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A B S T R A C T   

Drivers often look away from the forward roadway. However, this does not necessarily mean that 
they are inattentive, as they might be utilizing their spare visual capacity (SVC). Because of the 
safety–critical risks associated with inattentive driving, it is imperative to analyze how much 
visual capacity a driver can afford to use for secondary activities while avoiding the possibility of 
an accident. This study aimed to define and identify driver inattention in a car following task 
based on an estimate of the driver’s situational SVC. A mathematical model of SVC in car 
following was created based on the possible but unlikely worst-case scenario in any situation. The 
model generates situation-specific marginal values of the minimum time that can lead to a 
possible collision when a driver looks away from the lead car. A classification algorithm was 
developed to define and identify inattention based on the model’s estimates. The model reveals 
that SVC in car following varies significantly from situation to situation, depending on relevant 
situational, technical, and cognitive factors. A driving simulator study (N = 32) indicated that 
drivers are often willing to occlude themselves in car following when there is a chance of a rear- 
end collision and that this behavior becomes more likely with higher speeds. A strong linear 
association between distance headway and brake response time was also found. Quantifying SVC 
in driving helps in determining driver inattention against a valid baseline based on what is 
possible. The proposed modeling approach can be utilized for the development of improved safety 
guidelines and effective context-sensitive (in)attention monitoring systems.   

1. Introduction 

First coining the term in 1971, Safford conceptualized spare visual capacity (SVC) in driving as redundant visual sampling of the 
forward roadway that is unnecessary for safe driving. That is, SVC equates to the amount of time a driver can spend safely sampling for 
items that are nonessential for succeeding in the driving task, such as looking at the smartphone, the in-vehicle infotainment system, or 
outside scenery. Safford (1971) hypothesized that car drivers possess SVC with respect to their visual sampling ability. To prove this, he 
conducted a series of experiments in which he used the method of voluntary visual occlusion to measure the percentage of time a driver 
managed to keep their eyes closed during a specific driving task without a collision. Later research has shown that SVC in driving is 
highly situational and that it varies with the driver and the specific attentional demands of the driving situation (Kujala et al., 2021). 
This finding generates the need to study the relevant variabilities in SVC from a normative perspective, that is, to assess how long a 
driver can afford to look away from the traffic in any specific situation to avoid safety–critical events, such as a possible collision. In 
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this study, a more precise and situationally dependent measurement of a driver’s SVC in a specific safety–critical driving task, car 
following, is defined. Based on this novel measurement, visual inattention can be effectively defined and identified. According to 
naturalistic studies, rear-end crashes in car following are associated with the highest impact of visual distraction on safety–critical 
events in traffic (Bálint et al., 2020; Victor et al., 2015). 

Driver (in)attention monitoring systems (Fredriksson et al., 2021) require a better understanding of the situational SVC in driving 
to avoid false positives and to be effective. Empirical evidence of SVC questions the common notion of labeling a driver as inattentive 
each time the driver looks away from the forward roadway (Ahlström, Georgoulas, et al., 2021; Kircher & Ahlstrom, 2017; Kujala et al., 
2021). There are already implementations of distraction warning algorithms that allow a buffer of a couple of seconds before warning 
the driver to look back on the road (Ahlstrom et al., 2013; Donmez et al., 2007; Kujala et al., 2016; Victor, 2010), and it has been 
recently suggested that these thresholds should be sensitive to the road type or driving scenario (Ahlström, Georgoulas, et al., 2021; 
Han et al., 2023; Kujala et al., 2024). However, in the definition of safety–critical thresholds for alerting drivers about inattention, 
more emphasis should be placed on what is possible in a situation as opposed to what is probable based on odds ratios calculated across 
variable situations. 

For instance, the popular 2 s threshold as an acceptance limit for off-forward glance durations was derived based on odds ratios in 
near-crash and crash statistics collected in a naturalistic study as a gross measure over a variety of situations and drivers (Klauer et al., 
2006). There is no internal logic as to why a 2 s off-forward glance duration or any other static threshold would be sufficient for a driver 
to be categorized as attentive or inattentive across all possible variable situations in traffic. In some situations, 2 s may be too restrictive 
(e.g., empty roads, good visibility, straight roads with no crossings ahead). In other situations, 2 s could be too allowing (e.g., following 
a car, a short time headway [THW], poor visibility, crossing traffic ahead). A valid static threshold for inattention identification cannot 
be generalized for every situation, as many environmental, mechanical, and cognitive factors are associated with driving, and they 
vary from situation to situation. Furthermore, time-to-collision (TTC) formulations and safety guidelines for THWs are estimated for 
situations in which the lead car and the following car continue driving at the same speed (e.g., Hayward, 1972; Vogel, 2003). While this 
is often what happens in a fluent traffic flow, the traffic system on crowded roads is full of turbulence, and there can be many vari
abilities in the relative speeds of cars in car following scenarios. 

This study aims to develop a mathematical model that can be used to predict a situational collision-critical threshold of SVC in car 
following while incorporating all the related situationally variable environmental, mechanical, and cognitive factors. It is argued that 
given the safety–critical nature of inattention classification, we should prioritize possibility over probability in the definition of 
thresholds. Therefore, parameter estimates focus on the ends of relevant probability distributions, and worst-case scenarios are used in 
the analysis. As opposed to existing car following models that aim to predict how drivers behave in car following (e.g., Chen et al., 
2012; Hamdar et al., 2015; Sheu & Wu, 2015), this new model is normative; that is, it indicates how drivers should distribute their 
limited attention in car following situations in order to be safe. Such a mathematical model could be utilized to develop improved 
safety guidelines, driver monitoring and inattention warning systems, or training apparatus concerning situational SVC in driving. 

The rest of the paper is structured as follows. First, the model is introduced. Second, analytical findings from applying the model to 
the definition of SVC in typical car following scenarios are reported. Next, empirical findings from a driving simulator study illustrate 
the usefulness of the model for classifying driver attentive or inattentive. Finally, the model, its limitations, and the findings are 
discussed in relation to the state of the art. 

2. Model 

Each instance a driver voluntarily takes eyes off the road, that is, occludes oneself during a car following task, is treated separately 
because every single instance is important from the safety perspective and differs from others contextually. We define OT(i) (i.e., 
occlusion time for the ith instance, i = 1, 2, …) as the period for which a given driver voluntarily occludes one’s vision from the road for 
the ith time during a car following task. The main interest is in finding the minimum threshold value of OT(i) that can lead to a possible 
collision (hereafter OT(i)

min pc). In other words, it is the time threshold before which a bounded-rational driver should return their eyes 
back on the lead car in order to avoid a possible rear-end crash in any situation, given the driver’s limited knowledge about the status of 
the lead car during the occlusion. 

The method is a form of counterfactual (what-if) reasoning (e.g., Bärgman et al., 2017; Gerstenberg et al., 2021; Sui et al., 2021) – 
although not relying on what has happened in the past but on what is logically possible to happen in a predefined situation – as opposed 
to counterfactual simulations on existing data (e.g., Bärgman et al., 2017). According to Gerstenberg et al. (2021), counterfactual 
reasoning enables humans to make causal judgments. Note that the model has similarities to threat-assessment algorithms (e.g., 
Brännström et al., 2010), but the purpose of the current model is to enable the classification of drivers as attentive or inattentive in car 
following. 

To determine a safety–critical measure like OT(i)
min pc, that is, the critical absolute and minimum threshold value, it is imperative to 

consider driving under extreme (i.e., worst possible) conditions to make sure any unlikely yet possible situation is not left out. The 
following worst-case scenario is analyzed to consider the extreme but possible scenario that can emerge when a following car’s driver 
voluntarily occludes oneself at any given point during a car following task: the lead car’s driver brakes hard because of an emergency at 
the same moment the following car’s driver occludes oneself. 
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2.1. Definitions 

All the relevant situational, technical, and cognitive parameters of interest need to be considered to develop a mathematical model 
for estimating OT(i)

min pc. These factors and their definitions are provided in the following:  

• Initial distance headway (DHW) between the lead car and the following car: When the following car’s driver occludes oneself, the 
DHW, which is measured as the bumper-to-bumper distance between the lead car and the following car, plays a significant role in 
the possible worst-case scenario. This is a situational variable and is denoted as DHW(i)

I .  
• Initial speed of the lead car: This is the speed of the lead car at the moment the following car’s driver occludes one’s vision from the 

road. This is a situational variable and is denoted as S(i)
L . This is also the last speed of the lead car that the following car’s driver was 

able to observe before taking eyes off forward. It defines the braking distance of the lead car from the point the following car’s 
driver occluded oneself, together with other relevant factors reviewed below.  

• Initial speed of the following car: This is the speed of the following car at the moment the following car’s driver occludes oneself. 
This is also a situational variable and is referred to as S(i)

F . Here, it is assumed that the following car maintains a uniform speed (i.e., 
the S(i)

F ) until the last point after which the brake response of the following car is initiated, that is, when the following car’s driver 
has reverted vision back to the lead car and has decided to apply the brakes after understanding the emergency.  

• Braking distance of the lead car: This is the distance traveled by the lead car before finally stopping after the braking response of the 
car has been initiated. Hereafter, this braking distance is referred to as BD(i)

L . Aside from the initial speed of the car (S(i)
L in this case), 

this parameter depends on the deceleration rate (hereafter a(i)
L ) produced by the car. In estimating OT(i)

min pc, it is assumed that the 

lead car’s driver brakes with the maximum achievable mean deceleration rate for a driver during an emergency. Thereby, a(i)
L is 

assumed to be a constant parameter. The formula to derive the value of BD(i)
L can be selected from the many formulas available in 

the literature. Factors such as grade, crown, and surface of the road could influence these formulations (Transportation Officials, 
2011).  

• Brake response time (BRT) of the following driver: This is the time that the following car’s driver would require to revert their 
vision back to the road and for glance dwell, to understand the dynamics of the roadway and recognize the emergency ahead that 
necessitates braking (i.e., mental processing time), to perform the required muscle movement, and, finally, to apply the brakes (i.e., 
movement time). Hereafter, this parameter is denoted as BRT(i)

F . This variable depends on the driver’s individual perceptual, 
cognitive, and motor skills. Furthermore, the BRT has been shown to depend on the urgency of the situation (Markkula et al., 2016). 
As guessing or predicting the response time a particular driver would generate in the case of emergency is challenging, it is best to 
consider and estimate this variable from the worst-case scenario to derive the safest possible estimate of OT(i)

min pc. That is, to 
determine what is the maximum possible time a driver can take to react and act in the face of an unexpected emergency. This 
variable should be adjusted based on the driver and the observed urgency of the situation. It is important to note that during the 
BRT of the driver, the car is assumed to maintain its initial speed (i.e., S(i)

F ).  
• Braking distance of the following car: This is the distance traveled by the following car before finally stopping after the braking 

response of the car has been initiated. Hereafter, it is referred to as BD(i)
F . Aside from the initial speed of the car (S(i)

F in this case), this 
parameter depends on the deceleration rate (hereafter a(i)

F ) produced by the car. It is assumed that the same maximum (mean) 
deceleration rate for the lead car’s driver is also possible for the following car’s driver, thanks to the same level of observed urgency 
of the event (Markkula et al., 2016). The factors affecting braking distance, such as grade, crown, and surface of the road, between 
the two cars traveling on the same road can likewise be considered equal. As it is assumed that both the lead car and the following 
car will achieve the same braking deceleration rate, a(i)

F is assumed to be a constant parameter and is equal to a(i)
L . 

2.2. General equations 

Coming back to the extreme scenario conceptualization, modeling the entire event based on the response of the following car’s 
driver in a given ith self-occlusion instance (where i = 1, 2, …) during a car following task is possible by using the terminal (or final) 
DHW (hereafter DHW(i)

T ) between the lead car and the following car. This will be a function of the above-mentioned parameters and the 
corresponding OT(i), that is, the period during which the following car’s driver occluded their vision from the road in that instance. 
This mathematical equation can be presented as follows: 

DHW(i)
T = DHW(i)

I +BD(i)
L − S(i)

F • BRT(i)
F − BD(i)

F − OD(i), (1)  

where OD(i) refers to the distance traveled by the following car during the period the driver was occluded in that given ith instance 
during a car following task (i.e., OD(i) = OT(i) × S(i)

F ). 
Now, OD(i)

min pc, that is, the minimum occlusion distance that can lead to a possible collision, can be determined by defining the value 

of DHW(i)
T as zero because at the moment a crash happens, the DHW (i.e., the bumper-to-bumper distance) between the two cars 
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becomes zero. Therefore, by defining DHW(i)
T = 0, Eq. (1) can be rewritten as: 

OD(i)
min pc = DHW(i)

I +BD(i)
L − S(i)

F • BRT(i)
F − BD(i)

F . (2) 

To translate the distance units into time units, OT(i)
min pc can then be defined as: 

OT(i)
min pc = (DHW(i)

I + BD(i)
L − S(i)

F • BRT(i)
F − BD(i)

F )/S(i)
F . (3) 

By selecting appropriate values for BRT(i)
F , a(i)

L , and a(i)
F , OT(i)

min pc can be estimated using Eq. (3) for any given self-occlusion instance 

of the following car’s driver and for different values of DHW(i)
I , S(i)

L , and S(i)
F . 

2.3. Identification and classification of inattention based on OT(i)
min pc 

Now, OT(i)
min pc, which can be estimated for any given following car’s driver at the specific time point where the driver occludes 

oneself, can be interpreted and compared with the driver’s actual OT(i) in the following way:  

• If OT(i)
min pc > OT(i), then the following car’s driver can be considered attentive (visually, i.e., there is still SVC available in that 

instance).  
• Otherwise, if OT(i)

min pc ≤ OT(i), then the driver became inattentive or distracted (i.e., the driver used all the SVC available) and could 
have possibly collided, and, as a special case of being inattentive,  

• if OT(i)
min pc ≤ 0, then the driver should not have occluded at all and could have possibly collided; that is, there was no SVC available 

to occlude oneself. 

Note that OT(i)
min pc reaches the breakeven point, that is, it becomes zero when 

(DHW(i)
I + BD(i)

L − S(i)
F • BRT(i)

F − BD(i)
F )/S(i)

F = 0, i.e.,

DHW(i)
I = BD(i)

F + S(i)
F • BRT(i)

F − BD(i)
L . (4) 

Therefore, as long as DHW(i)
I > BD(i)

F + S(i)
F • BRT(i)

F − BD(i)
L , some SVC is available. 

For the special case in which both vehicles travel at the same speed (S(i)
L = S(i)

F ) and have the same deceleration rate (a(i)
L = a(i)

F ), BD(i)
F 

= BD(i)
L . In this case, the breakeven point from Eq. (4) is reached when 

DHW(i)
I = S(i)

F • BRT(i)
F , i.e., when THW(i)

I = BRT(i)
F . (5) 

In this condition, once the initial time headway between the lead car and the following car from rear to front (THW(i)
I ), measured at 

the moment the following car’s driver occludes oneself, matches the BRT of the following car’s driver, SVC ceases to exist. Therefore, in 
the case of equal car speeds and deceleration rates, a driver – to be attentive – should only occlude oneself when maintaining a THW 
from the lead car that is considerably larger than their BRT. Furthermore, with equal car speeds and deceleration rates, a driver can be 
classified as driving unsafe if, at any time, the THW is less than the driver’s BRT. Appendix 1 presents a look-up table of the critical 
DHWs, for equal lead and following car speeds and deceleration rates, at or below which driving in the worst-case scenario of a lead car 
braking suddenly hard is unsafe, on the basis of the driver’s BRT. 

Now, OT(i)
min pc ≤ 0 also means that even if the driver is visually observing the lead car, a collision is still possible with the lead car in 

the worst-case scenario, in which the lead car suddenly brakes hard. Therefore, Eq. (4), also provides a critical threshold value of the 
DHW that, if maintained at or below, can lead to a possible collision in the worst-case scenario in the form of: 

DHWpc = BDF + SF • BRTF − BDL. (6) 

Now, at a given time point t,  

• if DHW(t)
pc < DHW(t), then the driver is maintaining a sufficient DHW, and some SVC is available.  

• Otherwise, if, DHW(t)
pc ≥ DHW(t), then the driver is maintaining an unsafe DHW, and no SVC is available. 

2.4. Additional assumptions 

There are three additional assumptions behind the model:  

• Whenever a driver has eyes off the forward roadway in real traffic, it is possible the driver can still gather visual information 
through peripheral vision (e.g., of a looming lead car; Svärd et al., 2021). This possibility is omitted from the model, and the driver 
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is considered fully occluded from observing the lead car. This can also be viewed as the worst-case scenario, which is the target of 
the modeling.  

• In all modern cars with brake assist systems (BAS), the brakes engage almost instantly as soon as the brake pedal is pressed swiftly. 
Thus, for the model, we omit the possibility of any brake engagement time, which Green (2000) defined as the additional time 
required for the pedal to depress and for the brakes to engage.  

• It is assumed that the driver cannot swerve to avoid hitting the lead car. This is also a worst-case scenario and is possible if there are 
cars or other obstacles on the adjacent lanes or on the side of the road. 

3. Analytical results 

Here, OT(i)
min pc values emerging from the model for different car following scenarios are defined and illustrated. To do so, the values 

of BD(i)
L , BRT(i)

F , and BD(i)
F need to be determined:  

• BD(i)
L : To compute the braking distance of the lead car, the following formula from the American Association of State Highway and 

Transportation Officials (AASHTO) Green Book (Transportation Officials, 2011, pp. 111) is considered: 

BD(i)
L = 0.039

(S(i)
L )

2

a(i)
L

,

where SL (km/h) is the initial speed of the lead car with which it is moving until the brake response of the car is initiated, and a(i)
L (m/s2) 

is the mean deceleration rate of the lead car during braking. Now, as per the previous conceptualization, the value of a(i)
L is a constant 

across instances, and it approximates the maximum achievable mean deceleration rate for the driver during an emergency. For 
estimation purposes, 6 m/s2 is the value of a(i)

L that is assumed, as this is close to 0.61 g, the maximum observed (mean) deceleration 
rate among 64 drivers when braking for a surprising inflatable barricade in the track study by Fitch, Blanco, Morgan, and Wharton 
(2010). Peak deceleration rates of over 1 g have been observed in crash events in naturalistic driving data (SHRP2 data; Bärgman et al., 
2023), but Markkula et al. (2016), for instance, showed that these peak deceleration rates are not constant even in these critical events; 
nevertheless, there is some jerk and a mean deceleration rate in such events could also be close to 0.6 g. Based on these studies, it is 
assumed that a driver adapts the braking response and thus the deceleration rate based on the observed kinematics and criticality of the 
situation but that the maximum mean deceleration rate for the duration of the braking event in a worst-case scenario is close to 6 m/s2. 

• BRT(i)
F : For the analytical model, considering the possible variability in drivers’ BRTs in a worst-case scenario is meaningful. Es

timates for the plausible minimum and maximum BRTs can be taken from the AASHTO Green Book (Transportation Officials, 2011, 
p. 111). Based on these estimates, most drivers’ BRTs in an unexpected event range from 1.0 to 4.0 s. Thus, the following car’s 
driver is assumed to have the shortest BRT of 1.0 s and the largest BRT of 4.0 s. The variation in OT(i)

min pc between these is then 
modeled. 

Fig. 1. Effects of the distance headway (DHW(i)
I , m) and the time headway (THW(i)

I , s) on OT(i)
min pc at two pairs of fixed speed values, {30,50} and 

{50,30}, across various BRTs ranging from 1 to 4 s. 
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• BD(i)
F : Again, to compute the braking distance of the following car, the following formula from Transportation Officials (2001, pp. 

111) is used: 

BD(i)
F = 0.039

(S(i)
F )

2

a(i)
F

,

where SF (km/h) is the initial speed of the following car with which it is moving until the last point after which the brake response of 
the car is initiated, and a(i)

F (m/s2) is the deceleration rate produced by the following car. Now, as per the present conceptualization, the 
value of a(i)

F is a constant across instances. It is the maximum possible (mean) deceleration rate that can be achieved by the following 
car’s driver. Here, it is assumed that the following car’s driver can decelerate at the same rate as that of the lead car’s driver in an 
emergency because of the same level of observed criticality (Markkula et al., 2016) and the assumed equal friction between the tires 
and the road surface between the two cars. Therefore, 6 m/s2 is also used as an estimate for a(i)

F . 
Next, by using the above-described values in Eq. (3), some example values of OT(i)

min pc are presented for different conditions and 

varying values of DHW(i)
I , S(i)

L , S(i)
F , and BRT(i)

F . The conditions are based on speed limits (50 km/h: ca. 31 mph and 80 km/h: ca. 50 mph) 
and typical DHW and speed variabilities on Finnish urban and main roads (https://vayla.fi/vaylista/aineistot/digiroad). 

3.1. Effects of DHW(i)
I , speed variability, and brake response time on OTmin_pc at lower and higher speeds 

Fig. 1 (left) illustrates the OT(i)
min pc for different values of DHW(i)

I (in meters) considering two pairs of fixed values of {S(i)
L , S(i)

F } (in 
km/h), which are {30,50} and {50,30}. Fifty kilometers per hour is a common speed limit on Finnish urban and suburban roads outside 
city centers. OT(i)

min pc represents the safety–critical threshold of SVC in a specific situation. At zero OT(i)
min pc, no SVC is available. For 

comparison, Fig. 1 (right) illustrates the OT(i)
min pc for different values of THW, THW(i)

I (in seconds), considering the same pairs of fixed 

values of speed. Note that THW(i)
I is defined here from the rear of the lead car to the front of the following car (to still avoid a crash, i.e., 

time gap), compared to, for instance, the front of the lead car to the front of the following car, which is the THW definition provided by 
the Society of Automotive Engineers (Green, 2013). 

Accordingly, Fig. 2 illustrates the OT(i)
min pc for different values of DHW(i)

I (in meters, left) and THW(i)
I (in seconds, right), considering 

two pairs of fixed values of {S(i)
L , S(i)

F } (in km/h), which are {60,80} and{80,60}. Eighty kilometers per hour is a typical speed limit on 
Finnish main roads. Fig. 3 illustrates the effect of the time headway (THW(i)

I , s) on the OT(i)
min pc for conditions, where the two cars have 

the same speed and equal possible deceleration rate (Eq. (5)). 

Fig. 2. Effects of the distance headway (DHW(i)
I , m) and the time headway (THW(i)

I , s) on OT(i)
min pc at two pairs of fixed speed values, {60,80} and 

{80,60}, across various BRTs ranging from 1 to 4 s. 
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4. Empirical results 

4.1. Materials and methods 

A driving simulator experiment was conducted to evaluate how human drivers perform vis-a-vis the critical OT(i)
min pc values 

computed based on Eq. (3) in dynamic car following scenarios. The experiment was carried out at the driving simulator laboratory of 
the University of Jyväskylä using a medium-fidelity driving simulator comprising a Logitech G25 steering wheel and pedals (including 
automatic shifting), an adjustable driver’s seat, a motion platform (CKAS T2s 2DOF), and three 40″ Samsung LED displays (4,320 ×

Fig. 3. Effects of the time headway (THW(i)
I , s) on OT(i)

min pc in equal speed and deceleration rate conditions, across various BRTs ranging from 1 to 
4 s. 

Fig. 4. The simulated driving environment.  

T. Kujala and A. Sarkar                                                                                                                                                                                              



Transportation Research Part F: Psychology and Behaviour 104 (2024) 506–521

513

900) presenting the driving environment generated by Eepsoft driving simulation software (https://www.eepsoft.fi/, Fig. 4). The 
driving log data were saved at 10 Hz. 

Thirty-two participants (M: 23, F: 9; university staff and students) with driving licenses were recruited for the experiment, and they 
were compensated with a 20 EUR gift certificate. Before participation, they filled out informed consent forms. Table 1 provides the 
relevant demographic information of the participants. 

A three-lane highway road was designed for the study. The participant’s car was placed in the middle lane with a car moving in 
front of the participant, as well as multiple cars moving in the adjacent lanes but in the same direction; lane change was prohibited. 

The experiment was divided into two parts (Fig. 5). In the first trial of the first part (BRT1), the lead car, which drove at a static 
speed of 80 km/h, was programmed in such a way that it would suddenly brake hard (at 6 m/s2) after 2 min of driving, creating an 
emergency for the participants to react to and thus allowing us to estimate their BRTs for an unexpected event. The instructions for the 
participants were to stay in their lane and to try to maintain a minimum DHW to the lead car that they perceived as still safe. For the 
course of the trial, cruise control was set up and active in the participant’s car at 80 km/h, but they were allowed to use the brake and 
the gas pedals as per their convenience in order to keep their car at their preferred safe minimum DHWs. The BRT trial was repeated 
three times to assess whether the participants would adjust their DHWs and BRTs after the first trial in which the braking event was 
unexpected. In the latter two trials, the lead car braked suddenly after 1.5 (BRT2) and 1 min (BRT3) of driving. 

In the second part of the experiment, a voluntary occlusion feature – following the study by Safford (1971) – was introduced in 
which the participants could occlude themselves (i.e., the screens in front of them turned black) at their own will using a lever placed 
behind the steering wheel. This part of the study consisted of two 5 min counterbalanced driving sessions using the dynamic conditions 
described in Table 2. The lead car was programmed to vary its speed from 40 to 60 km/h or from 70 to 90 km/h, depending on the trial 
(low speed or high speed). This meant that its distance from the participant’s car varied, but it was ensured that if the participant kept 
driving at the cruise control speed, the cars would not crash. However, the participants did not know this 

The participants were instructed to stay in their lane and encouraged to maximize the time driven occluded while avoiding collision 
with the lead car, an approach that is line with the study design of Safford (1971). They were advised that they could brake if they felt 
that the DHW was too short but that the car would speed up automatically to the speed set for cruise control after braking. The 
participants were instructed to try to avoid adjusting their headways unless necessary because we were interested in knowing whether 
they chose to occlude themselves even when the headway was not safe. However, the variance of the DHWs shows that they adjusted 
them (Table 4). On average, in 59.5 % (SD = 31.3 %) and 17.1 % (SD = 27.5 %) of the trial duration in the low- and high-speed 
conditions, respectively, there was SVC available for the driver, corresponding to about 3 min and 51 s, respectively. Therefore, 
there were many occasions in both conditions in which the participants could have occluded themselves without being labeled as 
inattentive. 

4.2. Results 

Tables 3–5 present the relevant descriptive statistics on the participants’ BRTs in the BRT trials, the DHWs throughout the 
experiment, and the voluntary occlusion counts and durations in the occlusion trials. 

In the BRT trials, time-to-collision (TTC; Vogel, 2003) at the onset of the lead car braking in events where S(i)
L <= S(i)

F (30 % of 
events) varied from 21.81 s to 627.78 s (M = 104.86 s, SD = 88.35 s). Naturally, TTCs rapidly decreased after the onset of braking. 
Nineteen of the 32 participants (59.4 %) collided with the lead car in the BRT1 trial (unexpected braking of the lead car), suggesting 
that the braking event was truly unexpected for them and that the minimum DHWs they thought were still safe were insufficient to 
avoid the crash (Table 6). In BRT1, the mean of the mean deceleration rates during emergency braking was 6.21 m/s2 (SD = 0.95), 
while the maximum peak deceleration rate reached 9.51 m/s2 (as measured pre-crash). In BRT2 four (12.5 %) and BRT3 two (6.3 %) 
participants collided with the lead car. 

Mixed-effects model for BRT across the three BRT trials indicates that the participants adapted their BRTs based on the DHWs at the 
onset of the sudden hard-braking event by the lead car (Table 7). The intraclass correlation coefficient (ICC) for the intercept-only 
model was 0.534, and therefore a multilevel model with a participant as a random effect seemed appropriate for the analyses. 
Strong BRT–headway correlations were observed in all three trials (BRT1: r = 0.87, BRT2: r = 0.92, BRT3: r = 0.75, Fig. 6), and the 
model indicates that, on average, the BRT increased by 0.03 s per 1 m of increase in DHW. However, there was an additive independent 
effect of the BRT trial number; the BRT decreased, on average, by 0.36 s from BRT1 to BRT3, suggesting that the surprise effect was 
gone in the third trial. After the fixed effects of DHW and BRT trial number were added, no significant variance in the participants’ 
intercepts was observed (σ2 < 0.001). The random slope effect of DHW within participants was not significant either (σ2 < 0.001, p =
0.271). This means that the effect of DHW on the BRT does not seem to vary significantly between the participants (see Appendix 2). 
However, the random slope effect of the trial within participants was significant (σ2 < 0.145, p < 0.001). The ICC for this effect was 

Table 1 
Demographics of the participants.  

N = 32 Range Mean Median Standard deviation 

Age 21–57 32.1 31 8.9 
Driving experience (in years) 2–44 12.8 10 9.4 
Self-estimated driving experience per year (in km) 100–47,000 9,953.1 9,000 9,943.3 
Self-estimated lifetime driving experience (in km) 5,000–650,000 123,613.5 100,000 153,346  
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Fig. 5. Experimental design with the conditions in the two parts of the study.  

Table 2 
Speed conditions (km/h) for the voluntary occlusion trials.  

Trial Lead car speed range Car cruise control speed set 

Voluntary occlusion trial: Low speed 40–60 50 
Voluntary occlusion trial: High speed 70–90 80  

Table 3 
Descriptive statistics of the brake response times per trial (s), N = 32.  

Trial Range Mean Median Standard deviation 

BRT1 – Unexpected emergency 0.82–3.40 1.90 1.70 0.82 
BRT2 0.92–4.62 2.26 1.86 1.07 
BRT3 0.61–4.61 1.98 1.60 1.03  

Table 4 
Descriptive statistics of the distance headways to the lead car (m), N = 32.  

Trial Range of minimum Range of maximum Mean Standard deviation 

BRT1 – Unexpected emergency* 4.3–37.0 16.7–96.6 31.0 15.6 
BRT2* 3.9–71.5 24.5–148.1 44.1 27.9 
BRT3* 10.8–103.9 18.9–140.0 41.7 26.8 
Voluntary occlusion trial: Low speed** 4.5–29.2 24.4–160.2 31.7 11.6 
Voluntary occlusion trial: High speed** 3.8–78.4 47.6–225.8 38.4 14.4  

* DHWs measured from reaching 80 km/h for the first time until the onset of the braking event. 
** DHWs measured at the start of each occlusion period. 

Table 5 
Descriptive statistics of the number of occlusions and occlusion durations (s), N = 32.  

Trial Range of occlusions Mean Standard deviation 

Count Duration Count Duration 

Voluntary occlusion trial: Low speed 8–213 76  1.70  54.7  0.93 
Voluntary occlusion trial: High speed 10–213 74  1.57  53.0  0.81  
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0.50, suggesting that half of the residual variance can be attributed to the differences in the participants’ BRT behaviors based on the 
BRT trial. This variance was especially visible in the BRT3 trial. The final model fit (− 2RLL) was 168.574, and the conditional pseudo- 
R2 was 0.851 (IBM SPSS v29). 

These findings stress the importance of considering the effect of the DHW on the driver’s BRT in our model. Fig. 7 illustrates the 
distribution of unsafe DHWs in the BRT trials as a percentage of the trial duration (10 Hz sampling rate). These are based on the 
sufficiency of the DHW if the lead car brakes hard (Eq. (6)), while the driver’s BRT is adjusted for the DHW at each time point based on 
Eq. (7) (where t2 is each time point of measurement, which is every 100 ms here). The DHW was labeled unsafe if it was below or at the 
critical DHW (Eq. (6)). Repeated measures ANOVA shows a significant effect of trial number on the percentage of driving with unsafe 
DHWs, F(2,62) = 6.384, p = 0.003, ηp

2 = 0.171. There was a significant decrease in unsafe DHWs from BRT1 to BRT2 (t(31) = 2.748, p 
= 0.010, d = 0.49) and from BRT1 to BRT3 (t(31) = 2.818, p = 0.008, d = 0.50) but not between BRT2 and BRT3 (p = 0.503). 

Because of the strong association between BRT and DHW, it also seems important to adjust the drivers’ situational BRTs based on 
the decreasing DHW in the worst-case event of a lead car braking hard at the onset of an occlusion. Therefore, the following 
computational algorithm is proposed to calculate the OT(i)

min pc for the analyses of the empirical occlusion data and for similar mea
surements in general (also regarding in-car glancing). If a following car’s driver would occlude oneself for the ith instance at any time 

Table 6 
Mean brake response times (s) and distance headways (m) at the onset of braking event in crash events per BRT trial, N = 32.  

Trial BRT, s (range) DHW, m (range) 

BRT1 – Unexpected emergency (19 crashes) 2.03 (0.82–3.40) 30.76 (8.94–80.72) 
BRT2 (4 crashes) 1.93 (1.34–3.19) 25.29 (17.70–43.17) 
BRT3 (2 crashes) 2.15 (2.04–2.26) 32.87 (31.14–34.59)  

Table 7 
Mixed-effects model for the brake response times (s), N = 32.  

Fixed effects Estimate Standard error p 95 % CI lower bound 95 % CI upper bound 

Intercept 0.907 0.116 <0.001 0.678 1.137 
Distance headway (per m) 0.031 0.002 <0.001 0.026 0.036  

BRT1 – Unexpected emergency* 0     
BRT2 − 0.217 0.133 0.107 − 0.482 0.048 
BRT3 − 0.355 0.131 0.008 − 0.615 − 0.095  

Random effects σ2 Standard error p   
Trial (participant) 0.145 0.043 <0.001   
Residual 0.145      

* The factors below are compared with the factor that obtains a value of zero. 

Fig. 6. Strong linear association between distance headway (DHW) and brake response time (BRT) across the three trials (BRT1–BRT3), R2 = 0.69. 
The association is strong even if the four datapoints with DHW > 120 m were removed (R2 = 0.64). 
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point t1 and if t2 is any future time point after that (t2 > t1), then the DHW-corrected BRT should the driver decide to unocclude at t2 can 
be estimated as: 

BRT(i)(t2)
F = BRTUE

F +{0.03 • (DHW(i)(t2) − DHW(UE))}, (7)  

where BRTUE
F is the BRT of the following driver in an unexpected emergency, DHW(UE) is the DHW between the lead car and the 

following car for which BRTUE
F is measured, and DHW(i)(t2) is the DHW between the lead car and the following car at t2. The constant 

0.03 is based on the linear model in Table 7. To estimate DHW(i)(t2), the relative longitudinal position of the lead car that starts to brake 
at the onset of occlusion i, y(i)(t2)L at any time point t2, can be derived as: 

Fig. 7. Mean percentage of the BRT trial duration when the DHW was above (gray: SVC available) or at/below (dark gray: Unsafe DHW) the 
situational critical DHW (Eq. (6)). Errors bars: 95 % confidence interval for the means. 

Fig. 8. Mean percentages of occlusions for which the driver was classified as attentive or inattentive based on SVC. Errors bars: 95 % confidence 
interval for the means. 
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y(i)(t2)
L = y(i)(t1)

L +{(S(i)(t1)
L • (t2 − t1)(i)) + (

1
2
• a • (t2 − t1)(i) • (t2 − t1)(i))}, (8)  

with a = − 6 m/s2 as in Section 3. The relative longitudinal position of the following car at t2 is accordingly: 

y(i)(t2)
F = y(i)(t1)

F +(S(i)(t1)
F • (t2 − t1)(i)). (9)  

DHW(i)(t2) for Eq. (7) can then be calculated as y(i)(t2)L − y(i)(t2)F . Now, the value of OT(i)
min pc should the driver decide to unocclude at any 

time point t2 can be estimated as: 

OT(i)(t2 − t1)
min pc = (DHW(i)

I + BD(i)
L − S(i)

F • BRT(i)(t2)
F − BD(i)

F )/S(i)
F . (10) 

As long as OT(i)(t2 − t1)
min pc is greater than (t2 − t1), there is SVC, and at the moment OT(i)(t2 − t1)

min pc becomes less than or equal to (t2 − t1), SVC 

ceases to exist. Furthermore, if OT(i)(t2 − t1)
min pc ≤ 0, then SVC does not exist. 

Based on Eqs. (7)–(10), the OT(i)(t2 − t1)
min pc for each occlusion in the empirical data was estimated. The participants’ occlusion behaviors 

were then compared against these values in accordance with the classification rules presented in Section 2.3 in order to identify the 
driver as attentive and inattentive. Fig. 8 presents the distribution of the observed driver attentiveness and inattentiveness per oc
clusion and by trial. 

A paired samples t-test was conducted to examine whether there were statistically significant differences between the trials (i.e., 
low vs. high speed) across the three attention–inattention classification segments. The percentage of attentive occlusions decreased 
significantly with an increase in speed, d = 0.81; the percentage of such occlusions that were initiated when there was no SVC 
increased with an increase in speed, d = 1.28; and the percentage of occlusions that exceeded SVC increased with higher speeds, d =
0.62 (Table 8). 

5. Discussion 

To the best of our knowledge, this study introduces the first mathematical, analytically derived, and driver- and situationally 
dependent measurement of SVC and definition of inattention in a driving task. The proposed definition of inattention based on SVC 
avoids the hindsight bias common to those definitions that rely on categorizing a driver as attentive or inattentive a posteriori based on 
what happened in a situation (Kircher & Ahlstrom, 2017; Regan et al., 2011). For driver (in)attention monitoring and alerting ap
plications, we need to know a priori, before a crash or a lane excursion, whether the driver is attentive. The current definition is also 
fully in line with the conceptual definition by Regan et al. (2011, p. 1775) that inattention is “insufficient, or no attention, to activities 
critical for safe driving”. 

The analytical results clearly indicate the insufficiency of static thresholds (e.g., 2 s) for SVC in dynamic car following scenarios. 
There is often SVC in car following, but this is highly dependent on the DHW, the following car’s speed, the lead car’s speed, and the 
BRT to avoid the possibility of a rear-end crash in an emergency braking scenario (i.e., what-if scenario). As the braking distances 
follow a quadratic growth function per initial driving speed, the higher the speed, the lower the SVC at similar DHWs or relative speeds. 
Even in a car following situation involving a static speed and equal deceleration rates, a 2 s THW does not allow for SVC unless the 
driver has a response time faster than 2 s (Eq. (5)). Response times to unexpected events can be easily lengthened by secondary tasks 
(Gao & Davis, 2017). Therefore, one should acquire this capacity by decelerating and/or increasing the DHW if looking away from the 
lead car. 

The empirical findings suggest that drivers are willing to occlude themselves even if doing so is not safe based on the model and on 
their individual and situational BRTs. The study was conducted in a driving simulator, which may limit the generalizability of the 
results. However, before the occlusion measurements, all the participants had had an experience in the BRT trials that it is possible that 
the lead car brakes unexpectedly with force and in the first BRT trial (BRT1) more than a half (59.4 %) of them had crashed with it. The 
increase in DHWs and the associated increase in response times (Tables 3 and 4) in the two subsequent BRT trials indicate that the 
participants were better prepared for the possible braking event and thus more attentive, based on our new metric (Fig. 7). These 
findings and the decreased BRT by trial number when controlling for the DHW (Table 7) suggest that the braking event was truly 
unexpected in BRT1. Therefore, using the individual BRTs in BRT1 as the estimates for a response time in an unexpected hard braking 
event by the lead car was justifiable in the analyses of the following occlusion trials. In the case of occlusion (or after glancing away 
from the forward roadway), the sudden hard braking of the lead car can always be considered an unexpected event as the driver would 
probably not look away if expecting a lead car to brake. 

It seems that drivers’ ability to estimate whether occluding in a car following scenario is safe decreases with higher speeds. These 
results are in line with those of Risto and Martens (2011) that drivers’ ability to correctly estimate the DHW decreases significantly 
with an increase in speed. Furthermore, it is known that the probability that drivers overestimate the TTC under occluded vision 
increases with an increase in the relative speed between the lead car and the following car (Kiefer et al., 2006). It is unlikely that the 
human brain could estimate the duration of time it is safe to look elsewhere other than at the lead car on the basis of something similar 
to the presented equations. Even if a driver is aware of their own speed, human perception is highly limited in speed and DHW or THW 
estimations (Taieb-Maimon & Shinar, 2001; Taieb-Maimon, 2007). These findings highlight the potential utility and effects of inat
tention warnings based on the presented model of SVC and inattention classification. However, the generalizability of the findings, 
equations, and assumptions should also be validated with real vehicles, either on a test track or in a natural driving environment. 
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Naturally, we cannot tell whether the driver is truly attentive to the lead car whenever they are looking elsewhere or even when 
they are looking at it (Ahlström, Kircher, et al., 2021). The model assumes that they are paying (internal) attention to the car following 
task for the occlusions that are within their situational SVC; therefore, these instances were labeled as attentive. At least, these oc
clusions can be regarded as safe from the perspective of the car following task, even if the driver’s thoughts were elsewhere. 
Furthermore, the driver can be labeled attentive whenever they keep a safe headway to the lead car. 

The modeling was started with a car following task as a highly safety–critical driving scenario, especially in terms of visual 
distraction (Bálint et al., 2020; Victor et al., 2015). A similar approach could also be applied to the measurement of SVC and the 
definition of inattention in other part-tasks of driving, such as lane keeping and visual sampling in crossings. For real-world (in) 
attention monitoring applications, a variety of combined SVC models per part-task that are applicable to all possible driving scenarios 
are needed. Furthermore, even in car following scenarios, additional contextual variables could be accommodated in the model, such 
as distances to cars on adjacent lanes, which have the possibility of making sudden lane changes in front of the driver. It should also be 
noted that the equations do not apply in situations in which the initial speed of the lead car is zero (i.e., a standstill) but the model could 
be modified to account for such situations too. 

A few assumptions behind the model need to be discussed further. The equations are based on the notion of full occlusion, while the 
driver often has peripheral vision available while looking off forward (Wolfe et al., 2022). However, evidence suggests that drivers are 
not sensitive to peripheral information (e.g., lateral position of the car and brake lights) when conducting cognitively high-demanding 
in-car tasks (Grahn et al., 2023; Williams, 1982; Zhang et al., 2006). Again, the model applies to the worst-case scenario in which there 
is no peripheral information available or the driver is not able to utilize this. The model could also accommodate situations in which 
there are variable levels of occlusion, depending on, for instance, the in-car activity. In situations with good visibility ahead, with no 
traffic lights, or with no other drivers ahead of the lead car, a driver can anticipate and rely on the lead car not to brake hard or there 
could be noticeable room to swerve in the case of hard braking. Again, the equations apply to the worst-case scenario and define the 
absolute minimum SVC in a car following situation. However, expecting what is possible and not the unexpected in any driving sit
uation, with the latter being impossible, is rational. Therefore, acceptable implementations of driver-alerting algorithms based on the 
equations might benefit from additional contextual information. 

The model also assumes that the following car maintains a uniform speed during occlusion. Drivers might decrease their speeds 
when looking off forward, especially during in-car tasks (Jamson & Merat, 2005). Similar to adjusting the BRT based on the situational 
DHW, this behavior could be accommodated in the calculations. The same braking distance for both the lead car and the following car 
was also assumed. However, cars can differ in these aspects depending on their mechanical features, such as tires or BAS imple
mentations, and drivers’ ability to utilize BAS can also vary (Fitch, Blanco, Morgan, Rice, et al., 2010). Car- and driver-specific 
modifications of the constants would be useful in this regard. Obviously, the thresholds apply only to manual driving. Attempting 
to define the situational SVC for assisted driving would be interesting but would likely be more challenging than for manual driving 
part-tasks, as the reliability of the assistance system, given possible system failure in different scenarios, should also be determined 
(Bärgman & Victor, 2020). 

The abilities of drivers could be estimated to define the optimal and perhaps most acceptable threshold for them. In the analysis of 
the experimental data, the BRT parameters were fitted for a specific driver. Because of the found strong linear association between BRT 
and DHW, adjusting the BRT estimate on the DHW is also important. This could likewise be done on the possible visual looming cues 
available for a driver in a situation (Markkula et al., 2016; Svärd et al., 2021). The mixed-effects model for BRT (Table 7) supports the 
notion that drivers can adapt their BRTs based on the observed urgency of the situation (Markkula et al., 2016). With the same level of 
observed urgency, and if assisted by the car’s BAS, the following car’s driver can be assumed to produce similar response times and 
deceleration rates as those of the lead car’s driver, although glancing elsewhere and missing the start of the braking event might lead to 
a delayed response similar to an unexpected event. There was not much variation between the individual BRTs when DHW is 
accounted for (see Appendix 2). This might suggest that any driver’s BRT could be estimated based on the model in Table 7. Distance is 
something that can be more easily perceived by a driver than time gap (Taieb-Maimon & Shinar, 2001), which might explain the strong 
linear relationship between DHW and BRT. However, the model’s reliability should be examined with a larger and more representative 
driver sample and in more realistic driving. For instance, the model assumes any driver can brake at − 6 m/s2 rate if needed but this 
ability may vary between drivers, even with BAS (Fitch, Blanco, Morgan, Rice, et al., 2010). 

The parameter selections for the model are targeted at describing the situational thresholds for the absolute minimum SVC in car 
following. Appendix 1 shows the variability in critical DHWs that are unsafe in static-speed driving if the lead car’s driver brakes hard 
suddenly, based on various response times. In the current experiment, the mean BRT for an unexpected event in BRT1 was 1.90 s 
(range: 0.82–3.40 s). Brake response times that are over 3 s can be considered relatively long, but all four participants with BRTs above 

Table 8 
Paired samples t-test for the differences in attentiveness/inattentiveness between the occlusion trials (α = 0.05), N = 32.  

Voluntary occlusion trial: Low speed – High speed Paired differences 

Mean difference SEM 95 % CI of the difference t df p-value (2-tailed) 

Lower Upper 

Occlusions were realized within SVC – Attentive 13.96 3.05 7.74 20.18 4.576 31 <0.001 
Occlusions were initiated when there was no SVC –Inattentive − 33.77 4.66 − 43.28 − 24.27 − 7.248 31 <0.001 
Occlusions exceeded SVC – Inattentive 19.81 5.65 8.29 31.34 3.506 31 <0.001  
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3 s also had relatively long DHWs at the onset of the braking event, ranging from 40.22 to 80.72 m. Observing a braking event at these 
distances in a simulator might be more challenging than in real traffic, aside from adapting the BRT to the criticality involved. 
However, in our simulator the expansion rates (range 0.0034–0.01) for the farthest DHWs at the onset of braking event with the 
observed speeds were above the 0.003 detection threshold reported for laboratory settings (Hoffman & Mortimer, 1996). On the other 
hand, our BRT estimates did not include glance transition times (Svärd et al., 2021). The analysis by Markkula et al. (2016) suggests 
that there is a looming threshold around 5 s TTC below which drivers seem to respond to lead car braking after an off-road glance very 
rapidly, in less than a second. From this point of view, the BRT of 0.907 s in our model (Table 7) for a hypothetical 0 m DHW might be 
too large but the relationships between DHWs, TTCs and BRTs in critical and non-critical braking events should be further clarified. 

Interestingly, the common safety guideline of keeping a 2 s THW to a lead car in a static-speed car following scenario (e.g., https:// 
dmv.ny.gov/about-dmv/chapter-8-defensive-driving) does not necessarily guarantee any SVC according to the worst-case scenario 
estimates (Figs. 1 and 2). It can be a safe THW for a situation in which the driver is fully attentive or can react within 2 s to a lead car 
braking, but the model suggests that in the worst-case scenario, a risk can be associated even with a brief glance off the forward 
roadway. It should be noted that it might be a very low risk based on statistics, and a responsive driver with peripheral vision available 
might easily have more SVC. However, the findings suggest that this common safety guideline might need a revision for distracted 
driving, that is, for situations in which the driver is multitasking behind the wheel. In some countries (e.g., Australia and Sweden), the 
guideline is 3 s, but this static threshold might also be insufficient based on the situational kinematics and the driver’s abilities (see 
Figs. 1 and 2). Adopting an attention monitoring system based on the current model might be useful to help train drivers early on to 
learn to adapt their headways in a safe manner to the situational parameters in either driving schools or during their first year of 
driving. 

In future research, drivers’ speed adjustment, headway decisions, and in-car glances while multitasking in real traffic should be 
compared against the normative situational thresholds given by the model based on, for instance, the SHRP2 baseline data (https:// 
insight.shrp2nds.us/). The equations can also be applied to classify a driver as attentive or inattentive to the DHW in car following 
scenarios even if the driver’s eyes are on the lead car (cf. Fig. 7). This approach would provide an estimate of how capable drivers are in 
ensuring safety – that is, whether they are playing with odds or with possibilities – and, thereby, how effective inattention warnings 
based on such thresholds could be in real traffic. The effects of various demographic variables, such as age, on the current metrics could 
be studied using larger and more representative samples. It would be interesting to study real-world crashes, such as in the SHRP2 data, 
by applying a hypothetical attention monitoring system based on the model to determine whether alerts on the thresholds would have 
helped avoid the crashes. Furthermore, the equations could be utilized as valid baselines for measuring the inattention potential of in- 
car tasks in simulated car following scenarios to test and benchmark, for instance, in-car user interfaces. As another example, it would 
be interesting to identify how much inattention the manual radio tuning task – the norm of acceptable distraction (e.g., Lee et al., 2018) 
– actually causes based on the inattention classification. 
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Appendix 1 

Table A1 shows the distribution of critical distance headways (DHWs; in meters) at and below which it is unsafe to drive if the lead 
car’s driver brakes hard suddenly and the lead car and the following car have the same initial speed and equal possible deceleration 
rate. In the table, the brake response time (s) equals the time headway from the rear of the lead car to the front of the following car.  

Table A1 
Critical distance headway (m) up to which it is unsafe to drive if the lead car’s driver brakes hard suddenly.  

Speed (km/h)* Brake Response Time (s) (=Time Headway) 

0.5 1 1.5 2 2.5 3 3.5 4 

30  4.17  8.33  12.50  16.67  20.83  25.00  29.17  33.33 

(continued on next page) 
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Table A1 (continued ) 

Speed (km/h)* Brake Response Time (s) (=Time Headway) 

0.5 1 1.5 2 2.5 3 3.5 4 

40  5.56  11.11  16.67  22.22  27.78  33.33  38.89  44.44 
50  6.94  13.89  20.83  27.78  34.72  41.67  48.61  55.56 
60  8.33  16.67  25.00  33.33  41.67  50.00  58.33  66.67 
70  9.72  19.44  29.17  38.89  48.61  58.33  68.06  77.78 
80  11.11  22.22  33.33  44.44  55.56  66.67  77.78  88.89 
90  12.50  25.00  37.50  50.00  62.50  75.00  87.50  100.00 
100  13.89  27.78  41.67  55.56  69.44  83.33  97.22  111.11 
110  15.28  30.56  45.83  61.11  76.39  91.67  106.94  122.22 
120  16.67  33.33  50.00  66.67  83.33  100.00  116.67  133.33  

* Equal speeds and equal possible deceleration rates assumed for the lead car and the following car. 
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