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An R Approach to Data Cleaning and 
Wrangling for Education Research 

Juho Kopra, Santtu Tikka, Merja Heinäniemi, Sonsoles López-Pernas, 
and Mohammed Saqr 

1 Introduction 

When analyzing data, it is crucial that the data is in a suitable format for the tools you 
will be using. This makes data wrangling essential. Data preparation and cleaning, 
such as extracting information from raw data or removing erroneous measurements, 
must also be done before data is ready for analysis. Data wrangling often takes 
up the majority of the time spent on analysis, sometimes up to 80%. To reduce 
the amount of work required, it is beneficial to use tools that follow the same 
design paradigm to minimize the time spent on data wrangling. The tidyverse 
[1] programming paradigm is currently the most popular approach for this in R. 

The tidyverse has several advantages that make it preferable over other 
alternatives such as simply using base R for your data wrangling needs. All packages 
in the tidyverse follow a consistent syntax, making it intuitive to learn and use 
new tidyverse packages. This consistency also makes the code more easier to 
read, and maintain, and reduces the risk of errors. The tidyverse also has a vast 
range of readily available packages that are actively maintained, reducing the need 
for customized code for each new data wrangling task. Further, these packages 
integrate seamlessly with one another, facilitating a complete data analysis pipeline. 
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To fully realize the benefits of the tidyverse programming paradigm, one must 
first understand the key concepts of tidy data and pivoting. Tidy data follows three 
rules: 

1. Each variable must have its own column. 
2. Each observation must have its own row. 
3. Each value must have its own cell. 

Let’s consider examples of tidy data. For instance, if you have data from a 
Moodle course where two attempts of an exam for each student are located in 
a single column. This example data violates the first rule, because there are two 
variables in a single column instead of separate columns for each variable. What 
is needed to make this data tidy is to pivot it to a longer format. The pivoted data 
would have two rows for each student, both of which are different observations 
(exam attempts 1 and 2). Thus the pivoted data would not conflict with second rule. 

Data can also be too long, but in practice, this is much more rare. This can occur 
if two or more variables are stored on a single column across multiple rows. A 
key indicators of this is if the different rows of the same column have different 
measurements units (e.g. lb vs. kg). It may also occur that your raw data has multiple 
values in a single cell. In these cases, it is necessary to split the cells to extract the 
necessary information. In a simple case, where you have two values systematically 
in a one cell, the values can be easily separated into their own columns. 

Overall, using tidyverse and understanding the key concepts of tidy data and 
pivoting can streamline the data analysis process and make code easier to work with 
and maintain. The rest of this chapter will guide readers through the process of data 
cleaning and wrangling with R in the field of learning analytics. We demonstrate 
how data can be grouped and summarized, how to select and transform variables of 
interest, and how data can be rearranged, reshaped and joined with other datasets. 
We will strongly rely on the tidyverse programming paradigm for a consistent 
and coherent approach to data manipulation, with a focus on tidy data. 

2 Reading Data into R 

Data files come in many formats, and getting your data ready for analysis can 
often be a daunting task. The tidyverse offers much better alternatives to base R 
functions for reading data, especially in terms of simplicity and speed when reading 
large files. Additionally, most of the file input functions in the tidyverse follow 
a similar syntax, meaning that the user does not have to master every function for 
reading every type of data individually. 

Often, just before the data can be read into R, user must specify the location of 
data files by setting a working directory. Perhaps most useful way to do that is to 
create a project in RStudio and then create a folder called “data” within the project 
folder. Data files can be put into that folder and user can refer to those files just 
by telling R-functions relative path of data file (e.g. “data/Final%20Dataset.csv”) 
while the project takes care of the rest of the path. A more traditional way of
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setting this, which also works without RStudio, is by using a command such as 
setwd("/home/Projects/LAproject/data/Final%20Dataset.csv"). Here, 
a function called setwd() is used to set up a folder into location mentioned in a 
character string given as its argument. A getwd() lists current working directory, 
which can also be seen in RStudio just above the Console output. 

Some of the most common text data formats are comma-separated files or 
semicolon-separated files, both of which typically have the file extension .csv. These 
files can be read into R using the readr [2] package and the functions read_csv() 
and read_csv2(), respectively. For instance, we can read a comma-separated file 
R as follows 

library("readr") 
url <- "https://github.com/lamethods/data/raw/main/2_moodleEdify/" 
lms <- read_csv(paste0(url, "Final%20Dataset.csv")) 

Functions in readr provide useful information about how the file was read into 
R, which can be used to assess if the input was successful and what assumptions 
about the data were made during the process. In the printout above, the read_csv() 
function tells us the number of rows and columns in the data and the column 
specification, i.e., what type of data is contained within each column. In this case, 
we have 17 columns with character type of data, and 4 columns of double type 
of data. Functions in readr try to guess the column specification automatically, but 
it can also be specified manually when using the function. For more information 
about this dataset, please refer to Chapter 2 in this book [3]. 

Data from Excel worksheets can be read into R using the import() function 
from the rio [4] package. We will use synthetic data generated based on a real 
blended course of learning analytics for the remainder of this chapter. These data 
consist of three Excel files which we will first read into R. 

library("rio") 
url <- "https://github.com/lamethods/data/raw/main/1_moodleLAcourse/" 
events <- import(paste0(url, "Events.xlsx"), setclass = "tibble") 
results <- import(paste0(url, "Results.xlsx"), setclass = "tibble") 
demographics <- import(paste0(url, "Demographics.xlsx"), setclass = "tibble") 

The data files contain information on students’ Moodle events, background 
information such as their name, study location and employment status, and various 
grades they’ve obtained during the course. For more information about the dataset, 
please refer to Chapter 2 in this book [3]. These data are read in the tibble [5] 
format, a special type of data.frame commonly used by tidyverse packages. 
We also load the dplyr [6] package which we will use for various tasks throughout 
this chapter. 

library("dplyr")
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3 Grouping and Summarizing Data 

Instead of individual-level data metrics, we may be interested in specific groups as 
specified by some combination of data values. For example, we could compute the 
number of students studying in each location by gender. To accomplish this, we need 
to start by creating a grouped dataset with the function group_by(). To compute 
the number of students, we can use the summarise() function which we already 
used previously in Chapter 1 and the function count(), which simply returns the 
number of observations in each category of its argument. 

demographics |> 
group_by(Gender) |> 
count(Location) 

# A tibble: 4 x 3 
# Groups: Gender [2] 

Gender Location n 
<chr> <chr> <int> 

1 F On campus 55 
2 F Remote 10 
3 M On campus 51 
4 M Remote 14 

The column n lists the number of students in each group. When a tibble that 
contains grouped data is printed into the console, the grouping variable and the 
number of groups will be displayed in the console below the dimensions. Next, we 
will compute the total number of Moodle events of each student, which we will also 
use in the subsequent sections. 

events_summary <- events |> 
group_by(user) |> 
tally() |> 
rename(Frequency.Total = n) 

events_summary 

# A tibble: 130 x 2 
user Frequency.Total 
<chr> <int> 

1 00a05cc62 417 
2 042b07ba1 918 
3 046c35846 199 
4 05b604102 199 
5 0604ff3d3 436 
# i 125 more rows
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Here, the function tally() simply counts the number of number rows in 
the data related to each student, reported in the column n which we rename to 
Frequency.Total with the rename() function. We could also count the number 
of events by event type for each student 

events |> 
group_by(user, Action) |> 
count(Action) 

# A tibble: 1,439 x 3 
# Groups: user, Action [1,439] 

user Action n 
<chr> <chr> <int> 

1 00a05cc62 Applications 2 
2 00a05cc62 Assignment 121 
3 00a05cc62 Course_view 103 
4 00a05cc62 Feedback 7 
5 00a05cc62 General 10 
# i 1,434 more rows 

4 Selecting Variables 

In the tidyverse paradigm, selecting columns, i.e., variables from data is done 
using the select() function. The select() function is very versatile, allowing 
the user to carry out selections ranging from simple selection of a single variable to 
highly complicated selections based on multiple criteria. The most basic selection 
selects only a single variable in the data based on its name. For example, we can 
select the employment statuses of students as follows 

demographics |> 
select(Employment) 

# A tibble: 130 x 1 
Employment 
<chr> 

1 None 
2 None 
3 None 
4 None 
5 Part-time 
# i 125 more rows
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Note that using select() with a single variable is not the same as using the 
$ symbol to select a variable, as the result is still a tibble, select() simply 
produces a subset of the data, where only the selected columns are present. Select 
is more similar to subset() in base R, which can accomplish similar tasks as 
select() and filter() in the tidyverse. However, we do not recommend 
using subset(), as it may not work correctly when the working environment 
has variables that have the same name as columns in the data, which can lead to 
undesired outcomes. 

To extract the values of the selected column as a vector, we can use the function 
pull(). We use  the head() function here to limit the console output to just the first 
few values of the vector (default is 6 values). 

demographics |> 
pull(Employment) |> 
head() 

[1] "None" "None" "None" "None" "Part-time" "Part-time" 

The select() function syntax supports several operations that are similar to 
base R. We can select ranges of consecutive variables using :, complements using 
!, and combine selections using c(). The following selections illustrate some of 
these features: 

demographics |> 
select(user:Origin) 

# A tibble: 130 x 4 
user Name Surname Origin 
<chr> <chr> <chr> <chr> 

1 6eba3ff82 Amanda Mora Costa Rica 
2 05b604102 Lian Abdullah Yemen 
3 111422ee7 Bekim Krasniqi Kosovo 
4 b4658c3a9 Yusuf Kaya Turkey 
5 e6ec47f29 Zoran Babić Serbia 
# i 125 more rows 

demographics |> 
select(!Gender) 

# A tibble: 130 x 7 
user Name Surname Origin Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr>
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1 6eba3ff82 Amanda Mora Costa Rica 28.2.1998 On campus None 
2 05b604102 Lian Abdullah Yemen 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia 29.10.1998 On campus Part-time 
# i 125 more rows 

demographics |> 
select(c(user, Surname)) 

# A tibble: 130 x 2 
user Surname 
<chr> <chr> 

1 6eba3ff82 Mora 
2 05b604102 Abdullah 
3 111422ee7 Krasniqi 
4 b4658c3a9 Kaya 
5 e6ec47f29 Babić 
# i 125 more rows 

In the first selection, we select all variables starting from user on the left to 
Origin on the right. In the second, we select all variables except Gender. In the  
third, we select both user and Surname variables. 

Sometimes, our selection might not be based directly on the variable names 
themselves as in the examples above but instead on vectors that contain the names of 
columns we wish to select. In such cases, we can use the function all_of(). We can 
consider the intersections or unions of such selections using & and |, respectively. 

cols_a <- c("user", "Name", "Surname") 
cols_b <- c("Surname", "Origin") 
demographics |> 

select(all_of(cols_a)) 

# A tibble: 130 x 3 
user Name Surname 
<chr> <chr> <chr> 

1 6eba3ff82 Amanda Mora 
2 05b604102 Lian Abdullah 
3 111422ee7 Bekim Krasniqi 
4 b4658c3a9 Yusuf Kaya 
5 e6ec47f29 Zoran Babić 
# i 125 more rows
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demographics |> 
select(all_of(cols_a) & all_of(cols_b)) 

# A tibble: 130 x 1 
Surname 
<chr> 

1 Mora 
2 Abdullah 
3 Krasniqi 
4 Kaya 
5 Babić 
# i 125 more rows 

demographics |> 
select(all_of(cols_a) | all_of(cols_b)) 

# A tibble: 130 x 4 
user Name Surname Origin 
<chr> <chr> <chr> <chr> 

1 6eba3ff82 Amanda Mora Costa Rica 
2 05b604102 Lian Abdullah Yemen 
3 111422ee7 Bekim Krasniqi Kosovo 
4 b4658c3a9 Yusuf Kaya Turkey 
5 e6ec47f29 Zoran Babić Serbia 
# i 125 more rows 

Often the names of data variables follow a similar pattern, and these patterns 
can be used to construct selections. Selections based on a prefix or a suffix in 
the variable name can be carried out with the functions starts_with() and 
ends_with(), respectively. The function contains() is used to look for a specific 
substring in the names of the variables, and more complicated search patterns 
can be defined with the function matches() that uses regular expressions (see 
?tidyselect::matches for further information). 

results |> 
select(starts_with("Grade")) 

# A tibble: 130 x 13 
Grade.SNA_1 Grade.SNA_2 Grade.Review Grade.Group_self Grade.Group_All 

<dbl> <dbl> <dbl> <dbl> <dbl> 
1 0 0 6.67 5 4  
2 8 10 6.67 1 3
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3 10 10 10 10 9.11  
4 5 5 0 1 4  
5 10 10 10 10 9.18  
# i 125 more rows 
# i 8 more variables: Grade.Excercises <dbl>, Grade.Project <dbl>, 
# Grade.Literature <dbl>, Grade.Data <dbl>, Grade.Introduction <dbl>, 
# Grade.Theory <dbl>, Grade.Ethics <dbl>, Grade.Critique <dbl> 

results |> 
select(contains("Data")) 

# A tibble: 130 x 1 
Grade.Data 

<dbl> 
1 4  
2 3  
3 5  
4 3  
5 5  
# i 125 more rows 

So far, our selections have been based on variable names, but other conditions for 
selection are also feasible. The general-purpose helper function where() is used to 
select those variables for which a function provided to it returns TRUE. For example, 
we could select only those columns that contain character type data or double 
type data. 

results |> 
select(where(is.character)) 

# A tibble: 130 x 1 
user 
<chr> 

1 6eba3ff82 
2 05b604102 
3 111422ee7 
4 b4658c3a9 
5 e6ec47f29 
# i 125 more rows 

results |> 
select(where(is.double)) 
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# A tibble: 130 x 14 
Grade.SNA_1 Grade.SNA_2 Grade.Review Grade.Group_self Grade.Group_All 

<dbl> <dbl> <dbl> <dbl> <dbl> 
1 0 0 6.67 5 4  
2 8 10 6.67 1 3 
3 10 10 10 10 9.11 
4 5 5 0 1 4  
5 10 10 10 10 9.18 
# i 125 more rows 
# i 9 more variables: Grade.Excercises <dbl>, Grade.Project <dbl>, 
# Grade.Literature <dbl>, Grade.Data <dbl>, Grade.Introduction <dbl>, 
# Grade.Theory <dbl>, Grade.Ethics <dbl>, Grade.Critique <dbl>, Final_grade 
<dbl> 

5 Filtering Observations 

In contrast to selection which relates to obtaining a subset of the columns of the data, 
filtering refers to obtaining a subset of the rows. In the tidyverse, data filtering 
is carried out with the dplyr package function filter(), which should not be 
confused with the base R filter() function in the stats package. As we have 
attached the dplyr package, the base R filter() function is masked, meaning 
that when we write code that uses filter(), the  dplyr version of the function will 
automatically be called. 

Filtering is often a much simpler operation than selecting variables, as the 
filtering conditions are based solely on the values of the data variables. Using 
filter() is analogous to the base R subset operator [, but the filtering condition 
is given as an argument to the filter() function instead. It is good to remind that 
in R a single equal sign (=) is merely for arguments of function calls, while double 
equal sign (==) is needed for comparison of two values. And example of filter: 

demographics |> 
filter(Origin == "Bosnia") |> 
select(Name, Surname) 

# A tibble: 2 x 2 
Name Surname 
<chr> <chr> 

1 Hamza Hodžić 
2 Davud Delić 

The code above first filters our student demographics data to only those students 
whose country of origin is Bosnia. Then, we select their first and last names. 

Multiple filtering conditions can be refined and combined using base R logical 
operators, such as & and |.
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demographics |> 
filter(Gender == "F" & Location == "Remote") 

# A tibble: 10 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 d93f7f0d3 Zahra Gul Afghanistan F 22.11.1999 Remote None 
2 93d1f2e82 Louise Bernard France F 5.9.1998 Remote Part-time 
3 417892918 Miora Rakotomalala Madagascar F 9.12.1995 Remote None 
4 f98e6e2b8 Linda Mensah Ghana F 7.2.1991 Remote None 
5 590846fe3 Lucija Horvat Croatia F 22.7.1998 Remote None 
# i 5 more rows 

Here, we filtered our data to female students who are studying remotely. The 
same result could also be obtained by using the filter() function two times 

demographics |> 
filter(Gender == "F") |> 
filter(Location == "Remote") 

# A tibble: 10 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 d93f7f0d3 Zahra Gul Afghanistan F 22.11.1999 Remote None 
2 93d1f2e82 Louise Bernard France F 5.9.1998 Remote Part-time 
3 417892918 Miora Rakotomalala Madagascar F 9.12.1995 Remote None 
4 f98e6e2b8 Linda Mensah Ghana F 7.2.1991 Remote None 
5 590846fe3 Lucija Horvat Croatia F 22.7.1998 Remote None 
# i 5 more rows 

This type of approach may improve the readability of your code especially when 
there are several independent filtering conditions to be applied simultaneously. 

Filters can naturally be based on numeric values as well. For example, we could 
select those students whose final grade is higher than 8. 

results |> 
filter(Final_grade > 8) 

# A tibble: 58 x 15 
user Grade.SNA_1 Grade.SNA_2 Grade.Review Grade.Group_self Grade.Group_All 
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> 

1 111422ee7 10 10 10 10 9.11 
2 e6ec47f29 10 10 10 10 9.18 
3 4951e7386 10 10 7 9 8.56 
4 9d744e5bf 10 10 10 10 9.29 
5 0ef305578 10 10 9.33 10 8.56 
# i 53 more rows
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# i 9 more variables: Grade.Excercises <dbl>, Grade.Project <dbl>, 
# Grade.Literature <dbl>, Grade.Data <dbl>, Grade.Introduction <dbl>, 
# Grade.Theory <dbl>, Grade.Ethics <dbl>, Grade.Critique <dbl>, Final_grade <dbl> 

Similarly, we could select students based on their total number of Moodle events. 

events_summary |> 
filter(Frequency.Total > 100 & Frequency.Total < 500) 

# A tibble: 44 x 2 
user Frequency.Total 
<chr> <int> 

1 00a05cc62 417 
2 046c35846 199 
3 05b604102 199 
4 0604ff3d3 436 
5 0af619e4b 268 
# i 39 more rows 

6 Transforming Variables 

In the best-case scenario, our data is already in the desired format after it has been 
read into R, but this is rarely the case with real datasets. We may need to compute 
new variables that were not present in the original data, convert measurements to 
different units, or transform text data into a numeric form. In the tidyverse, data 
transformations are carried out by the mutate() function of the dplyr package. 
This function can be used to transform multiple variables at the same time or to 
construct entirely new variables. The syntax of the function is the same in both 
cases: first, the name of the variable should be provided followed by an R expression 
that defines the variable. The transformed data is not automatically assigned to any 
variable, enabling transformations to be used as temporary variables within a chain 
of piped operations. 

As a simple example, we could convert the students’ locations into a factor 
variable. 

demographics |> 
mutate(Location = factor(Location)) 

# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <fct> <chr> 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On campus None
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2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On campus Part-time 
# i 125 more rows 

As we see from the tibble printout, the Location variable is a factor in the 
transformed data as indicated by the <fct> heading under the variable name. Note 
that the original demographics data was not changed, as we did not assign the 
result of the computation. 

The gender and employment status of the students could also be used as factors, 
which we could do in a single mutate() call 

demographics |> 
mutate( 

Gender = factor(Gender), 
Location = factor(Location), 
Employment = factor(Employment) 

) 

# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <fct> <chr> <fct> <fct> 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On campus None 
2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On campus Part-time 
# i 125 more rows 

However, writing out individual identical transformations manually is cumber-
some when the number of variables is large. For such cases, the across() function 
can be leveraged, which applies a function across multiple columns. This function 
uses the same selection syntax that we already familiarized ourselves with earlier 
to define the columns that will be transformed. To accomplish the same three 
transformations into a factor format, we could write 

demographics |> 
mutate(across(c(Gender, Location, Employment), factor)) 
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# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <fct> <chr> <fct> <fct> 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On campus None 
2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On campus Part-time 
# i 125 more rows 

The first argument to the across() function is the selection that defines the 
variables to be transformed. The second argument defines the transformation, in 
this case, a function, to be used. 

Working with dates can often be challenging. When we read the student 
demographic data into R, the variable Birthdate was assumed to be a  character 
type variable. If we would like to use this variable to e.g., compute the ages of the 
students, we need to first convert it into a proper format using the as.Date function. 
Since the dates in the data are not in any standard format, we must provide the format 
manually. Afterwards, we can use the lubridate [7] package to easily compute the 
ages of the students, which we will save into a new variable called Age. We will also 
construct another variable called FullName which formats the first and last names 
of the students as "Last, First". 

library("lubridate") 
demographics |> 

mutate( 
Birthdate = as.Date(Birthdate, format = "%d.%m.%Y"), 
Age = year(as.period(interval(start = Birthdate, end = date("2023-03-12")))), 
FullName = paste0(Surname, ", ", Name) 

) |> 
select(Age, FullName) 

# A tibble: 130 x 2 
Age FullName 

<dbl> <chr> 
1 25 Mora, Amanda 
2 26 Abdullah, Lian 
3 24 Krasniqi, Bekim 
4 24 Kaya, Yusuf 
5 24 Babić, Zoran 
# i 125 more rows 

The computation of the ages involves several steps. First, we construct a time 
interval object with the interval() function from the birthdate to the date for 
which we wish to compute the ages. Next, the as.period() function converts this 
interval into a time duration, from which we lastly get the number of years with the 
year() function.
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Suppose that we would like to construct a new variable AchievingGroup 
that categorizes the students into top 50% achievers and bottom 50% achievers 
based on their final grade on the course. We leverage two functions from the 
dplyr package to construct this new variable: case_when() and ntile(). The  
function case_when() is used to transform variables based on multiple sequential 
conditions. The function ntile() has two arguments, a vector x and an integer n, 
and it splits x into n equal-sized groups based on the ranks of the values in x. 

results <- results |> 
mutate( 

AchievingGroup = factor( 
case_when( 

ntile(Final_grade, 2) == 1 ~ "Low achiever", 
ntile(Final_grade, 2) == 2 ~ "High achiever" 

) 
) 

) 

The syntax of case_when() is very simple: we describe the condition for each 
case followed by ~ after which we define the value that the case should correspond 
to. We assign the result of the computation to the results data, as we will be using 
the AchievingGroup variable in later chapters. 

We would also like to categorize the students based on their activity level, i.e., 
the number of total Moodle events. Our goal is to create three groups of equal size 
consisting of low activity, moderate activity and high activity students. The approach 
we applied to categorizing the achievement level of the students is also applicable 
for this purpose. We name our new variable as ActivityGroup, and we assign the 
result of the computation, as we will also be using this variable in later chapters. 

events_summary <- events_summary |> 
mutate( 

ActivityGroup = factor( 
case_when( 

ntile(Frequency.Total, 3) == 1 ~ "Low activity", 
ntile(Frequency.Total, 3) == 2 ~ "Moderate activity", 
ntile(Frequency.Total, 3) == 3 ~ "High activity" 

) 
) 

) 
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7 Rearranging Data 

Sometimes we may want to reorder the rows or columns of our data, for example 
in alphabetical order based on the names of students on a course. The arrange() 
function from the dplyr package orders the rows of the by the values of columns 
selected by the user. The values are sorted in ascending order by default, but 
the order can be inverted by using the desc() function if desired. The variable 
order in the selection defines how ties should be broken when duplicate values are 
encountered in the previous variables of the selection. For instance, the following 
code would arrange the rows of our demographics data by first comparing the 
surnames of the students, and then the given names for those students with the same 
surname. Missing values are placed last in the reordered data. 

demographics |> 
arrange(Surname, Name) 

# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 ba76ebfab Bismah Abbasi Pakistan F 2.4.1996 Remote Full-time 
2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 d2c3ce9a4 Amir Ait Morocco M 19.6.1997 On campus None 
4 68a377c82 Saliha Akmatova Kyrgyzstan F 19.5.1999 Remote None 
5 7e2726f3c Kazi Akter Bangladesh M 22.12.1992 On campus None 
# i 125 more rows 

A descending order based on both names can be obtained by applying the desc() 
function. 

demographics |> 
arrange(desc(Surname), desc(Name)) 

# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 a48165ad5 Liam Zambrano Ecuador M 4.4.1998 On campus None 
2 1115dae61 Poema Wong Tahiti F 22.1.1999 Remote Part-time 
3 0ef305578 Jack White Australia M 22.4.1995 Remote None 
4 f753ce9bf Dechen Wangmo Bhutan F 29.4.1999 On campus None 
5 f87eaa00c Prasert Wang Thailand M 9.4.1997 On campus None 
# i 125 more rows 

Column positions can be changed with the relocate() function of the dplyr 
package. Like arrange(), we first select the column or columns we wish to move
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into a different position in the data. Afterwards, we specify the position where the 
columns should be moved to in relation to positions of the other columns. In our 
demographics data, the user ID column user is the first column. The following 
code moves this column after the Employment column so that the user column 
becomes the last column in the data. 

demographics |> 
relocate(user, .after = Employment) 

# A tibble: 130 x 8 
Name Surname Origin Gender Birthdate Location Employment user 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 Amanda Mora Costa Rica F 28.2.1998 On campus None 6eba3ff82 
2 Lian Abdullah Yemen F 19.11.1996 On campus None 05b604102 
3 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 111422ee7 
4 Yusuf Kaya Turkey M 16.6.1998 On campus None b4658c3a9 
5 Zoran Babić Serbia M 29.10.1998 On campus Part-time e6ec47f29 
# i 125 more rows 

The mutually exclusive arguments .before and .after of relocate() specify 
the new column position in relation to columns that were not selected. These 
arguments also support the select() function syntax for more general selections. 

8 Reshaping Data 

Broadly speaking, tabular data typically take one of two formats: wide or long. In 
the wide format, there is one row per subject, where the subjects are identified by 
an identifier variable, such as the user variable in our Moodle data, and multiple 
columns for each measurement. In the long format, there are multiple rows per 
subject, and the columns describe the type of measurement and its value. For 
example, the events data is in a long format containing multiple Moodle events 
per student, but the results and demographics data are in a wide format with 
one row per student. 

In the previous section, we constructed a summary of the users’ Moodle events 
in total and of different types. The latter data is also in a long format with multiple 
rows per subject, but we would instead like to have a column for each event 
type with one row per user, which means that we need to convert this data into a 
wide format. Conversion between the two tabular formats is often called pivoting, 
and the corresponding functions pivot_wider() and pivot_longer() from the 
tidyr [8] package are also named according to this convention. We will create a 
wide format data of the counts of different event types using the pivot_wider() 
function as follows



112 J. Kopra et al. 

library("tidyr") 
events_types <- events |> 

group_by(user, Action) |> 
count(Action) |> 
pivot_wider( 

names_from = "Action", 
names_prefix = "Frequency.", 
values_from = "n", 
values_fill = 0 

) 
events_types 

# A tibble: 130 x 13 
# Groups: user [130] 

user Frequency.Applications Frequency.Assignment Frequency.Course_view 
<chr> <int> <int> <int> 

1 00a05cc62 2 121 103 
2 042b07ba1 0 62 294 
3 046c35846 0 41 53 
4 05b604102 0 44 49 
5 0604ff3d3 0 9 119 
# i 125 more rows 
# i 9 more variables: Frequency.Feedback <int>, Frequency.General <int>, 
# Frequency.Group_work <int>, Frequency.Instructions <int>, 
# Frequency.La_types <int>, Frequency.Practicals <int>, Frequency.Social <int>, 
# Frequency.Ethics <int>, Frequency.Theory <int> 

Here, we first specify the column name that the names of the wide format 
data should be taken from in the long format data with names_from. In addition, 
we specify a prefix for the new column names using names_prefix that helps 
to distinguish what these new columns will contain, but in general, the prefix is 
optional. Next, we specify the column that contains the values for the new columns 
with values_from. Because not every student necessarily has events of every type, 
we also need to specify what the value should be in cases where there are no events 
of a particular type by using values_fill. As we are considering the frequencies 
of the events, it is sensible to select 0 to be this value. We save the results to 
events_types as we will use the event type data in later sections and chapters. 

9 Joining Data 

Now that we have computed the total number of events for each student and 
converted the event type data into a wide format, we still need to merge these new 
data with the demographics and results data. Data merges are also called joins, and
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the dplyr package provides several functions for different kinds of joins. Here, we 
will use the left_join() function that will preserve all observations of the first 
argument. 

left_join(demographics, events_summary, by = "user") 

# A tibble: 130 x 10 
user Name Surname Origin Gender Birthdate Location Employment Frequency.Total 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int> 

1 6eba3ff~ Aman~ Mora Costa~ F 28.2.1998 On camp~ None 312 
2 05b6041~ Lian Abdull~ Yemen F 19.11.19~ On camp~ None 199 
3 111422e~ Bekim Krasni~ Kosovo M 30.1.1999 On camp~ None 532 
4 b4658c3~ Yusuf Kaya Turkey M 16.6.1998 On camp~ None 246 
5 e6ec47f~ Zoran Babić Serbia M 29.10.19~ On camp~ Part-time 356 
# i 125 more rows 
# i 1 more variable: ActivityGroup <fct> 

In essence, the above left join adds all columns from events_summary to 
demographics whenever there is a matching value in the by column. To continue, 
we can use additional left joins to add the remaining variables from the results 
data, and the Moodle event counts of different types from events_types to have 
all the student data in a single object. 

all_combined <- demographics |> 
left_join(events_types, by = "user") |> 
left_join(events_summary, by = "user") |> 
left_join(results, by = "user") 

all_combined 

# A tibble: 130 x 37 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On campus None 
2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On campus Part-time 
# i 125 more rows 
# i 29 more variables: Frequency.Applications <int>, Frequency.Assignment <int>, 
# Frequency.Course_view <int>, Frequency.Feedback <int>, Frequency.General <int>, 
# Frequency.Group_work <int>, Frequency.Instructions <int>, 
# Frequency.La_types <int>, Frequency.Practicals <int>, Frequency.Social <int>, 
# Frequency.Ethics <int>, Frequency.Theory <int>, Frequency.Total <int>, 
# ActivityGroup <fct>, Grade.SNA_1 <dbl>, Grade.SNA_2 <dbl>, ... 

We will use this combined dataset in the following chapters as well.
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10 Missing Data 

Sometimes it occurs that learning analytics data has cells for which the values are 
missing for some reason. The Moodle event data which we have utilized in this 
chapter does not naturally contain missing data. Thus, to have an example, we need 
to create a data which does. Second, handling of missing data is a vast topic of 
which we can only discuss some of the key points very briefly from a practical 
perspective. For a more comprehensive overview, we recommend reading [9] and 
[10] for a hands on approach. A short overview of missingness can be found in [11]. 

The code below will create missing values randomly to each column of 
events_types data (user column is an exception). To do that, we use the 
mice [12] package which also has methods for the handling of missing data. 
Unfortunately, mice is not part of the tidyverse. For more information 
about mice, a good source is miceVignettes at https://www.gerkovink.com/ 
miceVignettes/. Now, let’s create some missing data. 

library("mice") 
set.seed(44) 
events_types <- events_types |> 

rename( 
"Ethics" = "Frequency.Ethics", 
"Social" = "Frequency.Social", 
"Practicals" = "Frequency.Practicals" 

) 
ampute_list <- events_types |> 

ungroup(user) |> 
select(Ethics:Practicals)|> 
as.data.frame() |> 
ampute(prop = 0.3) 

events_types_mis <- ampute_list$amp |> 
as_tibble() 

events_types_mis[2, "Practicals"] <- NA 

Above, we also rename the variables that contain the frequencies of Moodle 
events related to ethics, social and practicals into Ethics, Social and 
Practicals, respectively. Let’s now see some of the values of events_types_mis 

events_types_mis 

# A tibble: 130 x 3 
Ethics Social Practicals 
<int> <int> <int> 

1 NA 12 89

https://www.gerkovink.com/miceVignettes/
https://www.gerkovink.com/miceVignettes/
https://www.gerkovink.com/miceVignettes/
https://www.gerkovink.com/miceVignettes/
https://www.gerkovink.com/miceVignettes/
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2 14 NA NA  
3 0 0 47  
4 0 0 48  
5 0 0 61  
# i 125 more rows 

We can see that now the data contains NA values in some of the cells. These are the 
cells in which a missing value occurs, meaning that a value for those measurements 
has not been recorded. A missing data pattern, that is how missing of one variable 
affects missingness of other variables, can be show as: 

md.pattern(events_types_mis, rotate.names = TRUE) 
E
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19 

116 

095 

36 

Above, each red square indicates a missing value while blue squares stand 
for observed ones. We can see that there are 95 complete rows, 10 for which 
Practicals are missing, 17 have missingness on Social and 9 are missing on 
Ethics. Also, one row has two red squares indicating a missing value on both 
Social and Practicals. 

Let’s now discuss options of handling missing data briefly. There are four classes 
of statistical methods for analyzing data with missing values: complete case (CC) 
methods, weighting methods, imputation methods, and model-based methods. The 
simplest of these is complete case analysis, which leaves missing values out of the 
analysis and only uses observations with all variables recorded. This can be done 
with the tidyr [8] package function drop_na(): 

events_types_mis |> 
drop_na() 

# A tibble: 95 x 3 
Ethics Social Practicals 
<int> <int> <int> 

1 0 0 47
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2 0 0 48  
3 0 0 61  
4 0 24 102 
5 4 18 71 
# i 90 more rows 

We can see that after using this method, our data has only 95 rows as those were 
the rows without any columns having missing values. This made our data much 
smaller! If there are a lot of missing values, the data may become too small to use 
for practical purposes. 

A more novel group of methods are imputation methods. One of the options is 
using single imputation (SI) where the mean of each variable will determine the 
imputed value. The single mean imputation can be done as follows: 

imp <- mice(events_types_mis, method = "mean", 
m =  1, maxit = 1 , print = FALSE) 
complete(imp) |> 

head() 

Ethics Social Practicals 
1 7.553719 12.00000 89.00000 
2 14.000000 15.64602 74.80833 
3 0.000000 0.00000 47.00000 
4 0.000000 0.00000 48.00000 
5 0.000000 0.00000 61.00000 
6 0.000000 24.00000 102.00000 

We can see from above that the imputed values are not integers anymore. 
However, if we aim to estimate means or regression coefficients (see Chapter 5 [13] 
for details) that is not a problem. One of the problems with mean imputation is that 
the variance and standard error estimates will become downward biased. A mean of 
Ethics for mean imputation is: 

fit <- with(imp, lm(Ethics ~ 1)) 
summary(fit) 

# A tibble: 1 x 6  
term estimate std.error statistic p.value nobs 
<chr> <dbl> <dbl> <dbl> <dbl> <int> 

1 (Intercept) 7.55 0.811 9.32 4.20e-16 130 

Next, let’s briefly have a look at how we can utilize multiple imputation (MI) 
which is an improvement over single imputation. The multiple imputation approach 
generates more than one imputation thus creating many complete data sets for us.
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For each of these datasets, we can perform any analysis that we are interested in. 
After the analysis, one must pool the results from the impured datasets to get the 
final result. Here, we utilize a method called predictive mean matching (method = 
"pmm" in the code below), which uses the neighbour values of data as imputations. 

imp2 <- mice(events_types_mis, method = "pmm", 
m= 10, maxit = 100, print = FALSE) 
fit2 <- with(imp2, lm(Ethics ~ Practicals)) 
pool_fit <- pool(fit2) 
# Multiple imputation 
summary(pool_fit) 

term estimate std.error statistic df p.value 
1 (Intercept) 1.62080372 2.18285149 0.7425167 101.7304 0.459485402 
2 Practicals 0.08049328 0.02616765 3.0760606 106.0802 0.002668431 

# Complete cases 
summary(lm(Ethics ~ Practicals, events_types_mis))["coefficients"] 

$coefficients 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.15459162 2.12235051 1.015191 0.31226283 
Practicals 0.06220884 0.02605001 2.388054 0.01865793 

# Without missingness 
summary(lm(Ethics ~ Practicals, events_types))["coefficients"] 

$coefficients 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 1.05409529 2.17821479 0.4839262 0.6292651258 
Practicals 0.08891892 0.02590313 3.4327482 0.0008053447 

From the results above, we can see that in this particular case the multiple 
imputation performs well in comparison to CC approach. The regression coefficient 
for full data without any missing values is .0.089, and it is .0.080 for multiple 
imputation, while complete case analysis gives .0.062. As all of them have very 
similar standard errors, this yields that MI and full data give statistically significant 
p-values for significance level 0.01, while CC does not. 

11 Correcting Erroneous Data 

Let’s imagine that our data has an error on the surname variable Surname and that 
all the names ending with “sen” should end with “ssen”. What we can do is that we
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can use regular expressions to detect the erroneous rows and we can also use them to 
replace the values. Let’s first figure out which last names contain a name ending with 
“sen”. We can use a function str_detect() to return TRUE/FALSE for each row 
from stringr [14] package within a filter() function call. We define pattern 
= "sen$" where $ indicates the end of the string. 

library("stringr") 
demographics |> 

filter(str_detect(string = Surname, pattern = "sen$")) |> 
pull(Surname) 

[1] "Nielsen" "Johansen" "Joensen" "Jansen" "Olsen" 

After pulling the filtered surnames, there seems to be five surnames ending with 
“sen”. Next, let’s try to replace “sen” with “ssen”. On the next row we filter just as 
previously to limit output. 

demographics |> 
mutate(Surname = str_replace( 

string = Surname, pattern = "sen$", replacement = "ssen") 
) |> 
filter(str_detect(string = Surname, pattern = "sen$")) |> 
pull(Surname) 

[1] "Nielssen" "Johanssen" "Joenssen" "Janssen" "Olssen" 

Thus, the following code updates the data so that all the surnames ending with 
“sen” now end with “ssen” instead. 

demographics <- demographics |> 
mutate(Surname = str_replace( 

string = Surname, pattern = "sen$", replacement = "ssen") 
) 

12 Conclusion and Further Reading 

Data wrangling is one of the most important steps in any data analysis pipeline. 
This chapter introduced the tidyverse, tidy data, and several commonly used R 
packages for data manipulation and their use in basic scenarios in the context of 
learning analytics. However, the tidyverse is vast and can hardly be fully covered 
in a single chapter. We refer the reader to additional resources such as those found 
on the tidyverse website at https://www.tidyverse.org/learn/ and the book “R for 
Data Science” by Hadley Wicham and Garret Grolemund. The book is free to use 
and readily available online at https://r4ds.had.co.nz/.

https://www.tidyverse.org/learn/
https://www.tidyverse.org/learn/
https://www.tidyverse.org/learn/
https://www.tidyverse.org/learn/
https://www.tidyverse.org/learn/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
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