Exploring the role of complexity and modality in pleasurable polyrhythm perception

Joshua S. Bamford^{1,2}, Dhwani Sadaphal³, Patti Nijhuis¹

¹Centre of Excellence in Music, Mind, Body and Brain, University of Jyväskylä ²Centre for the Study of Social Cohesion, University of Oxford ³Department of Behavioural and Cognitive Biology, University of Vienna

UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄN YLIOPISTO

Introduction

- Interpersonal synchrony, particularly during music-dance, appears to have important social implications (Savage et al., 2021).
- Synchrony may be aesthetically pleasing because it is easier to process than non-synchrony (Bamford, 2022).
- However, real music rarely features total synchrony between all parts.
- May be an optimum level of complexity to promote music-induced movement (Witek et al., 2014)
- Polyrhythms feature in many musical genres and allow us to study different levels of rhythmic complexity.
- May be expressed as a ratio (see Figure 1).

Figure 2. Video stimuli with two human figures moving at different rates according to the complexity condition.

Figure 1. Visual representation of 3:2 and 4:3 polyrhythms, as presented to participants in training

				3	8 aga	ins	st 2	2 po	olyrł	nytł	nm	1				
2-beat rhythm	х	x		x	x	x		x	x	х		x	x	x		x
3-beat rhythm	x		x		x		x		x		x		x		x	

4 against 3 polyrhythm

3-beat rhythm	X	x		x		x	x	x		x		x	
4-beat rhythm	x		х		х		x		x		x		

Results and Discussion

- online psychophysics pilot study (N=8)
 - Most participants 32-28 years old, living in Europe and Australia.
- Stimuli contained two figures moving with sound in different coordination modes, based upon Sadaphal et al. (2023; Figure 2):
 - Seven levels of complexity (1:1, 1:2, 1:3, 2:3, 3:4, 4:5, irregular)
 - Three different modalities (Visual Only, Audio Only, Audio-Visual)
- Participants asked to identify the polyrhythm, after receiving information about polyrhythms (Figure 3)
- Two measures:
 - Accuracy
 - Self-reported urge to move (groove)

- Preliminary results show higher groove ratings for simple ratio polyrhythms (Figure 3, Table 1), and...
- More accurate responses for simple ratio polyrhythms (Figure 4, Table 2).
- There was also an independent effect of modality, with Visual Only being the least accurate, followed by Audio-Visual (Figure 5). Audio Only was the most accurate except at the highest rhythmic complexity.
- These results will inform future polyrhythm perception experiments.

Table 2. Results of Generalised Logistic Mixed Model with Logistic distribution and "logit" link function for answer accuracy.

Fixed Effect On	nnibus test	s (Groove)	Fixed Effect Omnibus tests (Answer)					
	X2	df	р		X2	df	p		
Complexity	14.853	6.00	, 0.021	Complexity	37.3	6.00	<.00		
Condition	0.905	2.00	0.636	Condition	10.7	2.00	0.00		
omplexity * ondition	5.976	12.00	0.917	Complexity * Condition	16.2	12.00	0.18		
Dofo	ropo								
Reie		25							
 Bamford, J. S. University of C Sadaphal, D. P 	(2022). <i>Social bond</i> Dxford]. <u>http://dx.</u> ., Keller, P. E. & Fit	ding through pro doi.org/10.5287 ch, T. S. (2023).	ocessing fluen //bodleian:Ka Exploring the	<i>cy for interpersonal synchrol <mark>ZyPr9JQg</mark> e interaction of rhythmic co</i>	<i>nisation</i> [Doo mplexity an	ctoral Thesis, d social-			

bondedness in an online perspective taking paradigm. In M. Tsuzaki, M. Sadakata, S. Ikegami, T. Matsui, M. Okano, & H. Shoda (Eds.), The e-proceedings of the 17th International Conference on Music Perception and Cognition and the 7th Conference of the Asia-Pacific Society for the Cognitive Sciences of Music. Nihon University. https://jsmpc.org/ICMPC17/program/eproceedings/

- Savage, P. E., Loui, P., Tarr, B., Schachner, A., Glowacki, L., Mithen, S., & Fitch, W. T. (2021). Music as a coevolved system for social bonding. *Behavioral and Brain Sciences*, 44, e59. <u>https://doi.org/10.1017/S0140525X20000333</u>
- Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, Body-Movement and Pleasure in Groove Music. PLOS ONE, 9(4), e94446. https://doi.org/10.1371/journal.pone.0094446

This research received funding from the Research Council of Finland (Ref. 346210 and 332331)