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ABSTRACT 

 

Chiang, C. 2024. Stride-to-stride lower limb sagittal-plane joint angle variability of walking 

across inclinations. Faculty of Sport and Health Sciences, University of Jyväskylä, Master’s 

Thesis in Biomechanics, 64 p, 4 appendices. 

 

As walking serves as an indicator of multiple health conditions and quality of life, it is important 

to obtain a thorough understanding of walking, specifically, gait. When walking in the 

community, it is inevitable to walk on uneven surfaces, including slopes. The sloped walking 

is more imbalanced compared to level walking and several alterations in biomechanics are 

required to adapt to its perturbations. Since the trunk and pelvis manage their position according 

to the earth’s vertical during sloped walking, the lower limbs have to interact with this postural 

adjustment, leading to changes in kinematics. During walking, the sensorimotor system 

constantly tunes the movement patterns, and the variance exists from stride to stride. The 

variability within movement has been found to have a deterministic origin, and it alters when 

encounters perturbations or new tasks. An increased variability has been correlated to decreased 

balance performance or enhanced adaptability of movement strategy. Extremely high or low 

variability is considered an impairment or unhealthy condition. So far, there haven’t been many 

studies about gait variability during sloped walking and more studies are mandatory to reveal 

how sensorimotor strategy alters. As a result, this study aims to investigate the stride-to-stride 

lower limb sagittal-plane joint angle variability during uphill and downhill walking.  

 

The participants were healthy adults (Age: 34.2±7.6, 13 females). They were asked to walk on 

the treadmill at a constant self-selected speed and at 0°, ±2°, ±4°, ±6°, and ±12° inclinations. 

Motion data was collected by an 8-camera motion capture system with a sampling rate of 200 

Hz. Plug-in-Gait lower body model was applied for kinematic analysis. Thirty participants’ data 

were included in the analysis. An automatic gait event detection based on marker displacement 

was adopted to estimate the gait events. The sagittal-plane joint angle variability was calculated 

through a linear method, mean standard deviation, and a non-linear method, sample entropy.  

 

The results showed that the inclinations had significant effects on the spatiotemporal parameters 

and the lower limb sagittal-plane joint angle variability. The alterations in the spatiotemporal 

parameters indicated that the participants favored a more conservative gait during downhill and 

steep uphill walking. Stride-to-stride sagittal-plane joint angle variability generally increased 

as the inclinations increased. Specifically, the amount and the structure of the sagittal-plane 

joint angle variability increased during downhill walking compared to level walking. On the 

other hand, during uphill walking, the amount of the sagittal-plane joint angle variability 

incrementally increased as the inclination increased, while the structure of the sagittal-plane 

joint angle variability decreased at lower inclines and increased at the highest inclines. Overall, 

the results indicated that the healthy adults used a more flexible movement strategy during 

sloped walking. The alteration in the sagittal-plane joint angle variability suggested that the 

sensorimotor strategy was task-specific, and it might change in response to the balance 

perturbations, muscular coordination, and power demands during walking on inclined surfaces.  
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ABBREVIATIONS 

 

ANOVA analysis of variance 

ApEn  approximate entropy 

COG  center of gravity 

COM  center of mass 

CKC  closed kinematic chain 

FS  foot strike 

FO  foot off 

MoCap motion-capture 

OKC  open kinematic chain 

SampEn sample entropy 
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1 INTRODUCTION 

 

Walking is one of the most important functions in our daily life. Scientific and clinical fields 

have adopted the ability to walk as an indicator of the coordination of movement, the progress 

of rehabilitation, the risk of medical conditions, the functional fitness level, the risk of falling 

for the elderly or population with movement disorders, and the quality of life (Lee et al. 2021). 

When walking in the community, we encounter obstacles, turns, stairs, slopes, and different 

surfaces. Thus, studying walking in various conditions is important to understand it thoroughly.  

 

During sloped walking, movement is altered to fulfill the different requirements of foot 

clearance and foot placement and is carried out by a serial adjustment of the body segments and 

postural support (Prentice et al. 2004). Especially on higher inclinations, the biomechanics of 

gait considerably differ from the level ground walking (Kawamura et al. 1991). The major tasks 

of uphill walking are propelling the center of mass upward and forward (Leroux et al. 2002) 

and making sufficient foot clearance and longer strides during the swing phase (Leroux et al. 

2002; McIntosh et al. 2006; Wen et al. 2019). In contrast, downhill walking draws attention to 

energy absorption and impact management (Leroux et al. 2002; McIntosh et al. 2006). Walking 

downhill is also challenging to maintain balance and requires more energy consumption to 

recover from perturbations (Dewolf et al. 2020). 

 

When we walk, none of the movement patterns in our strides are exactly repeated (Newell and 

Corcos. 1993). This variance within the repetitive movement task has been explained by a 

concept called movement variability (Stergiou. 2004). Movement variability was once thought 

to be a random error or noise (Harris and Wolpert. 1998). However, recent studies found it to 

be deterministic (Hausdorff et al. 1996) and serve a functional role in the sensorimotor system 

(Hamill et al. 1999). To be more specific, the variability allows the sensorimotor system to be 

more flexible and adaptive to perturbations or yields a chance to try and learn a new movement 

pattern (Stergiou. 2004). For example, several articles have presented that joint angle variability 

increases in response to perturbations, such as unstable surfaces (Mohr et al. 2023) and higher 

impacts on the limb (Estep et al. 2018). A similar phenomenon was also observed during sloped 

walking, in which movement variability increased when the inclination of the walking path 

increased (Dewolf et al. 2020; Sarvestan et al. 2021).  
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When using linear mathematics to examine movement variability, the outcome shows the 

amount of variability (Harbourne and Stergiou. 2009). A non-linear method is more suitable to 

examine the complexity of movement and it reveals the structure of variability (Stergiou. 2004; 

Harbourne and Stergiou. 2009). So far, no studies have examined stride-to-stride joint angle 

variability in downhill walking, nor has research been conducted with a non-linear method. 

Therefore, to better understand how the sensorimotor system reacts to inclinations, the present 

study investigated stride-to-stride lower limb sagittal-plane joint angle variability during 

walking across inclinations, including uphill and downhill, with a linear and a non-linear 

method. 
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2 ANATOMY OF LOWER LIMBS 

 

The human body can be categorized into three major components: upper extremity, trunk, and 

lower extremity. The lower extremity yields most of the movement during human ambulation, 

which makes it important to understand the structures comprised of it. Thus, this chapter will 

focus on the anatomy of the lower extremities, including the terminology describing movements.  

 

2.1 Terminology 

 

Kinematics is a term for mechanics of the motion of a body (Neumann. 2017). There are a few 

aspects for describing the motion in Kinematics, including planes of motion, axis of rotation, 

and degrees of freedom. When a human is standing in an anatomical position (Figure 1), the 

sagittal plane is the one that runs in between the body’s left and right sides; the frontal plane 

separates the body into back and front parts, and it faces the same direction where the body’s 

facing; the horizontal or the transverse plane divides the body into upper and lower parts, which 

is parallel to the standing surface (Neumann. 2017). The axes of rotation are perpendicular to 

the planes of motion. The one perpendicular to the sagittal plane runs in the direction of the 

mediolateral; for the frontal plane, the axis is in an anterioposterior direction; the axis for 

rotating on the horizontal plane is referred to as the superioinferior or vertical axis (Neumann. 

2017). Regarding the relative position, the term proximal represents being closer to the center 

of the human body, and distal is referred to the opposite direction. 

 

 

FIGURE 1. Planes of motion and axes of rotation. Adapted and revised from Anang et al. 

(2016). 
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Generally, the motions on the sagittal plane that go forward and backward of the anatomical 

position are defined as flexion and extension respectively; on the frontal plane, the motion 

moving away from the body’s mid-line is referred to as abduction, and the motion is the reverse 

is adduction; the motions on the horizontal plane are internal rotation and external rotation, 

defined by the direction of body segments rotating toward (Calais-Germain. 2007). However, 

the terms for motion may differ according to the body segments. For example, the motions of 

the ankle joint are defined as plantar flexion and dorsiflexion on the sagittal plane. 

 

The degree of freedom is defined as the number of independent directions of movement allowed 

at a joint, as well as the number of permitted planes of angular motion (Neumann. 2017). For 

example, if a joint allows motions on three planes, it has three degrees of freedom. 

 

The open kinematic chain (OKC) refers to the condition that the distal segment moves freely in 

the space, and the movement results from the distal segment rotating on the proximal segment. 

In contrast, the closed kinematic chain (CKC) describes that the distal segment is fixed in an 

immovable object, e.g. earth, and therefore the proximal segment becomes the one rotating on 

the distal segment (Neumann. 2017).  

 

2.2 Bones and joints 

 

The following paragraphs focus on the interested joints in this study, which are the hip, knee, 

and ankle joints, and the bones consist of the joints. The joint is formed as the neighboring 

bones are linked, and the joints dominant in lower limb movements are synovial joints (Calais-

Germain. 2007). Depending on the linking spot of bones, which is the articular surface, the 

synovial joints in lower limbs can be further categorized into ball-and-socket, hinge, ellipsoid, 

plane, and condyloid joints (Neumann. 2017).  

 

2.2.1 The hip joint 

 

The pelvis consists of ilium, pubis, and ischium bones of both the left and right side, which is 

a bowl-shaped segment connecting the trunk and lower limb. The pelvis serves an important 

role in the common attachment of muscles in the lower limb (Neumann. 2017).  The femur is 

the bone of the thigh segment, whose structure can be subdivided into the head, neck, and shaft. 
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The hip joint, a general term for the coxofemural joint, is formed with the acetabulum of the 

pelvis and the femoral head. As a ball-and-socket joint, the hip allows more degrees of freedom 

in motion (Calais-Germain. 2007). Since joint stability is determined by both articular geometry 

and soft tissue integrity (Fetto. 2019), the hip joint, surrounded by strong muscular and 

ligamentous structures, provides essential stability during walking (Calais-Germain. 2007; 

Neumann. 2017).  

 

The hip performs flexion, extension, abduction, adduction, external rotation, and internal 

rotation from the aspect of femur-on-pelvis rotation. The terms for motions of pelvis-on-femur 

rotation are mostly the same, except that they refer to anterior and posterior pelvic tilt on the 

sagittal plane (Neumann. 2017). 

 

2.2.2 The knee joint 

 

The tibia and fibula are located below the femur, and they run parallel to each other. While only 

the tibia makes contact with the distal femur, the fibula assists in transferring the load between 

the knee and ankle (Neumann. 2017). The patella is a sesamoid bone, indicating that it is 

embedded in the tendon. The quadriceps femoris tendon runs over the patella, extends inferiorly, 

and inserts at the tibial tuberosity (Neumann. 2017). 

 

The knee joint is a general term, which combines two joints: the femoropatellar joint and the 

femerotibial joint. The knee is recognized as a condyloid joint (Neumann. 2017) or a hinge joint 

(Calais-Germain. 2007) since its motions occur majorly on the sagittal plane. The motions of 

the femorotibial joint on the frontal and the horizontal plane are restricted by the surrounding 

ligaments, including medial collateral, lateral collateral, anterior cruciate, and posterior cruciate 

ligaments (Calais-Germain. 2007).  

 

Aside from the independent motion on the sagittal and horizontal planes, the knee extension is 

accompanied by external rotation at the last 30 degrees, which is described as the screw-home 

mechanism. The screw-home mechanism ensures the maximum contact area between the femur 

and tibia, and therefore, supports the knee joint stability at extension (Neumann. 2017). 
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2.2.3 The ankle and foot joint 

 

The ankle and foot contain 27 bones, and the latter can be subcategorized into rearfoot, midfoot, 

and forefoot.  

  

The ankle joint is a collective term that includes multiple articulations of the tibia, fibula, and 

talus. Since the tibia and fibula bones contact each other at both proximal and distal ends, they 

form a tibiofibular joint at these two spots. Furthermore, the concavity forming by the distal 

end of the tibia and fibula is further adjacent to the talus bone, forming the talocrural joint. Due 

to the bony structure and strong soft issues surrounding the talocrural joint, it allows mostly 

plantar flexion and dorsiflexion, while limiting the motions rotating on other axes (Calais-

Germain. 2007; Neumann. 2017).  

 

The subtalar joint comprises the talus and calcaneus, providing motions on the three axes. 

Unlike the definition for the joints mentioned above, the subtalar motions rotating at the 

anterioposterior axis are defined as eversion and inversion, and at the superioinferior axis, they 

are referred to as abduction and adduction (Neumann. 2017). Moreover, the subtalar joint 

allows little plantar flexion and dorsiflexion. In addition to the three ordinary motion axes, the 

subtalar joint has a fourth axis called the axis of Henke, which runs anterosuperomedially, 

introducing the combined motions: pronation and supination (Calais-Germain. 2007; Neumann. 

2017). Pronation is a combination of plantar flexion, inversion, and adduction. On the other 

hand, supination consists of dorsiflexion, eversion, and abduction (Calais-Germain. 2007; 

Neumann. 2017).  

 

The transverse tarsal and distal intertarsal joints in the midfoot, as well as the joints in the 

forefoot, present important functions during locomotion (Fraser et al. 2016). Previous literature 

concluded that footwear restricts foot motion in sagittal, frontal, and horizontal planes and the 

changes in medial longitudinal foot arch (Franklin et al. 2015). While the participants in the 

present study wore shoes during walking, the motion of the midfoot and forefoot may be 

minimized. Furthermore, the adopted model for further analysis does not segment the ankle and 

foot. Thus, they will not be further discussed in this chapter. 
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3 GAIT 

 

Walking is a method of locomotion, normally including support and propulsion, while gait is a 

term for describing the manner or style of walking (Whittle. 2007). The gait may be affected 

by many factors, including age, body weight, and pathology, and it is also associated with 

quality of life (Lee et al. 2021). As a result, it is important to understand the fundamentals of 

gait. This chapter introduces the terminology in gait analysis, the normal gait, and the gait on 

inclined surfaces. 

 

3.1 Gait cycle and spatiotemporal parameters 

 

A gait cycle during normal walking consists of two major phases, the stance phase, and the 

swing phase. Stance phase describes the period when the foot has contact with the ground. On 

the other hand, the swing phase refers to the time when the foot is moving through the air. Some 

specific time points when one lower limb interacts with the walking surface or the opposite 

limb are defined as gait events. They are used to further subdivide a gait cycle into loading 

response, mid stance, terminal stance, pre-swing, initial swing, mid swing, and terminal swing 

by major gait events (Whittle. 2007). A gait cycle can start from any of the major gait events 

and end at the same event which happens successively.  

 

Most studies in gait analysis mark the time point when the foot first touches the ground, which 

is initial contact, as the starting point of a gait cycle (Figure 2). The sequence of gait events 

following the initial contact is opposite toe off, heel raise, opposite initial contact, toe off, free 

adjacent, and tibia vertical. Toe off describes the last moment when the foot contacts the ground, 

and it also represents the beginning of the swing phase. The double support phase is defined as 

the period between the initial contact and the opposite toe off. Before the opposite initial contact 

happens, the time only one leg is on the ground is called the single support phase. (Whittle. 

2007)  

 

According to Whittle (2007), the general portion of the stance phase, swing phase, and double 

support phase is 60%, 40%, and 10% respectively. Nevertheless, the duration of each phase is 

also affected by the walking speed: generally, with increased walking speed, the swing phase 

is lengthened, and the stance phase is shortened (Tulchin et al. 2009; Hebenstreit et al. 2015; 

Núñez-Trull et al. 2023). 
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FIGURE 2. The major events and phases of a gait cycle. Adapted and revised from Tunca et al. 

(2017). 

 

The terminology of gait events varies among studies since the movement pattern may differ 

from normal and pathological gaits. For example, one alternative for the initial contact is the 

heel strike. However, in populations with spastic cerebral palsy, the initial contact is not always 

made with the heel but with the forefoot (Bauer et al. 2022). According to the previous research 

(Alexander and Schwameder. 2023), 88.9% of the subjects sustained a heel strike pattern during 

12° uphill walking. Considering the potential variant patterns during hill walking, it would be 

more suitable for this study to adopt the foot-strike (FS) as initial contact and foot-off (FO) as 

toe off. 

 

The spatiotemporal parameters regarding the foot placement include stride length, step length, 

and step width. Stride length describes the distance between two consecutive placements of the 

same foot, and one stride consists of two steps (Whittle. 2007). Step width measures the distance 

between two heels in a mediolateral direction, which has been associated with balance control 

(Stimpson et al. 2019). The time interval between two successive strides represents the stride 

time, which is also the duration of a gait cycle. The term for the number of steps per minute is 
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cadence. In overground walking, the walking speed is the quotient of stride length and stride 

time. For the healthy adult population, the spatiotemporal parameters mentioned above were 

not only frequently measured in the previous studies, but also are the most relevant 

biomechanical parameters in gait analysis (Roberts et al. 2017).  

 

3.2 Kinematics of gait 

 

During walking, the movements occur mostly on the sagittal plane. Starting from the hip 

movement at initial contact, it begins to extend from a flexed position and later turns into an 

extended position during mid-stance. After the peak hip extension (10°-20°) occurs at around 

the opposite foot-strike, the direction of the movement reverses into flexion, which happens 

before the foot-off. The maximum hip flexion (around 30°) is reached in mid-swing and 

maintained until the next foot-strike. (Whittle. 2007) 

 

The knee is almost fully extended at the foot-strike. It begins to flex during loading response 

and reaches the first flexion peak (10°-20°) early in mid-stance. Then the movement of the knee 

reverses into extension until peak knee extension at heel rise. As the gastrocnemius activates 

for propulsion, the knee flexion is initiated again and reaches its maximum flexion (60°-70°) 

during the initial swing. During this phase, the movement is majorly carried out by the flexing 

hip, which is also called the double pendulum. Due to the same effect, the knee has started to 

passively extend before the feet are adjacent. (Whittle. 2007) 

 

The ankle is approximately neutral, and the foot is slightly supinated at the foot strike. The 

ankle dorsiflexors eccentrically lower down the foot to plantar flexion during the first half of 

the loading response and reverse to concentric contraction during the second half. Meanwhile, 

the foot begins to pronate with an internally rotating tibia. They reverse the motion soon after 

reaching the peaks around the opposite foot-off. The peak dorsiflexion happens during the 

terminal stance and starts to plantarflex afterward. While the heel has already lifted off the 

ground, the toe is still flat on it. The foot later reaches the peak supination with hindfoot 

inversion and coupled tibia external rotation. When combined with the stretch of the plantar 

fascia, the foot is highly stable. The peak ankle plantar flexion (around 25°) appears after the 

foot-off. (Whittle. 2007) During the swing phase, it is important for the ankle to stay neutral or 

dorsiflexed to complete the foot clearance, thus avoiding tripping (Pijnappels et al. 2001; 

Rosenblatt et al. 2014a). 



 

10 

 

 

3.3 Effect of inclination on gait 

 

Commonly, people encounter surfaces with different inclinations when walking in communities. 

An increased risk of falling on inclined surfaces (Sheehan and Gottschall. 2012) makes it 

important to understand the biomechanics of sloped walking. Humans adapt to sloped surfaces 

through changes in kinematics and kinetics (Zeng et al. 2022). Generally, modifications occur 

in foot clearance and placement, movements of body segments, and postural support (Prentice 

et al. 2004). The primary postural adjustment for sloped walking is achieved by altering the 

orientation of the trunk and pelvis relative to the earth’s vertical in sagittal plane while 

maintaining the same movement across different inclinations and is task-specific (Leroux et al. 

2002). Furthermore, the pelvis interacts with the lower limbs to smoothen the trajectory of the 

center of gravity by reducing its displacement (Leroux et al. 2002). The critical inclination 

leading to changes in the center of pressure falls between 9 to 12 degrees (Kawamura et al. 

1991).  

 

3.3.1 Spatiotemporal parameters of sloped walking 

 

When humans walk at a self-selected speed across inclinations, they tend to decrease their 

walking speed as a result of decreased cadence at uphill conditions and decreased step length 

at downhill conditions (Kawamura et al. 1991). The later studies observed similar changes in 

spatiotemporal parameters in sloped walking as the speed remained the same: the cadence 

decreased with increasing inclination in the positive direction, and it increased with increasing 

inclination in the negative direction (Leroux et al. 2002; McIntosh et al. 2006). Leroux et al. 

(2002) stated that the decreased cadence, which implied increased stride length as the walking 

speed remained the same, was associated with generating greater momentum for walking on 

steeper uphill surfaces. The major tasks during downhill walking are braking and balancing the 

center of gravity, and the shortened step length assists in stabilizing the knee and ankle joints 

(Kawamura et al. 1991). Similarly, Dewolf et al. (2020) suggested that the increased step width 

on slopes and shortened stride length on negative slopes were movement strategies to maintain 

gait stability, and further specified that people used a more cautious gait pattern during downhill 

walking. This behavior was also observed by other researchers. For example, Bueno et al. (2019) 

reported a significantly shortened stride length during walking with increased fear of falling on 

older females.  
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3.3.2 Kinematics of uphill walking 

 

As the body is passively pulled backward by gravity during uphill conditions, the trunk and 

pelvis actively forward tilt to counteract this effect. This forward-leaning posture moves the 

center of gravity ahead of the base of support and assists in propelling movement (Leroux et al. 

2002). Generally, the amount of lower limb joint flexion increases linearly with increased 

inclination (Hong et al. 2014). McIntosh et al. (2006) reported that the hip flexion angle at heel 

strike and knee flexion angle in early stance increased during uphill walking. Zeng et al. (2022) 

reported significant differences in knee sagittal, frontal, and horizontal joint angles when 

comparing 15% uphill walking to level walking. Additionally, an increase in anterior tibial 

translation was observed during uphill walking. Wen et al. (2019) concluded that, as inclination 

increased, knee extension ROM increased while knee flexion ROM decreased, reflecting 

adaptations for lifting the body on inclined surfaces. The increased ankle dorsiflexion angle in 

the first half of the gait cycle and the increased ankle plantar flexion at toe off were observed 

during uphill walking (McIntosh et al. 2006; Sarvestan et al. 2021). The behavior of the ankle 

is altered to adapt to the change in the trunk and pelvis orientation (Leroux et al. 2002), which 

indicates a large demand for ankle ROM during uphill walking (McIntosh et al. 2006). The 

lower limb movement patterns at a higher positive inclination (10°) differ from the ones at the 

level ground in the sagittal, frontal, and horizontal planes, while the patterns at a lower positive 

inclination (5°) show clear differences only in the sagittal plane (Sarvestan et al. 2021).  

 

The increased hip flexion and knee flexion during the swing phase account for overcoming the 

inclined surface and generating greater stride length (Leroux et al. 2002; McIntosh et al. 2006; 

Wen et al. 2019). Meanwhile, the lateral pelvis tilt toward the swinging leg decreases, which 

allows the greater lift of the swinging leg (Leroux et al. 2002).  

 

3.3.3 Kinematics of downhill walking 

 

During downhill walking, the body is passively pulled forward and downward by gravity, so 

the trunk and pelvis perform backward tilting to move the center of gravity backward (Leroux 

et al 2002). McIntosh et al. (2006) presented that the hip flexion angle at the heel strike 

decreased during downhill walking. While there is no difference in the knee angle at the heel 

strike between the level ground and downhill walking, the minimum knee flexion angle in the 



 

12 

 

stance phase increases (McIntosh et al. 2006). The ankle plantarflexion decreases as the surface 

becomes steeper (McIntosh et al. 2006). The knee of the support limb plays an important role 

in lowering the body during downhill (Redfern and DiPasquale. 1997). Nevertheless, the task 

of power absorption is performed mainly by the hip and ankle (McIntosh et al. 2006).  

 

Regarding the kinematics of the swinging limb, the lateral pelvis drop increases (Leroux et al. 

2002). Moreover, there are decreases in hip flexion and increases in knee flexion of the 

swinging limb, and the latter could mainly account for the decrease in stride length, vertical 

displacement of the center of mass, and the impact force at heel contact (Leroux et al. 2002).  

 

The management of movement strategy during downhill was mainly for recovering from 

perturbations and reducing risks of falls, however, costing higher energy consumption (Dewolf 

et al. 2020). 

 



 

13 

 

4 MOVEMENT VARIABILITY 

 

Movement variability is defined as the normal changes in motor performance across multiple 

repetitions of a task (Stergiou. 2004). In other words, it’s impossible for humans to repeat the 

same tasks in exactly identical movement patterns (Newell and Corcos. 1993). Traditionally, 

the variations in movements were interpreted as random fluctuations, which is noise, in the 

sensorimotor system (Harris and Wolpert. 1998). However, the recent literature revealed that 

the phenomenon is a result of nonlinear interaction and is distinguishable from the random noise 

(Hausdorff et al. 1996). Stergiou (2004) summarized the variability model in which the total 

variability consisted of the variability due to the nonlinear dynamical process and the variability 

due to errors. The errors were further subcategorized into biological errors within the 

neuromotor system, errors from the methodological process, and errors due to external sources, 

such as environments and task requirements (Stergiou. 2004).  

 

4.1 Interpretation of movement variability 

 

Variability in movements was interpreted as a limiting factor in traditional concepts of motor 

control. To be more specific, the increased variability was thought to be associated with less 

stability in the sensorimotor system (Boucher et al. 1995; Maki. 1997). The increased kinematic 

variability at the hip, pelvis, and trunk during walking was observed in people with hip pain, 

which might indicate a reduced neuromuscular control or a strategy to alleviate pain (Loverro 

et al. 2019). This point of view was opposed by Dingwell and Cusumano (2000). They 

highlighted that the concepts of variability and local dynamic stability should be differentiated, 

and neither of them was the major factor of increased risks of falling in neuropathic patients 

(Dingwell and Cusumano. 2000).  

 

Hamill et al. (1999) suggested that the variability in movement had a functional role in motor 

control when investigated with the dynamic system approach. Correspondingly, Stergiou (2004) 

summarized several benefits of movement variability, including allowing a more flexible 

neuromotor system to learn new movement patterns through adjusting and rescaling parameters, 

and an opportunity to select the most appropriate pattern by sampling different movement 

patterns. For instance, people walking in high heels showed higher ankle joint angle variability 

than in barefoot to counteract unstable situations (Alkjæ r et al. 2012). Mohr et al. (2023) 

reported that the unstable running surface resulted in a higher stride-to-stride variability of 
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postural changes which might result from the adaptation within each stride to achieve an 

economical movement pattern. Blair et al. (2018) demonstrated that, regardless of the gait speed, 

the lower limb kinematic and muscle activity variability increased during walking on the 

uneven surface. Since the pronounced alterations in variability occurred at initial contact, they 

assumed that increased variability might be an anticipatory strategy for lower limbs to adapt to 

the irregular surfaces (Blair et al. 2018). Aside from the impact of surfaces, the unstable 

movement may affect variability as well. Running, subject to larger forces and impacts, 

movement at higher speed, and higher demand for coordination, was reported to have higher 

hip and knee joint angle variability than walking (Estep et al. 2018).  

 

Kweon et al. (2022) observed that people with chronic ankle instability had higher joint 

coupling angle variability during the stance phase in gait, which indicated a strategy aiming to 

distribute the load with more flexible movement patterns. To be more specific, the movement 

variability could alter according to the demands of sensorimotor function in each gait phase 

(Kweon et al. 2022). Hypothetically, the increase in movement variability may be adopted as 

one strategy to maintain the stability of the gait pattern in response to perturbations, or to fulfill 

the precision requirements during constrained walking (Tokuda et al. 2018; Rosenblatt et al. 

2014b). However, Treda et al. (2015) showed that, compared to the control group, the 

participants with chronic ankle instability had a lower frontal plane ankle joint variability as 

they intended to minimize ankle giving-away (Treda et al. 2015). It revealed that the movement 

strategy could be altered by chronic instability and the rehabilitation program should be 

designed to regain adaptability and flexibility in the sensorimotor system (Treda et al. 2015). 

 

On the joint aspect, McCamley et al. (2018), with non-linear analysis, observed that the stride-

to-stride joint angle variability was highest at the ankle and lowest at the hip during treadmill 

walking. Correspondingly, Fallahtafti et al. (2022) reported the highest stride-to-stride joint 

angle variability at the ankle, but the joint angle variability of the hip was higher than the knee 

in both pre- and post-exercise intervention in patients with peripheral artery disease. 

 

Even though the optimal range of variability hasn’t been defined, previous studies hypothesized 

that either excessive or insufficient variability was related to an increased risk of falls (Brach et 

al. 2005) and a higher risk of injury (Hamill et al. 2012; Baida et al. 2018). One systematic 

review reported that the results of the relationship between movement variability and lower 

limb injury were inconsistent among studies, and the direction of changing variability may be 



 

15 

 

in response to movement tasks, pain, or injuries (Baida et al. 2018). Blyton et al. (2023) 

suggested the alterations in variability in injured runners may be a strategy to compensate for 

the injury-related symptoms and they were more likely to occur at proximal segments. Both 

Baida et al. (2018) and Blyton et al. (2023) mentioned the divergence of analysis methods and 

parameters for examining the movement variability, which led to difficulties in comparing 

results from different studies and drawing robust conclusions. 

 

4.1.1 Effect of inclinations on movement variability 

 

Dewolf et al. (2020) observed that the thigh elevation angle variability significantly increased 

at -6 and -9 degrees of sloped walking, the shank elevation angle variability increased on +6 

and +9-degree slopes, and the foot elevation angle variability only increased on -9-degree slope. 

With a similar linear method, Sarvestan et al. (2021) examined the stride-to-stride lower limb 

joint angle variability at 0-, 5-, and 10-degree uphill walking via a linear method and reported 

that the ankle joint angle variability decreased in the frontal and horizontal plane while 

increasing in the sagittal plane as the positive inclination increased; during the stance phase, the 

knee joint angle variability increased on the sagittal and frontal plane at the higher inclination 

during stance phase, but decreased on the horizontal plane; although significant differences in 

the hip joint angle variability were observed on the sagittal and frontal plane, they occurred 

within a relatively small portion of gait cycles. Generally, the higher hip, knee, and ankle joint 

angle variability in the sagittal plane implied that the sagittal movement played a major role in 

responding to perturbations during uphill walking (Sarvestan et al. 2021). Ippersiel et al. (2022) 

investigated the lower limb kinematic variability when their participants walked on various 

uneven surfaces. They found that the knee-hip coordination variability on uphill and downhill 

increased compared to level ground, indicating that sloped walking was a more challenging task 

for the neuromuscular system (Ippersiel et al. 2022). To date, there hasn’t been a study 

investigating stride-to-stride joint angle variability during downhill walking, nor has there been 

one done with the non-linear method. A study that reveals alteration in stride-to-stride joint 

angle variability involving these elements allows further understanding of the sensorimotor 

strategy of human walking. 
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5 METHODOLOGY OF GAIT ANALYSIS 

 

For gait analysis, it is mandatory that the method not only captures the continuous walking 

motion but also permits investigations at certain time points. One common method to acquire 

three-dimensional (3-D) kinematic data is through motion-capture (MoCap) systems with 

optical devices, such as cameras. Without the device for force detection, the gait events are 

identified by the algorithm which is established solely on kinematic data. The joint angles are 

normalized to the gait cycle and are further calculated through specific mathematics to quantify 

the variability. Accordingly, this chapter will introduce how the optical MoCap system records 

movements and transforms them into biomechanic parameters, the algorithms for detecting gait 

events, and the mathematics for quantifying movement variability.  

 

5.1 Optical motion capture system 

 

The practice of using optical devices to study gait can be traced back to Muybridge (1887), in 

which the locomotion in phases of the horse was captured by a high-speed camera. This 

breakthrough allowed people to study movement at a certain status and repeat inspection 

without asking the subject to perform it over and over again. Nowadays, researchers build 

MoCap systems with more than two cameras, enabling them to capture 3-D motion. Some 

principles of photography between using traditional and modern equipment are similar. For 

instance, the light of the environment affects the imaging more or less (Robertson et al. 2014), 

and factors such as sampling frequency determine the detail within the recorded movement 

(Marmelat et al. 2019; Fallahtafti et al. 2021). Although sampling frequency at 240 Hz is 

considered as gold standard, previous studies concluded that 120 Hz was enough for gait 

kinematic analysis (Marmelat et al. 2019; Fallahtafti et al. 2021). The required sampling rate 

increases as the speed of movement increases. 

 

To correlate the space presented in the 3-D optical MoCap system to the real world, the cameras 

are calibrated with a real-world reference, usually a calibration wand. After the capture volume 

of the space is established, the Cartesian coordinate is adopted to describe spatial information. 

The global coordinate system (GCS), whose X- and Y-axis are parallel to the level ground 

surface, the Y-axis points anteriorly, and the Z-axis points superiorly, with an origin at (0, 0, 0), 

tells the capture volume and the location of a specific point in the system (Robertson et al. 2014). 

Since we are interested in the relative movement of body segments, the local coordinate system 
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(LCS) is required in the system, which allocates another X, Y, and Z axes for the body segments. 

Typically, the local coordinate system treats the location of the center of mass (CoM) of the 

segment in the reference frame as the origin (Robertson et al. 2014). From GCS, we only obtain 

the displacement of the CoM of the segment in the space, while we acquire how the segment 

rotates by comparing the LCS axes to the GCS. 

 

When inspecting the images recorded by cameras, we are not able to locate the center of mass 

of the segment with human eyes. Instead, we track the prominent points on the subject, such as 

bony landmarks or markers. With a marker-based method, reflective markers are attached to 

the moving limbs, and the segments are later reconstructed based on the marker setup. In 3-D 

analysis, it is essential to have at least three noncollinear markers mounted on the target segment 

for computing the LCS (Robertson et al. 2014). Since the markers are used to represent the 

segment, the issues associated with the marker placement (e.g. soft tissue artifacts and marker 

displacement) may negatively influence the validity of the results (Leboeuf et al. 2023). 

Moreover, the markers are regarded as reference points when estimating joint centers (Kadaba 

et al. 1990; Nair et al. 2010). It is suggested that the researchers inspect the marker placement 

on the subject before recording the trial to minimize human error (Robertson et al. 2014). 

 

To investigate the interaction between two body segments, e.g. joint angle, a link-segment 

model that links the segments to each other with joints is applied and the LCSs of the segments 

are compared (Robertson et al. 2014). One common assumption among link-segment models is 

that the segment is rigid and the mass concentrates at its CoM (Kingma et al. 1996), which 

enhances feasibility in mathematics (Robertson et al. 2014). However, this assumption may fail 

to simulate the important biological features of some human body segments. For example, in 

some commonly used rigid ankle-foot models, the hindfoot, midfoot, and forefoot are 

recognized as one single rigid segment. This simplification overlooks the functionality of the 

flexible foot which plays an important role in transmitting forces during locomotion (Erdemir 

et al. 2004; Bruening et al. 2012) and further introduces certain concerns in applying the rigid-

foot-segment model in kinematic and kinetic analysis (Pothrat et al. 2015; Dixon et al. 2012). 

In this case, the link-segment models which define the ankle and foot as multiple segments can 

provide a more thorough understanding of the foot biomechanics, while it also requires more 

effort in subject preparation and data analysis. Accordingly, when selecting the link-segment 

model, researchers should take both the study design and the cost efficiency into consideration. 
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As mentioned above, the marker-based system requires at least three markers to construct the 

LCS for a segment. Marker occlusions in the recording movement, which are gaps, may lead to 

inaccuracy in the results (Camargo et al. 2020; Mohammadzadeh Gonabadi et al. 2022). To 

reduce the gaps within the data to a minimum, scientists and the MoCap system providers have 

proposed several gap-filling methods that estimate the marker trajectory by interpolation. For 

example, the commonly used Vicon Nexus software (Vicon Motion Systems Ltd., Oxford, UK) 

provides the spline fill, pattern fill, rigid body fill, and kinematic fill functions, potentially 

saving time and effort in data processing (Camargo et al. 2020). To be more specific, the spline 

fill allows better curve fitting and is suggested for movements involving larger displacement 

like walking (Howarth and Callaghan. 2010; Gomes et al. 2021). The pattern fill and the rigid 

body fill methods are majorly dependent on the bone structure. Pattern fill requires at least two 

existent markers to estimate the trajectory, while rigid body fill requires at least three markers. 

Despite the enhanced efficacy brought by gap-filling methods, they still have limitations. 

Howarth and Callaghan (2010) reported that applying the spline method to gaps longer than 

200 ms may lead to inaccurate results. Similarly, Gomes et al. (2021) found that the error with 

the spline method increased as the size of the gap increased, the pattern fill method presented 

more errors when more markers were missing, and errors with the rigid body fill method 

increased with both listed factors. Previous studies recommended that researchers inspect the 

characteristics of the gap in the data and select the most suitable gap-filling method based on 

the movement types as well (Gomes et al. 2021). 

 

5.2 Gait event detection algorithms 

 

To further analyze stride-to-stride variance in gait, the continuously recorded walking motion 

is dissected into multiple gait cycles based on critical gait events, such as foot-strikes and foot-

offs. Although the ground reaction force is considered the gold standard for detecting gait 

events (Hreljac and Marshall. 2000; Hansen et al. 2002; Zeni et al. 2008), force plates are not 

always available in laboratory and clinical settings. Therefore, scientists have developed 

alternatives based on the kinematic data which can be collected by accelerometers, gyroscopes, 

or optical motion capture systems, allowing a more versatile environment for gait analysis.  

 

There are two major types of automatic gait event detection algorithms for marker-based 

MoCap systems: coordinate-based and velocity-based. The coordinate-based algorithms define 

the events based on the markers’ position, such as the methods proposed by Zeni et al. (2008). 
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On the other hand, an example of velocity-based algorithms is Ghoussayni et al. (2004), who 

used the descending and ascending sagittal velocity of markers to estimate gait events. Both the 

methods mentioned above were verified by Bruening and Ridge (2014), showing promising 

estimations of foot-strike and foot-off. Pantall et al. (2012) investigated the accuracy of four 

event detection algorithms in sloped walking of cats, and the method based on the vertical 

acceleration and vertical velocity of the marker on the metatarsophalangeal joint for foot strike 

and foot off respectively showed the least absolute systematic error. While the method adapted 

from Zeni et al. (2008) did not stand out on either the timing of foot strike or foot off, it had the 

lowest random error of the four algorithms that were tested (Pantall et al. 2012).  

 

Despite the advantages, the estimation can be affected by pathological gait patterns (Bruening 

and Ridge. 2014). Caron-Laramée et al. (2023) presented that the accuracy of detected foot-off 

timing improved as the walking speed increased. As a result, the researchers should consider 

the factors that have a potential influence on gait when applying automatic gait event detection 

algorithms. 

 

5.3 Analysis of movement variability 

 

Variability can be analyzed using continuous or discrete methods. The continuous method takes 

the entire biomechanics waveform into account, which provides a higher dimensional 

understanding of the behavior, while the discrete method focuses on a specific point on the 

waveform (Hamill et al. 1999; Baida et al. 2018). The traditional linear analysis methods (e.g. 

mean, standard deviation, and coefficient of variance) measure the amount of variability 

(Harbourne and Stergiou. 2009), but may mask the true complexity of human movements 

(Stergiou. 2004). Newell and Corcos. (1993) stated that quantifying movement variability by 

standard deviation only presented the degree of variability of a given system parameter. In 

contrast, the nonlinear methods (e.g. the Lyapunov exponent and approximate entropy) reveal 

the structure of variability and would be more suitable for investigating the complexity of 

movements (Stergiou. 2004; Harbourne and Stergiou. 2009).  

 

Harbourne and Stergiou (2009) explained the differences between interpreting variability with 

linear and non-linear methods by comparing the output values of several signals (Figure 3). 

While the second signal shows higher regularity than the first one, the value of the range does 

not differ between them. In contrast, the fourth signal with similarly high repeatability acquires 
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a larger value of range. With approximate entropy (ApEn), the variability of the first and second 

signals can be differentiated and does not define the fourth signal as less regular than the second 

signal. 

 

 

FIGURE 3. Comparison between values computed by the linear and non-linear method for four 

different signals. Adopted from Harbourne and Stergiou (2009). 

 

Entropy originated from the field of thermodynamics and derived from which, approximate 

entropy was introduced to the analysis of biological data by Pincus (1991). The earlier study 

stated that ApEn quantifies the irregularity and unpredictability of fluctuations over time series 

data (Pincus and Goldberger. 1994). Yentes and Raffalt (2021) specified that the mathematics 

of entropy is associated with probability. As mathematics defines probability as the chances of 

the event to occur, the larger probability thus indicates lower randomness. In other words, the 

higher entropy value can be interpreted as having a lower probability of a certain pattern and a 

higher probability of a new or random one occurring in the movement system (Yentes and 

Raffalt. 2021).  

 

The ApEn analysis is widely adopted to evaluate movement tasks and presents the result in a 

straightforward manner (Yentes et al. 2013; Raffalt et al. 2019). However, there is a 

mathematical issue within the nature of ApEn. When ApEn compared the vectors in the data, 

the reference vector is compared to itself as well to avoid the natural logarithm of zero, which 

may bias the result (Pincus and Goldberger. 1994; Richman and Moorman. 2000; Yentes and 
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Raffalt. 2021). The other single-scale entropy, sample entropy (SampEn) was therefore 

developed to overcome this problem (Richman and Moorman. 2000). 

 

5.3.1 Mathematics of entropy 

 

The standard unit of ApEn is bits, which range from 0 to 2. The mathematical descriptions of 

ApEn in the following paragraph are adopted from several literature sources (Pincus and 

Goldberger. 1994; Richman and Moorman. 2000; Yentes and Raffalt. 2021).  

 

First, to compute ApEn, three input parameters have to be defined, which are the data points 

(N), the length of compared runs (m), and tolerance or threshold (r). The data points we have 

are u(1), u(2), …, u(N), and the vector sequence is conducted from x(1) to x(N – m + 1), where 

xm(i) is defined as [u(i), …, u(i + m – 1)]. The distance between two vectors, xm(i) and xm(j), is 

defined as d[xm(i), xm(j)]. In other words, the largest difference in the respective scalar 

component is regarded as the distance between xm(i) and xm(j). There will be (N − m + 1) types 

of combinations of xm(i) and xm(j), including the situation that i = j. Repeating the above steps, 

we define the vector of xm+1(i), which is [u(i), …, u(i + (m + 1) – 1)], and the distance between 

the two vectors, that is d[xm+1(i), xm+1(j)].  

 

d[xm(i), xm(j)] = max{|u(i + k ) – u(j + k)|: 0 ≤ k ≤ m – 1} 

d[xm+1(i), xm+1(j)] = max{|u(i + k ) – u(j + k)|: 0 ≤ k ≤ m} 

 

The number of d[xm(i), xm(j)] within r is presented as Bi, and the number of d[xm+1(i), xm+1(j)] 

that is within r is Ai. The functions C
m 

i (r) and C
m+1 

i (r), which are average values of Bi and Ai 

respectively, are defined to reflect the conditional probability of the similarity between two 

observed runs of patterns. 

 

C
m 

i (r) = Bi (N − m + 1)-1 

C
m+1 

i (r) = Ai (N − m)-1 

 

After the values of C
m 

i (r) and C
m+1 

i (r) are converted by natural logarithm, the function Φm(r) 

computed the average value of all ln [C
m 

i (r)] (1 ≤ i ≤ N – m +1), likewise for Φm+1(r). 

 

Φm(r) = (N − m + 1)-1 ∑
N-m+1   

i=1 ln [C
m 

i (r)]  
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Φm+1(r) = (N − m)-1 ∑
N-m   

i=1 ln [C
m+1 

i (r)]   

 

Finally, ApEn(m, r, N) = Φm(r) – Φm+1(r) is defined. To ensure that the outcome number remains 

positive, the negative ApEn value is adopted for further interpretation. The SampEn differs 

from the ApEn majorly in the last half of the calculation, where the Φm(r) is defined without 

the natural logarithm. As the self-matching condition is excluded (i ≠ j), and only the first N – 

m vectors are included in the calculation, the number of d[xm(i), xm(j)] within r divided by the 

number of comparisons (N – m – 1) is presented as B
m 

i (r). The Bm(r) is further defined, and the 

same principles are applied to form Am(r) where Ai represents the number of d[xm+1(i), xm+1(j)] 

within r. 

  

B
m 

i (r) = Bi (N − m – 1)-1 

A
m 

i (r) = Ai (N − m – 1)-1 

Bm(r) = (N − m)-1 ∑
N-m   

i=1 B
m 

i (r)  

Am(r) = (N − m)-1 ∑
N-m   

i=1 A
m 

i (r) 

 

Lastly, when the N is limited, the SampEn(m, r, N) = −ln [Am(r)/Bm(r)]. If Am(r) or Bm(r) is zero, 

it means that the pattern within the data is completely random and will result in an infinitely 

large number of SampEn. 

 

5.3.2 Considerations when choosing parameters 

 

The selection of the parameters for entropy computation is important as it may lead to different 

results. Several studies have discussed the guidelines for choosing proper parameters according 

to the study design.  

 

Pincus and Goldberger (1994) concluded that N = 1000, m = 2, and r = 0.1 to 0.25 multiplying 

SD of the data set yield meaningful statistics. Theoretically, the larger N is preferred for 

conducting ApEn analysis since the result is sensitive to the parameters when the data length is 

short (N ≤ 200) (Yentes et al. 2013). When determining the amount of data points, considering 

the constraints of the study design and the characteristics of the movement to be analyzed is 

important as well (Yentes et al. 2013). Raffalt et al. (2019) compared the kinematic data 

collected with several sampling frequencies and concluded that the increase in sampling 
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frequency resulted in lower SampEn. Moreover, the data points within a single gait cycle had a 

greater influence on the results of SampEn than the number of strides (Raffalt et al. 2019).  

 

For discrete data analysis, m = 2 or 3 provides reasonable results, while it may not be suitable 

for continuous data analysis (Yentes and Raffalt. 2021). For instance, the pattern of the joint 

angle in gait generally repeats every gait cycle, so comparing the patterns of neighboring data 

points may only reveal the variance within the gait cycle rather than between cycles (McCamley 

et al. 2018). If the study aims to compare the joint angle between cycles, normalizing the data 

within each cycle to 100 points and applying m = 99 or 100 would be more appropriate (Yentes 

and Raffalt. 2021). The other way suggested by previous articles is to apply a lag to the data set 

when m remains as 2 or 3 (McCamley et al. 2018; Yentes and Raffalt. 2021). In this case, the 

x3(1) would possibly be [u(1), u(101), u(201)] and compared to x3(2) = [u(2), u(102), u(202)].  

 

The parameter r considerably affects the result of ApEn and SampEn by determining the 

tolerated difference between two compared vectors (Yentes et al. 2018). A larger r allows more 

compared vectors in a time series to be recognized to have similar patterns, and vice versa. Lu 

et al. (2008) proclaimed that the selected r value should be able to provide the maximum ApEn 

while inheriting r = 0.1 – 0.2 times standard deviation, as most studies did, might not fulfill this 

task depending on the data. Aside from determining r by the standard deviation (rSD), a fixed 

constant is another option for setting a tolerance level (rConstant). Yentes et al. (2018) analyzed 

the step time variability of level ground walking and treadmill walking with ApEn and SampEn. 

They observed that, when comparing two groups with different standard deviations, rConstant 

may lead to a lower entropy value for the group with a lower standard deviation than rSD does 

(Yentes et al. 2018). 

 

To conclude, the output entropy values are sensitive to chosen parameters, and the optimal 

practice is reporting entropy results of multiple combinations of parameters in an appendix, 

which allows not only transparency in methods but also the possibility for future scholars to 

compare between studies (Yentes and Raffalt. 2021). For example, if one adopts rSD as the 

parameter, r = 0.1, 0.2, 0.3 times the standard deviation should be examined (Yentes and Raffalt. 

2021). For those choosing rConstant as the parameter, they should test the r from 0 to 

n*(1/sampling rate), where n is iterated (Yentes et al. 2018). The target is to find out the r value, 

above or below which the tendency of differences between data sets becomes consistent.  
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6 PURPOSE OF THE STUDY 

 

To have a thorough understanding of how the sensorimotor strategy adapts to perturbations 

from the environment, stride-to-stride joint angle variability of downhill walking should be 

examined. Since previous studies investigated the stride-to-stride joint angle variability of 

sloped walking with linear methods instead of non-linear methods, the complexity of 

movements remains unclear. Therefore, a non-linear method, sample entropy, will be applied 

to acquire the complexity of movement. Moreover, the previous studies conducted the entropy 

analysis with the commonly adopted vector length (m=2), while this selected parameter may 

not be optimal for presenting the biological meaning of the continuous joint angle data of gait 

(Yentes and Raffalt. 2021). The feasibility of applying an elongated vector that accommodates 

the entire gait cycle should be examined. 

 

As a result, the purpose of the study was two-fold. First, the stride-to-stride joint angle 

variability of the hip, knee, and ankle on the sagittal plane when walking across different 

inclinations, including uphill and downhill, was investigated. Second, the analysis was 

conducted via a linear and a non-linear method to reveal the amount and the structure of stride-

to-stride sagittal-plane joint angle variability respectively. 

 

Based on the previous research, the sensorimotor system is subject to more perturbations when 

walking on slopes compared to level ground (Sheehan and Gottschall. 2012; Dewolf et al. 2020), 

and the sensorimotor strategy tends to respond and counteract perturbations by increasing 

sagittal-plane joint angle variability (Alkjæ r et al. 2012; Estep et al. 2018; Mohr et al. 2023). 

As a result, in this study, it was hypothesized that lower limb sagittal-plane joint angle 

variability would be higher as inclination increased in either a positive or negative direction. 

Furthermore, significant differences were expected at the ±12° slope where the critical changes 

occur in biomechanics (Kawamura et al. 1991). 
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7 METHODS 

 

7.1 Participants 

 

The data was collected from participants aged 18-45 years old for men and 18-55 years old for 

women, who were able to understand the information in Finnish or English language. The 

exclusion criteria were: (1) having a musculoskeletal injury that is acute or happened less than 

6 months before the measurements; 2) having an acute illness such as flu or fever; (3) having a 

chronic disorder that would affect running techniques; 4) being diagnosed or in moderate to 

high risk of cardiovascular disorders; (5) having a respiratory disorder, except for endurance 

athletes whose asthma is under medical control; (6) pregnant. 

 

In total, 57 participants were recruited. Informed consent was obtained for all participants, as 

approved by the local ethical committee, in accordance with the Declaration of Helsinki. To 

ensure optimal visibility for the motion-capture system, participants were required to wear tight, 

short sports outfits that did not occlude the markers during measurements. They were instructed 

to wear comfortable sports shoes and a pair of pressure sensor insoles were inserted into the 

shoes’ of the participants. The reflective markers were attached to the participants with double-

sided tape. A set of inertial module sensors for bilateral lower limbs were mounted on the 

participants' pelvis, thighs, shanks, and feet. The data acquired from the inertial module sensors 

and the pressure sensor insoles were arranged for other research purposes and would not be 

analyzed for this study. 

 

7.2 Protocol overview 

 

The participants walked on a treadmill (OJK-1, Telineyhtymä, Kotka, Finland) at a constant 

speed with inclines of 0°, ±2°, ±4°, ±6°, and ±12°, and kinematic information was collected 

with an 8-camera MoCap system (Vicon Motion Systems Ltd., Oxford, UK), with a sampling 

rate of 200Hz. Before the measurement started, the MoCap system was calibrated to locate the 

global coordinate system and acquire the optimal capture volume. A motorized treadmill which 

allowed to adjust inclinations from +20° to -20° was used in this study. A digital inclinometer 

was positioned on the treadmill to confirm the incline level.  
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7.2.1 Anthropometric measurement 

 

The anthropometric measurements follow the subject measurement instructions from the Vicon 

Nexus User Guideline (Vicon Motion Systems Ltd., Oxford, UK). Body mass and height were 

measured both with and without shoes. Leg length was measured with a tape measure from the 

anterior prominence of the anterior superior iliac crest (ASIS) to the medial malleolus when the 

participant stood straight. The width of the knee and ankle joints was measured with a digital 

caliper. The width of the knee joint was measured from the lateral femoral condyle to the medial 

femoral condyle, and the ankle joint width was from the lateral malleolus to the medial 

malleolus. 

 

7.2.2 Marker placement 

 

The marker placement followed the Plug-in-Gait lower body model (Vicon Motion Systems 

Ltd., Oxford, UK) (16 markers), with 10 additional markers placed to enhance the tracking of 

the segment. There were 26 reflective markers in total on the pelvis, thighs, knees, shins, ankles, 

and feet on both sides. The labels of the markers are listed in Table 1 and the placement is 

demonstrated in Figure 4. 

 

TABLE 1: Marker placement 

Label Placement 

LASI / RASI The prominence of the anterior superior iliac crest.  

LPSI / RPSI The prominence of the posterior superior iliac crest 

LTHI / RTHI 
The upper or lower one-third of the lateral thigh. 

The markers on both sides should be at different levels of height. 

LKNE / RKNE The lateral condyle of the femur. 

LMKNE / RMKNE The medial condyle of the femur. 

LTIB / RTIB 
The upper or lower one-third of the lateral shin. 

The markers on both sides should be at different levels of height. 

LANK / RANK The lateral malleolus of the fibula. 
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LMANK / RMANK The medial malleolus of the tibia. 

LLANK2 / RLANK2 The trochlear process on the calcaneus. * 

LMANK2 / RMANK2 The sustentaculum tali on the calcaneus. * 

LHEE / RHEE 
The tuberosity of the calcaneus and at the same level as the TOE 

marker. * 

LTOE / RTOE The metatarsophalangeal joint of the second toe. * 

LHLUX / RHLUX The distal phalangeal of the first toe. * 

*The anatomical bony landmarks were palpated from the outer layer of the shoes, and 

markers were placed on the surface of the shoes instead of the skin. 

 

FIGURE 4. Marker placement on the lower limbs. From left to right, the views are from the 

front, back, and left lateral sides of the lower limbs, respectively. 

 

7.3 Testing procedures 
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The participants wore a safety harness throughout the measurement and were instructed to 

maintain their position around the center of the capture volume. The researchers visually 

inspected the reflective markers on the monitor to ensure optimal visibility and adjusted them 

when needed. Before the measurement started, the MoCap system recorded the participants 

standing in the anatomical position and T-pose for Vicon calibration.  

 

At the beginning of the measurement, the participants went through a 5.5-minute walking 

familiarization on the treadmill at a self-selected speed. The speed was raised and lowered in 

increments of 0.5 km/h during the familiarization to determine each participant's most natural 

walking speed for all subsequent trials.  

 

One minute of walking allowed for the recording of at least 100 steps for analysis. Each walking 

trial was recorded for at least 1.5 minutes with the first 30 seconds at the beginning of every 

trial discarded to exclude unstable gait. Therefore, for the major tasks of this study, participants 

walked for 3.5 minutes at all inclinations except ±12°, where they walked for 1.5 minutes. The 

extended recording duration served another study purpose. The participants first walked at the 

speed determined during the familiarization and ±0.5 km/h of the selected speed at 0° 

inclination, and the order for different speeds was randomized. For walking at all inclinations, 

the participants maintained the selected speed, with the order for ±2°, ±4°, and ±6° inclines 

randomized. The ±12° inclines were executed after completing the other lower inclinations. For 

the participants who subjectively reported a strenuous feeling for the steepest conditions, the 

speed was 0.5 km/h slower than the selected speed. To eliminate the effect of changing speed 

on kinematics, only the participants who walked at a constant speed for all trials were included 

for further analysis. The treadmill was stopped and re-started for every new trial. 

 

7.4 Data processing 

 

Motion data was first processed with the Nexus software (v2.11, Vicon Motion Systems Ltd., 

Oxford, UK). After labeling the markers according to the Plug-in-Gait lower body model, gaps 

in the motion capture data that were shorter than 200 frames were filled through the built-in 

gap-filling functions in Nexus software. Next, data were processed with a dynamic Plug-in-

Gait model, and the processed c3d files were exported to MATLAB software (version R2023a, 

Mathworks Inc., MA, USA). Custom code for MATLAB software was employed for estimating 

gait events and extracting joint angles data. The first 30 seconds of each walking trial were 



 

29 

 

discarded, and the joint angles of 40 consecutive gait cycles were saved in CSV format for 

further analysis. Custom Python code was executed on Spyder IDE (version 5.4.5) under the 

environment provided by Anaconda Navigator (version 2.5.0, Anaconda Inc., TX, USA) to 

perform further analysis.  

 

7.4.1 Gait event detection 

 

To estimate gait events, a set of custom MATLAB codes was used, which was modified from 

the work of Visscher et al. (2021) and was based on the method proposed by previous studies 

(Zeni et al. 2008; Pantall et al. 2012; Caron-Laramée et al. 2023). The functions from the 

Biomechanical Toolkit package (Barré and Armand. 2014) were adopted to extract marker 

trajectories. All marker trajectories were filtered with a 4th-order low-pass Butterworth filter 

with a 7 Hz cutoff frequency. A virtual sacrum marker was formed from the midpoint of LPSI 

and RPSI markers. The horizontal distance between the sacrum and foot markers was calculated. 

By applying the find-peaks function, the time points where the maximum and minimum 

horizontal distance occurred were identified as heel strikes and foot-offs respectively. In the 

algorithm, the heel marker was selected for detecting heel strikes, and the hallux marker, 

suggested by Bruening and Ridge (2014), was used for foot-offs. Besides, a threshold of at least 

40 frames (200 ms) between two consecutive events was set to reduce false positives. The frame 

numbers where the gait events occurred were listed in CSV files. Custom Python code was 

further applied to calculate spatiotemporal parameters, including stride length, step length, 

cadence, stride time, step time, stance duration, swing duration, proportion of stance phase, and 

proportion of swing phase for both left and right side (Appendix 1).  

 

To verify that the algorithm estimated gait events at inclines with reasonable accuracy, trials of 

5 participants were randomly selected, and 10 consecutive gait events at +12° and -12° of 

inclination were determined by visual inspection. The differences between the manual and the 

automatic method were calculated in milliseconds.   

 

7.4.2 Joint angle variability analysis 

 

To investigate stride-to-stride variability, filtering the marker trajectories was avoided since it 

might eliminate subtle but important biological information (Georgoulis et al. 2006). The joint 

angles on the sagittal plane for each trial were extracted with the Biomechanical Toolkit (Barré 
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and Armand. 2014), normalized to 100 data points for each gait cycle in MATLAB, and 

exported to CSV files. The joint angle fluctuations were plotted with the percentage of the gait 

cycle as the x-axis, and joint angles in degree as the y-axis. If any outliers and atypical patterns 

that did not seem to be biological were presented in the trial, the original movement recordings 

were reviewed. The trials that showed oscillating or flashing markers were categorized as trials 

with computational artifacts. If adjusting the interested frame zone forward could skip the 

section of computational artifacts, the adjusted trial was included for further analysis. Otherwise, 

it was excluded. 

 

The sample entropy of 4,000 data points for each trial was computed through the function in 

the AntroPy package (Vallat. 2021) on Python. Two different lengths of vectors (m=2 and m=99) 

were examined. For m=2, r=0.1, 0.15, 0.2, 0.25, and 0.3 were applied, and the output with r=2 

is presented in the results. For m=99, the r was first iterated from 0.2 to 4.5 on the right ankle 

joint to find a relatively consistent state of SampEn outputs. Later, the r=3.5 – 5.0, with intervals 

of 0.05, was applied to all investigated joints. The results of m=99 and r=4.5 are presented in 

the next chapter. The results calculated with additional r values not reported in the thesis are 

attached in the appendix. 

 

The linear method was adapted from Sarvestan et al. (2021). The standard deviation of joint 

angle data at each percentage of gait cycles was calculated. The standard deviation values of 

each percentage of the 40 gait cycles were summed and averaged to present the overall 

variability throughout the stride. The output via the linear method is hereafter referred to as 

MeanSD. 

 

7.5 Statistical analysis 

 

The statistical analysis was conducted via Jamovi 2.3.26 Desktop (The Jamovi project. 2023). 

The alpha level for the examined data was set at 0.05. The spatiotemporal parameters and the 

stride-to-stride hip, knee, and ankle sagittal-plane joint angle variability on both the left and 

right sides were grouped according to the inclinations. Shapiro-Wilk tests were run to examine 

the normality of data in all groups. The null hypothesis was accepted for all spatiotemporal 

parameters across all inclinations, indicating normal distributions. In contrast, the null 

hypothesis was rejected for sagittal-plane joint angle variability of some inclinations. Therefore, 

a parametric repeated measures analysis of variance (ANOVA) was applied to investigate the 
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effect of inclinations on spatiotemporal parameters. The repeated measures ANOVA compared 

each spatiotemporal parameter across all inclinations. Post-hoc tests with Bonferroni correction 

were used to compare level and sloped walking. Alternatively, a non-parametric repeated 

measures ANOVA, the Friedman test, was applied to examine the effect of inclinations on the 

sagittal-plane joint angle variability by comparing the joint angle variability of each joint on 

the left and right side across all inclinations. The post-hoc pairwise comparison was conducted 

using the Durbin-Conover test to investigate the differences between inclinations. 
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8 RESULTS 

 

8.1 Participant characteristics 

 

Seven participants were excluded due to slower walking speeds at the steepest inclinations, and 

fifteen were excluded for extended marker occlusions (over 200 frames) or missing mandatory 

markers throughout the trial. The trial order for three participants was not clearly documented, 

and data for two participants were missing. Finally, thirty participants were included in the 

analysis. Participants' characteristics are summarized in Table 2. 

 

Table 2. Participants' characteristics (n=30) 

male=17, female=13 

  Mean   SD 

Age 34.2 ± 7.6 

Mass (kg) 72.5 ± 12.8 

Height (m) 1.75 ± 0.09 

Speed (m/s) 1.54 ± 0.12 

 

After inspecting the joint angle curves, a few trials were excluded due to artificial-like results 

arising from inaccurate estimation of the gap-filling algorithms and mislabeling of markers. 

Consequently, the number of participants included for the lower limb sagittal-plane joint angle 

variability was 21 for the left side and 28 for the right side.  

 

8.2 Comparison between gait event algorithms and visual inspection 

 

The negative mean value indicated that the gait event detection algorithm predominantly 

showed premature estimations among the FS and FO at +12° and -12° conditions compared to 

the visual inspection. The algorithm provided more accurate estimations for FO than for FS. 

The mean value, standard deviation, range, and mean absolute error (MAE) are listed in Table 

3 and Figure 5. 
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TABLE 3. Differences between gait-event-detection algorithm and visual inspection 

Inclination +12 -12 

Event FS FO FS FO 

Mean (ms) -10.0 -0.6 -11.9 -5.2 

SD  (ms) 6.39 5.68 7.95 7.62 

Median (ms) -25 -10 -30 -20 

Range  (ms) 30 25 35 40 

MAE (ms) 10.4 4.2 12.1 7.2 

 

 

FIGURE 5. The violin plot presents the differences between visual inspection and the gait event 

detection algorithm and their respective distributions. 

 

8.3 Spatiotemporal parameters 
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The repeated measures ANOVA revealed significant effects of inclinations on the 

spatiotemporal parameters, including the stride time, step time, stride length, step length, 

cadence, stance duration, swing duration, proportion of stance phase, and proportion of swing 

phase for both sides, as detailed in Table 4. 

 

TABLE 4. Effect of inclination on spatiotemporal parameters (n=30) 

  F df p η² 

Left stride length 41.9 8, 323 <.001* 0.164 

Right stride length 41.9 8, 232 <.001* 0.164 

Step length 36.4 8, 232 <.001* 0.167 

Cadence 34.4 8, 232 <.001* 0.230 

Left stride time 41.4 8, 323 <.001* 0.207 

Right stride time 41.5 8, 232 <.001* 0.207 

Step time 36.5 8, 232 <.001* 0.213 

Left stance duration 54.2 8, 232 <.001* 0.229 

Right stance duration 51.2 8, 232 <.001* 0.230 

Left swing duration 23.7 8, 232 <.001* 0.181 

Right swing duration 22.7 8, 232 <.001* 0.159 

Left stance phase 78.0 8, 232 <.001* 0.364 

Right stance phase 53.4 8, 232 <.001* 0.318 

F: F-value 

df: degrees of freedom 

η²: effect size 

*indicates significant effects of inclinations 

 

The post-hoc tests showed significant differences in spatiotemporal parameters when 

comparing level walking to various slopes. The stride length of both sides and the step length 

significantly decreased at inclines of -12°, -6°, -4°, and +12°. The cadence significantly 

increased at inclines of -12°, -6°, -4°, and +12°. The step and stride time of both sides 

significantly decreased at inclines of -12°, -6°, -4°, and +12°, with the left stride time also 

showing a significant decrease at a -2° incline. The stance phase duration of both sides 

significantly decreased at all downhill conditions and at a +12° incline. In contrast, the swing 

phase duration of both sides decreased significantly only at inclines of -12° and +12°. The 

proportion of the stance phase significantly reduced at all the downhill slopes, although no 

significant changes were observed during the uphill walking (Table 5). 
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TABLE 5. Spatiotemporal parameters across inclinations (n= 30) 

Inclination 

(°) 
  -12 -6 -4 -2 0 +2 +4 +6 +12 

Left stride 

length (m) 
Mean 1.41 1.50 1.53 1.54 1.56 1.56 1.56 1.55 1.46 

SD 0.14 0.11 0.11 0.11 0.11 0.11 0.10 0.11 0.99 

pbonferroni <.001* <.001* <.001* 0.059   1.000 1.000 1.000 <.001* 

Right stride 

length (m) 
Mean 1.41 1.50 1.53 1.54 15.6 1.56 1.56 1.55 1.46 

SD 0.14 0.11 0.11 0.11 0.11 0.11 0.10 0.11 0.99 

pbonferroni <.001* <.001* <.001* 0.064   1.000 1.000 1.000 <.001* 

Step length 

(m) 

  

  

Mean 0.70 0.75 0.76 0.76 0.77 0.77 0.77 0.76 0.72 

SD 0.07 0.06 0.05 0.06 0.05 0.06 0.05 0.05 0.05 

pbonferroni <.001* <.001* 0.015* 0.933   1.000 1.000 0.200 <.001* 

Cadence 

(1/min) 

  

  

Mean 134 125 122 122 120 120 121 122 129 

SD 11.5 7.64 6.66 6.74 5.87 6.83 7.56 7.64 9.8 

pbonferroni <.001* <.001* 0.014* 0.879   1.000 1.000 0.202 <.001* 

Left Stride 

time (s) 

  

  

Mean 0.92 0.98 0.99 1.00 1.01 1.01 1.01 1.00 0.95 

SD 0.08 0.06 0.05 0.05 0.05 0.06 0.06 0.07 0.07 

pbonferroni <.001* <.001* <.001* 0.048*   1.000 1.000 1.000 <.001* 

Right Stride 

time (s) 

  

Mean 0.92 0.98 0.99 1.00 1.01 1.01 1.01 1.00 0.95 

SD 0.08 0.06 0.05 0.05 0.05 0.06 0.06 0.07 0.07 

pbonferroni <.001* <.001* <.001* 0.051   1.000 1.000 1.000 <.001* 

Step time (s) 

  

  

Mean 0.45 0.48 0.49 0.50 0.50 0.50 0.50 0.49 0.47 

SD 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 

pbonferroni <.001* <.001* 0.019* 0.871   1.000 1.000 0.273 <.001* 

Left stance 

duration (s) 

  

Mean 0.58 0.62 0.64 0.64 0.66 0.66 0.66 0.65 0.62 

SD 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 

pbonferroni <.001* <.001* <.001* 0.001*   1.000 1.000 1.000 <.001* 

Right stance 

duration (s) 

  

  

Mean 0.58 0.62 0.64 0.65 0.66 0.66 0.66 0.65 0.62 

SD 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 

pbonferroni <.001* <.001* <.001* 0.010*   1.000 1.000 1.000 <.001* 

Left swing 

duration  (s) 

  

  

Mean 0.34 0.35 0.36 0.36 0.36 0.35 0.36 0.35 0.33 

SD 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.02 

pbonferroni 0.006* 1.000 1.000 1.000   1.000 1.000 1.000 <.001* 

Right swing 

duration  (s) 

  

Mean 0.34 0.35 0.35 0.35 0.36 0.35 0.36 0.35 0.33 

SD 0.03 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 

pbonferroni 0.003* 1.000 1.000 1.000   1.000 1.000 1.000 <.001* 

Mean 63.0 63.7 64.0 64.3 64.8 64.8 64.8 64.8 64.9 



 

36 

 

Left stance 

phase  (%) 

  

SD 1.2 0.8 0.7 0.8 0.7 0.8 0.8 0.8 0.8 

pbonferroni <.001* <.001* <.001* <.001*   1.000 1.000 1.000 1.000 

Right stance 

phase  (%) 

   

Mean 63.2 64.0 64.3 64.6 64.9 65.0 64.9 64.8 64.9 

SD 1.1 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.8 

pbonferroni <.001* <.001* <.001* 0.005*   1.000 1.000 1.000 1.000 

*indicates a significant difference compared to level ground walking 

 
 

8.4 Joint angle variability 

 

One participant’s stride-to-stride lower limb sagittal-plane joint angle for the consecutive 40 

strides was plotted in Appendix 2 to provide a visualized example of the stride-to-stride joint 

angle variability. 

 

8.4.1 MeanSD 

 

MeanSD represented the sagittal-plane joint angle variability using the linear method. The 

Friedman test of MeanSD showed that inclinations had significant effects on the variability of 

all lower limb joint angles on both the left and right sides (Table 6).  

 

TABLE 6. Effect of inclination on joint angle variability (MeanSD) 

  Joint χ² df p 

Left (n=21) Hip 124 8 <.001* 

  Knee 119 8 <.001* 

  Ankle 102 8 <.001* 

Right (n=28) Hip 166 8 <.001* 

  Knee 162 8 <.001* 

  Ankle 151 8 <.001* 

χ²: chi-squared 

df: degrees of freedom 

*indicates significant effects 

 

Compared to level walking, the left hip sagittal-plane joint angle variability was significantly 

higher at all downhill, +6°, and +12° inclines. The left knee sagittal-plane joint angle variability 

was significantly higher at -12°, -6°, -4°, +6°, and +12° inclines. Similarly, the left ankle 
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sagittal-plane joint angle variability was significantly higher at -12°, -6°, -4°, +6°, and +12° 

inclines. (Table 7 and Figure 6). 

 

TABLE 7. MeanSD of left lower limb joint angle across inclinations (n = 21) 

  Hip       Knee       Ankle     

Inclination 

(°) 
Mean SD p   Mean SD p   Mean SD p 

-12 1.90 0.401 <.001*   2.60 0.499 <.001*   1.59 0.253 <.001* 

-6 1.37 0.325 <.001*   2.01 0.343 <.001*   1.28 0.265 <.001* 

-4 1.15 0.243 <.001*   1.71 0.313 <.001*   1.14 0.222 0.006* 

-2 1.01 0.174 0.001*   1.48 0.280 0.203   1.03 0.223 0.792 

0 0.92 0.158     1.40 0.216     1.02 0.150   

+2 0.90 0.170 0.454   1.40 0.356 0.610   1.00 0.210 0.175 

+4 0.98 0.214 0.088   1.51 0.248 0.011*   1.05 0.145 0.693 

+6 1.06 0.225 <.001*   1.59 0.298 <.001*   1.14 0.151 <.001* 

+12 1.61 0.434 <.001*   1.98 0.420 <.001*   1.47 0.380 <.001* 

*indicates a significant difference compared to level ground walking 

 

FIGURE 6. The sagittal-plane joint angle variability of the left hip (LH), left knee (LK), and 

left ankle (LA) computed with the linear method. * indicates significant differences compared 

to level walking (p<0.05). 
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The right hip, knee, and ankle sagittal-plane joint angle variability with MeanSD was 

significantly higher at all the downhill and uphill conditions, except for +2°. (Table 8 and Figure 

7). 

 

Table 8. MeanSD of right lower limb joint angle across inclinations (n = 28) 

  Hip       Knee       Ankle     

Inclination (°) Mean SD p   Mean SD p   Mean SD p 

-12 1.89 0.415 <.001*   2.56 0.504 <.001*   1.84 0.329 <.001* 

-6 1.31 0.309 <.001*   2.01 0.381 <.001*   1.46 0.317 <.001* 

-4 1.19 0.300 <.001*   1.81 0.364 <.001*   1.34 0.311 <.001* 

-2 1.02 0.159 <.001*   1.54 0.266 <.001*   1.19 0.265 0.007* 

0 0.95 0.212     1.42 0.270     1.13 0.284   

+2 0.92 0.182 0.122   1.44 0.336 0.927   1.08 0.251 0.113 

+4 1.00 0.189 0.040*   1.54 0.241 <.001*   1.16 0.194 0.022* 

+6 1.09 0.221 <.001*   1.61 0.289 <.001*   1.26 0.206 <.001* 

+12 1.64 0.435 <.001*   1.98 0.413 <.001*   1.58 0.302 <.001* 

*indicates a significant difference compared to level ground walking 

 

FIGURE 7. The sagittal-plane joint angle variability of the right hip (RH), right knee (RK), 

and right ankle (RA) computed with the linear method. * indicates significant differences 

compared to level walking (p<0.05). 
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8.4.2 SampEn (m=2) 

 

The results of the Friedman test showed that the inclinations had significant effects on all lower 

limb sagittal-plane joint angle variability of both the left and right sides when computed with 

SampEn (m=2, r=0.2, N=4,000) (Table 9). The output SampEn at 0° and ±12° with the other 

tested tolerance levels is attached to Appendix 3. 

 

TABLE 9. Effect of inclination on joint angle variability (SampEn with m=2, r=0.2) 

  Joint χ² df p 

Left (n=21) Hip 109 8 <.001* 

  Knee 67.8 8 <.001* 

  Ankle 43.6 8 <.001* 

Right (n=28) Hip 142 8 <.001* 

  Knee 124 8 <.001* 

  Ankle 93.5 8 <.001* 

χ²: chi-squared 

df: degrees of freedom 

*indicates significant effects 

 

The post hoc test showed that, compared to level ground, the left hip sagittal-plane joint angle 

variability was significantly higher on all downhill inclines and significantly lower at +4° and 

+6° inclines. The left knee sagittal-plane joint angle variability was significantly higher at -12°, 

-6°, -4°, and +12° inclines. Similarly, the left ankle sagittal-plane joint angle variability was 

significantly higher at the -12° incline. (Table 10 and Figure 8). 
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TABLE 10. SampEn (m=2, r=0.2) of left lower limb joint angle across inclinations (n = 21) 

  Hip       Knee       Ankle     

Inclination (°) Mean SD p   Mean SD p   Mean SD p 

-12 0.867  0.120  <.001*   0.973  0.131 <.001*   0.801  0.097  <.001* 

-6 0.795  0.094  <.001*   0.902  0.140 <.001*   0.715  0.086  0.127  

-4 0.747  0.094  0.003*   0.865  0.130 0.037*   0.699  0.094  0.293  

-2 0.738  0.094  0.024*   0.846  0.131 0.455    0.694  0.095  0.523  

0 0.698  0.078      0.830  0.158     0.686  0.092    

+2 0.685  0.099  0.088    0.812  0.151 0.455    0.664  0.090  0.092  

+4 0.629  0.082  <.001*   0.815  0.151 0.241    0.679  0.086  0.293  

+6 0.625  0.088  <.001*   0.839  0.153 0.749    0.707  0.103  0.463  

+12 0.701  0.126  0.781    0.931  0.143 <.001*   0.687  0.102  0.610  

*indicates a significant difference compared to level ground walking 

 

FIGURE 8. The sagittal-plane joint angle variability of the left hip (LH), left knee (LK), and 

left ankle (LA) computed with SampEn (m=2, r=0.2). * indicates significant differences 

compared to level walking (p<0.05) 

 

The right hip sagittal-plane joint angle variability was significantly higher on all downhill 

inclines and significantly lower at +4° and +6° inclines. The right knee sagittal-plane joint angle 

variability was significantly higher at -12°, -6°, -4°, and +12° inclines, and significantly lower 
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at +4° incline. Similarly, the right ankle sagittal-plane joint angle variability was significantly 

higher on all downhill inclines and at the +12° incline. (Table 11 and Figure 9).  

 

TABLE 11. SampEn (m=2, r=0.2) of right lower limb joint angle across inclinations (n = 28) 

  Hip       Knee       Ankle     

Inclination (°) Mean SD p   Mean SD p   Mean SD p 

-12 0.822  0.106  <.001*   0.914  0.123  <.001*   0.902  0.090  <.001* 

-6 0.767  0.099  <.001*   0.826  0.102  <.001*   0.808  0.118  <.001* 

-4 0.732  0.088  <.001*   0.818  0.117  <.001*   0.778  0.109  <.001* 

-2 0.707  0.086  0.001*   0.784  0.115  0.069    0.751  0.086  0.019* 

0 0.663  0.075      0.753  0.111      0.730  0.082    

+2 0.642  0.098  0.107    0.738  0.106  0.229    0.719  0.079  0.900  

+4 0.615  0.071  0.007*   0.727  0.096  0.018*   0.714  0.086  0.754  

+6 0.595  0.078  <.001*   0.740  0.106  0.122    0.718  0.114  1.000  

+12 0.664  0.104  0.453    0.820  0.114  <.001*   0.749  0.102  0.029* 

 *indicates a significant difference compared to level ground walking 

 

FIGURE 9. The sagittal-plane joint angle variability of the right hip (RH), right knee (RK), 

and right ankle (RA) computed with SampEn (m=2, r=0.2). * indicates significant differences 

compared to level walking (p<0.05). 
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8.4.3 SampEn (m=99) 

 

The results of the Friedman test showed that the inclinations had significant effects on all lower 

limb sagittal-plane joint angle variability of both the left and right sides when computed with 

SampEn (m=99, r=4.5, N=4,000) (Table 12). The output SampEn at 0° and ±12° with the other 

tested tolerance levels is attached to Appendix 4. 

 

TABLE 12. Effect of inclination on joint angle variability (SampEn with m=99, r=4.5) 

  Joint χ² df p 

Left (n=21) Hip 124 8 <.001* 

  Knee 120 8 <.001* 

  Ankle 92.7 8 <.001* 

Right (n=28) Hip 167 8 <.001* 

  Knee 155 8 <.001* 

  Ankle 146 8 <.001* 

χ²: chi-squared 

df: degrees of freedom 

*indicates significant effects 

*indicates significant effects 

 

The post hoc test showed that, compared to level ground, the left hip sagittal-plane joint angle 

variability was significantly higher on all downhill inclines, as well as at +6° and +12° inclines. 

The left knee sagittal-plane joint angle variability was significantly higher at all inclines, except 

for +2°. Similarly, the left ankle sagittal-plane joint angle variability was significantly higher 

at -12°, -6°, -4°, and +12° inclines. The results are summarized in Table 13 and Figure 10. 
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TABLE 13. SampEn (m=99, r=4.5) of left lower limb joint angle across inclinations (n = 21) 

  Hip       Knee       Ankle     

Inclination (°) Mean SD p   Mean SD p   Mean SD p 

-12 0.01140  0.00411  <.001*   0.02390  0.00638 <.001*   0.01420  0.00334  <.001* 

-6 0.00633  0.00293  <.001*   0.01610  0.00306 <.001*   0.00956  0.00263  <.001* 

-4 0.00466  0.00179  <.001*   0.01220  0.00357 <.001*   0.00826  0.00251  <.001* 

-2 0.00357  0.00161  0.038*   0.00978  0.00266 0.026*   0.00730  0.00329  0.512  

0 0.00300  0.00148      0.00852  0.00254     0.00664  0.00238    

+2 0.00284  0.00116  0.337    0.00856  0.00303 0.683    0.00632  0.00262  0.220  

+4 0.00335  0.00133  0.488    0.00995  0.00273 0.015*   0.00648  0.00221  0.594  

+6 0.00381  0.00163  <.001*   0.01110  0.00344 <.001*   0.00675  0.00190  0.566  

+12 0.00716  0.00405  <.001*   0.01460  0.00541 <.001*   0.00961  0.00403  <.001* 

*indicates a significant difference compared to level ground walking 

 

FIGURE 10. The sagittal-plane joint angle variability of the left hip (LH), left knee (LK), and 

left ankle (LA) computed with SampEn (m=99, r=4.5). * indicates significant differences 

compared to level walking. 

 

The right hip and knee sagittal-plane joint angle variability were significantly higher on all 

downhill and uphill inclines, except for +2°. The right ankle sagittal-plane joint angle variability 
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was significantly higher on all downhill inclines, as well as at +6° and +12° inclines. (Table 14 

and Figure 11). 

 

TABLE 14. SampEn (m=99, r=4.5) of right lower limb joint angle across inclinations (n = 28) 

  Hip       Knee       Ankle     

Inclination (°) Mean SD p   Mean SD p   Mean SD p 

-12 0.01090  0.00368  <.001*   0.02390  0.00796  <.001*   0.01760  0.00664  <.001* 

-6 0.00615  0.00284  <.001*   0.01580  0.00511  <.001*   0.01180  0.00365  <.001* 

-4 0.00472  0.00224  <.001*   0.01320  0.00477  <.001*   0.01030  0.00492  <.001* 

-2 0.00347  0.00123  <.001*   0.00979  0.00315  <.001*   0.00894  0.00444  <.001* 

0 0.00285  0.00115      0.00827  0.00313      0.00695  0.00331    

+2 0.00285  0.00099  0.635    0.00825  0.00355  0.731    0.00688  0.00363  0.364  

+4 0.00322  0.00105  0.016*   0.00954  0.00299  0.004*   0.00707  0.00269  0.509  

+6 0.00407  0.00174  <.001*   0.01040  0.00346  <.001*   0.00811  0.00281  <.001* 

+12 0.00733  0.00332  <.001*   0.01350  0.00426  <.001*   0.01120  0.00334  <.001* 

*indicates a significant difference compared to level ground walking 

 

 

FIGURE 11. The sagittal-plane joint angle variability of the right hip (RH), right knee (RK), 

and right ankle (RA) computed with SampEn (m=99, r=4.5). * indicates significant differences 

compared to level walking. 



 

45 

 

9 DISCUSSION  

 

This study investigated the stride-to-stride sagittal-plane joint angle variability of the lower 

limbs across inclinations with linear and non-linear methods. The two hypotheses of this study 

that sagittal-plane joint angle variability would increase as the inclination increased and the 

significant differences would occur at the ±12° inclines were partially supported. The following 

paragraphs discuss the findings of the spatiotemporal parameters and stride-to-stride sagittal-

plane joint angle variability. 

 

9.1 Spatiotemporal parameters  

 

The alteration in spatiotemporal parameters during uphill walking in this study showed a varied 

trend compared to the previous studies (Kawamura et al. 1991; Leroux et al. 2002; McIntosh et 

al. 2006; Strutzenberger et al. 2022; Mexi et al. 2023). As the inclination increased, the 

participants tended to increase their cadence and decrease the stride length and step length. The 

reduction in stride and step length, accompanied by an increase in cadence during downhill 

walking, aligned with findings from the majority of previous studies (Kawamura et al. 1991; 

Leroux et al. 2002; Vieira et al. 2017; Dewolf et al. 2020), but contradicted McIntosh et al. 

(2006). The significant differences in spatiotemporal parameters were only observed at the 

steepest inclination during uphill walking. In deviation from our hypothesis, the significant 

changes presented at steepest and lower inclinations during downhill walking. This implies that 

downhill walking may exert a greater influence on biomechanics compared to uphill walking. 

 

Lu et al. (2023) demonstrated that the gait stability ratio, a ratio of cadence to speed, increased 

during uphill walking compared to level walking, indicating a more challenging task for balance. 

Since the increased cadence at constant speed was observed in both uphill and downhill 

conditions in this study, this indicates that sloped walking is biomechanically more imbalanced 

than level walking. A more conservative strategy might be adopted in response to the instability 

and fear of falling (Maki. 1997; Scaglioni-Solano and Aragón-Vargas. 2015). As the movement 

strategy aims to descend the CoM smoothly and manage the shock absorption during downhill 

walking (Leroux et al. 2002; McIntosh et al. 2006; Dewolf et al. 2020), the participants in this 

study might have increased their cadence and decreased their stride length to minimize CoM 

vertical displacement. As a result of constant walking speed across all inclinations, the stride 

time and step time decreased in response to increased cadence. Furthermore, the proportion of 
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the stance phase in the gait cycle decreased in all downhill conditions, which might be 

correlated with the lower demand for propulsive force generation (Kuster et al. 1995).  

 

In contrast to this study, some previous evidence presented a decreased cadence (Kawamura et 

al. 1991; Redfern and DiPasquale. 1997; McIntosh et al. 2006; Strutzenberger et al. 2022; Mexi 

et al. 2023) and an increased step length (Leroux et al. 2002; McIntosh et al. 2006; 

Strutzenberger et al. 2022; Mexi et al. 2023) with increasing positive inclination. Several 

possible explanations exist for the variations in gait parameters observed in different studies. 

First is the walking speed. Both McIntosh et al. (2006) and Kawamura et al. (1991) allowed 

their participants to walk at an unfixed self-selected speed. McIntosh et al. reported an 

increasing trend in walking speed from a 0° to a 10° upslope, whereas Kawamura et al. observed 

a significant decrease in speed on a 12° upslope. This inconsistency in findings might be 

explained by the limited length of the walking path with which the observed behavior could be 

derived from the regular gait pattern (McIntosh et al., 2006). Leroux et al. (2002) reported 

constant walking speeds ranging from 0.76 to 1.34 m/s from 0% to 10% slopes, while treadmill 

walking at much slower speeds may fail to reproduce the step length, step time, and cadence of 

ramp walking (Item-Glatthorn et al. 2016). Still, the walking speed in this study may not be an 

optimal representation of regular walking since it was higher than the other treadmill walking 

studies (Strutzenberger et al. 2022; Mexi et al. 2023). The study using a self-paced treadmill 

observed that the average speed significantly decreased at 10° uphill compared to level walking 

(Kimel-Naor et al. 2017). The participants in this study might favor increasing cadence over 

stride length to maintain the walking speed. In this way, they could involve fewer changes in 

lower limb joint moments for speed management (Ardestani et al. 2016). Accordingly, 

differences in gait parameter adjustments may be attributed to variations in instrumentation and 

protocols. Also, the gait pattern during uphill walking is likely more susceptible to these factors.  

 

9.2 Joint angle variability 

 

This is the first study to investigate the stride-to-stride lower limb joint angle variability on the 

sagittal plane during both uphill and downhill walking. Our hypothesis for the lower limb 

sagittal-plane joint angle variability was partially accepted. Both the linear method and the 

SampEn (m=99) showed that the lower limb sagittal-plane joint angle variability significantly 

increased during walking at +12°, -12°, and other lower inclines compared to level walking. 

However, with SampEn (m=2), the hypothesis regarding the lower limb sagittal-plane joint 
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angle variability was verified only in downhill conditions. Furthermore, SampEn (m=2) showed 

a U-shape trend of the lower limb sagittal-plane joint angle variability from 0° to +12°, whose 

lowest value existed between inclines of +2° to +4°. Regardless of the mathematic methods and 

walking conditions, the knee sagittal-plane joint angle variability was the highest among the 

lower limb joints. 

 

This study presented that the amount of lower limb sagittal-plane joint angle variability 

increased as the inclination increased. Sarvestan et al. (2021) observed significant changes in 

sagittal-plane joint angle variability primarily during the mid to terminal stance phases during 

uphill walking. In this study, the components at each percentage of the gait cycle were averaged 

to present the average joint angle variability throughout the stride. Despite the modifications in 

mathematics, the results in this study were consistent with Sarvestan et al. This suggests that, 

while the most pronounced differences are localized in a certain range of the gait cycle, the 

overall impact of walking on a slope, as compared to level ground, substantially affects joint 

behavior throughout the cycle. In general, the trend of increasing variability of the lower limb 

joint angles during downhill walking and steeper uphill walking was consistent with the 

observations regarding the gait parameters variability on uneven surfaces (Alkjæ r et al. 2012; 

Blair et al. 2018; Sarvestan et al. 2021; Ippersiel et al. 2022) and suggested that a more flexible 

sensorimotor strategy was adopted among healthy adults (Stergiou. 2004; Blair et al. 2018; 

Ippersiel et al. 2022; Kweon et al. 2022; Mohr et al. 2023). Several factors have been assumed 

to be correlated with increased variability of gait parameters, including movement economics 

(Mohr et al. 2023), anticipatory strategy (Blair et al. 2018), impacts at ground contacts, 

movement speed, and demand of coordination (Estep et al. 2018). These aspects differ between 

sloped walking and level walking, thus potentially influencing variability. 

 

Wenzel et al. (2023) presented that walking on uneven surfaces required higher production of 

lower limb power, which was achieved majorly by the hip and knee. During sloped walking, 

the alteration in power demands is associated with increased lower limb muscle activity (Lay 

et al. 2007; Franz and Kram. 2012). Specifically, the muscle activity of the hip, knee, and ankle 

extensors increased with power generation, particularly in the hip and ankle, which showed 

increased activity during uphill walking (Lay et al. 2007; Franz and Kram. 2012). Lay et al. 

(2007) observed that, despite the remaining knee extensor moment during uphill walking, the 

muscle activity of the knee extensors increased, which was considered to counteract the knee 

flexor moment contributed by the biarticular hip extensors (Lay et al. 2007). Correspondingly, 
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Franz and Kram (2012) reported the increased activity of the medial gastrocnemius, a biarticular 

muscle across the knee and ankle, during uphill walking. In other words, the knee is also subject 

to the influence of the motor strategy of the hip and ankle. This could potentially explain why 

the knee sagittal-plane joint angle variability was highest among lower limb joints and across 

all slopes. During downhill walking, the activity of the knee extensors increases with the 

increased power absorption at the knee (Franz and Kram. 2012). The mechanical efficiency of 

muscle power output is determined by the coordination pattern of muscles (Wakeling et al. 

2010; Blake and Wakeling. 2015). The larger magnitude of muscle activation and the 

coordination pattern during sloped walking may be more complicated to the neuromuscular 

system and might thus alter the lower limb sagittal-plane joint angle variability.  

 

The other possible explanation for the increased sagittal-plane joint angle variability may be 

the weakened balance during sloped walking. Gottschall et al. (2011) observed an increase in 

the base of support, a common reaction to imbalance conditions, during downhill and uphill 

walking. Scaglioni-Solano and Aragón-Vargas. (2015) reported that the smoothness of the 

pelvis movement in the anterioposterior and mediolateral direction was reduced during sloped 

walking, which was considered to impair balance control. As lower limbs play an important 

role in smoothing the trajectory of the pelvis (Leroux et al. 2002), increased lower limb 

kinematic variability may allow the sensorimotor system to generate flexible strategies to 

enhance the smoothness of pelvis trajectory and regain balance (Stergiou. 2004; Scaglioni-

Solano and Aragón-Vargas. 2015). Qiao et al. (2018) studied the balance perturbation of the 

optical flow on the step-to-step adjustments in gait parameters of young and older adults. They 

concluded that the knee sagittal-plane joint angle variability was positively correlated with the 

step length variability, and the hip coronal-plane joint angle variability was correlated with the 

step width variability (Qiao et al. 2018). According to Sturk et al. (2019), step length variability 

increased when walking on uneven surfaces. This adjustment in foot placement under balance 

perturbations may interact with the lower limb kinematics and potentially increase variability 

in lower limb joint angles during sloped walking. 

 

The structure of the sagittal-plane joint angle variability showed partially different results from 

the amount of variability. With SampEn, with a vector length of two data points, the lower limb 

sagittal-plane joint angle variability still increased with the walking surface becoming more 

declined. On the other hand, the sagittal-plane joint angle variability of the hip and knee in 

lower upward inclinations significantly decreased and increased at +12 degrees compared to 
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level walking. Correspondingly, Vieira et al. (2017) demonstrated that the complexity of trunk 

velocity, as measured by SampEn (m=2, r=0.2), decreased linearly from the 10% (5.7°) 

downhill to the 10% uphill conditions. Conclusively, the structure of the sagittal-plane joint 

angle variability was aligned with the amount of the sagittal-plane joint angle variability during 

downhill walking regardless of the steepness of the incline. On the opposite, the structure of the 

sagittal-plane joint angle variability was composed of less mild fluctuations during walking at 

lower positive inclines, which indicated less complexity in the time series. Moreover, the larger 

perturbation from the higher inclines may alter the mechanism of adjusting this complexity of 

joint angle patterns. The SampEn with a vector length of 99 showed a similar trend as the results 

of the linear method. It may indicate that the probability of one random stride movement pattern 

occurring in a time series is similar to the amount of variability.  

 

The three methods applied in this study have their strengths and weaknesses and each of them 

approaches the movement variability from different perspectives. Exploring variability with 

standard deviation offers a straightforward interpretation and provides a more detailed view of 

stride-to-stride joint angle variability. However, this method is also more susceptible to the 

influence of outliers. If the joint angle at a specific time point in one gait cycle is considerably 

higher for one participant than for other participants at the same time point, the standard 

deviation will be biased. SampEn, with a vector length of two, measures the predictability of 

patterns consisting of two consecutive joint angle values in a time series. Specifically, the 

pattern from 1-2% of the first gait cycle is compared not only to the same interval in subsequent 

gait cycles but also across different intervals such as 3-4% and 4-5%, and even across cycle 

boundaries, like from 100% of the 1st cycle to 1% of the 2nd cycle. This approach, with its 

relatively short vector length, tends to highlight the complexity of the joint angle pattern over 

the entire series, capturing mild fluctuations within a gait cycle. Moreover, when humans walk 

on inclined surfaces, changes in kinematics can significantly alter movement patterns and range 

of motions, potentially leading to variations in SampEn values. This suggests that different 

walking conditions, such as inclined versus level surfaces, might influence the predictability 

and complexity of joint movements as captured by SampEn. When the vector length increases 

from 2 to 99, each vector effectively approximates a complete gait cycle. Based on this 

assumption, the SampEn measures the probability that a gait cycle pattern repeats within the 

time series. However, when comparing vectors with a large number of components, a higher 

tolerance must be set to allow for pattern matching. As any variance within this relatively large 

tolerance level is not recognized as a new pattern, the SampEn output value (m=99) indicates 
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high regularity across all conditions and potentially masks the slight differences. The optimal 

choices of sample entropy parameters for joint angle in gait analysis require more future 

investigation. 

 

9.3 Limitations  

 

A previous study reported that treadmill walking reduced the variability compared to 

overground walking (Dingwell et al. 2001). It is reasonable as treadmill walking generally 

restricts the variation of walking speed and direction of progression. Specifically, the 

spatiotemporal parameters, force profile, and energy consumption are different between 

treadmill and overground walking, and the fear of falling or losing control may lead to a more 

conservative gait pattern (Vickery-Howe et al. 2023). These factors may also induce a distinct 

sensorimotor strategy, and thus affect the variability. Therefore, caution should be exercised 

when trying to directly apply or compare the results of this study to overground walking 

situations. Despite the importance of studying overground walking, it may be methodologically 

more challenging to obtain enough data points for entropy analysis. Another concern about 

using a treadmill protocol is the mechanical noise which may influence the joint angle 

fluctuations. While applying a filter allows a smoother and less noisy joint angle curve, it 

diminishes the mild biological information within it at the same time. Hence, a study carried 

out on a ramp rather than on a treadmill is required to better understand how humans react to 

inclinations.  

 

The average walking speed of the participants in this study was higher than in the previous 

studies. Zoffoli et al. (2017) reported that a faster walking speed which was close to the 

transition to running resulted in a higher kinematic variability. Beauchet et al. (2009) observed 

a decreased stride time variability at a lower walking speed. Since the populations with health 

conditions or older age prefer slower walking speeds, the observed sensorimotor adjustment in 

response to slopes may differ from this study. They are also more likely to fall when 

encountering balance perturbations. Accordingly, investigating the joint angle variability 

during sloped walking at a slower speed and with different populations is important to know its 

relationship with fall risks. Furthermore, the walking speed was selected based on the subjective 

perception at level walking. Some participants might not walk at the most efficient speed for 

their energy system. The differences among participants may lead to a larger deviation in 

biomechanics and physiology during steep uphill and downhill walking. Applying the same 
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speed as level walking during sloped walking may also contradict the natural strategy (Perrey 

and Fabre. 2008). 

 

The order of the inclines was not completely randomized and the rest periods between the trials 

were short. Dos Anjos et al. (2023) concluded that the trunk acceleration variability was 

significantly increased immediately after a fatigue protocol and returned to its baseline after 

resting for 4 minutes. The steepest uphill and downhill walking were arranged as the last two 

measured trials and there was no monitoring of any indicators of fatigue during the 

measurement. Thus, this study can hardly exclude the potential effect of fatigue on the 

variability during walking on the steepest slopes despite the short walking duration for the 

steepest inclinations.  

 

The lower limb sagittal-plane joint angle variability results showed slight differences between 

the left and right sides. The discrepancy in participant numbers might be the reason for it when 

considering statistics. During the measurement, the participants walked on the side of the 

treadmill closer to the left MoCap cameras. This positioning resulted in a greater chance of 

occlusion of markers on the left lower limb. As the duration of the marker occlusion increased, 

the precision of the gap-filling algorithm to estimate missing marker positions decreased 

(Howarth and Callaghan. 2010). This diminished precision likely introduced trajectories with 

computational artifacts, subsequently leading to a reduced dataset for the analysis of the left 

side. Another methodology consideration under caution is the gait event detection algorithm. 

The hallux markers were used instead of the toe markers for the FO detection. Although 

Bruening and Ridge (2014) recommended using the hallux marker to enhance the accuracy of 

the toe off detection, it hasn’t been verified during sloped walking. Also, the results showed 

that the errors existed between the timings identified through the visual inspection and the 

automatic algorithm. When the joint angle was time normalized to the gait cycle, the errors in 

timing implied a potential distortion in the shape of the joint angle curve. The differences 

between the compared patterns could arise from this disadvantage in the method. 

 

In this study, only the sagittal-plane joint angle variability was examined, while the previous 

research presented that the adaptation of the joint angle variability occurred on other movement 

planes as well (Sarvestan et al. 2021). Since the kinematics of human gait do not take place in 

a single direction, future studies should include the frontal and horizontal plane movement to 

draw a thorough conclusion on the impacts of slopes on the joint angle variability. 
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10 CONCLUSION 

 

In this study, the adjustments in spatiotemporal parameters during uphill and downhill walking 

were partially consistent with the findings of previous studies, suggesting that they might be 

affected by factors like walking speed, surfaces, and preferred strategies. The inclinations had 

significant effects on the amount and the structure of the hip, knee, and ankle sagittal-plane 

joint angle variability during walking. The amount of the sagittal-plane joint angle variability 

significantly increased as the treadmill became more inclined or declined. The structure of the 

sagittal-plane joint angle variability walking showed a similar trend as the amount of variability 

during downhill, while the structure of the sagittal-plane hip and knee joint angle variability of 

uphill walking significantly decreased at lower positive inclinations and increased at higher 

inclinations. The possible mechanisms behind the adaptation included greater muscular 

activation, distinct power demands, and larger balance perturbations during sloped walking. 

The assumption about challenges in balance could be supported by the changes in the 

spatiotemporal parameters which indicated the adoption of a more conservative gait strategy 

during downhill walking and steep uphill walking. Future research combining other 

biomechanics measurements is required to explore the determinants of the lower limb joint 

angle variability. 

 

Although this study did not quantify the optimized range for the sagittal-plane joint angle 

variability, it provided a perspective on how sensorimotor strategy reacted to various 

inclinations when walking on the treadmill. Moreover, the results suggested that the amount 

and the structure of the lower limb sagittal-plane joint angle variability did not respond to the 

perturbation identically. The structure of the sagittal-plane joint angle variability computed via 

sample entropy should be interpreted carefully since the chosen parameters, such as vector 

length and tolerance level, directly determine the way to compare patterns. While the commonly 

adopted vector length (m=2) captures the mild variance within the time series and allows the 

comparison to previous studies, it yields obstacles to interpreting the biological meaning. This 

is the first study to apply a vector length of 99 that enables the comparison between the joint 

angle curve of a gait cycle to another. However, due to the mathematical constraints, a relatively 

high tolerance level is required to have a matched pattern in the time series and produce 

consistent results. It is still a question of whether the low threshold is suitable or meaningful 

enough for investigating stride-to-stride joint angle variability.  
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To widely apply the joint angle variability during sloped walking in practice, studies targeting 

populations with higher fall risks, such as older adults or people with impaired neuromuscular 

control are needed. Furthermore, treadmill walking is biomechanically different from 

overground walking. The protocols that allow long recording lengths to analyze the amount and 

the structure of joint angle variability will benefit our understanding of it. 

 

In conclusion, healthy adults altered their sensorimotor strategy during sloped walking. The 

increase in movement variability suggested that they used a more flexible and more adaptative 

sensorimotor strategy during sloped walking compared to level walking. In addition, the 

adjustments were task-specific as they differed between positive, negative, lower and higher 

inclinations. 
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APPENDIX 1. 

 

Calculation of spatiotemporal parameters 

Parameter Description Calculation Method 

Speed (m/s) Walking speed Converted from km/h to m/s 

Left stride time (s) 
Average stride time for 

the left foot 

Mean of the differences between 

consecutive FS_L values, converted to 

milliseconds 

Right stride time (s) 
Average stride time for 

the right foot 

Mean of the differences between 

consecutive FS_R values, converted to 

milliseconds 

Step time (s) Average step time 

Mean of the differences between 

consecutive step events (FS_L and FS_R 

combined), converted to milliseconds 

Left stride length 

(m) 

Average stride length for 

the left foot 
Left stride time multiplied by speed 

Right stride length 

(m) 

Average stride length for 

the right foot 
Right stride time multiplied by speed 

Step length (m) Average step length Step time multiplied by speed 
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Cadence (1/min) Steps per minute 
Speed divided by step length, then 

multiplied by 1000 and 60 

Left stance duration 

(s) 

Average stance phase 

duration for the left foot 

Mean of the differences between FO_L 

and the closest preceding FS_L, converted 

to milliseconds 

Right stance duration 

(s) 

Average stance phase 

duration for the right foot 

Mean of the differences between FO_R 

and the closest preceding FS_R, converted 

to milliseconds 

Left swing duration 

(s) 

Average swing phase 

duration for the left foot 

Mean of the differences between FS_L and 

the closest preceding FO_L, converted to 

milliseconds 

Right swing duration 

(s) 

Average swing phase 

duration for the right foot 

Mean of the differences between FS_R and 

the closest preceding FO_R, converted to 

milliseconds 

Left stance phase 

(%) 

Average proportion of 

stance phase duration in 

a gait cycle for the left 

foot 

Mean values of left stance phase duration 

divided by left stride time 

Right stance phase 

(%) 

Average proportion of 

stance phase duration in 

a gait cycle for the right 

foot 

Mean values of right stance phase duration 

divided by right stride time 

FS_L: frame numbers where left foot strikes occur 

FS_R: frame numbers where right foot strikes occur  

FO_L: frame numbers where left foot offs occur 

FO_R: frame numbers where right foot offs occur 

  



 

 

APPENDIX 2. 

The figures illustrate one participant's joint angles during walking across all inclinations, with 

forty consecutive strides represented in different colors. 



 

 

 

 

 

 

  



 

 

 

 

 

  



 

 

 

APPENDIX 3. 

The figures present the results of SampEn (m=2) computed with different r values. The x-axis 

is the value of SampEn (bits), and the y-axis is the r value. 

 

 

 

 

 

 



 

 

 

  



 

 

 

APPENDIX 4. 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 


