal wavelength. ςt,k (ρts, θts,k)
and ςr,k (ρrs, θrs,k) are the radar cross sections (RCSs) for
vehicle k of the two RISs with respect to the angles of arrival
(AOA) ρts, θrs,k and angles of departure (AOD) θts,k, ρrs,
respectively. Specifically, leveraging [42]–[45], the RCSs of
two RISs can be defined as

ςt,k (ρts, θts,k) = A[cos (ρts)]
q (4πA/

λ2) [cos (θts,k)]q, (4a)
ςr,k (ρrs, θrs,k) = A[cos (ρrs)]

q (4πA/
λ2) [cos (θrs,k)]q, (4b)

where A is the area of the element, and q denotes the cosine
exponent. vt,k and vr,k are the direct steering vectors of the
transmitter and receiver towards the vehicle k, respectively.
vts,k and vrs,k are the steering vectors of the RISs near the
transmitter and receiver towards the vehicle k, respectively.
Gt and Gr are the normalized channel matrices between the
transmitter and the near RIS and between the receiver and the
near RIS, respectively. Specifically, vt,k, vr,k, vts,k and vrs,k
are direction vectors which are separately related to angles
θt,k, θr,k, θts,k and θrs,k with the following forms

vt,k =

[
1, e

−j
2πfcd sin θt,k

c , · · · , e−j
2π(Nt−1)fcd sin θt,k

c

]T

, (5a)

vr,k =

[
1, e

−j
2πfcd sin θr,k

c , · · · , e−j
2π(Nr−1)fcd sin θr,k

c

]T

, (5b)

vts,k =

[
1, e

−j
2πfcd sin θts,k

c , · · · , e−j
2π(Nts−1)fcd sin θts,k

c

]T

, (5c)

vrs,k =

[
1, e

−j
2πfcd sin θrs,k

c , · · · , e−j
2π(Nrs−1)fcd sin θrs,k

c

]T

, (5d)

Hk =(vr,kγr,k) (vt,kγt,k)
H + (vr,kγr,k) (GtΩΩΩtvts,kγts,k)

H + (GrΩΩΩrvrs,kγrs,k) (vt,kγt,k)
H + (GrΩΩΩrvrs,kγrs,k) (GtΩΩΩtvts,kγts,k)

H

=(vr,kγr,k +GrΩΩΩrvrs,kγrs,k) (vt,kγt,k +GtΩΩΩtvts,kγts,k)
H ,

(2)
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where fc is the carrier frequency, d is the inter-element spacing
of the RISs, c is the speed of light, and j =

√
−1 is the symbol

for imaginary. The adjustable phase matrix ΩΩΩt and ΩΩΩr of the
RISs can be expressed as

ΩΩΩt = diag {ϑt,1, ϑt,2, . . . , ϑt,Nts
} ∈ CNts×Nts , (6a)

ΩΩΩr = diag {ϑr,1, ϑr,2, . . . , ϑr,Nrs} ∈ CNrs×Nrs . (6b)

where ϑt,i = ejϕt,i , i = 1, 2, . . . , Nts and ϑr,i = ejϕr,i , i =
1, 2, . . . , Nrs. In order to extract effective localization infor-
mation from the channel, we process the signal received by
the receiver through a match filter. Then, the output of the
received signal yk can be represented as [46]

rk (τ) =

∫
T

yk (τ − t) s∗k (t) dt

= Hkωωωk +

∫
T

nk (τ − t) s∗k (t) dt.

(7)

where ωωωk ∈ CNt×1 is the beamforming vector of vehicle
k in the beamforming matrix W . It is worth noting that
the positions of the transmitter, receiver and nearby RIS are
considered as the known parameters. Consequently, the related
angles ρts, ρrs and the distances δts, δrs are also prescient
parameters. Then, by using the sine and cosine of a triangle,
the AOD θts,k, AOA θrs,k of RISs and the distance parameters
dts,k, drs,k can be respectively written as functions of the
angles θt,k, θr,k and the distances dt,k, dr,k, that is,

θts,k = arctan
dt,k sin θt,k − δts sin ρts
dt,k cos θt,k + δts cos ρts

, (8a)

θrs,k = arctan
dr,k sin θr,k − δrs sin ρrs
dr,k cos θr,k + δrs cos ρrs

, (8b)

dts,k =
√

δ2ts + d2t,k + 2δtsdt,k cos (θt,k + ρts), (8c)

drs,k =
√
δ2rs + d2r,k + 2δrsdr,k cos (θr,k + ρrs). (8d)

The position information pm,k of the vehicle k can be jointly
determined by the distances dt,k, dr,k and the angles θt,k,
θr,k. Therefore we define ηηηk = [dt,k, dr,k, θt,k, θr,k]

T as direct
parameter vector for vehicle localization.

B. Optimization problem

The purpose of beamforming is to design a set of directional
beams to reduce the power loss of omnidirectional radar
and ensure localization performance. In this scenario, the
joint active and passive beamforming becomes the problem
of minimizing transimt power under the constraints of the
vehicle localization accuracy and the RIS’s phase parameter
matrices ΩΩΩt and ΩΩΩr, which are adjustable. The performance
metric CRB of parameter vectors can be given by the Fishers
information matrix (FIM) Jpm,k

with respect to the location
parameter pm,k. Specifically, let p̂m,k indicate the estimated
value of the position parameter vector pm,k based on the
matched filtered output r (t). The localization accuracy can
be given by the mean square error (MSE) of the localization
parameter. According to the Cramér-Rao inequality, the MSE

of any parameter estimation is not less than the Cramér-Rao
lower bound. Therefore, we have

E
[
(p̂m,k − pm,k) (p̂m,k − pm,k)

T
]
⪰ J−1

pm,k
, (9)

and then

E
[
∥p̂m,k − pm,k∥22

]
≥ tr

(
J−1
pm,k

)
∆
= CRB. (10)

Hence, we use CRB as the performance metric to characterize
the localization accuracy in the optimization problem. Our
aim is to reduce the overall power loss of the system and
ensure the localization performance by designing active and
passive beamforming. As a result, the beamforming problem
with respect to the RIS can be expressed as

P0 : min
W ,ΩΩΩt,ΩΩΩr

K∑
k=1

∥ωωωk∥22

s.t. CRBk ≤ εk, k = 1, 2, · · · ,K,

|ϑt,i| = 1, i = 1, 2, · · · , Nts,

|ϑr,i| = 1, i = 1, 2, · · · , Nrs.

(11)

where ε denotes the predefined threshold of the localization
accuracy, the 2-norms of the radar beamforming vectors for
each target represents the radar transmit power [26], [32],
and the optimal variables of the problem are W , ΩΩΩt and
ΩΩΩr. Specifically, W is the active beamforming variable for
transmitter, and ΩΩΩt and ΩΩΩr are the passive beamforming
variables for RISs.

III. LOCALIZATION PERFORMANCE METRIC

In this section, we analyze the FIM of direct parameter
vector ηηηk and relevant Jacobian matrix, and ultimately achieve
the CRB of vehicle localization as the performance metric.

For a particular sampling period NT , the FIM with respect
to the direct variable ηηηk can be defined as

Jηk=Er

{[
∂ ln f (rk|ηηηk)

∂ηηηk

] [
∂ ln f (rk|ηηηk)

∂ηηηk

]H}
, (12)

where f (rk|ηηηk) is the likelihood function of the formula (7),
which can be expressed as

f (rk|ηηηk) = exp

[
2

σ2

NT∑
N=1

rkHkωωωk − 1

σ2

NT∑
N=1

(Hkωωωk)
2

]
. (13)

Then, the FIM Jηk with respect to the direct parameter ηηηk can
be written as

Jηk =



ψdt,k,dt,k ψdt,k,dr,k ψdt,k,θt,k ψdt,k,θr,k

ψdt,k,dr,k ψdr,k,dr,k ψdr,k,θt,k ψdr,k,θr,k

ψdt,k,θt,k ψdr,k,θt,k ψθt,k,θt,k ψθt,k,θt,k

ψdt,k,θr,k ψdr,k,θr,k ψθt,k,θt,k ψθr,k,θr,k


, (14)
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where the specific elements of the matrix Jηk are presented
in Appendix A. Furthermore, the FIM Jpm,k

for the vehicle
position parameter pm,k can be represented as

Jpm,k
= TkJηkT

T
k , (15)

where Tk is the Jacobian matrix, which describes the rela-
tionship between the position parameter pm,k and the direct
parameter ηηηk. The specific geometric relationships of pm,k
and ηηηk are as follows

dt,k = ∥pt − pm,k∥2, (16a)
dr,k = ∥pr − pm,k∥2, (16b)

θt,k = arcsin
[
(ptx − pmx,k)

/
∥pt − pm,k∥2

]
, (16c)

θr,k = arcsin
[
(prx − pmx,k)

/
∥pr − pm,k∥2

]
. (16d)

The Jacobian matrix Tk can be written as

Tk =


∂dt,k
∂pmx,k

∂dr,k
∂pmx,k

∂θt,k
∂pmx,k

∂θr,k
∂pmx,k

∂dt,k
∂pmy,k

∂dr,k
∂pmy,k

∂θt,k
∂pmy,k

∂θr,k
∂pmy,k

 , (17)

and the specific matrix elements of the matrix Tk can be given
by

∂dt,k
∂pmx,k

=
pmx,k − ptx
∥pt − pm,k∥2

, (18a)

∂dt,k
∂pmy,k

=
pmy,k − pty
∥pt − pm,k∥2

, (18b)

∂dr,k
∂pmx,k

=
pmx,k − prx
∥pr − pm,k∥2

, (18c)

∂dr,k
∂pmy,k

=
pmy,k − pry
∥pr − pm,k∥2

, (18d)

∂θt,k
∂pmx,k

=
pmy,k − pty

∥pt − pm,k∥22
, (18e)

∂θt,k
∂pmy,k

= − pmx,k − ptx

∥pt − pm,k∥22
, (18f)

∂θr,k
∂pmx,k

=
pmy,k − pry

∥pr − pm,k∥22
, (18g)

∂θr,k
∂pmy,k

= − pmx,k − ptx

∥pr − pm,k∥22
, (18h)

Therefore, the localization performance metric CRB can be
obtained by the inverse of the FIM Jpm,k

, i.e,

CRB = tr
(
J−1
pm,k

)
. (19)

IV. SINGLE VEHICLE BEAMFORMING OPTIMIZATION

In this section, we investigate the beamforming optimization
problem in the single vehicle setup, that is, K=1. We propose a
SVBO method and obtain joint active and passive beamform-
ing optimal result in the case. Since the number of vehicles is
one, the problem P0 can be reduced to

P1 : min
ωωω1,ΩΩΩt,ΩΩΩr

∥ωωω1∥22

s.t. tr
(
J−1
pm,1

)
≤ ε1,

|ϑt,i| = 1, i = 1, 2, · · · , Nts,

|ϑr,i| = 1, i = 1, 2, · · · , Nrs,

(20)

where ωωω1 ∈ CNt×1 is the beamforming vector of a single
vehicle. The problem P1 is a non-convex problem under the
parameters ωωω1, ΩΩΩt, ΩΩΩr. It is worth pointing out that the passive
beamforming of the two RISs in the single-vehicle scenario
no longer requires the overall performance considerations of
multiple vehicles, but only needs to point to a specific vehicle
direction. Therefore, in the next two subsections, we can
obtain the optimal phase of passive beamforming by using the
beam pattern, and then derive the optimal solution of active
beamforming on this basis.

A. Passive Beamforming Design

Proposition 1. When the two RISs’ phases meet

ϕt,i =
2π (i− 1) fcd

c
(sin θts,1 + sin δts) , i = 1, 2, · · · , Nts,

(21a)

ϕr,i =
2π (i− 1) fcd

c
(sin θrs,1 + sin δrs) , i = 1, 2, · · · , Nrs,

(21b)

respectively, we can obtain the optimal solution of the passive
beamforming variables ΩΩΩt and ΩΩΩr in problem P1.

Proof. The gain Υt from the transmitter to the vehicle through
RIS, and the gain Υr from the vehicle to the receiver through
RIS can be separately defined as

Υt =
1

Nts

Nts−1∑
i=0

e
j
(
ϕt,i−

2π(i−1)fcd sin θts,1
c − 2π(i−1)fcd sin δts

c

)
,

(22a)

Υt =
1

Nrs

Nrs−1∑
i=0

e
j
(
ϕr,i−

2π(i−1)fcd sin θrs,1
c − 2π(i−1)fcd sin δrs

c

)
.

(22b)

We define φt,i =
2π(i−1)fcd sin θts,1

c + 2π(i−1)fcd sin δts
c and

φr,i =
2π(i−1)fcd sin θrs,1

c + 2π(i−1)fcd sin δrs
c , and use the

characteristics of the proportional sequence to obtain the gain
results as follows

1

Nts

Nts−1∑
i=0

e
j
(
ϕt,i−φt,i

)
=


∣∣∣∣∣∣
cos

(
Nts

(
ϕt,i−φt,i

)/
2
)

Nts cos
((

ϕt,i−φt,i

)/
2
)
∣∣∣∣∣∣ , if ϕt,i − φt,i ̸= 0,

1 , if ϕt,i − φt,i = 0,

(23a)
1

Nrs

Nrs−1∑
i=0

e
j
(
ϕr,i−φr,i

)
=


∣∣∣∣∣∣
cos

(
Nrs

(
ϕr,i−φr,i

)/
2
)

Nrs cos
((

ϕr,i−φr,i

)/
2
)
∣∣∣∣∣∣ , if ϕr,i − φr,i ̸= 0,

1 , if ϕr,i − φr,i = 0.

(23b)

Therefore, when ϕt,i = φt,i, i = 1, 2, · · · , Nts and ϕr,i =
φr,i, i = 1, 2, · · · , Nrs, the signal strength for the vehicle
reaches the maximum, and the passive beamforming design
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of the two RISs is fully adapted to the unique vehicle. Then,
we obtain the optimal solution for passive beamforming under
variables ΩΩΩt and ΩΩΩr. This complete the proof of Proposition 1.

Remark 1. Proposition 1 is the optimal result of passive
beamforming in the single vehicle situation. It is worth
emphasizing that the solution of the passive beamforming
problem in the single vehicle scenario provides us with the best
performance metric in the RIS-assisted vehicle localization
scenario. This result effectively solves the coupling problem
of the RIS phase variables ΩΩΩt and ΩΩΩr in the original problem.
Therefore, in the next subsection, our performance metric CRB
will be simplified by removing the coupling variables ΩΩΩt and
ΩΩΩr to effectively solve the active beamforming problem.

B. Active Beamforming Optimization

By introducing Proposition 1 into the problem P1, the
active beamforming optimization problem can be simplified
as

P2 : min
ωωω1

∥ωωω1∥22

s.t. tr
(
J̄−1
pm,1

)
≤ ε1,

(24)

where J̄−1
pm,1

is the CRB without the RISs’ phase parameter.
In the single vehicle scenario, our performance metric CRB is
expressed as [47], [48]

tr
(
J̄

−1
pm,1

)
=

σ2tr
(
HH

1 H1ωωω1ωωω
H
1

)
2NT

(
tr
(
ḢH

1 Ḣ1ωωω1ωωωH
1

)
tr
(
HH

1 H1ωωω1ωωωH
1

)
−
∣∣∣tr (ḢH

1 H1ωωω1ωωωH
1

)∣∣∣2) ,
(25)

where Ḣ1 = ∂H1

∂pm,1
. Here, we define

ht,1 = vt,1γt,1 +GtΩΩΩtvts,1γts,1, (26a)
hr,1 = vr,1γr,1 +GrΩΩΩrvrs,1γrs,1, (26b)

ḣhht,1 =
∂ht,1
∂pm,1

, (26c)

ḣhhr,1 =
∂hr,1
∂pm,1

. (26d)

Then, the elements in (25) can be expressed in (27). Subsitut-
ing (27) into (25), tr

(
J̄−1
pm,1

)
can be processed as

tr
(
J̄−1
pm,1

)
=

σ2

2NT

∥∥∥ḣr,1∥∥∥2∣∣hHt,1ωωω1

∣∣2 . (28)

Then, the problem P2 can be recast as

min
ωωω1

∥ωωω1∥22

s.t.
∣∣hHt,1ωωω1

∣∣2 ≥ σ2

2NT

∥∥∥ḣr,1∥∥∥2ε1 .
(29)

As a result, the problem P2 is simplified as a non-convex
quadratically constrained quadratic program (QCQP) problem.
We define W1 = ωωω1ωωω

H
1 and Ht,1 = ht,1h

H
t,1, the problem P2

can be further written as

min
W1⪰0

tr (W1)

s.t. tr (Ht,1W1) ≥
σ2

2NT

∥∥∥ḣr,1∥∥∥2ε1 ,
rank (W1) = 1.

(30)

At present, the problem P2 is still a non-convex problem due
to the constraint rank (W1) = 1. Subsequently, by using the
convex release technology, the problem P2 can be released as

P3 : min
W1⪰0

tr (W1)

s.t. tr (Ht,1W1) ≥
σ2

2NT

∥∥∥ḣr,1∥∥∥2ε1 ,
(31)

Here, the problem P3 is a standard semidefinite programming
(SDP) problem, which can be solved by convex optimization
toolbox. According to the perspective of convex release, the
optimal solution of problem P3 is the suboptimal solution
of the original problem P2. Thus, we should pay attention
to whether the optimal solution of the problem P3 satisfies
rank (W1) = 1 to determine the relationship between the
problem P2 and problem P3.

Proposition 2. The optimal solution W1 for problem P3

satisfies rank (W1) = 1.

Proof. See Appendix B.

According to Proposition 2, we know the optimal solution
of the problem P3 satisfies rank (W1) = 1, i.e., the problem
P2 and problem P3 are equivalent, and their optimal solutions
correspond to each other. The optimal solution W ∗

1 of problem
P3 can be achieved by SDP solver. By using the special value
decomposition, W ∗

1 can be expressed as

W ∗
1 = α∗ωωω∗ωωω∗H

, (32)

and the optimal solution of problem P2 can be written as

tr
(
HH

1 H1ωωω1ωωω
H
1

)
= tr

(
hr,1h

H
t,1ωωω1ωωω

H
1 ht,1h

H
r,1

)
= ∥hr,1∥2

∣∣∣hH
t,1ωωω1

∣∣∣2, (27a)

tr
(
ḢH

1 H1ωωω1ωωω
H
1

)
= tr

(
hr,1h

H
t,1ωωω1ωωω

H
1

(
ht,1ḣ

H
r,1 + ḣt,1h

H
r,1

))
= ∥hr,1∥2hH

t,1ωωω1ωωω
H
1 ḣt,1, (27b)

tr
(
ḢH

1 Ḣ1ωωω1ωωω
H
1

)
= tr

((
ḣr,1h

H
t,1 + hr,1ḣ

H
t,1

)
ωωω1ωωω

H
1

(
ht,1ḣ

H
r,1 + ḣt,1h

H
r,1

))
=

∥∥∥ḣr,1

∥∥∥2∣∣∣hH
t,1ωωω1

∣∣∣2 + ∥hr,1∥2
∣∣∣ḣH

t,1ωωω1

∣∣∣2. (27c)
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ωωω∗
1 =

√
α∗ωωω∗. (33)

Here, we obtain the optimal solution for active beamforming
in single vehicle scenario. Furthermore, we emphasize that
the computation complexity of this optimization consists of
passive beamforming and active beamforming. Since the re-
sults of passive beamforming are analytical, the complexity
of this method mainly depends on the SDP program of the
formula (31). The number of the variables in the problem P3

is N2
t , and the complexity is O

((
N2
t + 1

)4.5)
. Although this

optimization method has low complexity, it can not be directly
extended to the multiple vehicles situation. The reason is that
we can not intuitively obtain the optimal RIS phase through the
beam pointing expression relationship in the multiple vehicles
situation. Therefore, in the next section, we propose a new
method to solve the joint active and passive beamforming
problem in the multiple vehicles scenario.

V. MULTIPLE VEHICLES BEAMFORMING ALGORITHM

In this section, we investigate the beamforming problem
in multiple vehicles scenario. The method in Section IV can
not be directly extended to this section due to the model
complexity caused by multiple vehicles. For the multiple
vehicles scenario, we transform the complex original problem
into several subproblems, and solve each subproblem through
equivalent transformation and convex release. The final op-
timization solution is obtained when the alternating iteration
converges.

A. Alternating Optimization
The beamforming problem in multiple vehicles scenario

can be presented by the problem P0 with rewriting the CRB
constraint here

P0 : min
W ,ΩΩΩt,ΩΩΩr

K∑
k=1

∥ωωωk∥22

s.t. C1 : tr
(
J−1
pm,k

)
≤ εk, k = 1, 2, · · · ,K,

C2 : |ϑt,i| = 1, i = 1, 2, · · · , Nts,

C3 : |ϑr,i| = 1, i = 1, 2, · · · , Nrs.
(34)

Obviously, the problem P0 is the non-convex problem with
respect to the optimization variables W , ΩΩΩt and ΩΩΩr. In
particular, the coupled relation between ωωωk, ΩΩΩt and ΩΩΩr is
so complicated that it is hard to obtain a convex form. We
underline that although the phase constraints of the two RISs
are separable in constraint C2 and C3, they are deeply coupled
in constraint C1. Therefore, we use alternate optimization
to rewrite the original problem P0 into the following two
subproblems P4 and P5

P4 : min
W ,ΩΩΩt

K∑
k=1

∥ωωωk∥22

s.t. tr
(
J−1
pm,k

)
≤ εk, k = 1, 2, · · · ,K,

|ϑt,i| = 1, i = 1, 2, · · · , Nts.

(35)

P5 : min
W ,ΩΩΩr

K∑
k=1

∥ωωωk∥22

s.t. tr
(
J−1
pm,k

)
≤ εk, k = 1, 2, · · · ,K,

|ϑr,i| = 1, i = 1, 2, · · · , Nrs.

(36)

Note that P4 works when the phase ΩΩΩr is fixed in P0 and P5

is valid when ΩΩΩt is given. The mathematical expressions of the
problem P4 and the problem P5 are symmetric. Consequently,
the two optimization problems can be solved separately with
the same optimization method in their separate parts.

B. Partial Variable Optimization

Taking the problem P4 as an example, we emphasize that
optimization variables ωωωk and ΩΩΩt are still coupled, and it is
difficult to give a closed expression of the CRB. According to
[49], we always have

inf
x,y

f (x, y) = inf
x

f̃ (x) , (37)

where f̃ (x) = inf
y
f (x, y). In other words, we can always

minimize a function by first minimizing over some of the
variables, and then minimizing over the remaining ones.
Here, we first optimize the passive beamforming variable ΩΩΩt.
In order to avoid complex matrix inversion, we introduce
an auxiliary matrix A, and use Schur complement method
to handle the matrix inversion into a positive semi-definite
constraint [50]. In addition, we notice that the phase constraint
of RIS is still non-convex. We rewrite the phase expression
as ϕϕϕt =

[
ejϕ1 , ejϕ2 , · · · , ejϕNts

]T
, and define ΦΦΦt = ϕϕϕtϕϕϕ

H
t ,

which satisfies ΦΦΦt ⪰ 0 and rank (ΦΦΦt) = 1. Since the rank-
one constraint is non-convex, we need to relax the original
phase constraint and the problem P4 can be released as

P6 : min
ΩΩΩt

K∑
k=1

∥ωωωk∥22[
Ak I2
I2 Jpm,k

]
⪰ 0, k = 1, 2, · · · ,K,

tr (Ak) ≤ εk, k = 1, 2, · · · ,K,

Jpm,k
⪰ 0, k = 1, 2, · · · ,K,

ΦΦΦt,i,i = 1, i = 1, 2, · · · , Nts,

ΦΦΦt ⪰ 0,

(38)

where I2 denotes an identity matrix of order 2. It is worth
emphasizing that the objective function in the problem P6

does not contain optimization variable ΩΩΩt. Thus, it is a feasible
SDP optimization problem, and can be effectively solved by
using some toolboxes such as CVX [51]. Additionally, as a
release of the original phase constraint, solving the problem
P6 can just obtain the suboptimal solution of the original phase
problem. [52] shows that the SDR method can guarantee the
π/4 approximation of the optimal value of the program under
the condition of sufficient randomization which indicates that
our SDP problem P6 is valid in this passive beamforming
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problem. With the solution of the problem P6, we can realize
the optimal phase shift of the RIS and obtain the corresponding
FIM J̃pm,k

without the phase matrix ΩΩΩt. After optimizing
variable ΩΩΩt, the problem P4 can be written as P7

P7 : min
W

K∑
k=1

∥ωωωk∥22

s.t. tr
(
J̃−1
pm,k

)
≤ εk, k = 1, 2, · · · ,K.

(39)

Note that the optimization variable ωωωk in the FIM information
matrix element in Appendix A is multiplied at the beginning
and end of the matrix Jηk . Therefore, we can take out the vari-
able ωωωk, select any feasible solution ΩΩΩt in the phase feasible
set, and define the remaining part as matrices Qi,k, i = 1, 2, 3.
In this case, the FIM J̃pm,k

can be expressed as

J̃pm,k
=

[
ωωωHk Q1,kωωωk ωωωHk Q2,kωωωk
ωωωHk Q2,kωωωk ωωωHk Q3,kωωωk

]
. (40)

Since J̃pm,k
∈ C2×2, we can naturally obtain its specific

analytical expression after some manipulations. Then, the
optimization problem P7 can be rewritten as

P ′
7 : min

W

K∑
k=1

∥ωωωk∥22

s.t.
ωωωH

k Q1,kωωωk +ωωωH
k Q3,kωωωk

ωωωH
k Q1,kωωωkωωωH

k Q3,kωωωk −ωωωH
k Q2,kωωωkωωωH

k Q2,kωωωk
≤ εk,

k = 1, 2, · · · ,K.
(41)

It should be pointed out that the form of the variable ωωωk is
ωωωk = [ω1,k, ω2,k, · · · , ωNT ,k]

H . Define Uk = ωωωkωωω
H
k , and we

can obtain tr (Uk) = ωωωHk ωωωk. Subsequently, the problem P ′
7

can be given by

P ′′
7 : min

Uk

K∑
k=1

tr (Uk)

s.t.
tr (Q1,kUk) + tr (Q3,kUk)

tr (Q1,kUkQ3,kUk)− tr (Q2,kUkQ2,kUk)
≤ εk,

k = 1, 2, · · · ,K.
(42)

It is not difficult to find that the relationship between the main
diagonal element of the matrix Uk and the original variable
ωωωk is as follows

Uk,i,i = ui,k = ω2
i,k. (43)

Then, the optimization problem P ′′
7 can be further written as

Algorithm 1: Multiple Vehicle Beanmforming Algorithm

1: Provide iteration stop threshold ξ;
2: Initialize RIS phases ΩΩΩt and ΩΩΩr;
3: repeat
4: Fix ΩΩΩr;
5: Solve the convex feasibility problem (38);
6: Obtain the beamforming result Wt from (45);
7: Update ΩΩΩt with the results of step 5;
8: Fix ΩΩΩr;
9: Solve the convex feasibility problem similar to (38);
10: Obtain the beamforming result Wr similar to (45);
11: Update ΩΩΩt with the results of step 9;
12:until ∥Wt −Wr∥F ≤ ξ
13:Output W ∗ = Wt or W ∗ = Wr.

P ′′′
7 : min

Uk

K∑
k=1

NT∑
i=1

ui,k

s.t.

NT∑
i,j=1

(Q1,k +Q3,k)ij,kui,k

NT∑
i,j=1

(Q1,kQ3,k −Q2,kQ2,k)ij,ku
2
i,k

≤ εk,

k = 1, 2, · · · ,K.
(44)

By introducing variables Zk and t, and using the convexity
preserving property of perspective function, the problem P ′′′

7

can be equivalently transformed into the following optimiza-
tion problem

P8 : min
Zk,t

K∑
k=1

NT∑
i=1

zi,k

s.t.

NT∑
i,j=1

(Q1,k +Q3,k)ij,kzi,k ≤ −1,

NT∑
i,j=1

(Q1,kQ3,k −Q2,kQ2,k)ij,k
z2i,k
t

≤ εk,

k = 1, 2, · · · ,K.
(45)

The above optimization problem is a feasible GP, and can be
effectively solved by using convex optimization toolboxes.

C. Overall Algorithm

Based on the results in previous two subsections, the passive
and active beamforming problems in the problem P4 are
solved through the problem P6 and problem P8, respectively,
and this algorithm is also applicable to the problem P5. The
complete MVBA is shown in Algorithm 1.

Remark 2. Since the optimization variables ωωωk, ΩΩΩt and ΩΩΩr
in the problem P0 are deeply coupled in the constraint C1,
it is difficult to directly solve the beamforming problem under
vehicle localization system. We can see that although the vari-
ables ΩΩΩt and ΩΩΩr are coupled in the optimization problem, they
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do not affect each other in the other constraints. Therefore,
the problem P0 can be decomposed into the subproblems
P4 and P5 for alternative solution. In each subproblem, the
phase optimization variable ΩΩΩt (or ΩΩΩr) and the beamforming
optimization variable ωωωk are coupled by multiplication. The
passive beamforming optimization first considers only the
optimization variable ΩΩΩt (or ΩΩΩr), thus obtaining the feasible
set of RIS’s phase. Using the optimized set of phase feasible
solutions, the active beamforming problem is simplified and
eventually transformed into GP form to solve. The overall
problem is solved alternately until the result converges.

Convergence: We discuss the convergence of
Algorithm 1 as follows.

Since the optimal solution of problems P6 and P8 are
obtained, we have

K∑
k=1

∥ωωωk∥22
(
W i,ΩΩΩit,ΩΩΩ

i
r

) (a)

≥
K∑
k=1

∥ωωωk∥22
(
W i,ΩΩΩi+1

t ,ΩΩΩir
)

(b)

≥
K∑
k=1

∥ωωωk∥22
(
W i+0.5,ΩΩΩi+1

t ,ΩΩΩir
)

(c)

≥
K∑
k=1

∥ωωωk∥22
(
W i+0.5,ΩΩΩi+1

t ,ΩΩΩi+1
r

)
(b)

≥
K∑
k=1

∥ωωωk∥22
(
W i+1,ΩΩΩi+1

t ,ΩΩΩi+1
r

)
.

(46)
where (a) holds because the problem P6 is a convex feasibility
problem. For any feasible solution ΩΩΩi+1

t to problem P6, it sat-

isfies
K∑
k=1

∥ωωωk∥22
(
W i,ΩΩΩit,ΩΩΩ

i
r

)
≥

K∑
k=1

∥ωωωk∥22
(
W i,ΩΩΩi+1

t ,ΩΩΩir
)
,

where ΩΩΩit is the result of the previous iteration. Similar conclu-
sions also apply to (c). As the problem P8 is a GP form convex
optimization problem, in each round of alternating iterations,
the minimum value of the objective function corresponds to the
optimal solution of problem the problem P8. Thus, condition
(b) holds. As a result, the objective value of problem P0 is
non-increasing after each iteration of Algorithm 1. This is
the complete proof of the convergence of Algorithm 1.

Within the Algorithm 1, the joint active and passive
beamforming problem in multiple vehicles scenario can be
solved alternately. Due to the introduction of alternate iteration
method in MVBA, the complexity of this algorithm is higher
than that of SVBO method. According to [53], the complexity
of the alternate optimization algorithm is O

(
ξ−1

)
, with ξ

being iteration stop threshold. As for each iteration of the al-
ternate optimization algorithm, the computational complexity
is detailed as follows.

• SDP process: For a standard SDP problem, the com-
plexity is determined by the number of variables. When
optimizing the RIS parameters ΩΩΩt and ΩΩΩr, the number of
variables are N2

ts and N2
rs, respectively, and the com-

plexity are O
((

N2
ts + 1

)4.5)
and O

((
N2
rs + 1

)4.5)
,

respectively.
• GP process: The number of the variables for the GP

problem is KN2
t + 1. The GP problem can be solved

by using the interior point method, and the complexity
can be expressed as O

((
KN2

t + 1
)3.5

log (1/∆)
)

, with
the given solution accuracy ∆ [54].

Consequentially, the total computational complexity of
Algorithm 1 is O(ξ−1((N2

ts + 1)4.5 + (N2
ts + 1)4.5 +

2(KN2
t + 1)3.5 log(1/∆))). It is worth pointing out that a

directional beam has a certain width in the far field, and the
target vehicle is within the pointing range of the beam within
a certain time slot. Therefore, we do not need to frequently
adjust the direction of the beam in a short period of time,
and the complexity of Algorithm 1 can meet the needs of
vehicle localization at each time slot.

VI. NUMERICAL RSULTS

In this section, we provide several examples to verify the
performance of the proposed algorithms. The parameters in
the experiments are designed as follows: the noise variance is
σ2 = 0.005, the carrier frequency is fc = 3GHz, the inter-
element spacing of all antenna arrays is d = 0.05m, the cosine
exponent is q = 2, and the sampling period is NT = 100. In
addition, the Monte Carlo times in all simulation experiments
is 1000.

A. The influence of different parameters in SVBO

In this subsection, we investigate the impact of SVBO
on different variables, such as positioning accuracy, vehicle
position and number of antenna arrays, etc. The optimal beam
design is reflected by the total transmit power of the radar,
as our goal is to minimize system resource overhead while
meeting localization requirements by designing active and
passive beamforming. In order to verify the relation between
the transmit power and the vehicle position, we investigate
the transmit power versus vehicle position under the different
number of the RIS elements. We set the transmitter position as
pt = [0m, 0m]

T , the receiver position as pr = [80m, 0m]
T ,

the two RISs’ positions as pts = [−30m, 30m]
T and prs =

[110m, 30m]
T , respectively. The localization accuracy is set

as 0.01m2, and the vertical coordinate position of the vehicle
is set as 40m. The vehicle position is adjusted by changing
the horizontal coordinate position. The simulation results are
shown in Fig. 2. The results imply that the transmit power
requirement is minimal when the vehicle is located near the
center position. However, it is worth emphasizing that the
position with the lowest transmit power is slightly biased
towards the direction of the transmitter, which is due to the
benefits brought by the active beamforming of the transmitter.
The curve results also show that the increase of RIS numbers
can reduce the power demand of vehicle localization from the
transmitter. It is reasonable that a larger RIS numbers results
in greater freedom and antenna gain, and reduces the power
overhead of transmitter.

We further discuss the impact of RISt’s location deploy-
ment on the SVBO performance. Due to the RIS can construct
virtual links through reflection, we set the vehicle target to the
right of the transmitter and RISt to the left of the transmitter
in our experiment. The vertical axis position of the RISt
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Fig. 2. Transmit power as a function of the vehicle position for SVBO in
the case of the different number of the RISs’ elements.
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Fig. 3. Transmit power as a function of the RISt’s position for SVBO in
the case of the different number of the RISs’ elements.

near the transmitter is fixed and its position is changed by
adjusting its horizontal axis position. The results in Fig. 3
indicate that the distance between the transmitter and RISt
affects the transmit power, and a significant trend jump point
appears on the curve. This is because the distance at this point
happens to be the Fresnel distance in this example. Thus,
deploying RISt in the radar near-field area usually brings
an effective improvement. When the distance between the
transmitter and RISt achieves the smallest, we obtain the best
system performance, where the spatial path loss is minimized.

In order to further illustrate the benefits that RIS brings to
vehicle localization systems, we construct several comparative
experiments to investigate the performance of the SVBO
method. We report the total transmit power under different
parameters by using two RISs, a RIS nearby transmitter only,
and a RIS nearby receiver only, as compared to the case where
the radar operates alone. The configurations considered here
are as follows:

• Case 1 : Transmitter&RIS−Receiver&RIS: the
proposed complete RIS assisted vehicle localization sys-
tem and utilizes the inference of Section IV to solve joint
active and passive beamforming problem.

• Case 2 : Transmitter&RIS−Receiver: the RIS
assisted vehicle localization system with a RIS nearby
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Fig. 4. Transmit power as a function of the localization accuracy for SVBO
in the case of the different configurations.
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Fig. 5. Transmit power as a function of the number of transmitter antennas
for SVBO in the case of the different configurations.

transmitter only, and the proposed method is applied to
study the RIS gain near the transmitter.

• Case 3 : Transmitter−Receiver&RIS: the RIS
assisted vehicle localization system with a RIS nearby
receiver only, and the proposed method is applied to study
the RIS gain near the receiver.

• Benchmark : Transmitter−Receiver: the vehicle
localization system without any RIS. Applying the tradi-
tional method to solve the active beamforming results in
this situation and serve as the benchmark for the proposed
algorithm.

The results in Fig. 4 indicate the relationship between localiza-
tion accuracy and transmit power under these configurations.
The simulation indicates that the higher localization accuracy
we set, the more transmit power is required from the trans-
mitter. From the simulation results, it can be seen that there is
a significant decline in the transmit power of transmitter with
the assistance of RIS. The slightly lower transmit power of
scenario “Case 2” compared to scenario “Case 3” is attributed
to the active beamforming effect of the transmitter.

We further explore the impact of the number of transmitter
antennas on transmit power. The simulation results in Fig. 5
show that the increase in the number of transmitter antennas
is beneficial for reducing transmission power due to the
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Fig. 6. Transmit power as a function of the RISt’s position for SVBO in
the case of the different configurations.
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Fig. 7. Transmit power as a function of the number of transmitter antennas
for MVBA in the case of the different number of the RISs’ elements.

higher antenna gain. Fig. 6 provides the impact of the RIS
position nearby the transmitter on the performance of SVBO.
The appearance of two straight lines in the curve is due to
the absence of the RIS setting in these two configurations.
Similarly, the curve results indicate that deploying RIS in the
near field of the transmitter can provide better performance.

B. The influence of different parameters in MVBA

In this subsection, we investigate the effects of MVBA
on different variables such as positioning accuracy, number
of antennas, and RISt’s position. We set the number of
vehicles to 6 and randomly generate them within the region of
interest. We provide Fig. 7 to verify the relationship between
the transmit power and the number of transmitter antennas.
We observe from the simulation results that the number of
transmitter antennas affects the transmit power. We further
discuss the impact of RIS location deployment on the MVBA
performance. The vertical axis position of the RIS near the
transmitter is fixed and its position is changed by adjusting
its horizontal axis position. Based on the previous results,
we only deploy the RIS within the near-field range of the
transmitter. The results in Fig. 8 indicate that reducing the
distance between the transmitter and RIS is beneficial for
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Fig. 8. Transmit power as a function of the RISt’s position for MVBA in
the case of the different number of the RISs’ elements.
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Fig. 9. Transmit power as a function of the localization accuracy for MVBA
in the case of the different configurations.

reducing transmission power. These simulation results reach
consistent conclusions with SVBO.

We further provide some comparative experiments to il-
lustrate the performance advantages of MVBA. The config-
urations considered here still correspond to the “Case 1”,
“Caes 2”, “Caes 3” and “Benchmark” scenes. In addition,
we also consider the comparison between optimal RIS and
random RIS. The results in Figs. 9 and 10 provide the
results of transmit power under localization accuracy and RIS
position, respectively. From the simulation results, it can be
concluded that the introduction and optimization of RIS have
a significant improvement in the vehicle localization system.
Finally, we validate the convergence of our proposed MVBA,
as shown in Fig. 11. The graphical results show that our
proposed algorithm converges after approximately 15 rounds
of alternating iterations in our simulation environment, which
proves the effectiveness of our algorithm.

VII. CONCLUSION

In this paper, we have investigated the joint active and
passive beamforming problems for vehicle localization with
RISs. In order to minimize the transmit power, we have
presented two beamforming mothods of RIS-assisted vehicle
localization under the constraints of the localization accuracy
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Fig. 10. Transmit power as a function of the RISt’s position for MVBA in
the case of the different configurations.
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Fig. 11. Transmit power as a function of the alternating iteration rounds for
MVBA in the case of the different number of the RISs’ elements.

and the phase shift parameters of RIS. Specifically, we have
derived the CRB of vehicle localization assisted by RISs as the
performance metric, and have presented the closed form results
of SVBO using the specialized form under this scenario.
Subsequently, for the multiple vehicles scenario, we have
decomposed the original non-convex optimal problem by using
alternating iteration and obtained the SDP form using convex
release to solve the passive beamforming problem. On this
basis, the active beamforming problem have been transformed
into a GP problem according to equivalent transformation and
perspective function. The numerical results have been provided
to verify the effectiveness of the presented methods.

APPENDIX A
DERIVATION OF FIM

According to formulas (12) and (13), the FIM Jηk on the
channel parameter ηηηk can be obtained as formula (14). The
derivation of the FIM Jηk is shown as follows:
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where the one-step derivative results regarding indirect pa-
rameters are not expanded here. Meanwhile, the derivative
relationship between RIS path parameters and direct path
parameters can be written as
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APPENDIX B
PROOF OF PROPOSITION 2

The Lagrange function of the problem P3 can be written as

L (W1, λ) = tr (W1)−λ
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(69)
where λ ≥ 0 is the Lagrange inequality multiplier. The
Lagrange dual function can be expressed as

g (λ) = inf
W1⪰0

L (W1, λ) . (70)

The corresponding Lagrange dual problem can be represented
as

max
λ≥0

g (λ) . (71)

Obviously, this dual problem has strong duality. So the dual
problem has the same optimal value as the original problem.
Suppose λ∗ is the optimal solution of the dual problem, then
the W ∗

1 satisfying inf
W1⪰0

L (W1, λ
∗) is the optimal solution of

problem P3. Therefore, we can find W ∗
1 through the following

optimization problem
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λ∗Ht,1 is positive semidefinite, and we define Q = λ∗Ht,1.
Let W̄1 = Q1/2W1Q

1/2, then this problem can be rewritten
as
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Then we can conclude that the optimal solution W̄ ∗
1 satisfies

rank
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)
= 1. Assume that rank
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̸= 1, that is,



14

rank
(
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)
= k, 2 ≤ k ≤ Nt. Through eigenvalue decom-

position, we obtain W̄ ∗
1 =

∑k
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H
j . At present, we

can find a solution that satisfies W̄ ′
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where i = arg min
j∈{1,2,··· ,k}
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∣∣∣ making the prob-

lem obtain a smaller optimal value, which means that the
assumption does not hold. So rank
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)
= 1. Because of

W ∗
1 = Q−1/2W̄ ∗

1 Q
−1/2, we can obtain rank (W ∗

1 ) = 1.
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