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Abstract

Is a function uniquely determined by its integrals over geodesics of a Riemannian manifold?
This question — known as geodesic X-ray tomography — is a geometric generalization of the
classical problem of recovering a function from its integrals along lines encountered in medi-
cal applications of X-ray tomography. The geometric question naturally arises from a various
geometric inverse problems such as boundary rigidity and spectral rigidity.

This thesis studies geodesic X-tomography problems in non-smooth Riemannian geometries.
The central objects of interest — known as geodesic X-ray transforms — are various integral
transforms encoding the integrals of a function or a tensor field over the geodesics. We encounter
two different types of non-smooth geometries: globally non-smooth Riemannian metrics and
Riemannian metrics singular at the boundary of the manifold. The thesis contains four articles
recording results on X-ray transforms and the geometries themselves.

We prove that the geodesic X-ray transform of Lipschitz scalar functions is injective on simple
Riemannian manifolds with C1,1 regular metrics. We prove that the X-ray transforms of C1,1

smooth 1-forms and tensor fields of higher rank are solenoidally injective on simple Riemannian
manifolds of non-positive sectional curvature with C1,1 regular metrics. These results are based
on energy methods and the use of the so called Pestov identity. In addition to injectivity
results, we produce a redefinition of simplicity that is compatible with non-smooth geometry,
and prove that the redefinition is equivalent to any standard definition of simplicity for C∞

smooth Riemannian metrics.
We supplement the injectivity results by considering the normal operator of the X-ray trans-

form in non-smooth geometry. Based on non-smooth microlocal analysis of the normal operator
we prove that the geodesic X-ray transform is injective on L2 when the Riemannian metric is
simple but only finitely differentiable. The number of derivatives needed depends explicitly on
the dimension of the manifold.

Riemannian metrics that are C∞ smooth in the interior of a manifold with boundary but
have a conformal blow up of a specific strength at the boundary are called gas giant metrics.
Such Riemannian metrics are different from but relatives of asymptotically hyperbolic metrics,
and arise naturally in the study of wave propagation in gas giant planets. The specific type
of singularity is related to the fact that unlike on terrestrial planets the density of a gas giant
planet goes to zero at the surface. The specific blow up rate comes from a polytropic model. We
prove and apply Pestov identities in gas giant geometry to show that the X-ray transform on a
gas giant is injective. We develop the differential geometry of gas giant metrics with an emphasis
on the geometry of geodesics, and study the basic analytic properties of the Laplace–Beltrami
operator associated to a gas giant metric.

The introduction part of the thesis contains an overview of the X-ray tomography in Riemann-
ian geometry and the geometric preliminaries behind it. An overview of the included articles is
also provided.

iii



Tiivistelmä

Määräytyykö tuntematon funktio Riemannin monitolla yksikäsitteisesti integraaleistaan kaik-
kien geodeesien yli? Tämä kysymys, joka tunnetaan geodeettisenä röntgentomografiana, on geo-
metrinen yleistys klassiselle lääketieteellisen kuvantamisen röntgentomografiaongelmalle, jossa
halutaan löytää tuntematon funktio, kun tunnetaan sen integraalit suoria pitkin. Ongelman
geometrinen yleistys tulee vastaan monien geometristen inversio-ongelmien, kuten reunajäyk-
kyyden ja spektraalijäykkyyden, tutkimuksessa.

Tässä tutkielmassa tarkastellaan geodeettistä röntgentomografiaa epäsileässä Riemannin geo-
metriassa. Keskeisiä tutkimuksen kohteita, jotka tunnetaan geodeettisinä röntgenmuunnoksina,
ovat erinäiset integraalimuunnokset, jotka paketoivat yhteen funktion tai tensorikentän inte-
graalit geodeesien yli. Tutkielmassa kohdataan kahden tyyppistä epäsileää geometriaa; globaa-
listi epäsileitä Riemannin metriikoita ja Riemannin metriikoita, jotka ovat singulaarisia moniston
reunalla. Tutkielma koostuu neljästä artikkelista, joissa on tuloksia liittyen sekä röntgenmuun-
noksiin, että itse epäsileisiin geometrioihin.

Tutkielmassa todistetaan, että Lipschitz-funktioiden geodeettinen röntgenmuunnos on injek-
tiivinen yksinkertaisilla Riemannin monistoilla, kun Riemannin metriikka on C1,1-säännöllinen.
Todistetaan myös, että C1,1-säännöllisten 1-muotojen ja korkeamman asteen tensorikenttien
röntgenmuunnos on solenoidisesti injektiivinen epäpositiivisesti kaarevilla yksinkertaisilla Rie-
mannin monistoilla, kun metriikka on C1,1-säännöllinen. Nämä tulokset perustuvat energiameto-
deihin ja Pestov-identiteettien käyttöön. Injektiivisyystuloksien lisäksi annetaan määritelmä mo-
niston yksinkertaisuudelle, joka on yhteensopiva matalan säännöllisyyden kanssa, ja osoitetaan,
että uusi määritelmä on yhtäpitävä tavallisten määritelmien kanssa, kun metrinen säännöllisyys
on C∞.

Näitä injektiivisyystuloksia täydennetään tarkastelemalla röntgenmuunnoksen normaaliope-
raattoria epäsileässä geometriassa. Normaalioperaattorin epäsileään mikrolokaaliin analyysiin
perustuen osoitetaan, että geodeettinen röntgenmuunnos on injektiivinen L2-funktioilla, kun
Riemannin metriikka on yksinkertainen, mutta äärellisen monta kertaan derivoituva. Tarvittu-
jen derivaattojen lukumäärä riippuu eksplisiittisesti moniston dimensiosta.

Riemannin metriikoita, jotka ovat C∞-sileitä moniston sisällä, mutta jotka konformisesti rä-
jähtävät tiettyä tahtia moniston reunalla, kutsutaan kaasujättimetriikoiksi. Tällaiset Rieman-
nin metriikat ovat sukua asymptoottisesti hyperbolisille metriikoille, mutta eroavat kuitenkin
käytökseltään. Kaasujättimetriikat liittyvät luonnollisesti aaltoliikkeeseen kaasujättiplaneetoilla.
Kaasujättien tiheys lähestyy nollaa planeetan pinnalla toisin kuin kiviplaneetoilla, joka määrää
singulariteetin erityisen tyypin. Räjähdystahdin määrää polytrooppinen tilayhtälö. Tutkielmassa
todistetaan ja sovelletaan Pestov-identiteettejä osoittamaan, että kaasujättien röntgenmuunnos
on injektiivinen. Lisäksi tutkielmassa kehitetään kaasujättimetriikoiden differentiaaligeometri-
aa ja erityisesti geodeesien geometriaa sekä tutkitaan kaasujättimetriikoiden Laplace–Beltrami-
operaattorin analyyttisiä ominainaisuuksia.

Tutkielman johdanto-osiosta löytyy yleiskatsaus röntgentomografiaan Riemannin geometrias-
sa ja sen taustalta löytyviin geometrisiin esitietoihin. Johdanto-osio sisältää myös yleiskatsauksen
tutkielman artikkeleihin.
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1. Introduction

1.1. Inverse problems. Imagine a system whose behaviour depends on a set of parameters.
A forward problem asks to determine the behaviour of the system given the parameters. An
inverse problem asks to deduce in reverse. Given the behaviour of the system determine the
set of parameters causing the experienced behaviour. Inverse problems are the mathematics of
indirect measurement. Typical questions of interest are uniqueness, stability and existence of
an algorithm.

• Uniqueness: Do the measurements determine the parameters uniquely?
• Stability : Do the unknown parameters depend on the measurements continuously?
• Algorithms: Is there an explicit algorithm for determining the parameters from the

measurements?
The following are some classical examples of inverse problems in Riemannian geometry.

• Geodesic X-ray tomography : Determine a function or a tensor field on Riemannian man-
ifold from the knowledge of its integrals over all maximal geodesics.

• Boundary rigidity : Determine the Riemannian metric inside a manifold with boundary
from the knowledge of the Riemannian distances between boundary points.

• Spectral rigidity : Determine the Riemannian metric in a manifold without a boundary
from the knowledge of the spectrum of the Laplace-Beltrami operator.

• The Calderón problem: Determine the electrical conductivity inside a manifold with
boundary by making current and voltage measurements on the boundary.

All of the above example geometric inverse problems are related. There are variations of each
of the last three problems where it is possible to use the measurements to recover integrals of
a function over the geodesics of the manifold. Hence in a certain way geodesic X-ray transform
is in the background of the other problems. This thesis focus on geodesic X-ray transforms in
various non-smooth Riemannian geometries.

1.2. Geodesic X-ray transforms on manifolds. The starting point of research in geodesic in-
tegral transforms in Riemannian geometry is the work of Mukhometov [Muk75, Muk77, Muk78].
The transform of interest takes a function on Riemannian manifold and produces a function on
the space of geodesics by integrating the given function along the geodesics. More formally, the
space of geodesics on a compact Riemannian manifold with a smooth boundary is the inward
pointing part ∂in(SM) of the unit sphere bundle SM over M at the boundary. The geodesic
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X-ray transform of a function f is then defined by the formula

If(x, v) =

∫ τ(x,v)

0
f(γx,v(t)) dt

for all (x, v) ∈ ∂in(SM). Here γx,v is the unique unit speed geodesic in M corresponding
to the initial conditions γx,v(0) = x and γ̇x,v(0) = v, and τ(x, v) denotes the first time the
geodesic γx,v exists the manifold. Mukhometov introduced a so called Pestov identity in the
study of such integral transforms and was able to prove that the transform I is injective under
certain geometric assumptions.

There are various generalizations of the operator I. Instead of a scalar function, one can
consider transforms of tensor fields [AR97, PS87, PSU13, PSU15, KMM19, BLP24]. The trans-
form can be changed by adding an attenuation or a Higgs field [AMU18, HMS18, PSU12, SU11,
GPSU16, BP23], or a magnetic field [Ain13, DPSU07]. The non-Abelian versions of the problem
do not study invertibility of any explicit linear integral transform, but the data is encoded in the
solution operator of a matrix ODE along the orbits of the geodesic flow [FU01, PS22, MNP21].

While the variations of the transform itself are many, the most relevant changes to the set-up,
from the perspective of this thesis, are variations of the geometry. Geodesic X-ray transforms
are well understood on Anosov manifolds which are closed counterparts of the smooth simple
manifolds with a boundary [CS98, DS03, PSU14a, SU00, GL19].

A direction of generalization is to study which of the X-ray tomography results remain true
in non-smooth geometry and how low the regularity assumptions of geometry can be pushed. A
considerable amount of the work in this thesis is devoted to X-ray tomography in non-smooth
low regularity geometry.

The first article of thesis studies X-ray transforms in C1,1 smooth geometry. The main result of
article [A] is that the X-ray transform of Lipschitz functions is injective in simple C1,1 geometry
(see Section 3.1.3). Article [A] also addresses the definition simple Riemannian geometry in low
regularity context which is discussed in Section 2.1. One of the main results of article [A] is a
definition of simple Riemannian manifold compatible with non-smooth Riemannian metrics yet
equivalent to any standard definition of simplicity for C∞-smooth Riemannian metrics.

Article [B] extends the work of article [A]. X-ray transforms of tensor fields of higher order are
studied. The solenoidal injectivity results are obtained in article [B] discussed in Section 3.1.3.

Article [C] takes another approach to X-ray tomography on Riemannian manifolds. The article
continues in non-smooth geometry and shows that the normal operator of the X-ray transform
is an elliptic pseudodifferential operator in a low regularity pseudodifferential calculus. An
application, which shows that the X-ray transform of L2-functions is injective in certain non-
smooth geometries. The results of article [C] are discussed in Section 3.2.2.

Normal operator and its microlocal analysis have been utilized in smooth Riemannian set-
tings with far reaching applications [SU04, SU05, PU05]. It is generally understood that on 2-
dimensional Riemannian manifolds ellipticity of the normal operator, stable invertibility of the
X-ray transform and simplicity of the geometry are equivalent. See [MSU15] for instability in
non-simple Riemannian geometry.

Prior to articles [A, B, C] the only known result in X-ray tomography on Riemannian manifolds
of low regularity is [dHI17], where the authors considered spherically symmetric Riemannian
metrics of C1,1 smoothness that satisfy the so called Herglotz condition. Injectivity results for a
large class of operators including the X-ray transform were obtained. The spherically symmetric
geometric variation has a long history going back to [Her05, WZ07]. A tensorial variant of the
problem has also been studied [Sha97].

The fourth article of the thesis is concerned with non-smooth geometry but instead of having
globally uniformly non-smooth geometry article [D] studies Riemannian metrics that are singular
at the boundary in a special way. The article provides the first insights into geometrization of
wave propagation phenomena specific to gas giant planets such as Jupiter. The density of
matter goes to zero at the boundary of a gas giant unlike on terrestrial planets such as the
Earth. Modelling a gas giant, for example, as a polytrope leads to a power type singularity
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in the Riemannian metric at the boundary whereas the geometry of terrestrial planets in non-
singular everywhere. The geometry of gas giant planets is discussed in Section 2.2 and a result
on injectivity of the X-ray transform on gas giants is presented in Section 3.1.4.

The geometry of gas giant developed in article [D] has some close relatives which have a
longer history. Geodesic X-ray tomography has been studied on non-compact Cartan-Hadamard
manifolds [Leh16, LRS18]. Particularly close to the geometry of gas giants is asymptoti-
cally hyperbolic geometry, the difference being the strength of the singularity at the bound-
ary. There are multiple articles on X-ray tomography in asymptotically hyperbolic geome-
try [Lef20, GGSU19, EG22, Ept22, Gre23] and the X-ray transform has been studied in asymp-
totically conical geometries [JV24, GLT20, VZ22] which are also Riemannian geometries with a
special singularity.

There are some other geometric generalizations of geodesic X-ray tomography. For example
one can add an obstacle in the manifold and study the geometry where geodesics reflect off
the obstacle. Injectivity of the X-ray transform is known in some geometries with reflecting
obstacles [IS16, IP22]. X-ray transforms have been studied in Finsler geometry which is a
direct generalization of Riemannian geometry [AD18, IM23]. One of the motivations for Finsler
geometries and X-ray tomography comes from the recent articles showing that the geometry
of elastic wave propagation naturally leads to a certain class of Finsler manifolds [dHILS21,
dHILS19].

More detailed history and a versatile introduction to the methods of geodesic X-ray tomog-
raphy can be found in [Sha94, PSU14b, IM19, PSU23].

2. Non-smooth and singular Riemannian metrics

Simple manifolds are a class of Riemannian manifolds with boundary that arises naturally
in the study of geodesic X-ray tomography. The known counter examples to injectivity of the
X-ray transform all violate some properties that a simple Riemannian manifold would satisfy
(see [PSU23]). In this section, we discuss the work conducted in articles [A] and [D] related to
simplicity of non-smooth and conformally compact Riemannian metrics and the basic properties
of such geometries. Before diving into the geometric results, we consider a well-known example
of a non-simple manifold and a counter example to injectivity of the X-ray transform.

Example 1 (Large spherical cap [PSU23, Example 2.5.5]). A large spherical cap M is con-
structed by removing a small spherical cap from the unit sphere S2 ⊆ R3 making M larger than
a hemisphere. More rigorously, we let

M = { (x, y, z) ∈ S2 : z ≤ 3/4 }.

The large spherical cap M is a smooth manifold with boundary

∂M = { (x, y, z) ∈ S2 : z = 3/4 }

and comes equipped with the restriction of the round metric on S2 to M . The geodesic segments
of M are the arcs of the great circles in S2.

Consider a smooth function f : S2 → R compactly supported in

M̃ = { (x, y, z) ∈ S2 : |z| ≤ 1/2 } ⊆ M

and f ≡ 1 at the equator {z = 0}. Suppose that the function f is odd meaning that f(−w) =

−f(w) for all w ∈ S2. Then, since f is supported in M̃ , the integrals of f over the maximally
extended geodesics of M starting from the boundary are equal to the integrals of f over the entire
great circles. Thus, since f is odd, all integrals of f over maximal geodesics of M are zero. We
have constructed a non-zero smooth function on M with vanishing X-ray transform showing that
the X-ray transform of the large spherical cap is not injective.

In fact, the kernel of the X-ray transform on the large spherical cap M consists precisely of the
odd functions on S2 that are supported in M . This particular instance of the X-ray transform
is closely related to the Funk transform (see e.g. [Hel11] for details on the Funk transform).
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According to Example 1 the X-ray transform of functions is not injective on any Riemannian
manifold with a smooth boundary. For this reason is we want to restrict the set of geometries
under consideration. It is generally understood that simple manifolds are a reasonable class of
manifolds where X-ray transforms behave well.

2.1. Non-smooth simple manifolds. Simple manifolds have many equivalent definitions, even
when considering smooth Riemannian metrics. A collection of equivalent defining conditions
is given in [PSU23, Chapter 3]. Out of the many possible definitions arise three geometric
conditions that define simplicity completely:

(1) The boundary is strictly convex.
(2) There are no conjugate points.
(3) The manifold is non-trapping.

Strict convexity of the boundary in item (1) is defined in terms of the second fundamental
form of ∂M . The second fundamental form is the quadratic form defined by

IIx(v, w) = −⟨∇vν(x), w⟩g(x)
for v, w ∈ Tx∂M and x ∈ M , where ν(x) is the inward unit normal at x. The boundary ∂M is
strictly convex if IIx is positive definite for all x ∈ ∂M .

Intuitively speaking, absence of conjugate points in item (2) means that there are no geodesic
segments starting from a common initial point converging back a common end point. More rigor-
ously, two points γ(a) and γ(b) are said to be conjugate along the geodesic segment γ : [a, b] → M
if there is a non-trivial Jacobi field J : [a, b] → TM along γ vanishing at a and b. By a Jacobi
field we mean a smooth vector field along γ satisfying the Jacobi equation

D2
t J +R(J, γ̇)γ̇ = 0

where Dt is the covariant derivative along γ and R is the Riemann curvature tensor.
A useful tool in analysing the presence of conjugate points is the so called index form Iγ along

a geodesic segment γ : [a, b] → M . The index form is a quadratic form along the geodesic defined
by

(2.1) Iγ(V,W ) =

∫ b

a
⟨DtV,DtW ⟩ − ⟨R(V, γ̇)γ̇,W ⟩ dt

for all vector fields V and W along γ. A classic result on the index form says that Iγ is
• positive definite, if there are no conjugate points along the segment γ,
• positive semidefinite, if the end points are conjugate along γ, and
• indefinite, if an interior point is conjugate to another point along γ.

A manifold M is non-trapping if all geodesics exit the manifold in a finite time, which means
that for any maximally extended geodesics γ we have

inf{ t > 0 : γ(t) ∈ ∂M } < ∞.

We declare the following as the definition of a simple manifold, since it makes the comparison
to the low regularity definition more straightforward. Definition 2 is equivalent to any other
standard definition.

Definition 2. Let (M, g) be a smooth Riemannian manifold with a smooth boundary. The
manifold (M, g) is called simple if the following hold:

A1: The boundary ∂M is strictly convex in the sense of the second fundamental form.
A2: Any two points of M can be joined by a unique geodesics in the interior of M whose

length depends smoothly on its end points.

Next, we will describe the geometric set up of articles [A], [B] and [C]. Particularly, we
discuss the work in article [A] on simple manifolds with non-smooth geometry. For the rest of
the section M will be a smooth manifold with a smooth boundary. For k ∈ N and α ∈ [0, 1], we
say that g is a Ck,α Riemannian metric on M and write g ∈ Ck,α(M), if g is a symmetric and
positive definite 2-tensor field of class Ck,α in the sense of the smooth structure of M .
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We restrict our attention to the case k + α ≥ 2, since unique solvability of the geodesic
equation fails for C1,α Riemannian metrics, when α < 1 (see [SS18]). Then the set of maximally
extended unit speed g-geodesics of M is naturally identified with the set of inwards pointing
directions over the boundary, which we denote by ∂in(SM). The X-ray transform of a function
is defined as in 1.2.

Since sufficiently smooth functions (or more generally tensor fields) can be integrated along 1-
dimensional submanifolds, the X-ray transform is abstractly well-defined if we know the set of
geodesics of the manifold. However, to access analytic tools to study the transform in Section 3,
we need a more concrete realization of the set of geodesics. Hence we want the geodesic equation
to have unique solutions.

One of the main themes of article [A] is to find a redefinition of a simple manifold that is
better suited for Riemannian metrics of low regularity. In the article we provide a new definition
of simplicity that addresses the following issues faced with low regularity simplicity.

• We want to describe the absence of conjugate points without using Jacobi fields and
the Jacobi equation directly. We take an approach via an integrated global index form.
In our new definition, we use a quadratic form Q which is roughly defined by Q =∫
Iγ dγ where Iγ is the along a maximal geodesic γ. That is Q measures the integrated

contribution of the index forms along maximal geodesics.
• We want to express convexity of the boundary ∂M via a definition without derivatives.

The second fundamental form involves derivatives of the unit normal vector, and for
a Ck boundary the unit normal is Ck−1. Instead of using the second fundamental form,
our definition approaches convexity via properties of the exit time function τ .

The definition of a simple manifold with non-smooth geometry is formulated for Riemannian
metrics g ∈ C1,1(M), which is the natural lower bound on regularity we aim in the inverse
problem. The definition can also be used for Riemannian metrics g ∈ Ck,α(M) with k + α ≥ 2
as it stands.

In the definition all norms and inner products denote the natural L2-norms and L2-inner
products. We let X be the geodesic vector field, we say that W is a section of N if W : SM →
TM is a function so that W (x, v) ∈ {v}⊥ ⊆ TxM and H1

0 (N,X) is the space of such section
with W,XW ∈ L2(N) and W |∂(SM) = 0.

Definition 3 ([A, Definition 5]). Let M be the closed Euclidean unit ball in Rn. A Riemannian
metric g ∈ C1,1(M) is called a simple C1,1 metric and the pair (M, g) a simple C1,1 manifold if
the following hold:

B1: There is ε > 0 so that

Q(W ) := ∥XW∥2 − (RW,W ) ≥ ε∥W∥2

for all W ∈ H1
0 (N,X). We say that the quadratic form Q is the global index form of

the manifold (M, g).
B2: Any two points of M can be joined by a unique geodesic in the interior of M whose length

depends continuously on its end points.
B3: The squared exit time function τ2 is Lipschitz on SM .

One of the main theorems of article [A] is the following. It proves that the classes of simple C1,1

manifolds (see Definition 3) and smooth simple manifolds (see Definition 2) are the same when
the Riemannian metric is assumed to be C∞ smooth. Therefore the new definition is ”correct”,
and can be added to the long list of previously known equivalent definitions for a simple manifold
in smooth geometry.

Theorem 4 ([A, Theorem 2]). In smooth geometry, Definitions 2 and 3 are equivalent in the
following sense.

(1) If (M, g) is a smooth simple manifold and g ∈ C∞(M), then M is diffeomorphic to the
closed Euclidean unit ball in Rn and (M, g) is a simple C1,1 manifold (see Definition 3).
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Figure 1. Geodesic lines approaching a boundary point horizontally.

(2) If (M, g) is a simple C1,1 manifold and g ∈ C∞(M) then (M, g) is a smooth simple
manifold (see Definition 2).

In the proof of Theorem 4, we can always reduce to the case where M is the close unit ball. A
simple C1,1 manifold M is equal to the closed unit ball by definition. If (M, g) is a smooth simple
manifold in the sense of Definition 2 and g ∈ C∞(M), then M is necessarily diffeomorphic to
the closed unit ball (see [PSU23, Proposition 3.8.5]).

Figure 2 below shows the correspondences between the conditions in Definitions 2 and 3, and
serves as a proof plan. Since condition A1 trivially implies condition B2, and since prior to work
of article [A] it was shown in [PSU15] that simple manifolds satisfy condition B1, we are left to
prove the equivalence of conditions A1 and B3 and that B1 and B2 together imply A2.

Equivalence of conditions A1 and B3 means that the boundary of the manifold is strictly
convex if and only if the squared exit time function τ2 is Lipschitz continuous. The proof of
this equivalence is based on the observation that the second fundamental form plays a role in
asymptotic behavior of the exit time function. The idea for the condition that τ2 should be
Lipschitz comes from an elementary observation in Euclidean geometry which turns out to work
in greater generality.

Example 5. Consider the closed Euclidean unit disk in the plane R2, and equip the disk with
the Euclidean metric. We use polar coordinates (r, φ) on the disc and a unit tangent vector vθ =
(sin θ, cos θ) can be identified angle θ ∈ [0, 2π). In these coordinates

τ(r, φ, θ) = −r(xφ · vθ) +
√
r2((xφ · vθ)2 − 1) + 1.

where xφ = (sinφ, cosφ). The exit time function τ is differentiable in the interior of the disk
and

∂rτ(r, φ, θ) = −xφ · vθ +
(xφ · vθ)− 1√

r2((xφ · vθ)2 − 1) + 1
r.

Consider horizontal lines through the geodesic starting at an interior point, where r < 1 and
consider the limit of ∂rτ(r, φ, θ) when r → 1 (see Figure 1). More formally this corresponds to
taking φ = 3π/2 and θ = 0 which yields

∂rτ(r, 3π/2, 0) = − r√
1− r2

.

We see that the derivative blows up on the limit r → 1. The squared exit time τ2(r, φ, θ)
is however smooth up to the boundary. For example, ∂rτ

2(r, 3π/2, 0) = −r has a nice limit
when r → 1.

The final part of the proof of Theorem 4 is to show that conditions B2 and B1 together imply
condition A2. Heuristically the quadratic form Q is defined by integrating together the index
forms of maximal geodesics. Intuitively speaking we have Q =

∫
γ Iγ dγ where Iγ is the index

form of γ. Using this idea, we prove that the estimate

Q(W ) ≥ ε∥W∥2
6



for all W ∈ H1
0 (N,X) localizes to a maximal geodesic γ0 to give the estimate

Iγ0(V, V ) ≥ ε∥V ∥2L2(γ0)

for all non-trivial normal vector fields V along γ0, where ∥V ∥L2(γ) denotes the L2-norm of the
vector field V . This estimate says that the index form is positive definite, proving that there
are no conjugate points along γ0 as claimed in condition A2.

A1

A2
B1

B2

B3

[PSU15]

Figure 2. Illustration of the proof of theorem 4. The arrows represent implications
except the one double headed arrow, which represents equivalence. The green (solid)
arrows connect one condition to another. The red (dashed) and the blue (dotted)
arrows indicate that one condition follows from the two conditions circled with the
same color (style).

A smooth Riemannian manifold (M, g) with a smooth boundary is said to be α-controlled
(see [PSU15]) for some α ∈ R if

(2.2) Q(W ) ≥ α∥XW∥2

for all W ∈ C∞
0 (N). It is natural to ask, if condition B1 in Definition 3 is related to estimate (2.2)

in the low regularity frame work. More specifically, are all simple C1,1 manifolds α-controlled
for some α > 0 in the sense that estimate (2.2) holds for all W ∈ H1

0 (N,X)?
We proceed in the spirit of [PSU15, Lemma 11.2], but in low regularity geometry. Suppose

that (M, g) is a simple C1,1 manifold, and let 0 < δ < 1. Then

Q(W ) = (1− δ)Q(W ) + δQ(W ) ≥ (1− δ)ε∥W∥2 + δQ(W )

by condition B1. Since the Riemann curvature tensor R is an L∞ tensor field, we have
−(RW,W ) ≥ −C∥W∥2 for some C > 0. By choosing δ close enough to zero, it follows that

(2.3) Q(W ) ≥ (1− δ)ε∥W∥2 + δ∥XW∥2 − Cδ∥W∥2 ≥ α(∥W∥2 + ∥XW∥2)

for some α > 0. This short argument shows that all simple C1,1 manifolds are α-controlled for
some positive α, and that even a stronger estimate (2.3) holds for all W ∈ H1

0 (N,X).

2.2. Riemannian metrics singular at the boundary. In section 2.1, we discussed geometry
that is non-smooth in a uniform way. However, uniform low regularity is not the only form of
non-smoothness a Riemannian metric can have. In this section, we consider Riemannian metrics
that are singular in a particular way. Also, we will see how these singular Riemannian metrics
are related to wave propagation in gas giant planets, and discuss the basic properties of such
gas giant geometries in accordance with the geometric results obtained in article [D].

We start from basic principles. Let M be a smooth manifold with a smooth boundary. A
smooth function x : M → R is a boundary defining function if M = {x > 0}, ∂M = {x = 0}
and dx ̸= 0 at ∂M . Essentially, a boundary defining function is a measure of distance to the
boundary. Let ḡ be a Riemannian metric on M smooth up to the boundary. For any positive real
number α > 0 and any boundary defining function x on M we have a Riemannian metric g =
x−αḡ in the interior of M . Such Riemannian metrics are singular at the boundary ∂M , and we
call them conformally compact.
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Example 6. A Riemannian metric g in the interior of a smooth manifold M with smooth
boundary is called asymptotically hyperbolic if ḡ = x2g extends to a smooth Riemannian metric
up to the boundary and |dx|ḡ = 1 at ∂M . Asymptotically hyperbolic metrics correspond to
conformally compact metrics for α = 2.

Asymptotically hyperbolic geometry is reasonably well understood (see e.g. [Maz88]). For ex-
ample, the geodesics approach the boundary normally and are parametrized by their second order
deviation from normality. Maximally extended geodesics have infinite length. An asymptotically
hyperbolic manifold has infinite Riemannian volume and the sectional curvatures are asymptotic
to −1 at the boundary.

If g is an asymptotically hyperbolic metric then the conformal class of ḡ|T∂M is called the
conformal infinity of g. Given any metric h in the conformal infinity there is a unique boundary
defining function x so that |dx|x2g = 1 near ∂M and x2g|T∂M = h. It follows that near ∂M the
metric g can be written in the form

g =
dx2 + hx

x2

for a smooth family of Riemannian metrics hx on the boundary with h0 = h. The existence of
such a normal form is the basis of asymptotic analysis in asymptotically hyperbolic geometry (cf.
Proposition 8).

2.2.1. Gas giant geometry. In article [D] we study Riemannian metrics of the form g = x−αḡ,
where x is a boundary defining function, ḡ is a Riemannian metric smooth up to the boundary
and α ∈ (0, 2). In particular, the better understood cases α = 0 and α = 2 are excluded. This
section covers basics of such geometries as developed in the article.

Such Riemannian metrics arise naturally when considering the dynamics of wave propagation
in gas giant planets such as Jupiter. Unlike on a terrestrial planet, such as the Earth, on a gas
giant the density of matter approaches zero at the surface of the planet. Using a polytropic
model for a gas giant (see [Hor04]) one can compute that the sounds speed on a gas giant goes
to zero at the surface at a rate asymptotic to the square root of the distance. This suggests that
we should model wave propagation in gas giant with a Riemannian metric of the form g = x−1ḡ,
but we generalize a bit allowing blow up rates α ∈ (0, 2). For a detailed exposition on the
polytropic model and hydrodynamics of gas giants see [D, Sections 1.2 and 5].

Definition 7. Let M be a smooth manifold with a smooth boundary. An α-gas giant metric on M
is a Riemannian metric of the form g = x−αḡ in the interior M◦ of M , where x is a boundary
defining function, ḡ is a Riemannian metric on M smooth up to the boundary and α ∈ (0, 2).
The pair (M, g), where g is a gas giant metric is called an α-gas giant.

One of the main themes of article [D] is studying the basic geometric properties of gas giant
metrics and their geodesics. Next, we highlight some of the results in this direction obtained in
the article.

Most of the analysis on a gas giant (M, g) happens near the boundary. The following propo-
sition shows that there is a collar neighbourhood of the boundary and an associated coordinate
system which brings the metric tensor to a particularly nice form and makes the analysis man-
ageable. The form obtained for the metric is called Graham-Lee normal form after [GL91],
where the authors showed the existence of an analogous coordinate system for asymptotically
hyperbolic metrics.

Proposition 8 ([D, Proposition 2]). Let g be an α-gas giant metric on M . Then there is a well-
defined Riemannian metric h0 on ∂M , and an associated boundary defining function x on M so
that

(2.4) g(x, y, dx, dy) =
dx2 + h(x, y, dy)

xα
,

where h(0, y, dy) = h0(y, dy) for all y ∈ ∂M .
8



The proof of Proposition 8 is based on ideas already introduced in [GL91]. If ϕ is a diffeomor-
phism from a neighbourhood of {0} × ∂M in [0,∞)× ∂M to a neighbourhood of ∂M in M so
that ϕ∗g is in the form (2.4) then the boundary defining function x̃ = x ◦ ϕ−1 solves the eikonal
equation ∣∣∣∣ dx̃

x̃α/2

∣∣∣∣2
g

= 1.

Then the objective is to solve the eikonal equation. In the asymptotically hyperbolic case
the corresponding eikonal equation can be reduced to a non-singular form by a clever change
of variables as is shown in [GL91]. This technique is not available in the case of gas giant
metrics and we are forced to work with singular coefficients as is the case for general edge metric
in [GK12]. Fortunately, we can use the existence results from [GK12] to prove existence also in
our case.

Article [D] describes some basic geometric properties of gas giant geometries. As an immediate
application for the normal form found in Proposition 8, we see that gas giants have infinite
Riemannian volume unless the blow up in the metric is weak enough, and we can find the blow
up rates of the volume. It was stated in [D, Proposition 3], that if (M, g) is an α-gas giant, then

• Volg(M) < ∞ if and only if α < 2/n,
• Volg({x ≥ ε}) is asymptotic to Cε1−

nα
2 when α > 2/n, and

• Volg({x ≥ ε}) is asymptotic to −C log(ε) when α = 2/n.
These facts follow from the simple observation that the volume form of a gas giant metric g
is x−nα/2 dx dVh in the coordinates of Proposition 8, where dVh is the volume form of the
metric h(x, · ) on ∂M .

In addition, the normal form is used to prove that the level sets {x = ε} in M are stricly
convex for small ε > 0 (see [D, Proposition 4]). This fact is a simple computation of the second
fundamental forms of the level sets in the local coordinates provided by Proposition 8.

The blow up rates of sectional curvatures were computed in article [D]. It was shown that
the blow up rates are determined by the geometry instrinsically in the sense that they can be
derived solely from interior knowledge of the metric (see [D, Proposition 1]). More rigorously,
suppose that g is an α-gas giant metric in the interior of a compact smooth manifold M with
smooth boundary. Then there is a smoothly varying orthonormal basis of sections for TM such
that the sectional curvatures for 2-planes spanned by pairs of these basis vectors are asymptotic
to

(2.5) − 2α

(2− α)2
dg( · , ∂M)−2, or − α2

(2− α)2
dg( · , ∂M)−2

depending on the generator pairs. Interestingly the strength of the blow up is independent of α,
but α shows up in the coefficients. The blow up rates can be determined by a direct coordinate
computation. The proof reflects the fact that these formulas are not valid for α = 2, which
shows up in the last step were we use the fact that the function x is related to the distance s to
the boundary by the formula s = (1− α/2)x1−α/2.

2.2.2. Geodesics of a gas giant. So far we have described the general geometry of a gas giant.
Next, we study the geodesics of an α-gas giant (M, g). Let z = (x, y) be coordinates near the
boundary of M as in Proposition 8 and denote by ζ = (ξ, η) the corresponding coordinates for
covectors. We use Hamiltonian formalism and consider the bicharacteristic curves in T ∗M for
the Hamiltonian

H(x, y, ξ, η) =
1

2
xαξ2 +

1

2
xαhij(x, y)ηiηj .

The equations of motion read

(2.6) ẋ = xαξ, ẏi = xαhij(x, y)ηj , ξ̇ = −αx−1H(x, y, ξ, η)− 1

2
xα∂xh

ij(x, y)ηiηj ,
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Figure 3. Geodesic on a gas giants near a flattened boundary depicted in two
different ways. One curve in each picture corresponds to one value of α. On
the left-hand side, geodesics start from a distance ε into a direction parallel to
the boundary. On the right-hand side, geodesics connect two near by boundary
points.

and

η̇i = −1

2
xα∂yih

kj(x, y)ηkηj .

We often write the bicharacteristics as (z(t), ζ(t)) where z(t) = (x(t), y(t)) and ζ(t) = (ξ(t), η(t))
where x(t), y(t), ξ(t) and η(t) correspond to coordinates (x, y) and (ξ, η).

The bicharacteristic curves have the following crucial property, which is unique to gas giant
geometries among conformally compact geometries described by g = xαḡ and α > 0. Let γ(t) =
(z(t), ζ(t)) be a bicharacteristic with x(0) < ε and ξ(0) ≤ 0 for ε > 0 small enough. Then z(t)
converges to a unique point (0, ȳ) ∈ ∂M and η(t) converges to a unique covector η̄ at the
boundary. In particular, the convergence happens in a finite time T > 0 (see [D, Lemma 6]).
This means that gas giants are in a sense locally non-trapping. Any bicharacteristic starting
close enough to the boundary and towards it, reaches the boundary in a finite time.

The local non-trapping property described above is not surprising. A heuristic explanation is
as follows. Look at a radial geodesic γ(t) = (x(t), 0) near the boundary, where x(0) < ε. It can
be shown that x is strictly decreasing in t. Then if γ(t) exists on the interval [0, T ] we have

T = −
∫ T

0

ẋ

x
α
2

dt = −
(
1− α

2

)−1 (
x(T )1−

α
2 − x(0)1−

α
2

)
.

Since x(T ) ≥ 0, this can be turned into the estimate

T ≤
(
1− α

2

)−1
x(0)1−

α
2 <

(
1− α

2

)−1
ε1−

α
2 .

Note that the upper bound is even independent of γ(t) and only depends on ε and α.
A feature that gas giants share with asymptotically hyperbolic geometries is that geodesics

hit the boundary normally. If γ(t) = (z(t), ζ(t)) is a bicharacteristic, then it follows from (2.6)
asymptotics computed in [D, Lemma 6] that

∂yi

∂x
=

hijηj
ξ

→ 0

which means that z(t) hits the boundary in the direction of ∂x.
Due to natural non-trappingness of a gas giant near the boundary there are two notions of

distance between a pair of boundary points. We can measure the distance between boundary
points x and y in the sense of g and in the sense of the boundary metric h0 (see Proposition 8).
There is a power law type relation between the distances dg(x, y) and dh0(x, y). This leads to
a way to compute the Hausdorff dimension of the metric space (∂M, dg) and consequently the
Hausdorff dimension of (M,dg).

Proposition 9 ([D, Proposition 15]). If the dimension of M is n, the Hausdorff dimension of
an α-gas giant (M, g) is

max

{
n,

2

2− α
(n− 1)

}
.
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The proof of Proposition 9 is based on an observation that the metrics dg and d
1−α/2
h0

are
bi-Lipschitz equivalent on ∂M . Therefore to compute the Hausdorff dimension of (∂M, dg) it is
enough to compute the dimension of (∂M, d

1−α/2
h0

), which can be found in terms of the Hausdorff
dimension of (∂M, dh0). This leads to the result since the Hausdorff dimension (M,dg) is the
maximum of the Hausdorff dimensions of (∂M, dg) and (M◦, dg). The ultimate fact that allows
the entire sequence of deductions is the power law type relation between the metrics dg and dh0

on the boundary, which can be shown by simple computations with the geodesic equations.

2.2.3. A travel time problem on a gas giant. Lastly, we consider a travel time problem on a gas
giant. For z ∈ ∂M we define the function r(z) : ∂M → R by r(z)(y) = dg(z, y) where y ∈ ∂M .
The travel time data of M is the image of r(M). The information of the maps r(z) is conveniently
packed into a single map r : M → C(∂M) where z 7→ r(z) for all z ∈ M . In other words,
the travel time data encodes the Riemannian distances from any point in the manifold to all
boundary points. The objective is to show that such data determines the geometry to the degree
allowed by coordinate invariance.

In the following, a simple gas giant metric is gas giant metric that is globally non-trapping
and does not have conjugate points. We do not make assumptions on convexity of the boundary,
since the boundary of a gas giant is strictly convex in the sense of [D, Proposition 4].

Theorem 10 ([D, Theorem 16]). For i = 1, 2 let gi be simple αi-gas giant metrics on M for
some αi ∈ (0, 2). If r1(M) = r2(M) then α1 = α2 and g1 is isometric to g2 by a diffeomorphism
that is the identity on ∂M .

The corresponding result is known in standard Riemannian geometry, and a proof can be
found in [KKL01]. It was proved in [ILS23] that the recovery of g is stable, where the authors
also simplified the proof of uniqueness by using the Myers-Steenrod theorem (see [MS39, Pal57]).
The proof of Theorem 10 in article [D] proceeds along the lines of [ILS23] extending the method
to more general families of Riemannian metrics. We are also able to recover the blow rate α,
which is based on the observation that the sectional curvature blow rates can be recovered from
interior knowledge of a gas giant metric alone, and α appears in the coefficients (see (2.5)).

3. Approaches to X-ray tomography in non-smooth and singular geometries

This section outlines results in geodesic X-ray tomography and tensorial X-ray tomogra-
phy in non-smooth and gas giant geometries. The results we presented were obtained in arti-
cles [A], [B], [C] and [D]. Section 3.1 concerns injectivity results proved using the so called Pestov
identities and is related to articles [A], [B] and [D]. Section 3.2 concerns an injectivity result
proved using the so called normal operator of the X-ray tranform and is related to article [C].
We give short introductions to both methods before discussing the results of the articles.

There are two fundamental questions in X-ray tomography on Riemannian manifolds with a
boundary. The first is geodesic X-ray tomography.

Question 11. Is a function on a Riemannian manifold with boundary uniquely determined by
its integrals over all maximal geodesics of the manifold?

For transforms tensor fields the natural uniqueness question is different. Let p be a smooth 1-
form vanishing on the boundary ∂M and consider its symmetrized covariant derivative f = σ∇p.
For any maximal geodesic γ in M the integral of f over γ is

If(γ) = 2

∫ l(γ)

0
∇ipj(γ(t))γ̇

i(t)γ̇j(t) dt = 2

∫ l(γ)

0
∂t(pj(γ(t))γ̇

j(t)) dt.

Thus, since p vanishes on the boundary, the X-ray transform of f is zero. The X-ray transform
of symmetric tensor fields of rank m is not injective for m ≥ 1, since potential tensor fields i.e.
tensor fields of the form σ∇p where p is an symmetric (m − 1)-tensor field with p|∂M = 0 are
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in the kernel. The natural question is whether potential tensor field are the only obstruction to
injectivity. Any sufficiently smooth symmetric m-tensor field can be uniquely expressed as

f = fs + σ∇p

where fs is the solenoidal part and p|∂M = 0. For this reason, we say that the X-ray transform
of tensor fields is solenoidally injective, if its kernel consists solely of potential tensor fields.

The second fundamental question is tensorial geodesic X-ray tomography.

Question 12. Is a symmetric solenoidal tensor field on a Riemannian manifold with boundary
uniquely determined by its integrals over all maximal geodesics of the manifold?

3.1. Pestov identities. In this section we discuss the so called Pestov identity method used
to study a transport equation in SM related to the geodesic X-ray transform of functions and
tensor fields. We begin with an overview of the technique in standard Riemannian geometry.
In sections 3.1.3 and 3.1.4 we highlight the features of the method in non-smooth Riemannian
geometries and gas giant geometries, and we discuss the results obtained in articles [A], [B]
and [D] on the X-ray transforms in such geometries.

3.1.1. A transport equation on the unit sphere bundle. Let (M, g) smooth Riemannian manifold
with a smooth boundary. For a smooth function f ∈ C∞(SM) consider the function uf : SM →
R defined by

uf (x, v) =

∫ τ(x,v)

0
f(ϕt(x, v)) dt

for all (x, v) ∈ SM , where ϕt denotes the geodesic flow. The function uf is called the integral
function of f and denoted simply by u in this section. It is clear that If = u|∂in(SM) and by the
fundamental theorem of calculus Xu = −f . The equation is called the transport equation in SM .
Vanishing of the X-ray transform of f is equivalent to the boundary condition u|∂in(SM) = 0.

For now consider a sufficiently smooth function f on M and identify f with its pullback π∗f
that is a function on SM . Suppose that the transport equation is uniquely solvable i.e. if u is
any sufficiently smooth function on SM with Xu = −f and u|∂in(SM) = 0, then u = 0 on SM .
Then if f is a function with vanishing X-ray transform it follows that the integral function u
of f satisfies the transport equation with zero boundary values. Thus u = 0 in SM by unique
solvability, and more over f = −Xu = 0 proving that the X-ray transform is injective.

Conversely, if the X-ray transform is injective, then the transport problem is uniquely solvable.
To see this let f be a sufficiently smooth function with If = 0 and consider the problem Xu = −f
and u|∂in(SM) = 0. Since I is injective, we have Xu = −f = 0. This means that the solution u is
invariant under the geodesic flow, and therefore we must have u = 0 in SM since u|∂in(SM) = 0.
We have reformulated injectivity of the X-ray transform of functions as an equivalent problem:
If Xu = −f and u|∂in(SM) = 0 does it follow that u = 0 in SM?

Then consider a sufficiently smooth symmetric tensor field f on M of rank m ≥ 1. Such a
tensor field can be identified with a function λf on SM defined by the formula

(3.1) λf(x, v) = fi1···im(x)v
i1 · · · vim .

It is easily verified that X(λf) = λ(σ∇f).
Suppose that the X-ray transform of symmetric m-tensor fields is solenoidally injective. Then

if f is a symmetric m-tensor field with vanishing X-ray transform, there is a symmetric (m−1)-
tensor field p so that f = σ∇p and p|∂M = 0. Then if we let u = −λp we find that Xu = −f
and u|∂in(SM) = 0.

Conversely, assume that for all sufficiently smooth solutions u to the transport problem Xu =
−f and u|∂in(SM) = 0 there is a symmetric (m − 1)-tensor field p so that u = −λp. Then if f
has vanishing X-ray transform, we know that the integral function u of f satisfies Xu = −f
and u|∂in(SM) = 0. Thus there is a symmetric (m− 1)-tensor field p so that u = −λp. It follows
that f = −Xu = σ∇p and p|∂M = 0.
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In the case of tensorial X-ray transform, solenoidal injectivity is a question of proving that
the integral function of a tensor field is necessarily induced by a tensor field via the identifica-
tion (3.1). Then it is easily seen from the transport equation that the kernel of the tensorial ray
transform consists of potential fields.

We established connections between the X-ray transform of a function or a tensor field and
the transport equation in SM . Such a transport equation can be studied using the so called
Pestov identity method, which we describe in the next section.

3.1.2. A Pestov identity is smooth simple geometry. In this section we outline a proof of in-
jectivity of the geodesic X-ray transform using Pestov identities. This constitutes of deriving
so called energy estimates for the transport equation Xu = −f in SM . The study of the
transport equation Xu = −f outlined in section 3.1.1 begun in the works of Mukhometov
(see [Muk75, Muk77, Muk78]), and has been extended to many different geometric set ups (see
Section 1.2).

Let (M, g) be a smooth Riemannian manifold with a smooth boundary. If u ∈ C∞(SM)
vanishes on the boundary ∂(SM), then

(3.2) ∥
v

∇Xu∥2 = Q(
v

∇u) + (n− 1)∥Xu∥2,
where Q is a quadratic form on defined by the formula

Q(W ) = ∥XW∥2 − (RW,W )

for all W ∈ C∞(N) and
v

∇u is the vertical part of the gradient of u with respect to the Sasaki
metric on SM . This is known as the Pestov identity. A proof using commutator formulas for

the operators X,
v

∇ and
h

∇ can be found in [PSU15].
Suppose that the manifold (M, g) is simple. We assume simplicity since it is well-known that

the X-ray transform in not injective in some non-simple geometries (see Example 1). Let f ∈
C∞(M) be a smooth function, and consider consider the problem Xu = −f and u|∂in(SM) = 0.
We can apply the Pestov identity (3.2) to any smooth solution u of the problem to obtain

(3.3) ∥
v

∇f∥2 = Q(
v

∇u) + (n− 1)∥f∥2.
The function f is a function on M interpreted as a function on SM via the pullback of the
bundle map π : SM → M . Thus, in particular, f is independent of direction in SM , which

means that
v

∇f = 0.
To derive more information from (3.3), we use simplicity of the geometry. We take a closer

look at the quadratic form Q. Let γ be a geodesic of M and let W be a smooth section of N
that vanishes on ∂(SM). The assignment Wγ(t) := W (γ(t)) defines a normal vector field Wγ

along the geodesic γ that vanishes at the end points of γ. Immediately from definitions we see
that XW = DtWγ , where Dt is the covariant derivative along γ. Then by Santaló’s formula

Q(W ) =

∫
∂in(SM)

Iγ(Wγ ,Wγ) dγ,

where Iγ is the index form along γ defined in (2.1). We assumed that the manifold M is simple,
and thus there are no conjugate points, which gives that Q(W ) ≥ C∥W∥2.

Combining the estimate for Q(W ) and the vanishing of the vertical gradient
v

∇f , equation (3.3)
reduces to 0 ≥ (n−1)∥f∥2. Thus f = 0 and u flow invariant with u|∂in(SM) = 0. We have shown
that if Xu = −f and u|∂in(SM) = 0 then u = 0 in SM . This is equivalent to injectivity of the
X-ray transform on the space of smooth functions as explained in section 3.1.1.

A vital step in the proof is to show that the integral function uf defined in Section 3.1.1
is smooth enough for the Pestov identity. We need to verify that any smooth solution u to
the transport problem exists. For general f ∈ C∞(M) the integral function uf is not C∞

smooth in SM not even in simple geometry. The exit time function τ is not smooth in the
region ∂0(SM), which is an issue. The remedying fact is that u|∂in(SM) = 0, or equivalently
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that the X-ray transform of f vanishes. We have omit the details of this step here and refer the
reader to [PSU23] instead.

Let f be a smooth 1-form in M with vanishing X-ray transform. In this case, we can still
prove that f has to be a potential directly from the Pestov identity. The crucial observation is
that

∥
v

∇f∥2 = (n− 1)∥f∥2.

Then identity (3.3) yields Q(
v

∇u) = 0, which by positive definiteness of Q gives
v

∇u = 0.
Therefore there is a function p on M so that u = −π∗p where π : SM → M is the bundle
map, which is merely a restatement of the fact that u is independent of direction. It follows
that f = −Xu = dp = σ∇p and p|∂M = 0 confirming that the X-ray transform of 1-forms is
solenoidally injective.

Let m ≥ 2 and consider a symmetric m-tensor field f in M with vanishing X-ray transform.
We additionally assume that (M, g) has non-positive sectional curvature. In general solenoidal
injectivity of tensor fields of order 2 or greater is an open question in simple geometry, but
partial results are known (see Section 1.2).

We will recall some facts originating from Fourier analysis on the sphere Sn−1 ⊆ Rn. It is
well-known that a function u ∈ C∞(SM) can be uniquely decomposed as an L2-convergent and
orthogonal series

u =
∞∑
k=0

uk

where

uk ∈ Ωk := {w ∈ C∞(SM) :
v

∆w = k(k − n+ 2)w }

and
v

∆ is the vertical gradient. It is also true that a function u on SM is induced by a sym-
metric m-tensor field via identification (3.1) if and only if uk = 0 for all k > m and uk = 0 for
all k ≡ m (mod 2).

The geodesic vector field X decomposes as a sum of operators X+ and X− with the property
that X± : Ωk → Ωm±1 continuously. Then it can be shown that

∥X+u∥2 =
∞∑
k=0

∥X+uk∥2

from which we deduce that ∥X+uk∥ → 0 sufficiently fast as k → ∞. This together with the
Pestov identity and non-positivity of sectional curvature can be turned into estimates proving
that the functions uk have to vanish identically for k ≥ m. For details we refer the reader
to [PSU15, IP22, B].

It is a straightforward computation that uk = 0 for all k ≡ m (mod 2). We have shown
that the integral function u must be induced by a symmetric (m− 1)-tensor field p in the sense
that u = −λp and since u|∂in(SM) = 0 it holds that p|∂M = 0. Therefore f = −Xu = σ∇p and
we have proved that the tensorial X-ray transform is solenoidally injective.

Next, we move onto results obtained in articles [A], [B] and [D] about injectivity of the X-ray
transform in non-smooth and gas giant geometries.

3.1.3. A Pestov identity in non-smooth simple geometry. Theorem 1 of article [A] states that
the X-ray transform of Lipschitz functions is injective in simple C1,1 geometry. Theorem 1 of
article [B] states that the X-ray transform of C1,1 tensor fields solenoidally injective in simple C1,1

geometry with almost everywhere non-positive sectional curvature. In this section, we explain
the features of low regularity geometry in the Pestov method.

The following lemma is gives a Pestov identity in simple C1,1 geometry. The form of the
identity is the same as in smooth simple geometry, but the regularity assumptions of u have
been modified.

14
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Figure 4. The various bundles and radial diffeomorphisms of the proof of
Lemma 13.

Lemma 13 ([A, Lemma 9]). Let (M, g) be a simple C1,1 manifold. For all u ∈ Lip0(SM)

with Xu ∈ H1(SM) and
v

∇u ∈ H1(N,X) we have

(3.4) ∥
v

∇Xu∥2 = Q(
v

∇u) + (n− 1)∥Xu∥2.

The Riemannian curvature tensor of a C1,1 Riemannian metric is interpreted as an L∞ tensor
field in identity (3.4).

The identity cannot be proved as in smooth geometry for the simple reason that the com-
mutator formulas used in the standard proof are not classically well-defined in C1,1 geometry.
The proof of Lemma 13 uses smooth approximations gα of the C1,1 metric g and a smooth
reference metric h. There is a familiar Pestov identity on each of the manifolds (M, gα) and
we translate these identities on the smooth Riemannian manifold (M,h). For the translations
we use radial diffeomorphisms sα : ShM → SgαM . Then we prove that the translated Pestov
identities have a well-defined limit which translates to the claimed identity via another radial
diffeomorphism s : ShM → SgM . The various bundles and diffeomorphisms are depicted in
Figure 4.

One of the main themes of article [A] is proving that the integral function u of a Lipschitz
function f on SM with f |∂SM = 0 is again a Lipschitz function. This result allows us to prove
that u has all necessary regularity for the Pestov identity to be applied.

When f is a Lipschitz function on M we prove that f |∂M = 0 given that f is in the kernel of
the X-ray transform. Thus, in regularity consideration of u, it suffices to assume that f |∂M = 0.
Vanishing of f at the boundary coupled with the fact that the squared exit time τ2 is Lipschitz
on a simple C1,1 manifold is used to prove that the integral function u is also Lipschitz.

Boundary determination is more delicate when f is a tensor field. In Lemma 2 of article [B]
we prove that tensor fields in the kernel of the transform are potential fields at the boundary.
This is proved by an explicit local construction yielding better regularity for the potential field
at the boundary than previous results (cf. [SU05]).

With regularity of the integral function and a Pestov identity the proof of injectivity proceeds
as the proof in the smooth case with only minor modifications (cf. section 3.1.2). Instead of
arguing that the quadratic form Q is positive definite, the definiteness is given since (M, g) is
simple C1,1 manifold. We arrive at the theorems.

Theorem 14 ([A, Theorem 1]). Let (M, g) be a simple C1,1 manifold. If a Lipschitz function f
integrates to zero over all maximal geodesics of M then f = 0.

Theorem 15 ([B, Theorem 1]). Let (M, g) be a simple C1,1 manifold. Assume that M has
almost everywhere non-positive sectional curvature. Let m ≥ 1 be an integer.

• If p ∈ C1,1(M) then the X-ray transform of σ∇p vanishes.
• If the X-ray transform of a symmetric m-tensor field f ∈ C1,1(M) vanishes, then there

is a symmetric (m − 1)-tensor field p ∈ Lip(M) so that σ∇p = f almost everywhere
in M .

The apparent asymmetry in the regularity of p between the claims in Theorem 15 is most
likely an artifact of our proof techniques. This asymmetry is discussed at length in Section 1.2.
of article [B].
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Figure 5. The fundamentally behind Lemma 17 is a construction of a sequence
of geodesics converging to a given boundary point.

3.1.4. A Pestov identity in gas giant geometry. Theorem 17 of article [D] states that on a sim-
ple α-gas giant the X-ray transform is injective on C∞(M̄). In this section we explain the steps
needed to prove the theorem and particularly the features of gas giant geometry in play. The
proof of the theorem is again based on a Pestov identity.

We provide a Pestov identity on an α-gas giant. The form of the identity is still familiar, but
the regularity assumptions are modified to reflect expectations for the regularity of the integral
function. In Lemma 16 we denote the unit cosphere bundle over the interior by S∗M◦ and ∇Gu
is the gradient of u with respect to the Sasaki metric G.

Lemma 16 ([D, Lemma 21]). Let (M, g) be a simple α-gas giant. For all u ∈ x∞C∞(S∗M◦)

satisfying Xu = −f as well as
v

∇Xu,X
v

∇u ∈ L2(N) and ∇Gu ∈ x∞L∞(S∗M ;TS∗M) it holds
that

(3.5) ∥
v

∇Xu∥2 = Q(
v

∇u) + (n− 1)∥Xu∥2.

Note that this identity is formulated on the unit cosphere bundle S∗M and not on the unit
sphere bundle SM . The structure is still essentially the same (see [D, Section 3.1]).

The proof of Lemma 16 begins by considering a truncated manifold Mε = {x ≥ ε} ⊆ M . For
small ε > 0, the truncated manifold is a standard simple manifold with a smooth boundary, and
it is known that the Pestov identity

∥
v

∇Xu∥2L2(Nε)
= Qε(

v

∇u) + (n− 1)∥Xu∥2L2(S∗Mε)
+Bε(u)

holds for all sufficiently smooth functions u on Mε. There is a boundary term Bε(u) involved,
which we need to take into account, since the integral function considered later might not vanish
on the boundary ∂Mε. The boundary term is

(3.6) Bε(u) =

∫
∂(S∗Mε)

(
⟨
v

∇u,
h

∇u⟩+ (n− 1)uXu

)
dσε

where dσε is the volume form of the restriction of the Sasaki metric on S∗Mε to ∂S∗Mε. There
are two points of interest when studying the limit of (3.6) when ε → 0. We need to combat the
blow up of the volume and the blow up of curvature as ε → 0. Since the blow ups are polynomial
in ε, we can use the assumptions that u and its gradient ∇Gu vanish faster than any polynomial
at the boundary to prove that (3.6) has the limit (3.5). The reasonability of these vanishing
assumptions is discussed next in Lemma 17 and in the paragraph after.

Lemma 17 ([D, Lemma 20]). Let g be a simple α-gas giant metric on M , and let f ∈ C∞(M̄).
If the integrals of f over all maximal geodesic in M vanish, then f ∈ x∞C∞(M).

The fundamental construction behind the proof of Lemma 17 is proving the existence of a
sequence of geodesics converging to a boundary point so that the lengths of the geodesics converge
to 0 (see Figure 5). To construct such a sequence, pick a sequence (xk) points along a smooth
boundary curve converging to a fixed boundary point x. Then we can use the observation that
the metrics dg(x, y) and dh(x, y)

1−α/2 are bi-Lipschitz equivalent (see Section 2.2.2) to prove
that the geodesics γk connecting x to xk have the desired properties.
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Lemma 17 can be used to prove that the integral function uf of a smooth function f ∈
C∞(M̄) with vanishing X-ray transform also has to vanish to an infinite order at the boundary.
Confirming that the gradient ∇Gu

f vanishes to infinite order at the boundary we use growth
estimates for Jacobi fields and the fact that derivatives of uf can be computed using these fields.
Once we have the details on regularity of uf , we can proceed as in section 3.1.2 with slight
modifications. The injectivity result we obtain is the following.

Theorem 18 ([D, Theorem 17]). Let (M, g) be a simple α-gas giant. If a function f smooth up
to the boundary ∂M has vanishing X-ray transform, then f = 0.

3.2. The normal operator. In this section, we introduce another method widely used in the
study of geodesic X-ray tomography. The basic idea is that by combining the X-ray transform of
functions with its adjoint we obtain an operator mapping functions on the manifold to functions
on the manifold. The expectation is that the normal operator defined in this way is more
manageable than the X-ray transform. The normal operator is often studied using techniques
from microlocal analysis.

We provide a short introduction to the normal operator of the X-ray transform in Section 3.2.1
and discuss results obtained in article [C] related to the normal operator in non-smooth geometry
in Section 3.2.2

3.2.1. The normal operator in smooth simple geometry. Let (M, g) be a simple Riemannian
manifold with a smooth boundary. Define the function µ : ∂SM → R by µ(x, v) = ⟨ν(x), v⟩,
where ν(x) is the inward unit normal vector at x ∈ ∂M . It is well-known that the X-ray
transform of functions is a bounded linear operator

I : L2(M) → L2
µ(∂in(SM)),

where L2
µ(∂in(SM)) is the L2 space on ∂in(SM) with the natural measure weighted by µ. The

adjoint I∗ of I can be computed using the Santaló’s formula and

I∗h(x) =

∫
SxM

h(ϕ−τ(x,−v)(x, v)) dSx

for all h ∈ L2
µ(∂in(SM)). Composing I with its adjoint I∗ gives a bounded linear operator

N : L2(M) → L2(M)

known as the normal operator. Unraveling the formulas we find that

(3.7) Nf(x) = 2

∫
SxM

∫ τ(x,v)

0
f(γx,v(t)) dt dSx

for all f ∈ L2(M).
The usefulness of N is due to to the fact that N is an elliptic pseudodifferential operator of

order −1 in M◦ with principal symbol cn |ξ|−1
g(x) where cn is a dimensional constant. This was

proved in [PU05], where the authors use a clever change of variables to write the operator in the
form

Nf(x) = 2

∫
M

a(x, y)

dg(x, y)n−1
f(y) dVg

where a(x, y) = det(d expx |exp−1
x (y))

−1. The Schwartz kernel

K(x, y) =
2a(x, y)

√
det(g(x))

dg(x, y)n−1

of N has a singularity of type |x− y|−n+1 proving that the operator is pseudodifferential and to
the leading order behaves like the operator corresponding to the Schwartz kernel

K̃(x, y) =
2
√

det(g(x))

dg(x, y)n−1
.

17



The symbol of the operator with kernel K̃ can be computed by taking the Fourier transform
of K̃(x, x − z) (see [Ste93]) which is explicitly computable yielding cn |ξ|−1

g(x) as the principal
symbol of N .

Ellipticity of N gives us the first application to X-ray tomography. Suppose that f ∈ L2(M)
is compactly supported in the interior of M and If = 0. Then Nf = 0 and since N is elliptic
there is a parametrix P inverting N up to smoothing terms. In symbols, we get

0 = PN = f +Rf

where R is a smoothing operator. Thus f = −Rf is C∞ smooth. The kernel of I on L2 functions
of compact support in M◦ consists of smooth functions only. Injectivity of I on smooth functions
proves injectivity on L2 functions of compact support in M◦.

Another useful tool for elliptic pseudodifferential operators is the so called pseudodifferential
property, which states that elliptic pseudodifferential operators do not create new singularities
(in the sense of the wave front set) or destroy old ones. Therefore ellipticity of N means that
the sharp features of f can be recovered from the X-ray transform If .

For deeper implications of elliptic pseudodifferentiality of N see [SU04, PU05, SU05].

3.2.2. The normal operator in non-smooth simple geometry. In this section we discuss the main
results obtained in article [C]. The first result (Theorem 19) is an elliptic regularity result for
an operator N defined by the same formula (3.7) as the normal operator in smooth geometry.
Our operator N agrees with the with the normal operator of the X-ray transform on L2(M) in
non-smooth geometry.

Theorem 19 ([C, Theorem 1]). Let (M, g) be a simple manifold of dimension n ≥ 2, where g ∈
Ck(M) for some k ≥ 7 + n/2. Then if f ∈ Hs

c (M) for some s > −k + 6 + n/2 and Nf = 0 we
have f ∈ Hr

c (M) for all s < r < k − 6− n/2.

In the statement of Theorem 19, the space Hs
c (M) consists of compactly supported functions

in Hs(M), and similarly H−s
c (M) is the subspace of compactly supported distributions in the

continuous dual of Hs(M).
The proof of Theorem 19 is based on a parametrix construction for operator N . The operator

is not an elliptic pseudodifferential operator in the standard sense, since its Schwartz kernel is
non-smooth even off the diagonal. Instead, we prove that N is an elliptic pseudodifferential
operator in a non-smooth calculus due to [Mar96] and construct the parametrix there. The
limits of regularity indices in Theorem 19 stem from continuous Sobolev mapping properties of
pseudodifferential operator in the non-smooth calculus.

The second main result of article [C] is an application of Theorem 19 to X-ray tomography.

Theorem 20 ([C, Theorem 3]). Let (M, g) be a simple manifold of dimension n ≥ 2, where the
Riemannian metric g ∈ C8+n(M). Then the X-ray transform of (M, g) is injective on L2(M).

The proof uses continuous mapping properties for the error term in the parametrix construc-
tion and a Sobolev embedding theorem to prove that any L2 function in the kernel of the X-ray
transform is infact Lipschitz continuous. Then we can use [A, Theorem 1] to prove injectivity
of the X-ray transform.
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Abstract. We prove that the geodesic X-ray transform is injective on scalar
functions and (solenoidally) on one-forms on simple Riemannian manifolds

(M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of

simplicity that is compatible with rough geometry. This C1,1-regularity is
optimal on the Hölder scale. The bulk of the article is devoted to setting up a

calculus of differential and curvature operators on the unit sphere bundle atop

this non-smooth structure.

1. Introduction. How regular does a Riemannian metric have to be for the geo-
desic X-ray transform to be injective? It is well known (see e.g. [25, 26, 36, 3]) that
on a smooth simple Riemannian manifold this injectivity property holds. If the reg-
ularity is too low, the question itself falls apart: If the Riemannian metric is C1,α

for α < 1, then the geodesic equation can fail to have unique solutions [13, 38].
Therefore it is indeed in a sense optimal on the Hölder scale when we prove that on
a C1,1-smooth simple Riemannian manifold the geodesic X-ray transform is injective
on scalars and one-forms, the latter one up to natural gauge.

The geodesic X-ray transform is ubiquitous in the theory of geometric inverse
problems. It appears either directly or through linearization in many imaging prob-
lems of anisotropic and inhomogeneous media. Most inverse problems have been
studied in smooth geometry but the nature is not smooth. The irregularities of the
structure of the Earth range from individual rocks (zero-dimensional, small) to in-
terfaces like the core–mantle boundary (two-dimensional, global scale). Irregularity
across various scales and dimensions are most conveniently captured in a single geo-
metric structure of minimal regularity assumptions. Specific kinds of irregularities
can well be analyzed further, but we restrict our attention to a uniform and global
but low regularity.

We prove this injectivity result by using a Pestov identity, an approach that
can well be called classical (cf. [25, 26, 36, 3, 32, 16, 42, 34]). What requires
care is keeping track of regularity. The manifold does not have natural structure
beyond C1,1, so regularity beyond is both useless and inaccessible. The natural
differential operators on the manifold and its unit sphere bundle are not smooth,
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2 JOONAS ILMAVIRTA AND ANTTI KYKKÄNEN

and only a couple of derivatives of any kind can be taken at all. The various
commutators that appear in the calculations have to be interpreted in a suitable
way, so that [A,B] exists reasonably even when the productsAB andBA do not. We
employ two methods around these obstacles: approximation by smooth structures
and careful analysis in the non-smooth geometry.

We say that a function is in the class C1,1 if it is continuously differentiable
and the derivative is Lipschitz, and we define in definition 1.5 what a C1,1 simple
Riemannian metric is. Throughout the article our manifolds are assumed to be
connected and to have dimension n ≥ 2.

Theorem 1.1. Let (M, g) be a simple C1,1 manifold in the sense of definition 1.5.

1. If f is a Lipschitz function on M that integrates to zero over all maximal
geodesics of M , then f = 0.

2. Let h be a Lipschitz 1-form on M that vanishes on the boundary ∂M . Then h
integrates to zero over all maximal geodesics of M if and only if there is a
scalar function p ∈ C1,1(M) vanishing on the boundary ∂M so that h = dp.

We have to redefine simplicity to be tractable in our rough setup, and we regard
this new definition as one of our main results. To verify that our redefinition is a
valid one, we prove that it agrees with the classical definition when the metric is
smooth. The classical definition of a smooth simple manifold implies the existence of
global coordinates, but in the C1,1 case we assume the coordinates in the definition
— in light of the following theorem the coordinate assumption is not superfluous.

Theorem 1.2. In smooth geometry definitions 1.4 and 1.5 are equivalent in the
following sense:

1. If M is a simple C∞ Riemannian manifold (see definition 1.4), then it is dif-
feomorphic to a closed ball in Rn and it is a simple C1,1 Riemannian manifold
(see definition 1.5).

2. If M is a simple C1,1 Riemannian manifold (see definition 1.5) and its metric
tensor is C∞-smooth, then M is a smooth simple Riemannian manifold (see
definition 1.4).

Remark 1.3. The assumption h|∂M = 0 in claim 2 of theorem 1.1 is probably
not necessary. Not assuming this is fine in smooth geometry but leads to technical
difficulties in our rough setup. This added assumption is the only way in which our
results fail to correspond to the classical smooth results.

1.1. Related results. Geodesic X-ray transforms have been studied a lot on
smooth manifolds equipped with C∞-smooth Riemannian metrics. Injectivity of
the transform is reasonably well understood both on manifolds with a boundary
and on closed manifolds. On manifolds with boundary one integrates over maximal
geodesics between two boundary points, whereas on closed manifolds one integrates
over periodic geodesics.

After Mukhometov’s introduction of the Pestov identity for scalar tomogra-
phy [24, 25, 26], the method has been applied to 1-forms and higher order tensor
fields [3, 35, 30, 33] on many simple manifolds. When one passes from simple man-
ifolds with boundary to closed Anosov manifolds, the Pestov identity remains the
same but the other tools around it change somewhat [6, 8, 31, 33, 43]. Cartan–
Hadamard manifolds are a non-compact analogue of simple manifolds, and the
familiar Pestov identity works well [20, 21]. Other variations of the problem change
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the Pestov identity, but a variant remains true and useful: In the presence of re-
flecting rays a boundary term on the reflector is added [18, 17], an attenuation or
a Higgs field [37, 29, 12] and magnetic flows [7, 1, 22] add a term to the geodesic
vector field, non-abelian versions of the problem remove the concept of a line inte-
gral entirely [11, 28, 23], and on Finsler surfaces a number of new terms are needed
to account for non-Riemannian geometry [4]. On pseudo-Riemannian manifolds a
Pestov identity useful for the light ray transform only seems to exist in product
geometry of at least 2 + 2 dimensions [15].

Pestov identities are not the only tool in the box for studying ray transforms on
manifolds. For the variety of other methods we refer the reader to the review [16].

Inverse problems in integral geometry have been mostly studied on manifolds
whose Riemannian metric is smooth or otherwise substantially above our C1,1 in
regularity. Injectivity of the scalar X-ray transform is known on spherically sym-
metric manifolds of regularity C1,1 satisfying the so-called Herglotz condition when
the conformal factor of the metric is in C1,1 [9].

Some geometric inverse problems outside integral geometry have been solved in
low regularity. A manifold with a metric tensor in a suitable Zygmund class is
determined by its boundary spectral data [2], interior spectral data [5] or by its
boundary distance function [19].

1.2. Preliminaries. In this subsection we will set up enough language to be able to
state our definitions and give our proofs on a higher level. For a similar framework
in the traditional smooth setting, see e.g. [33]. We will cover the foundations in
more detail in section 4 before embarking on the detailed proofs of our key lemmas.

The Riemannian manifold (M, g), where g is C1,1 regular, comes equipped with
the unit sphere bundle π : SM → M . The geodesic flow is a dynamical system
on SM and its generator X is called the geodesic vector field. Properties and
coordinate representations of X will be given later.

We will make frequent use of the bundle N over SM defined next. If π∗TM
is the pullback of TM over SM , then N is the subbundle of π∗TM with fibers
N(x,v) = {v}⊥ ⊆ TxM . It is well known (see [27]) that the tangent bundle TSM
of SM has an orthogonal splitting

TSM = RX ⊕H⊕ V (1)

with respect to the so-called Sasaki metric, where H and V are called horizon-
tal and vertical subbundles respectively. Roughly speaking, H(x,v) corresponds to
derivatives on SM in the base without components in the direction of v and V(x,v)

corresponds to derivatives on a fiber SxM . It is natural to identify H(x,v) = N(x,v)

and V(x,v) = N(x,v).
Given z ∈ SM , let γz be the unique geodesic corresponding to the initial con-

dition z. We define the geodesic flow to be the collection of (partially defined)
maps ϕt : SM → SM , ϕt(z) = (γz(t), γ̇z(t)), where t goes through the values for
which the right side is defined on SM . For any z ∈ SM the geodesic γz is defined on
a maximal interval [τ−(z), τ+(z)]. The travel time function τ : SM → R describes
the first time a geodesic exists the manifold and it is defined by τ(z) = τ+(z)
for z ∈ SM . Clearly γz(τ(z)) ∈ ∂M for any z ∈ SM .

A function f on M can be identified with the function π∗f on SM . If h is a
1-form on M , then it can be considered as a function h̃ : SM → R through the
identification h̃(x, v) = hx(v) for (x, v) ∈ SM . Since hx : TxM → R is linear, h̃
uniquely corresponds to h. The integral function uf : SM → R of f ∈ Lip(SM) is
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defined by

uf (x, v) :=

∫ τ(x,v)

0

f(ϕt(x, v)) dt (2)

for all (x, v) ∈ SM .
The lift of a unit speed curve γ : I → M is γ̃ : I → SM given by γ̃(t) =

(γ(t), γ̇(t)). The curve γ is a geodesic if and only if the lift satisfies ˙̃γ(t) = X(γ̃(t)).
The geodesic vector field X acts naturally on scalar fields by differentiation, and on
sections V of N it acts by

XV (z) = DtV (ϕt(z))|t=0,

where Dt is the covariant derivative along the curve t 7→ γz(t). This operator maps
indeed sections of N to sections of N .

According to (1) the gradient of a C1 function u on SM we can be written as

∇SMu = (Xu)X +
h

∇u+
v

∇u.

This gives rise to two new differential operators
v

∇ and
h

∇, called, respectively, the

vertical and the horizontal gradient. Both
v

∇u and
h

∇u are naturally interpreted
as sections of N ; see [34] for details. There are natural L2 spaces for functions
on the sphere bundle as well as for the sections of the bundle N . These will be
denoted L2(SM) and L2(N) and we will often label the corresponding inner prod-

ucts explicitly. Formal adjoints of
v

∇ and
h

∇ with respect to appropriate L2 inner

products are the vertical and horizontal divergences −
v

div and −
h

div respectively.
The mapping properties of the operators in C1,1 regular metric setting are

X : C1(SM) → C(SM)

X : C1(N) → C(N),

v

∇,
h

∇ : C1(SM) → C(N), and

v

div,
h

div : C1(N) → C(SM).

These mapping properties are easily verified by inspecting the explicit formulas in
local coordinates; see section 4.

We will deal with Sobolev spaces H1
(0)(SM) and H1

(0)(N) defined as comple-

tions of C1
(0) regular functions or sections in the relevant norms (see section 4),

where the optional subscript 0 indicates zero boundary values. Similarly, we de-
note by Lip0(M) and Lip0(SM) the spaces of Lipschitz functions zero boundary
values. As the last function space we introduce a Sobolev space H1

(0)(N,X), which

only gives control over the operator X operating on sections of N . From defini-
tions of various Sobolev norms it will be clear that all differential operators are
bounded H1 → L2 and thus extend to operators between Sobolev spaces.

Finally, there is a special quadratic form Q appearing in the Pestov identity. To
define it, we use the Riemannian curvature tensor R : L∞(N) → L∞(N) acting on
sections of N by

R(x, v)V (x, v) = R(V (x, v), v)v.
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In order to verify the mapping property of R, observe that the second partial deriva-
tives of g ∈ C1,1 =W 2,∞ are in L∞. We define Q by letting

Q(W ) = ∥XW∥2L2(N) − (RW,W )L2(N) .

for all W ∈ H1(N,X).
To conclude the preliminaries we recall in definition 1.4 the traditional definition

of a simple Riemannian manifold (cf. [33]). In what follows a manifold satisfying
conditions A1 and A2 is called simple C∞ manifold. In definition 1.5 we redefine the
notion of simplicity on manifolds equipped with non-smooth Riemannian metrics.

Definition 1.4 (Simple C∞ manifold). Let (M, g) be a compact smooth Riemann-
ian manifold with a smooth boundary. The manifold (M, g) is called simple C∞

Riemannian manifold, if the following hold:

A1: The boundary ∂M is strictly convex in the sense of the second fundamental
form.

A2: Any two points on M can be joined by a unique geodesic in the interior of M ,
and its length depends smoothly on its end points.

Definition 1.5 (Simple C1,1 manifold). Let M ⊆ Rn be the closed unit ball and g
a C1,1 regular Riemannian metric on M . We say that (M, g) is a simple C1,1

Riemannian manifold if the following hold:

B1: There is ε > 0 so that Q(W ) ≥ ε ∥W∥2L2(N) for all W ∈ H1
0 (N,X).

B2: Any two points of M can be joined by a unique geodesic in the interior of M ,
whose length depends continuously on its end points.

B3: The function τ2 is Lipschitz on SM .

Remark 1.6. In definition 1.5 the assumption that M is the closed unit ball is not
restrictive — any simple C∞ Riemannian manifold is diffeomorphic to a closed ball
in a Euclidean space. In the absence of conjugate points the exponential map expx,
related to an interior point x ∈ int(M), maps its maximal domain Dx diffeomorphi-
cally toM and Dx is itself diffeomorphic to the closed unit ball in Rn (see [34]). We
use global coordinates on a simple C1,1 Riemannian manifold and we have decided
to include their existence in the definition.

Remark 1.7. If one is to define a rough simple manifold as the limit of smooth
simple manifolds, the simplicity needs to be quantified. The example of a hemi-
sphere as the limit of expanding polar caps shows that the smooth limit of smooth
simple manifolds can be a smooth but non-simple manifold. The limit procedure
can introduce conjugate points and failure of strict convexity on the boundary. An
example of quantified simplicity can be found in [10], but we do not take this limit
route in our definition here.

2. Proof of theorem 1.1. This section contains the proof of theorem 1.1. The
proofs of the necessary lemmas are postponed to section 5. More detailed definitions
of function spaces and operators can be found from section 4.

We will freely identify a scalar function f and a one-form h on M with scalar
functions on SM as described above. Interpreting f and h as functions on SM we
can apply formula (2) to both.

Lemma 2.1 (Regularity of integral functions). Let (M, g) be a simple C1,1 mani-
fold.
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1. Let f be a Lipschitz function on M that integrates to zero over all maxi-
mal geodesics of M and let uf be the integral function of f defined by (2).

Then uf ∈ Lip0(SM), Xuf ∈ H1(SM) and
v

∇uf ∈ H1
0 (N,X).

2. Let h be a Lipschitz 1-form on M that integrates to zero over all maxi-
mal geodesics of M and vanishes on the boundary ∂M . If uh is the inte-
gral function of h defined by (2), then uh ∈ Lip0(SM), Xuh ∈ H1(SM)

and
v

∇uh ∈ H1
0 (N,X).

Lemma 2.2 (Pestov identity). Let (M, g) be a simple C1,1 manifold and let u ∈
Lip0(SM) be such that Xu ∈ H1(SM) and

v

∇u ∈ H1(N,X). Then∥∥∥∥ v

∇Xu
∥∥∥∥2
L2(N)

= Q

(
v

∇u
)
+ (n− 1) ∥Xu∥2L2(SM) . (3)

Lemma 2.1 provides enough regularity to apply the Pestov identity (3) to the
integral functions uf and uh because we will see in remark 4.3 that Lip(SM) ⊆
H1(SM) even if the metric tensor in only in C1,1. The following lemma shows that
certain norms of the integral function uh of a 1-form cancel in the identity.

Lemma 2.3. Let (M, g) be a simple C1,1 manifold and let h be a Lipschitz 1-form
on M . Then ∥∥∥∥ v

∇h
∥∥∥∥2
L2(N)

= (n− 1) ∥h∥2L2(SM) .

We are ready to prove theorem 1.1.

Proof of theorem 1.1. 1. The integral function uf of f ∈ Lip(M) satisfies Xuf ∈
H1(SM) and

v

∇uf ∈ H1(N,X) by lemma 2.1. Thus we can apply the Pestov
identity of lemma 2.2 to uf . By the fundamental theorem of calculus Xuf = −f
and thus

v

∇Xuf = 0, since f does not depend on the direction v ∈ SxM . By C1,1

simplicity (definition 1.5) of (M, g), the quadratic form Q is non-negative. Thus
the Pestov identity reduces to

0 ≥ (n− 1)
∥∥Xuf∥∥2

L2(SM)
.

Hence f = −Xuf = 0 in L2(SM) as claimed.
2. If h = dp for some scalar function p ∈ C1,1(M) with p|∂M = 0, then by the

fundamental theorem of calculus h integrates to zero over all maximal geodesics
of M .

Let h be a Lipschitz 1-form onM that integrates to zero over all maximal geodesic
of M and vanishes on the boundary ∂M . We will show that h = dp for some
function p ∈ C1,1(M) vanishing on ∂M . Lemma 2.1 allows us to apply the Pestov
identity to the integral function uh of h. Due to lemma 2.3, the identity reduces to

Q

(
v

∇uh
)

= 0.

Since the manifold is simple C1,1, this can only happen if
v

∇uh = 0. The function uh

is Lipschitz and independent of the direction v ∈ SxM on each fiber and therefore
there is a Lipschitz scalar function p on M so that uh = −π∗p on SM . Addition-
ally, p|∂M = uh|∂(SM) = 0, since h integrates to zero over all maximal geodesics

ofM . Since Xuh = −h, we have shown that dp = h in the weak sense. Because h is
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Lipschitz-continuous by assumption, we have that dp is Lipschitz and thus p ∈ C1,1

and the proof is complete.

3. Proof of theorem 1.2. In this section we prove that in the smooth setting
definition 1.5 of C1,1 simplicity is equivalent to definition 1.4 of C∞ simplicity.
Proofs of lemmas 3.1 and 3.2 are given in section 6. Theorem 1.2 readily follows
from lemmas 3.1 and 3.2.

Lemma 3.1. Let (M, g) be a simple C1,1 manifold with C∞-smooth Riemannian
metric g. Then there are no conjugate points in M , not even on the boundary.

Lemma 3.2. Let M be a compact Riemannian manifold with smooth boundary and
a C∞-smooth Riemannian metric g. Suppose that (M, g) is non-trapping. Then ∂M
is strictly convex in the sense of the second fundamental form if and only if τ2 ∈
Lip(SM).

Proof of theorem 1.2. By remark 1.6 each simple C∞ Riemannian manifold is dif-
feomorphic to the closed unit ball B in Rn. Thus we may assume that M = B and
let g be a C∞-smooth Riemannian metric onM . It suffices to show that (M, g) sat-
isfies conditions A1–A2 in definition 1.4 if and only if it satisfies conditions B1–B3
in definition 1.5. We have illustrated these implications in figure 1.

By lemma 3.2 conditions A1 and B3 are equivalent. By lemma 3.1 the condi-
tion B1 implies that there are no conjugate points on M . Thus we can promote
the continuous dependence in B2 to smooth dependence A2. Therefore simple C1,1

manifolds satisfy both conditions A1 and A2 of C∞ simplicity. Conversely, sim-
ple C∞ manifolds satisfy B1 (see [33, Lemma 11.2]) and clearly B2 is strictly
weaker than A2.

A1

A2
B1

B2

B3

[33]

Lemma 3.1

Lemma 3.2

Figure 1. Illustration of the proof of theorem 1.2. The arrows represent
implications except the one double headed arrow, which represents equiva-
lence. The green (solid) arrows connect one condition to another. The red
(dashed) and the blue (dotted) arrows indicate that one condition follows
from the two conditions circled with the same color (style).

4. Bundles, function spaces and operators. This section complements the
preliminaries in subsection 1.2. The main focus is on a detailed description of
structures, functions spaces and operators build on a compact Riemannian mani-
fold (M, g) with a C1,1 regular Riemannian metric.

4.1. Function spaces on smooth manifolds. Let M be a compact smooth
manifold with a smooth boundary. The space of smooth functions on M is de-
noted C∞(M) and the space of differentiable functions with Lipschitz derivatives
is denoted C1,1(M). We let C1,1(T 2M) denote the space of 2-tensor fields on M ,
whose component functions are in C1,1(M).
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If h is a smooth Riemannian metric on M , then L2
h(M) and L∞

h (M) will respec-
tively denote spaces of square integrable and essentially bounded functions on M ,
where the Riemannian volume form of h is used as the measure. Similarly,W 1,p

h (M)

and W 2,p
h (M) will respectively denote Sobolev spaces with p-integrable covariant

derivatives of the first order and of the second order. Norms of the covariant deriva-
tives on the tangent spaces are always defined by the metric h.

4.2. Structures in low regularity. Let (M, g) be a compact Riemannian man-
ifold with a smooth boundary. We assume that g ∈ C1,1(T 2M). The unit sphere
bundle SM = {v ∈ TM : |v| = 1} is a submanifold of TM , but not in general a
smooth one. Despite the non-smoothness of SM ⊆ TM as a submanifold, it can
be equipped with an induced smooth structure: SM is naturally homeomorphic to
the quotient space (TM \ 0)/ ∼, where v ∼ λv for all λ > 0 and v ∈ TxM . Metric
structures like the Sasaki metric are still non-smooth, so this smooth structure is
of little use. We will only see SM as a submanifold of TM .

For k ∈ {0, 1} a function u : SM → R is said to be in Ck(SM) if u is k times
continuously differentiable — for k ≥ 2 this concept is undefined in our setting.
As a C1 submanifold of TM the sphere bundle has enough regularity to define
both C(SM) and C1(SM). The subset Ck

0 (SM) of Ck(SM) consists of functions
vanishing on

∂(SM) = { (x, v) ∈ SM : x ∈ ∂M }.

The set of Lipschitz functions on SM is denoted by Lip(SM). We denote the inward
unit normal vector field to the boundary ∂M by ν. The boundary ∂(SM) is divided
into parts pointing inwards and outwards, respectively denoted by

∂in(SM) := { (x, v) ∈ ∂(SM) : ⟨v, ν(x)⟩ ≥ 0 }

and

∂out(SM) := { (x, v) ∈ ∂(SM) : ⟨v, ν(x)⟩ ≤ 0 }.

Their intersection consists of tangential directions

∂0(SM) := ∂in(SM) ∩ ∂out(SM).

Many differential operators considered in this article operate on sections of the
bundle N . To describe Ck spaces of sections of N , recall that N is the subbundle
of π∗TM with fibersN(x,v) = {v}⊥ ⊆ TxM . A section V of the bundleN is a section
of the bundle π∗TM with the property that ⟨V (x, v), v⟩g(x) = 0 for all (x, v) ∈ SM .

We say that such a section is in Ck(N) for k ∈ {0, 1} if the corresponding section
of π∗TM is k times continuously differentiable. Differentiability of a section W
of π∗TM is well defined since W is a certain function between two differentiable
manifolds SM and TM . The subspace Ck

0 (N) ⊆ Ck(N) consists of sections V of N
that vanish on ∂(SM).

Let (x, v) be a local coordinate system on TM and let ∂xj and ∂vk be correspond-
ing coordinate vector fields. We introduce new vector fields δxj = ∂xj − Γl

jkv
k∂vl

on TM , where Γl
jk are the Christoffel symbols of the metric g. As the metric tensor

in our results is of regularity C1,1, it follows that the Christoffel symbols and thus
the vector fields δxj are only Lipschitz.
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4.3. Differential operators. Next we define differential operators on SM and N .
The basic coordinate derivatives of a function u ∈ C1(SM) are defined by

δju := δxj (u ◦ r)|SM and ∂ku := ∂vk(u ◦ r)|SM ,

where r : TM \ 0 → SM is the radial function r(x, v) = (x, v |v|−1
g(x)). We de-

note δj := gjkδk and ∂j := gjk∂k. We use the basic derivatives to define operators
in local coordinates.

The geodesic vector field X is a differential operator that acts both on functions
on SM and on sections of the bundle N . The actions on a scalar function u and on
a section V are defined by

Xu = vjδju and XV = (XV j)∂xj + Γl
jkv

jV k∂xl . (4)

Vertical and horizontal gradients are differential operators defined respectively by
v

∇u = (∂ju)∂xj and
h

∇u = (δju− (Xu)vj)∂xj .

Coordinate formulas indicate that
v

∇ is the gradient in v and
h

∇ is the gradient in x

with the direction of v being projected out. The adjoint operators of
v

∇ and
h

∇ are
the vertical and the horizontal divergences

v

divV = ∂jV
j and

h

divV = (δj + Γi
ji)V

j .

The Riemannian curvature tensor R of the metric g has an action on sections
of N defined by

RV = Rl
ijkV

ivjvk∂xl .

Functions
on SM

Sections
of N

v

∇,
h

∇

v

div,
h

div

XX

R

Figure 2. Interplay of the operators defined in subsection 4.3. The gradi-
ents map functions on SM to sections of N . The divergences map sections
of N back to function on SM . The geodesic vector field maps functions
to functions and sections to sections. The curvature operator acts only on
sections and produces sections.

4.4. Integration and Sobolev spaces. A simple C1,1 manifold M is orientable,
so the Riemannian volume form on it can be defined in local coordinates as

dVg(x) := |det(g(x))|1/2 dx1 ∧ · · · ∧ dxn.
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For any x ∈ M the pair (SxM, g(x)) is a Riemannian manifold. Let dSx be the
associated Riemannian volume form on SxM . We use dVg and dSx to define the
volume form dΣg on SM , given in local coordinates by

dΣg(x, v) = dSx(v) ∧ dVg(x).

The form dΣg is natural as it coincides with the Riemannian volume form of the
Sasaki metric on SM . Since dVg has as much regularity as g, so does dΣg.

The L2-norm of a scalar function u on SM is denoted by ∥u∥L2(SM) and the L2-

norm of a section V of N is denoted by ∥V ∥L2(N). The L2-norms are induced by

the inner products

(u,w)L2(SM) :=

∫
SM

uw dΣg

and

(V,W )L2(N) :=

∫
SM

gijV
iW j dΣg.

We define the ∥·∥H1(SM)-norm of a function u ∈ C1(SM) by

∥u∥2H1(SM) = ∥u∥2L2(SM) + ∥Xu∥2L2(SM) +

∥∥∥∥ v

∇u
∥∥∥∥2
L2(N)

+

∥∥∥∥ h

∇u
∥∥∥∥2
L2(N)

.

The Sobolev spaceH1(SM) is defined to be the completion of the subset of C1(SM)
that consists of functions with finite H1(SM)-norm. We denote by H1

0 (SM) the
closure of C1

0 (SM) in H1(SM).
Sobolev spaces for sections of N are defined in an analogous fashion. For a

section V ∈ C1(N) we define the two Sobolev norms

∥V ∥2H1(N) = ∥V ∥2L2(N) + ∥XV ∥2L2(N) +

∥∥∥∥ v

divV

∥∥∥∥2
L2(SM)

+

∥∥∥∥ h

divV

∥∥∥∥2
L2(SM)

and

∥V ∥2H1(N,X) = ∥V ∥2L2(N) + ∥XV ∥2L2(N) .

The corresponding Sobolev spaces (the completions of C1(N) under these norms)
are denoted by H1(N) and H1(N,X), and the Sobolev spaces of sections vanishing
on the boundary ∂(SM) are denoted by H1

0 (N) and H1
0 (N,X).

Remark 4.1. Contrary to what one might expect, the norm on H1(N) defined
above does not contain derivatives in all possible directions, as it only includes
divergences in the vertical and horizontal directions. We will use these norms only
to estimate from above, so this omission of derivatives makes no difference.

In the case where g is a C∞-smooth Riemannian metric, we introduce one more
Sobolev space, K2(SM). The defining norm on the dense subspace C2(N) is

∥u∥2K2(SM) = ∥u∥2H1(SM) + ∥Xu∥2H1(SM) +

∥∥∥∥ v

∇u
∥∥∥∥2
H1(N,X)

.

Remark 4.2. It is important to realize that we cannot define Sobolev spaces using
smooth test functions as in the smooth case. The reason is two-fold. First, the
natural structure of SM as an submanifold TM is not regular enough to define
the function class C∞(SM). Second, the differential operators themselves are not
smooth. Applying any of the differential operators immediately drops regularity to
that of the coefficients, and they involve the metric tensor.
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4.5. Differential operators on Sobolev spaces. It is clear from the definitions
that all of our differential operators are bounded H1 → L2. Thus all classically
defined operators extend to operators between Sobolev spaces. We therefore have
the continuous operators

X : H1(SM) → L2(SM),

X : H1(N) → L2(N),

v

∇,
h

∇ : H1(SM) → L2(N), and

v

div,
h

div : H1(N) → L2(SM).

Basic integration by parts holds for the extended operators: If u,w ∈ H1(SM)
and V,W ∈ H1(N) and w and W vanish on the boundary, then

(Xu,w)L2(SM) = − (u,Xw)L2(SM) ,

(XV,W )L2(N) = − (V,XW )L2(N) ,(
v

∇u,W
)

L2(N)

= −
(
u,

v

divW

)
L2(SM)

, and(
h

∇u,W
)

L2(N)

= −
(
u,

h

divW

)
L2(SM)

.

We can use the space C1
0 (SM) as test functions and C1

0 (N) as test sections.

4.6. Switching between different unit sphere bundles. Suppose we have two
Riemannian metrics g, h ∈ C1,1(T 2M) on the manifold M . Let SgM and ShM
denote the corresponding unit sphere bundles. There is a natural radial C1,1-
diffeomorphism

s : SgM → ShM, s(x, v) = (x, v |v|−1
h ).

In section 5 we will have three Riemannian metrics g ∈ C1,1(T 2M) and
α
g, h ∈

C∞(T 2M) with certain roles. In this case we will denote the corresponding ra-
dial C1,1-diffeomorphisms by

α
s : Sα

gM → ShM,
α
r : SgM → Sα

gM and s : SgM → ShM.

In section 5 we frequently use the convention that the bundles related to
α
g are

denoted
α

SM := Sα
gM and

α

N := Nα
g, the operators related to

α
g are decorated with α

on top or as a subscript, the bundles and the operators related to h are decorated
with subscripts h, and the bundles and the operators related to the metric g are
written without decorations.

Remark 4.3. We can switch between sphere bundles and corresponding Sobolev
spaces using pullbacks along radial functions. If u is a scalar function on SM ,
then (s−1)∗u is a scalar function on ShM . To see that pullback behaves well on the
Sobolev scale, note that the H1(SM)-norm controls all possible derivatives on SM
since TSM = RX ⊕ V ⊕H. Thus the H1(SM)-norm is equivalent to

∥u∥ = ∥u∥L2(SM) + ∥dSMu∥L2(T∗SM) (5)

with the norm of the differential interpreted with respect to any Riemannian metric
on SM . With the norm (5) we see that regularity on Sobolev scale is preserved,
since (s−1)∗(dSMu) = dShM (u ◦ s−1) by standard properties of the pullback.
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Remark 4.3 allows us to prove continuous Sobolev embeddings between Sobolev
spaces of low regularity metrics. We present one example that will be useful to
us later. Let g ∈ C1,1(T 2M) and h ∈ C∞(T 2M) be two Riemannian metrics
on M . If u ∈ Lip(SM), then (s−1)∗u ∈ Lip(ShM). Since h is C∞-smooth,
we have (s−1)∗u ∈ H1(ShM) Then since ∥u∥H1(SM) ≲

∥∥(s−1)∗u
∥∥
H1(ShM)

by re-

mark 4.3, we see that u ∈ H1(SM). We have shown that the inclusion Lip(SM) ⊆
H1(SM) holds even when the metric tensor is only C1,1.

5. Lemmas in low regularity.

5.1. The Pestov identity. In this subsection (M, g) is a simple C1,1 Riemannian

manifold. We prove a variant of the commutator formula [X,
v

∇] = −
h

∇ and the
Pestov identity on (M, g). First, we show that both results are valid for Sobolev
functions on a manifold equipped with a C∞-smooth Riemannian metric. Then we
show that only C1,1 regularity of the Riemannian metric is needed. The main focus
of the subsection is on proving the Pestov identity of lemma 2.2.

Lemma 5.1. Let (M,h) be a compact smooth manifold with a smooth boundary,

where h is a C∞-smooth Riemannian metric. The commutator formula [X,
v

∇] =

−
h

∇ holds in the H1 sense on (M,h): For u ∈ H1
0 (ShM) and V ∈ C1(Nh), we have(

h

∇hu, V

)
L2(Nh)

=

(
v

∇hu,XhV

)
L2(Nh)

−
(
Xhu,

v

divhV

)
L2(ShM)

.

Proof. Let u ∈ H1
0 (ShM) and V ∈ C∞(Nh). Since V is smooth, by [33, Lemma 2.1.]

we have

Xh

v

divhV −
v

divhXhV = −
h

divhV.

Thus (
h

∇hu, V

)
L2(Nh)

= −
(
u,

v

divhXhV

)
L2(ShM)

+

(
u,X

v

divhV

)
L2(ShM)

=

(
v

∇hu,XhV

)
L2(Nh)

−
(
Xhu,

v

divhV

)
L2(ShM)

,

where the last equality holds since u ∈ H1
0 (ShM), and since XhV ∈ C∞(Nh)

and
v

divhV ∈ C∞(ShM). The same identity holds for V ∈ C1(Nh) by approxima-
tion, since only first order derivatives appear in the statement.

Lemma 5.2. Let (M,h) be a compact smooth manifold with a smooth boundary,
where h is a C∞-smooth Riemannian metric. Suppose that u ∈ K2(ShM) vanishes
on the boundary ∂(ShM). Then∥∥∥∥ v

∇hXhu

∥∥∥∥2
L2(Nh)

= Qh

(
v

∇hu

)
+ (n− 1) ∥Xhu∥2L2(ShM) , (6)

where Qh is the quadratic form defined for W ∈ H1
0 (Nh, Xh) by

Qh(W ) = ∥XhW∥2L2(Nh)
− (RhW,W )L2(Nh)

.
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Proof. Since u ∈ K2(ShM) and u vanishes on the boundary ∂(ShM), there is a

sequence
(β

u
)
β∈N of smooth functions on ShM vanishing on ∂(ShM) so that

β

u→ u

in K2(ShM). We see that∥∥∥∥ v

∇hXh
β

u−
v

∇hXhu

∥∥∥∥2
L2(Nh)

≤
∥∥∥Xh

β

u−Xhu
∥∥∥2
H1(ShM)

≤
∥∥∥β

u− u
∥∥∥2
K2(ShM)

(7)

and ∥∥∥Xh
β

u−Xhu
∥∥∥2
L2(Nh)

≤
∥∥∥β

u− u
∥∥∥2
H1(ShM)

≤
∥∥∥β

u− u
∥∥∥2
K2(ShM)

. (8)

Therefore
v

∇hXh
β

u →
v

∇hXhu in L2(Nh) and Xh
β

u → Xhu in L2(ShM) as β → ∞.
Additionally, since the curvature operator R of the metric h continuously maps
L∞(Nh) → L∞(Nh), we have∥∥∥∥ v

∇h
β

u−
v

∇hu

∥∥∥∥2
L2(Nh)

≤
∥∥∥β

u− u
∥∥∥2
H1(ShM)

≤
∥∥∥β

u− u
∥∥∥2
K2(ShM)

(9)

and ∥∥∥∥Rh

v

∇h
β

u−Rh

v

∇hu

∥∥∥∥2
L2(Nh)

≲
∥∥∥β

u− u
∥∥∥2
H1(ShM)

≤
∥∥∥β

u− u
∥∥∥2
K2(ShM)

. (10)

Thus Qh

( v

∇h
β

u
)

→ Qh

( v

∇hu
)

as β → ∞. By the Pestov identity for smooth

functions and metrics (see [33, Remark 2.3.]) we have∥∥∥∥ v

∇hXh
β

u

∥∥∥∥2
L2(Nh)

= Qh

(
v

∇h
β

u

)
+ (n− 1)

∥∥∥Xh
β

u
∥∥∥2
L2(ShM)

. (11)

We now let β → ∞ in (11). By our estimates (7), (8), (9), and (10) we end up with
the claimed identity (6).

The rest of this section focuses on showing that we can replace the C∞-smooth
Riemannian metric h in lemmas 5.1 and 5.2 by a C1,1 regular Riemannian metric.
Let (M, g) be a C1,1 simple Riemannian manifold. Next, we construct approxima-
tions of g by C∞-smooth Riemannian metrics

α
g.

Let (x1, . . . , xn) be the usual Cartesian coordinates on the Euclidean closed ball
M ⊂ Rn and extend all components gij ∈ C1,1(M) of g to functions gij ∈ C1,1(Rn).

Such extensions exist since C1,1 =W 2,∞ and the boundary ofM is smooth (see [41,
Chapter 6, Theorem 5]). Let us then choose a non-negative compactly supported
smooth function φ : Rn → R with unit integral and define a sequence of standard
mollifiers

α
φ(x) = αnφ(αx) for α ∈ N. Then we define

α
gij := (

α
φ ∗ gij)|M ∈ C∞(M). (12)

Lemma 5.3. Let (M, g) be a simple C1,1 manifold. Let h be a smooth reference
metric on M . There exists a sequence (

α
g)α∈N of C∞-smooth metrics on M such

that

1.
α
gij → gij in W 2,2

h (M) and in W 1,∞
h (M),

2.
α
gij → gij in W 1,2

h (M) and in L∞
h (M),

3.
α

Γi
jk → Γi

jk in W 1,1
h (M) and in L∞

h (M),

4.
α

Ri
jkl → Ri

jkl in L
1
h(M).
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Proof. For each α ∈ N let
α
g :=

α
gijdx

i ⊗ dxj ∈ C∞(T 2M), where
α
gij are as in (12).

We will show that a subsequence of the sequence (
α
g)α∈N consists of smooth Rie-

mannian metrics and satisfies conditions 1–4.
We see that for large α each

α
g is a C∞-smooth Riemannian metric. Smoothness

follows standard properties of the mollifiers
α
φ. Each

α
g is symmetric by construction.

For large α each
α
g is positive definite since this is an open condition and pointwise

convergence
α
gij → gij follows from continuity and item 1.

1. Because gij is compactly supported and in both spaces W 2,2(Rn) and

W 2,∞(Rn), the convolution converges
α
φ ∗ gij → gij in both spaces W 2,2(Rn)

and W 1,∞(Rn). This implies convergence in the corresponding function spaces
over the subdomain M ⊂ Rn.

2. Let us denote the adjugate of a matrix A by adj(A); we interpret rank two
tensor fields as matrix-valued functions on M ⊂ Rn. By item 1 we have

det(
α
g) → det(g) and adj(

α
g)ij → adj(g)ij (13)

in L∞
h (M). Thus for sufficiently large α the matrices

α
g are uniformly invertible in

the sense that ∥∥det(α
g)−1

∥∥
L∞

h (M)
≤ C.

Since
α
gij(x) = det(

α
g(x))−1 adj(

α
g(x))ij ,

we have that
α
gij → gij in L∞

h (M). Derivatives of the inverse satisfy ∂k
α
gij =

−α
gil(∂k

α
glm)

α
gmj , which implies convergence of the derivatives in L2

h(M).
3. This follows from

α

Γi
jk =

1

2
α
gil (∂j

α
gkl + ∂k

α
gjl − ∂l

α
gjk)

and items 1 and 2.
4. This follows from

α

R l
ijk = ∂i

α

Γl
jk − ∂j

α

Γm
jk +

α

Γm
jk

α

Γl
im −

α

Γm
ik

α

Γl
jm

and item 3.

Next we prove the Pestov identity for C1,1 regular metrics. In the context of
lemma 2.2 the manifold (M, g) is simple C1,1, the Riemannian metric g is C1,1

regular, the function u is in Lip0(SM) and satisfies Xu ∈ H1(SM) and
v

∇u ∈
H1(N,X).

Proof of lemma 2.2. Choose a smooth reference Riemannian metric h on M and
let (

α
g)α∈N be a sequence of smooth metrics approximating g as in lemma 5.3. For

each α ∈ N denote
α
u := u ◦ α

r. Then by remark 4.3 we have
α
u ∈ H1

0 (
α

SM),
α

X
α
u ∈

H1(
α

SM) and
v

∇α

α
u ∈ H1(

α

N,
α

X), which implies that
α
u ∈ K2(

α

SM) and
α
u|

∂(
α
SM)

= 0.

For each α an application of lemma 5.2 gives∥∥∥∥ v

∇α

α

X
α
u

∥∥∥∥2
L2(

α
N)

= Qα

(
v

∇α

α
u

)
+ (n− 1)

∥∥∥ α

X
α
u
∥∥∥2
L2(

α
SM)

. (14)

We will show that

lim
α→∞

∥∥∥∥ v

∇α

α

X
α
u

∥∥∥∥2
L2(

α
N)

=

∥∥∥∥ v

∇Xu
∥∥∥∥2
L2(N)

. (15)
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Similar arguments can be used to deduce that

lim
α→∞

Qα

(
v

∇α

α
u

)
= Q

(
v

∇u
)

(16)

and

lim
α→∞

∥∥∥ α

X
α
u
∥∥∥2
L2(

α
SM)

= ∥Xu∥2L2(SM) . (17)

Then letting α→ ∞ in equation (14) proves the claim of the theorem. Since the ar-
guments showing equations (16) and (17) are analogous to what is presented below,
we omit them. (The fact that components of the curvature tensor only converge
in L1 and not in L∞ is where the assumption u ∈ Lip(SM) is useful.) Coordinate
formulas required to show equations (16) and (17) are given in appendix A.

For any Lp convergence to make sense, we fix ShM to be our common reference

bundle for objects to be integrated on. First we study how the L2(
α

N) norm on
the left-hand side of (15) transforms under

α
s. Let ũ :=

α
u ◦ α

s−1 and fix ẑ ∈ ShM

and z ∈
α

SM such that
α
s(z) = ẑ. By basic properties of pushforwards we have((

(
α
s∗

α

X)ũ
)
◦ α
s
)
(z) = (

α
s∗

α

X)ẑũ =
α

Xz(ũ ◦ α
s) =

α

Xz
α
u.

Thus

(
α
s∗

α

∂j)ẑ

(
(
α
s∗

α

X)ũ
)
=

α

∂jz

(
(
α
s∗

α

X)ũ ◦ α
s
)
=

α

∂jz

(
α

X
α
u
)
.

Since π(z) = π(ẑ) ∈M we get∥∥∥∥ v

∇α

α

X
α
u

∥∥∥∥2
L2(

α
N)

=

∫
z∈

α
SM

α
gij(π(z))

(
α

∂iz(
α

X
α
u)
)(

α

∂jz(
α

X
α
u)
)
d

α

Σ(z)

=

∫
ẑ∈ShM

α
gij(π(ẑ))

(
α

∂iα
s−1(ẑ)

(
α

X
α
u)
)

×
(

α

∂jα
s−1(ẑ)

(
α

X
α
u)
) ∣∣det (dα

s−1
ẑ

)∣∣ dΣh(ẑ)

=

∫
ẑ∈ShM

α
gij(π(ẑ))

(
(
α
s∗

α

∂i)ẑ

(
(
α
s∗

α

X)ũ
))

×
(
(
α
s∗

α

∂j)ẑ

(
(
α
s∗

α

X)ũ
)) ∣∣det (dα

s−1
ẑ

)∣∣ dΣh(ẑ).

An analogous formula holds for the right-hand side of equation (15). Note that ũ =
u◦s−1. Thus we see that to prove equation (15) we need to prove the following two
items.

(i) (
α
s∗

α

∂j)
(
(
α
s∗

α

X)ũ
)
→ (s∗∂

j) ((s∗X)ũ) in L∞(ShM).

(ii) det
(
d

α
s−1
)
→ det

(
ds−1

)
in L∞(ShM).

The push-forward
α
s∗ has a useful block matrix representation in the coordinates

of the unit sphere bundles. Let (x,
α
w) ∈

α

SM and (x, v) ∈ ShM correspond to
each other through

α
s(x,

α
w) = (x, v). To (x,

α
w) and (x, v) we associate the coor-

dinate vector fields ∂x1 , . . . , ∂xn , ∂α
w1 , . . . , ∂α

wn and ∂x1 , . . . , ∂xn , ∂v1 , . . . , ∂vn respec-
tively. The matrix representation of

α
s∗ in a block form with respect to the bases

∂x1 , . . . , ∂xn , ∂α
w1 , . . . , ∂α

wn and ∂x1 , . . . , ∂xn , ∂v1 , . . . , ∂vn is

α
s∗ =

(
I 0
∂xv ∂α

wv

)
.

To find coordinate expressions for
α
s∗

α

∂j and
α
s∗

α

X, the vector fields
α

∂j and
α

X need to
be expressed in the basis ∂x1 , . . . , ∂xn , ∂α

w1 , . . . , ∂α
wn . As long as everything is only



16 JOONAS ILMAVIRTA AND ANTTI KYKKÄNEN

evaluated on
α

SM , we have
α

X
α
u =

α
wj

α

δj û for any û : TM \ 0 → R such that û|α
SM

=
α
u. Therefore, in local coordinates and as long as we are careful to only evaluate

only
α

SM , we have
α

X =
α
wj∂xj −

α

Γk
jl

α
wj α
wl∂α

wk .

Similarly we get
α

∂j =
α
gjl∂α

wl .
Coordinate formulas for the push-forwards vector fields can be found by multi-

plying with
α
s∗. This time only evaluating on ShM , we have

α
s∗

α

X =
α
wj∂xj +

(
α
wk∂xkvj −

α

Γk
lm

α
wl α
wm(∂α

wkvj)
)
∂vj

and
α
s∗

α

∂j =
α
gjl(∂α

wlvk)∂vk .

From these expressions it is clear that convergence in item (i) comes down to three
matters. In the base there are derivatives of components of

α
g up to the second order

and derivatives of components of
α
g−1 up to the first order. Again, components of

the metric
α
g appear in the coefficients

α
wj . The behaviour on the limit of all of these

matters is controlled by lemma 5.3. We have concluded item (i).
To prove item (ii), we write the matrix d

α
s−1 in the block form

d
α
s−1 =

(
I 0
∂x

α
w ∂v

α
w

)
.

Clearly det
(
d

α
s−1
)
= det (∂v

α
w). Therefore the behaviour as α → ∞ depends on

sums and products of derivatives ∂vk(v |v|−1
α ), which comes down to the metric

α
g.

By lemma 5.3 we have det
(
d

α
s−1
)
→ det

(
ds−1

)
in L∞(ShM).

We have shown both items (i) and (ii) and thus we have proved equation (15).
This finishes the proof of the lemma.

Lemma 5.4. Let (M, g) be a simple C1,1 manifold. The commutator formula

[X,
v

∇] = −
h

∇ holds on (M, g) in the H1 sense: For all u ∈ H1
0 (SM) and V ∈ C1(N)

we have (
h

∇u, V
)

L2(N)

=

(
v

∇u,XV
)

L2(N)

−
(
Xu,

v

divV

)
L2(SM)

. (18)

Proof. Let h be a smooth reference metric on M and choose a sequence (
α
g)α∈N of

smooth metrics approximating g as in lemma 5.3. For each α ∈ N denote
α
u := u ◦ α

r

and
α

V := V ◦ α
r. Then by remark 4.3 we have

α
u ∈ H1

0 (
α

SM) and
α

V ∈ C1(
α

N). We

apply lemma 5.1 to
α
u and

α

V to get(
h

∇α

α
u,

α

V

)
L2(

α
N)

=

(
v

∇α

α
u,

α

X
α

V

)
L2(

α
N)

−
(

α

X
α
u,

v

divα

α

V

)
L2(

α
SM)

. (19)

Letting α → ∞ in equation (19) proves the claimed identity (18), after we have
shown that

lim
α→∞

(
h

∇α

α
u,

α

V

)
L2(

α
N)

=

(
h

∇u, V
)

L2(N)

, (20)

lim
α→∞

(
v

∇α

α
u,

α

X
α

V

)
L2(

α
N)

=

(
v

∇u,XV
)

L2(N)

(21)
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and

lim
α→∞

(
α

X
α
u,

v

divα

α

V

)
L2(

α
SM)

=

(
Xu,

v

divV

)
L2(SM)

. (22)

All formulas (20), (21) and (22) can be shown by arguments analogous to those used
in proving the formula (15) in the proof of lemma 2.2. Thus we omit the details.
Coordinate formulas needed to complete the proofs of the formulas are given in
appendix A.

5.2. Regularity of the integral function. Let (M, g) be a simple C1,1 manifold.
In this section we will prove lemma 2.1 concerning regularity properties of the inte-
gral functions of Lipschitz functions and one-forms. We prove a Lipschitz property
for the geodesic flow in lemma 5.5. The Lipschitz property lets us prove that the
integral functions are Lipschitz in lemma 5.6. To prove H1(N,X) regularity for the
vertical gradients of the integral functions in lemma 5.7, we use the commutator
formula from lemma 5.4.

On a compact manifold M and its unit sphere bundle SM all reasonable notions
of distance are bi-Lipschitz equivalent. Since in this sectionM will be the Euclidean
closed ball, we choose Euclidean distances.

Lemma 5.5. Let (M, g) be a simple C1,1 manifold. For z ∈ SM let [τ−(z), τ+(z)]
be the maximal interval of existence of the geodesic γz. The geodesic flow ϕt is
Lipschitz continuous in z ∈ SM : There is a uniform L > 0 so that for all z, ẑ ∈ SM
and t ∈ [τ−(z), τ+(z)] ∩ [τ−(ẑ), τ+(ẑ)] we have

dSM (ϕt(z), ϕt(ẑ)) ≤ LdSM (z, ẑ).

Proof. Let z, ẑ ∈ SM . Note that both lifted geodesics t 7→ ϕt(z) and t 7→ ϕt(ẑ)

satisfy the equation X(ψ(t)) = ψ̇(t) on the interval [τ−(z), τ+(z)] ∩ [τ−(ẑ), τ+(ẑ)].
Since the distance dSM can be taken to be Euclidean and the Christoffel symbols of
the metric g ∈ C1,1(T 2M) are Lipschitz continuous, we get by Grönwall’s inequality
that

dSM (ϕt(z), ϕt(ẑ)) ≤ eK|t−0|dSM (ϕ0(z), ϕ0(ẑ)) = eK|t|dSM (z, ẑ),

for some K > 0 independent of t, z and ẑ. Since M is simple C1,1, the function τ is
uniformly bounded on SM . Thus we find a constant L > 0 independent of z and ẑ
such that eK|t| ≤ L uniformly for t ∈ [τ−(z), τ+(z)] ∩ [τ−(ẑ), τ+(ẑ)], which finishes
the proof.

Lemma 5.6. Let (M, g) be a simple C1,1 manifold. Let f ∈ Lip0(SM) and let uf

be the integral function of f defined by (2). Then uf ∈ Lip(SM).

Proof. Let z, ẑ ∈ SM be so that τ(ẑ) ≤ τ(z). Then by a simple calculation∣∣uf (z)− uf (ẑ)
∣∣ ≤ (τ(z)− τ(ẑ)) sup

t∈[τ(ẑ),τ(z)]

|f(ϕt(z))|

+

∫ τ(ẑ)

0

|f(ϕt(z))− f(ϕt(ẑ))| dt.
(23)

We will show that both summands on the right-hand side of equation (23) are
bounded by CdSM (z, ẑ) for some constant C > 0 independent of z and ẑ.

First, we treat the second term on the right-hand side of (23). Since by lemma 5.5
the geodesic flow ϕt and f both are Lipschitz, there is a constantK > 0 independent
of t, z and ẑ so that

|f(ϕt(z))− f(ϕt(ẑ))| ≤ KdSM (z, ẑ).



18 JOONAS ILMAVIRTA AND ANTTI KYKKÄNEN

Since the manifold M is simple C1,1, there is a constant L > 0 independent of ẑ so
that τ(ẑ) ≤ L. It follows that∫ τ(ẑ)

0

|f(ϕt(z))− f(ϕt(ẑ))| dt ≤ KLdSM (z, ẑ), (24)

which proves the desired bound for the second term.
Then we turn to the first term on the right-hand side of (23). Since f is Lipschitz

and vanishes on the boundary ∂(SM), for all t ∈ [τ(ẑ), τ(z)] we have

|f(ϕt(z))| =
∣∣f(ϕt(z))− f(ϕτ(z)(z))

∣∣
≤ Lip(f)dSM (ϕt(z), ϕτ(z)(z))

≤ Lip(f)(τ(z)− t)

≤ Lip(f)(τ(z)− τ(ẑ))

≤ Lip(f)(τ(z) + τ(ẑ)).

(25)

The function τ2 is Lipschitz since the manifold is simple C1,1, and so

(τ(z)− τ(ẑ)) sup
t∈[τ(ẑ),τ(z)]

|f(ϕt(z))| ≤ Lip(f)(τ2(z)− τ2(ẑ))

≤ Lip(f) Lip(τ2)dSM (z, ẑ),
(26)

as desired.
Combining estimates (23), (24) and (26) yields a Lipschitz estimate for the inte-

gral function uf .

Lemma 5.7. Let (M, g) be a simple C1,1 manifold. Assume that f ∈ Lip0(SM) in-

tegrates to zero over all maximal geodesics in M . Then
v

∇uf ∈ H1(N,X), where uf

is the integral function of f defined by equation (2).

Proof. The integral function uf is in Lip(SM) by lemma 5.6 and uf |∂(SM) = 0
since f integrates to zero over all maximal geodesics of M . Thus by remark 4.3 we
have uf ∈ H1

0 (SM). Then an application of lemma 5.4 gives(
v

∇uf , XV
)

L2(N)

=

(
h

∇uf , V
)

L2(N)

−
(
Xuf ,

v

divV

)
L2(SM)

(27)

for any V ∈ C1(N). Here Xuf ∈ H1(SM), since Xuf = −f ∈ Lip(SM). As
Xuf = −f = 0 at ∂SM , for any V ∈ C1(N) we can integrate by parts in (27) to
get (

v

∇uf , XV
)

L2(N)

=

(
(
h

∇−
v

∇X)uf , V

)
L2(N)

.

Therefore X
v

∇uf = (
v

∇X−
h

∇)uf ∈ L2(N), which shows that
v

∇uf ∈ H1(N,X).

Lemma 5.8. Let (M, g) be a simple C1,1 manifold. Then for any x ∈ ∂M and v ∈
Sx(∂M), there is a sequence of vectors vk ∈ SxM so that τ(x, vk) > 0, vk → v
and τ(x, vk) → 0 as k → ∞.

Proof. Let x ∈ ∂M and v ∈ Sx(∂M). Choose a C1 boundary curve σ defined on
an interval I so that σ(0) = x and σ̇(0) = v. Choose a sequence (xk) of boundary
points on σ(I) so that xk → x. For each k let vk ∈ SxM be the initial velocity
of the unique geodesic γk joining x to xk in the interior of M — the geodesic γk
exists by simplicity. Then τ(x, vk) > 0 for each k. Since the lengths of the geodesics
depend continuously on their end points, we get τ(x, vk) = l(γk) → 0 as k → ∞.
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It remains to verify that vk → v. The geodesic equation gives

∣∣γ̈ik(t)∣∣ =
∣∣∣∣∣∣
∑
j,l

Γi
jl(γk(t))γ̇

j
k(t)γ̇

l
k(t)

∣∣∣∣∣∣ ≤ n2 sup
x

∣∣Γi
jl(x)

∣∣ sup
t

|γ̇k(t)|2 ,

where all norms are the Euclidean ones of the global coordinates and the suprema
range over all coordinates. Therefore |γ̈k(t)| is uniformly bounded for all t and k,
and so by Taylor approximation in the coordinates

xk = γk(τk) = x+ τkvk +O(τ2k ),

where the error term is uniform over k. Therefore (in local coordinates)

v = σ̇(0)

= lim
k→∞

xk − x

τk

= lim
k→∞

τkvk +O(τ2k )

τk
= lim

k→∞
vk

as claimed.

Lemma 5.9. Let (M, g) be a simple C1,1 manifold. Suppose that f ∈ Lip(M)
integrates to zero over all maximal geodesics of M . Then f vanishes on the bound-
ary ∂M .

Proof. Let x ∈ ∂M be a boundary point. Suppose that v ∈ Sx(∂M). By lemma 5.8
there is a sequence of tangent vectors vk ∈ SxM so that τ(x, vk) > 0, τ(x, vk) → 0
and vk → v when k → ∞. Since integrals of f over all maximal geodesics vanish,
the integral function uf of f vanishes on the boundary ∂(SM). As the lengths of
the geodesics approach zero we get

f(x) = lim
k→∞

1

τ(x, vk)

∫ τ(x,vk)

0

f(γx,vk
(t)) dt = lim

k→∞

1

τ(x, vk)
uf (x, vk) = 0

as claimed.

If f ∈ Lip(SM), then the proof above only gives f |∂0(SM) = 0, not f |∂(SM) = 0.
This is true also in the smooth case, and this conclusion is optimal for general
functions on SM . If a function on SM arises from a tensor field, then the natural
boundary determination is more involved in low regularity and we shall not discuss
it here; cf. remark 1.3.

Proof of lemma 2.1. 1. Let f be a Lipschitz function on M that integrates to zero
over all maximal geodesics of M . Define the integral function uf of f as in (2).
We have f ∈ Lip0(M) by lemma 5.9. Thus uf ∈ Lip0(SM) by lemma 5.6. We

have
v

∇uf ∈ H1
0 (N,X) by lemma 5.7 since uf vanishes on ∂(SM). The last claim

Xuf = −π∗f ∈ Lip(SM) ⊆ H1(SM) follows from the fundamental theorem of
calculus.

2. Let h be a Lipschitz 1-form on M that integrates to zero over all maximal
geodesics of M and vanishes on the boundary ∂M . Let uh be the integral function
of h defined by (2). Then uh ∈ Lip0(SM) by lemma 5.6. We see that Xuf ∈
H1(SM) and

v

∇uh ∈ H1
0 (N,X) as in item 1.
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5.3. The integral function in the Pestov identity. This subsection concludes
the proofs of the lemmas required to prove theorem 1.1. We verify that the integral
function of a Lipschitz 1-form h onM behaves in the same way in the Pestov identity
as it does in the smooth case. Recall that (M, g) is a simple C1,1 Riemannian
manifold and particularly g is a C1,1 regular Riemannian metric on M .

Proof of lemma 2.3. Let h be a Lipschitz 1-form on M and denote by h̃ the associ-
ated function on SM . We will show that∥∥∥∥ v

∇h̃
∥∥∥∥2
L2(N)

= (n− 1)
∥∥∥h̃∥∥∥2

L2(SM)
. (28)

The Lipschitz assumption guarantees that the left-hand side of (28) is well defined.
Let ω stand for the (n− 1)-dimensional measure of the unit sphere in Rn. By [15,
Lemma 4] we have ∫

SxM

∣∣∣h̃(x, v)∣∣∣2 dSx = |h(x)|2 ω
n

and ∫
SxM

∣∣∣∣ v∇h̃(x, v)∣∣∣∣2 dSx = |h(x)|2 ω(n− 1)

n

on every fiber SxM of the unit sphere bundle. We may integrate over x just as
in [15, Lemma 4] despite having less regularity, and we find∥∥∥∥ v

∇h̃
∥∥∥∥2
L2(N)

= (n− 1)

∫
M

|h(x)|2 ω
n
dVg = (n− 1)

∥∥∥h̃∥∥∥2
L2(SM)

as claimed.

6. Lemmas in smooth geometry. This final section contains the proofs of the
lemmas used to verify that the two definitions of simplicity (definitions 1.4 and 1.5)
agree when the geometry is C∞-smooth. We assume that M ⊆ Rn is the closed
unit ball and we let g be a C∞-smooth Riemannian metric on M .

We denote by Iγ the index form along a geodesic γ of M . Recall that if there are
interior conjugate points along γ, then Iγ is indefinite and if the end points of γ are
conjugate to each other along γ, then there is a normal vector field V ̸≡ 0 along γ
so that Iγ(V ) = 0. If V is a normal vector field along γ vanishing at the end points
of γ, we abbreviate Iγ(V ) := Iγ(V, V ).

Proof of lemma 3.1. Let (M, g) be a simple C1,1 manifold and assume that the
Riemannian metric g is C∞-smooth. Let γ0 : [a, b] → M be a maximal geodesic
in M and let V ̸≡ 0 be a normal vector field along γ0 vanishing at the end points
of γ0. We will show that Iγ0

(V ) > 0, proving that there cannot be conjugate points
along γ even at its end points.

Let (γ0(0), γ̇0(0)) =: z0 ∈ ∂in(SM) be the initial data of a geodesic γ0 and let γ̃0
be the lift to the sphere bundle. The pullback bundle γ̃∗0N consists precisely of all
normal vector fields along γ0. Particularly, V is a section of γ̃∗0N vanishing at the

end points, so by lemma B.1 (in appendix B) there is a smooth section Ṽ of N

vanishing on the boundary and satisfying Ṽ |γ̃0
= V . We may assume that Ṽ is

supported in a small neighborhood of γ̃0.
Choose for each k ∈ N a smooth function ak : ∂in(SM) → R so that a2k → δz0 in

the weak sense and
∫
∂in(SM)

a2kdµ = 1, where dµ(x, v) = ⟨ν(x), v⟩dΣg(x, v). Since

we are working locally around z0, it is enough to find such a sequence of functions
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in Euclidean space and we see that a sequence of square roots of positive standard
mollifiers will suffice.

For each k ∈ N letWk ∈ C∞(N) be a section such thatWk(ϕt(z))=ak(z)Ṽ (ϕt(z))
for all z ∈ ∂in(SM) and t ∈ [0, τ(z)]. By Santaló’s formula (see [40, Lemma 3.3.2])
it follows that as k → ∞ we have

Q(Wk) =

∫
z∈∂in(SM)

Iγz
(Wk|γ̃z

) dµ(z)

=

∫
z∈∂in(SM)

a2k(z)Iγz
(Ṽ |γ̃z

) dµ(z)

→
∫
z∈∂in(SM)

δz0(z)Iγz
(Ṽ |γ̃z

) dµ(z)

= Iγ0
(Ṽ |γ̃0

) = Iγ0
(V ).

Here we have written the distribution δz0 as a function on SM to simplify notation.
Similarly as k → ∞ we get

∥Wk∥2L2(N) =

∫
z∈∂in(SM)

∫ τ(z)

0

|Wk|γ̃z |
2
dtdµ(z)

=

∫
z∈∂in(SM)

a2k(z)

(∫ τ(z)

0

∣∣∣Ṽ |γ̃z

∣∣∣2 dt

)
dµ(z)

→
∫
z∈∂in(SM)

δz0(z)

(∫ τ(z)

0

∣∣∣Ṽ |γ̃z

∣∣∣2 dt

)
dµ(z)

=

∫ τ(z0)

0

∣∣∣Ṽ |γ̃0

∣∣∣2 dt =

∫ τ(z0)

0

|V |2 dt.

By C1,1 simplicity of (M, g) and zero boundary values of Wk there is ε > 0 so that

Q(Wk) ≥ ε ∥Wk∥2L2(N) for all k. We conclude that

Iγ0(V ) ≥ ε

∫ τ(z0)

0

|V |2 dt > 0,

which proves that there cannot be conjugate points along γ0 even at its
end points.

Proof of lemma 3.2. Let (M, g) be a compact smooth Riemannian manifold with a
smooth boundary. We assume that the Riemannian metric g is C∞-smooth.

First, we will prove that strict convexity implies Lipschitz continuity of τ2. As
the boundary is strictly convex, all geodesics starting in the interior int(SM) meet
the boundary transversally. The implicit function theorem implies that τ is smooth
in int(SM). As τ : SM → R is continuous on all of SM , it suffices to show that
the gradient of τ2 (in Sasaki or any other Riemannian metric on SM) is uniformly
bounded in the interior.

Let z ∈ SM be an interior point and let s 7→ zs be a smooth curve of interior
points, where s ∈ (−ε, ε) and z0 = z. Choose s 7→ zs to have unit speed with
respect to the Sasaki metric related to the C∞-smooth metric g. The implicit
function theorem gives an explicit formula for the differential dτ of τ . Applying the
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implicit function theorem to ρ(γzs(t)) yields

d

ds
τ(zs) = −

〈
d
dsγzs(t), ν(γzs(t))

〉
⟨γ̇zs(t), ν(γzs(t))⟩

∣∣∣∣
t=τ(zs)

, (29)

where ρ is a boundary defining function. To prove that d(τ2) = 2τdτ is uniformly
bounded in the interior, we will show that

τ(zs)
d

ds
τ(zs) (30)

is bounded by some absolute constant near s = 0. Boundedness of (30) will follow
after we have shown that1

τ(z) ≲ |⟨γ̇z(τ(z)), ν(γz(τ(z)))⟩| (31)

for all z ∈ int(SM), since by growth estimates for Jacobi fields and |ż0| = 1 we have∣∣∣∣〈 d

ds
γzs(τ(zs)), ν(γzs(τ(zs)))

〉∣∣∣∣ ≤ C,

where C is a constant depending only on curvature bounds and diameter. Since
the right-hand side of (31) is constant along the geodesic γz, it is enough to prove
boundedness for z ∈ ∂in(SM).

Outside any neighbourhood of the compact set ∂0(SM), the right-hand side
of (31) is uniformly bounded from below by a positive constant and τ(z) is also
uniformly bounded from above. Thus if we can prove that there is a neighbourhood
of the set ∂0(SM) where (31) holds, it will hold everywhere on ∂(SM).

Take any x ∈ ∂M and an inward pointing vector v ∈ SxM . Let

x̂ := γx,v(τ(x, v)) and v̂ := −γ̇x,v(τ(x, v)).
Let ν be the inward unit normal vector at the boundary. We decompose the vector v̂
as v̂⊥ν + v̂∥, where v̂⊥ > 0 and v̂∥ is parallel to the boundary. It follows from [14,
Lemma 12] that as v̂⊥ → 0, we have

τ(x̂, v̂) = 2v⊥S(v̂∥, v̂∥)−1 +O((v̂⊥)2),

where S is the second fundamental form of ∂M and the error term is locally uni-
form. As the boundary is strictly convex, the second fundamental form is bounded
uniformly from below by c > 0. Thus as v̂⊥ → 0 we get

τ(x̂, v̂) ≤ 3c−1v̂⊥ = 3c−1 ⟨ν(x̂), v̂⟩ . (32)

Therefore, since τ(x, v) = τ(x̂, v̂), as v⊥ → 0 we get

τ(x, v) = τ(x̂, v̂) ≲ |⟨ν(x̂), v̂⟩| = |⟨ν(γx,v(τ(x, v))), γ̇x,v(τ(x, v))⟩| .
This shows that (31) holds in a neighbourhood of the tangential point (x, v∥). Thus
estimate (31) holds in a neighbourhood of ∂0(SM).

Next we turn to the opposite statement. We assume that τ2 is Lipschitz. If the
boundary were not to be strictly convex everywhere, there would be a v ∈ Sx(∂M)
so that Sx(v, v) ≤ 0.

As τ2 is Lipschitz, the function τ itself is Hölder-continuous. Because the con-
tinuous function τ vanishes on ∂outSM \ ∂0(SM) (the geodesics stop immediately),
we have

τ |∂0(SM) = 0 (33)

1This estimate follows from [39, Lemma 4.1.2], but we reprove it here. Our method of proof is
different and may be of interest to some readers.
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as well.
We use boundary normal coordinates near the base point x ∈ ∂M . We construct

a family (γh)h∈[0,1] of geodesics as follows. Parallel translate the vector v for time h
along the geodesic starting normally inwards from x. Call this vector vh ∈ Txh

M .
Let γh be the geodesic with the initial data γ̇h(0) = vh. The geodesic γ0 (with
initial direction v0 = v at x0 = x) starts at the boundary and may, depending on
the convexity of the boundary, be only defined at t = 0.

As in [14, Eq. (2)] we extend the second fundamental form in the boundary
normal coordinates near x. Denote Sh(t) := Sγh(t)(γ̇h(t), γ̇h(t)). Since Sx(v, v) ≤ 0
we have

Sh(t) = S0(0) +O(h) +O(|t|) ≤ C(h+ |t|),
for some C > 0 when h and |t| are small. If zh(t) is the distance from γh(t) to the
boundary, we have zh(0) = h and żh(0) = 0. By writing the geodesic equation in
boundary normal coordinates (as in [14, Eq. (8)]) we find that

z̈h(t) = −Sh(t) ≥ −C(h+ |t|). (34)

The total length τh of the geodesic γh can be divided into forward and backward
parts, denoted respectively by τ+h and τ−h . We want to find estimates for τ+h and τ−h
from below.

Let us first consider the case of positive time, t > 0. Integrating the estimate (34)
leads to

zh(t) = h+

∫ t

0

∫ s

0

z̈h(r)drds ≥ h− C

2
ht2 − C

6
t3 =: ẑh(t)

for all t > 0. If we choose A := min
(√

2
3C ,

3

√
2
C

)
and τ̂+h := Ah1/3 , then for

all t ∈ [0, τ̂+h ] we have

ẑh(t) ≥ h

[
1− 1

2
Ch2/3A2 − 1

6
CA3

]
≥ h

3
.

Therefore zh(t) ≥ ẑh(t) > 0 for t ∈ [0, τ̂+h ]. This shows that τ+h ≥ τ̂+h .
The case of negative time can be reduced to previous case by substituting t =

−s, s > 0 and similarly we get τ−h ≥ Ah1/3. Equation (33) implies τ0 = 0, and
this together with the Lipschitz continuity of τ2 implies that there is B > 0 so
that τ2h ≤ Bh. As 0 < h≪ 1, this gives us

Bh ≥ τ2h = (τ+h + τ−h )2 ≥ 4A2h2/3,

which is impossible for small h. This is a contradiction so the boundary has to be
strictly convex.
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Appendix A. Coordinate formulas and norms. We have collected here the
remaining formulas from proofs of lemmas 2.2 and 5.4. In the context of the proof
of lemma 2.2 following formulas hold. The Qα-term in identity (14) is

Qα

(
v

∇α

α
u

)
=

∥∥∥∥ α

X
v

∇α

α
u

∥∥∥∥
L2(

α
N)

−
(

α

R
v

∇α

α
u,

v

∇α

α
u

)
L2(

α
N)

.
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For L2 quantities in identity (14) we have∥∥∥∥ α

X
v

∇α

α
u

∥∥∥∥2
L2(

α
N)

=

∫
ShM

α
gij

(
α
wk
(

α
s∗

α

δk

)(
(
α
s∗

α

∂i)ũ
)
+

α

Γi
lk

α
wl(

α
s∗

α

∂k)ũ
)

×
(

α
wk
(

α
s∗

α

δk

)(
(
α
s∗

α

∂j)ũ
)
+

α

Γj
lk

α
wl(

α
s∗

α

∂k)ũ
)

×
∣∣det (dα

s−1
)∣∣ dΣh

(35)

and ∥∥∥ α

X
α
u
∥∥∥2
L2(

α
SM)

=

∫
ShM

∣∣∣(α
s∗

α

X
)
ũ
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(37)

For the vector fields
α
s∗

α

δk,
α
s∗

α

X and
α
s∗

α

∂j appearing in formulas (35), (36) and (37)
we have coordinate formulas

α
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α
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α
gjl(∂α
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In the context of the proof of lemma 5.4 the following formulas hold. For the L2

inner products in equation (19) we have(
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α
wi(

α
s∗

α

X)ũ
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and (
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X)Ṽ j +
α

Γj
lk

α
wlṼ k
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(39)

and (
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divα
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New vector fields
α
s∗

α

∂j and
α
s∗

α

δk appear in equations (38), (39) and (40). For them
we have the coordinate formulas

α
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wjvk)∂vk ,

and
α
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α
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α
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wm(∂α
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Appendix B. Smooth extension from a curve. This appendix is devoted to
the proof of the following lemma. We will comment on some of the definitions and
give examples after the statement. In this appendix everything is smooth and all
manifolds and bundles have finite dimension.

Lemma B.1. Let M be a smooth manifold with boundary and π : B →M a bundle
over it whose fiber is a closed manifold. Let Π: E → B be a vector bundle over B.

Let σ : [a, b] → B be a smooth curve without self-intersections so that the end
points π(σ(a)) and π(σ(b)) are on ∂M and π(σ(t)) ∈ int(M) for all t ∈ (a, b).
Suppose the exit directions σ̇(a) and σ̇(b) are not tangent to the boundary ∂B :=
π−1(∂M).

Let V be a smooth section of the pullback bundle σ∗E so that V (a) = V (b) = 0.
Then there is a smooth section W of E so that W |∂B = 0 and W (σ(t)) = V (t) for
all t ∈ [a, b].

The fiber of the bundle B is a smooth and compact manifold of any finite di-
mension, including zero. The result is valid in the trivial case where the fiber is a
singleton and B = M . If E is the trivial line bundle B × R, then sections of it are
merely scalar functions B → R. Therefore the lemma covers extensions of scalar
functions from smooth curves γ on M but also much more. The result will only be
applied in the case B = SM and E = N , but we record it in more generality as it
adds no cost.

As σ : [a, b] → B is an injective smooth map, a section of the pullback bundle σ∗E
is simply a smooth map W : [a, b] → E so that Π(W (t)) = σ(t) for all t ∈ [a, b].

Proof of lemma B.1. Denote the projected curve by γ := π ◦ σ : [a, b] → M . The
assumption that σ̇(a) and σ̇(b) are not tangential to ∂B implies that the end direc-
tions γ̇(a) and γ̇(b) on the base are not tangential to ∂M .

The point x = γ(a) has a neighborhood ω1 ⊂ M where we may choose local
coordinates ϕ : ω1 → Rn so that ϕ(∂M ∩ ω1) = {xn = 0} and for all interior points
y ∈ M \ ∂M we have ϕn(y) > 0. In these coordinates the initial direction satisfies
γ̇n(a) > 0, and so the map

θ : [a, a+ ε) ∋ t 7→ γn(t) ∈ [0, h)

is a diffeomorphism for some choice of ε, h > 0.
We may shrink ω1 so that ϕ(ω1) ⊂ Rn−1 × [0, h) and the bundle B is locally

trivial: B ⊃ π−1(ω1) ≈ ω1 × F , where F is a closed manifold (the typical fiber
of B). Denote y = σ(a) ∈ Bx = F . There is a neighborhood U ∋ y in F so that
the bundle E is trivial over ω1 × U =: Ω1 ⊂ π−1(ω1) ⊂ B (with the product in the
sense of the local trivialization of B) in the sense that Π−1(Ω1) ≈ Ω1 × RK , where
K ∈ N is the dimension of the fiber of E. In these coordinates the section V of σ∗E
may be written as a smooth function [a, b] → RK , and we denote the component
functions as Vk : [a, b] → R. By the non-intersecting property of σ we may assume
the neighborhoods ω1 ⊂ M and Ω1 ⊂ B to be so small that the curve σ does not
return to Ω1 after leaving it.

We define a function W1 : Ω1 → RK by letting its components be

W1(z)k = Vk(θ
−1(π(z)n)). (41)

This defines a sectionW1 of the bundle E in a neighborhood of the point (x, y) ∈ B.
By construction W1(z) = 0 when z ∈ ∂B, as that corresponds to the set where
π(z)n = 0 and we have V (a) = 0. This section W1 satisfies the required restriction



26 JOONAS ILMAVIRTA AND ANTTI KYKKÄNEN

property where it is defined: Whenever t ∈ [a, b] satisfies σ(t) ∈ Ω1, we have
W1(σ(t)) = V (t).

Similarly, there is a neighborhood Ω2 of (γ(b), σ(b)) ∈ B and a local section
W2 : Ω2 → E with the same property: Whenever t ∈ [a, b] satisfies σ(t) ∈ Ω2, we
have W2(σ(t)) = V (t).

In addition to satisfying the restriction property, both of these local sections W1

and W2 of E vanish on the boundary ∂B when defined there. The point of the
construction in (41) is to ensure that the local extension vanishes on the boundary.

For any t ∈ (a, b) it is easy to provide local extensions as σ has no self-intersections
and there are no boundary conditions to worry about. Using compactness of σ([a, b])
to pass to a finite subcover, we find sets Ω3, . . . ,ΩJ ⊂ B \ ∂B and local sections
Wj : Ωj → E of E so that Wj(σ(t)) = V (t) whenever σ(t) ∈ Ωj and σ([a, b]) ⊂⋃J

j=1 Ωj .

We also let Ω0 = B \ σ([a, b]) and let W0 : Ω0 → E be the zero section. The
vector field W0 has the same boundary conditions and restriction properties as the
other Wjs but for trivial reasons.

The sets Ω0, . . . ,ΩJ are an open cover of the smooth manifold B with bound-
ary ∂B. Let the functions ψ0, . . . , ψJ ∈ C∞

c (B) be a partition of unity subordinate

to this cover in the sense that each ψj is supported in Ωj and
∑J

j=0 ψj(z) = 1 for

all z ∈ B. The functions B → E defined by ψj(z)Wj(z) are smooth (interpreted to
be zero outside Ωj where Wj is defined) and the global smooth section W : B → E
given by

W (z) =

J∑
j=0

ψj(z)Wj(z)

is quickly verified to have all the required properties.
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Abstract
We prove solenoidal injectivity for the geodesic X-ray transform of tensor fields on
simple Riemannian manifolds with C1,1 metrics and non-positive sectional curvature.
The proof of the result rests on Pestov energy estimates for a transport equation on the
non-smooth unit sphere bundle of the manifold. Our low regularity setting requires
keeping track of regularity and making use of many functions on the sphere bundle
havingmore vertical than horizontal regularity. Someof themethods, such as boundary
determination up to gauge and regularity estimates for the integral function, have to be
changed substantially from the smooth proof. The natural differential operators such
as covariant derivatives are not smooth.

Keywords Geodesic X-ray tomography · Non-smooth geometry · Tensor
tomography · Integral geometry · Inverse problems

Mathematics Subject Classification 44A12 · 53C22 · 53C65 · 58C99

1 Introduction

What are the minimal smoothness assumptions on a Riemannian metric under
which the geodesic X-ray transform of tensor fields on the Riemannian manifold
is solenoidally injective? Solenoidal injectivity on smooth simple manifolds with neg-
ative curvature was proved in [44]. Since [44], many solenoidal injectivity results have
been shown under different variations of the geometric setup. Solenoidal injectivity is
known for all real analytic simple Riemannian metrics [51] and for all smooth simple
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Riemannian metrics with certain bounds on their terminator values [43]. The study
of the X-ray transform on manifolds with Riemannian metrics of low regularity was
started recently [18], where the authors prove that the X-ray transform of scalar func-
tions is injective on all simplemanifoldswithC1,1 Riemannianmetrics.We extend this
result and prove that the X-ray transform of tensor fields of any order is solenoidally
injective for all simpleC1,1 Riemannian metrics with almost everywhere non-positive
sectional curvature.

X-ray tomography problems of 2-tensor fields naturally arise as linearized problems
of travel time tomography or boundary rigidity [49]. The travel time problem arises
in applications, such as seismological imaging, where one asks whether the sound
speed in a medium can uniquely be determined from the knowledge of the arrival
times of waves on the boundary. Because of the geophysical nature of such problems,
it is relevant to ask how well the studied model corresponds to the real world. From
this point of view, the smoothness assumption of the model manifold is merely a
mathematical convenience, which is why we have set out to relax such assumptions.

Our main objective is to optimize the regularity assumptions imposed on the Rie-
mannian metric g of the manifold. We focus on global and uniform non-smoothness
(as opposed to, say, interfaces with jump discontinuities), and as in [18] the natural
optimality to aim at remains C1,1. If g is only assumed to be in the Hölder space C1,α

for α < 1, the geodesic equation fails to have unique solutions [15, 47] and the
X-ray transform itself becomes ill defined. In this sense,our result is optimal on the
Hölder scale, as we provide a solenoidal injectivity result (theorem 1) for the class
of simple C1,1 Riemannian metrics with almost everywhere non-positive sectional
curvature.

The non-positivity assumption on the curvature is likely unnecessary — milder
assumptions on top of simplicity could suffice. Even in the smooth case relaxing
the curvature assumption causes technical difficulties and solenoidal injectivity for all
simple Riemannian metrics is not understood. Since our setting is complicated enough
as it is, we decided not to include manifolds with possible positive curvature.

A popular method for proving injectivity results relies on interplay between the
X-ray transform and a transport equation. In the smooth case, the transport equation
is studied using the so-called Pestov identity and energy estimates derived from it (see
e.g. [16, 36, 42] and references therein).

We employ a similar approach in our non-smooth setting. Our proof is structurally
the same as those in smooth geometry, so the main content of this article is to ensure
that everything is well defined and behaved in our non-smooth setting: the unit sphere
bundle and operators on it, commutator formulas, function spaces, Santaló’s formula,
and others.

1.1 Main Results

We record as our main result the following kernel description for the geodesic X-ray
transform of tensor fields. In the literature of the geodesic X-ray transform, similar
results are often called solenoidal injectivity results. Throughout the article, M will
be a compact and connected smooth manifold with a smooth boundary ∂M . The
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dimension of M will always be n ≥ 2. The manifold M comes equipped with a C1,1

regular Riemannian metric g. That is, the metric g is continuously differentiable and
the derivative is Lipschitz.

We define what it means for (M, g) to be simple in Sect. 2.1. SimpleC1,1 manifolds
have global coordinates by definition, but for smooth simple manifolds, this is a conse-
quence of the definitions.When g ∈ C∞,the definition ofC1,1 simplicity is equivalent
to the classical definition [18, Theorem 2] and thus assuming existence of global coor-
dinates is not superfluous. We say that g has almost everywhere non-positive sectional
curvature if for almost all x ∈ M we have 〈R(w, v)v,w〉g(x) ≤ 0 where v,w ∈ TxM
are orthogonal. The curvature tensor R is well defined by the familiar formula almost
everywhere in M . The X-ray transform of tensor fields is defined in section 2.1.4.

Theorem 1 Let (M, g) be a simple C1,1 manifold (see Sect. 2.1) with almost every-
where non-positive sectional curvature. Let m ≥ 1 be an integer.

(1) If p ∈ C1,1(M) is a symmetric (m − 1)-tensor field vanishing on ∂M, then the
X-ray transform I (σ∇ p) of its symmetrized covariant derivative vanishes.

(2) If the X-ray transform I f of a symmetric m-tensor field f ∈ C1,1(M) vanishes,
there is a symmetric (m−1)-tensor field p ∈ Lip(M) vanishing on ∂M so that f =
σ∇ p almost everywhere on M.

1.2 Regularity Discussion

Claims 1 and 2 in theorem 1 are not symmetric. The difference is in the regularity of
the potential p and we believe this is only a consequence of our proof techniques.

There are two notions of smoothness of any given order of a tensor field: regularity
with respect to the smooth structure and existence of high-order covariant derivatives.
The covariant concept of smoothness is more natural on a Riemannian manifold. For
a typical tensor field f that is C∞ smooth in the sense of the smooth structure, the
covariant derivative∇ f is typically only Lipschitz when g ∈ C1,1. Themetric tensor g
and its tensor powers are examples of non-vanishing and non-smooth (in the sense
of the smooth structure) tensor fields for which covariant derivatives of all orders
are well defined. Thus neither of the two notions of smoothness implies the other in
general. The two notions of C1,1 and less regular Hölder spaces of tensor fields agree,
but they disagree for higher regularity. Therefore there are, for example, two different
spaces C2,1 and we do not use such confusing spaces at all.

We focus on optimizing the regularity of the Riemannian metric g, but we did
not pursue optimizing regularity of the tensor fields f or p, the boundary ∂M or the
integral function u f of f (see equation (3)).

It is important for our key regularity result (lemma 3 below) that the boundary
values of the tensor field are determined by the data to the extent allowed by gauge
freedom. A boundary determination result for 2-tensor fields in the smooth case,
where g is C∞, can be found in [51, Lemma 4.1]. Their result is based on clever
analysis of equation 2 fi j = pi; j + p j;i in boundary normal coordinates. Although the
argument in [51] works nicely in the smooth case, it does not give the desired result
if g is only C1,1 and f is C1,1. The immediate conclusion of their argument in the
non-smooth case would be that p has derivatives in some directions and is Lipschitz
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continuous, whereas in lemma 2,we find a p in the class C1,1. The other difficulty
in adapting similar arguments to the non-smooth case is the regularity of boundary
normal coordinates.

To avoid these issues,we prove a boundary determination result (lemma 2) by a
more explicit approach. Our construction gives a potential p ∈ C1,1(M) satisfying
σ∇ p|∂M = f |∂M when f ∈ C1,1(M). The cost of our method compared to the
method of [51] is losing control of the 1-jets in any neighbourhood of the boundary,
but leading order boundary determination suffices for our needs.

We lose a derivative in the regularity of p twice in our argument:

(1) We lose a derivative of p in the boundary determination result. Even if the tensor
field f ∈ Cl,1(M) and the Riemannian metric g ∈ Ck,1(M) are assumed to have
any (finite) amounts of derivatives, we only get p ∈ Cmin(k,l),1(M). Particularly, p
is only C1,1, when g and f are C1,1. To our knowledge, our boundary determina-
tion result is optimal in the literature for differentiability of the potential p with
properties σ∇ p = f and p = 0 on the boundary.
One might expect f |∂M = σ∇ p|∂M , where f ∈ C1,1(M) and p ∈ C2,1(M).
The space C2,1(M) is problematic as described above. In order to improve the
regularity of p, one needs to make sense of higher regularity and prove a suitable
ellipticity result, but we will not explore this avenue.

(2) Secondly, we lose a derivative of p in the transition of regularity from the spherical
harmonic components of f to the spherical harmonic components of the integral
function u:=u f of f (see Sect. 2.1). Consider the smooth case, where g ∈ C∞,
and let f = fm + fm−2 + fm−4 +· · · and u = um−1 +um−3 +um−5 +· · · be the
spherical harmonic decompositions of f and u. The geodesic vector field X on the
unit sphere bundle of M splits into the two operators X+ and X− in each spherical
harmonic degree (see Sect. 2.1). Projecting the transport equation Xu = − f into
each spherical harmonic degree gives X+um−1 = − fm and X+uk−1 = − fk −
X−uk+1 for k ≤ m − 2 with k ≡ m (mod 2). The operator X+ is known to be an
elliptic pseudodifferential operator of order one (see,e.g. [43]) and thus by elliptic
regularity, we see that each uk has one more derivative than the corresponding
component fk+1. This argument shows that u has one more derivative than f ,
proving that p is C1,1 when f is Lipschitz.
However, when g ∈ C1,1(M),the phase space SM is not equipped with a smooth

structure and the meaning of ellipticity and its implications,such as existence of a
parametrix, become less clear. The exact formulation and application of ellipticity
in the present low regularity setting would be a considerable task and would still
not give fully matching regularities in the two parts of theorem 1. Therefore,we
take a simpler route and do not pursue a fully symmetric version of our main
theorem.

1.3 Related Results

The study of the X-ray transform via the transport equation and Pestov identity
approach begun with the work of Mukhometov [30, 31, 33], where injectivity results
for the transform of scalar functions were proved. Since Mukhometov’s seminal arti-
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cles, the Pestov identity method has been applied to the case of 1-forms in [2] and to
higher-order tensors in [40, 43]. Besides manifolds with boundaries, Pestov identities
are useful in the study of integral data of functions and tensor fields over closed curves
on closed Anosov manifolds [7, 8, 41, 43, 48]. The method is even applicable in non-
compact geometries. For results on Cartan–Hadamard manifolds, see [26, 27]. There
are plenty of other geometrical variations of the problem, which have been studied
employing a Pestov identity. These include reflecting obstacles inside the manifold
[20, 21], attenuations and Higgs fields [13, 39, 46], manifolds with magnetic flows
[1, 10, 22, 23, 28], and non-Abelian variations [12, 29, 35, 37]. The Pestov identity
approach has been studied in more general geometries than Riemannian. For results
in Finsler geometry, see [3, 19] and for pseudo-Riemannian geometry, [17].

Only few injectivity results exist outside smooth geometry, whether Riemannian
or not. Injectivity of the scalar X-ray transform is known spherically symmetric C1,1

regular manifolds satisfying the Herglotz condition, when the conformal factor of the
metric isC1,1 [11]. The scalar (and 1-form) X-ray transform is (solenoidally) injective
on simple C1,1 manifolds [18]. The proof of injectivity in [18] is based on a Pestov
identity.

The boundary rigidity problem is a geometrization of the travel time tomography
problem and its linearization is the X-ray tomography problem of 2-tensor fields. For
results in boundary rigidity, see [4–6, 14, 24, 32, 34, 45, 50, 52]. For a comprehensive
survey on results in travel time tomography and tensor tomography, see [16, 49].

2 Proof of theMain Theorem

2.1 Basic Definitions and Notation

In this subsection,we present enough terminology and notation to state and prove
our main theorem. The preliminaries of the non-smooth setting are complemented in
Sect. 3.

Throughout the article, M will be a compact and connected smooth manifold with
a smooth boundary ∂M . The manifold M is equipped with a C1,1 regular Riemannian
metric g.

2.1.1 Bundles

The tangent bundle T M ofM has a subbundle SM called the unit sphere bundle, which
consists of the unit vectors in T M . As the level set F−1(1) of theC1,1 map F : T M →
R defined by F(x, v) = gx (v, v), the unit sphere bundle is aC1,1 submanifold1 of T M .
The boundary

∂(SM):={ (x, v) ∈ SM : x ∈ ∂M } (1)

1 It is easily verified by inspecting the vertical component that the differential dF is non-zero when F = 1.
The smooth regular level set theorem [25] can easily be adapted to our case.
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of SM is divided into inwards and outwards pointing parts ∂in(SM) and ∂out(SM)with
respect to the inner product 〈·, ·〉g and a unit normal vector field ν to the boundary ∂M .
The subset of ∂(SM) consisting of the vectors v such that 〈v, ν〉g = 0 is denoted
by ∂0(SM) and it is disjoint from ∂in(SM) and ∂out(SM).

Let π : SM → M be the standard projection and let π∗(T M) be the pullback
of T M over SM . We denote by N the subbundle of π∗(T M) with the fibre N(x,v)

being the g-orthogonal complement of v in TxM .

2.1.2 Horizontal–Vertical Decomposition

The tangent bundle T (SM) of SM has an orthogonal splitting T (SM) = RX ⊕
H ⊕ V with respect to the so-called Sasaki metric, where H and V are the horizontal
and vertical subbundles,respectively, and X is the geodesic vector field on SM . We
denote RX ⊕H byH and call it the total horizontal subbundle. Elements ofH and V
are, respectively, referred to as horizontal and vertical derivatives or vectors on SM .
The summands H and V are each naturally identified with a copy of the bundle N .
The horizontal–vertical geometry is essentially the same as the smooth one (see [38])
and works fine when g ∈ C1,1.

2.1.3 Geodesic Flow

Since the Christoffel symbols of a C1,1 metric are Lipschitz, there is a unique unit
speed geodesic γz corresponding to a given initial condition z ∈ SM by standard ODE
theory. We define the geodesic flow on the unit sphere bundle to be the collection of
(partially defined)maps φt : SM → SM , φt (z) = (γz(t), γ̇z(t)), where t goes through
all real numbers so that the right-hand side is defined. The infinitesimal generator X
of the flow is called the geodesic vector field on SM . For any z ∈ SM , the geodesic γz
is defined on a maximal interval of existence [−τ−(z), τ+(z)], where τ−(z) and τ+(z)
are positive. We call τ(z):=τ+(z) the travel time function on SM . The geodesic vector
field X acts naturally on functions by differentiation and on sectionsW of the bundle N ,
it acts by

XW (z) = DtW (φt (z))|t=0, (2)

where Dt is the covariant derivative along the curve t → φt (z). The result XW of the
action (2) is again a section of N .

2.1.4 The X-Ray Transform

Any symmetric m-tensor field f on M can be considered as a function on the unit
sphere bundle. Given (x, v) ∈ SM ,we let f (x, v):= fx (v, . . . , v). In lemma 7 and
proposition 11 and their proofs, we denote the induced maps by λx f : SxM → R and
λ f : SM → R with λ f (x, v) = λx f (v). Otherwise, we freely identify f with λ f
since there is no danger of confusion.
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The integral function u f : SM → R of a continuous symmetric m-tensor field f
is defined by

u f (x, v):=
∫ τ(x,v)

0
λ f (φt (x, v)) dt (3)

for all (x, v) ∈ SM . The X-ray transform of f is the restriction of the integral function
to the inward pointing part of the boundary ∂(SM), sowemay declare I f :=u f |∂in(SM).

2.1.5 Differentiability

We exclude the rank of the tensor field from our notations for function spaces. For ten-
sor fields,the derivatives are covariant.We use the subscript 0 to indicate zero boundary
values. Thus, for example, f ∈ C1,α

0 (M) for a tensor field f means that f |∂M = 0
and ∇ f is α-Hölder. We use two kinds of functions on the sphere bundle SM , scalars
(e.g. C1(SM)) and sections of the bundle N (e.g. C1(N )) defined in subsection 2.1.1.

We define Ck,α
h Cl,β

v (SM) as the subset of C(SM) consisting of functions with k
many α-Hölder horizontal derivatives and l many β-Hölder vertical derivatives as well
as any combination of k horizontal and l vertical derivatives, which are assumed to
be ω-Hölder for ω:=min(α, β). We let

Ck,α
h C∞

v (SM):=
∞⋂
l=0

Ck,α
h Cl,1

v (SM). (4)

According to the splitting T (SM) = RX ⊕H⊕V , the gradient of a C1 function u
on SM can be written as

∇u = ((Xu)X ,
h∇u,

v∇u). (5)

This gives rise to two new differential operators; the vertical gradient
h∇ and the hor-

izontal gradient
v∇. Both

h∇u and
v∇u are naturally identified with sections of the

bundle N . The horizontal and vertical divergences are the L2 adjoints of the corre-
sponding gradients. The L2 adjoint of X is −X . The vertical Laplacian on the sphere

bundle is
v
:= − v

div
v∇; see [43, Appendix A] for details on the differential operators.

2.1.6 Curvature

By Rademacher’s theorem, a Lipschitz continuous scalar function on a Euclidean
domain is differentiable almost everywhere and the derivative is in L∞. Using local
coordinates and studying the individual components show that the Riemann curvature
tensor Ri jkl(x) corresponding to a Riemannian metric g ∈ C1,1 has all components
well defined for almost all x ∈ M . Thus we may interpret the curvature tensor R as
an L∞ tensor field. The curvature tensor R : L∞(N ) → L∞(N ) acts on sections of
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the bundle N by R(x, v)W (x, v):=R(W (x, v), v)v producing again L∞ sections of
the bundle N .

We say that the sectional curvature of the manifold M is almost everywhere non-
positive, if for almost all x ∈ M ,it holds that 〈R(w, v)v,w〉g(x) ≤ 0 for all linearly
independent v,w ∈ TxM .

2.1.7 Sobolev Spaces

There are natural L2 spaces for functions on the sphere bundle as well as for sec-
tions of the bundle N , which we will denote by L2(SM) and L2(N ). We define
the Sobolev spaces H1(SM) and H1(N , X),respectively, defined as completions
of C1(SM) and C1(N ) with respect to the norms

‖u‖2H1(SM)
:= ‖u‖2L2(SM)

+ ‖Xu‖2L2(SM)
+

∥∥∥∥
h∇u

∥∥∥∥
2

L2(SM)

+
∥∥∥∥
v∇u

∥∥∥∥
2

L2(SM)

, and

‖W‖2H1(N ,X)
:= ‖W‖2L2(N )

+ ‖XW‖2L2(N )
.

(6)

We denote zero boundary values by a subindex 0. For example, H1
0 (SM) is the sub-

space of H1(SM) with zero boundary values.

2.1.8 Spherical Harmonics

Given x ∈ M , the unit sphere SxM has the Laplace–Beltrami operator
v
x := −

gi j (x)∂vi ∂v j . Letting x ∈ M vary we get a second-order operator
v
 = − v

div
v∇ on the

unit sphere bundle called the vertical Laplacian, where − v
div is the formal L2-adjoint

of
v∇.
Let Sn−1 ⊆ R

n be the Euclidean unit sphere. It is well known that any function f ∈
L2(Sn−1) can be decomposed as an L2-convergent series f = ∑∞

k=0 fk , where fk are
eigenfunctions of the spherical Laplacian on Sn−1 corresponding to the eigenvalues
k(k+n−2). Similarly, any function u ∈ L2(SM) can be decomposed as an L2(SM)-

convergent series u = ∑∞
k=0 uk , where

v
uk = k(k+n−2)uk for all k ∈ N.We call uk

the kth spherical harmonic component of u. For k ∈ {0, 1}, k, l ∈ N and α, β ∈ [0, 1]
we let

�
k,α
h �l,β

v (m):={ u ∈ Ck,α
h Cl,β

v (SM) : v
u = m(m + n − 2)u } (7)

and

�
k,α
h �∞

v (m):=
⋂
l∈N

�
k,α
h �l,1

v (m). (8)
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Furthermore, we denote

�k
h�

l
v(m) = { u ∈ Hk

hH
l
v(SM) : v

u = m(m + n − 2)u }. (9)

For all m ∈ N,there are operators X± : �1
h�

∞
v (m) → �0

h�
∞
v (m ± 1) with the

convention that �0
h�

∞
v (−1) = 0 so that X = X+ + X−. These mapping properties

and validity of this decomposition in low regularity are addressed in proposition 12.

2.1.9 Simple C1,1 Manifolds

The global index form Q of the manifold (M, g) (not of a single geodesic) is the
quadratic form defined for W ∈ H1

0 (N , X) by

Q(W ):= ‖XW‖2L2(N )
− (RW ,W )L2(N ) . (10)

It was proved in [18, Lemma 11] that there are no conjugate points on a Riemannian
manifold (M, g), g ∈ C∞, if the global index form Q of (M, g) is positive definite.

We conclude this subsection by recalling a definition of a simple manifold in the
case g ∈ C1,1. Our definition is equivalent to the definition of traditional simple
manifold when g ∈ C∞ [18]. Let M ⊆ R

n be the closed Euclidean unit ball and
let g be a C1,1 regular Riemannian metric on M . We say that (M, g) is a simple C1,1

Riemannian manifold if the following hold:

A1: There is ε > 0 so that Q(W ) ≥ ε ‖W‖2
L2(N )

for all W ∈ H1
0 (N , X).

A2: Any two points of M can be joined by a unique geodesic in the interior of M ,
whose length depends continuously on its end points.

A3: The squared travel time function τ 2 (see 2.1.3) is Lipschitz on SM .

2.2 Proof of the Theorem

In this subsection, we prove our main result, theorem 1. We state the lemmas required
for the proof of 1, and the proofs of the lemmas are postponed to sections 4, 5, and 6 .

Lemma 2 (Boundary determination) Let (M, g) be a simple C1,1 manifold. If f ∈
C1,1(M) is a symmetric m-tensor field with I f = 0, then there is a symmetric (m−1)-
tensor field p ∈ C1,1(M) so that f |∂M = σ∇ p|∂M and p|∂M = 0.

Lemma 3 (Regularity of spherical harmonic components) Let (M, g) be a simple C1,1

manifold. Let f ∈ Lip0(M) be a symmetric m-tensor field on M with I f = 0 and
let u:=u f be the integral function of f defined by (3). If the spherical harmonic
decomposition of u is u = ∑∞

k=0 uk, then uk ∈ �
0,1
h �∞

v (k) and uk |∂(SM) = 0 for all
k ∈ N.

Lemma 4 Let (M, g) be a simple C1,1 manifold. Let f ∈ Lip0(M) be a symmetric m-
tensor field on M with I f = 0 and let u:=u f be the integral function of f defined
by (3). Then X+u ∈ L2(SM).
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Lemma 4 follows immediately from lemmas 3 and 17 .
Recall that n is the dimension of M . For natural numbers k and l,we define the two

constants

C(n, k):=2k + n − 1

2k + n − 3
and B(n, l, k):=

l∏
p=1

C(n, k + 2p). (11)

Lemma 5 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. Let f ∈ Lip0(M) be a symmetric m-tensor field with I f = 0 and
denote by u:=u f the integral function of f defined by (3). If the spherical harmonic
decomposition of u is u = ∑∞

k=0 uk, then for all k ≥ m and l ∈ N,we have

‖X+uk‖2L2(SM)
≤ B(n, l, k) ‖X+uk+2l‖2L2(SM)

. (12)

Lemma 6 (Injectivity of X+) Let (M, g) be a simple C1,1 manifold with almost every-
where non-positive sectional curvature. Suppose that u ∈ �

0,1
h �∞

v (k) and u|∂(SM) =
0. Then X+u = 0 implies that u = 0.

Lemma 7 Let (M, g) be a simple C1,1 manifold. Let f ∈ Lip(M) be a symmetric m-
tensor field. Suppose that p is a symmetric (m − 1)-tensor field and u = −λp is a
Lipschitz function in SM so that Xu = −λ f everywhere in SM. Then σ∇ p = f
almost everywhere in M.

Proof of theorem 1 Item 1: Suppose that p ∈ C1,1(M) is a symmetric (m − 1)-tensor
field vanishing on ∂(M). Then using the fundamental theorem of calculus along each
geodesic gives I f = I (σ∇ p) = 0 (see [36, Lemma 6.4.2]), which proves item 1.

Item 2: Suppose that the X-ray transform of a symmetric m-tensor field f ∈
C1,1(M) vanishes. We will prove that there is a symmetric (m − 1)-tensor field p
vanishing on ∂M so that f = σ∇ p.

By boundary determination in lemma 2, there is a symmetric (m − 1)-tensor
field p0 ∈ C1,1(M) so that p0|∂M = 0 and f |∂M = σ∇ p0|∂M . Let f̂ := f − σ∇ p0.
Then f̂ ∈ Lip0(M) is a symmetric m-tensor field on M and I f̂ = I f = 0.

Let u = ∑∞
k=0 uk be the spherical harmonic decomposition of u:=u f̂ . Then uk ∈

�
0,1
h �∞

v (k) by lemma 3. First, we prove that uk = 0 for all k for which k ≡ m
(mod 2).

Since for all (x, v) ∈ SM it holds that f̂ (x,−v) = (−1)m f̂ (x, v), we have

u(x,−v) =
∫ τ+(x,−v)

0
f̂ (γx,−v(t), γ̇x,−v(t)) dt

= (−1)m
∫ 0

−τ−(x,v)

f̂ (γx,v(t), γ̇x,v(t)) dt .

(13)

Therefore,

u(x,−v) + (−1)mu(x, v) = (−1)m I f̂ (φ−τ−(x,v)(x, v)) = 0. (14)
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This shows that u(x,−v) = (−1)m+1u(x, v) for all (x, v) ∈ SM and thus uk = 0
whenever k ≡ m (mod 2). Next, we will show that uk = 0 for all k ≥ m.

Let m0 ≥ m and suppose that A1:=
∥∥X+um0

∥∥2
L2(SM)

> 0. For all l ∈ N, lemma 5
yields the estimate

B(n, l,m0)
−1

∥∥X+um0

∥∥2
L2(SM)

≤ ∥∥X+um0+2l
∥∥2
L2(SM)

. (15)

By an elementary estimate (see [20, Lemma 13]), there is a constant A2 > 0 only
depending on m0 and n so that

B(n, l,m0)
−1 ≥

(
1 + 4l

2m0 + n − 3

)−1/2

≥ A2l
−1/2. (16)

Thus the estimate (15) gives

∞∑
l=1

∥∥X+um0+2l
∥∥2
L2(SM)

≥ A1A2

∞∑
l=1

l−1/2 = ∞. (17)

On the other hand, X+u ∈ L2(SM) by lemma 4. Hence orthogonality implies that

∞∑
l=1

∥∥X+um0+2l
∥∥2
L2(SM)

≤
∞∑
k=0

‖X+uk‖2L2(SM)
≤ ‖X+u‖2L2(SM)

< ∞. (18)

This contradiction proves that ‖X+uk‖2L2(SM)
= 0 for all k ≥ m. Since additionally

uk |∂(SM) = 0 for k ≥ m, lemma 6 says uk = 0 for all k ≥ m.
We have shown uk = 0 for k ≥ m and uk = 0 for k ≡ m (mod 2). Thus −u ∈

Lip0(SM) is identified with a symmetric (m − 1)-tensor field p1 ∈ Lip0(M). As u
solves the transport equation Xu = − f̂ everywhere on SM we have σ∇ p1 = f̂
almost everywhere on M by lemma 7. Thus we conclude that f = σ∇ p almost
everywhere in M , where p:=p0 + p1 ∈ Lip(M) is a symmetric (m − 1)-tensor field
with p|∂M = 0. ��

3 Preliminaries

In this article, we consider compact and connected smooth manifolds with smooth
boundaries. We assume that such a manifold M comes equipped with a symmetric
and positive definite 2-tensor field g so that its component functions g jk are C1,1-
functions on M . In this case, we refer to g as a C1,1 Riemannian metric and to (M, g)
as a (non-smooth) Riemannian manifold.
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3.1 Spaces of Tensor Fields

Since g is a C1,1 Riemannian metric, componentwise differentiability and existence
of covariant derivatives are not the same. Even if the components of a tensor field f in
any local coordinates areCk functions for k ≥ 2 (which is possible sinceM is assumed
to have a smooth structure), the covariant derivative∇ f falls into Lip(M). Since most
of our considerations are related to the metric structure and componentwise differen-
tiability is not compatible with the covariant derivative, the correct definition of aC1,1

tensor field is by covariant differentiability. However, with covariant differentiability,
we are restricted to C1,1(M) and higher regularity does not exist on the Hölder scale.

The space L2(M) of L2-tensor fields of orderm onM is defined to be the completion
of the space of continuous m-tensor fields with respect to the norm induced by the
inner product

( f , h)L2(M) :=
∫
M
g j1k1 · · · g jmkm f j1··· jm hk1···km dVg. (19)

Here dVg is the Riemannian volume form of M . The space H1(M) of H1-tensor
fields of order m on M is defined to be the closure of the space of continuously
differentiable m-tensor fields with respect to the norm

‖ f ‖2H1(M)
:= ‖ f ‖2L2(M)

+ ‖∇ f ‖2L2(M)
. (20)

Let p ∈ [1,∞). The spaces L p(M) and W 1,p(M) of L p- and W 1,p-tensor fields
of order m are defined analogously to the spaces L2(M) and H1(M).

We could give definitions of the spaces H2(M) and W 2,p(M) for tensor fields of
any order similar to the definitions of spaces H1(M) and W 1,p(M). Again, since g
is only a C1,1 regular Riemannian metric, there are no spaces H3(M) and W 3,p(M)

compatible with the geometry. A compatible space should be defined using covariant
derivatives in the norms, which would force the spaces Wk,p(M) trivial, when k ≥ 3.

If f ∈ C1(M) is a symmetric m-tensor field on M , its symmetrized covariant
derivative is σ∇ f . The symmetrization σ is defined for allm-tensor fields h on M by

(σh) j1··· jm := 1

m!
∑
π

h jπ(1)··· jπ(m)
(21)

where the summation is over all permutations π of {1, . . . ,m}. Note that since
‖σ∇ f ‖L2 ≤ ‖∇ f ‖L2 , the symmetrized covariant derivative is bounded between
Sobolev spaces.

The trace of a symmetric m-tensor field f on M is denoted by trg( f ). In local
coordinates, trg( f )i1···im−2 = g jk f jki1···im−2 . A symmetric m-tensor field is called
trace-free, if its trace is zero.
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3.2 Vertical and Horizontal Differentiability

Let M be a compact smooth manifold with a smooth boundary and let g be a C1,1

Riemannian metric on M . Let k ∈ N and α ∈ [0, 1] be so that k + α ≤ 2. For l ∈ N

and β ∈ [0, 1], the set Ck,α
h Cl,β

v (SM) consists of all functions u ∈ C(SM) with

H1 · · · Hku ∈ C0,α(SM) and V1 · · · Vlu ∈ C0,β(SM) (22)

for any k vector fields H1, . . . , Hk ∈ H and any l vector fields V1, . . . , Vl ∈ V .
Additionally, we require that for any k + l vector fields Z1, . . . , Zk+l ∈ T (SM) out
of which exactly k are inH and exactly l are in V ,we have

Z1 · · · Zk+lu ∈ C0,ω(SM), where ω:=min(α, β). (23)

We let

Ck,α
h C∞

v (SM):=
⋂
l∈N

Ck,α
h Cl,1

v (SM). (24)

Remark 8 In the definition of Ck,α
h Cl,β

v (SM),the vertical differentiability indices l
and β can surpass the smoothness of charts of SM . It is not necessary for SM to
have C∞ smooth charts, since vertical vector fields operate on a fixed fibre and for a
fixed point x in M , the scaling s(x, v) = (x, v |v|−1

g ) is smooth on TxM\0. The slit
tangent space TxM \ 0 has a smooth structure even if M does not.

Remark 9 Any commutator [H , V ] = HV − V H , where H ∈ H and V ∈ V , can
be defined classically on the space C1

hC
1
v(SM), since for any u ∈ C1

hC
1
v(SM), the

derivatives HVu and V Hu are in C(SM).

The setCk,α
h Cl,β

v (N ) consists of all continuous sectionsW of the bundle N withW j

in Ck,α
h Cl,β

v (SM) when W = W j∂x j . A section W of the bundle N is continuous, if
it is continuous as a map SM → T M .

As one might expect, vertical operators preserve horizontal differentiability and
horizontal operators preserve vertical differentiability. That is

X : Ck,α
h Cl,β

v (SM) → Ck−1,α
h Cl,β

v (SM), (25)

X : Ck,α
h Cl,β

v (N ) → Ck−1,α
h Cl,β

v (N ), (26)
v∇ : Ck,α

h Cl,β
v (SM) → Ck,α

h Cl−1,β
v (N ), (27)

v
div : Ck,α

h Cl,β
v (N ) → Ck,α

h Cl−1,β
v (SM), (28)

h∇ : Ck,α
h Cl,β

v (SM) → Ck−1,α
h Cl,β

v (N ), and (29)
h
div : Ck,α

h Cl,β
v (N ) → Ck−1,α

h Cl,β
v (SM). (30)
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3.3 Sobolev Spaces of Different Vertical and Horizontal Indices

Standard Sobolev spaces on SM are defined in Sect. 2.1.7. Here, we define Sobolev
spaces for scalar functions on SM of different vertical and horizontal indices. If k, l ∈
{0, 1} and u is a scalar function in Ck

hC
l
v(SM), we define the Hk

hH
l
v(SM)-norm of u

to be

‖u‖2
Hk
hH

l
v(SM)

:= ‖u‖2L2(SM)
+ k ‖Xu‖2L2(SM)

+ k

∥∥∥∥
h∇u

∥∥∥∥
2

L2(N )

+ l

∥∥∥∥
v∇u

∥∥∥∥
2

L2(N )

.(31)

The Sobolev space Hk
hH

l
v(SM) for k, l ∈ {0, 1} is defined to be the completion

of Ck
hC

l
v(SM) with respect to the norm ‖·‖Hk

hH
l
v(SM).

Similarly, we define spaces H0
hH

2
v(SM) and H1

hH
2
v(SM) to be the completions

of C0
hC

2
v(SM) and of C1

hC
2
v(SM) with respect to the norms

‖u‖2
H0
hH

2
v (SM)

:= ‖u‖2L2(SM)
+

∥∥∥∥
v
u

∥∥∥∥
2

L2(SM)

, and (32)

‖u‖2
H1
hH

2
v (SM)

:= ‖u‖2
H1
hH

1
v (SM)

+ ‖u‖2
H0
hH

2
v (SM)

(33)

+
∥∥∥∥X

v
u

∥∥∥∥
2

L2(SM)

+
∥∥∥∥
v
Xu

∥∥∥∥
2

L2(SM)

. (34)

Note that the norm on H1
hH

2
v(SM) does not cover all possible combinations of a

horizontal derivative and two vertical derivatives (e.g.
v
divX

v∇). This is intentional,
since the missing combinations will not be needed.

Proposition 10 Let M be a compact smooth manifold with a smooth boundary and
let g be a C1,1 Riemannian metric on M. The following commutator formulas hold
on H1

hH
2
v(SM):

[X ,
v∇] = − h∇, (35)

h
div

v∇ − v
div

h∇ = (n − 1)X , (36)

[X ,
v
] = 2

v
div

h∇ + (n − 1)X . (37)

The following commutator formula holds on H1
hH

1
v(N ):

[X ,
v
div] = − h

div. (38)

Proof Formulas (35), (36) and (37) on C1
hC

2
v(SM) and (38) on C1

hC
1
v(N ) can be

proved by a computation similar to [43, Appendix], since the computations use one
horizontal derivative and two vertical for (35), (36) and (37) and one horizontal and one
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vertical derivative for (38). The same formulas hold on H1
hH

2
v(SM) and H1

hH
1
v(N )

by approximation. ��

3.4 Vertical Fourier Analysis

In this subsection, we recall the identification of trace-free symmetric tensor fields and
spherical harmonics (the vertical Fourier modes).We state and prove proposition 11 in
order to emphasize what changes in these well known results when applied to a case of
non-smooth Riemannian metrics. More details in the case of C∞-smooth Riemannian
metrics can be found for example in [36] and [9].

Proposition 11 Let M be a compact smoothmanifoldwith a smooth boundary and let g
be aC1,1 Riemannianmetric on M.Let k ∈ {0, 1}andα ∈ [0, 1]. Themapλ : f → λ f
is defines a linear isomorphism from the space of symmetric trace-free m-tensor fields
in Ck,α(M) to the space �

k,α
h �∞

v (m). There is a constant Cm,n > 0 so that for all
symmetric trace-free m-tensor fields f ∈ C0(M), we have

‖λ f ‖L2(SM) = Cm,n ‖ f ‖L2(M) . (39)

Furthermore, there are positive constants c,C > 0 so that for any two m-tensor
fields f and h in C0(M), we have

c (λ f , λh)L2(SM) ≤ ( f , h)L2(M) ≤ C (λ f , λh)L2(SM) . (40)

Proof As in the smooth case [9, Lemma 2.5.],the map λx isomorphically maps trace-
freem-tensors to spherical harmonics SxM of degreem. Since the dependence on x is
of the form λ f (x, v) = f j1... jm (x)v j1 · · · v jm , the map λ maps on trace-free m-tensor
fields in Ck,α(M) into �

k,α
h �∞

v (m).
For any symmetric and trace-free m-tensor fields f , h ∈ C0(M), a fibrewise cal-

culation [9, Lemma 2.4.] shows that for all x ∈ M ,we have

∫
Sx M

(λx f )(λxh) dSx = Cm,n 〈 f , h〉g(x) (41)

for someCm,n > 0. Since the computation is fibrewise, it remains validwhen g ∈ C1,1.
Integrating equation (41) over M gives

(λ f , λh)L2(SM) = Cm,n ( f , h)L2(M) , (42)

which proves (39). Furthermore, the last claim (40) follows from (41), since any
symmetric m-tensor field can be decomposed into a sum of symmetric trace-free
tensor fields of orders less than or equal to m [36]. ��
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3.5 Decomposition of the Geodesic Vector Field

In this subsection,we recall the fact that the geodesic vector field maps from spherical
harmonic degree m to spherical harmonic degrees m − 1 and m + 1. This mapping
property induces a decomposition of X into operators X+ and X−. See [36, Section
6.6.] for details of the decomposition when g ∈ C∞. We record in proposition 12 what
changes in the decomposition, when the Riemannian metric g is only C1,1-smooth.

Proposition 12 Let M be a compact smooth manifold with a smooth boundary and
let g be a C1,1 Riemannian metric on M. The geodesic vector field maps

X : �1
h�

∞
v (m) → �0

h�
∞
v (m − 1) ⊕ �0

h�
∞
v (m + 1). (43)

Therefore X decomposes into operators X+ and X− in each spherical harmonic degree
so that

X± : �1
h�

∞
v (m) → �0

h�
∞
v (m ± 1). (44)

Proof Let u ∈ �1
h�

∞
v (m) and pick a point x ∈ M . Then Xu(x, v) = v jδ j u(x, v) for

all v ∈ SxM , where v j is a spherical harmonic of degree 1 on SxM and δ j u(x, ·) is
a spherical harmonic of degree m on SxM . Since any product of spherical harmonics
of degrees 1 and m is a sum of spherical harmonics of degrees m − 1 and m + 1 we
see that

X : �1
h�

∞
v (m) → �0

h�
∞
v (m − 1) ⊕ �0

h�
∞
v (m + 1). (45)

Here the spherical harmonic components of Xu have one horizontal derivative less
than u since X ∈ H. ��
Remark 13 Since X maps continuously with respect to the H1- and L2-norms the
mapping properties from proposition 12 carry over to the Sobolev space. In other
words

X : �1
h�

2
v(m) → �0

h�
2
v(m − 1) ⊕ �0

h�
2
v(m + 1), and

X± : �1
h�

2
v(m) → �0

h�
2
v(m ± 1).

(46)

As stated above, proposition 12 gives degreewise defined operators X− and X+
acting on�1

h�
2
v(SM). If u ∈ H1

hH
2
v(SM) and u = ∑∞

k=0 uk is the spherical harmonic
decomposition of u, we define

X±u =
∞∑
k=0

X±uk . (47)

We prove in lemma 17 that the series in (47) converges (absolutely) in L2(SM).
The following lemma 14 is a low regularity version of [43, Lemma 3.3.], the only

difference being the regularity of u.
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Lemma 14 Let M be a compact smooth manifold with a smooth boundary and let g
be a C1,1 Riemannian metric on M. If u ∈ �1

h�
2
v(m) then

[X+,
v
]u = −(2m + n − 1)X+u, and (48)

[X−,
v
]u = (2m + n − 3)X−u. (49)

Proof By density, it is enough to prove the claimed formulas for u ∈ �1
h�

∞
v (m). By

eigenvalue property of u and by the mapping property of X+, we have

X+
v
u = m(m + n − 2)X+u. (50)

Similarly, by the eigenvalue property of X+u, we have

v
X+u = (m + 1)((m + 1) + n − 2)X+u. (51)

Subtracting (50) from (51) shows that

[X+,
v
]u = −(2m + n − 1)X+u. (52)

The identity (49) can be proved similarly. ��

4 Boundary Determination and Regularity Lemmas

This section is devoted to the study of the integral function u f of a tensor field f with
vanishing X-ray transform. We prove a vital boundary determination result (lemma 2)
that allows us to prove that u f is a Lipschitz function on SM in subsection 4.2. In
subsection 4.3, we exploit the particular form of the identification of trace-free tensor
fields and spherical harmonics to prove our main regularity lemma 3.

4.1 Boundary Determination

The boundary determination lemma 2 is proved in two parts. In lemma 15,we give
an explicit local construction. In more detail, we prove that if I f vanishes for some
tensor field f , then in local coordinates near any boundary point, we construct a tensor
field p so that the symmetrized covariant derivative of p equals f when restricted to
the boundary.We prove that lemma 2 follows from the local construction by a partition
of unity argument.

Lemma 15 Let (M, g) be a simple C1,1 manifold and suppose that f ∈ C1,1(M) is
a symmetric m-tensor field on M so that in I f = 0. For each x ∈ ∂M, there is a
neighbourhood W ⊆ M of x and a symmetric (m − 1)-tensor field p ∈ C1,1(W ) so
that p|W∩∂M = 0 and σ∇ p|W∩∂M = f |W∩∂M.
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Proof Let x0 ∈ ∂M be a boundary point. Choose a neighbourhood W ⊆ M of x0,
where we have C∞ coordinates φ : W → R

n so that

φ(W ∩ ∂M) = {xn = 0} and φ(W ∩ M int ) = {xn > 0}. (53)

The smooth coordinate function φ exists, since M is a smooth manifold with a smooth
boundary. Denote x̂ :=(x1, . . . , xn−1) so that x = (x̂, xn).

In these coordinates,the required tensor field p can be defined in the following way.
Given l ∈ {0, . . . ,m − 1} and j1, . . . , jl ∈ {1, . . . , n − 1},we let the component of p
corresponding to the indices j1 · · · jln · · · n be

p j1··· jl n···n(x̂, xn):= m

m − l
xn f j1··· jl n···n(x̂, 0). (54)

Here the index n appears m − 1− l times in p j1··· jl n···n and m − l times in f j1··· jl n···n .
We can insist that p is symmetric by requiring

p j1··· jm−1(x̂, x
n) = p jπ(1)··· jπ(m−1) (x̂, x

n), (55)

where π is any permutation of {1, . . . ,m − 1} so that jπ(1) ≤ · · · ≤ jπ(m−1). This
causes no contradictions, since f is symmetric. Clearly, it holds that p|xn=0 = 0
and p ∈ C1,1(M) since f ∈ C1,1(M).

It remains to show that σ∇ p|xn=0 = f |xn=0, which follows from two claims:

(1) Weprove f j1··· jm (x̂, 0) = 0 in the coordinates inW when j1, . . . , jm ∈ {1, . . . , n−
1}.

(2) We verify that (σ∇ p) j1... jm |xn=0 = f j1... jm |xn=0 in the coordinates in W .

Both claims are proved in appendix A. The idea is that item 1 follows from the
fact I f = 0, and item 2 can then be verified by a straightforward computation in the
coordinates in W . ��
Proof of lemma 2 Let f ∈ C1,1(M) be a symmetric m-tensor field with I f = 0.
We construct a symmetric (m − 1)-tensor field p ∈ C1,1(M) so that p|∂M = 0
and σ∇ p|∂M = f |∂M .

For each x ∈ ∂M pick a neighbourhood Wx ⊆ M of x and a symmetric (m − 1)-
tensor field px ∈ C1,1(Wx ). Such neighbourhoods Wx and tensor fields px exist by
lemma 15. Since ∂M is compact, there is a finite subcover {Wxi }ki=1 of the open
cover {Wx }x∈∂M of ∂M . Denote Wi :=Wxi and pi :=pxi . We add W0:=M\∂M to get
a finite open cover of M . Choose a partition of unity {ψi }ni=1 ∪ {ψ0} subordinate to
{Wi }ni=1 ∪ {W0}. We let the tensor field p0 corresponding toW0 to be identically zero.
The products ψi pi are C1,1 tensor fields in neighbourhoods Wi and we can extend
them by zero outsideWi to getC1,1 tensor fields on M since eachWi\ suppψi is open.
We define an (m − 1)-tensor field p by

p(x) =
n∑

i=0

ψi (x)pi (x). (56)
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Since ψi pi are zero outside suppψi and pi |∂M∩suppψi = 0 by construction, we see
that p|∂M = 0. The final step is to check that σ∇ p = f on the boundary ∂M . By the
product rule,we have∇(ψi pi ) = ∇ψi ⊗ pi +ψi (∇ pi ) for all i . Since symmetrization
commutes with multiplication by a scalar function and ψi is a scalar, we have

σ∇ p =
n∑

i=0

[σ((∇ψi ) ⊗ pi ) + ψiσ(∇ pi )]. (57)

Since symmetrization and tensor product commute with pointwise evaluations,we
have σ((∇ψi ) ⊗ pi )|∂M = 0. Since ψi = 0 in M\ suppψi we have σ∇ψi = 0 in
the same open set M\ suppψi . Together with pi = 0 on ∂M ∩ suppψi ⊆ ∂M ∩ Wi ,
vanishing of the covariant derivative σ∇ψi in M \ suppψi implies

σ∇ p|∂M =
n∑

i=0

(ψi (σ∇ pi ))|∂M =
n∑

i=0

ψi (σ∇ pi |∂M∩Wi )

=
n∑

i=0

ψi ( f |∂M∩Wi ) =
n∑

i=0

(ψi f )|∂M = f |∂M .

(58)

Thus p has the desired properties. ��

4.2 Regularity of the Integral Function

Let (M, g) be a simple C1,1 manifold and let f ∈ C1,1(M) be a symmetric m-tensor
fieldwith I f = 0. Since themain objective is to prove that there is a symmetric (m−1)-
tensor field p on M so that σ∇ p = f and by lemma 2, we can find a tensor field p ∈
C1,1(M) with this property on the boundary ∂M , we can move to studying tensor
fields f ∈ Lip0(M) vanishing on the boundary. The following lemma is a special case
of [18, Lemma 21]. We record it for the convenience of the reader.

Lemma 16 Let (M, g) be a simple C1,1 manifold. Let f ∈ Lip0(M) be a symmetric m-
tensor field on M and let u:=u f be the integral function of f defined by (3). Then u ∈
Lip(SM).

Proof Since f is in Lip0(M) the corresponding function on the sphere bundle is
in Lip0(SM). It was shown in [18, Lemma 21] that the integral function of a function
in Lip0(SM) is again a Lipschitz function on SM . ��

Next we prove lemma 7 which states that if a Lipschitz function u on SM arising
from of tensor field −p satisfies the transport equation Xu = − f , then σ∇ p = f
holds pointwise almost everywhere.

Proof of lemma 7 Let f ∈ Lip(M) is a symmetric m-tensor field. Suppose that p ∈
Lip(M) is a symmetric m-tensor field so that the Lipschitz function u:= − λp solves
the transport equation Xu = − f everywhere in SM . We prove that σ∇ p = f almost
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everywhere on SM by proving that

(σ∇ p − f , η)L2(M) = 0 (59)

for all symmetric m-tensor fields η ∈ C1
0(M). Since by proposition 11, there are

positive constants c,C > 0 so that

c (λh1, λh2)L2(SM) ≤ (h1, h2)L2(M) ≤ C (λh1, λh2)L2(SM) (60)

for all symmetric m-tensor fields h1, h2 ∈ Lip(M) it is enough to prove that

(λσ∇ p − λ f , λη)L2(SM) = 0. (61)

Consider a maximal geodesic γ of M so that γ (0) = x ∈ ∂M and γ̇ (0) =
v ∈ ∂in(SM). We denote z:=(x, v) and write η:=λη and f :=λ f . Furthermore, we
denote θ(t):=φt (z) and η(t):=η(θ(t)). Then we have

∫ τ(z)

0
(λσ∇ p)(θ(t))η(t) dt =

∫ τ(z)

0
(∇ p)γ (t)(γ̇ (t), . . . , γ̇ (t))η(t) dt . (62)

Since γ is a geodesic, it satisfies ∇γ̇ γ̇ = 0. Therefore,the Leibniz rule implies

∫ τ(z)

0
(∇ p)γ (t)(γ̇ (t), . . . , γ̇ (t))η(t) dt =

∫ τ(z)

0
∂t (pγ (t)(γ̇ (t), . . . , γ̇ (t)))η(t) dt

= −
∫ τ(z)

0
pγ (t)(γ̇ (t), . . . , γ̇ (t))∂tη(t) dt .

(63)

By assumption u(θ(t)) = −pγ (t)(γ̇ (t), . . . , γ̇ (t)) for all t ∈ [0, τ (z)] and thus

−
∫ τ(z)

0
pγ (t)(γ̇ (t), . . . , γ̇ (t))∂tη(t) dt =

∫ τ(z)

0
u(θ(t))∂tη(t) dt

= −
∫ τ(z)

0
∂t u(θ(t))η(t) dt

=
∫ τ(z)

0
f (θ(t))η(t) dt,

(64)

where the last equality holds since Xu = − f and X is the infinitesimal generator of
the geodesic flow φt . Together, equations (62), (63) and (64) show that

∫ τ(z)

0
(λσ∇ p)(θ(t))η(t) dt =

∫ τ(z)

0
f (θ(t))η(t) dt . (65)
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We integrate (65) over ∂in(SM) and use Santaló’s formula (lemma 24) to see that

∫
SM

(λσ∇ p)η d�g =
∫

∂in(SM)

∫ τ(z)

0
(λσ∇ p)(θ(t))η(t) dt μd� j∗g

=
∫

∂in(SM)

∫ τ(z)

0
f (θ(t))η(t) dt μd� j∗g

=
∫
SM

f η d�g.

(66)

Equation (61) follows immediately from (66), which finishes the proof. ��

4.3 Regularity of the Spherical Harmonic Components

In this subsection,we use the special form of spherical harmonics and the identification
of trace-free tensor fields and spherical harmonics to prove lemma 3. Also, we prove
that the degreewise definition of operators X± acting on functions on SM is reasonable
by proving that series in (47) converge absolutely in L2(SM).

Proof of lemma 3 Let f ∈ Lip0(M) be a symmetric m-tensor field with vanishing
X-ray transform and let u:=u f be the integral function of f defined by (3). The
integral function u is in Lip(SM) by lemma 16. We prove that the spherical harmonic
components uk of u are in �

0,1
h �∞

v (k) and that uk |∂(SM) = 0.
For a fixed x ∈ M ,the fibre SxM is isometric to the Euclidean unit sphere Sn−1 ⊆

R
n via the map

sx : SxM → Sn−1, sx (v) = g(x)1/2v, (67)

where g(x)1/2 is the unique square root of a positive definite matrix g(x). Since u is in
Lip(SM), its restriction ux :=u(x, · ) to SxM is in Lip(SxM). Thus the functions ũx
on Sn−1 corresponding to ux via sx has a decomposition

ũx =
∞∑
k=0

(ũx , φk)L2(Sn−1) φk, (68)

where φk is the eigenfunction of the Laplacian on Sn−1 corresponding to the
eigenvalue k(k + n − 2). Tracing back through sx ,we find a L2(SxM) convergent
decomposition

ux =
∞∑
k=0

(ux , ψk)L2(Sx M) ψk, (69)

where ψk(v) = φk(s−1
x (v)). On the level of the bundle SM , we denote ψk(x, v):=

φk(s−1
x (v)), and thus get the formulauk = (u, ψk)L2(Sx M) ψk . Hereψk is inC1,1(SM),

since φk is in C∞(Sn−1) and the map (x, v) → sx (v) is in C1,1(SM). This proves
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that uk ∈ Lip(SM). We note that by lemma 11 for all k,there is a symmetric and
trace-free k-tensor field hk ∈ Lip(M) so that uk(x, v) = (hk) j1··· jk (x)v j1 · · · v jk . This
proves that uk ∈ �

0,1
h �∞

v (k) for all k, since uk is polynomial in v.
Finally, we prove that uk |∂(SM) = 0. Since the X-ray transform of f is zero, the

restriction of u on the boundary ∂(SM) is zero. Thus for any x ∈ ∂M we have

0 = ‖u(x, ·)‖2L2(Sx M)
=

∞∑
k=0

‖uk(x, ·)‖2L2(Sx M)
. (70)

Therefore, since uk(x, ·) ∈ C∞(SxM), we have uk(x, ·) = 0 pointwise on SxM for
all k, which implies that uk |∂(SM) = 0 for all k. ��
Lemma 17 Let (M, g) be a simple C1,1 manifold. Given u ∈ H1

hH
2
v(SM), if u =∑∞

k=0 uk is the spherical harmonic decomposition of u, then the series
∑∞

k=0 X±uk
converge absolutely in L2(SM). Here we use the convention that X−u0 = 0.

Proof We prove convergence of both of series
∑∞

k=0 X±uk at once by proving that

∞∑
k=0

‖X+uk‖2L2(SM)
+

∞∑
k=1

‖X−uk‖2L2(SM)
≤ ‖u‖2

H1
hH

0
v (SM)

. (71)

The proof of (71) is identical to the proofs of [43, Lemma 4.4] and [26, Lemma 5.1],
where the authors proved that

‖X+u‖2L2(SM)
+ ‖X−u‖2L2(SM)

≤ ‖Xu‖2L2(SM)
+

∥∥∥∥
h∇u

∥∥∥∥
L2(SM)

. (72)

The major difference to the results in [43] and [26] is that we work in non-smooth
geometry instead of a smooth geometry, so the tools in the proof have changed. For
completeness, we repeat the arguments in appendix B to document the fact that all
steps go through in lower regularity with suitably chosen function spaces. ��
Remark 18 For u ∈ H1

hH
2
v(SM),we defined X±u to be the series

∑∞
k=0 X±uk ,

when u = ∑∞
k=0 uk is the spherical harmonic decomposition of u. By lemma 17

both X+u and X−u are well- defined functions in L2(SM) and by orthogonality

‖X±u‖2L2(SM)
=

∞∑
k=0

‖X±uk‖2L2(SM)
. (73)

5 Energy Estimates and a Santaló Formula

In this section, we show that the L2-estimate in lemma 5 follows from the Pestov
identity, and we establish the Santaló’s formula in low regularity in lemma 24.
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5.1 Pestov Energy Identity

Let (M, g) be a simple C1,1 manifold. Recall that the global index form Q of (M, g)
is defined by

Q(W ):= ‖XW‖L2(N ) − (RW ,W )L2(N ) (74)

for W ∈ H1
0 (N , X).

Lemma 19 (Pestov identity) Let (M, g) be a simple C1,1 manifold with almost every-
where non-positive sectional curvature. If u ∈ �

0,1
h �∞

v (k) and u|∂(SM) = 0, then

∥∥∥∥
v∇Xu

∥∥∥∥
2

L2(N )

= Q

(
v∇u

)
+ (n − 1) ‖Xu‖2L2(SM)

. (75)

Proof Since u ∈ �
0,1
h �∞

v (k), we have u ∈ Lip0(SM),
v∇Xu ∈ L2(N ) and X

v∇u ∈
L2(N ). It was proved in [18, Lemma 9] that the Pestov identity (75) holds for this
class of functions on simple C1,1 manifolds. ��

When g ∈ C∞, the estimate in Lemma20was derived in [20, Section 6].We present
a proof compatible with low regularity employing the Pestov identity in Lemma 19.

Lemma 20 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. If u ∈ �

0,1
h �∞

v (k) and u|∂(SM) = 0, then

(
Xu, [X ,

v
]u

)
L2(SM)

≤ 0. (76)

Proof Since the sectional curvature of (M, g) is almost everywhere non-positive,
Q(W ) ≥ ‖XW‖2 for all W ∈ H1

0 (N , X) and we have

∥∥∥∥
v∇Xu

∥∥∥∥
2

L2(N )

≥
∥∥∥∥X

v∇u

∥∥∥∥
2

L2(N )

+ (n − 1) ‖Xu‖2L2(SM)
(77)

by the Pestov identity (lemma 19). On the other hand, using commutator formulas
from proposition 10,we see that

∥∥∥∥X
v∇u

∥∥∥∥
2

=
∥∥∥∥
v∇Xu − h∇u

∥∥∥∥
2

=
∥∥∥∥
v∇Xu

∥∥∥∥
2

− 2

(
v∇Xu,

h∇u

)
+

∥∥∥∥
h∇u

∥∥∥∥
2

=
∥∥∥∥
v∇Xu

∥∥∥∥
2

+
(
Xu, 2

v
div

h∇u

)
+

∥∥∥∥
h∇u

∥∥∥∥
2

.

(78)
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Combining estimate (77) and equation (78) and applying the commutator for-
mula (37),we get

0 ≥
(
Xu, 2

v
div

h∇u

)
+

∥∥∥∥
h∇u

∥∥∥∥
2

+ (n − 1) ‖Xu‖2

≥
(
Xu, 2

v
div

h∇u + (n − 1)Xu

)

=
(
Xu, [X ,

v
]u

)
(79)

as claimed. ��

Lemma 21 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. Suppose that f ∈ Lip0(M) is a symmetric m-tensor field on M
with vanishing X-ray transform I f . Let u:=u f be the integral function of f defined
by (3). If k ≥ m or k ≡ m (mod 2), we have

‖X+uk‖2L2(SM)
= ‖X−uk+2‖2L2(SM)

. (80)

Proof Since f ∈ Lip0(M) and the X-ray transform of f vanishes, we have u ∈
Lip0(SM) by lemma 16. By the fundamental theorem of calculus u solves Xu = − f .
Projecting this transport equation onto spherical harmonic degree k + 1 gives

− fk+1 = X+uk + X−uk+2. (81)

If k ≥ m or k ≡ m (mod 2), then fk+1 = 0 and the claim (80) follows by taking L2-
norms. ��

Recall that the constants C(n, k) and B(n, l, k) in lemma 5 are

C(n, k):=2k + n − 1

2k + n − 3
and B(n, l, k):=

l∏
p=1

C(n, k + 2p). (82)

Lemma 22 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. Suppose that f ∈ Lip0(M) is a symmetric m-tensor field
with I f = 0. Let u:=u f be integral function of f defined by (3). If 2k + n − 3 > 0,
we have

‖X−uk‖2L2(SM)
≤ C(n, k) ‖X+uk‖2L2(SM)

, (83)

where uk are the spherical harmonic components of u.
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Proof Let 2k+n−3 > 0. Since uk ∈ �
0,1
h �∞

v (k) by lemma 3, we can use lemma 20,
which together with commutator formulas in 14 gives

(2k + n − 1) ‖X+uk‖2 ≥ (2k + n − 1) ‖X+uk‖2 +
(
Xuk, [X ,

v
]uk

)

= (2k + n − 1) ‖X+uk‖2 +
(
X+uk, [X+,

v
]uk

)

+
(
X−uk, [X−,

v
]uk

)

= (2k + n − 3) ‖X−uk‖2 .

(84)

Dividing by 2k + n − 3 > 0 proves the claimed estimate (83). ��
Proof of lemma 5 Let f ∈ Lip0(M) be a symmetric m-tensor field so that I f = 0
and denote by u:=u f its integral function defined by (3). Let k ≥ m. By lemma 3,we
have u ∈ �

0,1
h �∞

v (k) and thus lemmas 21 and 22,we get

‖X+uk‖2L2(SM)
= ‖X−uk+2‖2L2(SM)

≤ C(n, k + 2) ‖X+uk+2‖2L2(SM)
. (85)

Iterating lemmas 21 and 22 a total of l ∈ N times yields

‖X+uk‖2 ≤ ‖X+uk+2l‖2
l∏

p=1

C(n, k + 2p) = B(n, l, k) ‖X+uk+2l‖2 (86)

as claimed. ��

5.2 Santaló’s Formula

The proof of Santaló’s formula on a smooth simple manifolds (M, g) is based on
the so-called Liouville’s theorem and can be found e.g. in [36]. We give a similar
proof of the formula on a simple C1,1 manifold based on the following formulation
of Liouville’s theorem.

Lemma 23 Let (M, g) be a simple C1,1 manifold. Denote by LX the Lie derivative
into the direction of the geodesic vector field X on SM. Then for any u ∈ Lip(SM) it
holds that

∫
SM

uLX (d�g) = 0. (87)

The proof of lemma 23 is based on smooth approximation of the Riemannian
metric g and can be found in Appendix C.

If ν is the inner unit normal vector field to ∂M , let μ(x, v):= 〈ν(x), v〉g(x) for
all (x, v) ∈ SM . Ifω is a differential k-formon SM , then denote by iXω the contraction
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ofωwith the geodesic vector field X . That is, for any vector fieldsY1, . . . , Yk−1 on SM ,
we define iXω by letting iXω(Y1, . . . ,Yk−1) = ω(X ,Y1, . . . ,Yk−1).

Lemma 24 (Santaló’s formula) Let (M, g) be a simple C1,1 manifold. For any func-
tion f ∈ Lip0(SM) the integral of f over SM with respect to d�g can be written
as

∫
SM

f d�g =
∫

∂inSM

∫ τ(z)

0
f (φt (z)) dt μ(z)d� j∗g. (88)

Here j : ∂(SM) → SM is the inclusion map and j∗g is the Riemannian metric of ∂M
induced by the inclusion j .

Proof Let f ∈ Lip0(SM) and consider its integral function u:=u f . The integral
function satisfies Xu = − f and u ∈ Lip(SM) by lemma 16. By Cartan’s formula,
we have

∫
SM

LX (u d�) =
∫
SM

iXd(u d�) +
∫
SM

d(iXu d�), (89)

where d is the exterior derivative. Since u d� is a volume form, the first term on the
right in (89) vanishes. By Stoke’s theorem

∫
SM

d(iXu d�g) =
∫

∂(SM)

j∗(uiXd�g). (90)

As in the smooth case ([36, Proposition 3.6.6.]), we compute that

∫
∂(SM)

j∗(uiXd�g) =
∫
SM

( j∗u)( j∗iXd�g)

=
∫
SM

( j∗u) 〈X , ν〉 d� j∗g

=
∫
SM

( j∗u)μ d� j∗g.

(91)

Finally, since j∗u is merely a restriction to the boundary, we invoke the definition of u
and lemma 23 to see that

∫
SM

f d�g =
∫
SM

LX (u) d�

=
∫
SM

LX (u d�) −
∫
SM

uLX (d�)

=
∫
SM

LX (u d�) =
∫

∂(SM)

( j∗u)μ d� j∗g

=
∫

∂(SM)

∫ τ(z)

0
f (φt (z)) dtμ d� j∗g. (92)
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Since τ(z) = 0 for z /∈ ∂in(SM), the claim (88) follows at once from (92). ��

6 Friedrich’s Inequalities

In this section, we prove that L2-norms of scalar functions on SM and sections of the
bundle N are bounded above by constant multiples of L2-norms of their derivatives
along the geodesic flow. We call these estimates Friedrich’s inequalities on SM . We
apply the inequalities to prove lemma 6.

Lemma 25 Let (M, g) be a simple C1,1 manifold with almost everywhere non-positive
sectional curvature. Let d be the diameter of M. Then

d2 ‖Xu‖2L2(SM)
≥ ‖u‖2L2(SM)

and d2 ‖XW‖2L2(N )
≥ ‖W‖2L2(N )

(93)

for any u ∈ H1
0 (SM) and W ∈ H1

0 (N , X).

Proof First, we prove the inequality for functions. By density it is enough to consider
the case u ∈ C1

0(SM). By Santaló’s formula (lemma 24), we can write

‖Xu‖2L2(SM)
=

∫
∂in(SM)

∫ τ(z)

0
|Xu(φt (z)|2 dt μd� j∗g, (94)

where j : ∂(SM) → SM is the inclusion. Let us denote uz(t):=u(φt (z)). Then uz ∈
H1
0 ([0, τ (z)]) and we have

Xu(φt (z)) = d

ds
u(φt+s(z))

∣∣∣∣
s=0

= d

ds
uz(t + s)

∣∣∣∣
s=0

= u̇z(t). (95)

By the usual Friedrich’s inequality of H1
0 ([0, τ (z)]), we see that

d2
∫ τ(z)

0
|u̇z(t)|2 dt ≥ τ(z)2

∫ τ(z)

0
|u̇z(t)|2 dt ≥

∫ τ(z)

0
|uz(t)|2 dt . (96)

Combining equation (95) with inequality (96), we get

d2 ‖Xu‖2L2(SM)
≥ d2

∫
∂in(SM)

∫ τ(z)

0
|u̇z(t)|2 dt μd� j∗g

≥
∫

∂in(SM)

∫ τ(z)

0
|uz(t)|2 dt μd� j∗g

= ‖u‖2L2(SM)
,

(97)

which is the claimed inequality for functions.
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Next, we prove the inequality for sections of the bundle N . LetW ∈ H1
0 (N , X). In

this case, Santaló’s formulas (lemma 24) gives

‖XW‖2L2(SM)
=

∫
∂in(SM)

∫ τ(z)

0
|XW (φt (z))|2g dt μ(z) d�∂(SM). (98)

We let Wz(t):=W (φt (z)). Then Wz(t) is a H1
0 vector field along γz and it holds

that XW (φt (z)) = DtWz(t). Choose a parallel frame (E1, . . . , En) along γz . Then
we have DtWz = Ẇ i

z Ei , when Wz = Wi
z Ei . Since Wz is a H1

0 vector field along γz

we have Wi
z ∈ H1

0 ([0, τ (z)]) for all i . Thus we read from equation (96) that

d2
∫ τ(z)

0

∣∣∣Ẇ i
z

∣∣∣2 dt ≥
∫ τ(z)

0

∣∣∣Wi
z

∣∣∣2 dt . (99)

From equations (98) and (99) we see that

d2 ‖XW‖2L2(N )
= d2

∫
∂in(SM)

∫ τ(z)

0
|DtWz(t)|2g dt μ(z) d�∂(SM)

= d2
n∑

i=1

∫
∂in(SM)

∫ τ(z)

0

∣∣∣Ẇ i
z (t)

∣∣∣2 dt μ(z) d�∂(SM)

≥
n∑

i=1

∫
∂in(SM)

∫ τ(z)

0

∣∣∣Wi
z (t)

∣∣∣2 dt μ(z) d�∂(SM)

= ‖W‖2L2(N )
,

(100)

which is the second claimed inequality. ��
Proof of lemma 6 Let u ∈ �

0,1
h �∞

v (k) be so that u|∂(SM) = 0 and X+u = 0. By
lemma 14,we have

(2k + n − 3) ‖X−u‖2 = −(2k + n − 1) ‖X+u‖2 + (2k + n − 3) ‖X−u‖2

=
(

[X+,
v
]u, X+u

)
+

(
[X−,

v
]u, X−u

)

=
(

[X+,
v
]u, Xu

)
+

(
[X−,

v
]u, Xu

)

=
(

[X ,
v
]u, Xu

)
.

(101)

The last inner product in (101) is non-positive by lemma 20. Thus X−u = 0 almost
everywhere on SM . Let d be the diameter of M . Lemma 25 then provides

‖u‖2L2(SM)
≤ d2 ‖Xu‖2L2(SM)

= d2(‖X+u‖2L2(SM)
+ ‖X−u‖2L2(SM)

) = 0. (102)
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Thus u = 0 almost everywhere on SM , but since u is continuous, we have shown
that u = 0 everywhere on SM . ��

Even though we do not need the result, we next show for completeness that there
are no conjugate points in the sense of the global index form Q when the sectional
curvature is non-positive.

Proposition 26 Let M be the closed Euclidean unit ball inRn. Suppose that M comes
equipped with a C1,1 Riemannian metric g so that the sectional curvature of (M, g)
is almost everywhere non-positive. Then there is ε > 0 so that Q(W ) ≥ ε ‖W‖2

L2(N )

for all W ∈ H1
0 (N , X).

Proof Since the sectional curvature is almost everywhere non-positive,

(RW ,W )L2(N ) =
∫

(x,v)∈SM
〈R(W (x, v), v)v,W (x, v)〉g d�g ≤ 0 (103)

for all W ∈ H1
0 (N , X), since W (x, v) and v are always orthogonal. Thus Q(W ) ≥

‖XW‖2
L2(N )

for all W ∈ H1
0 (N , X). Then it follows from lemma 25 that for all W ∈

H1
0 (N , X),we have

Q(W ) ≥ ‖XW‖2L2(N )
≥ 1

d2
‖W‖2L2(N )

. (104)

We take ε = 1/d2 which finishes the proof. ��
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Appendix A: Completion of the Proof of Boundary Determination

We complete the details in the proof of lemma 15 by proving items 1 and 2. Recall
that we work in local coordinates φ : W → R

n so that

φ(W ∩ ∂M) = {xn = 0}, and φ(W ∩ M int) = {xn > 0}. (105)
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We denote x̂ = (x1, . . . , xn−1). The local tensor field p is defined in these coordinates
by

p j1··· jl n···n(x̂, xn) = m

m − l
xn f j1··· jl n···n(x̂, 0), (106)

where n appears m − 1 − l times in p j1··· jl n···n and m − l times in f j1··· jl n···n .
First we prove item 1. We begin by proving that fx (v, . . . , v) = 0 for all v ∈

Sx (W ∩ ∂M) and x ∈ W ∩ ∂M . Given v ∈ Sx (W ∩ ∂M),we choose a sequence (vk)

of vectors vk ∈ Sx (W ∩ ∂M) so that τ(x, vk) > 0, and τ(x, vk) → 0 and vk → v

when k → ∞. Such a sequence of vectors exists by C1,1 simplicity as proved in
[18, Lemma 23]. Since the lengths of the geodesics corresponding to (x, vk) become
arbitrarily short and I f = 0, we find that

fx (v, . . . , v) = lim
k→∞

1

τ(x, vk)

∫ τ(x,vk )

0
f (φt (x, vk)) dt

= lim
k→∞

I f (x, vk)

τ (x, vk)

= 0.

(107)

We have shown that fx (v, . . . , v) = 0 for all v ∈ Sx (W ∩ ∂M). Next, we prove that
f j1··· jm (x̂, 0) = 0 in W ∩ ∂M for all j1, . . . , jm ∈ {1, . . . , n − 1}.
Let ι : ∂M → M be the inclusion map. The pullback ι∗ f is an m-tensor field on

∂M . Since fx (v, . . . , v) = 0 for all v ∈ Sx (W ∩ ∂M) we have (ι∗ f )x (v, . . . , v) = 0
for all v ∈ Sx (W ∩ ∂M). Then a fibrewise computation [9, Lemma 2.4] shows that

0 =
∫
W∩∂M

(ι∗ f )x (v, . . . , v)2 dSx = Cm,n−1
∣∣ι∗ f ∣∣2g(x) (108)

for all x ∈ W ∩ ∂M . We have shown that ι∗ f |W∩∂M = 0 which written in the
coordinates inW gives f j1··· jm (x̂, 0) = 0 for all j1, . . . , jm ∈ {1, . . . , n−1}. We have
proved item 1.

We proceed to proving item 2. Let l ∈ {0, . . . ,m−1} and j1, . . . , jl ∈ {1, . . . , n−
1}. To compute the restriction to boundary of the component functions of σ∇ p, we
first compute ∇n p j1··· jl n···n(x̂, 0) and ∇ js p j1··· ĵs ··· jl n···n(x̂, 0). We have

∇n p j1··· jl n···n = ∂n p j1··· jl n···n

−
l∑

s=1

�k
njs p j1···k··· jl n···n −

m−1∑
s=l+1

�k
nn p j1··· jl n···k···n . (109)
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Thus by the construction of p,we find that

∇n p j1··· jl n···n(x̂, xn) = m

m − l
f j1··· jl n···nn(x̂, 0)

− m

m − l
xn

l∑
s=1

�k
njs f j1···k··· jl n···nn(x̂, 0) − m

m − l
xn

m−1∑
s=l+1

�k
nn f j1··· jl n···k···nn(x̂, 0).

(110)

On the boundary {xn = 0}, equation (110) reduces to

∇n p j1··· jl n···n(x̂, 0) = m

m − l
f j1··· jl n···nn(x̂, 0). (111)

As in equation (109), we have

∇ js p j1··· ĵs ··· jl n···n = ∂ js p j1··· ĵs ··· jl n···n

−
l−1∑
r=1

�k
js jr p j1···k··· jl n···n

−
m−1∑
r=l

�k
js jr p j1··· jl n···k···n .

(112)

By the construction of p, equation (112) gives

∇ js p j1··· ĵs ··· jl n···n(x̂, x
n) = m

m − l
xn∂ js f j1··· ĵs ··· jl n···nn(x̂, 0)

− m

m − l
xn

l−1∑
r=1

�k
js jr f j1···k··· jl n···nn(x̂, 0)

− m

m − l
xn

m−1∑
r=l

�k
jsn f j1··· jl n···k···nn(x̂, 0).

(113)

Therefore, on the boundary {xn = 0},we get

∇ js p j1··· ĵs ··· jl n···n(x̂, 0) = 0. (114)

Nowweare ready to compute (σ∇ p) j1... jl n···n ,when l ∈ {0, . . . ,m−1}.Denote jl+1 =
· · · = jm = n. There are (m− l)(m−1)! permutations π of {1, . . . ,m} so that jπ(1) =
n, when no restrictions are set on the remaining indices jπ(2), . . . , jπ(m). Thus using
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symmetry of p we find that

(σ∇ p) j1··· jl n···n = (m − l)(m − 1)!
m! ∇n p j1··· jl n···n + (m − 1)!

m!
l∑

s=1

∇ js p j1··· ĵs ··· jl n···n

= m − l

m
∇n p j1··· jl n···n + 1

m

l∑
s=1

∇ js p j1··· ĵs ··· jl n···n .

(115)

Evaluating (115) on the boundary {xn = 0} and substituting (111) and (114) results
in

(σ∇ p) j1... jl n···n(x̂, 0) = f j1··· jl n···n(x̂, 0). (116)

The last step is to prove that

(σ∇ p) j1··· jm (x̂, 0) = f j1··· jm (x̂, 0) (117)

when j1, . . . , jm ∈ {1, . . . , n − 1}. By the definition of the symmetrized covariant
derivative,

(σ∇ p) j1··· jm = 1

m!
∑
π

∇ jπ(1) p jπ(2)··· jπ(m)
(118)

where the summation is over all permutations π of {1, . . . ,m}. Since jπ(k) < n for
all k ∈ {1, . . . ,m}, we can compute as in (113) to see that

∇ jπ(1) p jπ(2)··· jπ(m)
|xn=0 = 0 (119)

for all permutations π of {1, . . . ,m}. Thus

(σ∇ p) j1··· jm |xn=0 = 0 = f j1··· jm |xn=0. (120)

We have finally used item 1 of the proof, where we proved that f j1··· jm (x̂, 0) = 0 for
all j1, . . . , jm ∈ {1, . . . , n − 1}. This concludes the proof item 2 and thus the proof of
lemma 15 is completed.

Appendix B: A Regularity Computation

The following calculation completes the proof of lemma 3. It is based on the proofs
of [43, Lemma 4.4] and [26, Lemma 5.1].
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Let u ∈ H1
hH

2
v(SM) and let wk ∈ �1

h�
∞
v (k) be so that wk |∂(SM) = 0. Then

h∇u ∈
H1
hH

1
v(SM) and thus

(
h∇u,

v∇wk

)
L2(N )

= −
(

v
div

h∇u, wk

)
L2(N )

. (121)

Using proposition 10,the right side can rewritten as

−
(

v
div

h∇u, wk

)
= −1

2

(
[X ,

v
]u, wk

)
+ n − 1

2
(Xu, wk) . (122)

If uk ∈ �1
h�

2
v(k) are the spherical harmonic components of u, then by orthogonality

and lemma 14 we have

(
[X ,

v
]u, wk

)
=

(
[X+,

v
]uk−1 + [X−,

v
]uk+1, wk

)

=
(

−2k + n − 3

2
X+uk−1 + 2k + n − 1

2
X−uk+1, wk

)
.

(123)

Together, equations (121), (122) and (123) show that

(
h∇u,

v∇wk

)
= ((k + n − 2)X+uk−1 − kX−uk+1, wk) . (124)

Then we let w ∈ C1
hC

2
v(SM) so that w|∂(SM) = 0. If we decompose w into

spherical harmonics wk , then wk ∈ �1
h�

∞
v (k). We sum equation (124) over k ∈ N

and use k(k + n − 2)wk = v
wk to get

(
h∇u,

v∇w

)
=

∞∑
k=0

((k + n − 2)X+uk−1 + kX−uk+1, wk)

=
∞∑
k=0

(
1

k
X+uk−1 + 1

k + n − 2
X−uk+1,

v
wk

)

=
( ∞∑
k=0

v∇
[
1

k
X+uk−1 + 1

k + n − 2
X−uk+1

]
,
v∇wk

)
.

(125)

Thus there is W (u) ∈ H0
hH

1
v(N ) so that

v
div(W (u)) = 0 and

h∇u =
∞∑
k=0

v∇
[
1

k
X+uk−1 + 1

k + n − 2
X−uk+1

]
+ W (u). (126)
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It follows from the eigenvalue property that

∥∥∥∥
v∇uk

∥∥∥∥
2

L2(N )

= k(k + n − 2) ‖uk‖2L2(SM)
. (127)

Thus equation (126) yields

∥∥∥∥
h∇u

∥∥∥∥
2

=
∞∑
k=0

k(k + n − 2)

∥∥∥∥1k X+uk−1 + 1

k + n − 2
X−uk+1

∥∥∥∥
2

+ ‖W (u)‖2

=
∞∑
k=0

(
k + n − 2

k
‖X+uk−1‖2 − 2 (X+uk−1, X−uk+1)

+ k

k + n − 2
‖X−uk+1‖2

)
+ ‖W (u)‖2 .

(128)

Again, by orthogonality, we have

‖Xu‖2 =
∞∑
k=0

‖X+uk−1 + X−uk+1‖2

=
∞∑
k=0

(
‖X+uk−1‖2 + 2 (X+uk−1, X−uk+1) + ‖X−uk+1‖2

) (129)

We add equations (128) and (129) to get

‖u‖2
H1
hH

0
v (SM)

= ‖Xu‖2 +
∥∥∥∥
h∇u

∥∥∥∥
2

=
∞∑
k=0

(
1 + k + n − 2

k

)
‖X+uk−1‖2

+
∞∑
k=0

(
1 + k

k + n − 2

)
‖X−uk+1‖2 + ‖W (u)‖2

≥
∞∑
k=0

‖X+uk−1‖2 +
∞∑
k=0

‖X−uk+1‖2 ,

(130)

This is estimate (71).

Appendix C: Proof of Liouville’s Theorem

This appendix is devoted to the proof of lemma 23. We let M be a compact smooth
manifold with a smooth boundary. Suppose that we are given two C1,1 Riemannian
metrics g and h on M . Let the corresponding unit sphere bundles be SgM and ShM .
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There is a natural radial C1,1-diffeomorphism (x, v) → (x, v |v|−1
h ) from SgM

to ShM , the inverse map from ShM to SgM being (x, w) → (x, w |w|−1
g ).

In the proof of lemma 23, we use three types of Riemannian metrics on M . We
will have a C1,1 Riemannian metric g and two types of smooth Riemannian metrics h
and

α
g. We denote the corresponding radial diffeomorphisms by

α
s : ShM → α

SM, s : ShM → SgM, and
α
r : α

SM → SgM . (131)

In the proof of lemma 23, we will use the convention that the unit sphere bundle
related

α
g is denoted

α

SM :=Sα
gM , the operators and differential forms related to

α
g are

decorated with α on top or as a subscript, the sphere bundle, operators and differential
forms related to h are decorated with subscripts h and the bundles and the operators
related to the metric g are written without decorations.

Proof of lemma 23 The proof is based on smooth approximations of the Riemannian
metric g. Let h be a smooth fixed reference Riemannian metric on M . Let

( α
g
)
be a

sequence of smooth Riemannian metrics on M so that

α
g jk → g jk in W 1,∞

h (M) and
α

�i
jk → �i

jk in L∞
h (M). (132)

Existence of such sequence was proved in [18, Lemma 18]. Let u ∈ Lip(SM) and
denote

α
u:=α

r∗u and ũ:=s∗u. We note that ũ = α
s∗ α
u. We will prove that

lim
α→∞

∫
α
SM

α
uL α

X
(d

α

�) =
∫
SM

uLX (d�). (133)

Establishing equation (133) proves the claim, since byLiouville’s theorem [36, Lemma
3.6.4.], we have

L α
X
(d

α

�) = 0 (134)

for all α ∈ N and thus the limit integral in equation (133) is zero.
Recall that ũ = s∗u = α

s∗ α
u. Thus by basic properties of pullback,it is enough prove

that

lim
α→∞

∫
ShM

ũ
α
s∗(L α

X
d

α

�) =
∫
ShM

ũs∗(LXd�) (135)

ThemanifoldM is the Euclidean unit ball inRn andwe let (x1, . . . , xn) be usual Carte-
sian coordinates on M . We consider coordinates (x1, . . . , xn, w1, . . . , wn) on ShM
and corresponding coordinates

(x1, . . . , xn,
α
v1, . . . ,

α
vn) on

α

SM and (x1, . . . , xn, v1, . . . , vn) on SM

so that
α
s(x, w) = (x,

α
v) and s(x, w) = (x, v). We associate to (x, w) the coor-

dinate vector fields ∂x1, . . . , ∂xn , ∂w1 , . . . , ∂wn and similarly to (x,
α
v) we associate
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∂x1 , . . . , ∂xn , ∂α
v1

, . . . , ∂α
vn

and to (x, v) we associate ∂x1 , . . . , ∂xn , ∂v1 , . . . , ∂vn . We
let

dx1, . . . , dxn, dw1, . . . , dwn,

dx1, . . . , dxn, d
α
v1, . . . , d

α
vn, and

dx1, . . . , dxn, dv1, . . . , dvn
(136)

be the dual basis one-forms characterized by

dx j (∂xk ) = δ
j
k , dx j (∂wk ) = 0, dw j (∂xk ) = 0, dw j (∂wk ) = δ

j
k ,

dx j (∂xk ) = δ
j
k , dx j (∂α

vk
) = 0, d

α
v j (∂xk ) = 0, d

α
v j (∂α

vk
) = δ

j
k ,

dx j (∂xk ) = δ
j
k , dx j (∂vk ) = 0, dv j (∂xk ) = 0, dv j (∂vk ) = δ

j
k .

(137)

Next, we will write the integrals in equation (135) in coordinates on ShM and we
will argue that equation (135) follows from (132). We will derive a local coordinate
formula for LX (d�). A similar formula for L α

X
(d

α

�) can be derived analogously. Then
we will compute how the coordinate presentations transform under the pullbacks s∗
and

α
s∗.

We denote by |g| the determinant of g. Since d� is a volume form (differential
form of the highest order), Cartan’s formula implies that

LX (d�) = d(iXd�). (138)

Since

iXdx
i = dxi (X) = dxi (v j∂x j − �l

jkv
jvk∂vl ) = vi (139)

and

iXdv
i = dvi (X) = dvi (v j∂x j − �l

jkv
jvk∂vl ) = −�i

jkv
jvk (140)

we see that

iXd� =
n∑

i=1

vi |g| dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn

+
n∑

i=1

(−�i
jkv

jvk |g|) dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ d̂vi ∧ · · · ∧ dvn,

(141)
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where d̂xi and d̂vi indicate that one-forms dxi and dvi are omitted from the wedge
product. From (141),it follows that

d(iXd�) =
n∑

i=1

(−1)i−1∂xi (v
i |g|) dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn

+
n∑

i=1

(−1)n+i−1∂vi (−�i
jkv

jvk |g|) dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn

=
n∑

i=1

(−1)i−1(∂xi (v
i |g|) + (−1)n+1∂vi (�

i
jkv

jvk |g|))

× dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn . (142)

Similarly, we see that

L α
X
(d

α

�) =
n∑

i=1

(−1)i−1∂xi (
α
vi

∣∣ α
g
∣∣) dx1 ∧ · · · ∧ dxn ∧ d

α
v1 ∧ · · · ∧ d

α
vn

+
n∑

i=1

(−1)n+i−1∂α
vi

(− α

�i
jk

α
v j α

vk
∣∣ α
g
∣∣) dx1 ∧ · · · ∧ dxn ∧ d

α
v1 ∧ · · · ∧ d

α
vn

=
n∑

i=1

(−1)i−1(∂xi (
α
vi

∣∣ α
g
∣∣) + (−1)n+1∂α

vi
(

α

�i
jk

α
v j α

vk
∣∣ α
g
∣∣))

× dx1 ∧ · · · ∧ dxn ∧ d
α
v1 ∧ · · · ∧ d

α
vn . (143)

Next, we pullback formulas (142) and (143) onto ShM . We can compute

s∗dv j = d(s∗v j ) = d(w j |w|−1
g ) = |w|−1

g dw j + w jd(|w|−1
g ). (144)

If we write

d(|w|−1
g ) = μidx

i + λidw
i , (145)

then

μk = μidx
i (∂xk ) = d(|w|−1

g )(∂xk ) = ∂xk |w|−1
g and λk = ∂wk |w|−1

g . (146)

Thus

s∗dv j = w j (∂xk |w|−1
g )dxk + (|w|−1

g δ
j
k + w j∂wk |w|−1

g )dwk . (147)

Similarly, we get

s∗d α
v j = w j (∂xk |w|−1

α )dxk + (|w|−1
α δ

j
k + w j∂wk |w|−1

α )dwk . (148)
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Since s and
α
s act identically on the base point x , we have

s∗(dx1 ∧ · · · ∧ dxn) = dx1 ∧ · · · ∧ dxn and
α
s∗(dx1 ∧ · · · ∧ dxn) = dx1 ∧ · · · ∧ dxn .

(149)

Using the fact that a wedge product vanishes whenever repetition appears,we get

s∗(dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn)

= dx1 ∧ · · · ∧ dxn ∧ (|w|−1
g δ

j
k + w1(∂wk |w|−1

g ))dwk ∧ · · ·
· · · ∧ (|w|−1

g δnk + wn(∂wk |w|−1
g ))dwk

= dx1 ∧ · · · ∧ dxn ∧
n∧
j=1

(|w|−1
g δ

j
k + w j (∂wk |w|−1

g ))dwk .

(150)

By a similar computation

s∗(dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn)

= dx1 ∧ · · · ∧ dxn ∧
n∧
j=1

(|w|−1
g δ

j
k + w j (∂wk |w|−1

α ))dwk .
(151)

To complete formulas for the pullback of (142) and (143)we use the facts that s∗ = s−1∗
and

α
s∗ = α

s−1∗ to compute

s∗∂xi = ∂xi + (∂xi w
j )∂w j and

α
s∗∂xi = ∂xi + (∂xi w

j )∂w j (152)

as well as

s∗∂vi = (∂v jw
j )∂w j and

α
s∗∂α

vi
= (∂α

v j w
j )∂w j . (153)

Thus we get

s∗(∂xi vi |g|) = ∂xi (w
i |w|−1

g |g|) + (∂xi w
j )(∂w j (w

i |w|−1
g |g|)), (154)

α
s∗(∂xi vi

∣∣ α
g
∣∣) = ∂xi (w

i |w|−1
α

∣∣ α
g
∣∣) + (∂xi w

j )(∂w j (w
i |w|−1

α

∣∣ α
g
∣∣)), (155)

and

s∗∂vi (�
i
jkv

jvk |g|) = �i
jk |g| (∂viw

l)∂wl (w
i |w|−1

g wk |w|−1
g ), (156)

α
s∗∂α

vi
(

α

�i
jk

α
v j α

vk
∣∣ α
g
∣∣) = α

�i
jk

∣∣ α
g
∣∣ (∂α

vi
wl)∂wl (w

i |w|−1
α wk |w|−1

α ). (157)
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The formulas we get for the pullbacks of LX (d�) along s and of L α
X
(d

α

�) along
α
s are

s∗LX (d�) =
n∑

i=1

(−1)i−1
(

∂xi (w
i |w|−1

g |g|) + (∂xkw
j )(∂w j (wk |w|−1

g |g|))

+ (−1)n+1�i
jk |g| (∂vmwl)∂wl (w

m |w|−1
g wk |w|−1

g )

)

dx1 ∧ · · · ∧ dxn ∧
n∧
j=1

(|w|−1
g δ

j
k + w j (∂wk |w|−1

g ))dwk

(158)

and

α
s∗L α

X
(d

α

�) =
n∑

i=1

(−1)i−1
(

∂xi (w
i |w|−1

α

∣∣ α
g
∣∣) + (∂xkw

j )(∂w j (w
k |w|−1

α

∣∣ α
g
∣∣))

+ (−1)n+1 α

�i
jk

∣∣ α
g
∣∣ (∂α

vm
wl)∂wl (w

m |w|−1
α wk |w|−1

α )

)

dx1 ∧ · · · ∧ dxn ∧
n∧
j=1

(|w|−1
α δ

j
k + w j (∂wk |w|−1

α ))dwk .

(159)

From formulas (158) and (159) we see that can conclude the equation (135) if the
following holds:

∂xi (w
i |w|−1

α

∣∣ α
g
∣∣) ∏

j∈S
(|w|−1

α δ
j
k )

∏
j∈S′

(w j (∂wk |w|−1
α ))

→ ∂xi (w
i |w|−1

α |g|)
∏
j∈S

(|w|−1
g δ

j
k )

∏
j∈S′

(w j (∂wk |w|−1
g )),

(160)

(∂xi w
j )(∂w j (w

k |w|−1
α

∣∣ α
g
∣∣)) ∏

j∈S
(|w|−1

α δ
j
k )

∏
j∈S′

(w j (∂wk |w|−1
α ))

→ (∂xi w
j )(∂w j (w

k |w|−1
g |g|))

∏
j∈S

(|w|−1
g δ

j
k )

∏
j∈S′

(w j (∂wk |w|−1
g )),

(161)

α

�i
jk

∣∣ α
g
∣∣ (∂α

vm
wl )(∂wl (w

m |w|−1
α wl |w|−1

α ))
∏
j∈S

(|w|−1
α δ

j
k )

∏
j∈S′

(w j (∂wk |w|−1
α ))

→ �i
jk |g| (∂vmwl )(∂wl (w

m |w|−1
g wl |w|−1

g ))
∏
j∈S

(|w|−1
g δ

j
k )

∏
j∈S′

(w j (∂wk |w|−1
g ))

(162)
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in L1(ShM), where S and S′ are any subsets of {1, . . . , n}.We chose the approximating
sequence

( α
g
)
so that

α
g jk → g jk in W 1,∞

h (M) and
α

�i
jk → �i

jk in L∞
h (M). (163)

From (163),we see that

∂xi (w
i |w|−1

α

∣∣ α
g
∣∣) → ∂xi (w

i |w|−1
g |g|),

|w|−1
α δ

j
k → |w|−1

g δ
j
k ,

w j (∂wk |w|−1
α )) → w j (∂wk |w|−1

g )),

∂w j (wk |w|−1
α

∣∣ α
g
∣∣ → ∂w j (wk |w|−1

g |g| ,
α

�i
jk

∣∣ α
g
∣∣ → �i

jk |g| ,
∂α
vm

wl → ∂vmwl ,

∂wl (wm |w|−1
α wl |w|−1

α ) → ∂wl (wm |w|−1
g wl |w|−1

g ) (164)

in L∞(ShM). Thus we can take products and we conclude that (160), (161) and (162)
hold, which finishes the proof. ��
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Abstract. We prove that the geodesic X-ray transform is injec-
tive on L2 when the Riemannian metric is simple but the metric
tensor is only finitely differentiable. The number of derivatives
needed depends explicitly on dimension, and in dimension 2 we
assume g ∈ C10. Our proof is based on microlocal analysis of the
normal operator: we establish ellipticity and a smoothing prop-
erty in a suitable sense and then use a recent injectivity result on
Lipschitz functions. When the metric tensor is Ck, the Schwartz
kernel is not smooth but Ck−2 off the diagonal, which makes stan-
dard smooth microlocal analysis inapplicable.

1. Introduction

We show that on a simple Riemannian manifold (M, g) where g ∈ Ck

for a finite and explicit k the geodesic X-ray transform is injective
on L2 (Theorem 3). We do this using a typical two-step approach, first
showing that a function in the kernel of the transform is smoother than
assumed a priori and then showing that injectivity holds for smooth
functions. Both of the two steps of the proof have to be adapted to
low regularity. The “smooth” injectivity (on Lipschitz functions) was
established in [3], so it remains to prove that a function in the kernel
of the X-ray transform has to be Lipschitz.
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This regularity result (Theorem 1) is based on microlocal analysis
of the normal operator. This normal operator is not a pseudodifferen-
tial operator in the usual sense because the “smooth” off-diagonal part
of the Schwartz kernel is only Ck−2. Also, when the metric tensor is
not infinitely differentiable, the Sobolev scale of Hs spaces only makes
sense for a bounded range of indices s in both the positive and the neg-
ative direction. These two issues mean that the concepts of ellipticity,
smoothing, and a parametrix need careful treatment.

1.1. Main results. We consider two operators: The X-ray transform I

and its normal operator N . These are defined separately, and we only
prove that N = I∗I when acting on L2 functions. Precise definitions
of the operators and spaces we employ are given in section 2 below.

We prove two main theorems. Theorem 1 concerns functions in the
kernel of the operator N and proves that they have, a priori, improved
regularity. Theorem 3 can be compared to a recent result in [3]. We
prove that the X-ray transform is injective on L2(M) while requiring
more metric regularity whereas [3, Theorem 1] proves that the X-ray
transform is injective only on Lipschitz functions.

Theorem 1. Let (M, g) be a simple manifold, n := dimM ≥ 2 and

g ∈ Ck(M) for some k ≥ 7 + n
2
. Then if f ∈ Hs

c (M) for some s >

−k+6+ n
2
and Nf = 0, we have f ∈ Hr

c (M) for all s < r < k−6− n
2
.

Theorem 1 can be applied to geodesic X-ray tomography in low met-
ric regularity assuming that the X-ray transform I acts on L2(M), since
then N = I∗I is in fact the normal operator for the X-ray transform I.

Proposition 2. Let (M, g) be a simple manifold with g ∈ Ck(M) for

some k ≥ 2. Then I∗I = N on L2(M).

Theorem 3. Let (M, g) be a simple manifold, n := dimM ≥ 2 and

g ∈ Ck(M) for some k ≥ 8+n. Then the X-ray transform I is injective

on L2(M).

The proofs of the theorems rely on microlocal tools. We study the
so-called normal operator N = I∗I related to the X-ray transform I.
We prove thatN is a non-smooth elliptic operator and construct a prin-
cipal parametrix with an error term smoothing of order τ ∈ (0, 1). The
construction and its implications use a non-smooth microlocal calculus
developed in [7] and, in particular, we use the non-smooth symbol and
operator classes, continuous Sobolev mapping properties and a commu-
tator theorem there introduced. The details are recalled in section 2.

1.2. Related results. The geodesic X-ray transform on a Riemannian
manifold has been studied in a variety of contexts and with a variety
of tools [11, 13, 5, 10]. The current article focus on the aspect of
not studying the X-ray transform directly but via the related normal
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operator. This approach has seen plenty of applications in C∞-smooth
metric regularity.

In [12] it was proved that the normal operator on a simple Riemann-
ian manifold is an elliptic pseudodifferential operator in the interior of
the manifold — a result that is essential in their proof that all two di-
mensional simple Riemannian manifolds are boundary rigid. The nor-
mal operator has also played a role in later developments in boundary
rigidity [14, 15]. Microlocal methods in relation to the normal oper-
ator are useful in geometries permitting conjugate points [16, 17, 2].
More recently, there has been interest in isomorphic mapping proper-
ties of the normal operator and its variants between suitably weighted
function spaces [8, 9].

Microlocal analysis of the normal operator in the X-ray tomography
is in non-smooth geometries virtually unexplored. However, injectivity
for the X-ray transform of Lipschitz scalar and C1,1 tensor fields on
simple C1,1 manifolds was proved in two recent articles [3, 4], and
injectivity is known for the scalar transform on spherically symmetric
C1,1 manifolds satisfying the Herglotz condition [1].

The current article uses non-smooth microlocal methods. As ref-
erences on pseudodifferential operators with symbols non-smooth in
both variables we mention [6, 7] and as references to paradifferential
methods we mention [19].

1.3. Acknowledgements. JI was supported by the Research Council
of Finland (grant 351665). AK was supported by the Research Council
of Finland (grant 351656) and by the Finnish Academy of Science and
Letters. KL was supported by NSF. We thank John M. Lee, Gabriel
P. Paternain, Mikko Salo, Hart F. Smith, and Gunther Uhlmann for
discussions.

2. Preliminaries

In this section we introduce the geometric set-up, the function spaces,
and the operators used throughout the article. We also recall the parts
of the non-smooth calculus and theorems from [7] that are required for
the proofs of our main results.

2.1. Simple manifolds. In this section we recall the geometric set-up
in which we study geodesic X-ray transforms. Since the Riemannian
metrics we consider are not C∞-smooth, we include the following defi-
nition for clarity.

Definition 4. Let k be an integer so that k ≥ 2. Let M be a compact
smooth manifold with a smooth boundary and equip M with a Ck

smooth Riemannian metric g. We say that (M, g) is simple if M is Ck-
diffeomorphic to the closed Euclidean unit ball in R

n and the following
hold:
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(1) The boundary ∂M is strictly convex in the sense of the second
fundamental form.

(2) The manifold is non-trapping, i.e., all geodesics hit the bound-
ary in a finite time.

(3) There are no conjugate points in M .

When the Riemannian metric g is C∞-smooth, definition 4 is equiv-
alent to any standard definition of a simple manifold.

Remark 5. Our analysis of the non-smooth operators is carried out
on the closed Euclidean unit ball, which allows us to use smooth global
coordinates on our manifold. This allows us to use smooth functions on
the manifold without having to worry about limitations on regularity
indices. However, we have to interpret our results in the original man-
ifold via a Ck-diffeomorphism which restrict the meaningful range of
any regularity indices (Hölder or Sobolev) to [−k, k] in the up coming
sections.

To prove Theorem 3 we will use [3, Theorem 1]. There the authors
use a slightly different notion is simplicity, but definition 4 is equivalent
to their definition for Riemannian metrics g ∈ Ck(M) when k ≥ 10
which holds in the case of Theorem 3. The proof of equivalence of
definitions in [3, Theorem 2] carries over to our simple Riemannian
metrics g ∈ Ck(M) for k ≥ 10 by the arguments given in [3] and since
we assume that M is Ck-diffeomorphic to the closed unit ball in R

n.
Since the conditions defining a simple manifold (M, g) with g ∈

Ck(M) are open, there is a small open extension M ⊆ U ⊆ R
n and an

extension g̃ of g so that (U, g̃) is a simple manifold with g̃ ∈ Ck(U). For
details on the existence of simple extension we refer the reader to [11,
Proposition 3.8.7].

2.2. Function spaces. Our definition of a simple manifold includes
global coordinates. Therefore no partitions of unity are needed and
the definitions of some operators and function spaces are somewhat
simplified.

Let (M, g) be a simple manifold where g ∈ Ck(M) for some k ≥ 2.
Since M is Ck-diffeomorphic to the closed Euclidean unit ball B ⊆ R

n

we takeM = B from now on and all computations are to be interpreted
via a Ck-diffeomorphism as explained in remark 5.

We use smooth global coordinates (x1, . . . , xn) in the definitions of
our functions spaces. We use the Riemannian volume for dVolg to
define L2(M) in the standard way i.e. L2(M) = L2(M, dVolg).

For s > 0 we denote by Hs
c (M) the space of compactly supported

functions in Hs(M). For s > 0 we let H−s(M) be the continuous
dual of Hs(M) and H−s

c (M) be the subspace of compactly supported
distributions.
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Similarly, we define the Zygmund space Cr
∗(M) to be the space of

continuous functions f on M whose zero extension to R
n is in Cr

∗(R
n)

and the norm of a such functions is its Cr
∗(R

n)-norm.

2.3. Geodesic X-ray transforms. Let (M, g) be a simple manifold
where g ∈ Ck(M) for some k ≥ 2. For a given unit vector v ∈
TxM there is a unique geodesic γx,v corresponding to the initial con-
ditions γx,v(0) = x and γ̇x,v(0) = v. Since the manifold is non-
trapping, the geodesic γx,v is defined on a maximal interval of existence
[−τ−(x, v), τ+(x, v)] where τ±(x, v) ≥ 0 and we abbreviate τ := τ+.

The X-ray transform If of a function f ∈ L2(M) is defined for all
inwards pointing unit vectors (x, v) ∈ ∂inSM by the formula

If(x, v) :=

∫ τ(x,v)

0

f(γx,v(t)) dt. (1)

The backprojection I∗h of a function h on L2(∂in(SM)) is defined for
all x ∈M by the formula

I∗h(x) :=

∫

SxM

h(φ−τ(x,−v)(x, v)) dSx(v). (2)

Finally, we define the operator N which we will call the normal
operator and which will be the main focus of our study. The normal
operator is defined on L2(M) by the formula

Nf(x) = 2

∫

SxM

∫ τ(x,v)

0

f(γx,v(t))) dt dSx(v). (3)

We will prove in proposition 2 that N agrees with the composition I∗I
on L2(M), justifying calling it the normal operator.

2.4. Non-smooth operators and symbols. In this section we recall
the basics of a non-smooth pseudodifferential calculus introduced in [7].
We rerecord the results that are relevant to the current work for the
convenience of the reader.

Let m ∈ R and r, L ∈ N be given. Multi-indices in N
n are denoted

by α and β. For all ρ, δ ∈ [0, 1] the symbol class Sm
ρδ(r, L) consists of

continuous functions p : Rn × R
n → R satisfying the estimates

∣

∣∂αξ p(x, ξ)
∣

∣ ≤ Cα(1 + |ξ|)m−ρ|α| (4)

and
∥

∥∂αξ p( · , ξ)
∥

∥

Cr
∗

≤ Cαr(1 + |ξ|)m+rδ−ρ|α| (5)

for all |α| ≤ L.
Given a symbol p ∈ Sm

ρδ(r, L) the corresponding operator Op(p) is
defined by its action

Op(p)f(x) =

∫

Rn

eix·ξp(x, ξ)f̂(ξ) dξ (6)
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on functions f in L2(Rn). The identity operator Id is the operator
corresponding to the constant symbol 1.

We end the preliminaries by isolating two useful results on the op-
erators of class Ψm(r, L). For the proofs of the lemmas we refer the
reader to [7].

Lemma 6 ([7] Theorem 2.1.). Let p ∈ Sm
ρδ(r, L) and consider the op-

erator P := Op(p). Suppose that ρ, δ ∈ [0, 1] and r, L > 0 satisfy

δ ≤ ρ, L >
n

2
, r >

1− ρ

1− δ

n

2
. (7)

Then the operator P : Hs+m(Rn) → Hs(Rn) is bounded when

(1− ρ)
n

2
− (1− δ)r < s < r. (8)

Lemma 7 ([7] Theorem 3.5.). Let p ∈ Sm1

ρ1δ1
(r, L) and q ∈ Sm2

δ2ρ2
(r, L+

n
2
+ 1) and suppose that δ1 < ρ2 and L > n

2
. Denote the corresponding

operators by P := Op(p) and Q := Op(q). Let τ ∈ (0, 1] be such that

0 < τ < r. Define

δ := max{δ1 + (ρ1 − δ2)τ, δ2} and ρ := min{ρ1, ρ2}. (9)

Assume that δ ≤ ρ and in the case ρ < 1 suppose in addition that

r > 1−ρ
1−δ

n
2
+ τ . Then the commutator

QP −Op(qp) : Hs+m1+m2−(ρ1−δ2)τ (Rn) → Hs(Rn) (10)

is bounded when

max{−m2, 0}+(1− ρ)
n

2
− (1− δ)(r− τ) < s < r−max{m2, 0}. (11)

3. Parametrix construction for the normal operator

This section provides a detailed analysis of the operator N culmi-
nating in a leading order parametrix construction in the non-smooth
symbol calculus presented in section 2.4. The parametrix construction
is the main tool used in the proofs of our main theorems.

3.1. The Schwartz kernel and the symbol. The objective of this
section is to study the operator N as a non-smooth elliptic pseudodif-
ferential operator. We begin from the Schwartz kernel of the operator
and analyse its symbol by dissecting it into manageable parts. The
end result containing the principal part of the symbol is presented in
corollary 16.

Lemma 8. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 2. Let a(x, y) = det(d expx |exp−1
x (y))

−1. Then for all f ∈ L2(M)
we have

Nf(x) = 2

∫

M

a(x, y)dg(x, y)
1−nf(y) dVolg(y). (12)
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Proof. The same formula is derived in [11, Lemma 8.1.10] when g ∈
C∞(M). The computation works when g ∈ Ck(M) with k ≥ 2. �

The Schwartz kernel of the operator N is

K(x, y) = 2a(x, y)dg(x, y)
1−n (13)

on M ×M . We will construct leading order parametrices for operators
on R

n related to the Schwartz kernels of the form

K̃(x, y) := ψ(x)2a(x, y)dg(x, y)
1−n det(g(y))

1

2φ(y) (14)

where ψ and φ are suitable cut-off functions in R
n.

Consider Ω ⊆ M and consider f ∈ Hs
c (M) so that supp f ⊆ Ω. We

can choose a cut-off function φ ∈ C∞
c (M) so that φf = f on M . Then

if ψ ∈ C∞
c (M) is to that ψ = 1 on Ω we have for all x ∈ Ω that

Nf(x) =

∫

Rn

ψ(x)K(x, y) det(g(y))
1

2φ(y)f(y) dy

=

∫

Rn

K̃(x, y)f(y) dy.

(15)

We let Ñ be the operator corresponding to the kernel K̃. ThenNf(x) =

Ñf(x) on Ω which shows that it is enough to only consider operators
with kernel of the form (14). For the details see the proof of Theorem 1

in section 4. From now on we let N = Ñ to avoid cluttered notation
and we keep the cut-off functions ψ and φ fixed for the remainder of
this section.

We will prove that N ∈ Ψ−1(k−s, s−4) for all s ∈ N with 4 ≤ s ≤ k.
This is accomplished by studying the operator in the global coordinates
of the Euclidean unit ball and by computing the symbol of the operator.
By [11, Lemma 8.1.12] we can write in the coordinates that

K̃(x, y) = ψ(x)
2a(x, y) det(g(y))1/2

[Gjk(x, y)(x− y)j(x− y)k]
n−1

2

φ(y) (16)

for some functions Gjk with Gjk(x, x) = gjk(x).

Lemma 9. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 3. Then K̃ ∈ Ck−2(Rn × R
n \∆) where ∆ := {(x, x) : x ∈ R

n} is

the diagonal in R
n × R

n.

Proof. The kernel K̃ can be expressed in the form

K̃(x, y) = ψ(x)2a(x, y)dg(x, y)
1−n det(g(y))

1

2φ(y). (17)

By standard ODE theory the geodesic flow has Ck−1 smooth initial
value dependence when g ∈ Ck(M), and thus the exponential func-
tion is also Ck. It follows that a ∈ Ck−2(M × M). In addition,
since dg(x, expx(v)) = |v|g for (x, v) ∈ TM it follows that dg(x, y) ∈

Ck−1(M ×M \∆). Finally, since the determinant term in (17) is Ck

we see that K̃ is Ck−2 off diagonal as claimed. �
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By denoting

k(x, z) := K̃(x, x− z) (18)

and letting

a(x, ξ) :=

∫

Rn

e−iz·ξk(x, z) dz (19)

the normal operator on L2(M) can be brought to the form

Nf(x) =

∫

Rn

eix·ξa(x, ξ)f̂(ξ) dξ. (20)

The following lemma is a finite regularity adaptation of the classical
result [18, Chapter VI.7.4].

Lemma 10. Let m < 0 and suppose that κ ∈ C l
c(R

n × (Rn \ {0}))
where l ∈ N satisfies estimates

∣

∣∂αx∂
β
z κ(x, z)

∣

∣ ≤ Cαβ |z|
−m−n−|β|

, z 6= 0, (21)

for |α|+ |β| ≤ l. Then the function on R
n × R

n defined by

b(x, ξ) :=

∫

Rn

e−iz·ξκ(x, z) dz (22)

is a symbol in the class Sm(l − s, s− 2) for all s ∈ N with 2 ≤ s ≤ l.

Proof. Since by assumption
∣

∣∂βz κ(x, z)
∣

∣ ≤ Cβ |z|
−m−n−|β|

, z 6= 0, (23)

holds for all |β| ≤ l and since κ is compactly supported, it can be
shown by using [18, VI 4.5.] as in [18, VI 7.4.] that b is a continuous
function on R

n × R
n and
∣

∣

∣
∂
β
ξ b(x, ξ)

∣

∣

∣
≤ Cβ(1 + |ξ|)m−|β| (24)

for all |β| ≤ l − 2, which is the first estimate we set out to prove.
Then let s ∈ [2, l] be an integer. Since κ is compactly supported we

have

∂αx b(x, ξ) =

∫

Rn

e−iz·ξ∂αxκ(x, z) dz. (25)

Let us denote κα(x, z) = ∂αxκ(x, z). Then it holds that
∣

∣∂βz κα(x, z)
∣

∣ ≤ Cαβ |z|
−m−n−|β|

, z 6= 0, (26)

for all |β| ≤ l − |α|. Therefore by a similar application of [18, VI 4.5]
we have

∣

∣

∣
∂
β
ξ ∂

α
x b(x, ξ)

∣

∣

∣
≤ Cαβ(1 + |ξ|)m−|β| (27)

for all |α|+ |β| ≤ l − 2. Then it follows that
∥

∥

∥
∂
β
ξ b( · , ξ)

∥

∥

∥

Cl−s
∗

≤
∥

∥

∥
∂
β
ξ b( · , ξ)

∥

∥

∥

Cl−s
≤ Cαβ(1 + |ξ|)m−|β|, (28)
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which uses compactness of the support of κ again. By estimates (24)
and (28) we have shown b ∈ Sm(l− s, s− 2) for all integers s ∈ [2, l] as
claimed. �

Lemma 11. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 5. Then the function a defined by (19) belongs to S−1(k− s, s− 4)
for all s ∈ [4, k] with 4 ≤ s ≤ k.

Proof. We write the kernel in (18) in the form

k(x, z) = |z|1−n
ψ(x)

2a(x, x− z) det(g(x− z))
1

2

[Gjk(x, x− z) z
j

|z|
zk

|z|
]
n−1

2

φ(x− z) (29)

and denote

k0(x, z) = ψ(x)
2a(x, x− z) det(g(x− z))

1

2

[Gjk(x, x− z) z
j

|z|
zk

|z|
]
n−1

2

φ(x− z). (30)

Then k0(x, z) is Ck−2 for z 6= 0 and its derivatives ∂αx∂
β
z k0(x, z), z 6=

0, are bounded for all |α| + |β| ≤ k − 2 since k0(x, z) is compactly
supported. Thus k satisfies estimates

∣

∣∂αx∂
β
z k(x, z)

∣

∣ ≤ Cαβ |z|
1−n−|β|

, z 6= 0, (31)

for all |α|+ |β| ≤ k − 4 and the claim follows from lemma 10. �

Remark 12. The symbol a(x, ξ) is smooth in ξ but our argument does
not prove that a(x, ξ) satisfies the estimates of the class Sm(k, L) for all
orders L of ξ-derivatives. Thus we cannot use paradifferential calculus
to study N .

Lemma 11 shows that N ∈ Ψ−1(k − s, s − 4) for all s ∈ N with
4 ≤ s ≤ k when the Riemannian metric is in Ck(M) when k ≥ 5. The
rest of this section is devoted to computing the principal symbol of the
normal operator. We start by writing the kernel k as

k(x, z) = |z|1−n
h

(

x, z,
z

|z|

)

(32)

where h is a function on R
n × [0,∞)× Sn−1 defined by

h(x, r, ω) = ψ(x)
2a(x, x− rω) det(g(x− rω))

1

2

[Gjk(x, x− rω)ωjωk]
n−1

2

φ(x− rω). (33)

Since Gjk(x, x− rω)ωjωk is non-vanishing we see that h ∈ Ck−2(Rn ×
[0,∞)× Sn−1). By the Fundamental theorem of calculus

h(x, r, ω) = h(x, 0, ω) + r

∫ 1

0

∂rh(x, rt, ω) dt (34)

and we can decompose k(x, z) = k−1(x, z) + r(x, z) where

k−1(x, z) := |z|1−n
h

(

x, 0,
z

|z|

)

(35)
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and

r(x, z) := |z|2−n

∫ 1

0

∂rh

(

x, |z| t,
z

|z|

)

dt. (36)

Since k(x, z) is compactly supported in z we can choose a cut-off func-
tion χ(z) so that 0 ≤ χ ≤ 1 and χ = 1 near the origin so that

k(x, z) = χ(z)k(x, z) = χ(z)k−1(x, z) + χ(z)r(x, z). (37)

Now the full symbol of N is decomposed as

a(x, ξ) = F(χ( · )k−1(x, · ))(ξ) + F(χ( · )r(x, · ))(ξ)

=: a−1(x, ξ) + c(x, ξ).
(38)

Lemma 13. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 5. Then a−1 ∈ S−1(k − s, s − 4) for all s ∈ N with 4 ≤ s ≤ k

and c ∈ S−2(k − s, s− 5) for all s ∈ N with 5 ≤ s ≤ k.

Proof. Since h ∈ Ck−2(Rn× [0,∞)×Sn−1) is compactly supported in x
and r and Sn−1 is compact, we can extend h to a compactly supported
function on R

n × [0,∞) × Sn−1. Thus ∂αx∂
l
r∂

β
ωh(x, r, ω) is continuous

and compactly supported for all α ∈ N
n, β ∈ N

n−1 and l ∈ N for which
we have |α|+ l + |β| ≤ k − 2.

First, we prove the claim about the Fourier transform c of the remain-
der. Since derivatives of h are continuous and compactly supported, a
simple computation using the chain rule shows that

∣

∣

∣

∣

∂αx ∂zj∂rh

(

x, |z| t,
z

|z|

)
∣

∣

∣

∣

≤ C |z|−1 (39)

near z = 0 and for all t ∈ [0, 1] when |α| + 2 ≤ k − 2. Therefore by
iteration

∣

∣

∣

∣

∂αx ∂
β
z ∂rh

(

x, |z| t,
z

|z|

)
∣

∣

∣

∣

≤ Cαβ |z|
−|β| (40)

near z = 0 when |α|+ |β|+ 1 ≤ k − 2. The above estimate applied to
the remainder term r(x, z) yields

∣

∣

∣

∣

∂αx∂
β
z

∫ 1

0

∂rh

(

x, |z| t,
z

|z|

)

dt

∣

∣

∣

∣

≤ Cαβ |z|
−|β| (41)

near z = 0 when |α|+ |β|+ 1 ≤ k − 2, which implies that
∣

∣∂αx∂
β
z (χ(z)r(x, z))

∣

∣ ≤ Cαβ |z|
2−n−|β| (42)

for all z and |α| + |β| ≤ k − 3 since the cut-off χ(z) implies that only
have to derive the estimate near z = 0. It follows from lemma 10 that
c ∈ S−2(k − s, s− 5) for all s ∈ N with 5 ≤ s ≤ k.

By a similar computation we see that k−1 satisfies estimates
∣

∣∂αx ∂
β
z (χ(z)k−1(x, z))

∣

∣ ≤ Cαβ |z|
1−n−|β| (43)

for all z and |α| + |β| ≤ k − 2. Thus, again, by lemma 10 we have
a−1 ∈ S−1(k− s, s− 4) for all s ∈ N with 4 ≤ s ≤ k, which finishes the
proof. �
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In the next section we construct a leading order parametrix for N .
To this end we need to find a more explicit representation for a−1. We
write χ(z)k−1(x, z) = k−1(x, z) − (1 − χ(z))k−1(x, z) and analyze the
Fourier transforms of the parts separately.

Lemma 14. For a dimensional constant C it holds that
∫

Rn

e−iz·ξk−1(x, z) dz = Cψ(x) |ξ|−1
g(x) φ(x). (44)

Proof. The Fourier transform of

k−1(x, z) = ψ(x)
2 det(g(x))1/2

(gjk(x)zjzk)
n−1

2

φ(x) (45)

in z is computed in [11, Chapter 8.1]. The only difference is regularity
in x, which does not affect the computation. �

Lemma 15. Let (M, g) be a simple manifold with g ∈ Ck(M) for

some k ≥ 3. Let b(x, ξ) := F((1 − χ( · ))k−1(x, · ))(ξ). Then b ∈

Ck−2
x C∞

ξ (Rn × (Rn \ {0})). Moreover, b has a singularity of type |ξ|−1
g

at the origin, and satisfies |b(x, ξ)| ≤ C |ξ|2−k
when |ξ| is large enough.

Proof. The fact that b(x, ξ) has a singularity of type |ξ|−1
g(x) at the origin

follows from the fact that b(x, ξ) = a(x, ξ) − Cψ(x) |ξ|−1
g(x) φ(x) near

ξ = 0 and a ∈ Ck−2
x C∞

ξ (Rn × R
n).

Next, we prove the claim about the decay of b away from ξ = 0.
Since (1− χ(z))k−1(x, z) = 0 for z near the origin and since

(1− χ(z))k−1(x, z) = (1− χ(z))ψ(x)
2 det(g(x))1/2

(gjk(x)zjzk)
n−1

2

φ(x) (46)

for z 6= 0, we know that (1 − χ)k−1 is in Ck−2(Rn × (Rn \ {0})) and
compactly supported in x. As in the proof of lemma 13 we can use
boundedness of the derivatives of h(x, 0, z |z|−1) to prove that

|∂αz k−1(x, z)| =

∣

∣

∣

∣

∂αz

(

(1− χ(z)) |z|1−n
h

(

x, 0,
z

|z|

))
∣

∣

∣

∣

≤ Cα |z|
−n−1

(47)
for 2 ≤ |α| ≤ k−2 which proves that for a fixed x we have ∂αz k−1(x, z) ∈
L1(Rn). Therefore by the Riemann–Lebesgue lemma we conclude that

|ξαF((1− χ( · ))k−1(x, · ))(ξ)|

= |F(∂αz ((1− χ( · ))k−1(x, · )))(ξ)|

→ 0

(48)

for all 2 ≤ |α| ≤ k − 2 as |ξ| → ∞. Thus since 48 holds for all

2 ≤ |α| ≤ k − 2 we have |b(x, ξ)| ≤ C |ξ|2−k for |ξ| large enough. �

Lemmas 13, 14 and 15 together prove the following corollary.
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Corollary 16. Let (M, g) be a simple manifold with g ∈ Ck(M) for

some k ≥ 5. Then N ∈ Ψ−1(k− s, s− 4) for all s ∈ N with 4 ≤ s ≤ k.

The principal symbol of N is

a−1(x, ξ) = Cψ(x) |ξ|−1
g φ(x)− b(x, ξ) ∈ S−1(k − s, s− 4) (49)

where b is as in lemma 15 and s ∈ N with 4 ≤ s ≤ k, in particular this

shows that N is elliptic of order −1 in the sense of principal symbol.

The function a−1 is a function on the whole cotangent bundle and
thus b has to have a singularity of type |ξ|−1

g(x) at ξ = 0 to cancel out

the singularity in Cψ(x) |ξ|−1
g φ(x).

3.2. Parametrix construction. In this section we construct a lead-
ing order parametrix for the normal operator. The construction is
based on a commutator result in [7]. We define p(x, ξ) := C−1ζ(ξ) |ξ|g(x)
for some ζ ∈ C∞(Rn) so that 0 ≤ ζ ≤ 1, ζ = 0 near ξ = 0 and ζ = 1 for
large ξ, and where C is the same dimensional constant as in lemma 14.
We will prove that the operator corresponding to the symbol p which
is in S1(k− s,N) for all s ∈ N with 4 ≤ s ≤ k and N ∈ N provides the
parametrix to the leading order.

Lemma 17. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 7 + n
2
. Let P = Op(p). If τ ∈ (0, 1] is fixed then the operator

PN −Op(pa) : H t−τ (Rn) → H t(Rn) (50)

is continuous when −(1 − τ)(k − 5− n
2
− τ) < t < k − 6− n

2
.

Proof. Choose s ∈ N so that s ∈ (4 + n
2
, k − 1) which is possible since

k ≥ 7 + n
2
. Let L := s − 4 and let r := k − s. Then L > n

2
and

r > 1 ≥ τ . By lemma 11 we have N ∈ Ψ−1(r, L) and also it holds
that P ∈ Ψ1(r, L + 1 + n

2
), which means that we are in the setting of

lemma 7. For δ and ρ as the lemma it holds that

δ = τ, ρ = 1 and δ < ρ. (51)

Thus since m1 = −1 and m2 = 1 in the lemma the commutator

PN −Op(pa) : H t−τ (Rn) → H t(Rn) (52)

is continuous for

max{−1, 0} − (1− τ)(r − τ) < t < r −max{1, 0} (53)

which simplifies to

−(1− τ)(k − s− τ) < t < k − s− 1. (54)

To have a non-empty range of indices t we must have

k − s >
1 + (1− τ)τ

2− τ
(55)

which is satisfied since s < k− 1 and by an elementary computation it

holds that 1+(1−τ)τ
2−τ

≤ 1 for all τ ∈ (0, 1].



X-RAY TRANSFORM IN NON-SMOOTH GEOMETRY 13

Finally to conclude the proof we note that if

−(1− τ)(k − 5−
n

2
− τ) < t < k − 6−

n

2
(56)

there is st ∈ N so that st ∈ [4 + n
2
, k − 1) and

−(1− τ)(k − st − τ) < t < k − st − 1 (57)

since k ≥ 7 + n
2
and thus the operator PN − Op(pa) : H t−τ (Rn) →

H t(Rn) is continuous as claimed. �

Lemma 18. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 7+ n
2
. Then Op(pa−1) = Id+R1 where Id is an operator acting as

the identity on elements in H t+2−k(Rn) which are supported in the set

where ψ = 1 = φ and the remainder

R1 : H
t+2−k(Rn) → H t(Rn) (58)

is continuous when −k + 2 < t < k − 2.

Proof. By corollary 16 the principal symbol a−1 of N can be decom-
posed as

a−1(x, ξ) = Cψ(x) |ξ|−1
g(x) φ(x)− b(x, ξ) (59)

where b(x, ξ) is in Ck−2
x C∞

ξ (Rn × (Rn \ {0})) which is compactly sup-

ported in x and decays faster than |ξ|2−k in ξ. Therefore

p(x, ξ)a−1(x, ξ) = ζ(ξ)ψ(x)φ(x)− C−1ζ(ξ)b(x, ξ)

= ψ(x)φ(x)− (1− ζ(ξ))ψ(x)φ(x)− C−1ζ(ξ)b(x, ξ).
(60)

Since (1−ζ(ξ))ψ(x)φ(x) is smooth and compactly supported, it decays

faster than |ξ|−l for any l ∈ N. Since ψ(x)φ(x) equals to 1 on in the
set where ψ = 1 = φ the corresponding operator acts as the identity
on functions in H t+2−k(Rn) which are supported in this set. Also, by

lemma 15 the function ζ(ξ)b(x, ξ) decays faster than |ξ|2−k. Therefore,
since the support in x is compact and b ∈ Ck−2

x C∞
ξ (Rn × (Rn \ {0}))

and ζ(ξ) = 0 near ξ = 0 it follows from the definitions that

b̃(x, ξ) := −(1− ζ(ξ))ψ(x)φ(x)− C−1ζ(ξ)b(x, ξ) (61)

is a symbol in the class S2−k(k − 2, 1 + ⌊n
2
⌋). Therefore by lemma 6

that Op(b̃) : H t+2−k(Rn) → H t(Rn) for all −k + 2 < t < k − 2 since
1 + ⌊n

2
⌋ > n

2
, which proves the claim. �

Lemma 19. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 7 + n
2
. Then the operator

Op(pc) : H t−1(Rn) → H t(Rn) (62)

is continuous when −k + 6 + n
2
< t < k − 6− n

2
.
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Proof. Let s ∈ N be so that s ∈ (5 + n
2
, k). Since p is in S1(k −

s, s − 5) and c is in S−2(k − s, s − 5) by lemma 13 the product pc is
in S−1(k − s, s − 5). Furthermore, since s − 5 > n

2
it follows from

lemma 6 that Op(pc) continuously maps from H t−1(Rn) to H t(Rn) for
all −k + s < t < k − s. To see that the continuous mapping property
holds for all −k+6+ n

2
< t < k− 6− n

2
, we note that given any such t

we can choose any st ∈ N so that st ∈ (5 + n
2
, k − t) when t ≥ 0 or

st ∈ (5+ n
2
, k+t) when t < 0 and it holds that st ∈ N with st ∈ (5+ n

2
, k)

and −k + st < t < k − st. This finishes the proof. �

Lemma 20. Let (M, g) be a simple manifold with g ∈ Ck(M) for some

k ≥ 7 + n
2
. Let P = Op(p). Then there is ε > 0 so that PN = Id+R

where Id is an operator acting as the identity on elements in H t−τ (Rn)
which are supported in the set where ψ = 1 = φ and the remainder

R : H t−τ (Rn) → H t(Rn) (63)

is continuous whenever 0 < τ ≤ ε and

−k + 6 +
n

2
< t < k − 6−

n

2
. (64)

Proof. By lemma 13 we may write

PN = Op(pa) + (PN −Op(pa))

= Op(pa−1) + (PN −Op(pa)) + Op(pc).
(65)

Let τ ∈ (0, 1]. Then by lemma 17 we have that

PN −Op(pa) : H t−τ (Rn) → H t(Rn) (66)

is continuous for −(1−τ)(k−5− n
2
−τ) < t < k−6− n

2
. By lemmas 18

and 19 the operator Op(pa−1) is the identity up to an operator R1

that is smoothing by 2 degrees and Op(pc) is smoothing by 1 degree,
and therefore R1 and Op(pc) are also smoothing by τ degrees. More
precisely, Op(pa−1) = Id+R1, and we have that

R1 : H
t−τ (Rn) → H t(Rn) (67)

is continuous for −k + 2 < t < k − 2 and

Op(pc) : H t−τ (Rn) → H t(Rn) (68)

is continuous for −k+6+ n
2
< t < k−6− n

2
. Letting R be the sum of the

operators in (66), (67) and (68) we find that PN = Id+R. Now sup-
pose that τ is close enough to zero. Then the remainder continuously
maps H t−τ (Rn) to H t(Rn) for

−k + 6 +
n

2
< t < k − 6−

n

2
(69)

since k − 6 − n
2
is the smallest among the upper bound requirements

and when τ is close to zero −k+6+ n
2
is the largest of the lower bound.

This proves the claimed identity and the mapping properties. �
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4. Proofs of main theorems

In the last section we show that the parametrix construction in
lemma 20 in combination with the recent result [3, Theorem 1] can
be used to prove our main results.

Proof of theorem 1. Let f ∈ Hs
c (M) for some s > −k+6+n

2
and assume

that Nf = 0. Let supp f ⊆ Ω. There is a cut-off function φ ∈ C∞
c (M)

so that φf = f and moreover there is a cut-off ψ ∈ C∞
c (M) with

ψ = 1 on Ω so that Nf(x) = (ψNφ)f(x) = 0 for all x ∈ M . The
operator ψNφ has Schwartz kernel of the form (14) so by lemma 20
there is an operator P and ε > 0 so that P (ψNφ) = Id+R where
Id acts as the identity on elements in H t(Rn) with support in Ω and
R : H t

c(M) → H t+τ (Rn) is continuous for τ ∈ (0, ε] and

−k + 6 +
n

2
− τ < t < k − 6−

n

2
− τ. (70)

We may choose τ so small that s > −k + 6+ n
2
− τ . Then f ∈ Hs

c (M)
and

φf = P (ψNφ)f −Rf = −Rf. (71)

Thus φf ∈ H t+τ (Rn) and therefore f ∈ H t+τ
c (M).

Then let s < r < k−6− n
2
. By possibly choosing τ to be even smaller

we may assume that there is m ∈ N so that r < s+mτ < k−6− n
2
−τ .

Then by iterating m times the argument in the previous paragraph we
see that f ∈ Hs+mτ

c (M) ⊆ Hr
c (M) as claimed in the theorem. �

Proof of proposition 2. The composition of I and I∗ was computed
in [11, Lemma 8.1.5] for g ∈ C∞(M). The same computation works
for g ∈ Ck(M) when k ≥ 2. �

Proof of theorem 3. Let (M̃, g̃) be a simple extension of (M, g) and let

Ĩ be the X-ray transform of (M̃, g̃). Suppose that f ∈ L2(M) and
If = 0. Then zero extension of f to M̃ still denoted by f satisfies
Ĩf = 0. Therefore Ñf = Ĩ∗Ĩf = 0 by proposition 2 where Ñ and
Ĩ∗ are the operators on M̃ defined by (2) and (1) with all objects

replaced by corresponding objects of (M̃, g̃). Therefore by theorem 1
applied to the simple extension (M̃, g̃) implies that f ∈ Hr

c (M̃) for all
s < r < k − 6 + n

2
. Since k ≥ n + 8 there is some r ∈ R so that

⌈1 + n
2
⌉ < r < k − 6 + n

2
and f ∈ Hr

c (M̃). Sobolev embedding yields

Hr
c (M̃) ⊆W 1,∞(M̃) = Lip(M̃). (72)

Thus f ∈ Lip(M̃) and since f vanishes in M̃ \M we have f ∈ Lip0(M).
We see that f = 0 since I is injective on Lip(M) by [3, Theorem 1.]
which finishes the proof. �
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[6] Ivan Ivec and Ivana Vojnović. Basic calculus of pseudodifferential operators
with nonsmooth symbols. J. Pseudo-Differ. Oper. Appl., 13(2):Paper No. 13,
34, 2022.

[7] J. Marschall. Nonregular pseudo-differential operators. Z. Anal. Anwendungen,
15(1):109–148, 1996.

[8] Rohit Kumar Mishra, François Monard, and Yuzhou Zou. The C∞-
isomorphism property for a class of singularly-weighted x-ray transforms. In-
verse Problems, 39(2):Paper No. 024001, 24, 2023.

[9] François Monard, Richard Nickl, and Gabriel P. Paternain. Efficient nonpara-
metric Bayesian inference for X-ray transforms. Ann. Statist., 47(2):1113–
1147, 2019.

[10] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann. Tensor tomography:
progress and challenges. Chinese Ann. Math. Ser. B, 35(3):399–428, 2014.

[11] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann. Geometric inverse
problems—with emphasis on two dimensions, volume 204 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, Cambridge, 2023.
With a foreword by András Vasy.

[12] Leonid Pestov and Gunther Uhlmann. Two dimensional compact simple
Riemannian manifolds are boundary distance rigid. Ann. of Math. (2),
161(2):1093–1110, 2005.

[13] V. A. Sharafutdinov. Integral geometry of tensor fields. Inverse and Ill-posed
Problems Series. VSP, Utrecht, 1994.

[14] Plamen Stefanov and Gunther Uhlmann. Stability estimates for the X-ray
transform of tensor fields and boundary rigidity. Duke Math. J., 123(3):445–
467, 2004.

[15] Plamen Stefanov and Gunther Uhlmann. Boundary rigidity and stability for
generic simple metrics. J. Amer. Math. Soc., 18(4):975–1003, 2005.

[16] Plamen Stefanov and Gunther Uhlmann. Integral geometry on tensor fields on
a class of non-simple Riemannian manifolds. Amer. J. Math., 130(1):239–268,
2008.

[17] Plamen Stefanov and Gunther Uhlmann. The geodesic X-ray transform with
fold caustics. Anal. PDE, 5(2):219–260, 2012.

[18] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and
oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton
University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Mur-
phy, Monographs in Harmonic Analysis, III.



X-RAY TRANSFORM IN NON-SMOOTH GEOMETRY 17

[19] Michael E. Taylor. Partial differential equations. III, volume 117 of Applied
Mathematical Sciences. Springer-Verlag, New York, 1997. Nonlinear equations,
Corrected reprint of the 1996 original.



[D]

Geometric inverse problems on gas giants

Maarten de Hoop, Joonas Ilmavirta, Antti Kykkänen and Rafe Mazzeo

Preprint (March 2024)
https://arxiv.org/abs/2403.05475

Department of Mathematics and Statistics, University of Jyväskylä
Email address: antti.k.kykkanen@jyu.fi

https://arxiv.org/abs/2403.05475


ar
X

iv
:2

40
3.

05
47

5v
1 

 [
m

at
h.

D
G

] 
 8

 M
ar

 2
02

4

GEOMETRIC INVERSE PROBLEMS ON GAS GIANTS

MAARTEN V. DE HOOP, JOONAS ILMAVIRTA, ANTTI KYKKÄNEN,
AND RAFE MAZZEO

Abstract. On gas giant planets the speed of sound is isotropic
and goes to zero at the surface. Geometrically, this corresponds
to a Riemannian manifold whose metric tensor has a conformal
blow-up near the boundary. The blow-up is tamer than in asymp-
totically hyperbolic geometry: the boundary is at a finite distance.

We study the differential geometry of such manifolds, especially
the asymptotic behavior of geodesics near the boundary. We relate
the geometry to the propagation of singularities of a hydrodynamic
PDE and we give the basic properties of the Laplace–Beltrami
operator. We solve two inverse problems, showing that the interior
structure of a gas giant is uniquely determined by different types
of boundary data.

1. Introduction

The study of propagation of acoustic waves on a gas giant planet
leads to a Riemannian geometry that lies between asymptotically hy-
perbolic geometry and standard geometry with boundary. Some of the
phenomena in this geometry are unlike those seen at either end; for
example, constant curvature is not possible. We set out to study this
geometry, the related analytic model, and inverse problems for deter-
mining the geometry from boundary measurements.

On a gas giant planet, unlike a rocky planet, the speed of sound goes
to zero at the boundary. Geometrically, the power law decay rate of
the speed of sound corresponds to a specific conformal blow-up rate
of a Riemannian metric. This rate is slower than on asymptotically
hyperbolic manifolds and the boundary is at a finite distance from
interior points.

We study the basic geometry of gas giant Riemannian metrics, in-
cluding properties of geodesics near the boundary (Propositions 10
and 11), the Hausdorff dimension of the boundary (Proposition 15), and
discreteness of the spectrum of the Laplace–Beltrami operator (Propo-
sition 29).

We solve two inverse problems for simple gas giants planets, prov-
ing that the metric is uniquely determined by its boundary distance
data (Theorem 16) and that the geodesic X-ray transform is injective
(Theorem 17).

1
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A brief introduction to gas giant physics and how it leads to our
geometric model is given in Section 1.2 below and a more detailed
model is discussed in Section 5.

1.1. Gas giant geometry. Let M be an (n+1)-dimensional compact
manifold with boundary. A metric g on M is called a gas giant metric
of order α ∈ (0, 2) if it can be written in the form

g =
g

xα

where g is a smooth non-degenerate metric on M , including up to its
boundary. Observe that any such metric is incomplete. There are
two limiting cases: when α → 0, g becomes the ordinary incomplete
metric g on M , but when α → 2, then g converges to a complete
asymptotically metric of a type often called conformally compact; cf.
e.g. [Maz88]. We shall typically use a useful normal form. We may
choose local coordinates (x, y) onM , where x ≥ 0 and x = 0 but dx 6= 0
on ∂M and y restricts to a coordinate system on the boundary. There
is an associated collar neighborhood of the boundary U ∼= [0, 1)x×∂M

and a smooth family of metrics hx on ∂M such that

g =
dx2 + hx

xα
.

This is an analogue of the Graham-Lee normal form for conformally
compact metrics. We establish this below in Section 2.1.

Our goals in this paper are to develop a number of facts about the
geometry and analysis of this class of singular metrics. The first steps
involve a series of calculations concerning the more elementary geo-
metric considerations. We also consider the somewhat more subtle
problem of understanding the asymptotics of escaping geodesics, and
of the limiting dynamics of the geodesic flow. This leads to a first sort
of inverse question: is there a way to characterize a gas giant metric
intrinsically? More specifically, if (M◦, g) is an open manifold with an
incomplete metric, then is it possible to determine from this metric
alone the compactification M , as a smooth manifold with boundary,
the metric g, the constant α and the boundary defining function x?

We consider some deeper inverse problems related to this class of
metrics. In particular, we prove that the X-ray transform Ig on (M, g)
is injective. In the final sections of this paper we also consider the
Laplace–Beltrami operator ∆g. We study its spectrum, mapping prop-
erties and whether it is essentially self-adjoint.

This paper is an initial foray into the analysis and geometry of gas
giant metrics. Our aim here is to develop a number of fundamental re-
sults, either ab initio or as consequences of other related studies, which
will then make it possible to consider some deeper inverse problems
for this class of metrics. This paper splits into two not altogether dis-
tinct sections. In the first we develop a number of fundamental facts



GEOMETRIC INVERSE PROBLEMS ON GAS GIANTS 3

about the Riemannian geometry, including the behavior of geodesics,
for gas giant metrics. Some properties are slightly simpler in the spe-
cial case α = 1 but we present all our results for all values α ∈ (0, 2).
The second part of the paper studies various analytic properties of the
scalar Laplace–Beltrami operators for such metrics. In between these
two parts, we also prove some Pestov-type identities, which involve the
vector field generating geodesic flow on the cosphere bundle, and use
these to solve an inverse problem.

1.2. Geometry from the equation of state. As a leading order
approximation, we take a gas giant planet to be a ball and assume all
physical quantities to be invariant under rotations. Spherical symmetry
is irrelevant for the geometric model introduced above, but it makes
physics simpler.

Many celestial bodies are modelled to leading order as polytropes,
a far more detailed discussion of which can be found in [Hor04]. The
defining feature of a polytrope is the polytropic equation of state

p = Kρ1+1/n

relating the pressure p and the density ρ via the polytropic constant
K and the polytropic index n. The leading order approximation to
a self-gravitating and spherically symmetric polytropic body can be
written in terms of an auxiliary radial function θ(r) that satisfies p(r) =
p0θ(r)

n+1 and ρ(r) = ρ0θ(r)
n. If the ambient dimension is d and the

polytropic index satisfies n > −1, the function θ satisfies the Lane–
Emden equation

θ′′(r) + (N − 1)r−1θ′(r) + Crn = 0,

where C > 0. By rescaling the radial variable one can achieve C = 1.
At the surface of the body where r = R we have θ(R) = 0, and by

virtue of being a positive (inside the body) solution to the second order
Lane–Emden equation the function θ must satisfy θ′(R) < 0.

The speed of sound can be computed as the (isentropic) derivative

c =

√

∂p

∂ρ
= K ′ρ1/2n = K ′′p1/2(n+1) = K ′′′θ1/2

for new constants K ′ and K ′′ and K ′′′. This means that the speed of
sound is comparable to the square root of the distance to the surface, no
matter the value of the polytropic index. For gas giants the polytropic
index is usually taken to agree with the adiabatic index, which is n =
5/3 in the case of a monoatomic gas.

The polytropic model is only a leading order approximation and is
not expected to hold perfectly. Bodies are also not perfectly rotation-
ally symmetric due to rotation and inhomogeneities. Therefore we do
not take the polytropic model as the truth, but as a guide to choosing
a realistic mathematical model.
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If e is the Euclidean Riemannian metric on a smooth domain B ⊂
R

n, then the speed of sound c(r) can be modeled by the conformally
Euclidean Riemannian metric g = c−2e. For a symmetric planet B

would be a ball. If x is a boundary defining function for B (i.e. x(z) > 0
for z ∈ B, x(z) = 0 for z ∈ ∂B, and dx 6= 0 at ∂B), the polytropic
model suggests that c(z) ≈ x(z)1/2, and this is the simplest model for
a gas giant. For a rocky planet the speed of sound has a non-zero limit
at the boundary and so c(z) ≈ 1.

Therefore we take for a general model a speed of sound c(z) ≈
x(z)α/2. For a gas giant we expect the value of the parameter α to
be 1 and for rocky planets 0. For realistic gaseous celestial bodies
we may thus reasonably expect that α is close to 1. We thus allow
α ∈ (0, 2). The extreme case α = 0 corresponds physically to solid
bodies and mathematically to manifolds with boundary, and the other
extreme α = 2 corresponds to asymptotically hyperbolic geometry but
is far from all planetary models.

Therefore we say that a gas giant metric on a smooth manifold M

with boundary is a Riemannian metric g on M◦ so that g = x−αh,
where x is a boundary defining function for M and h is a well-defined
Riemannian metric up to the boundary. The fact that h is neither
zero nor infinite at ∂M implies a specific blow-up rate for g near the
boundary. This conformal power-law blow-up is the key geometric
feature of gas giant metrics. Both extremes α = 0 and α = 2 are quite
well understood mathematically, but the intermediate cases α ∈ (0, 2)
have been studied far less. The physically most relevant case α = 1
does not appear to be geometrically substantially different from other
values in the range we allow apart from some minor conveniences and
inconveniences that are not important for the present paper.

For a more detailed physical model for the hydrodynamics of a gas
giant planet, see Section 5 below.
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2. The geometry of gas giant manifolds

We begin with an ‘extrinsic’ study of the metric g = x−αg. Namely,
we assume that the metric takes this form and proceed to study its
various geometric properties.

2.1. Normal forms and asymptotic curvatures. A first observa-
tion is that if a metric g is know to be a gas giant metric for some α,
then this value can be determined from the intrinsic geometry of g.

Proposition 1. Suppose that g is an α-gas giant metric on the interior
of some manifold with boundary M . Then g is incomplete, and there is
a smoothly varying orthonormal basis of sections for TM such that the
sectional curvatures for 2-planes spanned by pairs of these basis vectors
are asymptotic to

−
2α

(2 − α)2
dist (·, ∂M)−2, and −

α2

(2− α)2
dist (·, ∂M)−2.

Thus α can be recovered from these asymptotic sectional curvatures.
We prove this Proposition below, but before doing so, first describe

a “normal form” for the metric near the boundary. This is modelled on
a very useful normal form, due to Graham and Lee [GL91, Lemma 5.2],
in the case when α = 2, in which case the metric g is complete, and is
called conformally compact. In that case, one can define g = x2g where
x is any choice of boundary defining function, and by definition, g is a
smooth non-degenerate metric up to the boundary. The restriction of
g to ∂M is a metric on the boundary; however, replacing x by x′ = ax

where a is any positive smooth function results in a new metric on ∂M

conformal to the first one. In other words, only the conformal class of
the metric is well-defined. The Graham–Lee theorem states that if h0 is
any representative of that conformal class, there is a unique boundary
defining function x such that

g =
dx2 + h(x, y, dy)

x2
, h(0, y, dy) = h0.

Here h is a family of metrics on ∂M (pulled back to the level sets
x = const.) depending smoothly on x, and y is any local coordinate
system of the boundary. In particular, − log x is a distance function
for the metric g.

In the gas-giant setting we can attempt to prove the same thing, but
there is no longer “free data” (analogous to the choice of representative
of the conformal class).

Proposition 2. Let g be an α gas giant metric. Then there is a well-
defined metric h0 on ∂M , and an associated boundary defining function
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x on M such that

g =
dx2 + h(x, y, dy)

xα
, where h(0, y, dy) = h0.

Proof. First choose an arbitrary boundary defining function x̃. We
modify it in two steps. In the first, we seek a new boundary defining
function x̂ = ax̃ such that |dx̂/x̂α/2|2g|∂M ≡ 1. For this, we compute

d(ax̃)

(ax̃)α/2
= a1−α/2 dx̃

x̃α/2
+O(x̃),

hence we simply need choose a along ∂M so that a2−α|dx̃|2/x̃α ≡ 1
there.

The metric h0 on ∂M is then defined as the pullback of x̂αg to the
boundary. The computation above shows that there is no leeway: the 1-
jet of the boundary defining function, and hence this boundary metric,
are completely fixed by the requirement that |dx/xα|g ≡ 1.

We now make a further change, setting x = eωx̂, and study the
equation |dx/xα/2|2g ≡ 1, not just at the boundary but in the collar
neighborhood of the boundary. Writing ĝ = x̂αg, we can rewrite this
as

e(2−α)ω
|dx̂+ x̂dω|2g

x̂α
= e(2−α)ω|dx̂+ x̂dω|2ĝ = 1.

Expanding and rearranging yields

|dx̂|2ĝ + 2x̂〈dx̂, dω〉ĝ + x̂2|dω|2ĝ = e(α−2)ω .

Using the normalization of x̂ and writing 〈dx̂, dω〉ĝ = ∂x̂ω, we recast
this in the form

x̂∂x̂ω = −x̂2|dω|2 + (1− |dx̂|2) +G(ω)ω, (1)

where G(ω) = ω−1(e(α−2)ω − 1) is a smooth function of ω (including
where ω vanishes). It is important to note that G(0) = α− 2 < 0.

This is a characteristic Hamilton–Jacobi equation. Fortunately the
main result in [GK12] is an existence theorem for equations of precisely
this form. That theorem applies to equations of the form

x̂∂x̂ω = F (x, y, ω, ∂yω), ω(0, y) = ω0(y),

where F (x, y, ω, q) is smooth and satisfies

F (0, y, ω0, ∂yω0) = 0, Fω(0, y, ω0, ∂yω0) < 1, Fq(0, y, ω0, ∂yω0) = 0.

The conclusion in [GK12] is that there exists a unique smooth solution
in some small interval 0 ≤ x̂ < x̂0. In the proof they observe that the
stronger condition Fω < 0 at (0, y, ω0, ∂yω0) implies that the solution
is unique even amongst continuing solutions.

To apply this theorem to our setting, we impose the initial condition
ω(0, y) = ω0 = 0. We then write x̂∂x̂ω + x̂2|dω|2ĝ = H(x̂∂x̂ω, x̂∂yω),
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where H(q1, q2) satisfies Hq1(0, 0) = 1, Hq2(0, 0) = 0. Applying the
implicit function theorem, we can thus rewrite (1) as

x̂∂x̂ω = F(x̂, y, ω, ∂yω)

where the differential of F in its third argument at ω0 = 0 equals G(0).
Since FωG(0) = α − 2 < 0, the result of Graham and Kantor can be
applied. In fact, even the stronger form, which gives uniqueness even
amongst all continuous solutions, also holds. �

We now return to the assertion about curvature asymptotics.

Proof of Proposition 1. We first compute sectional curvatures for the
warped product metric x−α(dx2 + h0). The shortest way uses Cartan’s
method of moving frames, which we recall briefly. We choose a g-
orthonormal family of 1-forms {ωi} which span T ∗

pM at each point.
Thus, essentially by definition, g =

∑

ωi ⊗ ωi. A simple lemma states
that there exist uniquely defined 1-forms ωij which are skew-symmetric
in the indices, i.e., ωji = −ωij , such that

dωi =
∑

j

ωij ∧ ωj.

This is called Cartan’s lemma, and the forms ωij encode the Levi-Civita
connection. We then define 2-forms

Ωij := dωij −
∑

k

ωik ∧ ωkj.

It is then not difficult to show (and this is explained in many sources)
that

Ωij = −
∑

k,ℓ

Rijkℓωk ∧ ωℓ,

where Rijkℓ are the components of the Riemann curvature tensor in
this basis at each point.

We apply this as follows. Let ω̄β, β = 1, . . . , n−1, denote a smoothly
varying orthonormal basis of 1-forms on (∂M, h0), and write

ω0 =
dx

xα/2
, ωβ =

ω̄β

xα/2
.

A short calculation then shows that for β, γ = 1, . . . , n− 1,

ωβγ = ω̄βγ, ωβ0 =
α

2
x(α−2)/2ωβ.

Here ω̄βγ are the connection 1-forms for the metric h0 on ∂M (extended
to the neighborhood U by the product decomposition).

Finally we compute that

Ωβγ =
α2

4
xα−2ωβ∧ωγ+O(xα), and Ωβ0 =

α

2
xα−2ωβ∧ω0+O(xα−1).
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The estimate of the remainder term uses, for example, that |Ωβγ|
2
g =

x2α|Ωβγ |
2
g. We conclude that the principal components of the curva-

ture tensor (which agree with the corresponding sectional curvatures
because of our use of orthonormal coframes) satisfy

Rβ0β0 ∼ −
α

2
xα−2, Rβγβγ ∼ −

α2

4
xα−2.

The function x is related to the distance function s by (1−α/2)x1−α/2 =
s, hence

Rβ0β0 ∼ −
−2α

(2 − α)2
, Rβγβγ ∼ −

α2

(2 − α)2
,

as claimed.
We have shown that any gas giant metric can be written in this sim-

ple warped product form up to remainders which are O(x). However,
there is something mildly circular in that we used an initial knowledge
of α in proving that normal form. To show that this is not a true
issue, observe that we can carry out with only moderately more work
the same computations as above if we only know that the metric g is
a gas-giant metric for some parameter α, and have set g = xαg for an
arbitrary boundary defining function x. The leading asymptotics then
determine the value of α just as above. �

We list a few more basic properties.

Proposition 3. If (M, g) is a gas giant metric, then Vol (M, g) < ∞
if and only if α < 2/n. If α > 2/n, then Vol ({x ≥ ε}) ∼ Cε1−nα/2,
while if α = 2/n, then Vol ({x ≥ ε}) ∼ −C log ε.

Proof. In the special coordinates above, dVg = x−nα/2dxdVh, so the to-
tal volume is finite if −nα/2 > −1, i.e., α < 2/n. The other assertions
are immediate. �

Proposition 4. The second fundamental form of the level sets {x = ε}
are strictly convex.

Proof. This is a standard computation, which is left to the reader. The
conclusion is that

∇∂yi
(−x∂x) =

α

2
∂yi +O(x).

This shows that the second fundamental form of these level sets is,
asymptotically, α/2 times the identity, and in particular is positive
definite. �

2.2. Geodesics. We now turn to a study of the geodesic flow on
(M, g).

In the following we always use an adapted coordinate system (x, y)
near the boundary, where x is the special boundary defining function
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obtained in Proposition 2 and y is any coordinate system on the bound-
ary. We denote by (ξ, η) the associated covectors. We shall use the
Hamiltonian formalism, namely we write the equations for the bichar-
acteristics for the Hamiltonian function

H(x, y, ξ, η) =
1

2
|(ξ, η)|2gx,y =

1

2
(xαξ2 + xαhij(x, y)ηiηj).

These bicharacteristics are curves in T ∗M which project to the geodesics
on M . These equations are:

ẋ =
∂H

∂ξ
= xαξ, ẏi =

∂H

∂ηi
= xαhij(x, y)ηj

ξ̇ = −
∂H

∂x
= −αx−1H(x, y, ξ, η)−

1

2
xα∂h

ij

∂x
ηiηj ,

η̇i = −
∂H

∂yi
= −

1

2
xα∂h

jk(x, y)

∂yi
ηjηk.

We may as well restrict to geodesics of a fixed speed, and thus sup-
pose that H ≡ 1/2 along the solution curves. This simplifies the first

summand in the equation for ξ̇ to being simply −α/2x. We often
write a bicharacteristic as (z(t), ζ(t)), where z(t) = (x(t), y(t)) and
ζ(t) = (ξ(t), η(t)).

Before we begin to analyze this system, there are some preliminary
observations. First, xα(ξ2 + hijηiηj) ≡ 2 along each orbit, so from this
it follows that if Aij is any matrix which is uniformly bounded on M ,
e.g., one written in terms of partial derivatives of the hij with respect
to any of the variables x or yk, then

∣

∣xαAijηiηj
∣

∣ ≤ C, (2)

along each orbit, where C depends only on the norm of A. In the
following, we use O(1), O(xα), etc., to denote quantities which are
bounded by C, Cxα, etc., where the constants C depend only on the
metric and are independent of the orbit.

Lemma 5. For ε > 0 small enough, if γ(t) = (z(t), ζ(t)) is any bichar-
acteristic with x(0) < ε and ξ(0) = 0, then ξ(t) < 0 for all t ∈ R.

Proof. The hypothesis is invariant with respect to replacing t by −t,
so we prove the assertion for t ≥ 0. First observe that, by (2),

ξ̇ = −αx−1 +O(1) < −
1

2
αε−1 < 0

if ε is sufficiently small. Again, the penultimate inequality here is
independent of the trajectory.

This argument shows that if ξ(0) = 0, then ξ(t) < 0 for t > 0
sufficiently small, but in fact it shows that for any t0 > 0, if ξ(t0) < 0
and x(t0) < ε, then ξ(t) remains bounded above by a strictly negative
constant. This proves that ξ(t) < 0 for all t ≥ 0, and for any t0 > 0,
ξ(t) ≤ −c < 0 for t ≥ t0. �
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Lemma 6. If γ(t) = (z(t), ζ(t)) is any bicharacteristic with x(0) < ε,
where ε is chosen as in Lemma 5, and ξ(0) ≤ 0, then z(t) converges
to a unique point (0, ȳ) ∈ ∂M at some finite time T > 0 and η(t)
converges to some η̄ as t ր T as well.

Proof. We have just shown that the function x(t) is strictly monotone
decreasing. Denote the maximal time of existence by T ≤ ∞. There
are a number of possibilities: either T < ∞ or T = ∞, and in each of
these cases, either x(t) ց x0 > 0 as t ր T or else x(t) ց 0. We aim
to show that T < ∞ and x(t) ց 0.

Suppose first that x(t) ց x0 > 0. If in addition T < ∞, then
the system of equations remains non-degenerate and we could simply
take a limit as t → T to define γ(T ) and then continue the solution
for later times t > T . On the other hand, if T = ∞, then using that
ξ̇(t) ≤ −c < 0 for t ≥ t0, we obtain ξ(t) → −∞, which would contradict
that xα

0 ξ
2 < xαξ2 ≤ 1. Neither of these scenarios are possible, hence

x(t) ց 0.
We next show that γ(t) reaches x = 0 in finite time. Since x is

monotone, we may use it as the independent parameter. Thus, writing
ξ = ξ(x), we have

dξ

dx
=

−(α/2)x−1 +O(1)

xαξ
=⇒

d

dx
ξ(x)2 = −αx−α−1 +O(x−α).

Writing the final term as x−αF , where F is bounded, and integrating
from x to 1, gives

ξ(1)2 − ξ(x)2 = (1− x−α) +

∫ 1

x

s−αF (s) ds,

whence ξ(x) = −x−α/2(1+O(x)+O(xα)). (The case α = 1 is of course
slightly different, but we omit the details.) Now insert this into the
equation for ẋ to get that

dx

dt
= xαξ =− xα/2(1 +O(x) +O(xα)) =⇒

x−α/2ẋ = −1 +O(x) +O(xα).
(3)

Bounding the last two terms by C(ε + εα), and integrating from t0 to
t1, we get

x(t1)
1−α/2 = x(t0)

1−α/2 − (1− α/2)(t1 − t0) +O(ε+ εα)(t1 − t0).

As t1 ր T , x(t1)
1−α/2 → 0, which then shows that t1 cannot become

arbitrarily large. This proves that T < ∞.
We next observe that by the Hamiltonian constraint, η̇i = O(1), and

and thus ηi(t) converges to some limiting value η̄i as t → T since T is
finite. Using this, we also conclude that yi(t) → ȳi, and furthermore
that

(y(t), η(t)) = (ȳ, η̄) +O(xα).



GEOMETRIC INVERSE PROBLEMS ON GAS GIANTS 11

Note, however, that ξ(t) is unbounded, and more specifically, ξ(t) ∼
−x(t)−α/2 → −∞ as t ր T . �

We now improve these estimates by showing that along a fixed tra-
jectory, the functions x(t), y(t), ξ(t) and η(t) have complete asymptotic
expansions in powers of τ = T − t as τ → 0. This is achieved by an
iteration argument and a careful examination of the methods used in
the preceding proof. To simplify notation below, we use τ as a new
independent variable, and for any function f(τ), denote df/dτ by f ′

(so f ′ = −ḟ). We proceed with the calculations, and summarize the
outcomes of all of this at the end.

First, integrate x−α/2x′ = O(1) from 0 to τ to get x(τ) = O(τ
2

2−α ).
Substituting this into (3) yields x−α/2x′ = 1 +O(τ 2/(2−α) + τ 2α/(2−α)),
which then implies that

x(τ) = (1− α/2)2/(2−α)τ 2/(2−α)(1 +O(τ 2/(2−α) + τ 2α/(2−α))). (4)

This gives a leading asymptotic term for the function x(τ).
For the next step, observe that since we have already proved that y

and η remain bounded, the equations of motion show that (y′, η′) =
O(xα) = O(τ 2α/(2−α)), so that

(y(τ), η(τ)) = (ȳ, η̄) +O(τ (2+α)/(2−α)). (5)

Finally,

ξ(τ) = −(1 − α/2)2/(2−α)τ−α/(2−α)(1 +O(τ 2/(2−α) + τ 2α/(2−α))). (6)

The equations (4), (5) and (6) show that each of the functions
x(τ), y(τ), ξ(τ), η(τ) has a leading asymptotic term plus a lower order
remainder as τ → 0. For many purposes this is sufficient. However, it
is straightforward to set up an inductive scheme to prove the existence
of complete polyhomogeneous expansions for these functions in pow-
ers of τ . (When α = 1, these expansions also involve positive integer
powers of log τ as well.) This is done by iteratively substituting the
partial expansions of these functions into the equations of motion and
integrating from 0 to τ , which produces an expansion with one further
term in the asymptotic plus an error term which vanishes even more
quickly.

Since it will be very helpful below, we carry out the first step of this
iteration. In the following, set

cα = (1− α/2)2/(2−α),

and for simplicity, indicate higher order remainders by “...”. Now,
insert the expansions (4) and (5) into the equation for y′i(τ) to get that

y′i(τ) = xαhij(x, y)ηj

= (cατ
2/(2−α) + . . .)αhij(cατ

2/(2−α) + . . . , ȳ + . . .)(η̄j + . . .)

= cαατ
2α/(2−α)hij(0, ȳ)η̄j + . . . ,



12 DE HOOP, ILMAVIRTA, KYKKÄNEN, AND MAZZEO

Note that hij(0, ȳ)η̄j = v̄i is the ith coordinate of the vector v̄ which is
h0-dual to η̄ at ȳ. Thus

y(τ) = ȳ + c′ατ
(2+α)/(2−α) v̄ + . . . ,

where c′α = α−1((2− α)/2)(2+α)/(2−α).
From this we immediately deduce the following.

Corollary 7. Any geodesic (x(t), y(t)) which approaches the boundary
does so along a curve asymptotic to

y − ȳ = c′′αx
(2+α)/2v̄

for some v̄ ∈ Tȳ∂M , where c′′α is a universal constant depending only
on α.

Collecting all of the calculations, and proceeding as explained above,
we have proved the following result.

Proposition 8. Each trajectory (z(t), ζ(t)) which remains in the region
{x < ε} for t ≥ 0 reaches the boundary at x = 0 at some finite time
T . The coordinate functions (x(t), y(t), ξ(t), η(t)) for a given trajectory
admit complete asymptotic expansions in powers of T − t (and when
α = 1, also log(T − τ). In particular, (y(t), η(t)) converges to some
fixed point (ȳ, η̄) in the cotangent bundle of the boundary as t → T .

We now consider all points (z0, ζ0), ζ0 ∈ T ∗
z0M , with 0 < x0 < ε,

where the forward trajectory (z(t), ζ(t)) remains in the region x < ε

for all t ≥ 0 and converges to x = 0. To simplify matters, assume that
ξ0 = 0, so that η0 satisfies the Hamiltonian constraint xα

0 |η0|
2
h(x0,y0)

= 1.
Our goal is to determine the dependence of the exit time T and exit
point (ȳ, η̄) as functions of (x0, y0, η0).

Lemma 9. The function T (x0, y0, η0) is smooth when x0 > 0 and has a
complete asymptotic expansion in powers of x0 as x0 → 0, with leading

term T ∼ cx
1−α/2
0 for some c > 0.

Proof. Strictly speaking, the analysis in the preceding proof assumes
that ξ(0) < 0. We arrange this by first using that the one-parameter
family of local diffeomorphisms Φt associated to this flow for some small
time t = ℓ(x0, y0, η0) > 0 defines a smooth map Φt(x0) : (x0, y0, η0) 7→
(x1, y1, ξ1, η1). We choose this function ℓ(x0, y0, η0) so that x1 = x0/2.
The “height” x1 depends on all the variables (x0, y0, η0) (and the func-
tion ℓ too), so the image of this map as η0 varies but (x0, y0) remains
fixed is a small (n − 2)-sphere which is not of constant height, but
along which ξ1 is everywhere negative. By Lemma 5, the continuing
trajectory converges to ∂M .

Now use that x(τ) = cτ 2/(2−α) + . . ., which implies, equivalently,
that τ = c′x(1−α/2) + . . .. These functions (and the terms in the ex-
pansions) are smooth in all the remaining data. This shows that the
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time τ needed to move along this given trajectory from (0, ȳ) to (x1, y1)
depends smoothly on (x0, y0, η0) and is polyhomogeneous in x0.

We have just shown that elapsed time h(x0, y0, η0) for the path to

move from x0 to x0/2 is on the order of c′′x
1−α/2
0 for some c′′ > 0.

This function is readily seen to be polyhomogeneous as x0 → 0, as
is the concatenation with the map that gives the elapsed time for the
trajectory to move from x0/2 to the boundary. �

We next study the “endpoint mapping” from the set of initial condi-
tions S := {(x0, y0, η0) : H(x0, y0, 0, η0) = 1/2} to the limiting covector
on the boundary:

F : S −→ T ∗∂M, F (x0, y0, η0) = (ȳ, η̄).

Of course, F is well-defined only when restricted to the set Sε =
{(x0, y0, η0) ∈ S : 0 < x0 < ε} for some sufficiently small ε, and
we henceforth fix such an ε and the restriction of F to this set. Note
that both the Hamiltonian constraint set Sε and T ∗∂M are (2n − 2)-
dimensional. In the following, we systematically identify covectors
ζ = (ξ, η) with vectors v using the metric g. However, for covectors
(ȳ, η̄) ∈ T ∗

ȳ ∂M , we identify η̄ with a vector v̄ ∈ Tȳ∂M via the metric h0.

Proposition 10. The map F : Sε −→ T ∗∂M is a diffeomorphism
onto its image. Furthermore, it is smooth, in a precise sense to be
made explicit during the course of the proof, in the limit as x0 → 0.

Proof. First note that along geodesics starting on Sε, we have that
ξ = −x−α/2(1/2 − xαhij(x, y)ηiηj)

1/2. Inserting this into the equation
for ẋ yields that

dx

dt
= −xα/2(1/2− xαhij(x, y)ηiηj)

1/2 =: −xα/2K.

The quantity K is simply the second factor with the square root. As
we have done before, let us shift to using x as the independent variable.
We can then rewrite the equations for ẏi and η̇i as

dyi

dx
=

dyi/dt

dx/dt
= −xα/2hij(x, y)ηj,

dηi

dx
=

dηi/dt

dx/dt
=

1

2
xα/2∂yih

pq(x, y)ηpηq.

What we have done is to rewrite the equations for (y, η) as “self-
contained” equations involving only the new independent variable x

and (y, η). This system takes the form

d

dx

[

y

η

]

= xα/2K(x, y, η)G(x, y, η), where G(x, y, η) =

[

−hijηj
1
2
∂yih

pqηpηq

]

.

Rewrite this as x−α/2 d
dx

[

y

η

]

= K(x, y, η)G(x, y, η). This suggests that

we reparametrize again, setting u = x1+α/2/(1 + α/2) so that d
du

=
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dx
du

d
dx

= x−α/2 d
dx
. The system then becomes

d

du

[

y

η

]

= K(x(u), y, η), G(x(u), y, η).

Finally, the endpoint map we are studying corresponds to the flow of

this system between the two values u0 = x
1+α/2
0 /(1 + α/2) and u1 = 0.

Since x(u) = (1 + α/2)2/(2+αu2/(2+α), the functions on the right are
polyhomogeneous in u, but not smooth at u = 0. However, the lack
of full regularity in the independent variable is not relevant in the
key fact needed here, which is smooth dependence on initial condi-
tions (u0, y0, η0). This map Sε ∋ (x0, y0, η0) 7→ (y(0), η(0)) is this thus
smooth, and patently reversible, hence defines a diffeomorphism from
the domain Sε to its image, an open subset of T ∗∂M .

For the final statement, we employ a scaling argument to study this
map as x0 → 0. Fix a point (0, 0) ∈ ∂M , and consider the family of
dilations δλ : (x, y) 7→ (λx, λy). The pullback of the fixed metric g with
respect to δλ is

δ∗λ(x
−α(dx2 + hij(x, y)dy

idyj)) = λ2−αx−α(dx2 + hij(λx, λy)dy
idyj),

and after normalizing, this has a limit:

lim
λ→0

λα−2δ∗λg = x−α(dx2 + hij(0, 0)dy
idyj).

This last metric is defined on the entire half-space Rn
+ = {(x, y) ∈ R

n :
x > 0}. The (co)geodesic flow of these dilated rescaled metrics are
simply reparametrizations of the geodesics for the initial metric g.

We employ this as follows. To understand the behavior of F (x0, y0, η0)
as x0 → 0, it suffices to consider the family of mappings Fx0

(1, y0, η0)
which are defined in the same way as F , but for the family of rescaled
metric xα−2

0 δ∗x0
g. These rescaled metrics converge smoothly as x0 → 0,

and this implies easily that this family of mappings Fx0
also converge

smoothly. �

With this analysis, we can now use the map F to understand further
maps of interest.

Proposition 11. Let y1 and y2 be two nearby points on ∂M . Then
there exists a unique geodesic γ which connects y1 to y2.

Proof. Given any (y1, η1) and a point (x0, y0) with y0 sufficiently near
to y1, x0 sufficiently small and |η1| ≤ C, there exists a unique trajec-
tory (x(t), y(t), ξ(t), η(t)) with initial condition (x0, y0, 0, η0) for some
η0 satisfying H(x0, y0, 0, η0) = 1/2 and such that (y(t), η(t)) → (y1, η1).
Now follow this trajectory past (x0, y0). This continuation hits the
boundary at some point (ȳ, η̄) = F (x0, y0,−η0). The elapsed time for
the entire trajectory is T (x0, y0, η0) + T (x0, y0,−η0). This defines a
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smooth invertible map, which is the analogue of the scattering relation
in this setting,

E : T ∗∂M → T ∗∂M, E(y1, η1) = (ȳ, η̄).

Now fix y1 and project E off the η̄ component. Since there are no conju-
gate points, this defines a diffeomorphism from a small punctured ball
Bc(0) \ {0} ⊂ T ∗

y1
∂M of non-zero covectors to its image, a punctured

neighborhood of y1 in ∂M . Thus to every y2 in this neighborhood,
there exists some η1 such that E(y1, η1(y2)) = (y2, η2) for some η2.
This associates to the pair (y1, y2) first the covector (y1, η1) and then
the apex of the corresponding geodesic F−1(y1, η1), and finally the en-
tire geodesic. �

We have now shown that the interior distance function dg(y1, y2) is
well-defined for (y1, y2) lying in a sufficiently small punctured neigh-
borhood of the diagonal of (∂M)2. Let us reparametrize the space
of such pairs with the new variables (ȳ, v̄); here ȳ is defined as the
midpoint of the h0-geodesic connecting y1 to y2 and v̄ ∈ Tȳ∂M is the
tangent vector to that geodesic (in the direction from y1 toward y2)
with length dg(y1, y2)/2. Thus y1, y2 = exph0

ȳ (±v̄). Write v̄ = rω in
spherical coordinates, so r = dg(y1, y2)/2 ≥ 0 and ω ∈ Sn−2.

Corollary 12. The interior distance function dg(y1, y2) is polyhomo-
geneous as r → 0, with dg(y1, y2) ∼ r1−α/2.

Proof. We have already shown that that there is a well-defined diffeo-
morphism which maps (y1, y2) to (x0, y0, η0). We also analyzed that
this map has a smooth limit as y2 → y1, i.e., for r → 0. In particu-
lar, x0 depends smoothly on r. Next, by Lemma 9, the elapsed times
T (x0, y0,±η0) to descend either of the two halves of this geodesic to-
ward y1 and y2 are polyhomogeneous as x0 → 0. Finally, the lengths
of these two half-geodesics γ± are computed using the usual formula

ℓ(γ±) =

∫ T (x0,y0,±η0)

0

|γ′
±(t)| dt,

which is smooth in T , and hence polyhomogeneous in x0 and thus also

in r . Since T ∼ cx
1−α/2
0 , this is the behavior of dg(y1, y2) as well. �

We note that it is possible to arrive at essentially the same conclu-
sion, at least at the level of an estimate of order of growth but without
the expansion, by a more elementary method.

Proposition 13. Then there are uniform constants 0 < C1 < C2 so
that

C1dg(y1, y2) ≤ dh0
(y1, y2)

1−α
2 ≤ C2dg(y1, y2).

for all y1, y2 ∈ ∂M .

Remark 14. Observe that this result shows in yet a different way that
boundary measurements determine α.
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Proof of proposition 13. It is convenient here to use coordinates (s, y)
where

g = ds2 + s−β(1− α/2)−βh(s, y, dy) and h(0, y, dy) = h0. (7)

In fact, s = x1−α/2/(1− α/2) and β = 2α/(2− α).
Suppose, as before, that y1, y2 ∈ ∂M are sufficiently close to one

another. We work locally near the boundary in the coordinates (s, y)
so that the metric is of the form (7), and in particular the distance of a
point (s, y) to the boundary is s. Let γ be the unique interior geodesic
connecting these boundary points, and set k = maxt dg(∂M, γ(t)). In
the following, Cα denotes various positive constants depending on α

but not y1, y2.
We now approximate γ by a “quasi-geodesic”. Define curves γ1, γ2 by

γj(t) = (t, yj), j = 1, 2, 0 ≤ t ≤ ε, where ε is to be determined, and let
γ3 be the interior geodesic which connects γ1(ε) to γ2(ε). Denote by γε
the concatenation of these three curves; this connects y1 to y2. Hence
dg(y1, y2) ≤ minε ℓg(γε), the length with respect to g of this piecewise
curve. Furthermore,

lg(γε) = lg(γ1) + lg(γ2) + lg(γ3) = 2ε+ Cαε
− α

2−αdh(y1, y2). (8)

The right-hand side of (8) is minimized at ε = Cαdh(y1, y2)
1−α

2 . This
gives

dg(y1, y2) ≤ Cαdh0
(y1, y2)

1−α
2 + Cαdh0

(y1, y2)(dh(y1, y2)
1−α

2 )−
α

2−α

= Cαdh0
(y1, y2)

1−α
2 .

Next, choose t0 so that k = dg(∂M, γ(t0)). Writing γ(t) = (s(t), y(t)),
then

ℓg(γ) ≥

∫ ℓg(γ)

0

|ṡ(t)| dt =

∫ t0

0

ṡ(t) dt−

∫ ℓg(γ)

t0

ṡ(t) dt = 2k. (9)

On the other hand, since s(t) ≤ s(t0) on the entire geodesic,

ℓg(γ) ≥

∫ ℓg(γ)

0

s(t)−
α

2−α |ẏ(t)|h0
dt ≥ s(t0)

− α
2−α

∫ ℓg(γ)

0

|ẏ(t)|h0
dt

≥ k− α
2−αdh0

(y1, y2).

(10)

Combining (9) and (10), we obtain that dg(y1, y2) ≥ Cαdh0
(y1, y2)

1−α
2 ,

while combining (8) and (10) yields k ≥ Cαdg(y1, y2). Therefore all
dg, dh0

and k are comparable with constants only depending on α as
claimed. �

Proposition 15. The Hausdorff dimension of (∂M, dg) equals
2

2−α
(n−

1). The Hausdorff dimension of M equipped with this same metric
equals max{n, 2

2−α
(n− 1)}.

Proof. By Proposition 13, (∂M, dg) and (∂M, d
1−α

2

h0
) are bi-Lipschitz

equivalent, and hence have the same Hausdorff dimension. It is enough
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then to compute dim (∂M, d
1−α

2

h0
). For simplicity, write this metric

space as (∂M, dα).
It follows from the definition of Hausdorff measure that for all δ > 0,

Hδ(∂M, dα) = H(1−α/2)δ(∂M, dh0
), hence

dimH(∂M, dα) =
2

2− α
dimH(∂M, dh0

) =
2

2− α
(n− 1).

This proves the first claim. As for the second, this follows since M =
∂M ∪M◦ and dimH(M

◦, dg) = n. �

2.3. A travel time inverse problem for a gas giant. As a first
application of our study of geodesics on gas giants, we consider a pre-
liminary inverse problem which asks whether the interior geometry of
a gas giant can be recovered (modulo isometries) from knowledge of
the Riemannian distances from interior points to the boundary. This
simple application can be seen as a proof of concept of our gas giant
geometry, leading to a proof as simple as that in the case α = 0.

The corresponding result is known both for compact Riemannian
manifolds with boundary [KKL01] and in the Finsler setting [dHILS19].
There is a more straightforward proof [ILS23] in the Riemannian case
when the metric is simple using a version of the Myers–Steenrod theo-
rem from [dHILS23]. The result here is related to this simpler version.

Theorem 16. Let M be a compact manifold with boundary and, for
i = 1, 2, suppose that gi are simple αi-gas giant metrics on M . Denote
by di : M × M → R

+ the associated Riemannian distance functions.
Define the maps ri : M → C(∂M), where ri(x) is the function which
sends ∂M ∋ z 7→ di(x, z).

If the ranges of the two maps r1 and r2 are the same in C(∂M), then
α1 = α2 and g1 is isometric to g2 by a diffeomorphism which is the
identity on ∂M .

Proof. First note that each map ri is well-defined, i.e., ri(x) is indeed
a continuous function on ∂M . For standard incomplete metrics, this
follows immediately from the triangle inequality. In this setting, the
same conclusion holds because, if z, z′ ∈ ∂M and dhi

is the distance
function associated to the metric hi on ∂M , then using the analysis
of the last section gives the continuity estimate |di(x, z) − di(x, z

′)| ≤
dhi

(z, z′)1−αi/2. We also observe the unique continuous extension of di
to the closed manifold with boundary is also well-defined and continu-
ous.

Next, it is also straightforward to check that each ri is injective.
Indeed, if there were to exist two distinct points x, x′ ∈ M◦ such that
ri(x) = ri(x

′), i.e., di(x, z) = di(x
′, z) for all z ∈ ∂M , then consider the

maximally extended geodesic γ which is length minimizing between any
two of its points (this is where we use simplicity of the metrics) passing
through x and x′. Suppose that one end of γ meets ∂M at a point z,
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with x′ between x and z. Then clearly ri(x)(z) = ri(x
′)(z) + di(x, x

′),
so ri(x) 6= ri(x

′) in C(∂M). The extended maps from all of M are also
injective.

Continuing this same line of reasoning, we claim that in fact, if x, x′ ∈
M◦, then ‖ri(x)− ri(x

′)‖∞ = di(x, x
′). This follows since, on the one

hand, by the triangle inequality, ‖r(x)− r(x′)‖∞ ≤ d(x, x′), while on
the other, choosing the minimizing geodesic γ as above, then d(z, x)−
d(z, x′) = ±d(x, x′), whence ‖r(x)− r(x′)‖∞ ≥ dg(x, x

′).
As continuous injective maps from the compact Hausdorff space

(M, di) to C(∂M), each ri is a homeomorphism onto the common im-
age r1(M) = r2(M). We may then define Ψ := r−1

2 ◦ r1 : M → M . By
construction, this is a bijective metric isometry.

If x ∈ ∂M , then 0 = r1(x)(x) = r2(Ψ(x))(x), so x = Ψ(x), i.e., Ψ is
the identity on the boundary. The fact that Ψ is a Riemannian isometry
from (M◦, g1) to (M◦, g2) is then a consequence of the Myers–Steenrod
theorem [MS39, Pal57]. �

3. Geodesic X-ray tomography on a gas giant

This section studies the problem of unique reconstructibility of a
function on a gas giant from the knowledge of its X-ray data i.e. in-
tegrals over all maximal geodesics. We prove that the X-ray data
uniquely determines functions smooth up to the boundary.

The study of geodesic X-ray tomography in standard smooth Rie-
mannian geometry originated in the work of Mukhometov [Muh77],
who first proved the case α = 0 of our theorem 17 below. For a com-
prehensive survey of the results, history and motivation of geodesic
X-ray tomography, see [Sha94, IM19, PSU23]. The X-ray transform is
known to be injective on Cartan–Hadamard manifolds (see [LRS18])
and in asymptotically hyperbolic geometry (see [GGSU19]). These re-
sults are the closest relatives to our Theorem 17.

Theorem 17. Let M be a smooth manifold with boundary of dimension
n + 1 ≥ 2. Let g = x−αg be a gas giant metric on M for some α ∈
(0, 2) which is simple, i.e., non-trapping and free of conjugate points.
Suppose that a function f ∈ C∞(M̄) has zero integral over all maximally
extended g-geodesics. Then f = 0.

The proof of this theorem is based on a Pestov identity method. We
begin by recalling relevant terminology, and refer to [Pat99] for more
details about the geometry of unit sphere bundles.

3.1. Pestov identity with boundary terms on a regular bound-

ary. Let (M, g) be any compact smooth Riemannian manifold with
smooth boundary (in this subsection g is assumed to be smooth up to
∂M), and S∗M its unit cosphere bundle. This has the standard projec-
tion π : S∗M → M , as well as a connection map K : TS∗M → TM , de-
fined by K(θ) = Dtc

♯(0); here c is any curve in S∗M with c(0) = (x, ξ)
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and ċ(0) = θ, c♯(t) = c(t)♯ is the family of dual covectors, and Dt is the
Levi-Civita connection along π(c(t)).

There is an orthogonal decomposition

TS∗M = RX ⊕H⊕ V, V = Ker dπ, H = KerK. (11)

We denote by N → S∗M the bundle whose fibers are Nx,ξ = Ker ξx ⊆
TxM . The maps dπ|H : H → N and K|V : V → N are isomorphisms
and we freely identify H⊕V = N ⊕N . We define the Sasaki metric G
on S∗M by

G(θ, θ′) = g(dπ(θ), dπ(θ′)) + g(K(θ), K(θ′))

for θ, θ′ ∈ Tx,ξS
∗M . The splitting (11) of TS∗M is orthogonal with

respect to G.
The G-gradient of a smooth function u on S∗M can be written as

∇Gu = (Xu,∇Hu,∇Vu)

where the horizontal and vertical gradients ∇Hu and ∇Hu are smooth
sections of the bundle N andX is the Hamiltonian vector field on S∗M .
The Riemannian curvature tensor maps sections W of N to sections of
N by the action

RW (x, ξ) = R(W (x, ξ), ξ♯)ξ♯.

Let dΣ be the volume form of the Sasaki metric.
Now pull the volume form dΣ by the inclusion ∂S∗M → S∗M to get

a natural volume form dσ on ∂S∗M . For all u ∈ C∞(S∗M) define

B(u) :=

∫

∂S∗M

〈∇Vu,∇Hu〉+ nuXu dσ.

The following Pestov identity was proved in [GGSU19, p. 60].

Lemma 18. With notation as above, then for all u ∈ C∞(S∗M),

‖∇VXu‖2 = ‖X∇Vu‖2 − (R∇Vu,∇Vu) + n‖Xu‖2 +B(u). (12)

Remark 19. By approximation, the identity (12) continues to hold if
u ∈ C1(S∗M) has ∇VXu ∈ L2(N) and X∇Vu ∈ L2(N).

3.2. Proof of theorem 17. We return to the case where g is a simple
gas giant metric and present the proof of theorem 17 using a collection
of lemmas, the proofs of which appear in sections 3.3, 3.4 and 3.5.

Lemma 20. Let g be a simple α-gas giant metric on M , and let f ∈
C∞(M̄). If f integrates to zero over all maximally extended g-geodesics
of M then f ∈ x∞C∞(M).

Lemma 21. Let g be a simple α-gas giant metric on M , and suppose
that f ∈ x∞C∞(M). Then there is a solution u ∈ x∞C∞(S∗M◦) to the
transport equationXu = −f in S∗M◦ with ∇Gu ∈ x∞L∞(S∗M ;TS∗M)
and X∇Vu,∇VXu ∈ L2(N).
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Lemma 22. Let u ∈ x∞C∞(S∗M◦) satisfy Xu = −f as well as
∇VXu,X∇Vu ∈ L2(N) and ∇Gu ∈ x∞L∞(S∗M ;TS∗M). Then

‖∇VXu‖2 = ‖X∇Vu‖2 − (R∇Vu,∇Vu) + n‖Xu‖2.

In the following, C∞(N◦) denotes the space of sections of N which
are smooth over the interior S∗M◦.

Lemma 23. Let g be a simple α-gas giant metric on M . Then

Q(W ) = ‖XW‖2 − (RW,W ) ≥ 0

for all W ∈ x∞C∞(N◦) with W ∈ x∞L∞(S∗M ;TS∗M).

Proof of theorem 17. Suppose that f ∈ C∞(M) integrates to zero over
all maximally extended geodesics. Then f ∈ x∞C∞(M) by Lemma 20
and so by Lemma 21 there is a solution u ∈ x∞C∞(S∗M◦) to the
transport equation Xu = −f with ∇Gu ∈ x∞L∞(S∗M ;TS∗M) and
∇VXu,X∇Vu ∈ L2(N). Apply the Pestov identity in Lemma 22 to u

to get

‖∇Vf‖2 = Q(∇Vu) + n‖f‖2. (13)

Since f is the lift of a function on M to S∗M , ∇Vf ≡ 0. In addition,
Q(∇Vu) ≥ 0. Thus by Lemma 23, the Pestov identity (13) reduces to
0 ≥ n‖f‖2, so f ≡ 0 as claimed. �

3.3. Boundary determination. In this section we prove that a func-
tion smooth up to the boundary of M is uniquely determined to any
order at the boundary by its integrals over all maximal g-geodesics in
M . We first prove an auxiliary result about geodesics converging to a
given boundary point.

Lemma 24. Let g be a simple α-gas giant metric on M . For any
ȳ ∈ ∂M , there exists a sequence ζk ∈ S∗

ȳM such that the lengths lg(γk)
of the bicharacteristics γk(t) = (zk(t), ζk(t)) with γk(0) = (ȳ, ζk) are
positive for all k and converge to zero as k → ∞.

Proof. Choose a smooth boundary curve c : (−ε, ε) → ∂M with c(0) =
ȳ, and set ȳk := c(1/k). By simplicity, there is a unique unit speed
bicharacteristic γk(t) = (zk(t), ζk(t)) with zk(0) = ȳ, zk(τk) = ȳk; here
τk is the exit time of zk (this is finite by lemma 6). We then let ζkζk(0).
Since ȳk 6= ȳ, each lg(γk) has positive length. Moreover, by Proposi-
tion 13 we have

lg(γk) = dMg (ȳk, ȳ) ≤ Cd∂Mh (ȳk, ȳ)
1−α/2,

so the lengths converge to zero, as needed. �

We can now prove the following boundary determination lemma.
We use arguments similar to the proof of [LSU03, Theorem 2.1]. The
only step in its proof where simplicity of the metric is needed is when
Lemma 24 is invoked.
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Proof of lemma 20. We prove by induction on ℓ that for all ȳ ∈ ∂M

and every ℓ ≥ 0, (∂ℓ
xf)(0, ȳ) = 0.

When ℓ = 0, choose a sequence ζk ∈ S∗
ȳM so that that the cor-

responding bicharacteristics γk(t) = (zk(t), ζk(t)) have lengths lg(γk)
tending to zero, as in Lemma 24. By hypothesis,

1

τk

∫ τk

0

f(zk(t)) dt = 0,

where τk is the length of the geodesic zk. Since f is smooth, there exist
tk ∈ (0, τk) such that f(zk(tk)) = 0. Clearly tk < τk → 0. Thus

f(0, ȳ) = lim
k→∞

f(zk(tk)) = 0,

as claimed.
Now assume, for any ℓ > 0, that ∂j

xf(x, y)|(0,ȳ) = 0 for all 0 ≤
j < ℓ. We prove that (∂ℓ

xf)(0, ȳ) = 0 by assuming the contrary, that
(∂ℓ

xf)(0, ȳ) 6= 0 and arriving at a contradiction.
Assume that (∂ℓ

xf)(0, ȳ) > 0. Since f is smooth, (∂ℓ
xf)(x, y) > 0 for

all (x, y) in some neighborhood U of (0, ȳ). Taking the Taylor expansion
of f at any (0, y) and using the inductive hypothesis, we have that

f(x, y) = xℓ∂ℓ
xf(0, y) +O(xℓ+1).

By the positivity of the ℓth derivatives, there is a smaller neighbourhood
ȳ ∈ U ′ ⊆ U such that f(x, y) > 0 in U ′. Since lg(γk) → 0, the entire
geodesic zk lies in U ′ when k is large. Hence the integral of f over zk
cannot vanish, a contradiction.

This proves that f vanishes to order ℓ along ∂M , and since this is
true for all ℓ > 0, we are done. �

As a corollary of this Lemma, we prove that the transport equation
Xu = −f admits a solution which is smooth in M◦, and that this
solution vanishes to all orders at ∂M if f ∈ C∞(M) is in the kernel of
the X-ray transform.

Given f ∈ C∞(M̄), we define uf to be the function on S∗M defined
by the formula1

uf(z, ζ) =

∫ τ(z,ζ)

0

f(φt(z, ζ)) dt;

here f is identified with its pullback π∗f , and φt(z, ζ) is the cogeodesic
flow.

Corollary 25. Let g be a simple α-gas giant metric on M , and let
f ∈ C∞(M̄). If the integral of f over all maximal geodesics in M is
zero, then uf solves the transport equation Xu = −f in S∗M◦, and
uf ∈ x∞C∞(S∗M◦).

1In this section, unlike above, we denote the exit time by τ to adhere with the
common convection.
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Proof. Since f , φt and τ are all smooth (see Lemma 9), clearly uf ∈
C∞(S∗M◦).

We prove that uf(z, ζ) = O(xℓ) for all ℓ > 0, where the constant
depend only on ℓ. It suffices to prove this at (z0, ζ0) ∈ S∗M◦, so that
x0 ∈ (0, ε) and ξ0 < 0. For positive ξ0 the claim follows from this one
and vanishing integrals of f over maximal geodesics.

Let γ(t) = (z(t), ζ(t)) be a bicharacteristic γ(0) = (z0, ζ0). We have
already shown that f(x, y) = O(xℓ) for any ℓ. Since x(t) is strictly
decreasing by lemma 5 and g is non-trapping, we have

∣

∣uf(z0, ζ0)
∣

∣ ≤

∫ τ(z0,ζ0)

0

|f(φt(z0, ζ0)| dt ≤ Ck

∫ τ(z,ζ)

0

x(t)ℓ dt

≤ C̃kx(0)
ℓ = C̃kx

ℓ
0

for all ℓ > 0, hence uf ∈ x∞C∞(S∗M◦).
To prove that uf solves Xu = −f in S∗M◦, we compute just as for

the classical case of metrics smooth up to the boundary. The point is
simply that X differentiates along the cogeodesic flow and uf is defined
by integration along the orbits of this flow. �

3.4. Derivatives of the integral function. We now prove lemma 21.
This involves an estimate of the derivatives of uf , where f has vanishing
X-ray transform. The first step is to show that normal Jacobi fields
cannot blow up at the boundary with respect to the metric g = xαg.

Lemma 26. Let J(t) be a Jacobi field everywhere normal to a bicharac-
teristic curve (z(t), ζ(t)) with x(0) < ε and ξ(0) ≤ 0. Then |J(t)|g ≤ C

and |DtJ(t)|g ≤ Cx(t)−1 for all t ∈ [0, τ(z(0), ζ(0))].

Proof. Choose any local coordinate system on M near the endpoint of
the projected geodesic. The Jacobi equation takes the form

J̈ i + 2Γi
jkγ̇

jJ̇k + (∂kΓ
i
jl)γ̇

jγ̇lJk = 0,

where J̈ and J̇ denote the usual derivatives of the coordinates of J with
respect to t. The Christoffel symbols of the actual metric g are

Γ0
00 = −

α

2
x−1, Γ0

i0 = 0, Γm
00 = 0

Γ0
ij = −

α

2
x−1hij +

1

2
hij

Γm
i0 = −

α

2
x−1δmi +

1

2
hmk∂xhki

Γi
jk =

1

2
hmk(∂jhki + ∂ihkj − ∂khij) := H i

jk,
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where H i
jk is defined by this last equality. When J(t) is normal to z(t),

the Jacobi equation reduces to

0 = J̈ i + 2Γi
0kẋJ̇

k + 2Γi
jkẏ

jJ̇k + 2(∂kΓ
i
0l)ẋẏ

lJk + (∂kΓ
i
jl)ẏ

j ẏlJk

= J̈ i − αx−1ẋJ̇ i + (hil∂xhlkẋ+ 2H i
jkẏ

j)J̇k

+ (∂k(h
ip∂xhpl)ẋẏ

l + (∂H i
jl)ẏ

jẏl)Jk.

(14)

The coefficient of the third term on the right, involving J̇k, is bounded
for x ≥ 0, and since ẏ = O(xα), equation (14) becomes

J̈ i − αx−1ẋJ̇ i + F i
kJ̇

k + xαGi
kJ

k = 0 (15)

for some bounded functions F i
k and Gi

k.
Equation (15) can be reduced to a non-singular equation by rescaling

J̇ . Define W1(t) = J(t) and W2(t) = x(t)−αJ̇(t), so that Ẇ1 = xαW2.
Substituting into (15) gives

0 = αxα−1ẋW i
2 + xαẆ i

2 − αxα−1ẋW i
2 + xαF i

kW
k
2 + xαGi

kW
k
1

which reduces to Ẇ i
2 = −F i

kW
K
2 − Gi

kW
k
1 . This shows that W =

(W1,W2) satisfies Ẇ = AW where

A =

(

0 xαI

−G −F

)

and I is the identity matrix, and F = (F i
k) and G = (Gi

k).
It suffice to prove boundedness of the Jacobi field in the Euclidean

metric e with respect to the (x, y) coordinates. We compute

∂t |W (t)|2e = 2Ẇ (t) ·W (t) = 2A(t)W (t) ·W (t).

Since A is continuous up to ∂M , and hence bounded, we get ∂t |W (t)|2e ≤

C |W (t)|2e. By Grönwall’s inequality, |W (t)|2e ≤ C |W (0)|2e. This proves

that |J(t)|2e ≤ C and |J̇(t)| ≤ Cx(t)2α, and hence |DtJ(t)|e ≤ Cx(t)−1,
as claimed. �

By Lemma 26, we can now estimate derivatives of uf .

Lemma 27. If f ∈ x∞C∞(M), then ∇Gu
f(z, ζ) = O(xℓ) for any ℓ ≥ 0,

where the constants are uniform in (z, ζ) ∈ S∗M◦.

Proof. It suffices to prove that ∂θu
f(z, ζ) = O(xℓ) uniformly on S∗M◦,

where x < ε, ξ ≤ 0 and θ ∈ Tz,ζS
∗M◦ with θ ⊥ X . For convenience,

identify f with its lift π∗f to S∗M◦. Choose a smooth curve c(s) in
S∗M◦ with c(0) = (z, ζ) and ċ(0) = θ. Then

∂θu
f(z, ζ) =

d

ds

∫ τ(c(s))

0

f(φt(c(s))) dt

∣

∣

∣

∣

s=0

= f(φτ(z,ζ)(z, ζ))
d

ds
τ(c(s))

∣

∣

∣

∣

s=0

+

∫ τ(x,ζ)

0

d

ds
f(φt(c(s)))

∣

∣

∣

∣

s=0

dt.
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Since τ is smooth in S∗M◦ and f vanishes on ∂M , the first term on
the right here vanishes. The second interior term is estimated using
Jacobi fields.

Let Jθ(t) be the Jacobi field along the geodesic π(φt(z, ζ)) with ini-
tial conditions Jθ(0) = dπ(θ) and DtJθ(0) = K(θ). In the splitting
of TS∗M , the differential dφt(θ) splits into Jθ(t) = dπ(dφt(θ)) and
DtJθ(t) = K(dφt(θ)). Thus

d

ds
f(φt(c(s)))

∣

∣

∣

∣

s=0

= d(π∗f)(∂sφt(c(s))|s=0)

= π∗(df)(Jθ(t), DtJθ(t))

= df(Jθ(t)).

Now, both f and df are O(xℓ) for all ℓ. Since θ ⊥ X , Jθ is normal to
this geodesic, Lemma 26 implies that |Jθ(t)|g remains bounded. Thus
the integrand in the second term is bounded by Cx(t)ℓ. Since x is
strictly decreasing on [0, τ(z, ζ)] (and the metric is non-trapping), this
shows that ∂θu

f(z, ζ) = O(xℓ) for all ℓ, as claimed. �

Proof of lemma 21. Let f ∈ x∞C∞(M) and set u = uf . By Corol-
lary 25 and Lemma 27, the integral function u satisfies Xu = −f in
S∗M◦ and u ∈ x∞C∞(S∗M◦) and ∇Gu ∈ x∞L∞(S∗M ;TS∗M). It
remains to prove that ∇VXu,X∇Vu ∈ L2(N).

Since u solves the transport equation and the lift of f to S∗M de-
pends only on x, we see that ∇VXu = −∇Vf = 0, which is in L2(N).
Now use the commutator formula [X,∇V ] = −∇H, valid in S∗M◦, (cf.
[PSU15, Appendix A]) to see that

‖X∇Vu‖L2 = ‖∇Hu‖L2 ≤ ‖∇Gu‖L2. (16)

Since ∇Gu ∈ x∞L2(S∗M ;TS∗M) ⊂ ∇Gu ∈ L2(S∗M ;TS∗M), (16)
gives that X∇Vu ∈ L2(N). This proves all of the assertions. �

3.5. Proof of the Pestov identity. We complete this entire argu-
ment by proving Lemmas 22 and 23.

Proof of lemma 22. Let u ∈ x∞C∞(S∗M◦) be such that∇VXu,X∇Vu ∈
L2(N) and ∇Gu ∈ x∞L∞(S∗M ;TS∗M). In adapted coordinates (x, y)
near ∂M , consider the truncated manifold Mε := {x ≥ ε}. The restric-
tion of g to this truncation is smooth and non-degenerate up to ∂Mε.
By Lemma 18, for any w ∈ C∞(S∗Mε),

‖∇VXw‖2ε = ‖X∇Vw‖2ε − (R∇Vw,∇Vw)ε + (n− 1)‖Xw‖2ε +Bε(w).

In particular, this holds for the restriction of u to S∗Mε. We prove that
the identity on all of S∗M by taking the limit ε → 0.

First, since ∇Gu ∈ x∞L∞(S∗M ;TS∗M), we see that

|Bε(u)| ≤ CεℓVol({x = ε})
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for large ℓ in the sense of the inherited volume form of the submanifold
{x = ε}. The volume of (M, g) is finite when α < 2/n; if α = 2/n,
the volume of Mε is asymptotic to −C log(ε), while for α > 2/n it is
asymptotic to Cε1−nα/2. Choose ℓ large, it is clear that Bε(u) → 0 as
ε → 0.

We next prove that the term involving curvature converges to the
corresponding term in S∗M . The sectional curvatures of g are asymp-
totic to Cαs

−2 where s is the distance to the boundary with respect
to g; it is related to x by s = (1 − α/2)x1−α/2. The pointwise inner
product 〈R∇Vu,∇Vu〉 is thus bounded by a multiple of x−2+α|∇Gu|

2.
It follows that

(R∇Vu,∇Vu)− (R∇Vu,∇Vu)ε ≤ C

∫

S∗M\S∗Mε

xℓ−2+α dΣ

for ℓ large. We then compute that
∫

S∗M\S∗Mε

xℓ−2+α dΣ = C

∫

M\Mε

xℓ−2+α−nα
2 dxdVh

≤ Cεℓ−2+α−nα
2 Volg(M \Mε).

Since ℓ can be chosen as large as desired, this last term vanishes as
ε → 0, proving that

(R∇Vu,∇Vu)ε → (R∇Vu,∇Vu).

Finally, since the pointwise norms |X∇Vu|, |∇Vu| and |Xu| are
bounded by |∇Gu|, a similar computation shows that we can take limits
in the remaining terms ‖X∇Vu‖2ε, ‖∇

VXu‖2ε and ‖Xu‖2ε. �

Proof of lemma 23. We prove finally that

Q(W ) = ‖XW‖2 − (RW,W ) ≥ 0

for all W ∈ x∞C∞(N◦) ∩ x∞L∞(S∗M ;TS∗M).
Choose χ ∈ C∞([0,∞)) with χ = 1 in [2,∞), χ = 0 in [0, 1] and

0 ≤ χ ≤ 1 everywhere. We use the special adapted coordinates (x, y).
For (z, ζ) ∈ S∗M , write χε(z, ζ) = χ(x/ε), and define Wε = χεW .
Then Wε is smooth in the interior of S∗M and supported in S∗Mε =
{(z, ζ) ∈ S∗M : x ≥ ε}. We claim that Q(Wε) → Q(W ) as ε → 0.

By the product rule,

Q(Wε) =

∫

S∗Mε

|χε|
2 (|XW |2 − 〈RW,W 〉

)

dΣε

+

∫

S∗Mε

|(Xχε)W |2 − 2χε(Xχε)〈RW,W 〉 dΣε.

(17)

The first term on the right converges to Q(W ) as ε → 0 by dominated
convergence. It suffices to prove that the second term also vanishes as
ε → 0.
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The derivative Xχε is supported in {ε ≤ x ≤ 2ε}. In addition, for
all (z, ζ) ∈ S∗M◦

Xχε(z, ζ) =
d

dt
χ(x(t)/ε)

∣

∣

∣

∣

∣

t=0

= ε−1ẋ(0)χ′(x/ε),

so |Xχε| ≤ Cε−1 and the integrand in the last term of (17) is bounded

by a constant multiple of Cε−1(|W |2 + 〈RW,W 〉) in {ε ≤ x ≤ 2ε} and
vanishes elsewhere. Also, the sectional curvatures are asymptotic to
Cαx

−2+α. Since W ∈ x∞L∞(SM ;TS∗M), we can bound Cε−1(|W |2 +
〈RW,W 〉) by a multiple of εℓ−3+α in {ε ≤ x ≤ 2ε}, and hence the
second integral in (17) is bounded by

Cεℓ−3+αVolG({ε ≤ x ≤ 2ε}) = C̃εℓ−3+αVolg({ε ≤ x ≤ 2ε}).

The volume grows no faster than a fixed power of ε, so choosing ℓ

sufficiently large, we see that this term also vanishes in the limit. Thus
Q(Wε) → Q(W ) as ε → 0.

The final step is to note that since the Wε are smooth and compactly
supported in S∗Mε, and since the truncated manifold Mε is simple
in the traditional sense, it follows from [PSU15, Lemma 11.2] that
Q(Wε) ≥ 0 for all ε > 0. Thus its limit Q(W ) is also non-negative. �

4. The Laplacian of g

We now turn to the final major theme of this paper, which is to
determine a few of the fundamental analytic properties of the scalar
Laplace–Beltrami operator ∆g associated to a gas giant metric. This
operator degenerates at x = 0, hence is poorly behaved from the point
of view of classical theory. However, as we explain here, it can be
regarded as an operator with a “uniform degeneracy” as x → 0, and
as such, can be transformed to lie in a class of operators for which
there is already an extensive theory. We describe this transformation
of ∆g into an “elliptic 0-differential operator”, as studied in [Maz91]
(and elsewhere). Quoting results from that theory, we study some of
basic mapping and regularity properties of ∆g.

We begin by deriving an expression for this operator in terms of the
Laplacian of the metric g. First observe that

gij = xαg ij , det(gij) = x−αn det(gij).

For simplicity, write det g = det(gij) and det g = det(gij). Using the
usual special adapted coordinates z = (z0, z

′) = (x, y), we compute

∆g = xαn/2 1

det g
∂zi
(

xα(1−n/2)(det g) gij ∂zj
)

= xα∆g+xα−1α(1−
n

2
) ∂x

As noted earlier, this operator is clearly degenerate at x = 0.
We now set this into the context of the class of uniformly degenerate,

or 0-, differential operators. Using coordinates (x, y) near ∂M , we recall
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that a differential operator L is called a 0-operator if it can be expressed
locally as a linear combination of products of smooth vector fields, each
of which vanish at ∂M . The space of all smooth vector fields vanishing
at ∂M is denoted V0(M), and called the space of 0 vector fields. It is
generated over C∞(M) by the ‘basis’ vector fields x∂x, x∂y1 , . . . , x∂yn−1

,
i.e.,

V0(M) = spanC∞ {x∂x, x∂y1 , . . . , x∂yn−1
}.

Thus a 0-operator can be written in small neighborhoods as a finite sum
of smooth multiples of products of these vector fields. In particular,
for example, a 0-operator of order 2 is one which takes the form

L =
∑

j+|β|≤2

ajβ(x, y)(x∂x)
j(x∂y)

β.

For the present purposes, the key point is that ∆g assumes this
form after multiplication by the factor x2−α. (In carrying out some of
the arguments below, it is occasionally more transparent to maintain
symmetry of the operator by pre- and post-multiplying by x1−α/2, but
we shall not get into this level of detail). To illustrate this, let x

be a special boundary defining function, so that g = dx2 + h, where
h(x) is a smooth family of metrics on ∂M , pulled back to this collar
neighborhood by the projection (x, y) 7→ y. Then

∆g :=xα∆ḡ − α(n/2− 1)xα−1∂x

= xα(∂2
x + q(x, y)∂x +∆h(x))− xα−1α(n/2− 1)∂x.

where q(x, y) is related to derivatives of det h, but its precise expression
is irrelevant since it is a higher order error term. This operator is
symmetric with respect to the measure x−αn/2dxdVh(x). From this we
see directly that x2−α∆g is a 0-differential operator.

Associated to a 0-differential operator is its 0-symbol, which is ob-
tained by writing L as a sum of products of the generating vector fields,
and then replacing each x∂x by ξ and x∂yi by ηi, and then dropping all
terms with homogeneity less than that of the degree of L. In particular,
for L = x2−α∆g,

0σ2(L)(x, y; ξ, η) := ξ2 + |η|2h(x).

This is not apparently an invariant definition, but (ξ, η) turn out to
be natural linear variables on the fiber of a certain replacement for
the cotangent bundle T ∗M , and 0σ2(L) is a well-defined homogeneous
polynomial of degree 2 on these linear fibers. In any case, a 0-operator
is called 0-elliptic if this symbol is non-vanishing (or invertible, if a
system) when (ξ, η) 6= (0, 0); this operator L is obviously 0-elliptic. As
such, the calculus of 0-pseudodifferential operators offers analogues of
all the familiar constructions in pseudodifferential theory. In particu-
lar, there is an elliptic parametrix construction for L, and the various
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properties of the parametrix G for L obtained through this construc-
tion lead to sharp mapping and regularity properties which are used
below.

Now consider the densely defined unbounded operator

∆g : L
2(M, dVg) −→ L2(M, dVg). (18)

This is symmetric on the core domain C∞
0 (M◦) of smooth functions

compactly supported in the interior of M , and one of the starting
points for the analysis of the Laplacian is to determine whether this
symmetric operator has a unique self-adjoint extension, or if boundary
conditions need to be imposed to obtain a self-adjoint realization? Once
that is accomplished, one may proceed to study the spectrum of any
such self-adjoint extension.

We first recall some facts relevant to determining whether ∆g is
essentially self-adjoint. In the following, we translate some definitions
from the development of the 0-calculus to the present setting (rather
than working directly with the 0-operator L = x2−α∆g simply to avoid
too many confusing changes of notation.

A fundamental invariant of ∆g in this geometric setting is its pair of
indicial roots, γ±. These are the values γ such that solutions of ∆gu

grow or decay like xγ. More formally, these are the exponents which
yield approximate solutions in the sense that

∆gx
γ = O(xγ−1+α)

rather than the expected rate O(xγ−2+α). In other words, γ is an
indicial root if there is some leading order cancellation. To calculate
these, we compute

∆gx
γ = (γ(γ − 1)− α(n/2− 1)γ) xγ−2+α +O(xγ−1+α),

and hence γ must satisfy γ2 − (α(n/2− 1) + 1)γ = 0, or finally

γ± =0, α(n/2− 1) + 1

=
1

2
(α(n/2− 1) + 1)±

1

2
(α(n/2− 1) + 1).

This last expression is included to emphasize the symmetry of γ±
around their average, which is useful below.

Next, observe that a function xγ lies in L2(dVg) near x = 0 if and
only if

γ >
1

2
(nα/2− 1).

We call this threshold the “L2 cutoff weight”. It is most natural to let
∆g act on the Sobolev spaces adapted to the 0-vector fields:

Hk
0 (M, dVg) = {u : V1 . . . Vℓu ∈ L2(dVg) ℓ ≤ k, each Vi ∈ V0(M)},
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and their weighted version xµHk
0 = {u = xµv : v ∈ Hk

0}. It clear from
this definition that

∆g : x
µH2

0 −→ xµ−2+αL2

is bounded for every µ. In particular, ∆gu ∈ L2 if u ∈ xµH2
0 where

µ ≥ 2−α. Since C∞
0 (M◦) is dense in x2−αH2

0 , it is clear that the minimal
domain, i.e., the minimal closed extension from the core domain, of (18)
is contained in x2−αH2

0 . Using the parametrix for ∆g alluded to above,
it can be proved that this is an equality:

Dmin(∆g) = x2−αH2
0 (M, dVg).

On the other hand, we also define the maximal domain Dmax = {u ∈
L2 : ∆gu ∈ L2}.

Proposition 28. The operator ∆g is essentially self-adjoint on L2,
i.e.,

Dmin = Dmax

if and only if α > 2/n.

Proof. They key issue is whether either of the indicial roots γ± lie in
the critical weight interval

µ− :=
1

2
(nα/2− 1) ≤ µ ≤

1

2
(nα/2− 1) + 2− α =: µ+.

Notice that the midpoint of this critical interval is 1
2
(nα/2−1)+1−α =

1
2
(α(n/2 − 1) + 1), which is precisely the same as the midpoint of the

gap between the two indicial roots. The width of this weight interval
is 2− α, whereas γ+ − γ− = α(n/2− 1) + 1. We claim that

γ− < µ− < µ+ < γ+

precisely when α > 2/n, which is verified by noting that α(n/2−1)+1 >

2− α precisely then.
The relevance of whether the indicial roots are included in the critical

weight interval is that, using the parametrix carefully, one can deduce
that if γ± do not lie in this critical weight interval, then u ∈ L2 and
∆gu ∈ L2 imply that u ∈ x2−αH2

0 = Dmin. However, when α ≤ 2/n,
then we can only deduce that

u(x, y) ∼
∑

aj(y)x
γ−+j +

∑

bj(y)x
γ++j.

This asymptotic expansion has some complicating features, such as
that if a0 6≡ 0, then the coefficients aj , bj may only have finite regularity
(and will have negative Sobolev regularity for large j. Conversely, there
exists a solution of ∆gu = 0 where u has an expansion of this type with
any prescribed smooth leading coefficient a0(y). In any case, the upshot
is that the maximal domain is far bigger than the minimal domain in
this case. �
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When α < 2/n, there are many possible self-adjoint extensions. The
most prominent, and the one we shall use below, is the Dirichlet exten-
sion. This corresponds to the choice of domain DDir consisting of those
u ∈ L2 such that ∆gu ∈ L2 and where the leading coefficient a0(y)
in the expansion above vanishes. Other self-adjoint extensions corre-
spond to other types of conditions on the pair of leading coefficient
(a0(y), b0(y)). We do not detail these below, except mentioning the
most standard other ones: the Neumann extension, where b0(y) ≡ 0,
and the family of Robin extensions, corresponding to conditions of the
form A(y)a0(y) + B(y)b0(y) ≡ 0, where A,B are given smooth func-
tions.

Proposition 29. Let D be a domain of self-adjointness for ∆g as
above. Then (∆g,D) is a Fredholm operator on L2 with discrete spec-
trum.

Proof. The first step is to show that this operator is Fredholm. This fol-
lows from the existence of its parametrix. This is a 0-pseudodifferential
operator of order −2 which maps L2 onto D (possibly modulo compact
errors), and which satisfies G ◦∆g = Id−R1, ∆g ◦G = Id−R2, where
R1 and R2 are compact operators on L2 and on D (with its graph topol-
ogy) respectively. As noted earlier, the construction of this parametrix
is one of the standard consequences of 0-ellipticity; details are given
in [Maz91]. When α < 2/n, a slightly more intricate construction
is needed which incorporates the choice of boundary conditions; this
appears in [MV14].

The key point here is that the operator G is constructed as an ele-
ment of the 0-pseudodifferential calculus. This means that its Schwartz
kernel is a very well-understood object which, as a distribution on
M ×M , has explicit asymptotic expansions at the boundary faces of
this product, and a slightly more intricate, but equally explicit ex-
pansion near the corner of M2. The precise details are omitted. The
upshot, however, is that it then follows by general properties of such
pseudodifferential operators proved in [Maz91] that G is bounded on
L2. Of course, as a pseudoinverse to ∆g, its range must lie in D. Since
it is a (0-)pseudodifferential operator of order −2, it is clear that the
elements in G(L2) have two derivatives in L2, at least in the interior of
M . However, slightly more is true, and the precise statement is that
for any f ∈ L2 and any two vector fields V1, V2 ∈ V0(M), we must have
that V1V2(Gf) ∈ xεL2 for some fixed ε > 0 which is independent of f .
This is summarized by saying that G : L2 → xεH2

0 , where the range is
a weighted 0-Sobolev space. We may then invoke the L2 version of the
Arzelà–Ascoli theorem, which may be used to prove that xεH2

0 →֒ L2 is
a compact embedding. This shows that the domain of ∆g is compactly
contained within L2, and hence that (∆g,D) has discrete spectrum.
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We say a few more words about this parametrix construction, par-
ticularly when α > 2/n. Write ∆g = xα/2−1Lxα/2−1; as noted earlier,
L is an elliptic 0-operator. The singular factor has been distributed on
opposite sides of L to preserve symmetry. Let G be a parametrix for L
as constructed in [Maz91]. Thus Id− LG = R′

1, Id−GL = R′
2, where

R′
1, R

′
2 are operators with smooth kernels on the interior ofM×M , and

which admit classical expansions at all boundary faces of a certain reso-
lution (or blow-up) of this product, with coefficients in these expansion
smooth functions on the corresponding boundary faces. We then write
G = x1−α/2Gx1−α/2, so that ∆g ◦ G = Id − xα/2−1R1x

α/2−1 = I − R1,
G ◦∆g = Id − xα/2−1R′

2x
α/2−1 = Id − R2. These remainder terms are

much better, inasmuch as they have smooth Schwartz kernels which
have polyhomogeneous expansions at the two boundary hypersurfaces
of M2, without need for the resolution (or blow-up) process.

If ∆gu = f ∈ L2, then applying G, we get that u = R1u+Gf = R1u+
x1−α/2Gx1−α/2f . The first term is polyhomogeneous on M , and decays
at a fixed rate strictly greater than the L2 cutoff. When α > 2/n, the
range of G lies in x2−αH2

0 . This range is identified with the domain of
self-adjointness D (again, when α > 2/n), hence, as described above,
D ⊂ L2 is indeed compact. �

We now take up our final problem. Fix a domain D ⊂ L2 where
(∆g,D) is self-adjoint. To be very concrete below, we assume that
this is the Dirichlet extension henceforth. As just proved, the Dirichlet
Laplacian has discrete spectrum 0 ≤ λ0 < λ1 ≤ λ2 ≤ . . ..

Next consider the truncated manifold Mε = {p ∈ M : x(p) ≥ ε},
where x(p) is just the value of the boundary defining function x at p

(we assume that x has been extended to be a smooth function on the
interior of M which is strictly positive on Mε). Then ∆g restricts to
an operator acting on H2(Mε) functions which vanish at ∂Mε. This
operator has discrete spectrum as well, by classical elliptic theory, and
we denote its eigenvalues by 0 < λ0(ε) < λ1(ε) ≤ . . .. By classical
perturbation theory, each λj(ε) can be regarded as a continuous, and
piecewise smooth, function of ε. The basic question is whether the
spectrum of (∆g,DDir) on Mε converges to the spectrum of (∆g,D)
on M . While there are such statements that can be made about the
entire spectrum at once, we consider here the variation of individual
eigenvalues.

Proposition 30. For each j = 0, 1, 2, . . ., the function λj(ε) converges
to λj as ε → 0. In fact, there exists a constant Cj > 0 such that

|λj(ε)− λj| ≤ Cjε
α(n/2−1)+1

Proof. We will denote ∂ε by dot and ∂x by prime.
Let us focus on a particular eigenvalue λj(ε). For simplicity, we first

make the computations below assuming that this is a simple eigenvalue,
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staying away from eigenvalue crossings. Thus, dropping the index j,
assume that ∆gφ = λ(ε)φ on Mε, with φ = 0 on ∂Mε. We shall con-
struct a family of diffeomorphisms Fε : M → Mε, with F0 = Id. Using
these to pull back all the data on Mε, we consider the family of metrics
gε = F ∗

ε g, the associated Laplace operators ∆gε , and eigenfunctions φε

which are smooth functions on M vanishing at ∂M . Choosing these
to have L2(M, dVε) norms equal to 1, the proof involves estimating the
quantity

λ̇ =

∫

M

(∆̇gεφε)φε dVε.

There are two parts to this. In the first, we obtain the uniform
estimate

|φε| ≤ Cx(ε+ x)α(n/2−1),

with a constant C independent of ε. Thus φε vanishes only like x when
ε > 0, but like xα(n/2−1)+1 = xγ+ when ε = 0. In the second, we must
compute ∆̇.

To get started, we define the diffeomorphisms Fε. Using a specially
adapted boundary defining function, define U = {x < c} for some small
c > 0, and identify U with [0, c) × ∂M . Define Fε(x) = x + εχ(x/ε),
where χ(s) is a smooth monotone non-negative function which equal 1
for s ≤ 1 and 0 for s ≥ 4. We also require that |χ′(s)| ≤ 1/2 for all s.
We then have that

gε = x−α
ε (dx2

ε + h(xε)).

Define

dxε

dx
:= J = 1 + χ′(x/ε), and ẋε =

dxε

dε
= −(x/ε)χ′(x/ε).

Then, since ∂xε
= J−1∂x, we obtain

∆ε = xα
ε J

−2∂x − xα−1
ε (α(n/2− 1)J−1 − xεJ

′/J2)∂x + xε∆h.

We have actually made the tacit assumption here that ḡ = dx2+h with
h independent of x. The extra terms which appear when h depends on
x are lower order in all the computations below, so we can safely omit
them.

Computing further, we arrive at the expression

∆̇ = xα−1
ε A∂2

x + xα−2
ε B∂x + xα−1

ε C∆h,

where A, B and C are expressions which are sums of terms, each a
smooth bounded multiples involving the quantities xεJ̇ , ẋε, xεJ

′ and
(xεJ

′)̇. The key point here is that each of these terms is uniformly
bounded in ε, and supported in the region ε ≤ x ≤ 4ε.

Now, granting the uniform estimate on the φε stated above, we see
that ∆̇φ ∼ εα−1+α(n/2−1)−1, and as before, supported in x ∈ [ε, 4ε].
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Thus
∫

(∆̇φ)φ dVε ∼

∫ 4ε

ε

εα−1+α(n/2−1)−1+α(n/2−1)+1−nα/2 dx

=

∫ 4ε

ε

εα(n/2−1)−1 dx = 4εα(n/2−1),

as claimed.
It remains to verify the assertion about the uniform bound on φε.

We indicate the more elementary of the two arguments. First note that
since the L2 norm of φε equals 1, and interior estimates bound |∇φε on
any subset {x ≥ c > 0}, the functions φε are uniformly bounded on any
compact subset of the interior of M , and all vanish at the boundary.
We obtain a uniform upper bound of the form |φ| ≤ Cx(ε + x)β for
any β < α(n/2 − 1). Since we may take β arbitrarily close to this
upper limit, this suffices to give the eigenvalue variation limit above
with arbitrary small loss in the exponent.

Now suppose that there is no uniform constant C such that |φε(x, y)| ≤
Cx(ε+x)β. The bound is clearly true for ε ≥ ε0 > 0 and for x ≥ c > 0,
so there must exist sequences (xj , yj) and εj with xj → 0, εj → 0, such
that after multiplying by a sequence of factors 1/Cj → 0, and writing
φj instead of φεj , we have

|φj(x, y)| ≤ x(εj + x)β , |φj(xj , yj)| = xj(εj + xj)
β.

Now rescale, setting s = x/xj , w = (y − yj)/xj, to write this as

|φj(x, y)| ≤ xjs(εj + xjs)
β.

We now separate into two cases. In the first, εj ≫ xj , so we rewrite

the right hand side of this inequality as xjε
β
j s(1+(xj/εj)s)

β. Replacing

φj by φ̃j = φj/xjε
β
j , we see that

|φ̃j(s, w)| ≤ s(1 + (xj/εj)s)
β,

with equality at (1, 0). Taking a limit as j → ∞, we conclude the
existence of a limit φ∞ which satisfies |φ∞| ≤ s for s ≥ 0 and all
w ∈ R

n−1. Each of the φj is smooth up to ∂Mεj , and there is a uniform
bound on the tangential derivatives (this follows from the parametrix
methods); this implies that φ∞ is in fact constant in w, and so must
satisfy the ODE s2∂2

sφ∞ − α(n/2 − 1)s∂sφ∞ = 0, whence φ∞(s) =
Cs1+α(n/2−1). This contradicts the bound above.

The other case is when xj ≥ Cεj as εj → 0. Now rewrite the right

hand side of the inequality as x1+β
j s((εj/xj) + s)β. Now normalize by

dividing by x
1+β
j to define φ̃j, and take a limit as before. This yields a

function φ∞ such tat

|φ∞(s, w)| ≤ s(c+ s)β,
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with equality at (1, 0), and where c is the limit of (some subsequence)
of the εj/xj. This constant is finite, and possibly 0. As before, φ∞ is
independent of w and must equal a constant times sα(n/2−1)+1 for all
s ≥ 0, which is inconsistent with this limiting bound as s gets large.

As noted earlier, there is a more sophisticated way to obtain a
sharper bound, and in fact complete asymptotic expansions for φε as
both x → 0 and ε → 0. This requires a generalization of the parametrix
machinery described above. This generalization allows one to treat not
only degenerate operators such as ∆g, but also families of degnerating
operators ∆gε. However, for simplicity we do not describe or develop
this point of view here. What we have proved with this more elemen-
tary argument is the slightly weaker estimate that each eigenvalue λ(ε)
satisfies

|λ̇(ε)| ≤ Cδε
α(n/2−1)+1−δ

for any δ > 0.
We then return to the case of a degenerate eigenvalue λ. The

eigenspace at ε = 0 has the orthonormal basis {φ1, . . . , φm} so that
each φk is the limit of eigenfunctions φk

ε of ∆gε as ε → 0. Each eigen-
value λk satisfies the same estimate. �

5. Original equations for gas giants

Here, we present the extraction of the Laplace–Beltrami operator
and acoustic wave operator from the system of equations describing
the seismology on, and free oscillations of solar system gas giants.
The system has been applied to studying the interiors of Saturn and
Jupiter [DMF+21]. The original system is given explicitly for the dis-
placement and contains implicitly the pressure; most of the work to
extract the acoustic wave operator involves eliminating the displace-
ment. Such an elimination appeared already in the study of inertial
modes, that is, a reduction of the original system and invoking incom-
pressibility leading to the Poincaré equation. Here, we follow the work
of Prat, Lignières and Ballot [PMA+16].

5.1. Acoustic-gravitational system of equations. The displace-
ment vector of a gas or liquid parcel between the unperturbed and
perturbed flow is u. The unperturbed values of pressure (P ), density
(ρ) and gravitational potential (Φ) are denoted with a zero subscript.
The incremental Lagrangian stress formulation in the acoustic limit
gives the equation of motion

ρ0∂
2
t u + 2ρ0Ω× ∂tu = ∇(κ∇ · u)−∇(ρ0u · ∇(Φ0 +Ψs))

+ (∇ · (ρ0u))∇(Φ0 +Ψs)− ρ0∇Φ′, (19)

where the perturbed gravitational potential, Φ′, solves

∇2Φ′ = −4πG∇ · (ρ0u) (20)
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and Ψs denotes the centrifugal potential,

Ψs = −1
2
(Ω2x2 − (Ω · x)2)

(|Ω| signifying the rotation rate of the planet). We may introduce the
solution operator, S, for (20) such that

Φ′ = S(ρ0u). (21)

We will use the shorthand notation,

g′0 = −∇(Φ0 +Ψs). (22)

A spherically symmetric manifold requires Ω = 0 from well-posedness
arguments.

5.2. Brunt–Väisälä frequency. We rewrite the first two terms on
the right-hand side of (19),

∇(κ∇ · u)−∇(ρ0u · ∇(Φ0 +Ψs)) = ∇[κρ−1
0 (∇ · (ρ0u)− s̃ · u)], (23)

in which

s̃ = ∇ρ0 − g′0
(ρ0)

2

κ
, κ = P0γ;

s̃ is related to the Brunt–Väisälä frequency, N2,

N2 = ρ−1
0 (s̃ · g′0). (24)

In (23), κρ−1
0 (∇ · (ρ0u) − s̃ · u) can be identified with the dynamic

pressure, −P say. We recognize the acoustic wave speed,

c2 = κρ−1
0 .

Thus (19) takes the form

∂2
t (ρ0u) + 2Ω× ∂t(ρ0u) = ∇[c2 (∇ · (ρ0u)− ρ−1

0 s̃ · (ρ0u))]

+ (∇ · (ρ0u))g
′
0 − ρ0∇Φ′. (25)

In (25) we can substitute (21) to arrive at an equation for u containing
a nonlocal contribution.

5.3. Equivalent system of equations and Cowling approxima-

tion. Writing v = ∂tu for the velocity, we obtain the following equiv-
alent system of equations,

∂tρ+∇ · (ρ0v) = 0,

∂t(ρ0v) + 2Ω× (ρ0v) = −∇P + ρg′0 − ρ0∇Φ′,

∂tP + v · ∇P0 = c2(∂tρ+ v · ∇ρ0),

using that ∇P0 = −ρ0g
′
0. Well-posedness of the system of equations

implies that

ρ−1
0 (s̃ · (ρ0u))g

′
0 =

ρ−1
0 s̃ · g′0
|g′0|

2
(g′0 · (ρ0u)).
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Upon inserting (24), the third equation takes the form

∂tP = c2
(

∂tρ+
N2

|g′0|
2
(g′0 · (ρ0v)

)

.

In the Cowling approximation the term −ρ0∇Φ′ is dropped and the
system reduces to

∂tρ+∇ · (ρ0v) = 0,

∂t(ρ0v) + 2Ω× (ρ0v) = −∇P + ρg′0,

∂tP = c2
(

∂tρ+
N2

|g′0|
2
(g′0 · (ρ0v)

)

.

This is identical to the system appearing in Prat et al. [PMA+16].

5.4. “Truncation”: Consistent boundary condition. The free-
surface boundary condition is given by the vanishing of the dynamic
pressure (perturbation). If ρ0 and c would not vanish at the boundary,
we thus get the boundary condition

(κ∇ · u+ ρ0g
′
0 · u)|∂Mε

= 0.

(For comparison, the first term corresponds with the Lagrangian pres-
sure perturbation.) This corresponds to taking the boundary condition
slightly below the boundary rather than exactly at it. We prove in
proposition 30 that if the gas giant manifold is truncated just before
the boundary, then the eigenvalues on this slightly smaller manifold
Mε converge to those of the true manifold M at a specific rate. This
truncation has been widely used in computations [DMF+21].

We have already noted the possibility of imposing certain types of
boundary conditions when α < 2/n, and this one here falls neatly into
that framework. In particular, we can prove, just as in Section 4, that
the domain of the operator augmented by this boundary condition is
compactly contained in L2, so that its spectrum is discrete. Further-
more, the spectra of the associated truncated problems converge at an
estimable rate to the spectrum of this degenerate operator.

5.5. Equation for the pressure and geometry. We introduce

∇z = Ω̂ · ∇, ∇‖ = (−ĝ′0) · ∇,

with unit vectors

Ω̂ =
Ω

|Ω|
, ĝ′0 =

g′0
|g′0|

and

∇⊥ = ∇+ ĝ′0∇‖, ∆⊥ = ∇ · (∇⊥).

Furthermore, eφ is the unit vector in the direction of Ω × g′0, noting

that Ω̂, ĝ′0, eφ form a non-orthogonal basis.
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Lemma 31 ([PMA+16]). The time-Fourier-transformed pressure, P̂ ,
satisfies the equation

∆P̂ −
4

τ 2
Ω · ∇(Ω · ∇P̂ )

−
N2

(τ 2 − 4|Ω|2)

[

∆P̂ −
1

|g′0|
2
g′0 · ∇(g′0 · ∇P̂ )−

4

τ 2
Ω · ∇(Ω · ∇P̂ )

−
4(Ω · g′0)

2

τ 2|g′0|
2

∆P̂ +
4(Ω · g′0)

τ 2|g′0|
2

(Ω · ∇(g′0 · ∇P̂ ) + g′0 · ∇(Ω · ∇P̂ ))

]

+
1

τ 2(τ 2 − 4|Ω|2)
V · ∇P̂ +

1

c2τ 4(τ 2 − 4|Ω|2)
R

+
1

c2

[

τ 2

(

1−
4

τ 2
|Ω|2

)

+ c2̂M∇ ·

(

(4τ−2(g′0 · Ω)Ω− g′0)

c2̂M

)]

̂P = 0,

(32)

where R and V are given below. In coordinates relative to the above
mentioned non-orthogonal basis, the terms with leading, second-order
spatial derivatives take the form ∆P̂ − τ−2(4|Ω|2∇2

zP̂ +N2∆⊥P̂ ); the

leading, second-order term in τ is given by c−2τ 2P̂ . Thus one identifies,
to leading order, the acoustic wave operator on the one hand and an
equation like Poincaré’s equation in the (axi)symmetric case [RN99] on
the other hand.

For clarity, we summarize the proof of this lemma. To eliminate v from
the system of equations, one takes 2Ω× and 2Ω · of (30) and applies a
time derivative to the resulting equations. Upon taking another time
derivative, and substituting the second resulting equation in the first,
one obtains the equation

L(ρ0v) = −4(Ω · ∇P ) Ω + 4ρ(Ω · g′0) Ω

−∇∂2
t P + (∂2

t ρ)g
′
0 + 2Ω×∇∂tP − 2(∂tρ)Ω× g′0, (33)

where

L = ∂3
t + 2|Ω|2∂t.

With this operator, (29) implies

∂tL(ρ) = −∇ · L(ρ0v) (34)

and (31) implies

∂tL(P ) = c2∂tL(ρ) + βg′0 · L(ρ0v), (35)

where

β =
c2N2

|g′0|
2
.
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Substituting (33)) into (35) gives

∂tL(P ) + β[4(Ω · ∇P )(g′0 · Ω) + g′0 · ∇∂2
t P

+ 2(Ω× g′0) · ∇∂tP ] = c2∂tL(ρ) + β[ρ(2Ω · g′0)
2 + (∂2

t ρ)|g
′
0|

2]. (36)

Using the definition of L, one may extend the operator notation to
c2M(ρ) for the right-hand side of this equation, with

M = ∂4
t + (4|Ω|2 +N2)∂2

t +
4N2(Ω · g′0)

2

|g′0|
2

.

Introducing the dual, τ , of i∂t, one writes

̂∂tL = τ 2(τ 2 − 4|Ω|2), ̂M = τ 4 − (4|Ω|2 +N2)τ 2 +
4N2(Ω · g′0)

2

|g′0|
2

for the relevant symbols, noting that N2 and g′0 are dependent on the
coordinates. Equation (36) then gives

ρ̂ =
̂∂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0 − 2iτ(Ω× g′0)] · ∇P̂

c2̂M
. (37)

Taking the divergence of (33) yields

∇ · L(ρ0v̂) = τ 2∆P̂

− 4Ω · ∇(Ω · ∇P̂ ) +∇ · [ρ̂ (4(g′0 · Ω)Ω− τ 2g′0 + 2iτ(Ω× g′0))]. (38)

Here, it was used that Ω is a constant vector (signifying uniform ro-
tation). One then considers (34) and substitutes (38) to obtain an

equation for P̂ upon using (37) on the left-hand side:

τ 2∆P̂ − 4Ω · ∇(Ω · ∇P̂ )

+∇ ·

[

(̂∂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0 − 2iτ(Ω× g′0)] · ∇P̂ )

c2 ̂M

· (4(g′0 · Ω)Ω− τ 2g′0 + 2iτ(Ω× g′0))

]

+
̂∂tL (̂∂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0 − 2iτ(Ω× g′0)] · ∇P̂ )

c2 ̂M
= 0.

As g′0 derives from a potential (cf. (22)), it follows that

∇ · (Ω× g′0) = 0.
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Then

τ 2∆P̂ − 4Ω · ∇(Ω · ∇P̂ )

+∇ ·

[

(̂∂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0] · ∇P̂ )

c2̂M
(4(g′0 · Ω)Ω− τ 2g′0)

]

+
̂∂tL (̂∂tL P̂ + β[4(g′0 · Ω)Ω− τ 2g′0] · ∇P̂ )

c2̂M
+

1

c2̂M
R = 0, (39)

where

R = −2iτc2 ̂M∇·

[

β

c2̂M
((Ω×g′0)·∇P̂ ) (4(Ω·g′0) Ω+2iτΩ×g′0−τ 2g′0)

]

+ 2iτc2(Ω× g′0) · ∇

[

β

c2̂M
(4(Ω · g′0) Ω− τ 2g′0) · ∇P̂

]

+ 2iτc2̂∂tL (Ω× g′0) ·

[

∇

(

P̂

c2 ̂M

)

−
β

c2̂M
∇P̂

]

represents the sum of terms containing 2iτ(Ω × g′0) ·. It is noted that
in the axisymmetric case,

(Ω× g′0) · ∇

(

1

c2̂M

)

= 0,

and that in a polytropic model (see Subsection 1.2), β is a constant,
which simplifies the computations. Equation (39) can be rewritten as

̂M∆P̂ − 4(τ 2 − (4|Ω|2 +N2)) Ω · ∇(Ω · ∇P̂ )

+
βτ 2

c2
g′0 · ∇(g′0 · ∇P̂ )−

4β

c2
(Ω · g′0) [Ω · ∇(g′0 · ∇P̂ ) + g′0 · ∇(Ω · ∇P̂ )]

+
4

c2τ 2

{[

(1 + β)̂∂tL+ c2̂M∇ ·

(

β(4(g′0 · Ω)Ω− τ 2g′0)

c2̂M

)]

(g′0 · Ω)

+
β

2
Ω · ∇(g′0 · (4(g

′
0 · Ω)Ω− τ 2g′0))

}

Ω · ∇P̂

−
1

c2

{

(1 + β)̂∂tL+ c2̂M∇ ·

(

β(4(g′0 · Ω)Ω− τ 2g′0)

c2 ̂M

)}

g′0 · ∇P̂

+
̂∂tL

c2τ 2

[

̂∂tL+ c2̂M∇ ·

(

(4(g′0 · Ω)Ω− τ 2g′0)

c2̂M

)]

P̂ +
1

c2τ 2
R = 0.
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The sum of the two terms containing factors in between braces allow
the shorthand notation V · ∇P̂ :

(τ 2 − 4|Ω|2)∆P̂ − (τ 2 − 4|Ω|2)
4

τ 2
Ω · ∇(Ω · ∇P̂ )

−N2

[

∆P̂ −
1

|g′0|
2
g′0 · ∇(g′0 · ∇P̂ )−

4

τ 2
Ω · ∇(Ω · ∇P̂ )

−
4(Ω · g′0)

2

τ 2|g′0|
2

∆P̂+
4(Ω · g′0)

τ 2|g′0|
2

(Ω·∇(g′0 ·∇P̂ )+g′0 ·∇(Ω·∇P̂ ))

]

+
1

τ 2
V ·∇P̂

+
̂∂tL

c2τ 4

[

̂∂tL+ c2τ 2 ̂M∇ ·

(

(4τ−2(g′0 · Ω)Ω− g′0)

c2 ̂M

)]

P̂ +
1

c2τ 4
R = 0.

One then divides the equation by (τ 2 − 4|Ω|2); the factor in front of P̂
then takes the form

1

c2

[

τ 2

(

1−
4

τ 2
|Ω|2

)

+ c2 ̂M∇ ·

(

(4τ−2(g′0 · Ω)Ω− g′0)

c2̂M

)]

.

This results in equation (32).

5.6. Propagation of singularities. The propagation of singularities
depends only on the leading order part of the system of equations.
Ignoring lower order terms, equation (25) reads

∂2
t (ρ0u)−∇[c2∇ · (ρ0u)] = 0

and the principal symbol at (t, x; τ, ξ) is τ 2Id−c2(x)ξξT . From the way
the matrix ξξT acts we may read that pressure singularities propagate
but shear ones do not. Pressure waves (“polarized” along the momen-
tum ξ) follow the geodesics of the isotropic sound speed c just as the
solutions of the scalar wave equation for pressure (∂2

t − c2∆)P = 0 as
extracted from the original system in Lemma 31. Therefore, if only the
travel times of singularities are concerned, it suffices to model a gas
planet with a scalar wave equation.

The parametrix construction outlined in Section 4 is a very flexible
one. Although we have used it to analyze the simpler operator ∆g

studied in the rest of this paper, the operator appearing in (32) is a
perturbation of such a Laplacian, for appropriately defined gas-giant
metric g, with all extra terms being of lower order in the sense of
this calculus of degenerate operators. In other words, it is possible,
just as easily, to construct a parametrix for this operator in the 0-
pseudodifferential calculus, and to derive the same sorts of conclusions
as we have discussed for the Laplacian. Furthermore, the lower order
terms here are all compact relative to the main part of this operator,
hence do not affect the discreteness of the spectrum, but do cause
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the usual sorts of perturbations to the spectrum caused by any such
compact perturbations.
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