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Abstract

Voutilainen, Sami
Digital cameras as radiance sensors: high dynamic range imaging and application to
characterize carbon nanotube depositions
Master’s thesis
Department of Physics, University of Jyväskylä, 2024, 193 pages.

Pairing an optical microscope and a digital camera is a useful tool in observing small
samples. However accurate quantitative measurements in terms of relating image
brightness to radiance are not possible as is for most cameras due to the nonlinear
response of digital cameras. In this thesis we formulate and implement a method
to linearize the response of a digital camera and merge multiple images of different
exposure times into a high dynamic range image. Additionally imaging system
artifacts, such as vignetting and hot pixels, are modeled and corrected for. The
performance of the implemented image processing pipeline is quantified, evaluated
and finally utilized in the characterizations of carbon nanotube depositions. The
depositions are characterized via relative radiance measurements based on the merged
high dynamic range images and additionally local thickness and autocorrelation
measurements based on both high dynamic range images and scanning electron
microscopy images. A theory for the optical properties of the depositions is proposed
based on the performed measurements. The results of this thesis indicate that with
sufficient calibration and modeling a normal digital camera can be used as a radiance
sensor.

Keywords: Carbon nanotube, CNT, high dynamic range, HDR, microscopy, optical
microscopy, scanning electron microscopy, SEM, camera response function, CRF,
ICRF, linearization, image processing, image analysis
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Tiivistelmä

Voutilainen, Sami
Digitaalikamerat radianssisensorina: laajan dynaamisen alueen kuvantaminen ja
sovellus hiilinanoputkidepositioiden karakterisointiin
Pro Gradu-tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2024, 193 sivua

Optisen mikroskoopin ja digitaalikameran yhdistelmä on hyödyllinen työkalu pie-
nikokoisten näytteiden tutkimiseen. Tarkat mittaukset, joissa rinnastetaan kuvien
kirkkaus radianssiin, eivät kuitenkaan ole sellaisenaan mahdollisia johtuen digitaalika-
meroiden epälineaarisesta vasteesta. Tässä tutkielmassa muotoilemme ja toteutamme
menetelmän linearisoida kameran vaste ja yhdistää useita eri valotusajoilla otettuja
kuvia yhdeksi laajan dynaamisen alueen kuvaksi. Lisäksi kuvantamisjärjestelmän
virheitä, kuten vinjetointi ja kuumat pikselit, mallinnetaan ja virheitä korjataan.
Kuvien prosessointiputken suoriutumista kvantifioidaan, arvioidaan ja lopulta hyö-
dynnetään hiilinanoputkidepositioiden karakterisointiin. Depositioita karakterisoi-
daan suhteellisten radianssimittausten avulla perustuen laajan dynaamisen alueen
kuviin. Lisäksi paikallisen paksuuden ja autokorrelaation mittauksia hyödynnetään
karakterisoinnissa perustuen sekä laajan dynaamisen alueen kuviin, että pyyhkäisye-
lektronimikroskopian kuviin. Mittausten perusteella esitämme teorian depositioiden
optisille ominaisuuksille. Tutkielman keskeiset tulokset viittaavat siihen, että taval-
lista digitaalista kameraa voi käyttää radianssisensorina riittävän kalibroinnin ja
mallintamisen pohjalta.

Avainsanat: Hiilinanoptuki, CNT, laaja dynaaminen alue, HDR, mikroskopia, optinen
mikroskopia, pyyhkäisyelekronimikroskopia, SEM, kameran vastefunktio, CRF, ICRF,
linearisointi, kuvaprosessointi, kuva-analyysi
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Part I

Light and microscopy

1 Introduction

The main subject of interest in this research is the digital imaging of a deposition
of carbon nanotubes (CNTs) on a silicon or quartz chip, and the processing of the
acquired images. The CNT depositions are a result of drying of a water droplet that
was pipetted on a chip with spin coated CNTs on it. The deposition of the prepared
samples resembles a coffee ring stain with some special optical properties. The stain
is formed from CNTs that are arranged fully two-dimensionally and have two visually
distinct zone. The imaging of these zones has motivated the development of digital
image processing, which is described in this thesis.

One trend that is undoubtedly evident in the progress of science and technology in
the past decades is the ever decreasing length scale at which we view and manipulate
materials. We can observe the nanoscale world, for example, via different electron
microscopy methods[p. 7][1], atomic force microscopy[p. 1–3][2] and more recently
via helium ion microscopy[p. 3][3]. We can fabricate materials in the nanoscale using
top-down methods, such as different techniques of lithography[4], laser ablation[5],
laser pyrolysis[5] and arc discharge, or bottom-up approach, for example chemical
vapor deposition[4], sputtering[5], pulsed laser deposition[6] and spinning[7]. In
electronics the scaling of the MOSFET gate length has scaled down from the 10
micrometer range since 1971 to some 5 nanometer range by 2020[8]. This has
enabled the production of affordable consumer electronics, increasing computational
power and decreasing power consumption. Overall the main driving force behind
nanotechnology are the various interesting and different properties materials exhibit,
in comparison to their bulk counterpart, when one or more of their dimensions are
shrinked down to the nanoscale and the applications these properties can enable[7].

The interesting properties of nanoscale materials arise from the fact that quantum
mechanical phenomena are important at this scale[7]. Among the most exciting
nanomaterials are the CNTs. In 1991 Iijima reported a method to produce hollow
helical microtubules formed from graphitic carbon and he was the first to identify
these structures as carbon nanotubes[9]. Synthetic low-dimensional allotropes of
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carbon, such as different types of fullerenes, graphene and nanotubes, have been a
subject of considerable research interest in the 2000s [10–12]. In the case of CNTs,
the main drive behind the research interest are the various extraordinary physical
properties, such as high electrical and thermal conductivity and strong elasticity[13].
Carbon nanotubes can be thought of as a graphene sheet rolled into a cylinder.
A single such cylinder is a single-walled carbon nanotube (SWNT). The carbon
nanotubes used in the samples in this research are multi-walled carbon nanotubes
(MWNT), which consists of multiple nested cylindrical layers. CNTs can also be
thought of as a 1D material due to its nanometer range diameter and very high
aspect ratio.

In the nanoscale world another, relatively new, interesting group of materials are
metamaterials. In their review article Kumar et al. describe that metamaterials get
their name based on their different physical properties that are seldom encountered in
their natural bulk material counterparts[14]. They state that the curious properties
generally arise from the carefully engineered physical size, geometry, orientation and
arrangement of features. Some well-known types of metamaterials are those with
a negative refractive index for electromagnetic[15] or acoustic waves[14] and those
with anisotropic thermal properties[16].

In fact, the CNT deposits of this work might exhibit similar optical phenomena
as those of 2D metamaterials. In the two distinct zones of the CNT depositions, the
distances between the CNTs vary in the wavelength range of visible light, possibly
giving rise to the observed optical phenomena due to interference. This acts as
an initial hypothesis for the samples’ optical properties. One of the objectives
in this thesis work is to make observations about the samples mainly with an
optical microscope paired with a digital camera, whose output images will be further
processed for quantifiable observations. Additionally scanning electron microscopy,
atomic force microscopy and spectroscopic measurements are utilized. The primary
objective is to enable the calibration of a digital camera in order to acquire images
that can act as quantifiable measures of the imaged scene’s radiance. Part I of this
thesis is focused on the physical fundamentals of light and optical microscopy and
the CNT depositions, while part II is focused on the digital imaging and image
processing. Finally part III will act as the experimental section of this research,
focusing on the measurements and methods introduced in parts I and II.

With all this work there are multiple core questions that we aim to find an
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answer to. Can a consumer digital camera be utilized as a radiance sensor and at
what level of accuracy? What kind of processing and corrections are needed and
what are the limiting factors of the accuracy? What can we deduce on the CNT
samples’ properties based on the processed images? To our knowledge there are also
certain new approaches developed in this work. In part II, section 3.2 we’ll introduce
a method to measure a camera’s linearity based on a fundamental relationship,
which is nothing new by itself. However the approach to combine this measure of
linearity with a series of differently exposed images of a static scene to formulate
an optimization problem for solving the response of a camera is to our knowledge
a novel approach. This is discussed in part II, section 3.3.1. We also establish a
robust method for analyzing the uncertainty of our image processing pipeline. This
includes an analytical equation for the uncertainty of a high dynamic range based
on merging multiple normal images, which is something we are not aware has been
established in the literature and is discussed in part II, section 2.4. Finally on the
subject of image correction, in part II, section 5.2 we propose a very simple, yet
effective method to experimentally produce a flatfield image by mean stacking a
large quantity of images with local details. This approach is something that we are
not aware of having been utilized previously. Generally this issue is an easy one,
but the specific conditions of darkfield microscopy and imaging complicate things at
least in the sense of experimentally approached correction.
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2 Fundamentals of light and light–matter interac-
tions

Nanoscale materials tend to have curious interactions with light due to the wave
properties of light and the wavelength-scale structures of nanomaterials and also the
particle properties of light and the possible excitations between light and matter. In
general the scattering and diffraction of light is a broad subject and the phenomena
typically have rigorous mathematical frameworks that are beyond the scope of this
research. Here we will approach scattering and diffraction with the context of the
nanotube deposition samples in a more qualitative sense.

2.1 Light as an electromagnetic wave

2.1.1 Basic properties

The wave nature of light can be represented as the oscillations of an electric field
and magnetic field in mutually perpendicular angles and whose oscillations are
perpendicular to the direction of propagation. Mathematically, for a single frequency
or wavelength, light can be represented by a wave equation

A = A0e
iωt−iθ, (1)

in which A0 is the real amplitude, ω is the angular frequency, t is time and finally θ

is the initial phase[17, p. 642]. The exponential term overall represents the phase of
the wave.

The frequency f , or equivalently angular frequency ω = 2πf , of light is an
invariant property. The frequency is related to the wavelength of light by

f = v

λ
, (2)

in which v is the velocity of the wave motion’s propagation in a particular medium[17,
p. 643]. In the case of light, wavelength is typically used as a common descriptor for
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light. In these cases typically what is being referred to is the wavelength in vacuum
λ0, from which the wavelength in a particular medium be determined via

λ = λ0

n
, (3)

in which n is the refractive index of the medium[18, p. 16].

2.1.2 Coherence

Another set of properties that arises from the wave nature of light are its coherence
and chromacity. Coherence refers to the phase relationship between beams of light
and chromacity refers to the range of contributing frequencies[18, pp. 19–20]. These
are important properties in terms of interference phenomena, which we’ll get into in
the next section. Two beams of light are said to be coherent if there is a persisting
relationship between the phases of each beam. A measure of this is the coherence
time, which defines a time interval over which the relationship between the beams
persists[19, p. 316]. It is approximately given by

∆t ≈ 1
∆f

, (4)

in which ∆f is the variation of frequencies in the beams. From this one can also
define a coherence length, which is the distance traveled within the coherence time.
Therefore coherence length is give by

∆l = c

∆f
. (5)

and can be though of as the length over which a wave is sinusoidal and can be reliably
predicted[19, p. 316]. Table 1 shows the coherence lengths for some light sources.
Two highlights from the table are the white light and the special He–Ne laser, which
each have a coherence length of under two mean wavelengths and even up to the
order of 1013 wavelengths respectively, illustrating especially well the high coherence
of the laser.

As an idealization, a beam of light is said to be monochromatic if it is composed
of only a single frequency. However, in practical terms this is an impossible case as
it would require a pulse of infinite duration[18, p. 36]. In reality even a supposedly
monochromatic beam, such as a laser beam, is composed of a distribution, though
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a narrow one at that, of frequencies.[18, p. 36] Typically a beam is said to be
polychromatic if it is composed of multiple reasonably narrow distributions of
frequencies. White light refers to a broad continuous spectrum of contributing
frequencies.

Source λ (nm) ∆λ (nm) ∆l
Thermal IR 1000 ≈4000 ≈25000 nm

Mid-IR 4000 ≈2000 ≈8000 nm
White light 550 ≈300 ≈900 nm
Mercury arc 546.1 ≈1.0 ≤0.03 cm

Kr86 discharge lamp 605.6 1.2 · 10−6 0.3 m
Stabilized He–Ne laser 632.8 ≈ 10−6 ≤400 m

Special He–Ne laser 1153 8.9 · 10−11 15 · 106 m

Table 1. Approximate coherence lengths ∆l and mean wavelengths λ and
wavelength ranges ∆λ of the wavetrain for given light sources. Reproduced
from[19, p. 318].

2.1.3 Polarization

Another interesting property of light is its polarization. In the case of light polariza-
tion refers to the direction in which the electric field of propagating light oscillates[19,
p. 47]. Polarization is a particularly interesting property of light, as it can lead
to different interactions of light and matter depending on the polarization and the
material in question. For unpolarized light the oscillation direction of the electric
field varies randomly over time. Light can, however be also partially polarized.
For partially polarized light one polarization direction is more common than other
directions.

Polarization can be represented as two mutually perpendicular components by a
rotation ϕ with respect to some arbitrary axis as

Ax = A0 cos ϕ and Ay = A0 sin ϕ, (6)

in which Ax represents the x component and Ay the y component of the amplitude
A0[18, p. 51] The most simple case of polarization is plane polarized light, for which
the electric field oscillates in a single non-rotating plane. For plane polarized light
the phase difference between the two components is zero, or more precisely 0 + nπ,
where n is an integer. When the phase difference between the components is π/2 +
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nπ, the light is circularly polarized. These two cases can be thought of as special
cases of the more general elliptical polarization, in which the phase difference doesn’t
belong in either of the previously mentioned cases.[20, pp. 163–164]

In some materials the electronic configuration can be oriented and therefore
direction-dependent interactions between polarized light and the material in question
can occur. Such materials are called anisotropic, while materials that don’t exhibit
directional behaviour are called isotropic. The most common directional phenomena
between polarized light and anisotropic materials are birefringence and dichrocity.[18,
p. 56] Of these the more common birefringent materials exhibit a direction-dependent
variation in refractive index, leading to double refraction. The birefringent material
causes an incident ray of light to split into two separate rays.[21, p. 142] In dichroic
materials components of light plane-polarized in a particular direction are absorbed,
while components plane-polarized in perpendicular with the previous component are
transmitted. Dichroic materials are commonly used to produce linearly polarized
light.[20, p. 167] Some other interactions of polarized light with matter is optical
activity, which refers to the rotation of the direction of polarization for plane-polarized
light, optical rotary dispersion, which is wavelength-dependent variation in optical
activity, and circular dichroism, which is the variation of absorption of left-hand and
right-hand circularly polarized light.[18, p. 56]

Another source of polarization is polarization by reflection. When light is reflected
from a boundary of two media with different refractive indexes, the proportion of
light that is refracted and reflected depends on the polarization of the incident light,
discounting light incident normal to the boundary. For light that is plane-polarized
perpendicular to the plane of incidence (s-polarization), the components’ intensities
are[18, p. 62]

Is,refl = I0

(
sin (i − r)
sin (i + r)

)2

(7)

and

Is,refr = I0

(
2cos i sin r

sin (i + r)

)2

. (8)

For light plane-polarized paralle to the plane of incidence (p-polarization) the pro-
portions are given by[18, p. 62]

Ip,refl = I0

(
tan (i − r)
tan (i + r)

)2

(9)
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and

Ip,refr = I0

(
2cos i sin r

sin (i + r) cos (i − r)

)2

. (10)

These equations are valid for dielectric materials, metallic materials have typically a
different and greater reflectance.[18, p. 62]

2.2 Light as a particle

While the wave model of light can be used to describe a wide variety of phenomena,
there are also phenomena that it doesn’t describe. In certain situations light also acts
as a particle. When light passes through material, the electric field associated with it
disturbs the electronic configurations of atoms and molecules. This interaction can
lead to absorption of quanta, exciting the electronic energy levels of the absorbing
system. While if the quanta is not absorbed, they are instead delayed while they
temporarily disturb the electronic configurations of the medium. This represents the
slower propagation speed in a medium and thus the medium has a higher refractive
index n.

2.2.1 Photoelectric effect

Probably the most well-known phenomenon in which the interactions of light and
matter disagrees with the classical electromagnetism is the photoelectric effect.
The photoelectric effect refers to the phenomenon when a material emits electrons
upon light hitting said material[19, p. 54]. This phenomenon acts as the basis for
photoelectric sensors such as digital cameras.

Knight gives a concise description of the photoelectric effect in his book[17, p.
1266–1268]. Electrons occupy specific discrete energy levels in atoms and molecules
with an associated binding energy. When a photon with a larger energy than the
binding energy of an electron’s state hits the system, the electron can be emitted
with a kinetic energy of

Ek = hf − EB, (11)

in which Ek is the kinetic energy of the emitted electron, EB is the binding energy
of the electron and h is the Planck constant. Basically an electron can be emitted
only if the incident photon’s energy is sufficiently large, while any excess energy
contributes to the emitted electron’s kinetic energy. Materials have a number of
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varying atomic bindings and generally the maximum kinetic energy of an emitted
electron is[17, p. 1266–1268]

Ek,max = hf − W, (12)

in which W is the minimum energy required to emit an electron, typically referred
to as the work function. The work function is characteristic to a given material.

2.2.2 Blackbody radiation

Blackbody radiation describes the electromagnetic radiation emitted by matter as a
function of temperature, representing the transformation of a object’s internal energy
into electromagnetic energy[19, p. 80]. A perfect black body is an idealization, it is
an opaque body that absorbs all radiation hitting it and is in thermal equilibrium
with is environment[22, p. 689]. It emits a continuous spectrum that is characteristic
to the body’s temperature. The energy emitted at a wavelength λ by a body at
temperature T is given by

Eλ = 8πhc

λ5
1

exp(hc/kTλ) − 1 . (13)

Blackbody radiation can be used as an approximation to describe the emissions of
astronomical objects or evaluate the temperature of a glowing hot object[23, p. 48].
At room temperatures most of the blackbody emission occurs in the infrared range.
Blackbody radiation also explains the continuous emission spectrum of incandescent
lamps[19, p. 80].

2.3 Simple lenses

A basic building block for many optical systems are simple lenses, which contain
only two refracting surfaces[19, p. 157]. Combining simple lenses, a more complex
compound lens can be created, which act as objectives, condensers and other optical
components in optical microscopes, cameras and other optical devices. A simple
lens is essentially just a single thin lens element with two refracting surfaces. The
converging and diverging effects of these lenses can be deduced by applying Snell’s
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law to the geometry of the lens

n1 sin θ1 = n2 sin θ2, (14)

which relates the refractive indices n of each medium and the angle θ of the incident
and refracted light relative to the surface normal[17, p. 757].

Simple lenses come in two varieties separated based on their effect on an incident
collimated beam of light[p. 56][21]. Positive lenses cause these parallel beams to
converge upon emerging from the lens, while negative lenses cause the light beams
to diverge. Positive lenses are convex and form a real image and negative lenses are
concave and do not form a real image.

Figure 1. Various types of positive and negative lenses. Reproduced from [21,
p. 56].

The lens equation describes the relationship between a lense’s focal distance
f and an object’s and its image’s distances a and b respectively. The equation is
typically presented in the form

1
f

= 1
a

+ 1
b

(15)

and the lens system has a magnification factor M

M = b

a
= f

a − f
, (16)

from which one can notice some special cases for the magnification factor for certain
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values of a[21, pp. 59–60]. Figure 2 illustrates the threshold values for a that yield
different magnifications of virtual and real images. The main takeaway is that for

Figure 2. Image formation at increasing object distances a relative to the lens.
Modified from [21, p. 60]

.

object distances a < F a magnified virtual image is formed and for a > F a real
image is formed. For a = F the light beams from the object propagate in parallel
and no image is formed. Furthermore for the real images with 2F > a > F the
resulting image is magnified and for a > 2F the image is demagnified, while the
point a = 2F results in an unaffected image.

2.4 Interference and diffraction

Probably one of the first things that comes to mind for physicists from the term
diffraction are the patterns formed by monochromatic coherent light passing through
one or more small slits. The difference in optical paths causes phase differences
between rays of light and due to interference gives rise to the maxima and minima
observed in a diffraction pattern[21, p. 89–92]. Diffraction in general refers to the
phenomenon of lightwaves being scattered and bent by obstacles[21, p. 79]. In
more precise terms, in this research we are interested in the far-field or Fraunhofer
diffraction. In the case of the optical microscope, the whole image is formed from a
diffraction pattern[21, p. 94]. A point in the specimen plane is imaged as an Airy
disk in the image plane[21, p. 83], and the viewed image can be though of as the
combination of Airy disks for all points in the specimen plane.
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2.4.1 Diffraction gratings

Hecht describes diffraction gratings as a repetitive array of diffracting elements,
either apertures or obstacles[p. 488][19]. They are intriguing optical devices and it
follows from the previous statement that they can be made from either transmissive
or reflective materials. For both types of gratings diffraction arises from the equally
spaced grooves that are produced on the surface of the material. Some common
everyday objects that acts as diffraction gratings are the different optical discs, such
as a CD, DVD and Blu-Ray discs. The optical paths taken by light are shorter at
the grooves than at the untouched areas of the material. For a diffraction grating, be
that a transmissive or reflective, we have the well-known grating equation[18, p. 46]

d(sin θi − sin θm) = mλ, (17)

from which we can solve for the angle of diffraction maxima, which yields

θm = sin −1
(

sin θi − mλ

d

)
. (18)

In equations 17 and 18 θi and θm are the angle of incidence and angle of maxima,
respectively, relative to the grating normal. d is the grating spacing, λ is the
wavelength of the light and finally m is an integer marking the diffraction order.
m = 0 is the zeroth order diffraction, that is specular reflection, m = 1 and m = −1
mark the first order diffractions and so on.

From equation 17 you can see that different wavelengths are diffracted to different
angles. When white light hits a diffraction grating, each diffraction order will have a
continuous spectrum and these spectra of each diffraction order might overlap and
make it difficult to observe the different orders. Additionally for diffraction to occur,
the spacing of the features of a grating must be larger than the wavelength of the
incident light.
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2.4.2 Thin film interference

Another phenomenon in which interference plays a central role is thin film interference.
Thin film interference refers to the interference effects when light propagates from
one medium into another medium with a thin layer of a third medium in between[17,
p. 684–685]. A common everyday example is how you can see different colors in a
puddle of water with oil floating on top of it, depending on the viewing angle and
thickness of the oil layer.

The phenomenon occurs due to how light behaves at a boundary of two mediums.
The Slayters give a brief description of this phenomenon by following the beams of
light propagating into a thin film[18, p. 40], which we can also follow here. A beam
of light is typically split into a reflected and refracted portion. The refracted beam
then hits the second boundary at the bottom of the thin layer and is again split into
a reflected and refracted beam. The once-refracted and once-reflected beam then
again splits when coming back up to the upper boundary of the thin layer. From
this beam, the refracted component can then interfere with a beam that is reflected
at the first boundary. There will also exist portions of the original beam that have
been reflected more than once from the bottom boundary. The different optical
paths introduce a phase difference in the beams. Additionally if a beam is reflected
from a material of a higher refractive index, it experiences a phase-shift of π.[17, p.
685] The condition for constructive interference is given by[18, p. 40]

mλ = 2nt cos r, (19)

while the destructive interference condition is given by

(1/2 + m)λ = 2nt cos r. (20)

In equations 19 and 20 t is the film thickness, r is the angle of refraction relative to
the surface normal and m is an integer for the order of interference. In these cases
the interference will be incomplete as the intensity of the beams that have undergone
reflections and refractions is decreased[18, p. 40].
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2.5 Models of scattering

The scattering behavior of light is dependent on a number of things. The scattering
event can be either elastic or inelastic. Krishna et al. describe these two processes
as follows[24]. In the case of elastic scattering the internal energy of the scattering
particle and the wavelength of the light both remain unchanged. In the case of inelastic
scattering the wavelength of the light and the internal energy of the scattering light
both change due to excitation. Furthermore the size of the scattering particle and
the wavelength of the incident light, each independently, lead to different behaviors,
as we’ll soon see.

In the context of this research, the most relevant distinction for scattering is the
size of the scattering particle and the different models used for different particle sizes.
There are three domains based on the particle size with respect to the wavelength of
the incident light. The size parameter

α = πD

λ
(21)

is used to determine theses zones[25]. In equation 21 D is the diameter of the particle
and λ is the wavelength of the incident light. Using the size parameter α, three
domains can be identified.

On the larger side of things is the limit α >> 1 for geometric scattering. In this
limit the scattering particle is far larger than the wavelength of the incident light,
exceeding about 10 wavelengths[19, p. 93]. As the name suggests, in the geometric
domain the scattering can simply be modeled by the geometry of the event.

On the smaller side of things is the limit α << 1 for Rayleigh scattering, which
has a strong λ−4[p. 89][19]. In this case the size of the scattering particle is much
smaller than the wavelength of the incident light. Probably the most common
example of Rayleigh scattering is the blue hue of the atmosphere in daytime. This
form of scattering is predominantly elastic in nature and its maximum intensities
are in the forward and back directions[19, p. 89].

Finally in the middle of the limits is the α ≈ 1 range for Mie scattering[25].
In this range the scattering particle is roughly the same size as the wavelength of
the incident light. Some common examples of Mie scattering is the color of clouds
and milk. The scattering is approximately equally strong for different wavelengths,
leading to the white color of the previous two examples.[19]
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2.6 Reflectance, transmittance and absorbtance

Stepping back from the micro scale of scattering and diffraction, another set of
interesting optical properties of a material are their reflectance R, transmittance
T and absorbtance A. Höpe gives a compact definition for these in his work[26].
Reflectance is measures the proportion of a reflected radiant flux against an incident
radiant flux. Similarly transmittance measures the proportion of a transmitted
radiant flux against an incident radiant flux. Finally absorbtance measures the
radiant flux that is absorbed by a material, that is the proportion of the incident flux
that isn’t transmitted or reflected. For a given material, these values are generally a
function of the wavelength, angle and polarization of the incident light and, barring
inelastic inelastic scattering and fluorescence, should sum to unity[26]. These material
properties are basically the macro scale expression of the scattering and diffraction
phenomena occurring in the micro scale on the material’s surfaces and inside the
material. These properties can be measured as a function of wavelength, angle of
incidence and polarization state in a goniometric setup. In such a setup the spectra
of the transmitted and reflected light from a sample are measured and compared
against the spectrum of the incident light.

2.6.1 Filters

Transmittance and absorbtance are especially important properties for filters, which
can be used to modify the spectrum of incident light. Filters come in various types
and have different interactions with the incident light. Probably the most basic
filter type is the neutral density filter, which applies a flat attenuation of the light’s
intensity over the spectrum[21, p. 46]. Neutral density filters are characterized
by their absorbtance or transmittance, or by optical density, which is defined as
OD = lg(1/T ).

An important type of filter are the edge filters, which either absorb or transmit
light beyond a certain threshold wavelength. The first one is the short pass filter,
which absorbs light with a longer wavelength than the filter’s threshold and the
second is the long pass filter, which inverses the behavior and absorbs light with a
shorter wavelength than the threshold[21, p. 46]. They are characterized by their
cut-off and cut-on wavelengths, at which they transmit 50% of the incident light.
A high quality filter has high transmission in the pass range, a low transmission
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in the block range and a steep curve at the cut-off between peak transmission and
minimum transmission[21, p. 46].

The two different edge filter types can be combined to create a band pass or band
block filter, which blocks or passes are certain narrow portion of the spectrum. These
filters are characterized by their central wavelength and full width at half maximum
transmittance or absorbtance for band pass and band block types respectively.[21, p.
46]

Polarizers can be used to filter out unwanted polarization states of incident light.
In microscopy polarizers are typically used in pairs, with the second one being called
an analyzer with the method being known as polarization microscopy[21, p. 153].
The polarizer first transmits only a desired polarization state and the analyzer can
then be used to observe the intensity of the transmitted light at different analyzer
rotations. Maximum transmission is obtained when the polarizer and analyzer’s
polarization directions are parallel, while minimum transmission is obtained when
the polarization directions are perpendicular. The intensity transmitted through an
analyzer is given by the law of Malus

I = I0 cos2 ϕ, (22)

in which ϕ is the orientation of the analyzer relative to the polarizer[21, p. 141]. In
the case of unpolarized light incident on a polarizer, the transmitted intensity is just
the average value of equation 22 over all angles ϕ, giving[17, p. 1147]

I = 1
2I0. (23)
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3 The optical microscope

The optical mircoscope is the oldest type of microscope, with the two-lens compound
arrangement dating back to 1590[18]. Modern optical microscopes utilize two sets of
lenses to achieve spatial resolutions of 350 nm in air and up to 240 nm in immersion
oil[21]. The optical microscope’s magnification is quite modest, being limited by the
resolving power of light, compared to modern electron microscopes and atomic force
microscopes. It does have the advantage of being much easier to use and as such
doesn’t require as much of a training as charged particle microscopes. Additionally
it’s considerably less costly and basically doesn’t impose any additional requirements
for the facilities, such as complex maintenance, cooling and vibration isolation stages.

Optical microscopy can be performed by observing either the light transmitted
through a sample or the light reflected by a sample. The two methods require
a different microscope construction with the reflected light microscope being the
slightly more complex one, as the light path in such microscope is partially a two-way
path. In the context of this work we are mainly interested in the reflected light
microscope but we’ll also make some notes on transmitted light microscopes.

3.1 General structure

One doesn’t necessarily have to choose just a reflected or a transmitted light type
microscope, but instead microscopes with support for both are readily available
from manufacturers. These microscopes basically just mash the two microscope
types together about the common section that is the objective, binocular head and
eyepieces. Figure 3 shows the construction of such a microscope and its important
components. The reflected and transmitted configurations have their separate light
sources in their own lamp housings. A collector lens is placed in the opening of the
lamp housing, as the name suggests, to gather and pass light to the optics farther
in the optical column. The light then passes through apertures and diaphragms to
align the beam so that all light paths are parallel to each other. This is also the
portion of the optical column in which filters are placed, for example polarizers or
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color filters. The next part is the mirror block that reflects the aligned light towards
the objective and the sample. The objective then focuses the light on the sample
and the reflected light is passed into the binocular head and finally focused at the
eyepieces for viewing.

Figure 3. Diagram of a optical microscope with both reflected and transmitted
light support naming the important components of the microscope. The yellow
beam illustrates the path of light from each lamp housing. Reproduced from [27]

.

As one can observe in figure 3, the main difference between the transmitted and
reflected types is in the focusing optics in the upper part of the microscope. For
a transmitted light microscope the optical components that focus the light on the
sample and guide the transmitted light into the binocular head are separate. For
the reflected light type the same optical components that focus the light on the
sample also have to focus the reflected light into the binocular head. Additionally
when the aligned light beam is reflected towards the sample at the mirror block, the
transmitted light type has a mirror used for this. The reflected light type on the
other hand must use a half mirror so that the aligned light beam can be reflected
towards the sample and the reflected light form the sample can pass through to the
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binocular head.

3.2 Magnification

3.2.1 Compound lenses and infinity-corrected optics

Practically all modern optical microscopes are of the compound type. The term
compound microscope arises from the fact that at its most basic configuration a
compound microscope uses at least two lenses together to achieve the final magnified
image. These two lenses are the objective lens near the viewed object and the
eyepiece lens which is used to view the final image, whose positions can be seen in
figure 3. The propagation of the light beams from the specimen object all the way
to the final image is illustrated in figure 4, showing how the compound lenses work
together in the most basic configuration. In short, the functionality of the setup can
be described as follows[21, pp. 1–2]. The object is placed in front of the objective
outside of the focal length of the lens so that a real image is formed in front of the
ocular lens. The ocular is placed in a position at which the intermediate real image
is within the focal length of the ocular causing the light beams passing through
the ocular to diverge. An observers eye forms a real image at the retina from the
divergent beams and the object is perceived as a magnified virtual image behind
the object. The magnifications of the two lenses add multiplicatively meaning an
objective lens with a 50x magnification together with a 10x magnification eyepiece
produce a final image of 500x magnification.

The basic compound lens setup is designed assuming that the sample is just
outside of the focal distance of the objective when in focus. The intermediate image
is then formed at a fixed point and therefore the microscope has fixed distance
between the nosepiece opening and the ocular. This distance is the mechanical tube
length of the microscope and it was standardized at 160 mm before infinity corrected
optics became standard equipment[21, p. 15]. Murphy and Davidson recount the
issues surrounding the fixed mechanical tube lengths as follows[21, p. 15]. For a
fixed-length mechanical tube any optical accessories, such as filters, illuminators
and polarizers for example, causes the mechanical tube length to effectively increase.
This in turn introduces aberrations into the optical system. Infinity optics solve this
problem with an objective which is designed to project the image to infinity, that is
the light beams emerging from the objective propagate in parallel. These parallel
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Figure 4. Beam propagation from the specimen object to the eye. The objective
lens collects light from the specimen and forms a real image in front of the eyepiece.
The eyepiece then forms a real image on the retina together with the eye. The
final image is perceived as a greatly magnified virtual image behind the specimen.
a) Shows a finite optical train, while b) shows an infinity-corrected optical train
and the portion in which the beams propagate in parallel. Reproduced from [21,
p. 16].

beams are then focused to form the intermediate image by an additional tube lens,
also known as a telan lens. The working principle, as described by the authors, is that
any optical components that are designed to produce a 1x magnification maintain
incident parallel beams as parallel beams as they pass through the component. With
this design a variety of optical accessories can be added into the light path without
shifting the focal point of the intermediate image.

3.2.2 Lens aberrations

While a basic compound microscope can indeed be constructed with just two lenses as
in figure 4, a high-quality microscope has an objective, which contains multiple lenses
to correct for aberrations. Furthermore they can be designed for a specific advanced
imaging technique. Using a simple lens to magnify an image incurs a variety of
aberrations on the final image that increase in severity with magnification. Figure 5
illustrates the main lens aberrations and why they occur. The lens aberrations, if left
uncorrected, severely limit the magnification at which a clear image can be formed.
Indeed the goal in designing an objective lens is to limit the size of aberrations to
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under the diffraction limited blur[28]. The objective barrels of optical microscopes
come in a wide variety in terms of magnification and the magnitude of aberration
correction, as correcting aberrations is a trade-off between which corrections are the
most important for given application. A more robust discussion and the quantitative
analysis of lens aberrations is beyond the scope of this work.

Figure 5. Principle aberrations of a simple lens. a) Light of varying wavelengths
focuses at different distances. b) Incident rays parallel to the optical axis refract
more the further away from the optical axis they are. c) Rays from an off-axis
source focus at different locations depending on the point at which they pass
through the lens. d) Rays from an off-axis source passing throgh the vertical and
horizontal diameters have different foci. e) The image plane is in reality curved
and projecting it on a plane causes more distortion the further from the true
image plane the projected point is. Reproduced from [21].
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3.2.3 Objectives

Microscope objectives are characterized by their magnification, immersion medium,
working distance (WD), numerical aperture (NA) and type[21, p. 70]. Most objectives
are designed to be used in air but in the case of samples under a cover slip, a higher
resolving power can be achieved by using a medium with a refractive index close
to that of the cover slip’s glass. By creating a volume of medium with an uniform
refractive index between the cover slip and objective, the distortive effect caused by
refraction of light propagating from mediums of different refractive indices can be
avoided. The intended medium of an objective is marked on the objective barrel as
shown in figure 6. Typically a special type of transparent oil with a refractive index
of 1.515 is used but there are also special objective designs, such as water immersion
objectives for biological samples in an aqueous medium[21, p. 68].

Figure 6. The markings of an objective barrel. Reproduced from [21, p. 70].

The working distance refers to the distance between the front lens element of
the objective, while the sample is in focus, and either the surface of the cover slip
on the sample or the surface of the sample itself if no coverslip is used. Typically
an increasing magnification requires a decreasing WD [29] and for oil immersion
objectives, the WD is restricted to small distances in order to maintain a volume of
the immersion liquid between the sample and objective. Special objectives with a
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long WD are also designed to enable a wider range of focus. These objectives can
be used to view thick samples with features at long distances from the cover slip or
sample surface[21, p. 68]. These objectives are prove very useful when the sample
needs to be manipulated in some way with an external object, like a micropipette or
an external light source for example.

The numerical aperture is a measure of the angle over which the objective can
collect light from the sample. The NA is a key parameter in objectives and it affects
the spatial resolution and contrast of the image. NA is defined as[21, p. 104]

NA = n sin θ (24)

in which n is the refractive index of the medium and θ is the half angle of the cone
formed by sample light accepted by the objective. The image brightness B is defined
as [21, p. 71]

B ∝ (NA/M)2 in transmitted light mode, (25)

B ∝ NA4/M2 in reflected light mode. (26)

The ultimate resolution of an optical microscope is limited by the diffraction of
light caused by the aperture of the objective. In the image an Airy disk pattern is
formed by a point in the specimen plane. The radius of the Airy disk pattern in a
small angle approximation is given by[21, p. 84]

r = 1.22 λ

2n sin θ
, (27)

or in terms of numerical aperture

r = 1.22 λ

NA . (28)

Typically the resolution of an optical system doesn’t reach the diffraction limit and
is instead limited by the previously discussed lens aberrations[18, p. 48].

Microscope objective come in three varieties in terms of differing magnitudes of
aberration correction. The first type are achromats, which are red and blue (656
nm and 486 nm) corrected for chromatic aberration, while spherical aberration is
corrected for yellow-green (540 nm) light[21, p. 65]. These objectives are considerably
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less expensive than the other two types and they excel in monochromatic light. [21,
29] They are best suited at low magnifications, at most 40x [21]. Additionally they
have the least amount of lens elements making them a good choice for polarization
and differential interference applications [29].

The second type are the semiapochromats, which are made from materials that
have low color dispersion and high transmission, allowing for easy chromatic and
field curvature correction[21, p. 66]. They are corrected for chromatic and spherical
aberrations at blue, green and red wavelengths. These objectives are also a great
choice for UV-light, polarization and differential interference applications due to
their high transmission and color correction.

The third type are the apochromats, which are the most highly corrected objec-
tives[21, p. 66]. They are corrected for chromatic aberration at four wavelengths:
red, green, blue and violet. Additionally the wavelengths between the fully corrected
ones have a reasonably good color correction[29]. Spherical aberration correction is
applied for green and blue light. The wide range of corrected wavelengths makes
them the best choice for working in white light and colors [21, 29]. Apochromat
objectives have the largest number of lenses in them, making them less favorable for
polarization and differential interference applications [29]. The apochromats are the
most expensive of the three types of objectives mentioned here.

Figure 7. Cross sections of achromat, fluorite and plan apochromat objectives.
The cross sections illustrate how the number of lenses and the complexity of an
objective increases with increasing degree of aberration correction. Reproduced
from [21, p. 65].
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3.2.4 Oculars

As noted earlier, the oculars work together with the objective to form the final
magnified image on the retina of the viewers eye using the intermediate image in the
microscope. The ocular’s magnification should be some 500-1000 times the objective’s
NA in order to make the most use of the objective’s resolving power while not causing
empty magnification[21, p. 72]. Oculars are characterized by their magnification
and field of view, which are marked on the eyepiece. For example 10x/0.5 would
indicate a 10x magnification and 0.5mm FoV. Oculars have various special designs
from additional corrections for curvature of field or chromatic aberration to providing
additional features such as a wider FoV or additional spacing for the viewer to wear
glasses[18, 21].

3.3 Light delivery

In order to view the specimen at a proper contrast and resolution, the specimen must
be illuminated in an even fashion and the light source must be at a proper intensity
and correctly focused and aligned. The light source is of course an adjustable lamp,
typically a tungsten filament lamp, a type of arc lamp or a halogen lamp. In the
case of multiple different available light sources one must also consider the emission
spectrum of the lamp for the task at hand.

3.3.1 Light sources

The light sources used in microscopes come in a wide variety with very different
emission spectra. Some lamps have distinct very intense emission lines at given
wavelengths, some have very neatly continuous spectra and others have both charac-
teristics in varying degrees. Some typical examples of different types of lamps used
as light sources are different arc lamps, incandescent lamps, LED lamps and metal
halide lamps.

Incandescent lamps are a type of lamp which a lot of us are familiar with in terms
of household usage. Incandescent lamps are a common choice for a light source used
in microscopes and they are typically tungsten-halogen lamps[30]. They are thermal
radiators and therefore the emission spectrum is a continuous spectrum resembling a
blackbody radiator as can be seen in figure 8d. Only a small portion of the emitted
energy, about 15-20%, is in the visible spectrum with most being in the infrared
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range.[30] With increasing voltage the emission is brighter and the spectrum shifts
towards shorter wavelengths, making its color balance variable[21, p. 36]. They also
provide a bright illumination applicable for even polarized light applications, they
are inexpensive and paired with color filters they can provide even illumination.

The second prominent type of light source are arc lamps. These lamps are very
bright, varying between 10-100 times brighter than incandescent lamps, making
them the lamps with highest luminance and radiance of continuously operating
lamps[21, 31]. Arc lamps work by igniting an arc between electrodes with a high
voltage followed by maintaining an arc with a lower voltage. Two varieties of arc
lamps are used: mercury vapor arc lamps and xenon arc lamps. For the mercury
arc lamp only a third of the emission is within the visible spectrum and about half
in the UV range[31]. For the xenon arc lamp about one fourth of the emission lies
between 400-700 nm wavelengths with about 70% being in wavelengths longer than
700 nm[32]. Mercury arc lamps exhibit multiple distinct emission lines, as can be
seen in figure 8 a). The lines can be up to 100 times brighter than the continuous
portion of the spectrum[31]. The xenon arc lamp has a nearly continuous spectrum
in the visible wavelength range but has complex emission lines in the IR region,
shown in figure 8 b). The arc lamps are best used in fluorescence microscopy and
with samples that scatter very little light into the microscope objective[31]. The
increased brightness provided by the arc lamps does however come with a drawback
in being more inconvenient than other types of light sources. The arc lamps have a
much shorter lifetime, are harder to align properly and the plasma arc itself flickers
and moves between the electrodes causing some instability in the illumination[31].
They are also more expensive than incandescent lamps and require a special power
supply due to the high voltage required to ignite the plasma arc initially. Finally the
light intensity can’t be regulated with an adjustable power supply[21].

On the more modern side of light sources we have the LED lamps. LEDs
are semiconductor p–n junctions which emit photons and as such they have, in
comparison to the other light sources, a quite narrow emission bandwidth[21, p. 39].
The bandwidth is typically some 20-50 nm wide making it an order of magnitude
smaller than incandescent lamps or arc lamps, but still separate from lasers with
their 1 nm bandwidths. Figure 8e shows the spectra of different color LEDs. Their
advantages over the other lamps are the fact that they have very high degrees of
spatial and temporal stability, they have the longest lifetimes and can be switched
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on and off at high frequencies[33].

Figure 8. Intensity spectra in various units for different light sources. a)
Mercury arc lamp, most of the emissions occur in the IR and UV ranges not
shown in the figure. b) Xenon arc lamp, it has similar peaks in the IR range
as the mercury arc lamp in the visible range. c) Metal halide lamp, it has very
similar emission peaks to the mercury arc lamp. d) Tungsten filament lamp,
it has a continuous spectrum with a varying white balance depending on the
driving current. e) LED lamps, LEDs can be designed for a specific narrow
bandwidth. Modified from [21].
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3.3.2 Filters in optical microscopes

The light source type determines the spectrum of the light available but filters can
be used to modify the initial spectrum. Not all wavelengths are made equal for
all applications and the different types of filters introduced in part I, section 2.6.1
can be used to modify the emission spectrum. Neutral density filters are the most
basic type of filter and can be used to attenuate the intensity of light. Color and
interference filters can be used to block and pass certain wavelengths.

The neutral density filters are especially useful to pair with arc lamps, whose
emission intensity can’t be adjusted[21, p. 46]. The attenuation in neutral density
filters are based on either absorption or reflection. Reflecting filters must be oriented
so that the reflecting side is pointed towards the light source, while absorbing filters
don’t have a preferred orientation[21, p. 46]. Reflective filters must also be handled
with care as the reflecting surface is coated with evaporated metal in order not to
scratch the surface.

Davidson and Murphy divide edge filters into two categories[21, pp. 47–48]. These
are the colored glass filters and interference filters. They describe that colored glass
filters are made with glass that contains rare earth transition elements or colloidal
colorants. Interference filters on the other hand are made by stacking multiple layers
of glass coated with transparent metal salts as a dielectric material. They state that
the thickness of these layers is designed to be one half or one quarter of wavelength
in thickness in order to facilitate constructive interference for specific wavelengths[p.
47][21]. The colored glass filters work via absorption and the authors note that
as such their transmission properties can change due to heat. They also highlight
that the colored glass filters are more resistant to scratching and chemicals than
the interference filters, similar to the absorbing and reflecting neutral density filters
respectively. A last feature of the colored glass filters, that we’d like convey from
Davidson and Murphy’s work, is that they are insensitive to the angle of the incident
light, are less expensive and have a longer lifetime than the interference filters. The
interference filters do however typically have a steeper cut-in and cut-off curves[21,
p. 47].

The different edge filters are very useful for situations where a portion of the
spectrum needs to be blocked. For example in fluorescence microscopy only the
specific wavelength range emitted by a fluorescent material is desirable to observe[21,
p. 45]. Considering the nature of the different filter types, it is evident that edge filters
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are the only way to separate specific ranges of wavelengths for direct observation or
image capturing.

Polarizers are very useful, special type of filter that can produce polarized light[21,
p. 136]. They can be used in observing any optically anisotropic properties of a
material and are fundamental in polarized microscopy, in which the contrast in the
image is formed by the differences in intensity for different polarization states[21,
p. 152]. Modern polarizers are created from dichroic materials as polaroid sheets,
in which the oriented macromolecules absorb light plane-polarized in the filter’s
absorption direction. We discussed dichroicity briefly in section part I, 2.1.3.

3.3.3 Collector and condenser lenses

The light emitted by the lamp in the lamp housing must be focused into a even
collimated beam. The collector lens at the opening of the lamp housing serves this
purpose, collecting as much light as possible from the light source. Additionally
the collector lens is used to focus an image of the light source in a specific position
to achieve Köhler illumination[21, p. 9]. Köhler illumination is discussed more in
part I, section 3.4.1 The lens that is used to focus light from the illuminator onto a
small area on the sample is the condenser lens. As can be seen from equation 25,
the image brightness has a M−2 relation to magnification, meaning brightness must
increase as the square of magnification in order to maintain a constant brightness
under increasing magnification. This makes the condenser lense’s role very important
in illumination. In a transmitted light microscope the condenser is a separate lens
underneath the sample, while in a reflected light microscope the objective acts also
as a condenser lens for light propagating down towards the sample.

Like the objectives and oculars, condenser also have different degrees of aberration
correction in their designs. The very common Abbé condenser for example suffers
from chromatic and spherical aberrations and curvature of field[21, p. 71]. Better
designs such as the aplanatic condenser corrects for spherical aberration and curvature
of field, while the aplanatic-achromatic corrects for even chromatic aberration in
addition[21, pp. 71–72].
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3.3.4 Diaphragms

As seen in figure 3, the beam column has two diaphragms, the aperture and field
diaphragms, in the light path. The first one in the light path is the aperture
diaphragm, which controls the amount of light passed from the collector lens further
into the light path. These diaphragms together allows the user to adjust the contrast
and resolution of the image[21, p. 9]. They have an optimum setting for maximizing
these parameters; too open an aperture causes glare and a poor contrast, while a too
closed an aperture causes increased diffraction and poor resolution.

3.4 Contrast modes

There are a variety of illumination and contrast formation techniques with each of
them based on a different interaction between light and the sample. The various
interactions provide a different contrast formation mechanism and thus in the final
image a different contrast, highlighting details unique for each technique. While
there are a large variety of techniques, probably the most common examples are the
bright field and dark field illumination techniques. In these illumination methods the
contrast originates from the absorbtance of light and scattering of light respectively.
Other examples are cross-polarized light and phase contrast illumination, with the
contrast originating from the rotation of polarized light and interference of varying
path lengths of light respectively.

3.4.1 Bright field illumination

The most basic bright field (BF) lighting method is the critical illumination method,
in which an image of the light source is focused on the specimen. Naturally this
means that the image of the light source is visible in the final image leading to
uneven illumination and reduced image quality. Instead basically all scientific optical
microscopes apply Köhler illumination, whose design was invented by August Köhler
and published in 1893[21, p. 1]. In Köhler illumination the idea is to ensure even
lighting on the specimen plane and completely defocus the image of the light source
at the retina. This is achieved by specific placement of lenses. A diagram of both
critical and Köhler illumination methods is shown in figure 9.

In Köhler illumination there is a collector lens near the light source housing,
which as the name implies, is used to collect and direct as much light as possible
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Figure 9. Diagram of Köhler and critical illumination setups. a) The conjugate
field planes, note the focal points at the sample stage and the retina. b) The
conjugate aperture planes, the focused image of the light source is defocused on
the sample stage and at the retina. c) Critical illumination setup, the image of
the light source is focused both at the sample stage and retina. The noticeable
difference between the setups is that in Köhler illumination there is an additional
collector lens and diaphragm in front of the light source. Modified from [21, p.
8].

toward the specimen. Adjacent to the specimen is a condenser lens, which is used to
specifically focus most of the light coming from the collector lens on a small area
on the specimen. Additionally in order to avoid stray light from polluting the final
image and to maximize beam alignment there are diaphragms placed along the beam
path.

As noted earlier, the contrast formation mechanism in BF illumination is the
absorption of light in the sample. Be it a reflected or transmitted light microscope, a
portion of the light is absorbed by the sample. The absorbtance is dependent on the
material of the sample, the angle at which light hits the surface at a point on the
sample and especially in the case of transmitted light, the thickness of the sample.
At least some of these properties must vary on the sample in order for any observable
contrast to arise in the final image.
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Figure 10. Bright field image of standard paper at 20x magnification.

The BF method is the simplest illumination method and is thus typically utilized
in most optical microscopes. The illumination method forms a bright background in
the image and the varying amount of absorbtance gives the final image its contrast
from white fully reflected light to black completely absorbed light. It follows that
this makes BF illumination a poor choice for very homogeneous samples and great
at viewing samples with lots of surface detail in reflected light microscopy. BF
illumination is especially problematic in thin biological samples in which the sample
has barely any absorbtance. In such a case samples can be stained to provide color
and contrast[21, p. 115]. Figure 10 shows an image of paper at 20x magnification
under bright field illumination. Some detail can be resolved from the overlapping
fibers of the paper, but overall there is little sense of depth in the image due to the
bright background.
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3.4.2 Darkfield illumination

The darkfield (DF) illumination technique is likely the second to most common
technique of illumination. The basic idea of DF illumination is to have the illuminating
light hit the sample at an oblique angle so that only light that is scattered by the
sample enters the objective, while light that is directly transmitted or reflected misses
the objective lens entirely due to the oblique angle[21, p. 130]. The name for the
technique arises from the fact that the image has a dark background and any details
in the image are bright due to the light scattered by the sample material.

The typical approach to allow light to hit the sample only at oblique angles is
to block the central portion of the beam with a darkfield condenser annulus[21, p.
130]. For a transmitted light microscope this is achieved with a disc shaped patch
stop at the center of the beam allowing only an outer ring of light to pass towards
the condenser lens. For a reflected light microscope the mirror block uses a fully
silvered mirror with an elliptical hole in the center to only direct an outer ring of
light towards the objective[34].

Darkfield illumination excels in showing small details in samples that would be
hidden under bright field illumination due to the bright background. In DF mode a
greater sense of depth is given to the images as the background is dark. Figure 11
shows an image of paper at 20x magnification in DF mode. From the image tt is
evident that a greater sense of depth is achieved, as multiple layers of overlapping
fibers can be resolved from the image. The fibers appear more transparent in the
DF image and less detail can be resolved at the surface of individual fibers than in
BF mode.

3.5 Olympus BX53M optical microscope

In this research an Olympus BX53M optical microscope with a frame supporting both
reflected and transmitted light observation was utilized. Of these only the reflected
light observation was utilized. The light source used was a LED light with a reported
color temperature of 5700 K, corresponding to a white light with a slight blue hue.
Objectives of various magnifications supporting DF illumination and transmitted
and reflected observation were utilized in this research and they are listed in table 2.
All the objectives are planar achromats. The microscope is additionally equipped
with a fixed polarizer and rotatable analyzer allowing polarized microscopy. The
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Figure 11. Darkfield image of standard paper at 20x magnification.

microscope is also equipped with an Olympus SC100 CMOS color camera, though
we’ll get more into this camera in part III.

Magnification NA WD (mm) Max FoV (mm)
5x 0.10 12.0 4.40
10x 0.25 6.5 2.20
20x 0.40 1.3 1.10
50x 0.75 0.38 0.44
100x 0.9 0.21 0.22

Table 2. Properties of the utilized objectives
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Figure 12. A photograph of the Olympus BX53M microscope utilized in this
research.

3.6 Beyond the diffraction limit

In this research in addition to utilizing the optical microscope, the atomic force
microscope (AFM) and the scanning electron microscope (SEM) were also utilized.
These are very useful tools in observing the nanoscale world that is beyond the
diffraction limit of conventional optical microscopes and they require at least a brief
discussion before delving into AFM and SEM images in the following sections.

SEM utilizes the interactions of electrons and matter and magnifications between
tens of times to hundreds of thousands of times can be achieved[1, p. 19]. Maximum
resolutions typically are in the nanometer range but sub nanometer can also be
achieved[1, p. 10]. SEMs have various applications ranging from image formation
based on different signals to different X-ray spectroscopy methods[1, p. VII]. In
the case of this research the main function of SEM is to simply provide structural
information about the samples that would be impossible to achieve with the resolution
of an optical microscope. Emphasis is given on the ability to observe large areas at a
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high resolution.
The AFM utilizes a micrometer scale tip attached to a cantilever to measure

its deflection as it is scanned over a sample surface[2, pp. 8–10]. This enables the
measurements of a material’s mechanical properties as well as image formation at
resolutions down to a sub nanometer range[2, pp. 3, 255]. AFMs are useful at
obtaining topographic data of sample surfaces, especially in terms of measurable
height or depth[2, p. 5]. In this research AFM images are utilized in a similar fashion
as the SEM images; a means to achieve information otherwise unobtainable via
optical microscopy, but with an emphasis given on the height data of small areas.

By taking careful note of the position at which an AFM or SEM image is taken,
it is possible to match them with optical images of the the same position. From
these matched image pairs it is easy to take note of the resolution limit of optical
microscopes. Such an image pair of a silicon chip with fabricated electrodes and
MWNTs is shown in figure 13. The imaged sample is shown just to demonstrate the
resolution limit of an optical microscope and how small particles are seen in a DF
optical image, otherwise the sample bears no relevance to this research.

Figure 13. An optical DF image and AFM peak force error image of a silicon
chip with fabricated electrodes and deposited MWNTs. The particles are tagged
with a letter and a number and are matched between the two images. From
the image pair it is clear to see that the individual MWNTs are too small to be
observed in the optical image.
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4 Samples and basic inspection

As was stated in the introduction, the main interest in this thesis is the imaging of
the special kind of CNT depositions, that have two optically distinct zones. These
zones can be observed in figures 14 and 15. Of the two zones, the outer one appears
visually dimmer in DF images, while the inner zone appears brighter. In this section
we briefly describe the fabrication of the samples and their characterization with
microscopic imaging and spectroscopic techniques, that are straightforward in a
modern laboratory such as the Nano Science Center of the University of Jyväskylä.
This section will conclude part I. In part II we will concentrate on developing methods
of digital image processing of optical microscopy data to obtain more information of
the sample. The developed methods will finally be utilized in part III for quantitative
measurements.

Figure 14. BF images captured of one of the CNT deposition samples used in
this research. a) 5x magnification, b) 20x magnification. In BF mode it is nigh
impossible to see detailed structure at the top of the web like formations.
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Figure 15. DF images captured in the same positions of the same sample
as in figure 14. a) 5x magnification, b) 20x magnification. DF mode gives a
greater sense of depth in the case of this sample, as details on top of the web
like formations can be seen.

4.1 Sample fabrication

The three main samples of this work, that have both zones, were produced by
Esa Hyyryläinen in 2018, within his M.Sc. thesis work, according to the following
procedure. Firstly, silicon chips were cleaned and the surface made hydrophilic with
an O2 plasma treatment via RIE. Secondly a layer of carbon nanotubes, immersed in
dichloroethane, were deposited on the chips’ surfaces by spin coating. This leaves a
uniform and thin, practically two-dimensional, layer of nanotubes on the chip. Then
in an environment with controlled humidity a droplet of water is pipetted on the
chip. The formation process of the deposition is illustrated in figure 16 along with
a photograph of the main samples. As the pipetted drop expands it sweeps away
nearly all carbon nanotubes that are not parallel to the flow direction of the water.
As a hydrophobic material, the sweeped nanotubes then float to the surface of the
drop. The water drop is then allowed to evaporate, which causes the surface area of
the drop to shrink. This leaves less and less area for the floating CNTs as the drop
evaporates and eventually when the surface area is small enough in relation to the
area taken by the CNTs, a deposition with two optically distinct zones is formed.
The deposition takes a curious form that resembles a dried coffee stain. The samples
utilized in this research are listed in table 3 alongside with some basic information
and DF and BF images. In the appendix A are some more details about the sample
fabrication process in the context of the spectroscopic measurements.
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Figure 16. Illustration of the sample fabrication process from the spin coated
chip to the dried deposition and a photograph of the main samples. On the
silicon substrates the depositions’ resemblance with a dried coffee stain is evident.
On the quartz chip the deposition appears more subdued. a) Shows the initial
spin-coated surface. b) shows the pipetted water droplet expanding on the chip
surface and sweeping material on top of the droplet. c) shows as the droplet
dries by evaporation and leaves a shrinking area for the sweeped material. d)
shows the final deposition after the water has completely evaporated.

4.2 Sample inspection with different microscopy techniques

There are various observations that can be made from basic optical, SEM and AFM
imaging. In the case of the optical images as they are, we can mostly make qualitative
observations of the samples, but quantitative analysis will require further processing
of the image data and is left for part III.

4.2.1 Optical images

The optical images are formed from the combination of red, green and blue color
channels. The intensity of the images of each channel are directly proportional to
the irradiance the camera sensor receives, that is how many photons impinge the
sensor per time unit. By controlling the exposure time the brightness of the image
can be adjusted and the color channels can also be observed separately. We’ll get
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No. By Date Substrate DF BF

1 EH 29.6.2018 Silicon

2 EH 29.6.2018 Silicon

3 EH 29.6.2018 Silicon

4 SV 20.1.2023 Quartz

Table 3. Table of the utilized samples listing their number, creator (EH = Esa
Hyyryläinen, SV = Sami Voutilainen), fabrication date, substrate material and
DF/BF images.

more into the details of digital imaging in part II.

There are a couple of features in the optical images that are likely to first pique
a viewer’s interest in the DF and BF images. As we showed in figures 14 and 15,
when we observe the sample with an optical microscope in BF and DF modes, firstly
it shows that two visually distinct zones have formed: an outer and an inner ring. In
BF mode the outer circle appears brighter than the inner one and vice versa in DF
mode. Secondly the striking blue hue of the DF images commands attention. The
blue hue can in reality be slightly misleading without further inspection, but we’ll
discuss that more a bit later.

First we’ll take notice on the differences of the BF and DF mode images. On one
hand the BF mode images excel at showing where MWNT and amorphous carbon
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material are, which can be seen as dark material against a very bright unobscured
substrate. This distinction isn’t as clear in the DF images due to a peculiar blue glow
observed at the edges of deposited material. The DF mode on the other hand very
clearly shows more detail in the deposition’s structure and gives a sense of depth in
the deposition.

Something interesting can be noticed in the DF images when capturing an image
at a short exposure time. In figure 17 there are two DF images taken at a longer and
a shorter exposure time and two BF images, all taken at the same position. This is
where the blue hue can be observed to be slightly misleading. The shorter exposure
DF image’s values are scaled up for easier viewing. Firstly in the BF image we can
take note of where the deposited material lies. Then observing these positions in the
bright DF image, we can notice that the sample has a strong blue hue as seen in
previous DF images. Additionally in this closeup we can observe that there is indeed
a blue glow along the circumference of the deposited material. This glow is weaker
in the darker DF image, in which we can observe that at the actual positions of the
deposited material, there is a clear green hue. This could suggest that the deposited
material’s actual color is more of a green hue, while the blue color could originate
from interactions of the deposited material and the silicon substrate. Utilizing an
analyzer and polarizer pair in BF mode provides additional insight. The third image
in figure 17 shows the same position captured in BF mode with an analyzer that
is rotated to filter out the light that is reflected from the substrate. This shows a
similar blue hue as in the DF images, which implies that the blue hue isn’t dependent
on the light’s angle of incidence relative to the sample. We’ll return to these ideas
again in part III with quantitative tools.

Figure 18 shows the same sample as in figures 14 and 15 with additional SEM
images taken from both of the sample’s zones. The thin mostly straight strips of
varying thickness are MWNTs that are free of clutter. Most of the MWNTs are
covered in amorphous carbon particles that accumulate on the MWNTs. These
amorphous particles are mostly seen aggregated into clusters and attached to the
MNTNs. Very few amorphous carbon particles are seen independently. The SEM
images also show a visibly clear difference in the amount of material in each zone.
This is further illustrated in figure 21, which shows images of the dim and bright
zones respectively. The key feature we want to highlight is that the bright zone
SEM image has 3000x magnification, while the dim zone SEM image has 8000x
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Figure 17. Optical images of sample No. 2 taken at 50x magnification. a) DF
image with 30 ms exposure, b) 5 ms exposure with values multiplied by three
for viewing, c) BF image with analyzer–polarizer pair for filtering reflected light
from substrate, d) regular BF image.

magnification, and yet the images look relatively similar to each other. Considering
that in DF mode an optical microscope image should be brighter at areas with more
non-flat features, the sparser area being the bright one is counter intuitive.



55

Figure 18. a) DF optical image showing at which positions the SEM images in
b and c were taken. b) A SEM image of the brighter zone, showing a sparser
distribution of material than in c. c) A SEM image of the dimmer zone, showing
a denser distribution of material than in b. In b and c some clutter free MWNTs
can be seen, but most are covered in amorphous carbon particles. Images a–c
are originally captured by Esa Hyyryläinen.
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The sample surface is formed by a network of randomly oriented MWNTs and
amorphous carbon particles. While the individual particles and MWNTs are in
random orientations, in general on the surface a reasonably ordered structure is
formed from the network of MWNTs. One hypothesis for the MWNT deposition’s
behaviour in visible light is that the MWNT network acts as a diffraction grating.
The mean space between features varies in the visible spectrum’s wavelength range
and it could be a deciding factor in why the sparsely populated area appears brighter
than the more densely populated one.

Additionally as noted before, for diffraction to occur, the spacing of the features
of a grating must be larger than the wavelength of the incident light. This could
suggest that in the more densely populated area of the sample only the shorter
wavelengths of the visible spectrum can be diffracted, while in the sparsely populated
area a larger portion of the visible spectrum can be diffracted.

Considering that the subject of interest in this research are MWNTs, whose
diameter typically ranges from 2 to 20 nm and length from few µm to tens of
µm and larger amorphic carbon particles, the scattering of light from the sample’s
different objects could have behaviours corresponding to geometric, Rayleigh and
Mie scattering. Along the tube axis the length scale is typically clearly above the
Mie scattering domain. In the radial direction however we are dealing with length
scales that are in the Rayleigh and Mie scattering domains.

4.2.2 AFM images

AFM images can be formed using various signals of an atomic force microscope. The
most typical of these is the height sensor signal. The intensity of the image maps
to height values that are recorded from the deflecting AFM tip, as the tip scans
over a sample surface. Another signal type we showed in figure 13 is the peak force
error signal. It is a feedback signal and doesn’t yield any real information apart from
making an aesthetically pleasing image that gives a sense of three dimensions.

From the height sensor AFM images we can observe and quantify the height, and
therefore the diameter, of the MWNTs on the sample surfaces. The AFM images
show especially well that the samples are indeed quite two-dimensional in nature.
Some AFM images and their corresponding positions in an optical image are shown
in figure 19. From these images it can be observed that most of the material in the
depositions lies in the height range of tens of nanometers.
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Figure 19. AFM height sensor images of sample no. 2 taken from different
points in the sample. a) is taken inside the dim zone, b) is taken also in the dim
zone, but closer to the bright zone and finally c) is taken at the interface of the
bright zone and empty chip.

The quantification of the nanotube’s diameters would be quite difficult using
the AFM images taken of the main samples of this research. For that task we
utilize AFM images taken from a sample fabricated by Esa Hyyryläinen for his own
master’s thesis research. The sample was fabricated in the same manner and using
the same MWNT suspension as the main samples of this research, but has a cleaner
evacuation zone where the pipetted water droplet has sweeped away the spin coated
MWNT material. In the evacuation zone are chains of MWNTs and amorphous
carbon. These chains are an useful location for quantifying the MWNTs’ diameters,
as there are fewer amorphous carbon particles around the MWNTs than in the main
deposition we’re interested in. Three AFM images were captured from such a chain
and from these the height of a number of MWNTs was determined using Nanoscope
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Analysis software and the step tool. The tool can be used to mark a box in the
image, plotting the height sensor data in the direction of the dividing line of the box,
while the direction perpendicular to the divider is used to average the height sensor
data. The AFM images were first processed by utilizing the 2nd order flattening
tool, which fixes bow and tilt in AFM images by fitting a second order polynomial
at each scan line. The heights were then determined as the difference between the
maximum height observed at the nanotube, from which the average height of the
surrounding substrate was subtracted. Figure 20 shows the three AFM images, an
optical image of the chain and finally table 4 lists the heights determined at each of
the numbered locations.

Location # a) (nm) b) (nm) c) (nm)
1 8.05 22.60 10.60
2 7.26 19.30 7.51
3 31.00 3.07
4 29.90 13.40
5 9.02 3.05
6 11.80 10.50
7 16.10 8.48
8 5.55 4.50
9 6.52 11.80
10 10.90
11 10.60
12 7.91
13 2.45
14 20.40
15 5.34
16 26.50

Table 4. Diameters of the MWNTs determined from the AFM images a-c
in figure 20 at the numbered locations. The mean diameter is 12.00 nm and
standard deviation is 8.02 nm.

The MWNTs’ diameters are in the very typical range as reported in literature,
with the smallest here being 2.45 nm and the largest being 31 nm. Some uncertainty
is naturally associated with the height measurements. The height measurement using
the step tool yields slightly different results depending on the size of the averaging box
and its location, with the results varying over a range of couple nanometers. In this
research this is acceptable, as highly precise diameter measurements aren’t something
we are mainly interested in here. Additionally for the case of the largest nanotube
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Figure 20. AFM height sensor images of a sample fabricated by Esa Hyyryläinen.
The optical image shows the junction about which the AFM images were taken.
The numbered boxes mark the locations at which heights and therefore the
diameters of the MWNTs were determined. The heights are reported in table 4.

diameters, a MWNT’s structure can flatten, skewing the height measurement towards
smaller heights than in reality. While height statistics could be inferred in a similar
manner for the amorphous carbon particles, we’ll leave that for part III of this thesis.
There we’ll utilize a more powerful method to quantify the sizes of the particles and
distances between them.
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4.2.3 SEM images

Like with AFM images, SEM images can be formed from various signals of the
scanning electron microscope. The signal used to form the images in this research
are secondary electrons. These are low energy electrons and therefore they originate
only from the first few nanometers of a sample surface. This gives the images a very
high resolution.

The SEM images provide a slightly different view into the samples. Using the
SEM images it is very straightforward to quantify the length of the MWNTs. SEM is
the better option in measuring distances over AFM, as the AFM tip slightly distorts
lateral features as the tip scans over sample geometry. Figure 21 shows SEM images
from the dim and bright zones, with yellow lines and numbers used to mark them.
Statistics with histograms, fitted curves and descriptive values are shown in figure 22
for the length measurements. The MWNTs were identified and a segmented line was
overlaid manually on top of them for the length measurement using ImageJ software.

From the dim zone 300 nanotubes were identified, while plenty more still remain
in the image. The longest single nanotube was 3.76 µm and the shortest fragment
was 0.146 µm. The mean and standard deviation of the tube lengths is 0.861 µm and
0.595 µm respectively. Similarly 375 nanotubes were identified from the bright zone
with the single longest and shortest tubes being 5.278 µm and 0.146 µm respectively.
The mean nanotube length was 0.946 µm and standard deviation was 0.797 µm.

In the 8000x magnification SEM image one pixel is equal to about 0.0068 µm
and the error due to placing the nodes of a segmented line shouldn’t be greater than
5 pixels, or equivalently 0.034 µm. Most lines consist of only two nodes, leading to
an approximately 0.05 µm measurement uncertainty by the uncertainty propagation
law. Some very curved lines can consist of up to 20 nodes, which would lead to
a measurement uncertainty of approximately 0.16 µm. Similarly for the 3000x
magnification one pixel is equal to about 0.017 µm leading to a 0.24 µm error for
two nodes and up to 0.76 µm for 20 nodes. In the end the uncertainty of individual
MWNTs’ lengths in most cases is small compared to the statistical variation of the
lengths and to the uncertainty introduced by ambiguous nanotube ends.

The 5 pixel error is a fair estimation of the error for manually placing the
nodes. However, rather than the uncertainty of node placement, a greater source of
uncertainty in the images is how well the individual nanotubes’ ends can be identified.
The nanotubes used in the length calculations were chosen so that their ends were as
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clear to spot as possible. Nevertheless, some more or less ambiguous nanotubes were
included in the calculation. If a nanotube entered an amorphous carbon cluster and
it wasn’t clear that the tube continues through it, the tube’s end was estimated to
be at the center of that particle. Very large particles were avoided altogether. With
multiple nanotubes of similar diameter inside or under a cluster of amorphous carbon
particles, it is impossible to perfectly determine if the nanotube truly terminates
or if it just bends inside and continues. Likely the distribution of the nanotubes’
lengths should tend slightly more towards greater lengths than what the measured
distribution represents, but only slightly.

Overall the histograms and their log-normal fits in figure 22 are very similar and
suggest that there is no selectivity for the zones in terms of what kind of deposited
material they consist of. The only difference is the density of the deposited material,
which we’ll get more into in part III. Something else we have noticed in the SEM
images is that typically the longest nanotubes tend to have a smaller diameter, while
the shorter fragments tend to have a larger diameter. This is expected behavior as the
bending modulus of MWNTs is inversely proportional to their diameter, i.e. MWNTs
with smaller diameters can bend more without irreversible deformations[35]. At least
one relevant step before depositing the material on the chips, is the sonication of
the MWNT solution. This likely causes the thicker nanotubes to fracture into the
smaller pieces we observe in the SEM images.

We have made various observations from the optical images, AFM images and
SEM images and what is seen are two very clearly distinct zones with different
brightnesses and amount of deposited material. We would like to get some insight
into the depositions’ nature by analyzing the digital camera data obtained from
the optical images. The analysis so far is, however, mostly only qualitative since
the output of a digital camera is nonlinear. This makes quantitative observations
basically useless as any numerical values derived from the nonlinear pixel values of
an image are skewed.

Overall the key question, around which work of this section is centered, is whether
consumer-grade digital cameras can be utilized as radiance sensors. We will be
systematically building a model for the image formation process, which in turn helps
us determine the necessary processing and correction steps for the image processing
pipeline. With the required steps established, we can then overcome the issues of the
imaging system by proper processing of image data, which will be the main subject
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of part II. Finally in part III, we will apply this knowledge and analyze the optical
images we already presented and get an answer whether consumer digital cameras
can be utilized as radiance sensors or not, what is their accuracy and what limits
their accuracy.
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Figure 21. SEM images of a) the dim zone and b) bright zone. Note the different
magnifications in each image. Due to the bright zone having less material, the
length measurement data was gathered over a larger area.



64

Figure 22. Histograms of the nanotubes observed in the SEM images in figure
21 a) and b) respectively. For each histogram a least squares error fit of a
log-normal distribution is also plotted with the inset showing the fit parameters.
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Part II

Digital images

1 Introduction to digital imaging

The charged particle microscopes and AFM provide a higher resolving power than an
optical microscope, however they naturally can’t directly provide information about
the optical properties of a subject in the same way an optical microscope paired with
a digital camera can. The history of digital imaging is intrinsically tied to the history
of semiconductors. The first digital image sensor was the charge-coupled device
(CCD) which was invented in 1969[36], while the first commercial digital cameras
came to the market in late 1980s[37]. Since then digital cameras have become an
everyday device, originally as a dedicated device and later as a feature that nearly
all smartphones have.

Digital camera sensors come in two types: the previously mentioned CCD and an
complementary metal-oxide-semiconductor (CMOS) sensor, both based on the metal–
oxide–semiconductor field-effect transistor (MOSFET)[36, 38]. They both generate
charge via photo electric effect, but the differences come in how the generated charge
is quantified. CCD devices transport the charge accumulated to a row of pixels
into one corner of the chip and read out. The voltage signal is then amplified and
converted to a digital value by an analog-to-digital converter (DAC). CMOS sensors
have their amplification and readout circuitry at each pixel of the sensor. On one
hand CCD sensors have lower noise and a higher sensitivity to light than CMOS
sensors. On the other hand CMOS sensors consume much less power and are less
costly to manufacture than CCD sensors. The performance of CMOS sensors has
rapidly improved over time and in most situations they are sufficient, but CCD
sensors are still preferred in some highly demanding applications, astronomy being a
prime example.[36]

In this research alongside the optical microscope, a CMOS camera has been
utilized. The charge accumulated in the CCD and CMOS elements is mostly linear as
it is proportional to the irradiance the elements are subjected to[36, p. 173]. Based
on this one might expect that the output of the image sensor is linear. However
in reality this is seldom the case, as commercial camera’s typically apply nonlinear
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operations to the sensor output in order to present an aesthetically pleasant image
optimized for human vision[36, 39]. Especially when the sensor’s exposure is either
very short or very long with respect to the illumination, the sensor can behave in a
nonlinear fashion.[39] In opposition to commercial digital cameras, more specialized
digital camera’s can maintain a linear response. Essentially the linearization aspect
of this research is something that can be avoided with device choices, however the
work herein still provides tools to analyze the linearity of such devices first-hand. The
other image processing methods and corrections are something that can generalized
into most digital cameras. In the end one key aspect of this research is to enable
the calibration and linearization of a nonlinear digital camera’s response to enable
quantitative irradiance measurements from such digital images.

Optical microscopes can be equipped with spectrometers to provide precise
measurements of irradiance and its spectrum[40], but it does require a whole separate
device attached to the microscope, possibly replacing a digital camera. These devices
are naturally a lot more expensive in comparison to a digital camera, which can be
readily observed by browsing the catalogs of spectroscope and camera manufacturers.
Also, as examples, there have been some studies on the subject of utilizing digital
cameras over spectrometers for measuring the optical properties of human teeth
restorations[41–43] and orthodontic elastomeric ligatures[44], with one of the key
motivations being the cost-effectiveness of digital cameras. The referenced studies
find that digital cameras are equally or nearly equally reliable for color analysis.
While these studies don’t delve into the issue of linearity with respect to exposure
time, they do demonstrate the possibility of utilizing digital cameras for accurate
measurement of colors.

With a linearized digital camera a user can use multiple exposures to construct
a high dynamic range (HDR) image of a scene, which can provide quantitative
measurements of relative irradiance for each color channel of a camera[39]. Based on
the image formation process in digital cameras[45], we’d also argue that if further
corrections are made that eliminate or at least minimize certain artifacts in the
imaging system, an estimate of the original scene radiance can be computed in a
relative scale. We will utilize the established methods in part III to obtain HDR
images of the CNT depositions with the aim to gain even more insight into their
nature.

Digital images, their acquisition, processing and editing are each a large topic of
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their own. Part II of this thesis approaches these subjects from the perspective of
utilizing an inherently nonlinear camera. While most of what is discussed herein can
be applied to digital imaging in general, it should be noted that also a large variety
of machine vision cameras exist, meaning that especially the issue of linearization
can be avoided via proper choice of device. One motivation of this research was
making best of what we have and the author’s curiosity if even a "normal" consumer
camera could be utilized in accurate quantitative measurements. Even though the
linearization methods proposed here are not fully needed for machine vision cameras,
we do propose that the methods can still be utilized to quantify and measure the
linearity of such a camera first hand. Further more we argue that the HDR merging
methods and imaging system artifact corrections are generally applicable to any
digital camera, due to their fundamental approach.

An emphasis is maintained on the application of digital imaging for optical
microscopy. In the sections to follow we’ll briefly go over the process of image
acquisition and how it can be modeled. With established models a camera’s linearity,
noise and artifact sources can be understood and any undesired system properties
can be mitigated. All the work culminates into the full image processing pipeline
and how we’ll utilize our camera to produce estimates of original scene radiances
and what kind of measurements we’ll perform in part III.
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2 Digital image acquisition

Digital cameras’ CCD and CMOS sensors are semiconductor devices that in essence
map the irradiance E at a sensor’s pixel array to brightness values B in the final
image[45]. The device’s sensor is a two-dimensional array of wells, in which charge is
generated by the photoelectric effect[36, pp. 159–166]. The charge is then transferred
and amplified, and the electrical signal is finally sampled and quantized into the bits
of a digital image’s pixels. Grossberg and Nayar describe that the image acquisition
process can be split into two transformations starting from a scene radiance L[45].
The first transformation s is a linear transformation that maps the scene radiance
L into irradiance at the image sensor E. The second transformation is f , which
is a nonlinear mapping of the sensor irradiance E into the final image brightness
B. s basically models the optics of the imaging system, such as vignetting and
fixed-pattern artifacts, while f models the nonlinear response of the imaging system.
This process is visualized in the flow diagram shown in figure 23.

In this research we are going to work through the flow diagram in reverse order.
Starting from image brightness, we’ll recover the camera response function (CRF),
or more precisely the inverse camera response function (ICRF). This can then be
utilized to linearize the image brightness and together with known exposure times to
obtain image data in terms of irradiance[39, 45]. This will be the subject of part II,
section 3. After the data has been linearized and merged into a single HDR image,
we will apply linear corrections that reverse the optical effects of the imaging system.
This finally yields data that acts as an estimate of the original scene radiance. The
actual image acquisition and initial data handling acts as the first building block in
our image processing pipeline.
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Figure 23. Simple flow diagram of the two transformations encompassing the
image acquisition process, in which s maps the scene radiance L to irradiance
at the sensor E, followed by f , which maps E into image brightness B. s is a
linear transform, though it can vary spatially, while f is a nonlinear transform,
but spatially uniform. Reproduced from [45].

2.1 Images as data

In terms of handling images digitally, images basically carry data that encodes,
depending on the format, a captured image’s brightness B and color into a two-
dimensional array of bytes. How this data is encoded changes between different color
spaces. The two key properties for the encoding are its bit depth and color space. Bit
depth determines how many distinct values the range [0, 1] can be divided into[36,
pp. 14–15] and therefore determines the precision and memory cost for an image’s
pixel. Color space is a quite broad concept, but simply put it can be defined as an
typically three-dimensional geometrical model in which coordinates represent a color
and the vector basis represents their color components[36, p. 84].

For a typical sRGB image the bit depth is eight and there are three color
channels[36, p. 15], meaning three bytes representing 8-bit unsigned integers, one
byte for each color channel, carrying the brightness information. With similar logic,
for a single channel image a bit depth of 32 means the numbers represent floating-
point values. On display devices the colors are created with a color space based
on the additive RGB color model[36, p. 416]. In printed media the subtractive
CMYK color model is used to create colors[36, p. 15]. These two models are usually
represented as three-dimensional spaces in Cartesian coordinates by assigning the
three colors of each model on an axis[46]. In computer graphics and image processing
there are also the HSL or HSV color models, which are based on the hue, saturation
and value or lightness[36, p. 413]. These color spaces are commonly represented in a
cylindrical coordinate system[46].

In the scope of this research we utilize images with bit depths of both 8 and 64
and start from the sRGB color space. We do not explicitly move away from the
sRGB color space, and are using the blue, green and red color channels throughout
this work, however we will perform all computations and store HDR images with
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64-bit channels. Something that must be noted is that the sRGB color values
are not linear[47] and as such are problematic to do calculations with. Allen and
Tiantaphillidou describe that the reasoning for this nonlinearity is due to the RGB
values being gamma-expanded to place more datapoints in the darker values instead
of placing them evenly[36, p. 390]. This in turn is due to human vision being able to
more easily notice color differences in darker colors than in bright ones. Without the
gamma-expansion one would notice bands in an image. The terms gamma expansion
and gamma compression refer to the process of applying a simple power law to the
brightness values of an input image in an image system[36, p. 377]. The name arises
from the the presentation of the general from of the power law in such contexts,
where γ is used as the symbol for the exponent in the power law. The sRGB color
space standard defines the transfer function

Cl =


Cs

12.92 , Cs ≤ 0.04045(
Cs+0.055

1.055

)2.4
, Cs > 0.04045

(29)

in which Cl is a linear RGB value and Cs is an gamma-expanded RGB value, with
2.4 being the gamma value[47]. The same standard also defines the inverse transform
as

Cs =


12.92Cl , Cl ≤ 0.0031308

1.055C
(1/2.4)
l − 0.055 , Cs > 0.0031308.

(30)

Both the Cl and Cs values are in the [0,1] range.

Basically whenever we do calculations with the image brightness values, we must
transform the nonlinear values into linear values. This simply follows from the
fact that with nonlinear values any arithmetic operations will be skewed. Using
equation 29 to transform to linear values upon loading an image might suffice
for some cameras, but it is more likely for manufacturers to utilize device-specific
transfer functions that are different from the sRGB transfer function[48]. In our case
the linearization of images will be performed by using an inverse camera response
function, which we’ll get into in part II, section 3. The transform to linear values is
something that has to be done, because otherwise the values are basically weighted
and would therefore skew the results of any operations, while the transform back
into nonlinear space is something that we can choose to do or not to do depending
on the situation. Naturally all calculations will be performed with 64-bit channels to
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maintain numerical accuracy.
Finally in equations we will use the notation (x,y) for images, to denote that

they are arrays of values. Furthermore the values contained in the array are basically
vectors of three components, one for each color channel. The color channels are
always handled independently of each other and when referring to pixel values of an
image in a given domain, we are referring to a three-component value. If a single
color channel is referenced, we’ll use subscripts R, G and B for red, green and blue
channels respectively. The images we handle in this research come in three domains.
The typical eight-bits per channel image that a camera outputs is in the brightness
domain B with 256 discrete values between [0, 1] for each channel. Then we have
the exposure domain X for linear images, also with 256 discrete values in the [0, 1]
range. Starting with images in the irradiance domain E, the values can technically
have any non-negative real value. In reality the values’ precision will be limited at
least by the numerical precision of floating point numbers and more practically by
the uncertainties of the imaging system. Finally we have the radiance domain image
L, which constitutes the best estimate for the radiance of the original scene, with
the same considerations as the irradiance domain images.

2.2 Noise

Digital cameras are prone to various different types of noise that reduce the signal-
to-noise ratio (SNR). The signal produced by the physical sensor of a digital camera
is directly proportional to the number of photons detected by the sensor[39]. The
number of arriving photons follows Poisson statistics and as such the signal has an
associated variance over multiple measurements[49]. This is known as photon shot
noise.

Digital camera sensors as semiconductor devices generate charge even in a perfectly
dark environment due to thermal excitation[49]. Dark current is independent of the
measured signal level but increases with rising temperature. The actual magnitude
of the charge generated follows Poisson statistics as each thermal excitation event is
independent, just like the arrival of photons for photon shot noise. Furthermore the
magnitude and variance of dark current and defects between pixels cause fixed-pattern
noise and pixel response non-uniformity[36, p. 442].

There are also additional noise sources and artifacting that affect the image
quality. Allen and Tiantaphillidou describe in their book various types of noise and
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their origin[36, pp. 442–443]. The surrounding electronics that are used to measure
the number of electrons in the imaging sensor add readout noise. The amplifiers that
boost the voltage signal add noise into the signal. Also the digitization process of
the voltage values into a digital number level causes small loss in the accuracy of
the measured values. Finally resetting of the photoelement to a reference level adds
noise due to variation on each reset, circuit clock signals and outside interference
can also add noise to the signal[36, pp. 442–443].

For a static scene the effect of random noise can be mitigated in a statistical
sense by capturing multiple images of the same scene and calculating a pixelwise
mean of the images. All the noise sources in a digital imaging process are symmetric
and have a Gaussian profile[50]. This means that we can compute a mean image to
reduce the effects of noise. The nonlinear mapping of most digital cameras causes
some skewness in the noise profiles[50], but we’ll discuss its effect on the mean image
in part II, section 3.4. Finally, acquiring a mean for a pixel’s value over N images
gives a SNR of[36, p. 442]

SNR = N√
N

=
√

N. (31)

With equation 31 it is easy to see that the original SNR of a single image decreases by
a factor of 1/

√
N and therefore has diminishing returns with an increasing number

of images. For example four images cuts the SNR into 50% of the original value and
10 images cuts it to 31.6%. Due to these diminishing returns you must consider how
many images do you have the time and memory to capture.

2.3 Mean values

Normally calculating the mean of a data set is a trivial endeavor, but in the case of
image formats with limited values we argue that it requires a little more consideration
with respect to the final result and how it is interpreted. If we are only interested
in calculating the mean of the pixel values in a given set, then there are no issues.
However, issues start to appear if we are to assign some physical meaning to the
pixel values, and we need to take care with the pixel values at the edges of the data
range near zero and one. At zero the sensor is in cutoff and just from the one image,
we can’t tell if the irradiance at the particular pixel causes the sensor to barely be at
zero or if it is far below zero. Similarly at one the sensor is saturated and we can’t
really tell if the sensor is barely saturated or far above one.
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With this consideration in mind, areas of interest in a single image should be
at the middle values of the sensor’s range to increase accuracy, which can typically
be adjusted with a camera’s exposure time. In this research one thing we will be
investigating is a camera’s linearity and we will be comparing the brightnesses of
images with vastly different exposure times. In those cases, to ensure physically
meaningful comparisons, we propose to use the following approach. We’ll only
utilize the pixels, which in both of the two images under comparison are sufficiently
within the sensor range. Noise adds another consideration in this, so that in such
comparisons, while the values will have the range [0,1] we argue that only a range [0
+ δ, 1 - δ] should be utilized. We propose that δ is a value that reflects the noise
characteristics of the utilized camera and which we can determine empirically. δ

might not necessarily be the same for the opposite edges of the range.
Finally in this research we’ll be dealing with two different means. The first is used

to calculate the mean image of multiple images to increase measurement accuracy.
Nearly all images utilized in this research are acquired by capturing multiple images
and taking the pixel-wise mean of them. This can basically be interpreted as a
temporal mean. The temporal mean is so commonly used here that we won’t be
indicating it in notation, but throughout this text all captured images can be assumed
to be temporal means, unless stated otherwise. The other mean that will be also
utilized is the spatial mean of an image’s pixel values. Considering an image I(x,y)
with X columns and Y rows of pixels, the spatial mean is calculated as[51]

B = 1
X · Y

X−1∑
x=0

Y −1∑
y=0

B(x,y) = ⟨B(x,y)⟩. (32)

Here it should also be noted that the (x,y) notation is dropped from the spatial
mean of an image, as the value is naturally no longer a function of position in the
image. We’ll also occasionally use the notation ΣB to indicate a sum of all the pixels
in an image.
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2.4 Uncertainty values

Using mean images yields us a better accuracy and enables us to use some measure
of variability for uncertainty. In the case of the mean images, the measurement
uncertainty shall be described by the standard error, whose estimate is given by[52]

δB(x,y) ≈ σB(x,y)√
N

, (33)

in which δB(x,y) denotes the uncertainty of an image and σB is the pixel-wise
standard deviation of the N images used to determine B. Considering that we are
calculating the pixel-wise mean of a static scene, the spread of the pixel values for a
particular pixel will be quite small, meaning the resulting standard error value will
be a lot smaller than the actual pixel value. This in turn means that of the [0, 1]
range, the uncertainty image will only utilize a very small portion. Therefore we
either choose to save the resulting uncertainty value in a more precise format, that
is 64-bit channels. Different scaling solutions, for example to 16-bit or 8-bit ranges,
could be used to save storage capacity but this would lead to a slight precision loss
and thus we’ll simply store directly in the 64-bit format.

Another thing that has to be taken into consideration for calculating the variance
image is the actual RAM of a computer and numerical stability. The usual way of
calculating the variance for a given set of sampled values {x0,...,xN−1} would utilize
the equation to calculate the unbiased sample variance for a discrete random variable:

s2 = 1
N − 1

N−1∑
i=0

(xi − x)2, (34)

in which s2 is the sample variance, N is the number of samples and x is the mean
value of the set[52]. The problem with applying this equation directly to an algorithm
is that it clearly requires two passes through the data set due to using the mean
value for each element in the sum. This is obviously problematic for large sets, high
bit depth images and computers with a small RAM.

In this research we will utilize the Welford algorithm for calculating the mean and
variance of an image set[53]. The Welford algorithm can be used to determine the
mean and variance of a set for each additional element, enabling one-pass calculation.
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The values that are updated for each new element xn in the set are

xn = xn−1 + xn − xn−1

n
,

M2,n = M2,n−1 + (xn − xn−1)(xn − xn),

s2
n = M2,n

n − 1 .

These equations yield us a very simple, efficient and accurate algorithm for computing
an acquired image BA(x,y) and standard error image δBA(x,y) for an image set[54].
While memory isn’t most likely an issue with a spatial mean and spatial variance of
an image, the Welford algorithm can similarly be used to calculate those too, but
instead of iterating through a set of images {B0(x,y),...,BN−1(x,y)}, we’ll just iterate
through all the pixels in an image {(x,y) | x ∈ [0,X] and y ∈ [0,Y ]}.

While using the pixel-wise mean image and standard error image based on an
image stack is the sensible and a rather obvious way to approach uncertainties, the
equivalent is not seemingly so obvious for the spatial mean and its standard error.
In their article Santo et al. determine the standard uncertainty of a spatial mean by
computing the spatial mean of the associated standard uncertainty image[51]. The
authors do not provide further reasoning for this approach, but it is an approach
that we agree with. We propose the following reasoning for this method. Naively
in this case one might approach the issue by just computing the standard error for
the population of pixels that is used to compute the spatial mean. This approach
however does not yield a relevant measure. The standard deviation of this population
of pixels rather measures the spread of pixel values of a given scene. Unless the scene
is uniform across these pixels, then they are not samples of the same distribution in
the same manner the pixels at the same position in a stack of images for a static
scene are. Therefore the logical approach for computing the standard error of a
spatial mean is to compute the spatial mean of the corresponding standard error
image at the same pixel positions. This measures the typical uncertainty at those
pixel positions and yields a sensible estimate for the uncertainty of the spatial mean.
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3 The camera response function

Starting to work backwards from the image brightness towards scene radiance, we’ll
first need to reverse the nonlinear response of the camera. This yields us data in
terms of image exposure X, from which we can determine the irradiance E when the
exposure time is known. Then we can apply corrections to reverse the linear effects
of the system, finally yielding data in terms of scene radiance L.

As we noted earlier in part II, section 2.2, the number of photons arriving at
a camera sensor’s pixel follow Poisson statistics. Therefore with a large enough
flux, the number of arriving photons in a given time follows a Gaussian distribution.
Furthermore as noted, the charge accumulated to a sensor’s pixel is proportional
to the irradiance it experiences and is mostly linear[36, p. 173]. Therefore under
constant lighting conditions the accumulated charge is also linear with respect to
time. From this it should follow that if exposure time is doubled, then the pixel’s
brightness should also double if the lighting is kept the same – provided that the
sensor is not saturated. In most digital cameras this is not the case as they apply a
nonlinear mapping to the sensor’s outputs[39].

This nonlinearity means that even when maintaining all conditions the same,
apart from exposure time, you cannot accurately compare the brightness values
between two images captured even with the same camera. Furthermore even within
a single image the brightness between different pixels cannot be accurately compared
directly due to the nonlinear mapping. The recovered inverse camera response
function (ICRF) will act as the second building block of our full image processing
pipeline.
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3.1 Empirical model of the CRF

In this research we will utilize the empirical model of CRFs developed by Grossberg
and Nayar and reported in their paper ’What is the Space of Camera Response
Functions? Their work begins from the following assumptions:[45]

• The camera response function is the same for all the sensor’s pixels. This means
that the CRF can be modeled independently, with the artifacts of the imaging
process handled by a separate function. This makes the CRF a function of
only one variable f(X) = B, in which B is the image brightness.

• The CRF maps the exposure values X to image brightness B with the camera’s
response ranging from a minimum value Bmin to a maximum value Bmax. The
response’s units are arbitrary and are normalized to Bmin = 0 and Bmax = 1.

• The CRF is a monotonically increasing function so that it is invertible and
maps Bmin to a minimum detectible exposure Xmin and Xmax to a maximum
detectible exposure Emax. Additionally the minimum and maximum exposures
are also normalized to 0 and 1 respectively.

The theoretical space of CRFs is then defined as

WRF := {f |f(0) = 0, f(1) = 1, f increases monotonically}, (35)

based on the assumptions. As a side note, Grossberg and Nayar note that any
function f of exposure may be thought of as a finite-dimensional vector, whose
components are the values of f sampled at fixed points in the exposure domain[45].
While certainly a helpful way of visualizing the space of the camera functions, as the
authors note, it is also the method which we will use to handle the camera response
functions. We work with 8-bit images and therefore are limited to 256 data points,
so the CRF will be represented by a 256-dimensional vector.

Grossberg and Nayar continue by sampling the response function at P points
yields the vector (B1,...,BP ) = (f(X1),...,f(XP )) for which the last point in the
exposure domain will be set as XP = 1[45]. Now based on the assumptions, if f is
a valid response function, it is normalized so that at exposure 1 the brightness is
BP = f(1) = 1. They argue that all response vectors lie in the plane W1, formed
by response vectors, whose last component BP is 1. Taking another arbitrary valid
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response function f0, their difference h := f − f0 must lie in a plane W0, which is
parallel to W1 and intersects with the origin. From this it follows that any response
function can be expressed as f = f0 + h with f0 being an arbitrary response function
and h is an arbitrary vector that lies in the plane W0[45].

The authors also deduce, based on set theory and the assumption of the response
function being monotonically increasing, that the monotonic response functions form
a cone Λ[45]. Therefore the theoretical space of response functions is the intersection
of the cone Λ and plane W1. The authors finally deduce that the mean of any set of
CRFs is also a valid CRF.

Finally Grossberg and Nayar formulate the following general approximation model
for CRFs:

f̃ = f0(X) +
M∑

n=1
cnhn(X), (36)

in which f0 is some arbitrary base response function, hn are an arbitrary choice of
basis vectors for the vector space W0 and cn are the coefficients of the model[45]. This
is a general model for an approximation and it doesn’t give any information about
what the best choices for a base response function and basis vectors are. Grossberg
and Nayar approach the choice of basis by employing response functions of real-world
imaging systems. The authors also explicitly note that all of this is also directly
applicable to the ICRF due to the fact that any valid CRF is an invertible function
and therefore have all the same properties[45].

In their paper Grossberg and Nayar report that they have a database that contains
a total of 201 response functions measured from photographic films, digital cameras
and synthetic gamma curves[45]. They use principal component analysis (PCA)
on their database to find a base response function f0 and a basis hn. PCA can be
thought of as a method of reducing a data set’s dimensionality, while keeping as
much of the original information as possible[55]. So in this case the original data is
the finite-dimensional sampling of each response function in the database at points
0,...,P − 1. The basis vectors hn for the empirical model are then determined by
selecting the eigenvectors corresponding to the M largest eigenvalues of the covariance
matrix, whose elements are[45]

Cm,n =
P −1∑
p=0

(gp(Xn) − f0(Xn))(gp(Xm) − f0(Xm)). (37)
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In equation 37 the sum indexes the p response functions in the database, with gp

being the pth response function and f0 is the mean of all the database’s response
functions.

The CRF maps the exposure values of a scene to the brightness values observed
in the final image captured by a camera. In this research we are interested in the
reverse case, that is finding the exposure of a scene from a given image based on
the brightness values. This means we are interested in the inverse camera response
function (ICRF). The CRF is an invertible function and therefore the ICRF has
all the same properties as the CRF. In the following sections we will go over some
methods of obtaining an ICRF and introduce our method, which is based on the
empirical model of Grossberg and Nayar.

An even better set of basis vectors could be derived from the data set created by
Chen et al. reported in their article ’Analyzing Modern Camera Response Functions’.
They produce a similar data base to that of Grossberg and Nayar, but with cameras
released after 2013[56]. The data set would likely form a set of more appropriate
basis vectors for our case. Unfortunately, to our knowledge the authors haven’t made
the database public.

3.2 Measuring linearity

Generally ignoring the effects of noise, saturation and cut-off, when comparing two
images of the same scene, whose only difference is exposure time, the following
relationship holds true

g(Bs(x,y))
ts

= E(x,y) = g(Bl(x,y))
tl

, (38)

in which g is the camera’s ICRF and the indexes s and l denote the image with the
shorter and the longer exposure respectively[57]. Essentially this equation just tells
us that in the static case the camera sensor measures the same irradiance in both
images and that the exposures of each image are linearly related to each other by
their exposure times.

We propose two ways to utilize equation 38 for measuring linearity. One way
we approach this problem is to capture a series of differently exposed images and
determine the exposure time ratio between each unique pair. Then for a pair of
images, we’ll choose the image with the shorter exposure time as a reference. The
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ratio of exposure times can be used to scale down the longer-exposure image to
match the exposure time of the reference image. Then the difference between the
images can be calculated by subtracting the scaled image from the reference image,
i.e.

A(x,y) = g(Bs(x,y)) − ts

tl
g(Bl(x,y)), (39)

where we denote the difference as A(x,y). We’ll call this difference as the absolute
disparity image. This relation can easily be solved from equation 38. In the ideal
case without the effects of noise, saturation and cut-off and a perfectly known ICRF,
the disparity image would be zero everywhere. If the ICRF is incorrect or if there is
noise, then the disparity is not zero for all pixels. Naturally for a real system both
of these are true. Equation 39 yields the disparity in an absolute scale in terms of
pixel values, as the name suggests, but we can also determine the difference in an
relative scale by dividing the disparity image by the scaled down image. This yields
what we’ll call the relative disparity image

R(x,y) = g(Bs(x,y)) − rg(Bl(x,y))
rg(Bl(x,y)) , (40)

in which r = ts/tl.
Utilizing the disparity images we propose the following simple metric for measuring

the linearity of a imaging system. We’ll calculate the spatial mean and sample
standard deviation for R(x,y), yielding us a value R ± σR. Then for a set of images
we’ll calculate this value for all unique pairs in the set to plot the data with R on the
y-axis and the exposure time ratio ts/tl on the x-axis. An absolute and relative scale
examples of such plots for the Olympus SC100 camera are in figure 24. Some of the
images utilized in calculating the data points are shown in figure 25. The closer to
zero all the spatial means of the disparity images are, the more accurately the ICRF
is known and the less noise there is.

Figure 24 shows how each color channel behaves for the Olympus SC100 camera.
The relative scale shows how the disparity increases with a larger difference in
exposure times between a pair of images, while curiously the absolute scale shows
the highest disparity in the middle of the plotted exposure ratio scale.

For a single image pair the linearity can be observed in a more robust manner by
binning the values of the disparity image and plotting a histogram. The histogram
then directly shows the spread of the disparity values. Additionally from a single
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Figure 24. Plots of the pairwise spatial means of the absolute and relative
disparity images, for each color channel of Olympus SC100. On the x-axis is
the ratio of the short exposure time against the long exposure time for a given
image pair. The colored bars represent the sample standard deviation of the
disparity values and are divided by five for better visualization. The black bars
represent the uncertainty of disparity. Additionally on top of the graphs are the
mean values and standard deviation of the plotted data points. Values outside
the range 5 ≤ B ≤ 250 have been rejected from the measures.

Figure 25. Some of the images utilized in calculating the data points used in
the disparity plots show in figure 24.
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disparity image one can observe the locations of specific disparity values and compare
their locations to the original images. The relative disparity images for each color
channel for the 40 ms and 100 ms image pair of sample No. 1 and histograms of their
values are shown in figure 26. The histograms show that there are very few pixels
that are even close to matching linearly in the pair of images, i.e have disparity of
zero. Furthermore it can be seen that the red channel is the most linear of the three,
while blue has the highest nonlinearity. From the disparity images it can be seen that
the most nonlinear values are at locations of high brightness in the source images.

Figure 26. Relative disparity images of the 40 ms and 100 ms pair of images of
sample No. 1 in figure 25. The images’ look up tables are constrained to [0, 2]
range for viewing. Images with high linearity should have disparity values close
to zero.

3.3 Recovering the ICRF

In literature there are various approaches to recovering the CRF or ICRF of a camera.
Some methods work with a single image and others require multiple images of a static
scene with different exposure times. Some methods recover an invertible function,
while some don’t. In this section we’ll establish a method to recover the ICRF based
on the linearity measure we proposed in part II, section 3.2.
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3.3.1 Recovery from exposure series

We’ll approach the recovery of the inverse camera response function by utilizing the
linearity measure introduced in part II, section 3.2. In precise terms, we minimize
the mean of the sum of all pixels in a disparity pair for an ordered set Ω consisting of
N images Bn(x,y) captured at increasing exposure times tn. Something that should
also be noted is that we need to minimize the distance from zero, therefore each
subtraction operation should rather be a difference operation. Strictly speaking the
mean of all disparity pairs’ pixel sums is not necessary for minimization, only the
total sum is important, but it makes it easier to observe and compare the magnitude
of the disparity pixel sums for sets with a different number of images. At this point
the reader might question why we utilize the spatial sum and not the spatial mean
in this formulation. We noticed that utilizing the spatial sum instead of the spatial
mean produces better results. The subject of minimization is the ICRF, so with the
preceding description in mind the objective function can be formulated as

f(g; Ω) =
N−1∑

i=0

N−1∑
j=i+1

Σ|Ri,j|

 (C(N,2))−1, (41)

in which C(N,2) denotes the number of possible pairs of images out of a set of N

images and Ri,j is the relative disparity image of a pair of images i and j. Expanding
the objective function further yields

f(g; Ω) =
N−1∑

i=0

N−1∑
j=i+1

X−1∑
x=0

Y −1∑
y=0

|g(Bi(x,y)) − ri,jg(Bj(x,y))|
ri,jg(Bj(x,y))

 (C(N,2))−1. (42)

Finally by utilizing the empirical model of camera response functions we can transform
this problem into finding the values of the coefficients of the principal components.
We’ll utilize the first five principal components in this research, like in the work of
Grossberg and Nayar[45].

There is also one modification we’ll make Grossberg and Nayar’s model. We’ll
change the base function g0: instead of using the mean ICRF g0 determined from
the database, the base function will be set in the general form g0 = Bγ , in which γ is
a non-negative real number. It will be an additional parameter in the optimization
along with the coefficients of the principal components. We add this new optimization
parameter on the basis that the individual CRFs in the database vary greatly, and
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argue that this general exponential is a very simple method to improve the fit with
only a small increase in the computational cost.

The objective function 42 is straightforward to implement into an optimization
algorithm. As this objective function utilizes a series of images of increasing exposures,
the amount of processed data can quickly grow very large. To facilitate faster
optimization, one might choose to sample a smaller number of pixels instead of the
whole image. We will introduce a parameter in our algorithm that can be adjusted
to utilize a smaller sample of pixel positions from the image stack. Calling back to
the discussion of the physical meaningfulness of image brightness values in part II,
section 2.3, we’ll need to consider that here. We have chosen to reject pixel values
within 5 values of the data range edges based on the noise characteristics of the
utilized camera, which will be shown in part III, section 2.3. While not explicitly
shown in equation 42 or equations 39 and 40, only values 5 ≤ B ≤ 250 are utilized
and values falling outside are set to NaN.

Overall this problem formulation is inspired by the work of Matsushita and Lin,
reported in the article ’Radiometric Calibration from Noise Distributions’[50]. This
formulation is also very similar to the one used by Akyüz and Genctav in their article
’A reality check for radiometric camera response recovery algorithms’ to measure the
accuracy of several ICRF recovery algorithms[48]. In their work Akyüz and Genctav
utilize a very similar measure to equation 42. There are two key differences in these
two formulations.

The first is that in our formulation a weighting function is not explicitly used
and instead we implicitly use a rejection threshold of 5 pixel values from the data
range edges, while Akyüz and Genctav use an explicit weighting function. The bigger
difference is that in their work the authors utilize essentially what we established
in this work as the absolute disparity, while we utilize the relative disparity. In
the present work we noticed that utilizing the relative linearity measure produced
more accurate results over the absolute measure and chose to focus mainly on it.
At the time of formulating our optimization algorithm we had not yet encountered
Akyüz and Genctav’s article and were independently developing our approach. In
the end the similarities are not surprising as both approaches start from the very
fundamental relationship in equation 38.
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3.4 The ICRF and temporal mean

As established in part II, section 2.2, the temporal mean is an important tool to
mitigate noise in images in situations, where a static scene can be imaged over time.
At this point the reader might have begun to wonder about the accuracy of the
temporal mean when the acquired images of a camera are nonlinear. This is an
important aspect to consider. As we know at this point, each acquired image used
in the temporal mean’s calculation is nonlinear. The value of the temporal mean is
consequently skewed. This could be corrected by applying the ICRF to each image
used in the temporal mean. This poses an issue with the ICRF recovery method we
developed in part II, section 3.3.1, which directly optimizes the linearity measure.
In the case of the mean stacked images that are used to solve the ICRF, there isn’t
really anything we can do about this issue in terms of linearity. However, we argue
that in the case of static scenes it is reasonably justified to ignore this issue.

While pixel values that are far away from each other are useless to compare,
values that are sufficiently close to each other can still be reasonably compared.
We reason that if the slope, or that is the derivative, of the ICRF doesn’t change
too much in a short range, the pixel values are close enough to linear in a short
range. For smooth ICRFs this condition should be quite accurate and therefore there
shouldn’t be too much of an issue with recovering the ICRF via directly optimizing
the linearity measure for mean stacked images, or generally mean stacking images
without linearizing them first. For a particular camera we can determine the standard
deviation of the pixel values for each distinct brightness level in order to get a measure
how widely the pixel values tend to spread and therefore can observe the range in
which the approximation holds true. In a way we’d argue that this approach is as if
we implicitly used a first order Taylor expansion for an unknown function.

After recovering the ICRF, any temporal mean could be calculated by first
applying the ICRF to each frame, as that step doesn’t take too much computation
time. One could argue, in a strict sense, that the application of the ICRF that is
being iterated in the optimization algorithm should be applied to each frame of
the image stack making up the temporal mean images. This would mean that for
each image a temporal mean should be calculated hundreds of times. This would be
computationally so costly that the small inaccuracy caused by applying the iterated
ICRF to only the final temporal mean image is the only viable choice.
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4 High dynamic range images

Everyone who has used a camera has taken notice of how adjusting the exposure
time can change the contrast of the image. Overexposed images are overall bright
and details in the brighter portions are obscured due to saturation, while details in
dark areas can be seen. On the other hand underexposed images are overall dark and
details in the darker areas are hidden due to minimal camera response, while details
in brighter areas can be seen as the camera’s response isn’t saturated. This isn’t a
problem for your own vision, as the human eye has a far wider dynamic range than a
typical digital camera. Dynamic range refers to the range of the smallest and largest
possible values that a display device can present or a capture device can acquire in
a single exposure[36, p. 5]. As we have noted earlier in part II, section 2.1, most
devices handle RGB images as three 8-bit depth channels and thus they are capable
of only 256 different levels per channel. High dynamic range (HDR) imaging can be
used to surpass this limitation by using more than 8 bits per channel[36, p. 242].
This will be the second-to-last building block of the full image processing pipeline.

A HDR image can be constructed with regular low dynamic range (LDR) images
with the help of known exposure times and a linearized response[39]. Capturing a
static scene at different exposure times, so that every pixel of the image is captured
at least once safely within the sensor range enables us to construct a HDR image.
Naturally each image has to be first linearized with the ICRF[39]. As we’ve defined
in part II, section 3, the ICRF maps the image from brightness domain B to exposure
domain X. So we’ll denote images that have been linearized as X(x,y).

With the images in a linear domain, the HDR image can be determined as a
linear combination of the images captured at different exposure times. In general
this process can be expressed as

EHDR(x,y) =
∑N−1

n=0 w(·)Xn(x,y)/tn∑N−1
n=0 w(·)

, (43)

in which wn(·) are weights[58]. Essentially this is a general form of a weighted
average, where the weights are left implicit due to the various forms they appear in
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literature. We choose a very similar weighting function as in the work of Robertson
et al. – a Gaussian function[59]. The weighting function is a normal distribution
centered about the middle pixel value. We’ll also leave out the normalizing multiplier
to set the value of the weighting function to 1 at the middle pixel value. The weight
is given by

w(B) = exp
(

−1
2

(
B − µ

σ

)2)
, (44)

with µ = 0.5 and σ =
√

15/30. The form of the Gaussian isn’t exactly the same as
in the work of Robertson et al. as our parameters lead to a slightly more tightly
centered Gaussian. The parameters were chosen by experimenting with different
values and with the aim to strongly minimize the weight of values close to the data
range edges. The purpose of the weighting function is to give more weight to pixel
values that are towards the center of the pixel value range. This is done because
they are a more reliable measure of the exposure than pixel values at the range’s
edges, as stated in part II, section 2.3. With this weighting function the pixel values
at the data range’s edge, for example, get a weight of about 5.53E-4, while pixels
with values 0.2 and 0.8 get a weight of about 0.067.

Naturally we use the base images Bn(x,y) in the weighing function, as they
are the actual measured values, rather than the linearized images Xn(x, y). The
weighting function is an important choice in terms of the accuracy of the final HDR
image. In literature there are various choices utilized. Debevec and Malik in their
work utilize a simple hat function[39], Robertson et al. use a Gaussian function[59],
which is the approach we have adapted here.

With this choice of weight the HDR image can be computed as

EHDR(x,y) =
∑N−1

n=0 w(Bn(x,y))Xn(x,y)/tn∑N−1
n=0 w(Bn(x,y))

(45)

from which one can observe the intuitive trend that pixels with shorter exposures
imply a greater irradiance and vice versa for longer exposures. This establishes a
relative irradiance scale in the image[39], where unity becomes assigned to pixels
with certain combinations of original brightness values and exposure times. The
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uncertainty of the HDR image is given by

δEHDR =

√√√√√√N−1∑
n=0


w′(Bn)g(Bn) + w(Bn)g′(Bn)∑N−1

n=0 w(Bn)
− w′(Bn)w(Bn)g(Bn)(∑N−1

n=0 w(Bn)
)2

 δBn

tn


2

.

(46)
, whose derivation is discussed in appendix A and where we omitted the pixel notation
(x,y) for the images. We utilized the uncertainty propagation law[52] for the N

independent variables to derive equation 46.
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5 The linear effects

With the ability to linearize image brightness, we can now focus on correcting the
linear effects of the imaging system. As shown in the flow diagram in figure 23,
the correction of the optical effects is something that the camera typically does
right after acquiring the raw sensor data. In our case we disable as many of the
camera’s own operations as possible, opting to do the corrections ourselves for a
better understanding and quantification of the operations. Before delving deeper
into this section, we’ll note that while we write the equations in terms of exposure
domain images, the equations are equally applicable to irradiance domain images, as
both are linear domains. The work in this section will act as the final building block
in the full image processing pipeline.

When capturing a scene with a camera, the resulting image has various artifacts
in it caused by different physical phenomena[51]. For quantifying radiance from an
image, this poses an obvious problem in terms of getting accurate results. Knowing
the origin and the effect of these artifacts on the images provides us the understanding
and methods to correct them to an extent. In this section we’ll go over the important
artifacts, their sources and how they are corrected. Generally the image capturing
process of a CCD or CMOS camera can be expressed as

XA(x,y) = XBIAS(x,y) + XTHERM(x,y) + r(x,y)X0(x,y), (47)

in which XBIAS(x,y) is the camera noise that isn’t dependent on temperature, while
XTHERM(x,y) is the thermally dependent noise, r(x,y) is the response matrix that
accounts for the non-uniformities of the camera response and finally X0(x,y) is
the true image, which has no contributions from the bias or thermal signals or
non-uniformity[51].
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5.1 Dark current and hot pixels

Even in a pitch black environment charge is generated in the wells of the sensor’s
pixels[36, 51]. This causes the image to have pixel values larger than zero, when zero
would be the conventionally expected value. Sensor imperfections can cause further
related artifacts, Allen and Tiantaphillidou give a concise description for these[36, p.
171]. They describe some pixels as hot pixels, which generate charge at a faster rate
than others and saturate easily. It follows that they appear as brighter pixels than
their typical neighbors. Similarly the authors describe some pixels as dark pixels,
that have a lower response than their typical neighbors[36, p. 171]. It follows that
they appear as darker than most pixels. Large differences in charge generation rate
can leave behind fixed patterns in the image. The amount of charge generated not
only increases with rising temperature but naturally also with increasing exposure
times. The effect of dark current can be mitigated by using calibration images[51].
By capturing an image with the camera shutter closed you acquire an image which
is ideally only affected by the dark current. By averaging over an ample amount of
such images you can create a dark frame calibration image at the same exposure
time as the image to be corrected. The effects of dark current can then be easily
corrected by subtracting the dark frame from the acquired image, that is

XC(x,y) = XA(x,y) − XD(x,y), (48)

in which XC(x,y) is the corrected image[51] and XD(x,y) is the dark frame containing
both the contribution of XBIAS and XTHERM[51]. The step represented by equation
48 is usually handled by consumer cameras by an analogue pre-processor[36, p. 274].
The thermal component is valid for only the specific temperature and exposure time
combination and a standard approach is to acquire a mean stacked master dark frame
at the same operating temperature and exposure time[60]. There are also methods to
scale the thermal component[60] and even handle corrections for consumer cameras
after image acquisition[61].

In the case of this research, we’ll utilize the camera’s PC software interface to
perform the dark frame subtraction, as the obtained data is not in a RAW format.
Performing the subtraction outside would either reduce the usable data range for us
or the values would need to be scaled to utilize the full range again, which would
introduce a lot of uncertainty. The software can be set to capture a dark frame
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calibration image, which is subtracted from a captured image within the software
before the user receives an output image. The software performs the dark frame
calibration with the camera sensor blocked and the process takes about a minute.
The user can output the calibration image from the software, which is an 8-bit gray
scale image. Most likely this means that the software holds a proper RAW image
within, which it utilizes in the dark frame calibration before any demosaicing or any
nonlinear operations take place. It is difficult to determine in certain terms if the
software has different dark frames for different exposure times or just one at a long
exposure time, which it then scales depending on the exposure time of the image
under correction. Regardless of these details, the dark frame calibration performed
by the software yields high quality images with no contribution of the bias signal
XBIAS. In the output images only some hot pixels can be observed at long exposures,
suggesting that only the bias signal is subtracted.

To deal with the hot pixels left in the image we’ll utilize a filtering process. We
can utilize manually captured dark frames, that have not been subjected to internal
dark frame subtraction, to map out positions of hot pixels by looking for pixels with
values above a given threshold. Following that we can apply a filter on those pixel
positions in a subject image to replace their value with a more reliable value. We
utilize a 7x7 pixel median filter. We’ll utilize a simple global threshold, but there
are also implementations to detect hot pixels that utilize a localized approach[61].

5.2 Non-uniformity

Imagine a perfectly flat evenly illuminated white scene, in which every point radiates
at the same intensity. Ignoring the previously mentioned noise, capturing an image
from such a scene should ideally result in an image in which all the pixels have the
same value. In reality the acquired image has a darkened periphery and possibly
other dark smudges or halos. The radial darkening is known as vignetting. Basically
the farther the pixels are from the center of the image, the darker the pixels are.
This poses an obvious problem when one tries to quantify brightness or threshold
an image accurately. More precisely, there are three possible sources for vignetting.
Ray gives an effective description of these in his book as follows[62, pp. 131–133].
Natural vignetting is caused simply by the geometry of the optics and sensor and the
illumination intensity is proportional to cos4θ, in which θ is the angle of incidence of
the light hitting the sensor. Mechanical vignetting is caused by physical obstructions
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from a lens intruding into the field of view, lens shades or filters and their holders.
Optical vignetting is caused by an effective reduction in aperture diameter for oblique
rays. In addition to these the previously mentioned hot and dark pixels can leave
fixed patterns in images and finally spatial variations in the quantum efficiency of
the sensor can overlay a spatially random, but temporally fixed, pattern on the
image[63].

These non-uniformities are represented in equation 47 by the response matrix
r(x,y), which can be determined experimentally[51]. By capturing a set of images
of an uniform evenly lit surface and averaging the set, a flat-field image XF F (x,y)
is produced. With an evenly lit uniform surface we can reasonably assume that
each pixel of the sensor should ideally be hit by the same number of photons and
therefore the image shows the systematic non-uniformities only. The correction can
be performed by first calculating the spatial mean of the flat field image, which can
then be used to express the response matrix [51]. The response matrix is given by[51]

r(x,y) = XF F (x,y)
XF F

. (49)

Solving for the true image X0(x,y) in equation 47 yields

X0(x,y) = XA(x,y) − XBIAS(x,y) − XTHERM(x,y)
r(x,y) .

Substituting equation 48 and taking note of the considerations of the bias frame and
dark frame 49 then yields the final expression for the true image in terms of images
that can be experimentally determined

X0(x,y) = XF F

XF F (x,y) [XA(x,y) − XD(x,y)]. (50)

Finally applying the bad pixel filtering to X0(x,y) yields a properly corrected image.
Something that should be noted is that in the case of short exposures and visible
light, the contribution of the thermal component can be very small and may be
ignored[51]. We have also noted from our own dark frames that bad pixel filtering
can be ignored for short exposures, at least for the camera used in this research.

As noted earlier in part II, at the end of section 5.1, we utilize the dark frame
calibration of the camera software in this research. In terms of equation 50 this means



95

that the term related to dark frames XD(x,y) is dropped, as the acquired image
XA(x,y) will already be corrected for it. So the final equation for the corrections in
our case will be

X0(x,y) = XF F

XF F (x,y)XA(x,y). (51)

5.3 Practical considerations of the flat-field image

The capturing conditions of an evenly lit uniform surface can be difficult to achieve
in practice. While the microscope does provide a very high quality illumination, the
smaller the distance scale, the harder it is to find an uniform surface that doesn’t
show local detail. Additionally the flat-field image should be captured not only for
each objective, but also in both BF and DF illumination. Considering the nature of
DF illumination we discussed in part I, section 3.4.2, if a flat and formless uniform
surface is used, the image will be completely dark. This leaves us with two conflicting
conditions.

This problem can however be overcome by building a composite image. In their
article Brady and Legge determine the vignetting of a camera by translating a small
object across the image diagonal and capturing images of it at different positions[64].
They argue that these images can be composited to provide a flat-field image. In
their case this only provides data along the diagonal in their case and assumes
symmetric non-uniformity. The same idea could be used here with a microscope by
translating a selected portion of a surface over the whole image plane. This process
could be made conveniently automatic with an motorized microscope stage, but in
the case of this research our microscope isn’t equipped with one. This process would
require an exorbitant effort by hand as it has to be done for each objective in both
BF and DF mode and it wouldn’t work for asymmetric defects in the image.

In our case we propose to use an altered version of the above method. We use
a piece of paper as a subject and captured an image series of the paper as the
microscope stage is constantly moved and therefore the subject. We argue that by
capturing enough images like this, on average, different features of the paper should
have been imaged at different positions equally, while the system non-uniformities
remain static. Additionally the movement of the microscope stage causes motion blur
in the image, further obscuring local details of the surface. Mean stacking the image
series shoúld then yield an image that approximates a flat-field image reasonably
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well. While this is a more approximate method than imaging a single object on
the diagonal, it also provides information over the whole image area and therefore
doesn’t make assumptions about the symmetry of the non-uniformities.

Another point worth taking into consideration is the spatial mean of the flat-field
image XF F and how it is used in the correction. Looking at equation 50, you can
see that the spatial mean and the flat-field image XF F (x,y) together are used as a
kind of normalizing map. The term darkens pixel locations that are brighter than
the spatial mean and brightens those that are darker. This is generally the best
approach when the lighting itself is truly uniform and the image might have both
brightening and darkening non-uniformities.

In the case of the optical microscope used in this research, the system has no
brightening non-uniformities and the lighting itself is at its best in the center of
the image, especially in the case of DF mode, whose lighting is less uniform than
in BF mode. In this case, considering that all the non-uniformities in the images
do is darken them, then why darken some portions further with the correction by
averaging over the whole image area? With these considerations in mind for this
case, heuristically speaking, an image that is corrected for vignetting and other
non-uniformities should be at least as bright as the original image at all locations.
Taking XF F from the whole image means that the value is affected by the darkening
non-uniformities. We argue that if the value was instead taken from a central portion
of the image where the illumination is the most ideal, it would yield a physically
more accurate value. This train of thought is naturally problematic in a situation in
which the optical system has significant defects in the center of the image, but that
is not the case for our system.

5.4 Uncertainty

Now that the systematic effects of the imaging system are known and can be corrected
using equation 50, we can also quantify the uncertainty in the final true image. The
uncertainty can be evaluated by applying the uncertainty propagation law into
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equation 50, yielding[51]

δX2
0 (x,y) = δX

2
F F

(
XA(x,y) − XD(x,y)

XF F (x,y)

)2

+ δX2
D(x,y)

(
XF F

XF F (x,y)

)2

+ δX2
F F (x,y)

(
XF F

XA(x,y) − XD(x,y)
X2

F F (x,y)

)2

+ δX2
A(x,y)

(
XF F

XF F (x,y)

)2

.

(52)

In equation 52 each δX term represents, in order ,the uncertainties of the final image
X0(x,y), the bias frame XB(x,y), the flat field image XF F (x,y) and the subject image
XA. The uncertainty images are defined as in equation 33 and the uncertainty of the
flat-field mean XF F is defined as the spatial mean of δXF F (x,y), as was discussed in
part II, section 2.4.

For the case in our research we need also the uncertainty of the correction equation
without the dark frame term. Applying the uncertainty propagation law to equation
51 yields

δX2
0 (x,y) = δX

2
F F

(
XA(x,y)

XF F (x,y)

)2

+ δX2
A(x,y)

(
XF F

XF F (x,y)

)2

+ δX2
F F (x,y)

(
XF F

XA(x,y)
X2

F F (x,y)

)2

. (53)

In equation 53 δX2
A(x,y) carries the uncertainty information of the acquired image

and dark frame subtraction together. For the exposure images XA(x,y) this is
simply evaluated as the uncertainty image δXA(x,y) of an averaged image stack after
linearization. For the irradiance domain image EA(x,y), δXA(x,y) is simply replaced
by δEA(x,y) as computed via 46.
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6 Other image-based measurements

Accurate calculations with the brightness values of images, at least in the sense of
assigning physical meaning to them, requires linearity. There are, however, some
calculations that don’t need such calibrations and can in fact be done without too
much additional processing. Though the benefit of linearity and especially the
expanded bit depth of 64 in the case of the HDR images does afford more control
and precision.

6.1 Autocorrelation

An interesting property in signal processing is the autocorrelation function, which for
a signal measures how similar at time t it is to itself at time t + δt[65]. In the most
simple case of one-dimensional functions, the autocorrelation of f(u) is given by[66]

γ(x) = f ⋆ f =
∫ ∞

−∞
f(u)f(u ± x)du. (54)

The value of the autocorrelation is equal for both signs of x in equation 54 and has
its maximum at zero[65]. These both are a logical result as naturally the function f

is similar to the unshifted version of itself and a shift of one of the functions in a
given direction in the convolution operation can be written as a shift of the other
function in the other direction[65, p. 63]. Autocorrelations are simpler to compute
for signals with a zero mean value and it is common for the autocorrelation to be
normalized by the signal’s standard deviation so that its values will fall in the range
[-1,1].[65] In this work we will subtract the mean value from the image and normalize
using the standard deviation.

Positive autocorrelation means the signals at the two points in time are similar,
zero means no correlation and finally negative means anticorrelation[65]. Autocor-
relations can be generalized to more dimensions and therefore applied to images,
where it can be used to measure periodicity in images, which in turn can be used to
measure how ordered features in an image are. In the case of images, which have
discrete and bounded data instead of continuous and infinite, the autocorrelation
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can be calculated by

γ(a,b) =
X−1∑

x

Y −1∑
y

I(x,y)I(x − a, y − b), (55)

in which X and Y are the number of columns and rows in the image respectively,
while a and b represent the distance from the corresponding x and y positions[67].

Autocorrelations in the case of images can be calculated in various ways. The
true 2D spatial autocorrelation can be used to output an array of values, which can
also be interpreted as an image, as can be seen from equation 55. Figure 27 shows
an example of a source image and its 2D autocorrelation. The 1D autocorrelation
can be applied to different rotations in the image, such an example is shown in
figure 28. The 2D spatial autocorrelation function can also be radially averaged to
produce results similar to the 1D autocorrelation. These two are actually identical
to each other in a case where the image is isotropic[67]. The autocorrelation is rarely
calculated via the definition given in equation 55, but instead Fourier transforms are
utilized. This reduces the processing time from O = n4 to O = n log n[67].
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Figure 27. The top image shows the logarithm of a relative radiance image and
the bottom shows the autocorrelation image of the relative radiance image. The
autocorrelation values are mapped to display values from the range [-0.05, 0.2]
to [0, 255] for viewing. The original image has obvious periodic features that
result in strong autocorrelation in certain directions and at certain distances.
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Figure 28. Line profiles plotting the autocorrelation values of the image shown
in 27 in indicated directions. Positive angle is measured in counterclockwise
direction from horizontal right. The example profiles show some significant peaks
in the green and red channels, while the blue channel decays to insignificant
autocorrelation quite quickly.
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6.2 Local thickness

Local thickness acts as a measure of distance between features of interest or thickness
of those features in an image. The algorithm that is used to determine local thickness
here is applicable to 2D and 3D images. In the case of 3D data we would talk about
spheres and voxels, while in our case of 2D data we’ll talk about circles and pixels.
First an image must be thresholded into a binary image so that the features of interest
are set to one and the space between them to zero. Following the thresholding, for
each high pixel a circle of maximal radius is then fitted inside the region so that it
contains the point and fits inside the region. The radius of that circle is then set as
the value of that pixel.[68]

The algorithm that calculates the local thickness unsurprisingly does not utilize
the definition directly. In this research we’ll utilize the open source Local Thickness
plugin of ImageJ, developed by Dougherty[68]. The algorithm is also relatively
complex and any in depth analysis in beyond the scope of this research. Based on
Dougherty’s work we can paraphrase a short description[68]. The algorithm first
calculates a distance map, which sets a pixel’s value to the diameter of the largest
circle centered on that pixel and fits inside the region. The distance map is then
transformed into a distance ridge, which removes redundant datapoints from the
distance map. Finally using the remaining non-redundant circles, for each high pixel
the distance ridge is scanned to find the largest circle that contains that pixel. The
documentation and a link to the GitHub page of the plugin is available on ImageJ’s
webpage[68].

Dougherty’s work is largely based on algorithms discussed in Hildebrand and
Rüegsegger article[69], Saito and Toriwaki’s article[70], and more loosely based on
Remy and Thiel’s article[71]. Local thickness calculations, especially their 3D version,
are a very useful post processing method in any application that works with 3D
volumes, such as computed tomography.
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7 Full image processing pipeline

With all the pieces of the image handling system in hand, the full pipeline is visualized
in figure 29. Basically operations and analysis can be performed for any of the images
after the linearization via the camera’s solved ICRF. For the sensor exposure estimate
X(x,y) one has to take note of any values that were too close to the data range
edges in the original brightness domain image B(x,y). After the HDR merging,
with sufficient data there is no need to worry about the data range edges. If every
pixel was imaged at least once sufficiently far away from data range edges, then the
irradiance domain image E(x,y) is a reliable estimate as is also the radiance domain
image L(x,y), based on our discussion in part II, sections 2.4 and 5.

The bad pixel filter is also something that can be skipped when the utilized images
don’t have very long exposure times. This is due to the effect of the dark current
being relatively insignificant at short exposures, as outlined in part II, section 5.1.
Exposure domain images X(x,y) can be used to compare pixel values within a single
image even across channels – with the caveat of the data range edges, fixed-pattern
effects and wavelength response of the imaging system. Though this will still be less
reliable than utilizing a HDR image. The point of the linearization is to get rid of
the nonlinearities that invalidate arithmetic operations and therefore comparisons of
pixel values and therefore enable the accurate merging of differently exposed images
into a single HDR image.

With a proper number of differently exposed source images, the irradiance domain
images E(x,y) and the radiance domain images L(x,y) get rid of the data range edge
problems still present in the exposure domain images X(x,y). While the exposure
domain image samples a possibly small portion of the scene radiance, the irradiance
and radiance domain images can encode the full dynamic range of the scene in
a relative scale, effectively getting rid of data range edges[39]. We argue that it
is precisely due to the fact that the HDR images encode the full dynamic range,
that comparisons across color channels can be made. The caveat of cross-channel
comparisons is the wavelength response of the imaging system, which means that
comparing relative radiance images obtained on different devices cannot be made at



106

least directly.
The autocorrelation, local thickness and relative radiance measurements we’ll

be performing in part III don’t require much additional processing. For the au-
tocorrelation we subtract the spatial mean from the input image and divide by
its standard deviation in order to normalize the resulting autocorrelation image.
After that the image is ready for the autocorrelation computation. For the relative
radiance measurements we need to possibly manually select a rectangular area for
analysis and we’ll manually select a threshold value to segment the features of interest
from the images. The formed binary mask can then be used to compute spatial
statistics to measure relative radiance values for features of interest. The local
thickness measurements have a similar workflow in that we’ll need to segment the
features of interest. Similarly we might need to manually select a rectangular area
in an image and we’ll also use thresholding to select features of interest. For the
local thickness measurement of the relative radiance images we can use the relative
radiance measurements to guide the choice of threshold value. In the case of local
thickness the binary mask is is also slightly improved by running a single binary close
operation on it to minimize the amount of artificial gaps and small specks in the
mask, after which the image is ready for the local thickness algorithm. Figure 29 also
shows the preprocessing used on the input images for the different measurements.
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Figure 29. Flow diagram of the image handling pipeline. And possible subse-
quent autocorrelation and local thickness processing.
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Part III

Measurements and results
The last part of this thesis is focused on applying the knowledge and methods we’ve
discussed in parts I and II. Firstly in section 1 we’ll go over our algorithm for solving
the ICRF, how it performs and find the optimal parameters for it. A reader interested
in only the results can skip this section and jump right into the calibration of the
Olympus SC100 camera.

Section 2 is focused on the calibration of the utilized digital camera. More
specifically its distance scale calibration, white balance, dark frames, flat-fields and
linearization. Secondly we’ll discuss and analyze how well the linearization and
correction methods perform. We finish the section with the construction of HDR
images, that are the relative radiance images. We’ll observe the quality and linearity
of them by constructing two relative radiance images with only one difference – their
illumination intensity. We’ll utilize an analyzer to modify the illumination, while
keeping other conditions static. The analyzer causes the unpolarized light’s intensity
to be cut in half, as was discussed in part I, section 2.1.3. This gives us a method to
quantify the linearity of the images and finally answer the question, if commercial
digital cameras can be used as radiance sensors.

Following the calibrations, we are finally ready for the measurements related to
the samples in section 3. The first is the relative radiance measurements, with which
we will gain insight into how the relative radiances change when moving from the
bright zone to the dim zone. Secondly we will utilize local thickness measurements
for both the relative radiance images and SEM images. These will help us determine
the typical sizes of features of interest and the distances between them. These will
be critical in terms of explaining the optical properties of the MWNT depositions.
Finally we’ll perform autocorrelation measurements to observe if the samples have
periodic or anisotropic features. These will also give additional measurements for the
typical particle sizes in the images. These will also be performed for both the relative
radiance and SEM images. The measurement results will be analyzed with the aim
of gaining insight into the nature of the MWNT depositions. We are aiming to gain
answers to the question of why the samples look as they do and, finally concluding
this thesis.
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1 Solving the ICRF

Before getting into properly linearizing the images of interest, we’ll test our exposure
series method of solving the ICRF. After the ICRF is solved we’ll be ready to linearize
images and deal with the linear effects of the imaging system and to construct the
estimates of a scene’s radiance.

1.1 The minimization algorithm

The first five principal components for each color channel were calculated by utiliz-
ing the database of camera response functions. While the database contains also
precalculated principal components, these were calculated for all color channels
together. We opted to calculate the principal components for each channel separately
by ourselves. This was done by first inverting the functions from the database and
separating them based on their color channel. Then a mean ICRF and a covariance
matrix for each channel was calculated, followed by determination of the principal
components.

The algorithm we chose to minimize the objective function introduced in part
II, section 3.3.1, is the differential evolution algorithm and more specifically the
implementation in the Python SciPy library. The differential evolution algorithm
is a population-based, stochastic, evolutionary algorithm that can be utilized for
global optimization. The algorithm initializes a population of candidate solutions
and at each iteration mutates each candidate by mixing them with each other based
on different strategies[72].

We chose this algorithm for its simplicity, efficiency and because the algorithm
doesn’t utilize gradients of the objective function. The differential evolution algorithm
in SciPy utilizes various parameters to control the process. We’ll briefly go over
the most important of them and report our choice of parameter values. Probably
the most important parameter is the strategy. We chose to utilize the current-to-
best/1 strategy, which is a strategy that compromises between fast convergence and
exploration of the parameter space[72]. The next two important parameters are the
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mutation and recombination constants. These control, respectively, the search radius
and how likely it is for a candidate solution to progress into the next generation of
the population. For the mutation constant we chose to utilize values in the range [0,
1.95] and dithering, which randomly changes the mutation constant on a generation
by generation basis. For the recombination constant we set its value to 0.4 so that
convergence is sufficiently slow in order to not prematurely terminate the algorithm.
The initial population is formed by using SciPy’s ’sobol’ method, which aims to
maximize the coverage of the parameter space for the population.

All in all, we utilized the differential evolution algorithm to iterate the coefficients
for each principal component and the exponent of the base function, which were
utilized to construct the ICRF, as expressed in equation 36. As stated earlier, the
optimization can be performed by either utilizing the mean ICRF or an exponential,
whose power is an extra parameters subject to optimization, as stated in part II,
section 3.3.1. Additionally two constraints were added; one to maintain the iterated
ICRF in [0,1] range and one to maintain a continuously increasing ICRF.

Finally the database of camera response functions includes also various gamma
curves as possible response functions. In the optimization algorithm the user can
choose whether to include these in the determination of the principal components or
not.

1.2 Optimal parameters for the linearity measure

There are a number of parameters, whose impact on the linearity measure and
therefore the solved ICRF we need to determine. The first is the number of sampled
pixels. The computation time increases very quickly as the number of pixels is
increased, while it should yield a more reliable linearity measure due to the increased
number of data points. The second parameter is the rejection threshold for including
pixel values in measuring linearity. Essentially the rejection threshold value describes
how many pixel values at the 8-bit data range’s both edges are rejected. This
parameter’s effect shouldn’t be too large in terms of computation speed, but is
very crucial in terms of accuracy. Increasing the rejection threshold allows the
minimization process to focus more on the most reliable middle values of the data
range, which should lead to a more accurate ICRF. On the other hand, in terms
of the final HDR-merged image, increasing the rejection range means that more
input images are required in order to ensure that all pixels on each color channel are
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imaged at least once within the accepted pixel value range.

Readers might also be wondering how the effect of these parameters can be
measured if the underlying minimization algorithm is stochastic in nature. The
differential evolution algorithm’s implementation in SciPy provides the option for
seeded minimization. This means that we can provide a seed for the process allowing
for repeatable minimizations. We will utilize an integer seed with value 1995.

We’ll first inspect the effect of the number of sampled pixels. In figure 30 are
shown plots of the mean disparity values for the utilized data set against the number
of sampled pixels. The rejection threshold has been set to 5 pixel values at both
the lower and upper range of values, i.e. only values 5 < B < 250 are accepted.
From the mean absolute disparity plot we can see that there is only small differences
upon varying the number of utilized pixels. The relative disparity plot shows a bit
more differences over the mean absolute disparity plot. The relative disparity plot
suggests that using at least a ratio of over 1E-04 would be sufficient, at least when
accepting pixel values in the range 5 < B < 250. Above this ratio the values are
reasonably consistent for different ratios. The Olympus SC100 camera has a bit over
10.5 million pixels in an image, so using over 1000 pixel positions seems sufficient.
With stricter rejection thresholds more pixel positions should be included, as more
pixels will be rejected.

The mean standard deviation of both the absolute and relative disparities is very
consistent over the range of utilized pixels, especially the relative one. This means
that the spread of disparity values is consistent over different pixel sampling sizes
and that the underlying pixel values are samples of the same distribution. This
is an expected result, as taking multiple sufficiently large samples from the same
population should yield a similar sample standard deviation for each sample.

The second varied value is the rejection threshold, for which mean disparity values
for the data set are plotted against the threshold value in figure 31. For these the
ratio of utilized pixels was set to about 3E-3, meaning about 30000 pixel positions
were utilized. This number naturally decreases based on the rejection threshold.
The most noteworthy of these plots are especially the mean relative disparity and
the mean standard deviation of relative disparity. The figures show that the mean
relative disparity and the mean standard deviation of relative disparity decreases
for an increasing rejection threshold. This can attributed to two things. The first
is that the pixel values at the data range’s edges are the most unreliable due to
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Figure 30. The mean a) absolute disparity, b) relative disparity, c) standard
deviation of absolute disparity and d) standard deviation of relative disparity for
each color channel as functions of ratio of utilized pixels.

cut-off and saturation. The second is that the minimization algorithm can essentially
focus on minimizing the disparity values for a smaller range of pixel values. Later
in part III, section 2.3 we’ll discuss the noise of the imaging system. In figure 39
it can be seen that overall the standard deviation for each pixel value level is quite
consistent over the data range for the blue and green channels, staying at about the
4 to 6 range. The red channel is more noisy with up to a peak standard deviation of
over 12. Looking at the mean relative disparity plot in figure 31b), increasing the
rejection threshold to about one standard deviation decreases the disparity a lot.
Increasing it further still decreases it, but yields diminishing returns. The changes
in mean absolute disparity and the standard deviation of absolute disparity seem
to flatten above a rejection threshold of 4. All in all these suggest that a rejection



113

Figure 31. The mean a) absolute disparity, b) relative disparity, c) standard
deviation of absolute disparity and d) standard deviation of relative disparity for
each color channel as functions of the pixel value rejection range.

threshold of 5 is sufficient. Using too large of a rejection threshold means that a
lot more input images are needed, while the benefits it yields are small. A large
rejection threshold can even become very problematic, as images with very different
exposure times won’t have any pixel positions in both images at which the pixel
values in each image fall within an acceptable range. This means that no data could
be obtained from such an image pair in terms of computing the linearity measure.

In the end the parameter choices are a compromise between effort, the best results
and computation time. In figure 32 are plotted the computation times for solving
the ICRF with the parameters utilized in the two previous cases. The increase of
computation time for increasing the number of utilized pixels is reasonably linear and
entirely expected. What isn’t as expected however is the increase in computation
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Figure 32. Computation time plotted against a) the ratio of utilized pixels and
b) the rejection range. Computations were performed on a Ryzen 5 5600x CPU
@3,7 GHz.

time for increased rejection thresholds, which too seem to increase linearly with an
increasing rejection threshold. One thing that can be improved is the fact that the
algorithm could be implemented so that it would use a dedicated GPU. As most of
the operations regarding the images are element-wise operations that can be run in
parallel, using a GPU could decrease the computation time by orders of magnitude.

1.3 Optimal principal components and variability of mini-
mization

In addition to finding the optimal parameters for the linearity measure, we also
need to determine the optimal principal components. The precomputed principal
components in Grossberg and Nayar’s database include gamma curves and there is
no separation for color channels, though the CRFs in the database do report the color
channel. We can compute different principal components based on how we utilize
the database. The choice of including or ignoring the gamma curves and whether to
split the CRFs based on color channels or not can each be a beneficial or detrimental
choice in terms of finding the most accurate ICRF. We’ll observe these choices’ effects
on the result by running the minimization process for each combination of decisions,
yielding four different sets of results. We’ll also use this as an opportunity to observe
the variability of the resulting ICRF when the minimization is unseeded. This is
done by running the minimization for each of the four different sets of principal



115

components 20 times and observing the differences.
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Figure 33. The ICRFs of each color channel of Olympus SC100 camera solved
with the same parameters for 20 repeats. The colored curves represent an
individual solution and the opaque black curve represents the mean ICRF of
the 20 solutions. Also shown is the mean RMSE and its associated standard
deviation, computed by comparing each individual ICRF to the mean ICRF. a)
Gamma curves not included, color split used. b) Gamma curves included, color
split used. c) Gamma curves not included, no color split. d) Gamma curves
included, no color split. A fraction of about 1.23E-5 of all pixel positions were
sampled with a rejection threshold of 5.
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From figure 33 we can observe that repeatedly solving the ICRFs with same
parameters yields results that are quite close to each other. The largest mean RMSE
value occurs on the red channel for the principal component set with gamma curves
included and color split enabled. The RMSE values’ units can be converted to pixel
values by multiplying with 255, which yields for the largest RMSE value about 3.19,
while the smallest is about 0.61. The RMSE values indicate that for most cases the
variability is small and most solutions are clustered in a small region of the solution
space. All in all this means that despite the stochastic nature of the underlying
differential evolution algorithm, the process is quite consistent at finding a good
solution. In theory, if there was no noise and if the model was a perfect fit to the
data, the solved ICRF would be the same on each attempt. However due to the
stochastic nature of the algorithm, noise and imperfections between the model and
reality, there are multiple solutions that yield about the same measure of linearity.
With these in mind, it is not surprising that the red channel has the most variability
as it is also the noisiest channel.

As for which set of principal components result in the most accurate ICRF, we need
to observe how the linearity measure behaves for different sets of components. For
each set of principal components, we determine the mean and the standard deviations
for each channel’s mean absolute and relative disparities and their associated standard
deviations. The values are reported in table 5. For recap, the mean absolute disparity
measures for each channel the average difference from expected linear values for a
set of images based on their exposure times. This value has an associated standard
deviation that measures how spread out the differences from expected values are.
Solving multiple ICRFs with the same parameters, computing these measures for
each channel and finally determining their mean and standard deviation results in
very helpful quantities. These values help us choose the optimal set of components
out of the different sets. Additionally these help us further to observe how much the
variability of the ICRFs output by the optimization algorithm affects the linearity
measures.

In table 5 the bold values indicate the best value for each channel and each set of
principal components. The best value is simply the one that is the closest to zero, as
it corresponds to a set of components that most consistently results in the ICRF that
yields the highest measure of linearity. The most valuable quantity is the mean of
the mean relative disparity, followed by the standard deviation of the mean relative
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Measurand PC set Absolute disparity Relative disparity
Mean SD Mean SD

Blue mean

a -3.370E-02 7.703E-02 1.580E-02 1.910E-03
b -4.665E-02 6.133E-02 1.385E-02 1.500E-03
c -6.236E-02 5.443E-02 1.455E-02 1.300E-03
d -3.204E-02 8.736E-02 1.548E-02 1.930E-03

Blue SD

a 5.351E+00 1.522E-01 1.623E-01 4.702E-04
b 5.506E+00 1.872E-01 1.624E-01 5.026E-04
c 5.424E+00 1.406E-01 1.626E-01 5.096E-04
d 5.381E+00 2.013E-01 1.625E-01 5.108E-04

Green mean

a 3.171E-01 2.488E-02 1.885E-02 1.530E-03
b 2.768E-01 2.128E-02 1.475E-02 6.387E-04
c 3.092E-01 1.529E-02 1.555E-02 6.710E-04
d 3.089E-01 1.609E-02 1.557E-02 7.878E-04

Green SD

a 2.997E+00 6.875E-02 1.298E-01 7.864E-04
b 2.876E+00 3.021E-02 1.285E-01 5.130E-04
c 3.074E+00 3.030E-02 1.281E-01 2.942E-04
d 3.058E+00 4.841E-02 1.280E-01 1.842E-04

Red mean

a -2.412E-01 1.096E-01 2.445E-02 2.090E-03
b -2.170E-01 9.541E-02 2.445E-02 1.880E-03
c -2.351E-01 6.946E-02 2.418E-02 1.560E-03
d -2.383E-01 6.490E-02 2.426E-02 1.360E-03

Red SD

a 5.520E+00 2.127E-01 1.839E-01 3.663E-04
b 5.497E+00 2.510E-01 1.840E-01 5.620E-04
c 5.942E+00 1.303E-01 1.841E-01 2.132E-04
d 5.891E+00 1.878E-01 1.840E-01 2.085E-04

Table 5. Statistics of the computed linearity measures for the 20 ICRFs solved
for each principal component set. The principal component (PC) set letters
correspond to the subfigures a-d in figure 33. The bold values are the values
that are the closest to zero for each measurand.

disparity.

Out of all the sets of PCs set b has the most bold values. This also coincides
with the priorities of these quantities with both the blue and green channels’ means
of mean relative disparity belonging to set b. Further analyzing the resulting means
of mean relative disparity via Welch’s t-test for statistically significant differences
we find the following. Firstly on the blue channel half of the resulting pairs have
statistically significant differences, and one of the insignificant pairs just barely
fails the test with its value 0.06344 being only slightly over 0.05. Secondly, on the
green channel only one pair has statistically insignificant differences between their
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Ch a-b a-c a-d b-c b-d c-d
B 9.632E-04 1.903E-02 5.861E-01 1.177E-01 3.390E-03 6.344E-02
G 3.357E-11 2.645E-09 2.488E-09 3.238E-04 5.569E-04 9.281E-01
R 1.000E+00 6.431E-01 7.314E-01 6.197E-01 7.109E-01 8.573E-01

Table 6. Results of Welch’s t-test for each channel under the null hypothesis
that µ1 − µ2 = 0. The values are computed using the mean of mean relative
disparity for each pair of principal component sets. Bold values mark larger than
0.05 probabilities, indicating statistically insignificant difference.

values. The red channel is very monotone and there are no statistically significant
differences on it between the different PC sets. All in all this means that on the red
channel the different sets of PCs result in very similar ICRFs, while on the blue and
green channels the choice has significant impact on the linearity measure. Therefore
judging by the PCs effects on the mean relative disparity, set b is the optimal choice.

Figure 34. Plots of the mean of mean relative disparity for each set of PCs
a-d and for each color channel, based on the data reported in table 5. The bars
represent the standard deviation of the mean relative disparity values. From
the plot it is relatively easy to see which pairs of PC sets result in statistically
significant differences.

One doesn’t necessarily have to use the same set of PCs for all channels. Instead
different sets could be chosen for different channels. In the case of our Olympus SC100
camera, we can use set b for all channels, as the red channel shows no significant
variations for different PCs. Likely one of the most important causes of this is the
high noise on the channel. Most likely the choice of optimal PCs is very device
dependent.
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1.4 Comparison to other data sets

One way to verify the performance of these linearization algorithms is to run them
on an existing data set and compare the resulting ICRF to published results. For
this we require a data set in which both the original image data and a determined
ICRF are both publicly available. We found one quite robust data set related to an
article by Engel, Usenko and Cremers, in which both an ICRF and the original image
data are available to download. The camera model they utilize in their research is
the uEye UI-3241LE-M-GL monochrome, global shutter CMOS camera by IDS.[73]

From their data sets we chose three sets in which a static scene was imaged at
various exposure times. For each exposure time about ten frames were captured, so
we could use them to determine a mean frame for the exposure-based calibration.
As the camera name suggests, the camera outputs 8-bit gray scale images and the
authors report that they utilize jpeg compression. The lossy jpeg compression is
suboptimal in terms of maximizing the accuracy of results.

We run the optimization algorithm for each of the three chosen data sets with a
small modification. We’ll utilize the principal components with no color split and
duplicate the monochrome image for each color channel as it is. This way we can
essentially simultaneously run three attempts at solving the ICRF and then take
the mean of each solution. The resulting ICRFs, solved from the three different sets
of images, are shown in figure 35 alongside with the ICRF provided by Engel et al.
The RMSE between our ICRFs and the provided ICRF shows that they match very
closely, indicating that our algorithm provides an accurate ICRF.

Figure 35. Plots of the ICRFs solved by our algorithm (red) based on the
different data sets published by Engel et al. and the ICRF provided by the data
sets’ authors (blue). a) Narrow gamma sweep 3, b) Wide gamma sweep 1 and c)
Wide gamma sweep 2. Above the plot are the computed RMSE values between
our ICRFs and the one provided in the data set.
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2 Olympus SC100 calibration

The photographs used in this research were all taken using a Olympus BX53M optical
microscope paired with a Olympus SC100 CMOS color camera, whose specifications
are provided in table 7. The image acquisition software was Olympus Cell Sens
Entry on a Windows 7 PC. All subject images and dark frames were acquired by
capturing a set of 67 images, which were used to create and store a mean image and
a scaled variance image, as was described in part II, sections 2.3 and 2.4 respectively.
The image pairs act in calculations as the mean and standard error of a set of
measurements.

In the camera’s settings all unnecessary algorithms and adjustments were turned
off. This includes internal automatic white balance, gamma adjustment, sharpening
filtering and shading correction. Internal dark frame subtraction is used for subject
images, but for their uncertainty images the dark frame subtraction is turned off.
The camera doesn’t have a single ISO gain value but instead employs a color channel
specific gain value, which we’ll utilize to fix the white balance of the camera.

Chip size Type 1/2, 3 Inch
Effective area 6.12 mm x 4.59 mm

Pixel size 1.67 x 1.67 µm
Max resolution 3480 x 2748 pixels

Image type 24-bit RGB
Read-out speed 5-36 MHz

Interface USB 2.0
Camera mount Standard C-mount

Table 7. Specifications of the Olympus SC100 CMOS color camera.
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2.1 Distance scale

The microscope images’ scale was calibrated for the 50x magnification and then
calculated for the lesser magnifications. A silicon chip with electrodes fabricated
on it was utilized as a sample and the distance between electrodes was determined
from an AFM image. The electrodes were fabricated at 7 µm intervals and the
mean distance and standard error of the mean were determined. Similarly for optical
images of the same chip, the mean distance and standard error of the mean were
determined in pixels for the electrodes’ distances to each other. The distance scale is
then established by dividing the mean distance in µm by the mean distance in pixels,
with the standard error being determined using the error propagation law. Figure 36
shows the utilized AFM image and optical image, with lines showing the locations
at which the profiles of the AFM image were obtained from. Using the line profiles
obtained from both the AFM and optical images, the middle points of each peak
were utilized as the location of the electrodes. The middle point was determined as
the mean value between the two edges of a peak. This process establishes a distance
scale for the 50x objective of the microscope and this value can then be simply scaled
for the other magnifications. Table 8 shows the distance scales along with their
standard error. The distance scale value for the 50x objective matches closely to the
theoretical value that can be computed as physical pixel size divided by the total
magnification. The camera mount applies a reported 0.35x magnification, so the
theoretical value is 0.0945 µm/px. The theoretical value doesn’t quite match the
experimentally determined value, falling some 3.4 standard errors outside of it. Still,
the values are reasonably same and we will utilize the experimentally determined
distance calibration in this work.

Magnification Distance per pixel (µm/px) Standard error (µm/px)
50x 0.0923 0.0009
20x 0.2309 0.0022
10x 0.4617 0.0044
5x 0.9235 0.0088

Table 8. The distance scale and its standard error for the different objectives
for Olympus BX53M microscope and Olympus SC100 camera pairing.
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Figure 36. AFM and optical images of an silicon chip with electrodes fabricated
at about 7 µm separations of each other. The lines in the mark the line profiles
that were utilized to determine the mean distances of the electrodes. The red
box in the optical image marks approximately the area of the AFM image.

Figure 37. Profile of the pixel values of line 3 in the AFM image shown in
figure 36. The location of the peaks corresponds to the electrodes on the chip.
The peak location is determined as the mean value of the edges of the peaks.
Similar methodology was used for all electrode distances for both the AFM and
optical images.
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2.2 White balance

The white balance of the camera was adjusted by viewing the transmitted light source
of the microscope without any obstructions in the way through the 5x objective.
The transmitted light source is of the same type as the reflected light source. Using
a mean stacked image, a spatial mean about the brightest point of the image was
computed for each of color channel and the camera’s white balance set by adjusting
the individual channels’ gains until the means of each channel was as close to
each other as possible. The closest matching spatial means were: Br = 247.713,
Bg = 247.996 and Bb = 247.738 found by adjusting the camera’s channel gains
to red: 1.95, green: 1 and blue: 1.01. It is highly likely that the linearization for
most sets of ICRFs leads to a shift in the white balance of images. Figure 38 shows
the image that was utilized to set the white balance before and after linearization,
indeed showing a changed white balance. In the linearized exposure domain the
values changed to Xr = 197.851, Xb = 238.0811 and Xb = 243.347. This means that
the color rations changed from about 0.333 to 0.291, 0.334 to 0.350 and 0.333 to
0.358 for red, green and blue channels respectively. The shift is quite modest, but
certainly visibly noticeable. While it might be tempting, these ratios before and after
linearization can’t be used to correct the white balance. Instead some method of
tying the ICRFs of each channel would be the correct approach to handle the white
balance post-linearization. This is an aspect that we don’t include in the present
work. While it would be beneficial to be able to accurately quantify the relative
radiances of the channels with respect to each other, with the methods we have
developed here, we can only quantify the relative radiance values on individual color
channels. The color channels relation to each other is left on a qualitative level of
being able to say that one is brighter than the other, but no more than that.

2.3 Imaging system noise

A simple method of visualizing the noise of the imaging system is to plot a heat map
of a pixels true value against its observed distribution. Basically for each pixel in
a stack of images, we assign its mean value as an estimate of its true value. Then
we collect a histogram of the pixel values that make up our estimate and plot the
histogram. Repeating this process for all pixel values yields a plot along whose
diagonal is the true value of a pixel, while any straying off of the diagonal is due to
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Figure 38. On the left-hand side is the image that was utilized to set the white
balance for the Olympus SC100 camera. On the right-hand side is the image
after linearization, showing a shift in the color balance.

noise. Noise profiles with CellSens dark frame subtraction off and on are shown in
figures 40 and 41 respectively.

Figure 39. Plots of the standard deviation of each mean-based dark subtracted
noise profile. The red channel is considerably more noisy than the blue and green
channels, especially at lower end of the range.

Finally we can utilize the subtracted noise data to determine a lower and an upper
threshold for the pixel values that are rejected in the linearity measurements for
being too close to the data range edges. In figure 39 we have determined and plotted
the standard deviation of each noise profile. The edgemost standard deviation values
are once again something we need to be wary of, as they are smaller than the they
should be in reality due to sensor cut-off and saturation. These rejection thresholds
will bet utilized in all linearity measurements.
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Figure 40. Heat maps and plots of select noise profiles for the red, green and
blue color channels based on setting the mean of each pixel stack as its true
value. These profiles were produced with dark frame subtraction turned off.
The profiles are measured in digital numbers (DN), that is in the 8-bit integers
directly observed in the images.
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Figure 41. Heat maps and plots of select noise profiles for the red, green and
blue color channels based on setting the mean of each pixel stack as its true
value. These profiles were produced with dark frame subtraction turned on.
The profiles are measured in digital numbers (DN), that is in the 8-bit integers
directly observed in the images.
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2.4 Linearization and HDR merging

The ICRF for the Olympus SC100 camera was solved by utilizing the differential
evolution algorithm with the parameters stated in part III, section 1.1. For the
objective function the rejection threshold was set to 5 and the images were sampled
at a fraction of about 4.46E-3 of all pixels. The principal components that were
utilized is the set b, which as described in part III, section 1.3, includes the gamma
curves and utilizes a color split for the CRFs from Grossberg and Nayar’s database.
The exposure series used to solve the ICRF is the same as shown earlier in figure
25, consisting of a total of 13 images captured at exposure times between 8.01 ms
and 79.96 ms. The solved ICRF is shown in figure 42. Figure 43 shows the disparity
plots for the camera following linearization of the same images that were used to
compute the linearity plots in figure 24. When comparing these to the disparity plots
of the base images it becomes very noticeable how nonlinear the device is on its own.
We can finally verify the performance of the HDR merging process by comparing
the pixel values of given sites within and across two HDR images of the same scene,
merged from images captured under different known illumination intensities. Figure
45 shows two HDR images, who are merged from exposure series with the only
difference being the illumination intensity. In the first image the illumination is
half that of the second, ensured by a polarizer placed in the path of unpolarized
light. We’ll divide the two HDR images into equally large sites and compute a mean
radiance value for the site with an associated uncertainty. In this case, we shall
divide them into 900 sites, basically a 30 x 30 grid.
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Figure 42. The solved ICRFs for each color channel of the Olympus SC100
camera. The red and green channels behave in a quite similar fashion being quite
nonlinear, while the blue color channel is the most linear.

Figure 43. Plots of the absolute and relative disparities for the Olympus SC100
camera after solving for its ICRF. The points represent mean disparity for a
pair of images and the colored bars represent the standard deviation of disparity
and are divided by five for better visualization. The black bars represent the
uncertainty of disparity. Above the plots are computed the mean and standard
deviation for the data points in each plot.
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Figure 44. Unweighted and weighted histograms of each channel’s relative
radiance values in the HDR images, whose LDR scaled images are illustrated
in figure 45. The uncertainties of the relative radiance values were utilized as
weights. a) and b) correspond to the images in which an analyzer was utilized
and not utilized respectively. Above each plot are reported the weighted and
unweighted mean relative radiances with their uncertainty and the standard
deviation of the relative radiance values. The vertical lines indicate the relative
radiance value range that was linearly mapped to LDR range in figure 45c) and
d).
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Figure 45. Images of a piece of paper with color stripes printed on it, 5x
DF objective, left-hand side with an analyzer and right-hand side without an
analyzer. a) and b) are normal images captured at 39.99 ms exposure time.
A total of seven and six exposures were utilized for each case. c) and d) are
HDR images, scaled to LDR by linearly mapping the values between the 1st and
the 99th percentiles of the HDR images’ weighted histograms. e) and f) map
the full range of the HDR images back to LDR. The HDR-merged images a-f
illustrate well the effect of flat-field correction and amount of detail that would
be lost in LDR images due to cut-off and saturation. c) and d) show only minute
differences in the highlights. The brightness in f) is slightly more even across the
image than in e) due to a wider range of relative radiance values being scaled
back to LDR, resulting in a lower contrast.
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Figure 46. Unweighted and weighted histograms and KDEs of the cross-image
ratios of mean relative radiance for each of the 900 sites and for each color
channel. The weighted histograms and KDEs utilize the uncertainty of the mean
relative radiance values as weights.

Firstly we’ll look at how the same site’s mean radiance values compare to each
other across the two HDR images. We expect the ratio of the mean radiance values
of each site to be consistent for each color channel. Basically we expect that the
distribution of the ratios of each site’s mean radiance across the two images is closely
clustered about a mean value. In figure 46 are plotted a histogram and a kernel
density estimate (KDE) for the ratio of the mean radiances for the 900 sites across
the two images.

From figure 46 we can observe that the ratios of relative radiance values in the
two images are quite closely clustered, indicating two things. Firstly it indicates
that the images indeed in a relative scale record the same information of the scene.
Secondly it indicates that the images’ relative radiances are related to each other
by a scalar factor. Intuitively one might have expected the ratio to be about 0.5,
but as stated in part II, section 7, each channel’s radiance values for each image are
related to absolute radiance by an unknown scalar factor – and thus by extension to
each other. For our research this result is already enough, but if one desires, it is
possible to determine a scalar factor that can be used to convert the relative radiance
values to absolute physical units. The relative radiance values within an image can
be compared directly, but comparisons across different images requires normalizing
the relative radiance values by the maximum value out of all channels. This ensures
that white balance is maintained.

Secondly we’ll make a comparison in two steps. We’ll first compare the mean
relative radiance between two sites in one image by computing the ratio of the mean
relative radiances. Then we compute the ratio for the same pair of sites in the
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Figure 47. Unweighted and weighted histograms and KDEs of the relative dif-
ference between the ratios of mean relative radiance for each unique combination
of zones in an image. The weighted histograms and KDEs utilize the uncertainty
of the mean relative radiance values as weights.

Method Ch Cross-image zone ratios Pair zone ratios
Mean Uncertainty SD Mean Uncertainty SD

UW
B 0.223 0.002 0.010 0.0145 0.0002 0.0631
G 0.238 0.002 0.011 0.0115 0.0002 0.0645
R 0.248 0.004 0.029 0.0123 0.0003 0.1574

W
B 0.222 0.002 0.010 0.0189 0.0002 0.0647
G 0.236 0.002 0.010 0.0160 0.0002 0.0653
R 0.243 0.004 0.024 0.0399 0.0003 0.1742

KDE
B 0.224 0.002 0.010 0.0189 0.0002 0.0675
G 0.239 0.002 0.011 0.0160 0.0002 0.0682
R 0.254 0.004 0.025 0.0399 0.0009 0.1818

Table 9. Mean, standard deviation of mean and standard deviation for the
cross-image zone ratios and pair zone ratios computed for each channel with
different methods. UW = unweighted, W = weighted and KDE = kernel density
estimate.

other image. Finally we can compare the ratios obtained from the two images in a
similar fashion to equation 40, though this time there is no need for scaling. This
can then be done for all possible unique combinations of sites in the images. Figure
47 shows the histograms and KDEs for each channel computed from the 404550
combinations of sites. This result acts as a proof and quantification that the two
differently illuminated HDR images encode the same information in relative terms at
a given level of accuracy and that comparing relative radiances is valid. One just has
to keep in mind that if the illumination intensity is not the same, then the relative
radiances are related to each other by an unknown scalar factor.
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2.5 Dark frames and bad pixel filtering

In our image pipeline we opt to utilize the dark frame subtraction feature of the
CellSens Entry camera software. Manually captured dark frames are used only to
create the bad pixel maps to filter the pixel values at the bad positions. While the
bias subtraction step could be done manually, this would leave us with a smaller
data range for the 8-bit channels. We’d be subtracting the noise floor from all pixel
values and are left with that much smaller usable data range. Dead pixel filtering
could be done in a similar fashion by acquiring flat very bright, but not saturated,
images and then mapping out pixel positions, whose value is too low compared to
the image’s mean brightness. For our camera we found that dead pixel mapping is
not required.

The nature of the camera software’s dark subtraction is a black box for us, but
we can make an educated guess at how it works. Firstly upon choosing dark frame
calibration in the software, the user is prompted to block the camera from all light.
The user can then start the process, which takes a few minutes. Then the user can
output the dark frame in the software. This gives out an gray scale 8-bit image in
which hot pixels are still present. The two factors suggest that the camera might
capture a mean stacked image that is not demosaiced and is instead subtracted from
an acquired image before demosaicing. Likely the dark frame is captured only for
the shortest exposure time, meaning that the process corrects for the bias current.
This is further suggested by the fact that hot pixels are still present in images with
long exposure times, while the bias current is not.

Figure 48 shows the ratio of pixel positions, whose value is greater than the given
threshold as a function of exposure time for dark frames. The dark frames in a) have
been acquired without internal dark frame subtraction and instead a bias frame has
been manually subtracted from them before counting the hot pixels. In b) the dark
frames have been acquired with the internal dark frame subtraction enabled. Figure
48b) clearly shows that the internal dark frame subtraction is excellent at removing
the bias and reasonably well removes lot of the hot pixels, as is evident by comparing
the ratio of hot pixel positions between a) and b). Though at increasing exposures
more and more hot pixels pass through the software’s internal dark frame subtraction.
This is illustrated in figure 49, which shows close ups of two points in a 5x DF HDR
image of sample 3, scaled to LDR by linearly mapping relative radiance range [0,
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0.025] to [0, 255]. The first row corresponds to images with no bad pixel filtering and
the second row corresponds to filtering based on the dark frames subject to internal
subtraction. Finally the third row corresponds to filtering based on the manually
acquired dark frames. This clearly shows that filtering for hot pixels is required
to increase the accuracy of relative radiance values at dark locations and that the
best way to map these positions is to utilize dark frames that aren’t subject to the
software’s internal subtraction. The bad pixel filter causes some minor artifacts in
the image, that are best illustrated in the third column of images in figure 49. In
the filtered images on the second and third row some slightly darker pixels have
appeared on bright particles, these dark pixels are not present in the image on the
first row. This happens because a small feature that appears moderately bright in
an long-exposed image happens to lie on a known hot pixel location. That pixel
location’s value is then replaced by the median of its neighborhood, which due to the
small size of the feature has a lower value than the pixels constituting the feature.
For larger features this doesn’t happen because the median filter fits sufficiently well
within the feature.

Figure 48. For each channel’s dark frames the ratio of pixel positions with
value equal to or greater than the given threshold value as a function of exposure
time. a) is based on manually handled dark frames, while b) is based on images
that were subject on internal subtraction.
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Figure 49. Close ups of a 5x DF HDR image of sample 3 scaled to LDR by
linearly mapping relative radiance range [0, 0.025] to [0, 255]. In the first row of
images no bad pixel filtering has been employed. In the second row bad pixel
filtering has been done based on manually acquired dark frames, that have been
subject to CellSens software’s internal dark frame subtraction. Finally the third
row shows images, whose bad pixel filtering is based on manually acquired dark
frames without the software’s internal dark frame subtraction. At the centers
of the green circles are indicated some of the darkening artifacts caused by the
filtering process in bright parts of the image.
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2.6 Flat-fields

The flat-field images used to correct the vignetting and fixed pattern artifacts were
produced by the method we discussed in part II, section 5.2. For each objective in
both BF an DF modes, sets of 67 to 200 images were utilized in linearizing and mean
stacking images of a piece of paper kept in constant motion during the acquisition.
This method yielded rather good flat-field images, some of which are shown in figure
50 along with a brightness plot along the top left to bottom right diagonal.

Figure 50. On the left-hand side is the constructed and linearized flat-field
image of the 20x BF objective and on the right-hand side similar image for
the 20x DF objective. The second row shows the same images with contrast
adjusted to maximum to better illustrate the non-uniformities. Bottom row
shows plots of image brightness from the contrast-adjusted images along the
top-left to bottom-right diagonal.
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From the flat-field images we can observe that there is indeed considerable
vignetting happening. Furthermore the vignetting is not symmetric nor is it the same
for each different color channels at the same locations. The phenomenon is stronger
when using DF mode, though strictly speaking it isn’t only vignetting. Instead in
DF mode the light field isn’t as uniform as in BF mode, which is the main source
of the darker fringes in the image. Similar features are observed for all the other
objectives.

For the flat-field images the quantification of a standard error is a very differ-
ent problem than for the other images. This is due to the flat-field image being
constructed from multiple images of different subjects, rather than from multiple
images of the same subject. The image is essentially a simulated one. This means the
normal way of calculating a standard error of the mean for the stack doesn’t provide
any relevant information. We approach this problem by utilizing the collected noise
data of the imaging system. This way we can virtually assign for each pixel value a
standard error based on the noise data as if the pixel value was something that was
measured directly. If we had a normal mean-stacked flat-field image to compare this
simulated one to, we’d find that the standard error across the image would be about
the same overall. As we assign to each pixel an uncertainty from aggregate data,
we have no specific information for each pixel, which means that some pixels get
assigned a greater uncertainty than they have in reality, while others get assigned a
lesser one. The overall behavior of the standard error evens out over a large number
of pixels.

Figure 51. 50x DF HDR images of sample 3’s dim zone, scaled back to LDR
by linearly mapping relative radiance values [0, 20] to [0, 255]. On the left-hand
side no flat-field correction has been applied, while on the right-hand side it has
been utilized. Note especially the difference in the corners of the images.
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3 Measurements

With the image correction and linearization methods developed and analyzed, we can
now get into the image-based measurements. As a first step we’ll put the linearization
methods to full use to construct HDR images to analyze the radiance of the different
features of the samples on each color channel. Following this we’ll get into the local
thickness and autocorrelation measurements.

3.1 Relative radiance measurements

We can utilize the relative radiance domain images to determine how bright the
different features in the images are with respect to each other within and across
color channels. This gives us some insight about what interactions of light and
matter could give rise to the appearance of the MWNT depositions. We approach
this by identifying interesting features in various HDR images constructed of the
different samples. In the images we either use thresholding or manual selection of
areas, or a combination of both, to compute spatial means and standard deviations
for relative radiance values for a site. Both unweighted and weighted values are
computed, with the corresponding pixel locations in the standard error image being
the weights. We can accurately compare values that originate from images with the
same magnification and illumination.

For the images captured utilizing the 50x objective we first manually select a
rectangular zone from the image that clearly contains only the desired bright or dim
zone. Then we refine the selection further by selecting only pixel locations, whose
relative radiance is above a given threshold. A sensible threshold value would be
one that ensures that no background of the clearly empty silicon chip is included. A
common threshold value was determined for all channels by observing from multiple
50x magnification relative radiance images the spread of relative radiance values at
locations of the sample material on each channel. A threshold of L = 2.5 was selected
as it worked well at segmenting the sample material from the empty chip. For images
utilizing the 5x and 10x objectives we only utilized a manual rectangular selection as
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the spatial resolution at those magnifications is quite low for judging what is and
isn’t empty chip space within the bright and dim zones of the depositions.

Spatial means for relative radiance values were computed from multiple relative
radiance images and multiple sites for both the bright and dim zones. These values
are reported for each site in the tables in appendix B with both weighted and
unweighted values. From these values further mean values were computed for both
zone types at each magnification. Unweighted values are reported in table 10, while
weighted ones are reported in table 11. In both tables are also computed the ratios
of the lower magnifications relate against the 50x magnification and the ratios of the
dim zone against the bright zone.

Firstly one can note that the weighted and unweighted zone-wise means of relative
radiance values are quite closely matched to each other. The weighted values are
consistently slightly lesser than the unweighted ones. This is expected behavior, as
the inverse standard error weighing gives preference for smaller relative radiance
values. The larger relative radiance values indicate either a very bright spot, a long
exposure time or a combination of both. Regardless these spots tend to have a
larger uncertainty associated with them, causing the weighted values to be slightly
lesser than their unweighted counterparts. Similarly the uncertainty for each channel
behaves differently, with the red channel’s uncertainty being proportionally the
largest compared to the associated value over the other channels.

The information of greatest importance in the zone-wise mean relative radiance
tables is in the last section, that compares the values of the dim zone against the
bright zone. As we know, the illumination intensity is not the same across different
magnifications. This can be readily seen from equation 24. In the case of our
objectives the illumination intensity is such that qualitatively speaking the 10x
objective results in the brightest image, 5x objective in slightly darker and the 50x
objective by far the darkest. This means that the relative radiance values in images
utilizing different objectives can’t be compared directly, as the relative radiances are
related to each other by an unknown scalar factor. The important part is that we
can instead compare how the relative radiance values of the bright zone and dim
zone relate to each other across objectives. Here the results in both the unweighted
and weighted cases indicate the same thing. The relative radiance of the dim zone
is about 40% to 70% of that in the bright zone depending on the color channel in
question and the objective utilized.
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Bright zone
Mag Ch Zone-wise mean Uncertainty Ratio to 50x Uncertainty

50x
B 12.1824 0.0344 - -
G 10.2838 0.0343 - -
R 4.8427 0.0278 - -

10x
B 10.5608 0.0278 0.8669 0.0045
G 9.1814 0.0303 0.8928 0.0053
R 4.0566 0.0242 0.8377 0.0099

5x
B 5.0987 0.0147 0.4185 0.0096
G 4.0404 0.0137 0.3929 0.0121
R 1.9531 0.0111 0.4033 0.0200

Dim zone

50x
B 7.8041 0.0217 - -
G 7.0402 0.0226 - -
R 3.0484 0.0174 - -

10x
B 5.7818 0.0155 0.7409 0.0052
G 3.9854 0.0132 0.5661 0.0081
R 1.6663 0.0094 0.5466 0.0146

5x
B 2.6176 0.0067 0.3354 0.0113
G 1.8208 0.0061 0.2586 0.0180
R 0.8081 0.0046 0.2651 0.0304

Ratio of dim to bright

50x
B 0.6406 0.0025 - -
G 0.6846 0.0032 - -
R 0.6295 0.0051 - -

10x
B 0.5475 0.0021 0.8546 0.0074
G 0.4341 0.0020 0.6341 0.0099
R 0.4108 0.0034 0.6525 0.0191

5x
B 0.5134 0.0020 0.8014 0.0327
G 0.4506 0.0022 0.6583 0.0502
R 0.4137 0.0033 0.6572 0.0821

Table 10. Unweighted mean values for the spatial mean relative radiance for
each color channel at different magnifications, computed from the spatial mean
relative radiance values across multiple sites. Also reported are the ratios of the
zone-wise mean values against the 50x magnification (the 50x section is omitted
as it is unity.) For each value the uncertainty is reported as the standard error.
The bottom contains the ratio of the values of the dim zone against the bright
zone.
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Bright zone
Mag Ch Zone-wise mean Uncertainty Ratio to 50x Uncertainty

50x
B 11.1244 0.0344 - -
G 6.8134 0.0343 - -
R 2.8576 0.0278 - -

10x
B 10.3749 0.0278 0.9326 0.0044
G 7.6065 0.0303 1.1164 0.0057
R 3.2383 0.0242 1.1332 0.0108

5x
B 5.0620 0.0147 0.4550 0.0093
G 3.6119 0.0137 0.5301 0.0119
R 1.6954 0.0111 0.5933 0.0198

Dim zone

50x
B 7.2611 0.0217 - -
G 4.6138 0.0226 - -
R 1.5665 0.0174 - -

10x
B 5.6340 0.0155 0.7759 0.0052
G 3.3013 0.0132 0.7155 0.0088
R 1.1885 0.0094 0.7587 0.0179

5x
B 2.5805 0.0067 0.3554 0.0112
G 1.6795 0.0061 0.3640 0.0168
R 0.6682 0.0046 0.4265 0.0306

Ratio of dim to bright

50x
B 0.6527 0.0028 - -
G 0.6772 0.0048 - -
R 0.5482 0.0081 - -

10x
B 0.5430 0.0021 0.8320 0.0068
G 0.4340 0.0024 0.6409 0.0086
R 0.3670 0.0040 0.6695 0.0171

5x
B 0.5098 0.0020 0.7810 0.0293
G 0.4650 0.0025 0.6866 0.0353
R 0.3941 0.0037 0.7189 0.0569

Table 11. Weighted mean values for the spatial mean relative radiance for
each color channel at different magnifications, computed from the spatial mean
relative radiance values across multiple sites. Also reported are the ratios of the
zone-wise mean values against the 50x magnification (the 50x section is omitted
as it is unity.) For each value the uncertainty is reported as the standard error.
The bottom contains the ratio of the values of the dim zone against the bright
zone.
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For the moment let us focus on the unweighted results. The 50x objective result
is the one that most likely measures the radiance ratios of the actual deposition
material across the zones due to the use of thresholding to minimize the effect of
the empty chip on the result. The 5x and 10x objectives on the other hand measure
the radiance ratio of the whole system, including the effect of the empty chip. This
statement is supported by the ratio of zone-wise means dropping a reasonably similar
amount for the 50x objective for each channel, while for the 5x and 10x objectives the
drop is more pronounced on the green and red channel. While the objectives likely
have slightly different transmission for different wavelengths, the difference isn’t large
and doesn’t come into play for the comparison of the zones’ relative radiances as the
comparisons are made objective-wise. The different transmissions however do affect
the values where we compare the dim-to-bright ratios across the different objectives.
The dim-to-bright ratio for the 50x objective cannot be accurately compared to
those of the 5x and 10x objectives due to the thresholding, but the ratio for the
5x and 10x objectives should logically be the same. Comparing the ratios for each
color channels does indeed show that they match closely to each other, though not
within the uncertainty bounds. We can think of three reasonable explanations for the
discrepancy. Firstly the mean relative radiance values for the 5x and 10x objective
images originates from values across three sites but only one sample each. Secondly
the uncertainty of the relative radiance values takes into account only the propagation
of the uncertainty in the brightness of the original images from which the HDR
images were merged. The linearization itself is assumed to be accurate. Thirdly, as
stated previously, the objectives might have different transmission profiles.

In table 12 are reported the color ratios for the zone-wise mean relative radiances.
These were computed by first determining the color ratio for each site independently
and then computing the mean color ratio for sites corresponding to the bright
and dim zones. Similarly to earlier, both weighted and unweighted values are
computed. Comparing the bright zone values to the dim zone, we can see that
both the unweighted and weighted results indicate the same. The proportion of
the blue channel’s radiance is slightly larger in the dim zone than in the bright
zone. Overall the relative radiance measurements suggest that the actual deposition
material reflects the green light most strongly, then blue and finally red. This result
coincides with the reflectance spectra measured for the quartz chip sample, that are
presented in appendix C.
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Bright zone
Unweighted Uncertainty Weighted Uncertainty

B 0.4490 0.0017 0.5075 0.0022
G 0.3766 0.0016 0.3434 0.0018
R 0.1744 0.0010 0.1491 0.0011

Dim zone
B 0.4799 0.0017 0.5396 0.0021
G 0.3632 0.0014 0.337 0.0016
R 0.1569 0.0008 0.1234 0.0009

Table 12. The mean ratios of each color channel’s relative radiance w.r.t the
sum of all channels’ relative radiances.

Finally we should consider which of the computation methods more accurately
reflects reality; the unweighted or weighted mean relative radiance. Looking at the
unweighted and weighted dim-to-bright ratios, we can see that they are mostly closely
matched – except for the red channel. For example the unweighted dim-to-bright
ratio for the red channel using the 50x objective changes from 0.6295 to 0.5482 going
to weighted, which is not nearly as closely matched with the ratios of the blue and
green channels anymore. While typically inverse weighting by uncertainty can be
beneficial for the accuracy of inferred values, in this case it is problematic in terms
of determining the mean relative radiance. The largest relative radiance values for
the red channel have an inherently large uncertainty. This wouldn’t be a problem
if all the large values didn’t have also a larger uncertainty. This likely skews the
mean value lower than it should be. This problem arising from the weighing is
likely caused by the fact that we utilized the absolute values of the uncertainties
in the inverse uncertainty weighing. This issue probably wouldn’t have occurred
if we were to use relative uncertainties instead of absolute uncertainties. With
relative uncertainties the large values get disproportionately small weights due to
their absolute uncertainties being naturally larger than for small values.
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3.2 Local thickness measurements

The local thickness calculations are an effective way to quantify the sizes of features
of interest in images and also their distances from each other. Here we compute some
local thickness values for the relative radiance images and SEM images at chosen
locations.

3.2.1 Local thickness of the optical images

While we can’t determine the sizes of any nanoscale features in the optical images,
we can observe and quantify the typical thicknesses and separations of the microscale
features of the samples. Using the irradiance domain images we can, relative to
normal image, more accurately threshold the images of the MWNT deposition
samples and determine how far apart the light reflecting materials of interest are
from each other in the images and how large they are. The uncertainty of the
local thickness computations for the relative radiance images originate from two
sources. We’ll set a given value as the threshold and compute the local thickness for
it. We can then utilize the uncertainty of the relative radiance images to determine
a window for the threshold value and perform the measurement for the lower and
upper values of the this window, choosing the maximum deviation as the uncertainty.
This results in a local thickness image and an associated uncertainty image. The
local thickness image’s pixel values are estimates of the features’ size in pixels. We
can further compute these in units of µm by utilizing the calibrated size of the
pixels as determined in part III, section 2.1. The uncertainty of the pixel size can
be just added in quadrature to the uncertainty originating from the threshold value.
This approach is more of a black-box approach, but a more robust approach for the
uncertainty of of local thickness computations is beyond this work.

The previous relative radiance measurements come in handy when determining a
threshold to use for segmenting the features of interest from the relative radiance
images. The local thickness computations are performed only for images utilizing
the 50x objective. We compute the local thickness values for each channel separately,
using the previously calculated mean relative radiance values for each zone and each
channel. Those values themselves were computed by rejecting the background of the
empty chip from the computation and thus act as excellent values for segmenting
the sample material from the images. The pixels whose relative radiance is greater
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than the channel’s threshold value are used to compute the size of the features,
while pixels whose value falls below the threshold are used to compute the distances
between features. We’ll call these the local thickness and local separation respectively.
Figures 52, 53 and 54 show examples of the original radiance image, binary mask,
local thickness and local separation for blue, green and red channels respectively.
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Figure 52. Different computed images for the blue channel showing S01P01.
Top-left shows the relative radiance of the blue channel in a log scale. Top-right
is a binary mask using the given value as a threshold. Bottom-left shows the
computed local thickness using the binary mask, while bottom-right shows the
local separation using the same mask.
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Figure 53. Different computed images for the green channel showing S01P01.
Top-left shows the relative radiance of the green channel in a log scale. Top-right
is a binary mask using the given value as a threshold. Bottom-left shows the
computed local thickness using the binary mask, while bottom-right shows the
local separation using the same mask.
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Figure 54. Different computed images for the red channel showing S01P01.
Top-left shows the relative radiance of the red channel in a log scale. Top-right
is a binary mask using the given value as a threshold. Bottom-left shows the
computed local thickness using the binary mask, while bottom-right shows the
local separation using the same mask.

Figure 55 shows histograms of the local thickness and local separation values
for each channel based on the local thickness and local separation images shown in
figures 52, 53 and 54. The histograms include the values of all non-zero pixels. Zeros
aren’t included because this would skew the measures, after all we are interested in
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Figure 55. Histograms of the local thickness and local separation values of each
channel for S01P01 with non-zero values included.

the sizes and separations of the features, not the not-features so to say. The mean
values, their uncertainties and standard deviations for the local thickness and local
separation were computed for given sites. These statistics are reported in table 13.

Taking a look at the local thickness values in table 13, the first thing we take
note of is that the mean thickness of the features is consistently larger in the bright
zone than in the dim zone. This is the most pronounced on the blue channel, while
the difference on the green and red channels is more modest. Rather unsurprisingly,
there is considerable overlap in the sizes of observed features judging by the standard
deviations of the observed local thickness values, but the differences in the mean
values are still significantly different even for the green and red channels.

Jumping over to the local separation values, we can see that there isn’t really
a consistent trend from one zone to the other. The overlap of separation values is
much stronger across the zones than for the local thickness values and there are large
differences from one sample to the next for both zone types, much more than for the
local thickness values. From these local separation statistics the strongest statement
we can make is that the separations are likely quite similar across the zones.

Comparing the local thickness and local separation values to each other, we can
see that in the dim zones there is a consistent trend of the separation values being
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greater than the thickness values. In the bright zone there isn’t such a trend, as
S03P02 breaks that consistency. Effectively the scale of the thickness and separation
values with respect to each other reflects the fraction of the surface are that the
segmented features occupy. Similar thickness and separation values suggest a coverage
of close to 50%, while a larger thickness over separation tips this fraction to larger
values and vice versa for larger separation over thickness. For example in the binary
mask images for S01P01 in figures 52, 53 and 54 we can maybe estimate that the
black areas, corresponding to features of interest, cover slightly less surface area than
the white. This is then reflected in the thickness and separation values shown for
S01P01 in table 13.

Finally let’s take a look at how the thickness and separation values behave across
the three color channels sample-wise. For the thickness values we can see that
typically the blue channel has the largest values, followed by red and finally green.
For the separation values there are different trends for the dim and bright zones. For
the dim zone the largest separation is for red, followed by blue and green. For the
bright zone the order changes to blue, red and green. Overall from these observations
we can note that the green features are the smallest and most closely packed across
both zones. The differences for the sizes of the green and red features are quite small
and we’ve noticed from then relative radiance images that areas with bright green
features typically coincide with the bright red features. Something that is not taken
into account here is the chromatic aberration. It is clear that chromatic aberration
causes different wavelengths of light to come into focus at different distances. Most
likely the green channel is the one that is the best focused one, which would mean
that both the red and blue channels would be slightly out of focus. The analysis here
doesn’t take that into account, but it is likely that both the red and blue features
would be slightly smaller if the images were captured so that each channel had been
imaged separately with maximal focus.

Overall, based on the previous considerations, the green channel likely represents
the features of interest most accurately. Based on the different mean values measured
for the different sites and their associated uncertainties, this suggests that the mean
local thickness of the features of interest in the dim zone is in the range 0.58–0.61 µm
for the silicon chip samples, while their local separation is in the range 0.79–0.99 µm.
In the bright zone these ranges are 0.75–0.95 µm and 0.54–1.12 µm. This indicates
that there is preference in how the material settles in the deposition, with it forming
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Dim zone
Thickness (µm) Separation (µm)

Site Ch Mean Uncert. SD Mean Uncert. SD

S01P04
B 0.668 0.007 0.480 1.533 0.015 0.729
G 0.590 0.006 0.397 0.974 0.010 0.346
R 0.671 0.007 0.433 2.06 0.03 0.75

S02P01
B 0.761 0.008 0.466 1.118 0.011 0.558
G 0.592 0.006 0.308 0.93 0.01 0.37
R 0.662 0.007 0.317 1.80 0.02 0.66

S03P01
B 0.870 0.009 0.522 0.982 0.010 0.522
G 0.605 0.006 0.328 0.806 0.008 0.327
R 0.651 0.007 0.352 1.54 0.02 0.60

S04P01
B 0.819 0.008 0.561 1.107 0.011 0.582
G 0.673 0.007 0.426 1.019 0.010 0.435
R 0.638 0.007 0.413 1.082 0.011 0.496

Bright zone

S02P02
B 1.116 0.011 0.666 1.519 0.015 1.093
G 0.758 0.008 0.390 0.810 0.008 0.511
R 0.870 0.009 0.509 0.979 0.010 0.623

S03P02
B 1.418 0.014 0.834 0.813 0.008 0.685
G 0.815 0.008 0.406 0.550 0.006 0.329
R 1.019 0.010 0.588 0.676 0.007 0.426

S01P01
B 1.087 0.011 0.596 1.525 0.015 0.922
G 0.937 0.010 0.434 1.188 0.012 0.751
R 0.952 0.010 0.498 1.258 0.013 0.769

Table 13. Computed mean, uncertainty of the mean and standard deviation
values for the local thickness and separation of features in the relative radiance
images.

thicker features in the bright zone than in the dim zone. The separations between the
features suggest similar separations, though the bright zone likely has more variation
in this.
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3.2.2 Local thickness of the SEM images

Using the SEM images we can get a measure of how large the typical structures
making up the sample material are and how far apart they tend to lie from each
other. For the SEM images we don’t have an uncertainty image, nor a similarly
calibrated pixel size like for the optical images. The SEM images do carry pixel
size information, which we’ll use to convert the results to micrometers, but for the
uncertainty we just choose to set a flat 5% uncertainty to the size of the pixels. The
SEM images are typical 8-bit single channel images for which we found that the
threshold value 110 works well at segmenting the particles from the background.
Additionally a single binary close operation was performed on the mask to better
match the mask with the desired features. The operation first dilates the mask by
one pixel and then erodes it by one pixel, closing holes and gaps in the features while
trying not to add any extra size to features. Otherwise the analysis is similar to the
one performed on the relative radiance images.

Figures 56 and 57 show examples of the original SEM image and its local thickness
and local separation images for sample 01 in the dim and bright zones respectively.
The histograms visualizing the non-zero data based on these images are shown in
figure 58. Similar thickness and separation computations were performed for multiple
SEM images of different sites in sample 01 at 1000x, 3000x and 8000x magnifications.
The mean values, their uncertainties and standard deviations for the local thickness
and local separation for each site are compiled in table 14.

The results shown in table 14 are likely the most important in terms of explaining
the optical properties of the samples. First, looking at the mean local thickness
values observed at sites in each zone, we note that the local thickness of the material
is significantly larger in the bright zone than in the dim zone. The 3000x results and
the single 8000x result are very similar, but the 1000x has a clearly different value.
The 1000x result should be disregarded as the resolution of the image w.r.t features in
the image is low, resulting in imprecise values. Similarly on the local separation side
we can see that the mean separation increases significantly in the bright zone. These
results indicate that in the bright zone the mean local thickness of the particles is in
the range 0.12–0.15 µm and the separation is in the range 0.51–0.60 µm. In the dim
zone these values are in the range 0.06–0.10 µm and 0.17–0.34 ranges respectively.

Considering that local thickness measures radius, we can convert to diameter by
doubling the values, yielding an estimate for the mean particle diameter and the



154

Dim zone
Thickness Separation

Site Magnification Mean Uncert. SD Mean Uncert. SD
S01SD01 3000x 0.062 0.004 0.059 0.24 0.02 0.16
S01SD02 8000x 0.060 0.003 0.061 0.178 0.009 0.097
S01SD03 3000x 0.089 0.005 0.054 0.27 0.02 0.17
S01SD04 3000x 0.098 0.005 0.080 0.32 0.02 0.19
S01SD05 3000x 0.098 0.005 0.080 0.29 0.02 0.18

Bright zone
S01SB01 3000x 0.137 0.007 0.100 0.56 0.03 0.33
S01SB02 1000x 0.27 0.02 0.15 0.80 0.05 0.43
S01SB03 3000x 0.144 0.008 0.133 0.54 0.03 0.32
S01SB04 3000x 0.126 0.007 0.084 0.57 0.03 0.32

Table 14. Computed mean, uncertainty of the mean and standard deviation
values for the local thickness and separation of features in the SEM images.

mean distance between particles. This would put the values for the bright zone as
0.24–0.30 µm and 1.02–1.20 µm and for the dim zone as 0.12–0.20 µm and 0.34–0.68
µm. Most importantly this puts the mean distance between particles in the bright
zone above the wavelength range of the visible spectrum, while in the dim zone
the range covers almost the full wavelength range of the visible spectrum. As we
know from part I, for diffraction to occur the feature spacings must be larger than
the wavelength of incident light. This suggests that in the bright zone most of the
features can readily diffract the full visible spectrum, while in the dim zone features
can only diffract a portion of the visible spectrum – if at all.

As for the particle sizes, these values would put them according to the size
parameter 21 comfortably about the Mie scattering domain in both zones. Looking
back at the unweighted relative radiance measurements and especially those made
on images utilizing the 50x objective, we saw that the different channels dimmed
reasonably similarly moving from the bright to the dim zone. Similarly the computed
color ratios for each zone in table 12 show that the ratios are reasonably similar
to each other across the zones, with a slightly stronger preference towards blue in
the dim zone over the bright. This makes sense if one thinks of the total scattering
being caused by a portion of Mie scatterers and Rayleigh scatterers. Moving from
the bright zone to the dim zone, the proportion of Mie scatterers reduces, while the
proportion of Rayleigh scatterers increases, i.e. the mean particle size reduces. This
finally leads to a slight preference towards blue wavelengths in the dim zone.
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Figure 56. SEM image from S01 dim zone and its local thickness and local
separation images.



156

Figure 57. SEM image S01SB04 from the bright zone and its local thickness
and local separation images.
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Figure 58. Histograms of the local thickness and local separation images based
on the SEM images in the bright and dim zones. a) and b) are based on the
images of the bright zone in figure 57, while c) and d) are based on the images
of the dim zone in figure 56. On top of the histograms are reported the mean
value, uncertainty of the mean and standard deviation for each data set.

3.3 Autocorrelation measurements

The autocorrelation measurements can give us insight into how ordered the structures
in the images are. We’ll perform these on both the irradiance domain images and
the SEM images. The autocorrelation of images was computed utilizing the correlate
function of CuPy-cuda12x, so that their values were normalized to range [-1, 1].
This was done for each channel by subtracting the spatial mean and then dividing
by the spatial standard deviation. The autocorrelation measurements have slight
overlap with the local thickness measurements in that the typical size of features
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can be also determined from the size of the central peak of an autocorrelation image.
This can be further utilized to determine preferential orientations by finding the
directions corresponding to the largest and smallest autocorrelation values. The
autocorrelations were computed for selected regions of the bright and dim zones of
the samples and the regions were cropped so that their width and height were equal.

From the autocorrelation images we find the directions of maximum and minimum
autocorrelation with the following process. We sample the directions from -90deg to
90deg in intervals of one degree. For each direction a line profile, whose length is
half of the square region’s width is sampled via linear interpolation. Then for the
line profile the area under the curve is used to assign the maximum direction as the
direction with the largest area under the curve, with similar approach used for the
minimum direction. Also a radial mean profile is computed by averaging over all
the sampled line profiles. Finally a half-maximum distance is determined for the
maximum, minimum and mean line profiles. For the optical images each channel is
handled separately.

3.3.1 Autocorrelation of the optical images

From the optical images we can determine the typical scale of features visible at
each magnification, any preferential orientations and possible periodicity. Figure 59
shows the autocorrelation images of each channel for S01P01. Viewers should take
note of the colorbar’s scale, what the images show is the central peak that goes up
to autocorrelation value one. Moving outwards from there it quickly drops to very
low levels. The autocorrelation images show basically just white noise, indicating
that beyond the initial peak, no significant autocorrelation is observed.

Figure 59. Autocorrelation images of S01P01 for each color channel.
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Figure 60 shows the line profiles of the autocorrelation images in the directions of
maximum and minimum autocorrelation and additionally the radial mean autocorre-
lation. Due to the logarithmic scale of the x-axis, the autocorrelation values on the
y-axis don’t quite go to one. This is because the zero distance is not included in the
logarithmic x-axis. This is more pronounced in the line profile of the SEM image’s
autocorrelation shown in figure 62. The optical image’s line profiles we can more
readily observe that there just about only noise after the initial peak. On the blue
channel there seems to be just a small positive bump in the mean profile at about
the 10 µm mark. On the blue channel we can also see what might be initially a weird
half-maximum distance value. The half-maximum distance for the minimum profile
is greater than for the mean profile. This is simply caused by the method we used to
determine the maximum and minimum directions. As stated earlier, we utilized the
area under the curve to determine the directions. This can lead to such a situation.

Figure 60. Line profiles of the autocorrelation images shown in figure 59. The
profiles are plotted in the directions of maximum and minimum autocorrelation
and also a radial mean profile is computed. For each profile the distance to the
half-maximum value is computed.

Similar autocorrelation images and line profiles were determined for the same
sites that were utilized in the local thickness measurements. The maximum and
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minimum directions and the half-maximum distances are compiled in table 15.
Based on our observations of the autocorrelation images and half-maximum distance
values in table 15, there is practically no emergent periodicities or anisotropy in the
relative radiance images. The differences between the half-maximum distances in the
minimum and maximum directions correspond to at best one pixel, most of them
even less. This indicates that the relative radiance images are very isotropic for all
channels. Comparing the half-maximum distances to the local thickness values in
table 13 shows that the values for the blue channel are quite similar, while for the
green and red channels the half-maximum distances are slightly smaller than what
the corresponding local thickness values are. This is caused by the fact that the
features are not completely uniform, but that their relative radiance values fall off
smoothly as we move away from the center of a feature. The autocorrelation falls off
more strongly and leads to a smaller estimate for the typical radius of features if
measured by the half-maximum distance. In the blue channel’s case our threshold
relative radiance and the half-max distance of autocorrelation happen to match,
but for the other channels there are two possibilities. Either the local thickness
measure overestimates the feature size or the autocorrelation half-max distance under
estimates the feature size The truth of these measurement likely falls somewhere in
between these. The important part is that they are still reasonably closely matched
and show the same trends from channel to channel and from dim zone to bright zone.

3.3.2 Autocorrelation of the SEM images

In the nanoscale images obtained via SEM we can determine if the webs of nanotubes
and amorphous carbon form a periodic structure and if there are any preferential
orientations for them. Like for the optical images, figures 61 and 62 show an example
autocorrelation and line profile image for S01SB04, whose original SEM image was
shown in figures 57.

The results for the different sites are compiled in table 16. As was for the optical
autocorrelation results, the results for the SEM images are very similar. The results
indicate that the images are very isotropic and that no significant autocorrelation
is observed beyond the initial peak. Comparing to the local thickness values we
encounter the same trend as in the case of the optical images. The values are
somewhat smaller than for their local thickness counterparts, but the trend from dim
zone to bright zone persists. Like with the optical image half-maximum distances,
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Dim zone
Site Ch Max angle Min angle Max HMD Mean HMD Min HMD

S01P04
B 83.97 -90.00 0.708 0.680 0.623
G 90.00 -69.89 0.368 0.368 0.340
R 90.00 -75.92 0.396 0.396 0.368

S02P01
B 90.00 -90.00 0.608 0.608 0.568
G 9.55 49.78 0.365 0.365 0.365
R 11.56 49.78 0.405 0.405 0.405

S03P01
B 63.85 -90.00 0.593 0.593 0.537
G 49.78 -90.00 0.367 0.339 0.311
R 53.80 -90.00 0.395 0.395 0.367

S04P01
B 83.97 -86.98 0.649 0.649 0.608
G 76.93 -85.98 0.487 0.446 0.405
R 77.93 -80.95 0.446 0.446 0.405

Bright zone

S01P01
B 14.58 90.00 0.914 0.889 0.914
G 21.62 -65.87 0.432 0.432 0.406
R 20.61 -66.87 0.457 0.432 0.406

S02P02
B 61.84 -85.98 0.680 0.635 0.612
G 59.83 -65.87 0.363 0.340 0.317
R 32.68 -71.90 0.385 0.385 0.363

S03P02
B 70.89 -55.81 0.568 0.549 0.529
G 16.59 -90.00 0.353 0.333 0.313
R 90.00 -90.00 0.392 0.392 0.353

Table 15. Autocorrelation statistics for each of the relative radiance images’
channels. Directions of maximum and minimum autocorrelation and the distance
to half-maximum autocorrelation in the maximum and minimum directions and
for the mean radial autocorrelation.
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Figure 61. Autocorrelation image of S01SB04.

Figure 62. Line profile of the autocorrelation image shown in figure 61. The
profiles are plotted in the directions of maximum and minimum autocorrelation
and also a radial mean profile is computed. For each profile the distance to the
half-maximum value is computed.

these likely slightly under estimate the radii of the particles. Most likely the true
values of the mean particle radius lies somewhere between the values observed here
and those determined by the local thickness measurements. Regardless that doesn’t
really change our the deductions we made earlier based on Mie scatterers and Rayleigh
scatterers. With the typical particle sizes observed here, we still don’t quite fall into
the Rayleigh scattering domain in terms of the mean particle size.
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Dim zone
Site Max angle Min angle Max HMD Mean HMD Min HMD

S01SD01 -7.54 67.88 0.02 0.02 0.02
S01SD02 -22.63 85.98 0.016 0.016 0.016
S01SD03 80.95 -50.78 0.02 0.02 0.02
S01SD04 90 -90 0.024 0.024 0.024
S01SD05 3.52 90 0.024 0.024 0.024

Bright zone
S01SB01 75.92 -90 0.032 0.032 0.029
S01SB02 25.64 -47.77 0.051 0.051 0.051
S01SB03 45.75 -56.82 0.032 0.032 0.032
S01SB04 -13.58 90 0.028 0.028 0.028

Table 16. Autocorrelation statistics for the SEM images. Directions of maximum
and minimum autocorrelation and the distance to half-maximum autocorrelation
in the maximum and minimum directions and for the mean radial autocorrelation.
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4 Conclusions

In this research we have done a wide variety of things. We opened with an inspection
of the MWNT depositions via optical, AFM and SEM images. We formulated an
objective function based on the expected linearity of a digital camera, which can
be minimized to solve a camera’s ICRF and linearize its response, inspired by the
work of Matsushita and Lin[50]. We implemented an image processing pipeline
to produce HDR images that function as best estimates for a scene’s radiance,
taking Debevec and Malik’s work[39] as a starting point, while making additions and
modifications based on other works and of our own. We put our method of solving
the ICRF and processing images into HDR images under scrutiny. Finally we put
the image processing into use and performed relative radiance, local thickness and
autocorrelation measurements on the optical and SEM images.

The algorithm for solving the ICRF yielded quality results, producing a very
closely matched result with the external data set and based on what we observed
with the disparity plots for Olympus SC100. It’d be interesting to see how the
algorithm fares for a wider variety of digital cameras. It is highly likely that there
are many parameters, whose optimal state is device dependent. Which principal
components to utilize, which rejection thresholds to set and what kind of parameters
to use in the differential evolution solver. Furthermore it would be interesting to see
how different global optimization methods would work with the problem. Especially
because the differential evolution algorithm is relatively slow due to its stochastic
nature.

The HDR merging produced images of high quality and accuracy in terms of
linearity. As we observed in part III, section 2.4, the ratios of the zone-wise mean
relative radiance from the image with an analyzer against the image without the
analyzer were quite normally distributed. The unweighted mean ratios were 0.223,
0.238 and 0.248 with SDs of 0.010, 0.011 and 0.029 for the blue, green and red
channels respectively. This showed that the images are highly linear and that each
channel’s relative radiances are related to absolute radiance by an unknown scalar
factor. We also observed how the fixed-pattern correction and bad pixel filtering
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worked in the HDR-merged images. The mean-stacked images of a piece of paper in
different positions worked well at correcting the non-uniformities in the HDR-merged
images. In terms of vignetting, the experimental approach likely works better than
utilizing a theoretical equation, as the experimental approach also notes the possible
different behaviors of each channel and non-symmetric behavior.

Finally using the relative radiance images we measured how the relative radiance
values changed for each channel when moving from a sample’s dim zone to the bright
zone. For the areas that minimize the contribution of the silicon chip, we determined
that the relative radiance drops to about 64% for blue, 68% for green and 63% for of
their value in the bright zone. For the total relative radiance, which includes the
contribution of the empty chip, we determined a drop to about 51% or 55% for blue,
45% or 43% for green and 41% for red, based on images utilizing the 5x and 10x
objectives respectively. The precise numbers for these are reported in table 10. The
key takeaway is that in the 50x objective images, in which the background of the
empty chip was segmented away, the drop is more uniform across the channels than
in the 10x and 5x objective images, in which the blue channel drops much less than
the green and red channels.

In the local thickness measurements of the optical images we wanted to best
segment the parts that are most likely to correspond to the sample material. We
utilized the measured zone-wise mean relative radiance values to segment the sample
images. Naturally on the basis of the optical images we don’t get to measure the
actual dimensions of the nanoscale material, but we do get to measure the typical
dimensions of the bright features in each zone. With the green channel being likely
the most in focus and the sample material itself reflecting most strongly in the green
wavelength range, we found that in the optical images the mean diameter of features
was about 1.16–1.22 µm in the dim zone and 1.50–1.90 µm in the bright zone. The
mean distance between features was found to be 1.58–1.98 µm and 1.08–2.24 µm in
the dim and bright zones respectively. This shows that the features of interest are
typically larger in the bright zone than in the dim zone, while the distances between
features are reasonably similar for both zones. The absolute values of these results
would change slightly with different threshold values for the binary mask. However
if the same basis for the threshold value was used for both zones, the trend should
logically remain the same.

The local thickness measurements of the SEM images are the most important
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in terms of explaining the optical properties of the MWNT depositions. We found
that the mean particle diameter was 0.24–0.30 µm and 0.12–0.2 µm for the bright
and dim zones respectively. The mean distances between particles were found to be
1.02–1.20 µm and 0.34–0.68 µm.

The autocorrelation measurements showed us that there were no significant
periodic features in the samples in either of the relative radiance images or SEM
images. The samples also turn out to be highly isotropic. The half-maximum
distances observed for both the optical and SEM images reflect the results of the
local thickness measurements. The differences are minor and likely caused by the
half-maximum distance underestimating the size of features.

From these results we constituted the following explanation for the optical
properties of the depositions. Due to the typical distances between particles in
the bright zone, it can cause diffraction to occur over the full range of the visible
spectrum, while the dim zone can cause diffraction for only a portion or not at all in
the range of the visible spectrum. Diffraction does, however, require periodic features
and as we noted based on the autocorrelation measurements, there are no strong
periodicities in the deposited material. If any diffraction phenomena occur, they are
likely very localized and randomly oriented. The more important part in explaining
the optical properties are the particle sizes in each zone. The observed particle
sizes mean that in both zones a large portion of the particles are Mie scatterers,
resulting on their part in a uniform response across the visible spectrum. A portion
of scatterers on the smaller size in dimensions act as Rayleigh scatterers, which is
stronger for shorter wavelengths, i.e. blue. The proportion of Mie scatterers falls
when moving from the bright zone to the dim, leading to a slight preference in the
blue intensity when compared to the bright zone. Overall most of the intensity
difference between the bright and dim zone are likely simply caused by the differences
in typical particle size for each zone, as scattering intensity increases strongly with
particle size. Finally the silicon chip adds its contribution at close distances to
particles. We’ve noted that at all locations where there is material on the chip, a
slight glow surrounds it, which is most intense on the blue channel. This likely occurs
due to incident light reflecting from deposited material to the silicon chip and then
towards the objective. What causes the selectivity in the particle sizes across the
zones is at this point unknown and is a potential subject for a research of its own.

Overall the analysis has shown the potential of HDR images as a tool in optical
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microscopy. It enables quantitative analysis related to brightness and opens powerful
ways to visualize samples, whose scattered light intensity has a very large dynamic
range. Additionally it makes segmentation of images based on pixel values much
easier in comparison to LDR images. The image analysis methods used here were
overall relatively simple and it would be interesting to see how more complicated
analyses might benefit from HDR imaging. The linearity measure we established here
could also act as a tool to analyze the linearity of even supposedly linear cameras.
While we can’t say that any random digital camera could be calibrated to be a
radiance sensor, we have shown one example of this and it would be interesting to
see how well this approach would work on a wider selection of cameras.

Finally in terms of uncertainty analysis we established a robust method of
estimating the uncertainty of the relative radiance images. We did however perform
the analysis with the assumption that the solved ICRF itself is accurate. In our
analysis of the pair of images with no analyzer and analyzer we saw that the expected
linearity is not perfect. The SD of the values in table 9 is multiple times larger than
the uncertainty. Likely a large portion of the spread measured by the SD values
originates from the imperfect linearization, because the standard deviation should be
much closer to the uncertainty values, were the linearization perfect. It is also most
probable that in the case of our camera there exists no ICRF that could, within
the bounds of uncertainty established from the original mean stacked 8-bit sRGB
input images, perfectly linearize the image and also fulfill the requirement of being
invertible. The quality these results in the end is based off of how accurate the
empirical model of camera response functions is. For example if a camera utilizes
a piecewise function to map exposure values to image brightness, it would slightly
throw off the quality of linearization. In the HDR merging the weighing function we
chose alleviates these problems by giving the most weight for brightness values in
the middle of the brightness range. However in the case of perfect linearization no
weighing function would be required. In the end the uncertainty of the linearization
itself is not large enough to throw off the analysis we performed and would instead
just increase the bounds of uncertainty. Though in a certain sense it is beneficial
to see how only the uncertainty of the original input images carries on through the
image processing and analysis, as then we can identify what spread is caused by
the imperfection of the linearization and what is caused by the original measured
uncertainty.
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A Uncertainty of the HDR merging

The uncertainty associated with different computed quantities in this research is
estimated by applying the uncertainty propagation law to the utilized equations. The
uncertainty propagation law states that for a function f of N mutually independent
variables xn with an associated uncertainty δxn, the uncertainty is given by

δf(x0,...,xN−1) =

√√√√N−1∑
n=0

(
∂f

∂xn

δxn

)2

. (56)

First we’ll derive the uncertainty of a HDR merged image given by equation 45.
First it must be noted that Xn(x,y) = g(B(x,y)). First we’ll utilize the following
substitutions (we momentarily drop the explicit (x,y) notation of images):

S =
N−1∑
n=0

w(Bn), (57)

G =
N−1∑
n=0

w(Bn)g(Bn)t−1
n . (58)

This allows us to express equation 45 as a simple quotient EHDR = G/S, which can
further be expressed as a product of 1/S and G to which we can apply the product
rule of derivatives. Let us first consider the derivative for the first input image B0.
We have

∂E

∂B0
= ∂

∂B0

G

S
= ∂G

∂B0
· 1

S
− G

S2
∂S

∂B0
(59)

from our substitutions. Then we can simply compute the derivatives for G and S,
which are

∂G

∂B0
= w′(B0)g(B0)t−1

0 + w(B0)g′(B0)t−1
0 , (60)

∂S

∂B0
= w′(B0), (61)

inn which we again utilize the product rule and the fact that the differentiating w.r.t
B0 sets all the other terms in the sums to zero. Substituting these back to equation
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59 and reverting the substitution for G and S yields

∂E

∂B0
= w′(B0)g(B0)t−1

0 + w(B0)g′(B0)t−1
0∑N−1

n=0 w(Bn)
− w′(B0)w(B0)g(B0)t−1

0(∑N−1
n=0 w(Bn)

)2 . (62)

From this it is straightforward to see that we’ll have one of these terms for each
input image Bn giving us the uncertainty equation

δE =

√√√√√√N−1∑
n=0


w′(Bn)g(Bn) + w(Bn)g′(Bn)∑N−1

n=0 w(Bn)
− w′(Bn)w(Bn)g(Bn)(∑N−1

n=0 w(Bn)
)2

 δBn

tn


2

. (63)

Here we have assumed that the uncertainty of the images’ exposure times is negligible.
For our mean stacked images this should be a fair assumption due to the large number
of utilized images. The uncertainty analysis would be considerably more complex
if the uncertainty of the exposure times was taken into account, as the image
brightnesses Bn are directly dependent on their exposure times tn. In an algorithm
the derivatives of the ICRF and the weighting function can be determined using
analytical or finite difference methods depending on how they are parameterized. In
our case the derivative of the ICRF will be determined via finite difference and the
weighting function will be chosen so that an analytical derivative can be utilized.
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B Tables of relative radiance measurements

This appendix contains the spatial mean values for selected zones in the samples
used in this research. The sample names are written in shorthand, for example
S01P01 means sample 1 position 1. The mean relative radiance values are listed
for each channel along with the used magnification in the image. Also reported are
the standard error for the spatial mean and the standard deviation of the observed
relative radiance values. The values are computed via two methods, that are the
unweighted and weighted values. For each pixel’s relative radiance value the inverse
of the standard error value for that pixel was utilized as a weight. Table 17 contains
the values computed for selected areas of the samples’ dim zones, while table 18
contains the values for areas in the bright zones.
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Site Mag Ch L δL σL Lw δLw σL,w

S01P04 50x
B 7.1036 0.0349 2.3782 6.5532 0.0349 1.9566
G 7.0288 0.0392 7.3803 4.4703 0.0392 3.5400
R 3.0195 0.0297 4.3615 1.4196 0.0297 1.6572

S02P01 50x
B 7.9999 0.0384 2.2864 7.4132 0.0384 1.9289
G 6.8144 0.0377 6.9299 4.5850 0.0377 3.4337
R 3.0440 0.0302 4.2276 1.6024 0.0302 1.7379

S03P01 50x
B 8.3088 0.0394 2.2339 7.8170 0.0394 1.9284
G 7.2775 0.0407 7.1268 4.7862 0.0407 3.6986
R 3.0818 0.0303 4.0714 1.6775 0.0303 1.6956

S04P01 50x
B 3.8450 0.0184 1.5487 3.4943 0.0184 1.0375
G 4.0514 0.0221 3.1258 3.3241 0.0221 1.5107
R 2.0605 0.0208 2.1302 1.5534 0.0208 1.0203

S02F01 5x
B 2.6357 0.0117 0.3173 2.5971 0.0117 0.3173
G 1.8289 0.0105 0.6761 1.6913 0.0105 0.5643
R 0.8083 0.0080 0.4179 0.6587 0.0080 0.3155

S02F02 5x
B 2.9268 0.0130 0.3622 2.8834 0.0130 0.3552
G 2.0003 0.0116 0.7647 1.8418 0.0116 0.6343
R 0.8575 0.0085 0.4765 0.6963 0.0085 0.3412

S02F03 5x
B 2.2901 0.0100 0.2873 2.2609 0.0100 0.2756
G 1.6332 0.0098 0.5794 1.5053 0.0098 0.5123
R 0.7584 0.0074 0.3774 0.6494 0.0074 0.2730

S03F01 10x
B 6.1159 0.0295 0.7668 5.9782 0.0295 0.7540
G 4.1158 0.0233 2.3396 3.3821 0.0233 1.6304
R 1.7031 0.0166 1.2083 1.2121 0.0166 0.7952

S03F02 10x
B 5.7178 0.0257 0.8934 5.5791 0.0257 0.8403
G 3.9932 0.0230 2.4843 3.2386 0.0230 1.6641
R 1.7059 0.0166 1.3390 1.2077 0.0166 0.8107

S03F03 10x
B 5.5116 0.0249 0.9414 5.3446 0.0249 0.8882
G 3.8471 0.0222 1.9670 3.2833 0.0222 1.4694
R 1.5898 0.0155 1.2069 1.1456 0.0155 0.7340

S04F01 10x
B 3.2048 0.0157 0.5745 3.1540 0.0157 0.4545
G 3.1076 0.0181 1.0224 2.9823 0.0181 0.7167
R 1.5919 0.0152 0.7052 1.4369 0.0152 0.4584

Table 17. Table of the spatial mean relative radiance for each channel computed
at different positions in the samples’ dim zones.
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Site Mag Ch L δL σL Lw δLw σL,w

S01P01 50x
B 11.7790 0.0577 4.0962 10.3773 0.0577 3.9039
G 9.9186 0.0584 7.6984 6.6219 0.0584 4.8099
R 4.6918 0.0473 4.7209 2.7692 0.0473 2.5514

S02P02 50x
B 12.3431 0.0608 3.4378 11.5173 0.0608 3.3056
G 10.5412 0.0599 8.3819 6.8472 0.0599 5.3223
R 4.9515 0.0489 5.0241 2.8107 0.0489 2.6032

S03P02 50x
B 12.4253 0.0603 3.4850 11.4788 0.0603 3.5172
G 10.3918 0.0597 7.9284 6.9710 0.0597 4.9905
R 4.8849 0.0484 4.6575 2.9929 0.0484 2.5463

S02F04 5x
B 5.1489 0.0255 0.4316 5.1386 0.0255 0.4202
G 4.1056 0.0246 1.1711 3.8363 0.0246 1.1011
R 1.9713 0.0189 0.7601 1.8024 0.0189 0.6162

S02F05 5x
B 5.0976 0.0263 0.4737 5.0615 0.0263 0.4890
G 3.8965 0.0229 1.2568 3.4506 0.0229 1.2339
R 1.8514 0.0185 0.8040 1.5881 0.0185 0.7248

S02F06 5x
B 5.0496 0.0245 0.7091 4.9859 0.0245 0.7261
G 4.1190 0.0236 1.4733 3.5488 0.0236 1.5090
R 2.0367 0.0203 0.8768 1.6956 0.0203 0.7730

S03F04 10x
B 9.9452 0.0443 1.3452 9.8088 0.0443 1.3345
G 8.3857 0.0473 3.5002 7.0166 0.0473 3.2711
R 3.6709 0.0376 1.5653 3.0359 0.0376 1.2877

S03F05 10x
B 11.1169 0.0513 1.7888 10.8147 0.0513 1.9691
G 10.0803 0.0578 4.0987 7.9855 0.0578 4.2474
R 4.5695 0.0474 2.2200 3.4803 0.0474 1.9186

S03F06 10x
B 10.6204 0.0488 1.2878 10.5011 0.0488 1.2730
G 9.0782 0.0517 3.5389 7.8172 0.0517 3.3355
R 3.9294 0.0403 1.7721 3.1985 0.0403 1.4669

Table 18. Table of the spatial mean relative radiance for each channel computed
at different positions in the samples’ bright zones.
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C Spectroscopic measurements

A goniometric setup was utilized to measure the reflectance, transmittance and
absorbtance for two samples, as touched on previously in part I, section 2.6. The
first was one of the original two-zone samples produced on a silicon chip, while the
second one was the only good one-zone sample produced on a quartz chip. For the
silicon chip naturally only a reflectance spectrum was obtained, and for the quartz
chip both reflectance and transmittance spectra were obtained, which also enabled
the calculation of absorbtance.

The original idea was to collect spectra separately for the two different zones in
the samples. This idea quickly proved to be unrealistic as the smallest possible beam
spot size in the measurement setup was about 1 mm in diameter. The ideal case
would be to have the beam spot lay completely on the material surface of interest
in all angles. In the case of the samples on silicon substrates, only one of them
has a sufficiently large area covered by the MWNT deposition. Even this sample
doesn’t have enough surface area for measuring the two zones separately and thus
separate spectra were not possible to be measured. For the quartz substrate sample
the obtained spectrum is basically only on the dim zone as there was no bright zone
formed on it, as noted in part I, section 4.1.

C.1 Sample fabrication

A sample with the two visually distinct zones is difficult to reproduce if one desires
large areas for the zones. This was attempted within this work on a quartz chip in
order to maximize the measurable area for spectroscopic/goniometric measurements
described below. Unfortunately, this did not fully succeed.

The hydrophility treatment for a chip surface is important in order to allow the
water droplet to spread into a maximal area on the chip. As an alternative to the
RIE treatment, a RCA solution treatment was also utilized, which makes the surface
even more hydrophilic in comparison to the plasma treatment.

The amount of MWNTs for spin coating were varied by pipetting a different
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number of droplets of the nanotube solution on the chip. A higher number of droplets
and therefore a larger amount of MWNTs results in a more dense deposition but
isn’t by itself a deciding factor if a two-zone sample is successfully produced.

Another thing that was varied was how long the pipetted water droplet was
allowed to dry. This was adjusted by controlling the humidity of an environmental
chamber. Varied attempts were made by changing the duration of how long high
humidity of over 90% was maintained and how sharply the humidity is dropped near
to zero. The most successful attempts at reproducing the two-zone samples were
made by leaving the samples for about an hour in high humidity and then dropping
the humidity to almost zero by pumping nitrogen into the chamber. A quick drop
in the humidity after a sufficient time in high humidity seems to be important for
creating a sample without large gaps in the deposition. Otherwise the sample looks
like it was torn apart.

Finally the amount of water pipetted on the chips was also varied, ranging from
up to 1µl to 4µl. The amount of water controls from how large of an area the water
sweeps away the spin coated MWNT material, with the upper range taking over
most of a chip’s surface area. This seemingly doesn’t affect anything else but the
size of the final deposition.

All in all large two-zone samples proved to be very difficult to produce and there
seems to be something, for the time being, unknown aspects of high importance in
the production. For the goniometric measurements we managed to produce one good
one-zone sample. The sample has only the dimmer zone but is quite uniform and
doesn’t have gaps in the deposition.

C.2 Measurement setup

The measurements were performed with a white light source, whose light was s-
polarized. Each spectra was taken as a mean of 5 accumulations with a wavelength
range of 320 – 800 nm. The spectrometer’s front slit was set to 0.01 mm and the
exposure time was set to 0.05 s.

The sample is attached between clamps, which are mounted to a stand that
allows us to adjust its position in the plane of the table and rotate it about two axes,
one normal to the table and the other normal to the first axis. With these degrees of
freedom the sample can be properly positioned perpendicular to the incident light
and the rotation axis of the sample can be positioned so that the area of interest
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always remains in the incident light beam. The light from the light source is passed
through optical fibers and through two irises in order to limit the beam spot size to
the area of interest and achieve collimated lighting.

After the light source has stabilized, the initial spectrum is measured. After
this the sample is placed in the light beam and the measurement of reflectance
and transmittance spectra can begin. reflectance can be measured between 10 –
75 degrees, while transmittance can be measured between 0 – 75 degrees. The
transmitted and reflected spectra are measured by rotating the input port of the
spectroscope to the position at which its input is maximal. The maximal position
is found by constantly measuring the spectrum and manually finding the position
at which the spectrum is maximized. At the maximal position the spectrum can
then measured for that particular rotation of the sample. The sample can then be
rotated to its next desired angle relative to the incident light and another set of
spectra measured.

C.3 Measurements

The first measurement was performed on the silicon substrate sample. With this
sample the silicon substrate considerably affects the measured spectra. The sub-
strate’s effect was mitigated by determining theoretical reflectance spectra for silicon
for each measured angle and subtracting these theoretical spectra from the measured
spectra. Additionally the final spectra were FFT filtered in a six data point range
to smoothen the shape of the spectra. These spectra are shown in figure 65 and 66.
The spectra that include the silicon substrate’s effect are shown in figures 63 and 64.

First we can observe the overall shape of the reflectance spectra over the different
measured angles in 65 and 66. The general shape of the spectrum appears to be
quite consistent over the measured angles with a steep slope in the 400 – 500 nm
range, followed by a more gentle slope in the 500 – 800 nm range. This means that
the sample material’s reflectance is considerably stronger in the green to red colors.
In the spectra that include the substrate’s effect, we can see that the reflectance
is at its strongest in the 300 – 400 nm range. This corresponds to blue colors and
matches with what we observe in most of the DF images captured using the optical
microscope. This is expected as it matches closely with measured reflectance spectra
of silicon in literature and theoretically determined spectra. The stronger reflectance
in the green and red colors for the actual deposited material matches with the DF
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Figure 63. Goniometric reflectance plots for the silicon substrate sample.
reflectance was measured in the 20 – 75 degree range in steps of 5 degrees. This
figure shows the plots in the range 20–45.

images captured at short exposure times.

The second measurement was performed on the quartz substrate sample. In this
sample’s case the quartz substrate is an excellent substrate choice for the goniometric
measurement, as its interference with the measurements was minimal in comparison
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Figure 64. Goniometric reflectance plots for the silicon substrate sample.
reflectance was measured in the 20 – 75 degree range in steps of 5 degrees. This
figure shows the plots in the range 50–75.

to the silicon substrate. The final spectra were similarly FFT filtered in a six data
point range to smoothen the shape of the spectra.

The transmittance, reflectance and absorbtance of the quartz substrate sample
are shown in figures 67–69. The transmittance of the sample behaves in an expected
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Figure 65. The same spectra as in 63 and 64, but additionally the spectra
were normalized by their maximum values, followed by subtraction of theoretical
spectra for silicon. This figure shows the plots in the range 20–45.

fashion; it is less than the transmittance of pure quartz and the transmittance
decreases over increasing angles. This happens for pure quartz also, but here it
decreases faster as at more oblique angles the area of the holes in the deposition are
less visible to the incident light. Basically you can think of a circular hole appearing
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Figure 66. The same spectra as in 63 and 64, but additionally the spectra
were normalized by their maximum values, followed by subtraction of theoretical
spectra for silicon. This figure shows the plots in the range 50–75.

elliptical as it is rotated. The transmittance also decreases slowly in the 0 – 50 degree
range, followed with a faster decrease in the 55 – 75 degree range.

The reflectance of the quartz substrate sample starts at very low values and
slowly increases in the 15 – 50 degree range. In the 55 – 70 degree range reflectance
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increases considerably faster and also starts showing stronger and stronger preference
for the upper half of the 300 – 800 nm wavelength range. This preference is very
similar to that observed in figures 65 and 66 for the silicon substrate sample.

The quartz sample also has some absorbtance in a few wavelength intervals.
Determined by subtracting the transmittance and reflectance values from unity, as
noted in part I, section 2.6. The lowest portion of the measured wavelength range
isn’t that reliable as the measured counts were in the order of few hundred counts
at best, while counts for most of the wavelength range were in the order of few
thousands.
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Figure 67. Goniometric reflectance (blue), transmittance (red) and absorbtance
(green) plots for the quartz substrate sample. Transmittance was measured in the
0 – 75 degree range, while reflectance and therefore absorbtance was measured
in the 15 – 70 degree range. This figure shows the range 0–25.
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Figure 68. Goniometric reflectance (blue), transmittance (red) and absorbtance
(green) plots for the quartz substrate sample. Transmittance was measured in the
0 – 75 degree range, while reflectance and therefore absorbtance was measured
in the 15 – 70 degree range. This figure shows the range 30–55.
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Figure 69. Goniometric reflectance (blue), transmittance (red) and absorbtance
(green) plots for the quartz substrate sample. Transmittance was measured in the
0 – 75 degree range, while reflectance and therefore absorbtance was measured
in the 15 – 70 degree range. This figure shows the range 65–75.
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