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1  |  INTRODUC TION

Understanding phenotypic diversity and adaptation is a key goal of 
evolutionary and ecological research. Most phenotypes have a com-
plex genetic basis that depends on the effects of a large number of 

genetic loci (sometimes thousands; Barton, 2022; Boyle et al., 2017), 
which are expressed in interaction with the environment. Gene 
transcription represents the first step towards translating genotype 
information into phenotypes, and its products interact in complex 
gene regulatory networks and signalling cascades. Moreover, the 
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Abstract
RNA sequencing (RNAseq) methodology has experienced a burst of technological 
developments in the last decade, which has opened up opportunities for studying 
the mechanisms of adaptation to environmental factors at both the organismal and 
cellular level. Selecting the most suitable experimental approach for specific research 
questions and model systems can, however, be a challenge and researchers in ecology 
and evolution are commonly faced with the choice of whether to study gene expres-
sion variation in whole bodies, specific tissues, and/or single cells. A wide range of 
sometimes polarised opinions exists over which approach is best. Here, we highlight 
the advantages and disadvantages of each of these approaches to provide a guide 
to help researchers make informed decisions and maximise the power of their study. 
Using illustrative examples of various ecological and evolutionary research questions, 
we guide the readers through the different RNAseq approaches and help them iden-
tify the most suitable design for their own projects.

K E Y W O R D S
bulk RNAseq, cellular heterogeneity, deconvolution, gene expression, single-cell RNAseq, 
transcriptomics
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transcriptome integrates a range of genetic, environmental and phys-
iological signals (e.g. Buchberger et al., 2019; Everett et al., 2020; Hill 
et al., 2021). Accordingly, evolutionary change in spatial and tempo-
ral patterns of gene expression is one of the main drivers of phe-
notypic differentiation (e.g. Barbosa-Morais et  al.,  2012; Brawand 
et al., 2011; Fukushima & Pollock, 2020; Gerhart & Kirschner, 2007; 
Mantica et al., 2024; Shapiro et al., 2004; Steiner et al., 2007). Gene 
expression analyses based on RNA sequencing (RNAseq) provide 
a powerful tool to study a wide range of ecological and evolu-
tionary questions (reviewed e.g. in Oppenheim et  al.,  2015; Stark 
et  al.,  2019), in particular since they allow quantification of gene 
expression in organisms without high-quality reference genomes 
(Chalifa-Caspi,  2021; Cheng et  al.,  2018; Haas et  al.,  2013). Still, 
RNAseq analyses certainly profit from the availability of genome 
references. For instance, quantification of gene expression strongly 
depends on the quality of the available genome assembly and anno-
tation (Torres-Oliva et al., 2016).

Isolation of RNA is the starting point for any RNAseq experi-
ment. For many organisms, such as vertebrates and plants, RNA is 
usually isolated from specific organs, body parts or tissue samples for 
RNAseq because the whole body is too large. For smaller organisms, 
such as small arthropods or other invertebrates, one can also choose 
to conduct gene expression analysis on RNA extracted from the 
whole body. Although possible and also done, tissue-specific RNAseq 
is often more technically challenging for small organisms, and whole 
body RNAseq has therefore been common practice. In either case, 
one major complication of gene expression analyses in multicellular 
organisms lies in the large number of different cell types present 
within whole bodies, body parts and even specific tissues. For in-
stance, the small nematode worm Caenorhabditis elegans is composed 
of 959 somatic cells, and the 302 cells of the nervous system fall into 
128 different neuron types (Taylor et al., 2021). The human body con-
sists of more than 3 × 1013 cells (Bianconi et al., 2013), and the first 
400 cell types of 24 different tissues have only recently been char-
acterised (Tabula Sapiens et al., 2022). Accordingly, RNAseq of whole 
bodies, body parts or tissues (i.e. bulk RNAseq) is based on a mix-
ture of cells with specific expression patterns. This implies that bulk 
RNAseq analyses reflect the gene expression averaged across multi-
ple cell types with distinct expression patterns. Recently developed 
single-cell RNAseq (scRNAseq) approaches allow quantifying expres-
sion at the cellular level to elucidate differences among multiple cell 
types, thereby presenting an alternative to bulk RNAseq approaches 
(e.g. Alfieri et al., 2022; Nguyen et al., 2018; Wang, Sun, et al., 2021).

It is often difficult to decide whether it is advantageous to study 
gene expression in specific tissues, body parts, a collection of organs, 
entire bodies or individual cells. In this opinion article, we highlight 
major technical and methodological advantages and limitations of 
gene expression studies based on whole bodies, organs and tissues 
(bulk RNAseq), as well as of recent scRNAseq methods. We propose 
guidelines for typical research questions in ecology and evolution, 
and we highlight how scRNAseq can enhance the merit of future and 
existing bulk RNAseq datasets, in particular when combined with 
whole body RNAseq.

2  |  WHOLE BODY RNA SEQ FOR 
A SYSTEMIC OVERVIE W OF GENE 
E XPRESSION

Bulk RNAseq methods depend on the principle that RNA is isolated 
from a heterogeneous set of cells, such as whole bodies or parts 
of it, and then sequenced in bulk. Whole body RNAseq has been 
especially popular in studies of small organisms (e.g. Bouvaine 
et  al.,  2012; Crawford et  al.,  2010; Teets et  al., 2013; Winbush 
et  al.,  2012), as it is cost-effective and it can be challenging to 
obtain sufficient high-quality RNA from only a specific tissue of 
an individual. As whole body RNAseq provides an overview of the 
averaged gene expression patterns across all cells within an indi-
vidual, the major advantage of this approach lies in the potential to 
provide a systemic overview of gene expression across the entire 
organism (Figure 1). Whole body RNAseq is therefore especially 
powerful when studying the evolutionary or ecological responses 
of phenotypes without a priori expectations about affected tis-
sues, cell types, or specific physiological mechanisms. For exam-
ple, studies of evolved and plastic responses underlying thermal 
adaptation have uncovered a diversity of physiological processes, 
which suggests broad systemic effects that depend on different 
tissues and cell types (e.g. Hsu et al., 2020; Kankare et al., 2016; 
Koniger & Grath, 2018; Mallard et al., 2020; Parker et al., 2021). 
In this case, focussing on specific tissues not only results in an 
incomplete analysis, but it could also potentially introduce a sub-
stantial bias if a non-representative tissue is selected, affecting 
subsequent interpretation. Nevertheless, whole body RNAseq 
also comes with its specific challenges and considerations, which 
we briefly discuss below.

2.1  |  Genetic heterogeneity and pooling

Depending on the size of the organism (parts of) multiple indi-
viduals may be pooled prior to RNAseq library preparation. If all 
individuals have an identical genotype and are derived from the 
same environment, pooling clearly provides a benefit because 
stochastic inter-individual variation is reduced. Pooling individu-
als with different genotypes is frequently done when genetically 
identical individuals are not available. If many genetically distinct 
individuals are pooled, a reliable and representative average gene 
expression level of the population can be obtained. The drawback 
of this approach is that information about the heterogeneity in 
gene expression in the population, or differences in heterogene-
ity between populations, is lost. Reliable estimates of variance 
require very large population samples, however, which are often 
not possible due to limited access to material and restrictions in 
research budget. We assume that pooling individuals for RNAseq 
approaches comes with challenges that also apply for Pool-Seq of 
genomic DNA (e.g. Futschik & Schlötterer, 2010) and we propose 
that expression variation due to genetic heterogeneity warrants 
more attention in future research.

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17382 by U
niversity O

f Jyväskylä L
ibrary, W

iley O
nline L

ibrary on [12/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3 of 11HOEDJES et al.

2.2  |  Sensitivity

All bulk RNAseq approaches measure average mRNA abundance 
among all cells in a whole body or specific tissue. Thus, changes af-
fecting only a small number of cells might be difficult to detect against 
the background of the rest of the body (or tissue) with no expression 
changes (Kuhn et al., 2012). For example, a comparative analysis of 
expression patterns of honey bee sting glands and digestive tract ver-
sus whole abdomen demonstrated that 81% and 69% of significantly 
differentially expressed genes in these two tissues, respectively, 
were not detected as differentially expressed in the composite tissue 
(Johnson et al., 2013). Likewise, in a study on diabetes in humans, 35% 
of eQTLs identified from pancreatic islet data could not be detected 
when analysing whole pancreas data (Vinuela et  al.,  2020). In both 
cases, a plausible explanation is that some expression differences are 
limited to particular cell types, which become more difficult to detect 
when other cell types are present in the RNA extract.

One possible solution to improve sensitivity is to increase 
either coverage or, preferentially, the number of biological rep-
licates. For example, Jaksic et  al.  (2020) measured whole body 
gene expression in Drosophila simulans that had been experi-
mentally evolved under either warm or cool conditions. Using a 
relatively large sample size of 20 populations (10 warm-evolved, 
5 cool-evolved and 5 ancestral) from which they sequenced a 
pooled RNA sample from the whole body of 50 males each, they 
identified differences in gene expression in dopaminergic neu-
rons in the brain. Although these neurons constitute only a small 
percentage of the cells of the entire body, significant differences 
in gene expression could be identified and functionally validated 
using RNA interference mediated knockdown and pharmaco-
logical intervention (Jaksic et al., 2020). Hence, given sufficient 
power to detect small changes, bulk RNAseq of whole bodies can 
be a promising discovery tool even if only a subset of the cell 
population is affected.

F I G U R E  1 Advantages and disadvantages of RNAseq approaches, and opportunities for deconvolution. Each RNAseq approach, using 
either whole bodies, body parts or specific tissues (i.e. bulk RNAseq), or single cells (i.e. single-cell RNAseq), has unique advantages and 
disadvantages that make them more or less suitable to address particular questions in the fields of ecology and evolution. Integrating 
different approaches can provide additional advantages, by harnessing the strengths of each approach. Here, we highlight deconvolution, 
by combining bulk and single-cell RNAseq data, as a promising opportunity that has recently opened up for ecological and evolutionary 
research.
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2.3  |  Masking of signals in opposite directions

Many genes have pleiotropic functions, and are expressed in multi-
ple cell types. For example, systematic studies of yeast found that 
more than 50% of tested mutations affected two or more organ-
ismal phenotypes (Dudley et al., 2005; Mattiazzi Usaj et al., 2020). 
Given widespread pleiotropy, in combination with transcriptional 
heterogeneity among cell types, it is conceivable that the experi-
mental conditions studied might affect gene expression in multiple 
tissues or cell types, but in opposite directions. As bulk RNAseq only 
provides average expression levels of transcripts across all tissues 
and cells, such changes may partly or completely mask one another, 
essentially cancelling each other out so that no overall expression 
difference can be detected for a certain gene. Although this scenario 
is possible and warrants a careful interpretation of the outcomes of 
bulk RNAseq experiments, we expect that the exact cancellation 
of expression differences is unlikely in most cases. The previously 
discussed comparative study on honey bees indicated that a small 
proportion (<3%) of the differentially expressed genes exhibited an 
opposite differential expression pattern in the tissue-specific sam-
ples versus the whole abdomen, which could theoretically obscure 
interpretation of the results if the expression patterns cancel each 
other out completely (Johnson et al., 2013). However, if differences 
in gene expression are only partially masked by cell type heteroge-
neity in bulk RNAseq experiments, it will often still be possible to 
detect these differences when a sufficiently powerful experimental 
design (number of replicates and sequencing depth) is used.

2.4  |  Allometric changes

Expression differences in whole body RNAseq samples could have 
two different causes, which are not mutually exclusive and could 
both represent adaptive responses: expression might differ within 
one or more cell types, or the relative proportion of different cell 
types in the whole body might be different. Relative size, in other 
words pleiotropy, allometry, of specific tissues (each differing in 
their gene expression profiles) can therefore be a key determinant of 
whole body RNAseq results, which is important to consider along-
side transcriptional regulation. A frequently observed allometric 
change in evolutionary and ecological studies concerns, for example, 
the relative size of reproductive tissues. Here the allometric changes 
can be a mechanism by which an organism adapts to its environ-
ment; for example, males of polygamous species regularly increase 
testes size under increased sperm competition (Montgomery & 
Mank, 2016 and references therein). A point of concern is that allo-
metric relationships could also lead to false negatives, when changes 
in expression occur but are offset by decreases in tissue size (Abell 
et al., 2022).

Hsu et  al.  (2020) proposed an approach to disentangle the ef-
fects of allometry versus transcriptional regulation on expression 
levels. They observed that ovaries of female flies that had evolved in 
a novel warm environment were enlarged, which made it difficult to 

draw conclusions on the evolution of transcriptional regulation. To 
overcome this limitation, Hsu et al. (2020) measured gene expression 
in gonads and carcasses of the same flies and determined a measure 
for allometric change, which was then used to correct the whole 
body expression data. This example shows that whole body RNAseq 
alone or in conjunction with tissue-specific RNAseq can be a power-
ful, unbiased approach to identify evolutionary or ecologically rele-
vant expression changes, which tissue-specific RNAseq alone might 
fail to identify. Alternatively, tissue-specific RNAseq in conjunction 
with quantitative estimates of the relative contribution of that tissue 
between conditions (e.g. populations, environments and treatments) 
could also distinguish between regulatory evolution and allometric 
differences (Buono et al., 2021). This could be achieved with fluo-
rescent imaging (e.g. immunohistology) or transgenic cell labelling 
methods in combination with fluorescence-activated cell sorting. In 
either case, it is important to recognise that both allometric and gene 
regulatory mechanisms can account for observed differences in 
whole body RNAseq data, but both mechanisms represent a genuine 
adaptive response that can be uncovered by whole body RNAseq.

3  |  FROM SYSTEMIC TO 
HYPOTHESIS- DRIVEN RNA SEQ

The evolution of complex body plans of multicellular organisms and 
their functions are intricately linked to tissue-specific transcriptomic 
differentiation (Barbosa-Morais et al., 2012; Brawand et al., 2011; 
Fukushima & Pollock, 2020; Mantica et al., 2024). For some types 
of research questions, a defined morphological structure or tissue 
may be of interest, in particular when specific target tissues respon-
sible for the adaptive mechanism(s) have already been identified. In 
these cases, RNAseq of specific tissues and cell types may be the 
most logical step because the smaller number of different cell types 
increases the power to detect relevant gene expression differences 
(Figure 1). Also, complex phenotypic adaptations can depend on di-
vergent transcriptional changes in different tissues, which might be 
missed when using a whole body RNAseq approach. For example, 
Salvador-Martinez et  al.  (2018) analysed spatial gene expression 
patterns from different D. melanogaster embryonic anatomical struc-
tures, which indicated that genes expressed in the digestive system 
and ectoderm-derived structures are under selective constraint, 
while genes expressed in the germ line showed high rates of adap-
tive substitution.

The key prerequisite for a successful tissue-specific RNAseq 
analysis is sufficient biological knowledge to select the relevant 
tissues for the question of interest. An example comes from anal-
yses of post-mating gene expression changes in female fruit flies, 
triggered by the male ejaculate. Various studies have focussed on 
detecting differential expression in the female reproductive tract 
and the ovaries, which is extensive and can even be specific for dis-
tinct sub-tissues (e.g. Kapelnikov et al., 2008; Veltsos et al., 2022). 
At the same time, receptors for sex peptide, one of the most im-
portant components of the ejaculate triggering female post-mating 
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effects, have been found throughout the female body, including 
in the abdominal ganglia and the brain. This indicates that key tar-
gets of sex peptide are located in tissues outside the female repro-
ductive system (e.g. Gioti et al., 2012; Pasquier & Robichon, 2022; 
Yapici et al., 2008) and would be missed by a tissue-specific RNAseq 
study. Hence these examples illustrate the power of a combined 
application of whole body and tissue-specific RNAseq. As with all 
bulk RNAseq approaches, tissue-specific RNAseq estimates gene 
expression of mixed cell types, and hence the technical limitations 
discussed above, also apply to tissue specific RNAseq, although to 
a lesser extent due to lower cellular heterogeneity within tissues as 
compared to whole bodies.

4  |  SINGLE- CELL RNA SEQ: C APTURING 
GENE E XPRESSION DIFFERENCES AMONG 
CELL S

Recent single-cell sequencing methods (scRNAseq) can address 
some of the limitations of bulk RNAseq by measuring gene expres-
sion in large numbers of individual cells (e.g. Alfieri et  al.,  2022; 
Nguyen et al., 2018; Wang, He, et al., 2021). By revealing the het-
erogeneity in expression between cells, as well as variation in tran-
scriptional profiles among species, populations and experimental 
conditions, scRNAseq has great potential to uncover mechanisms 
underpinning ecologically or evolutionarily salient phenotypic vari-
ation (Figure 1). For instance, scRNAseq was recently applied to fat 
bodies in fruit flies to uncover the cellular mechanisms underlying 
the trade-off between reproduction and immunity. It was demon-
strated that limitations in the capacity of a specific subset of fat 
body cells to produce proteins constrains the immune response in 
reproducing females (Gupta et al., 2021). Despite its promises, scR-
NAseq comes with challenges that warrant careful consideration 
during the project planning phase.

4.1  |  Sample availability and preparation

A typical scRNAseq workflow requires access to at least 50,000 
live cells (Pollen et al., 2014) and the availability of fresh material 
is often limited in ecological or evolutionary studies that deal with 
field samples. Potential solutions could be the sequencing of sin-
gle nuclei (snRNAseq), which can be isolated from flash frozen tis-
sue samples to allow some level of tissue conservation (Denisenko 
et al., 2020; Wiegleb et al., 2022). Similarly, simultaneous cell dis-
sociation and fixation has been applied to preserve tissue samples 
for scRNAseq (Garcia-Castro et al., 2021). However, obtaining suf-
ficient material for small organisms or tiny tissue samples requires 
pooling of multiple individuals, which potentially introduces bias 
due to genetic heterogeneity (see Section 2.1 above). As the ef-
ficiency of capturing different cell types from a heterogeneous tis-
sue varies considerably due to differences in cell size or cell shape, 
technical bias in cell type composition is expected (Darmanis 

et al., 2015; Yim et al., 2022). Thus, accurate and repeatable out-
comes depend critically on the workflow used for sample prepara-
tion. Optimal parameters are highly tissue- and species-specific, 
which may necessitate laborious and often costly empirical optimi-
sation, especially for non-model organisms (Svensson et al., 2018).

4.2  |  RNA content and gene coverage

Each individual cell comprises very little RNA per gene resulting in 
high sampling variation and thus uncertainties for transcript quan-
tification. This limitation means that, if no expression of a gene is 
detected in a certain cell, it is almost impossible to distinguish be-
tween a biological explanation (i.e. a gene is indeed not expressed) 
and a technical one (i.e. no reads due to inefficient sampling). The 
occurrence of such null data (also called dropout events) is much 
higher in scRNAseq compared to bulk RNAseq data (Bacher & 
Kendziorski, 2016). scRNAseq methods differ significantly in the 
number of genes that can unequivocally be detected per cell and 
the number of cells that can be analysed (Ziegenhain et al., 2017). 
For instance, the Smart-Seq2 method can detect many genes in-
cluding low abundance transcripts in a few hundred cells in one 
run, while the 10× genomics method can process up to 10,000 
cells per run, but with a higher noise level for low abundance tran-
scripts (Wang, He, et  al.,  2021). While novel methods based on 
multiple rounds of in-cell barcoding (i.e. combinatorial indexing; 
e.g. split-pool ligation-based transcriptome sequencing (SPLiT-
seq)) (Cao et al., 2019; Conte et al., 2023; Rosenberg et al., 2018) 
may mitigate this trade-off in the near future, scRNAseq appli-
cations are still limited for comparative transcript quantification. 
This is especially important to consider if the expected expression 
differences are rather small (Zhang et al., 2020), which is often the 
case in ecological or evolutionary research, for example, for stud-
ies examining environmental effects on individuals of the same 
species.

4.3  |  Need for well-annotated reference genomes

The commonly used scRNAseq methods rely on sequencing the 3-
prime ends of captured fragments (Ziegenhain et al., 2017), which 
can only be linked to particular genes if a well-annotated reference 
genome is available. Moreover, in snRNAseq nascent RNA is se-
quenced as well as mature mRNA, resulting in about one quarter 
of all reads originating from introns (Grindberg et al., 2013). Those 
reads can only be unequivocally assigned to a gene if the reads are 
mapped against a well-annotated genome, which is often unavailable 
for non-model systems used in ecological or evolutionary research. 
This is in contrast to bulk RNAseq data, which covers entire tran-
scripts facilitating the de novo assembly of reference transcriptomes 
for subsequent transcript quantification (Grabherr et al., 2011; Haas 
et al., 2013; Raghavan et al., 2022), avoiding the need for a reference 
genome. Hence, differential gene expression analyses based on bulk 
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RNAseq are readily applicable for non-model organisms without the 
need for a reference genome.

In light of the outlined technical limitations and significantly 
higher costs, we think that scRNAseq has not yet reached the re-
quired maturity for a routine application in most research in ecol-
ogy and evolution. In the following section, however, we discuss 
how single cell expression atlases obtained by shallow sequencing 
of a large number of cells can be used to enhance the interpreta-
tion of existing and future whole body or tissue-specific RNAseq 
data.

5  |  DECONVOLUTION: MERGING T WO 
WORLDS

Biological interpretation of gene expression data from a heteroge-
neous cell population is the biggest challenge for bulk RNAseq. To 
overcome this problem, various approaches to assess whether differ-
entially expressed genes are enriched for certain molecular or bio-
logical functions (i.e. gene ontology (GO) enrichment) (Gene Ontology 
et al., 2023; Thomas et al., 2022) or for specific signalling pathways 
(i.e. pathway enrichment) (Reimand et al., 2019) are routinely applied. 
Such functional enrichment analyses can help to extract biologi-
cally meaningful hypotheses or pinpoint candidate cell types or tis-
sues from the often large numbers of differentially expressed genes 
(e.g. Stanford et al., 2020). These analyses can readily be applied in 
many model organisms for which databases with gene-to-function 
information are available. For instance, a study on the evolution of 
gene expression variance in flies used this approach to show that a 
small set of genes with a significant loss in expression variance was 
over-represented among genes with catabolic function and expres-
sion in the gut, suggesting that gene expression evolved in response 
to a less variable diet in the laboratory (Lai & Schlotterer,  2022). 
Similarly, Green et al. (2022) identified differentially expressed genes 
in response to copper exposure using whole body RNAseq of natu-
ral Drosophila melanogaster populations. A GO enrichment analysis 
identified the midgut as a candidate tissue and established a link be-
tween the preservation of gut acidity and tolerance to copper (Green 
et al., 2022). However, to leverage such functional databases for non-
model organisms, a solid gene orthology assignment must be estab-
lished prior to the enrichment analyses. While functional enrichment 
analyses are often the only way to extract biological information from 
gene lists, they depend on current knowledge, which is inherently in-
complete and biased (Dessimoz & Skunca, 2017).

scRNAseq data provides exciting new opportunities to extract 
biological information from lists of differentially expressed genes ob-
tained from bulk RNAseq approaches. The assessment of transcrip-
tional profiles of distinct cell types has resulted in the development 
of single cell atlases across tissues, conditions, developmental stages 
(e.g. Allen et al., 2020; Brunet Avalos et al., 2019; Chen et al., 2021; 
Corrales et  al.,  2022; Hu, Comjean, et  al.,  2021; Hu, Tattikota, 
et al., 2021; Karaiskos et al., 2017; Li et al., 2022; Najle et al., 2023; 
Papatheodorou et al., 2020; Suo et al., 2022; Wang, Sun, et al., 2021; 

Xu et al., 2021) and even for entire organisms (Li et al., 2022). Such 
single cell atlases can directly be used to ask whether genes identi-
fied in bulk RNAseq approaches may be expressed in specific cell 
types. Moreover, deconvolution methods have been established, 
which estimate the relative contribution of different cell types in 
bulk RNAseq datasets (Mohammadi et al., 2017; Venet et al., 2001). 
When information about the gene expression profile of each cell 
constituting a bulk RNAseq sample is available, it is possible to de-
compose the average gene expression value into the expression of 
individual cell types that share an expression profile (Figure 1). Most 
expression deconvolution methods require prior information about 
cell-type specific marker genes (Zaitsev et al., 2019) or expression 
profiles encompassing multiple genes (Avila Cobos et  al.,  2018, 
2020), whose expression level is directly correlated with the abun-
dance of that cell type in a heterogeneous tissue. While such cell-
type specific marker genes or expression profiles are typically 
identified based on extensive prior knowledge in model organisms 
(e.g. spatial expression data and functional assays), scRNAseq now 
allows the identification of such markers for many non-model sys-
tems too (e.g. Andrade Barbosa et al., 2021).

Expression deconvolution has successfully been applied to 
estimate the dynamics of cell type composition in evolving yeast 
populations exposed to environmental stress, the induction of 
extensive DNA damage and during sexual reproduction (i.e. spor-
ulation) (Lu et  al.,  2003). In another eco-evolutionary study, a 
scRNAseq analysis of three populations of three-spined stickle-
back fish (Gasterosteus aculeatus) that exhibit natural variation in 
parasite resistance revealed differences in the composition and 
cell-type specific expression profiles of immune cells. Moreover, 
immune cell-type specific marker genes identified using the 
scRNAseq data were used to re-analyse previous tissue-specific 
RNAseq datasets of F2 crosses to show that the response of gene 
expression in antigen-presenting cells to infection is most likely 
the result of regulatory variation and not due to an increase in 
the number of antigen-presenting cells (Fuess & Bolnick,  2023). 
Combining single cell expression atlases with bulk RNAseq data-
sets to estimate the expression profiles of individual cell types 
thus provides an important extra layer of biological insight that can 
be obtained from whole body or tissue-specific RNAseq datasets. 
We argue that the impact of deconvolution methods is largest for 
complex tissues or even whole bodies, and can mitigate some of 
the drawbacks associated with bulk RNAseq approaches, as dis-
cussed above. As such, the combination of whole body RNAseq 
with scRNAseq has the potential to bring together the best of both 
worlds by combining a systemic overview of gene expression with 
cell-type specific information.

6  |  CONCLUSIONS AND 
RECOMMENDATIONS

In light of such exciting opportunities, but also the challenges of 
different RNAseq approaches, it is often not easy to decide which 
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strategy is best suited for a certain research question. The first im-
portant consideration is the phenotype that is being studied. For 
instance, if one wants to identify genes underlying the evolution of 
the morphology of a specific organ, such as the formation of pigment 
spots on insect wings (Hanly et al., 2019; Wee et al., 2023) or the size 
and shape of beetle horns (Emlen et al., 2007; Ohde et al., 2018) it is 
logical to restrict RNAseq analyses to that specific tissue. Similarly, 
the evolution of many behavioural traits is for an important part 
likely linked to variation in the composition and function of the cen-
tral nervous system (CNS). Therefore, CNS-specific RNAseq experi-
ments will be powerful to identify meaningful candidate genes (even 
though the CNS itself is a complex tissue with multiple cell types 
performing distinct roles). We caution, however, that often pheno-
types cannot be restricted to single tissues. A nice example for this 
challenge comes from phenotypes related to the stress response 
(Horvath et  al.,  2023) or life history (Rodrigues et  al.,  2021) of an 
organism, where more systemic transcriptomic changes involving 
multiple organs and tissues are expected. In such cases, whole body 
RNAseq analyses could limit the bias due to missing biologically im-
portant signals.

A second important consideration is the level of prior knowl-
edge, available tools and access to annotated genomes of the or-
ganism of study. While extensive mechanistic details are publicly 
available for many organs in model organisms, such data are often 
missing for non-model systems. If no hypotheses about specific tis-
sues or cell types underlying a certain phenotypic trait are available, 
a whole body bulk RNAseq approach provides a systemic and com-
prehensive overview of potential gene expression changes. If puta-
tive target tissues have been identified based on prior whole body 
expression data or based on similar phenotypes in other models, 
tissue-specific RNAseq has the potential to assess variable expres-
sion of genes with minute differences in expression or lower overall 
expression levels, which may be missed in whole body RNAseq.

A third consideration is the opportunity to combine different 
RNAseq approaches to strengthen the biological interpretation of 
RNAseq data, while diminishing the inherent weaknesses of each 
individual approach. The combination of whole body RNAseq to 
establish first hypotheses followed by integration of tissue-specific 
expression information has been successfully applied in ecological 
and evolutionary research to identify mechanisms of phenotypic 
variation (Abbott et  al., 2020; Lai & Schlotterer, 2022). Moreover, 
with increasing availability of single-cell expression data for model 
organisms and non-model organisms alike, existing and future bulk 
RNAseq data can now be (re-)interpreted to gain novel insights into 
tissue- and cell-type specific gene expression divergence. Most 
importantly, expression deconvolution methods have a great po-
tential to distinguish between regulatory evolution and allometric 
differences, respectively, observed in bulk RNAseq data. We argue 
that future eco-evolution research would profit from a community 
driven development of tissue databases and single cell atlases for 
entire small organisms or specific tissues to facilitate the identifi-
cation of cell-type specific or condition-dependent markers. Such 
reference databases and markers will allow a better interpretation 

and integration of future bulk RNAseq data, which is still the best ac-
cessible and often most informative technology for most questions 
in eco-evolution research.

In conclusion, we argue that both bulk RNAseq, whether whole 
body, body-part or tissue-specific, and scRNAseq have unique ad-
vantages and disadvantages. The best choice of RNAseq approach 
depends strongly on the model system, prior knowledge of the phe-
notype, and the biological level of interest (e.g. gene regulatory net-
works, physiology, allometry or phylogenies). Integrating different 
RNAseq methods allows to harness the strengths, versatility and op-
portunities of each approach to study research questions in ecology 
and evolution.
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