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� Healthy human MEG resting state sensorimotor activity showed good to excellent test–retest stability across two separate sessions.
� 2–3 minute recordings were sufficient to obtain stable test–retest results and automation of analysis was successful in 86%
� ‘Resting sensorimotor phenotype’ is a stable feature of individuals’ resting brain activity with potential as a clinical biomarker.
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Objective: Diseases affecting sensorimotor function impair physical independence. Reliable functional
clinical biomarkers allowing early diagnosis or targeting treatment and rehabilitation could reduce this
burden. Magnetoencephalography (MEG) non-invasively measures brain rhythms such as the somatomo-
tor ‘rolandic’ rhythm which shows intermittent high-amplitude beta (14–30 Hz) ‘events’ that predict
behavior across tasks and species and are altered by sensorimotor neurological diseases.
Methods: We assessed test–retest stability, a prerequisite for biomarkers, of spontaneous sensorimotor
aperiodic (1/f) signal and beta events in 50 healthy human controls across two MEG sessions using the
intraclass correlation coefficient (ICC). Beta events were determined using an amplitude-thresholding
approach on a narrow-band filtered amplitude envelope obtained using Morlet wavelet decomposition.
Results: Resting sensorimotor characteristics showed good to excellent test–retest stability. Aperiodic
component (ICC 0.77–0.88) and beta event amplitude (ICC 0.74–0.82) were very stable, whereas beta
event duration was more variable (ICC 0.55–0.7). 2–3 minute recordings were sufficient to obtain stable
results. Analysis automatization was successful in 86%.
Conclusions: Sensorimotor beta phenotype is a stable feature of an individual’s resting brain activity even
for short recordings easily measured in patients.
Significance: Spontaneous sensorimotor beta phenotype has potential as a clinical biomarker of sensori-
motor system integrity.
� 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Some neurologic diseases affecting the motor system, such as
Parkinson’s disease, are difficult to diagnose at their early stages
due to lack of easily observable brain structural changes. Further-
more, disease trajectories and rehabilitation outcomes are variable
and often unpredictable. Currently, biomarkers for estimating indi-
vidual disease courses are lacking. Functional biomarkers reflecting
the processes underlying motor dysfunction might help in the dif-
ferential diagnostics, or in estimating the rate of disease develop-
ment or the recovery potential in individual patients. Such
markers could also improve targeting of treatment and
rehabilitation.

Non-invasive electrophysiological recordings, such as elec-
troencephalography (EEG) and magnetoencephalography (MEG),
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measure brain activity resulting from the spatial and temporal
summation of cellular neural activity of the brain’s underlying cor-
tical areas (Buzsáki et al., 2012). The measured activity depends on
factors such as neuronal density, size and shape, the anatomy of
neural network connections, and their relative activity at any given
point (Buzsáki et al., 2012). Thus, MEG and EEG measures reflect
the effect of different structural and functional changes in cortical
activity and have considerable potential as functional biomarkers.

One promising candidate functional biomarker is the sensori-
motor, or ‘rolandic’, 20-Hz beta rhythm which is observed consis-
tently in humans (Hari and Salmelin, 1997) and across other
species (Feingold et al., 2015; Haegens et al., 2011; Sherman
et al. 2016). Cortical beta activity plays an integral role in several
perceptual and cognitive functions and is modulated in a variety
of tasks including tactile processing (Haegens et al., 2011;
Pfurtscheller et al., 2001), movement (Feingold et al., 2015;
Salmelin and Hari 1994), action perception (Babiloni et al., 2002;
Hari et al., 1998) and attention (Sacchet et al., 2015; Ede et al.,
2011).

Cortical beta band activity displays a characteristic pattern of
bursting over time, occurring in intermittent high amplitude ‘beta
events’ alternating with lower amplitude periods (Feingold et al.,
2015; Jones, 2016). Beta activity is particularly patterned in the
sensorimotor cortex (Seedat et al., 2020), where beta event rate
predicts behavioral outcome in humans and rodents across tasks
(Shin et al., 2017). In humans, spontaneous resting EEG beta band
power (Smit et al., 2005; Van Beijsterveldt et al., 1996), as well as
beta event parameters (Pauls et al., 2024) have been shown to be
heritable.

Neurological conditions with related motor dysfunction, such as
stroke (Bartur et al., 2019; Laaksonen et al., 2013, 2012; Parkkonen
et al., 2018; Schulz et al., 2021; Rossiter et al., 2014), Parkinson’s
disease (Pauls et al., 2022; Vinding et al., 2020) and amyotrophic
lateral sclerosis (ALS) (Dukic et al., 2022; Proudfoot et al., 2017)
are associated with changes in the sensorimotor cortical beta band
signal. Furthermore, sensorimotor beta characteristics correlate
with symptom severity (Bartur et al., 2019; Laaksonen et al.,
2012; Parkkonen et al., 2018; Pauls et al., 2022; Rossiter et al.,
2014) and clinical recovery (Laaksonen et al., 2012, 2013;
Parkkonen et al., 2018).

In addition to rhythmic, or ‘periodic’, components, spontaneous
cortical activity also contains prominent aperiodic (‘1/f’) compo-
nents which show exponential decay characteristics. The exponent
parameter of the 1/f signal is postulated to reflect excitation-
inhibition balance (Gao et al., 2017), arousal and wakefulness
(Lendner et al., 2020) and it is modulated, e.g., by attention
(Waschke et al., 2021), brain maturation (Hill et al., 2022;
McSweeney et al., 2021; Tröndle et al., 2022) and aging (Voytek
et al., 2015; Wilson et al., 2022). 1/f behaviour is highly heritable
(Pauls et al., 2024) and appears to be altered in several neurological
and neuropsychiatric conditions, such as Parkinson’s disease
(Helson et al., 2023), dystonia (Semenova et al., 2021) and ADHD
(Ostlund et al., 2021).

Taken together, these studies have shown that sensorimotor
beta activity and aperiodic fluctuations are prominent, sponta-
neously occurring and heritable characteristics of ongoing brain
activity that are closely linked to sensorimotor functions, are pre-
served across mammalian species and show changes associated
with sensorimotor symptoms in different neurological disease con-
ditions. Given their salience and ease of acquisition, they are thus
potential cortical biomarkers of sensorimotor disease state and
its reactivity to treatment.

However, a prerequisite for using them as biomarkers is their
intraindividual signal stability. In general, test–retest reliability
for various MEG responses of clinical interest is good, as suggested,
e.g., for measures of somatosensory processing (Illman et al., 2022;
245
Piitulainen et al., 2018), picture naming (Ala-Salomäki et al., 2021),
as well as whole-brain spontaneous oscillatory power (Martín-
Buro et al., 2016) and resting state functional connectivity
(Garcés et al., 2016). Earlier EEG studies have also demonstrated
good test–retest reliability of global beta band power at rest
(Fingelkurts et al., 2006; Pollock et al., 1991). Decomposing cortical
sensorimotor activity into its different dynamic components, or
‘beta events’, adds detail compared to the assessment of mere beta
power globally, and the different beta event parameters’ test–ret-
est reliability has not been assessed before. Therefore, we deter-
mined whether and to what extent different spontaneous
sensorimotor beta event parameters and aperiodic activity are reli-
able across sessions.
2. Methods

2.1. Subjects

50 healthy subjects (age mean +/- STD 45 +/- 20 years, range
21–70 years, one ambidextrous, all other right-handed, handed-
ness assessed using the Edinburgh Handedness Inventory)
screened to exclude pre-existing neurological disorders, learning
disabilities, and language disorders were included in the study
after giving written informed consent. The study was approved
by the Aalto University ethics committee and carried out in accor-
dance with ethical guidelines set out in the Declaration of Helsinki.

2.2. MEG recordings

Measurements were performed in a magnetically shielded
room (Imedco AG, Hägendorf, Switzerland) with a 306-channel
Vectorview neuromagnetometer (MEGIN Oy, Helsinki, Finland)
consisting of 204 planar gradiometers and 102 magnetometers.
The data were measured at MEG Core, Aalto NeuroImaging, Aalto
University School of Science. Spontaneous cortical activity was
recorded with a 1 kHz sampling rate, continuous head position
monitoring (cHPI) and band-pass filtering at 0.03–330 Hz in two
separate sessions one-two weeks apart, for five minutes each,
while participants were resting with their eyes open. Vigilance
was assessed via video during measurements, via behavioural con-
trol (eye movements, blinking), and via monitoring of any progres-
sive slowing of the resting-state activity before further analysis.

2.3. MEG signal processing and parameter extraction

Subjects’ data were assessed visually for prominent vigilance
effects (e.g. slowing) and to exclude artifacts, and periods with sig-
nificant artifacts were excluded from further analysis. Overall, data
quality was good and there was only minor data loss due to arte-
fact removal (remaining mean recording length 330 seconds, range
306–515 seconds). For suppressing external artifacts, MEG data
were preprocessed using the temporally extended signal space
separation method (tSSS, (Taulu and Simola 2006) implemented
in the MaxFilter software (MEGIN Oy, Helsinki, Finland, version
2.2.15)). Subject’s head movements were compensated based on
the cHPI recordings, and individual MEG recordings were trans-
ferred to a common head space using MaxFilter’s signal space
separation-based head transformation algorithm. One subject
was excluded because head transformation to the common space
introduced considerable noise, compromising data quality. Further
signal processing was done using MNE-python version 1.3
(Gramfort et al. 2013). After band-pass filtering the data to 2–
48 Hz with a one-pass, zero-phase, non-causal FIR filter (MNE fir-
win filter using a Hamming window), power spectral densities
(PSD) were calculated using Welch’s method with a non-
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overlapping Hamming window and 2048-point Fast Fourier trans-
formation (frequency resolution �0.5 Hz).
2.4. Channel selection

The subsequent analysis steps are illustrated in Fig. 1 extending
the approach previously used (Pauls et al., 2022, 2024). For each
hemisphere, we defined a region of interest (ROI) of 15 gradiome-
ter channel pairs per hemisphere centered over the sensorimotor
cortices. Pairs of gradiometer channels were combined into one
vector PSD. The resulting 15 vector PSDs per hemisphere were then
decomposed into a periodic and an aperiodic component using the
Fig. 1. Sensorimotor phenotyping. A. Channel and peak frequency selection. In a pre
calculation, and the aperiodic (1/f) component was extracted using FOOOF as described p
selected either (1) manually by selecting the channel with the highest beta spectral pea
periodic beta power, or (3) using automation with visual-manual correction of the select
convolved with a set of complex Morlet wavelets, and the resulting signal averaged eithe
to obtain an amplitude envelope which was thresholded at the 75th percentile (red line).
phenotype parameters included PSD peak power and frequency in the 14–30 Hz beta b
characteristics including event duration and amplitude mean, median, standard devia
parameters can also be found in Table 2.

246
FOOOF algorithm (Donoghue et al., 2020) in the frequency range
from 2–48 Hz and using FOOOF’s default aperiodic fitting mode
(‘fixed’). The FOOOF algorithm operates on PSDs in semilog-
power space with linearly spaced frequencies (�0.5 Hz frequency
resolution in this case), and log-spaced power values. The aperiodic
component, L, is modeled using a Lorentzian function:
L ¼ b� logðkþ FvÞ
where b is the broadband offset, F is the vector of input frequen-

cies, v is the exponent, and k is the ‘‘knee” parameter, controlling
for the bend in the aperiodic component. Here, we did not fit a
bend in the aperiodic component, and the knee parameter param-
defined region of interest (ROI), channel pairs were combined using vector sum
reviously (Pauls et al. 2022, 2024). Peak channel and frequency within the ROI were
k frequency, (2) in an automated fashion by selecting the channel with the highest
ed frequency and channel if necessary. B. Beta event extraction. The raw signal was
r broad-band (14–30 Hz) or narrow-band (+/-2 Hz around the peak beta frequency)
Periods exceeding this threshold are defined as ‘beta events’. C. Resting sensorimotor
and, total periodic beta power, 1/f exponent (chi) and offset, as well as beta event
tion, robust maximum, event rate and dispersion (CV). A short description of all
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eter was hence set to k = 0. Note that in FOOOF the decay across
frequencies is modeled via the Lorentzian coefficient v (chi),
whereas when an exponential decay function is used to model 1/
f behavior the decay is represented by k (lambda).

To flatten the spectrum and reveal remaining periodic compo-
nents, the aperiodic component exponential decay curve was first
calculated using the FOOOF algorithm, and subtracted from the
original PSD. The remaining periodic component was then plotted
for all 15 vector PSDs. From these flattened vector PSD spectra, the
channel pair with the most prominent spectral peak in the beta
range was selected per hemisphere (‘the peak channel pair’) and
the frequency of the power peak was noted (‘peak beta frequency’)
(see Fig. 1A). This choice of channel and frequency was carried out
in three different ways: (1) an entirely automated approach, where
the ‘peak channel’ was selected based on the area under curve
(AUC) of the periodic part of the PSD between 14 and 30 Hz, and
the peak was detected automatically as the highest amplitude in
this frequency range; (2) a manual peak detection approach, where
vector PSD plots were visually inspected, the frequency of the
highest peak noted, and the channel with the maximum amplitude
at this frequency selected as the ‘peak channel’; and (3) a com-
bined approach where peak channel and peak frequency were
selected automatically as described, but all plots underwent visual
control and the assignment of peak frequency (and sometimes
channel) was re-adjusted if necessary. Typical reasons for correc-
tion of the peak frequency (and channel) were cases with strong
alpha peaks and weak beta peaks, where the automatically
detected beta peak was located on the shoulder of the alpha fre-
quency peak.

2.5. Beta event extraction

The channel pair and peak beta frequency corresponding to the
chosen peak vector PSD were used for beta event analysis (see
Fig. 1B). The chosen peak sensors were identical or adjacent to each
other in 46 out of 50 subjects in the left hemisphere, and in 45 (out
of 50 subjects) in the right hemisphere. The channel pair’s raw,
unfiltered time series data were downsampled to 200 Hz, high pass
filtered at 2 Hz and decomposed by convolving the signal with a set
of complex Morlet wavelets within the frequency range of 7–47 Hz
with 1 Hz resolution and n_cycles = frequency/2. After this, the
amplitude envelope was derived by averaging the signal within a
certain beta frequency range. This was done either (1) broad-
band across the entire beta frequency band (14–30 Hz) or (2)
narrow-band, i.e., ± 2 Hz around the individual peak beta frequency
chosen in one of the three ways described above. The vector sum
over both channels’ beta band time series was calculated and rec-
tified, to obtain one beta band amplitude envelope per channel
pair. The envelope was smoothed with a 100-ms FWHM kernel
and thresholded at the 75th percentile value. Periods exceeding
this threshold for 50 ms or longer were defined as beta events.
For event amplitude and event duration, the mean, median, robust
maximum (defined as mean of the top 5% values) and standard
deviation values were calculated (see Fig. 1C for illustration). Fur-
thermore, events per second (event rate) and event dispersion
were calculated as described previously (Pauls et al. 2022). Times
between beta events were defined as waiting times. To estimate
patterning of beta events, the variation of waiting times (hence-
forth referred to as ‘event dispersion’), we calculated the coefficient
of dispersion CV (Shinomoto, Miura, and Koyama 2005), defined as
the waiting times’ standard deviation r divided by their mean l:

CV ¼ r
l

For a series of waiting times between events which are indepen-
dently distributed, Cv takes a value of 1. For an entirely regular
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event sequence with constant intervals, its value will be 0. If the
value is larger than 1, the waiting times are over-dispersed, point-
ing to the occurrence of clusters of events. All values were calcu-
lated for both hemispheres in all subjects to obtain a
sensorimotor signature phenotype (Fig. 1C). This ‘resting sensori-
motor phenotype’ features included PSD peak power and frequency
in the 14–30 Hz beta band, total periodic beta power, 1/f exponent
(chi, also referred to as lambda) and offset, as well as beta event
characteristics including event duration and amplitude mean, med-
ian, standard deviation, robust maximum, event rate and dispersion
(see Fig. 1C and Table 2).

Beta event extraction was tested for a range of parameters to
investigate their effect on the phenotype results and their stability.
The narrow band filter bandwidth was varied (+/- 1, 2, 3, 4, 5 Hz,
and broad-band), and the amplitude threshold was tested for dif-
ferent percentiles (50th, 60th, 70th, 75th, 80th, 85th and 90th).
The effect of the amount of data (i.e. duration of recording) was
also examined by using successively longer data segments (60,
90, 120, 150, 180, 210, 240, 270 and 300 seconds) to estimate
the parameters. This was done starting from the beginning of the
recording, from the end of the recording, and from the middle of
the recording.

2.6. Test-retest reliability analysis

Test-retest reliability was assessed using the intraclass correla-
tion coefficient implemented in Pingouin (intraclass_corr func-
tion). ICC analyses were conducted on all the phenotype
parameters described in Fig. 1C, derived from the same gradiome-
ter channel pair for all parameters per session, by comparing the
outcomes between sessions 1 and 2. ICC is defined as follows:

ICC 3;1ð Þ ¼ BMS� EMSð Þ= BMSþ k� 1ð Þ � EMSð Þ;
where BMS = between-subjects mean square, EMS = error mean

square, and k = number of sessions. ICC below 0.4 is considered
poor, 0.40–0.59 fair, 0.60–0.74 good, and 0.75–1.00 as excellent
consistency (Cicchetti 1994). We used ICC(3,1), with a fixed set
of sessions (n = 2) during each of which all phenotype parameters
were assessed.

2.7. Code and data availability

Data cannot be made publicly available due to Finnish data pro-
tection law. Data can, however, be shared for research collabora-
tion with an amendment to the research ethics permit and a
related data transfer agreement. All analysis code will be made
available on GitHub.
3. Results

3.1. Test-retest reliability

Test-retest reliability was good or excellent for many of the
phenotype features. Fig. 2 shows example scatter plots for three
of the beta event parameters and their test–retest reliability in
the left hemisphere.

The three approaches using individual narrow-band filtering for
determining beta events produced very similar results, whereas
using a broad-band filter systematically altered the results (see
Fig. 3, discussed in more detail later). Entirely manual peak assign-
ment did not significantly improve results and was very labor-
intensive. On the other hand, automated peak assignment missed
the PSD beta peak that was by visual evaluation the best one in
14% of the cases. In most of these cases (86%), automatic peak
assignment missed the periodic peak, usually in favor of a lower



Fig. 2. Scatter plots illustrating three of the resting sensorimotor phenotypes in the left hemisphere when using automated peak assignment with manual control. The points
refer to individual subjects and subjects are labeled. The diagonal black line corresponds to identity between sessions.

Fig. 3. Effect of channel selection and event analysis strategies illustrated for different parameters (mean event amplitude, mean event duration and event rate). Blue –
automated channel selection, broad band event extraction, orange – automated channel selection, narrow band event extraction, green – automated channel & peak
selection and manual (human observer) control, pink – manual (human observer) channel & peak selection. The diagonal black line corresponds to identity between sessions.
Broad-band beta event extraction systematically shortens the duration of events, reduces their amplitude and increases their rate. Channel selection strategy has fewer and
less systematic effects on the parameters.
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frequency peak located on the ‘shoulder’ of a large alpha frequency
peak. In the remaining 14%, the peak channel changed because the
periodic beta peak was visually more distinct in a different chan-
nel. We thus chose to work with the approach combining auto-
mated peak selection with manual control.

Intraclass correlation coefficient (ICC) values for this approach
(‘automated + manual’) are given in Table 1, and for all four
approaches in Supplementary Table 1. Table 2 provides a descrip-
tion of all the parameters obtained from the data. Test-retest reli-
ability for most parameters was good or excellent, in particular for
the 1/f parameters. Some parameters, notably event dispersion,
proved poor (Fig. 2). Interestingly, parameters of event amplitude
were more reliable in the left hemisphere, whereas event duration
parameters were more stable in the right hemisphere.

3.2. Broad- vs. narrow band event characteristics

Use of broad-band filtering to determine beta event characteris-
tics systematically affected event parameters, shortening event
duration, increasing event rate and reducing event amplitudes
compared to narrow-band event extraction (see also Fig. 3). Fur-
thermore, broad-band filtering decreased the signal to noise ratio
(SNR), as illustrated in Fig. 4.
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3.3. Effect of recording length and processing parameters on ICC

Finally, we tested the effect of event extraction parameters (fil-
tering bandwidth & amplitude threshold) as well as recording
length on the test–retest reliability (see Fig. 5). Overall, event
amplitude showed good or excellent reliability and was relatively
invariant to different parameters except for recording duration
(Fig. 5, middle column). Event duration was more noise- and
parameter-sensitive (Fig. 5, first column). Event rate reliability
was fairly stable for longer recording durations. Event dispersion
had the lowest reliability of all parameters, also at longer recording
durations (Fig. 5, last column).

ICC stabilized reasonably well at 2-min recording length for
most beta event parameters, so even short recordings may be
enough for obtaining reliable results (Fig. 5, top row). However,
event rate estimates benefitted from longer recordings. A band-
width of 4 Hz was optimal for event duration assessment as well
as event rate, after which ICC decreased somewhat (Fig. 5, middle
row). Event amplitude appeared invariant to bandwidth. 70–80%
percentile thresholds were optimal for both the event duration as
well as the event rate parameter, while event amplitude was
mostly invariant to this parameter (Fig. 5, bottom row). Only dis-
persion appeared to benefit from higher percentile thresholds, rais-



Table 1
Test-retest reliability of different resting sensorimotor phenotypes between two measurement sessions (automated peak selection with manual control). Italics indicate ICC >=0.6,
bold italics ICC >= 0.75. CI95 � 95% confidence interval (lower and upper bound); F - F statistic. * The degrees of freedom of the numerator (d1) and the denominator (df2) are 48
for all parameters.

PSD parameters Left Right

ICC CI95 F* p value ICC CI95 F* p value

peak beta frequency 0.90 [0.83 0.94] 18.7 4.3E-19 0.80 [0.67 0.88] 8.9 1.8E-12
peak beta amplitude 0.61 [0.39 0.76] 4.1 1.6E-06 0.69 [0.51 0.81] 5.5 1.5E-08
1/f chi 0.84 [0.74 0.91] 11.7 8.1E-15 0.79 [0.65 0.87] 8.4 5.8E-12
1/f offset 0.88 [0.8 0.93] 16.3 8.7E-18 0.77 [0.63 0.87] 7.9 2.1E-11
total periodic beta power 0.82 [0.69 0.89] 9.8 2.8E-13 0.86 [0.76 0.92] 13.2 6.8E-16

Beta event parameters ICC CI95 F* p value ICC CI95 F* p value

duration mean 0.57 [0.35 0.73] 3.6 7.9E-06 0.76 [0.61 0.86] 7.2 1.0E-10
median 0.57 [0.35 0.73] 3.7 7.0E-06 0.30 [0.02 0.53] 1.8 1.9E-02
standard deviation 0.59 [0.37 0.74] 3.8 3.8E-06 0.76 [0.6 0.85] 7.2 1.1E-10
maximum 0.41 [0.15 0.62] 2.4 1.5E-03 0.65 [0.45 0.79] 4.7 1.7E-07
robust maximum 0.59 [0.37 0.74] 3.9 3.5E-06 0.77 [0.63 0.87] 7.9 2.1E-11

amplitude mean 0.78 [0.64 0.87] 8.1 1.2E-11 0.76 [0.61 0.85] 7.2 1.1E-10
median 0.78 [0.64 0.87] 8.0 1.5E-11 0.75 [0.6 0.85] 7.0 1.9E-10
standard deviation 0.79 [0.66 0.88] 8.5 4.5E-12 0.76 [0.61 0.86] 7.3 8.2E-11
maximum 0.82 [0.71 0.9 ] 10.4 9.9E-14 0.74 [0.59 0.85] 6.8 3.2E-10
robust maximum 0.81 [0.68 0.89] 9.4 7.4E-13 0.76 [0.61 0.86] 7.3 8.7E-11

event rate 0.62 [0.41 0.77] 4.3 7.9E-07 0.79 [0.65 0.88] 8.5 4.8E-12
event dispersion (Cv) 0.40 [0.13 0.61] 2.3 2.2E-03 0.31 [0.03 0.54] 1.9 1.5E-02

Table 2
Description of parameters for which ICC was calculated.

PSD parameters Units Description

peak beta frequency Hz frequency at maximum beta range PSD periodic peak
peak beta amplitude (fT/cm)^2 maximum amplitude of the beta range PSD periodic peak
1/f chi unitless exponent of the aperiodic PSD component
1/f offset unitless offset of the aperiodic PSD component
total periodic beta

power
(fT/cm)^2 area under curve (AUC) of the periodic PSD component in the beta range (not including aperiodic PSD part AUC)

Beta event parameters
duration mean milliseconds mean duration of all observed events > 50 ms

median milliseconds median duration of all observed events > 50 ms
standard deviation milliseconds standard deviation of duration of all observed events > 50 ms
maximum milliseconds maximum duration of all observed events > 50 ms
robust maximum milliseconds duration of maximum 5% of all observed events > 50 ms

amplitude mean fT/cm mean amplitude of all observed events > 50 ms
median fT/cm median amplitude of all observed events > 50 ms
standard deviation fT/cm standard deviation of amplitude of all observed events > 50 ms
maximum fT/cm maximum amplitude of all observed events > 50 ms
robust maximum fT/cm amplitude of maximum 5% of all observed events > 50 ms

event rate 1/s number of events/measurement time
event dispersion (Cv) unitless standard deviation/mean for the waiting times, if 0, entirely regular event, if 1, exponential decay behaviour, if >1, clustering

of events
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ing ICC to around 0.5–0.6. Comparing the effects of recording dura-
tion did not reveal differences in ICC for 2-minute recordings or
longer, and results were independent of which part of the total
recording was used. However, for recordings of less than 2 min-
utes, ICC estimates appeared less stable for the beginning of the
recording, which could be due to the subject settling into ‘idling
state’ after making themselves familiar with the situation, or due
to external noise sources related to the beginning of the
measurement.

The ICC values for the 1/f parameters were independent of the
FOOF fitting range (2/3/4–47 Hz).

4. Discussion

We demonstrate that human cortical sensorimotor dynamic
cortical beta event parameters and 1/f characteristics as measured
with resting-state MEG show good test–retest reliability. The
results were robust across a range of analysis parameters including
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different filtering bandwidths and amplitude thresholds and
appear to be stable even for just 2–3 minutes of recording for many
parameters. The results suggest that resting sensorimotor beta
phenotype is a stable feature of an individual’s brain activity with
good potential as a clinical biomarker.

4.1. Earlier studies of test–retest reliability of sensorimotor functional
measures

Some previous studies have assessed sensorimotor system
spontaneous and task-related measures’ test–retest reliability. In
an MEG study assessing spontaneous resting-state oscillatory beta
band power stability, ICCs ranged from 0.74 to 0.86 for frontal and
parietal brain areas (Martín-Buro, Garcés, and Maestú 2016), com-
parable to our results for the left hemisphere beta power. In their
study, beta power was separated into low and high beta power
(13–20 vs. 20–30 Hz). Furthermore, the total band power included
the aperiodic signal component, which was assessed separately



Fig. 4. Effect of broad-band (14–30 Hz) vs. narrow band (peak frequency +/- 2 Hz) filtering on amplitude envelope and signal to noise ratio (SNR), shown for a prominent (A)
and a weaker (B) beta range spectral peak. The selection of the individual peak and bandwidth has relatively more effect in the prominent peak case in which the SNR
decreases with increasing filtering bandwidth. Note that the y-axis is in non-logarithmic scale.
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here. Cortico-kinematic coherence, a measure of proprioception-
related brain processing, has been demonstrated to have very good
stability, 0.86 for the dominant and 0.97 for the non-dominant
hand (Piitulainen et al. 2018). Stimulus-related sensorimotor beta
suppression and rebound phenomena in response to sensory (tac-
tile and proprioceptive) stimuli also show good to excellent stabil-
ity (Illman et al. 2022). However, task-related functional measures
rely on some degree of collaboration (and preserved function) from
the subject, which can limit applicability in clinical settings. Thus,
brief measurements of spontaneous brain activity as used here
extend the spectrum of possible applications.
4.2. Are there hemispheric differences in test–retest reliability?

We found a tendency for hemispheric differences in ICC for
some of the parameters. The test–retest reliability was slightly
higher for the left, dominant hemisphere for the amplitude param-
eter, probably reflecting the fact that left hemisphere spectra tend
to have clearer periodic signal components. Interestingly, the beta
event duration parameters as well as event rate were more reliable
for the right hemisphere, even though defining the peak was more
difficult. A possible explanation for this result is that the dominant
left hemisphere has more variable resting activity. On the other
hand, the right hemisphere duration parameter may be more
stable than the corresponding value in the left hemisphere because
of its relatively lower SNR, thus less reflecting the actual periodic
beta signal fluctuations and more the general noise level or other,
non-periodic activity. This effect can also be seen in the broad vs.
narrow band signal extraction: broad-band signal extraction pro-
duces good ICC values, especially for the right hemisphere. The
ICC difference between ‘broad’ and ‘narrow’ band extraction strate-
gies is bigger for the left hemisphere with a more pronounced PSD
beta peak. The difference could also be caused by measurement-
related effects: slight natural head tilt to one side could cause
the head to be closer to the sensors on one side compared to the
other. Here, a head position correction procedure was employed
to correct for head position, but differences in signal to noise ratio
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present before head correction would still remain, making the
results there less consistent.
4.3. Potential of resting sensorimotor phenotype as a biomarker

Are the ICC values obtained here sufficient to warrant use as a
biomarker? There are no standard values determining acceptable
reliability using ICC, but different suggestions have been made
for their interpretation (Cicchetti 1994; Koo and Mae, 2016). ICC
values above 0.6 (Cicchetti 1994) or 0.75 (Koo and Mae, 2016) have
been considered to indicate good test–retest agreement, and val-
ues above 0.75 (Cicchetti 1994) or 0.9 (Koo and Mae, 2016) to indi-
cate excellent test–retest agreement. Thus, many of the described
event parameters in the present study show good to excellent
test–retest reliability. A low ICC can relate to low test–retest agree-
ment but can also relate to lack of variability among subjects
(small dynamic range), small number of subjects or a low number
of repetitions. The number of subjects in the current study should
be sufficient to obtain reasonable ICC values and was the same for
all studied parameters. However, the dynamic range was low, e.g.,
for event dispersion, with most subjects clustering in a very limited
range of values, possibly contributing to the low ICC. Overall, the
level of test–retest reliability obtained in the current study was
good, supporting the use of the described features of interest also
in clinical settings. This notion is supported by the confidence
intervals that were observed. For the measures that showed good
or excellent test–retest agreement, the lower 95% confidence limits
suggested fair, good, or even excellent test–retest agreement. How-
ever, for the measures showing only fair test–retest agreement
(e.g., event dispersion), the lower confidence limits were < 0.2, sug-
gesting that these measures may not serve as viable biomarkers.

Besides technical considerations, biological and pathophysio-
logical considerations are also important for biomarker develop-
ment. As outlined earlier, sensorimotor beta activity and dynamic
beta events are detectable across different mammalian species
including humans, non-human primates and rodents (Feingold
et al., 2015; Haegens et al., 2011; Hari and Salmelin, 1997;



Fig. 5. Effect of different event extraction parameters on session-to-session event parameter stability as assessed by ICC. Panels depict the following parameters. top row -
effect of recording duration (s), middle row - peak bandwidth (Hz), bottom row - % amplitude threshold, with ICC on the y-axis. Columns. 1st - event duration, 2nd - event
amplitude, 3rd - event rate & dispersion. Solid lines - left hemisphere, dashed lines - right hemisphere.
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Sherman et al., 2016) and they have been found to be heritable
(Pauls et al., 2024; Smit et al., 2005; Van Beijsterveldt et al.,
1996), suggesting that the brain’s sensorimotor signature is quite
preserved across the sensorimotor system’s evolution. Interest-
ingly, our results show that certain beta event characteristics, e.g
left hemispheric aperiodic behavior and several beta event ampli-
tude measures, showed high test–retest reliability, even though
they do not evidence significant heritability (Pauls et al., 2024).
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The present results thus further support our previous finding that
beta characteristics have variable heritability, possibly related to
their underlying generation mechanisms. Furthermore, previous
studies have shown disease-related beta changes at the group level
(Bartur et al., 2019; Dukic et al., 2022; Laaksonen et al., 2013, 2012;
Parkkonen et al., 2018; Pauls et al., 2022; Vinding et al., 2020;
Schulz et al., 2021). Finally, the human brain’s sensorimotor sys-
tem has been extensively studied and is quite well understood.
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We suggest that these factors, in combination with good test–ret-
est reliability demonstrated here, make sensorimotor beta activity
a good candidate electrophysiological biomarker. It is conceivable
that test–retest behavior might be different and the signal poten-
tially more heterogeneous or unstable in clinical cohorts, so this
will need to be investigated further.Moreover, future studies
should also monitor and address in more detail the possible role
of cardiac and motor artifacts on the test–retest agreement of the
sensorimotor beta activity in different cohorts.

4.4. Limitations and future directions

Although the analysis approach used here was largely auto-
mated, it still required some manual preprocessing (adjustment
of peaks in some cases with weak beta peak). The need for a human
observer is always associated with a certain degree of observer
bias, and different observers and experience levels can lead to
increased levels of uncertainty. Furthermore, human observers
need to be trained to make the process as reliable as possible. Here,
only one observer (AP) carried out all manual beta peak selection.
For now, human control of results is necessary, and better autom-
atization procedures are needed to automate beta event character-
ization entirely. Alternatively, e.g. more observer-independent
methods to assess fluctuations in beta state (e.g. using Hidden
Markov Modelling as used in (Seedat et al., 2020) could reduce
the need for human observers. Recently, approaches to determine
transient neural events using threshold methods based on esti-
mates of 1/f background behaviour have also been proposed
(Seymour et al., 2022; Brady and Bardouille 2022). However, all
of these methods will still require some human-observer based
choices if looking at specific frequencies as opposed to spectral
behaviour across an entire frequency band (e.g. beta band).

Furthermore, sources of variations in signal to noise ratio (SNR)
in PSD spectra need to be explored. Some subjects have relatively
small periodic components in their PSD spectra for unknown rea-
sons, and poor PSD SNR is not always clearly attributable to mea-
surement noise. In many studies, subjects with poor SNR are
excluded before further data analysis. However, after excluding
clear problems with measurement quality (external noise), it
would be interesting to explore reasons for poor SNR, which might
in fact be related to brain processing features or brain state in these
subjects. Here, we excluded one subject due to SNR considerations
arising from problems related to data collection (poor head posi-
tioning during one session). Some subjects had bigger session to
session fluctuations than others due to factors not obviously
related to measurement factors. Future studies should assess the
sources of session-to-session variability, e.g., factors such as vigi-
lance. We assessed vigilance clinically during the measurement
(via video) and the eyes open resting condition was used. The
raw data was visually assessed for vigilance effects also (exclusion
of gradual slowing of activity) to ensure steady vigilance levels.
Thus, major fluctuations in vigilance have been excluded, but small
changes in alertness or habituation effects across sessions are pos-
sible. Quantitative, automated vigilance assessment may also be
helpful in the future.

We here show good test–retest reliability for 1/f behavior, an
important component of power spectral activity which is still
incompletely understood. 1/f subsumes several factors, including
both subject-related as well as non-subject related factors (such
as measurement environment and device). Noise components
related to the measurement environment were suppressed using
spatiotemporal signal space separation (Taulu and Simola 2006).
Noise from the measurement device is expected to be very weak
compared to physiological noise from the participants, and is thus
unlikely to significantly contribute to the 1/f results. Subjects
showed good test–retest reliability (self-sameness) between two
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measurement sessions carried out on separate days one week
apart, suggesting that the 1/f parameters are subject-related and
subject-specific. However, as subject-specific physiological signals
originating outside the brain (such as eye-movements and cardiac
signals) can also show 1/f behavior, it is possible that the 1/f test–
retest reliability is also influenced by non-brain signals. For
improved interpretability, a more detailed understanding of factors
contributing to 1/f signal and their relative weighting in signal gen-
eration is needed in the future.

The resting sensorimotor phenotype was assessed at the
sensor-level. While source-level approaches add some level of
spatial-anatomical resolution, they also introduce more data pro-
cessing and analysis choices, making the approach less feasible
for potential clinical applications and possibly leading to biased
estimates. Furthermore, clinically useful source-level analyses
would necessitate suitable cortical parcellations to avoid multiply-
ing the amount of data. As MEG is most sensitive to sulcal brain
activity, established parcellations taking this into account would
be needed. Here, we were specifically interested in testing the reli-
ability of a simple approach using sensor-level data to characterize
the resting sensorimotor phenotype for potential clinical applica-
tions. If the potential caveats of source-level analyses (amount of
data processing, automated analyses, suitable parcellations) can
be solved, future studies should address whether more reliable
measures can be obtained at the source- compared to the sensor-
level.
4.5. Pipeline recommendation

In the current study, recording durations of 2–3 minutes were
sufficient to get stable beta event results for most parameters.
For most of the examined parameters, short good-quality data seg-
ments were preferable to longer data segments with more variable
data quality. Only the event rate, and to some extent the event
duration parameters, benefited from longer recording times.

Automation of beta peak detection was successful for 86% of the
hemispheres: We recommend at least visual control to ascertain
correct beta peak assignment. In the future, optimized automatiza-
tion approaches which work for most subjects would be helpful to
eliminate human observer bias. Alternatively, broad-band (13–
30 Hz) beta event extraction can be done, but use of a specific beta
peak channel and beta band peak for extraction of beta event infor-
mation increased stability of the beta event duration parameter. A
beta amplitude threshold of 75% and 4 Hz bandwidth appears
appropriate, giving a good reliability for all beta event parameters.
Estimation of event dispersion had low reliability but improved at
higher percentage thresholds, so this parameter might require dif-
ferent processing settings.
5. Conclusions

In summary, we demonstrate that a robust resting-state senso-
rimotor phenotype with good or excellent test–retest stability can
be obtained from MEG data in healthy subjects relatively easily
even from short, 2–3 minutes long MEG recordings. This resting
sensorimotor beta phenotype appears to be a relatively stable fea-
ture of an individual’s resting brain activity which can be easily
measured also in patient populations, facilitating its use as a
potential clinical biomarker.
Conflict of interest statement

None of the authors have potential conflicts of interest to be
disclosed.



K. Amande M. Pauls, P. Nurmi, H. Ala-Salomäki et al. Clinical Neurophysiology 163 (2024) 244–254
Acknowledgements

We thank all subjects for participating in the study. We
acknowledge the following funding sources: AP received funding
from the Academy of Finland (grant number 350242), the Sigrid
Juselius Foundation and the Finnish Medical Foundation. Pietari
Nurmi received funding from the Finnish Cultural Foundation
and the Swedish Cultural Foundation in Finland. Heidi Ala-
Salomäki received funding from the Jenny and Antti Wihuri foun-
dation and the Finnish Cultural Foundation. HR received funding
from the Academy of Finland (grant numbers 127401 and
321460). Mia Liljeström received funding from the Swedish Cul-
tural Foundation in Finland.
Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.clinph.2024.03.021.
References

Ala-Salomäki H, Kujala J, Liljeström M, Salmelin R. Picture naming yields highly
consistent cortical activation patterns: test–retest reliability of
magnetoencephalography recordings. Neuroimage 2021;227(February).
https://doi.org/10.1016/j.neuroimage.2020.117651.

Babiloni C, Babiloni F, Carducci F, Cincotti F, Cocozza G, Del Percio C, et al. Human
Cortical Electroencephalography (EEG) rhythms during the observation of
simple aimless movements: a high-resolution EEG study. Neuroimage 2002;17
(2):559–72.

Bartur G, Pratt H, Soroker N. Changes in Mu and Beta amplitude of the EEG during
upper limb movement correlate with motor impairment and structural damage
in subacute stroke. Clin Neurophysiol: Of J Int Federation Clin Neurophysiol
2019;130(9):1644–51.

Brady B, Bardouille T. Periodic/Aperiodic Parameterization of Transient Oscillations
(PAPTO)-implications for healthy ageing. Neuroimage 2022;251(May) 118974.

Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents-
EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012. https://doi.org/10.1038/
nrn3241.

Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and
standardized assessment instruments in psychology. Psychol Assess 1994;6
(4):284–90.

Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al.
Parameterizing neural power spectra into periodic and aperiodic components.
Nat Neurosci 2020;23(12):1655–65.

Dukic S, McMackin R, Costello E, Metzger M, Buxo T, Fasano A, et al. Resting-State
EEG reveals four subphenotypes of amyotrophic lateral sclerosis. Brain: A J
Neurol 2022;145(2):621–31.

Feingold J, Gibson DJ, DePasquale B, Graybiel AM.‘‘Bursts of beta oscillation
differentiate postperformance activity in the striatum and motor cortex of
monkeys performing movement tasks. In: Proceedings of the National Academy
of Sciences of the United States of America 2015;112(44). https://doi.org/10.
1073/pnas.1517629112.

Fingelkurts AA, Fingelkurts AA, Ermolaev VA, Kaplan AY. Stability, reliability and
consistency of the compositions of brain oscillations. Int J Psychophysiol: Off J
Int Organ Psychophysiol 2006;59(2):116–26.

Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from
field potentials. Neuroimage 2017;158(September):70–8.

Garcés P, Martín-Buro MC, Maestú F. Quantifying the test-retest reliability of
magnetoencephalography resting-state functional connectivity. Brain Connect
2016;6(6):448–60.

Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MEG
and EEG data analysis with MNE-Python. Front Neurosci 2013;7(7 DEC). https://
doi.org/10.3389/fnins.2013.00267.

Haegens S, Nácher V, Hernández A, Luna R, Jensen O, Romo R. Beta oscillations in the
monkey sensorimotor network reflect somatosensory decision making. In:
Proceedings of the National Academy of Sciences of the United States of
America 2011;108(26):10708–13.

Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G. Activation of
human primary motor cortex during action observation: a neuromagnetic
study. In: Proceedings of the National Academy of Sciences of the United States
of America 1998;95(25):15061–65.

Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the
skull. Trends Neurosci 1997. https://doi.org/10.1016/S0166-2236(96)10065-5.

Helson P, Lundqvist D, Svenningsson P, Vinding MC, Kumar A. Cortex-Wide
topography of 1/f-exponent in Parkinson’s disease. NPJ Parkinson’s Dis 2023;9
(1):109.
253
Hill AT, Clark GM, Bigelow FJ, Lum JAG, Enticott PG. Periodic and aperiodic neural
activity displays age-dependent changes across early-to-middle childhood. Dev
Cogn Neurosci 2022;54(April) 101076.

Illman M, Laaksonen K, Jousmäki V, Forss N, Piitulainen H. Reproducibility of
rolandic beta rhythm modulation in MEG and EEG. J Neurophysiol 2022;127
(2):559–70.

Jones SR. When brain rhythms aren’t ‘rhythmic’: implication for their mechanisms
and meaning. Curr Opin Neurobiol. Elsevier Ltd. 2016. https://doi.org/10.1016/
j.conb.2016.06.010.

Koo TK, Mae YL. A guideline of selecting and reporting intraclass correlation
coefficients for reliability research. J Chiropr Med 2016;15(2):155–63.

Laaksonen K, Helle L, Parkkonen L, Kirveskari E, Mäkelä JP, Mustanoja S, et al.
Alterations in spontaneous brain oscillations during stroke recovery. PLoS One
2013;8(4). https://doi.org/10.1371/journal.pone.0061146.

Laaksonen K, Kirveskari E, Mäkelä JP, Kaste M, Mustanoja S, Nummenmaa L, et al.
Effect of afferent input on motor cortex excitability during stroke recovery. Clin
Neurophysiol: Off J Int Federation Clin Neurophysiol 2012;123(12). https://doi.
org/10.1016/j.clinph.2012.05.017.

Lendner JD, Helfrich RF, Mander BA, Romundstad L, Lin JJ, Walker MP, et al. An
electrophysiological marker of arousal level in humans. eLife 2020;9
(July):1–29.

Martín-Buro MC, Garcés P, Maestú F. Test-Retest Reliability of Resting-State
Magnetoencephalography Power in Sensor and Source Space. Hum Brain
Mapp 2016;37(1):179–90.

McSweeney M, Morales S, Valadez EA, Buzzell GA, Fox NA. Longitudinal age- and
sex-related change in background aperiodic activity during early adolescence.
Dev Cogn Neurosci 2021;52(December) 101035.

Ostlund BD, Alperin BR, Drew T, Karalunas SL. Behavioral and cognitive correlates of
the aperiodic (1/f-Like) exponent of the EEG power spectrum in adolescents
with and without ADHD. Dev Cogn Neurosci 2021;48(April). https://doi.org/
10.1016/j.dcn.2021.100931.

Parkkonen E, Laaksonen K, Parkkonen L, Forss N. Recovery of the 20Hz rebound to
tactile and proprioceptive stimulation after stroke. Neural Plast 2018;2018.
https://doi.org/10.1155/2018/7395798.

Pauls KA, Korsun O, Nenonen J, Nurminen J, LiljeströmM, Kujala J, et al. Cortical beta
burst dynamics are altered in Parkinson’s disease but normalized by deep brain
stimulation. Neuroimage 2022;257(August) 119308.

Pauls KA, Salmela E, Korsun O, Kujala J, Salmelin R, Renvall H. Human sensorimotor
beta event characteristics and aperiodic signal are highly heritable. J Neurosci:
Off J Soc Neurosci 2024;44(5). https://doi.org/10.1523/JNEUROSCI.0265-
23.2023.

Pfurtscheller G, Krausz G, Neuper C. Mechanical stimulation of the fingertip can
induce bursts of b oscillations in sensorimotor areas. J Clin Neurophysiol: Off
Publ Am Electroencephalogr Soc 2001;18(6):559–64.

Piitulainen H, Illman M, Laaksonen K, Jousmäki V, Forss N. Reproducibility of
corticokinematic coherence. Neuroimage 2018;179(October):596–603.

Pollock VE, Schneider LS, Lyness SA. Reliability of topographic quantitative EEG
amplitude in healthy late-middle-aged and elderly subjects. Electroencephalogr
Clin Neurophysiol 1991;79(1):20–6.

Proudfoot M, Rohenkohl G, Quinn A, Colclough GL, Wuu J, Talbot K, et al. Altered
cortical beta-band oscillations reflect motor system degeneration in
amyotrophic lateral sclerosis. Hum Brain Mapp 2017;38(1):237–54.

Rossiter HE, Boudrias MH, Ward NS. Do movement-related beta oscillations change
after stroke? J Neurophysiol 2014;112(9):2053–208.

Sacchet MD, LaPlante RA, Wan Q, Pritchett DL, Lee AKC, Hämäläinen M, et al.
Attention drives synchronization of alpha and beta rhythms between right
inferior frontal and primary sensory neocortex. J Neurosci 2015;35(5):2074–82.

Salmelin R, Hari R. Spatiotemporal characteristics of sensorimotor neuromagnetic
rhythms related to thumb movement. Neuroscience 1994;60(2):537–50.

Schulz R, Bönstrup M, Guder S, Liu J, Frey B, Quandt F, et al. Corticospinal tract
microstructure correlates with beta oscillatory activity in the primary motor
cortex after stroke. Stroke 2021;52(12):3839–47.

Seedat ZA, Quinn AJ, Vidaurre D, Liuzzi L, Gascoyne LE, Hunt BAE, et al. The role of
transient spectral ‘bursts’ in functional connectivity: a
magnetoencephalography study. Neuroimage 2020;209. https://doi.org/
10.1016/j.neuroimage.2020.116537.

Semenova U, Popov V, Tomskiy A, Shaikh AG, Sedov A. Pallidal 1/f asymmetry in
patients with cervical dystonia. Eur J Neurosci 2021;53(7):2214–29.

Seymour RA, Alexander N, Maguire EA. Robust estimation of 1/f activity improves
oscillatory burst detection. Eur J Neurosci 2022;56(10):5836–52.

Sherman MA, Lee S, Law R, Haegens S, Thorn CA, Hämäläinen MS, et al. Neural
mechanisms of transient neocortical beta rhythms: converging evidence from
humans, computational modeling, monkeys, and mice. Proc Natl Acad Sci U.S.A.
2016;113(33):E4885–94.

Shin H, Law R, Tsutsui S, Moore CI, Jones SR. The rate of transient beta frequency
events predicts behavior across tasks and species. eLife 2017;6. https://doi.org/
10.7554/eLife.29086.

Shinomoto S, Miura K, Koyama S. A measure of local variation of inter-spike
intervals. Biosystems 2005;79(67–72).

Smit DJA, Posthuma D, Boomsma DI, De Geus EJC. Heritability of background EEG
across the power spectrum. Psychophysiology 2005;42(6):691–767.

Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting
nearby interference in MEG measurements. Phys Med Biol 2006;51
(7):1759–68.

https://doi.org/10.1016/j.clinph.2024.03.021
https://doi.org/10.1016/j.neuroimage.2020.117651
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0010
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0010
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0010
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0010
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0015
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0015
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0015
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0015
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0020
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0020
https://doi.org/10.1038/nrn3241
https://doi.org/10.1038/nrn3241
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0030
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0030
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0030
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0035
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0035
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0035
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0040
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0040
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0040
https://doi.org/10.1073/pnas.1517629112
https://doi.org/10.1073/pnas.1517629112
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0050
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0050
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0050
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0055
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0055
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0060
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0060
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0060
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/S0166-2236(96)10065-5
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0085
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0085
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0085
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0090
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0090
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0090
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0095
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0095
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0095
https://doi.org/10.1016/j.conb.2016.06.010
https://doi.org/10.1016/j.conb.2016.06.010
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0105
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0105
https://doi.org/10.1371/journal.pone.0061146
https://doi.org/10.1016/j.clinph.2012.05.017
https://doi.org/10.1016/j.clinph.2012.05.017
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0120
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0120
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0120
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0125
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0125
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0125
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0130
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0130
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0130
https://doi.org/10.1016/j.dcn.2021.100931
https://doi.org/10.1016/j.dcn.2021.100931
https://doi.org/10.1155/2018/7395798
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0145
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0145
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0145
https://doi.org/10.1523/JNEUROSCI.0265-23.2023
https://doi.org/10.1523/JNEUROSCI.0265-23.2023
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0155
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0155
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0155
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0160
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0160
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0165
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0165
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0165
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0170
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0170
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0170
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0175
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0175
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0180
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0180
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0180
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0185
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0185
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0190
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0190
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0190
https://doi.org/10.1016/j.neuroimage.2020.116537
https://doi.org/10.1016/j.neuroimage.2020.116537
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0200
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0200
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0205
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0205
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0210
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0210
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0210
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0210
https://doi.org/10.7554/eLife.29086
https://doi.org/10.7554/eLife.29086
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0220
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0220
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0225
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0225
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0230
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0230
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0230


K. Amande M. Pauls, P. Nurmi, H. Ala-Salomäki et al. Clinical Neurophysiology 163 (2024) 244–254
Tröndle M, Popov T, Dziemian S, Langer N. Decomposing the role of alpha
oscillations during brain maturation. eLife 2022;11. https://doi.org/10.7554/
eLife.77571.

Van Beijsterveldt CEM, Molenaar PCM, De Geus EJC, Boomsma DI. Heritability of
human brain functioning as assessed by electroencephalosraphy. Am J Hum
Genet 1996;58(3):562–73.

Ede V, Freek FD, Lange OJ, Maris E. Orienting attention to an upcoming tactile event
involves a spatially and temporally specific modulation of sensorimotor alpha-
and beta-band oscillations. J Neurosci 2011;31(6):2016–24.

Vinding MC, Tsitsi P, Waldthaler J, Oostenveld R, Ingvar M, Svenningsson P, et al.
Reduction of spontaneous cortical beta bursts in Parkinson’s disease is linked to
symptom severity. Brain Commun 2020;2(1). https://doi.org/10.1093/
braincomms/fcaa052.
254
Voytek B, Kramer MA, Case J, Lepage KQ, Tempesta ZR, Knight RT, et al. Age-related
changes in 1/f neural electrophysiological noise. J Neurosci 2015;35
(38):13257–65.

Waschke L, Donoghue T, Fiedler L, Smith S, Garrett DD, Voytek B, et al. Modality-
specific tracking of attention and sensory statistics in the human
electrophysiological spectral exponent. Life 2021;10(October). https://doi.org/
10.7554/eLife.70068.

Wilson LE, da Silva Castanheira J, Baillet S. Time-resolved parameterization of
aperiodic and periodic brain activity. eLife 2022;11(September). https://doi.org/
10.7554/eLife.77348.

https://doi.org/10.7554/eLife.77571
https://doi.org/10.7554/eLife.77571
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0240
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0240
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0240
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0245
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0245
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0245
https://doi.org/10.1093/braincomms/fcaa052
https://doi.org/10.1093/braincomms/fcaa052
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0255
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0255
http://refhub.elsevier.com/S1388-2457(24)00092-0/h0255
https://doi.org/10.7554/eLife.70068
https://doi.org/10.7554/eLife.70068
https://doi.org/10.7554/eLife.77348
https://doi.org/10.7554/eLife.77348

	Human sensorimotor resting state beta events and aperiodic activity show good test–retest reliability
	Introduction
	Methods
	Subjects
	MEG recordings
	MEG signal processing and parameter extraction
	Channel selection
	Beta event extraction
	Test-retest reliability analysis
	Code and data availability

	Results
	Test-retest reliability
	Broad- vs. narrow band event characteristics
	Effect of recording length and processing parameters on ICC

	Discussion
	Earlier studies of test–retest reliability of sensorimotor functional measures
	Are there hemispheric differences in test–retest reliability?
	Potential of resting sensorimotor phenotype as a biomarker
	Limitations and future directions
	Pipeline recommendation

	Conclusions
	Conflict of interest statement
	Acknowledgements
	Supplementary material
	References


