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Abstract

Marjamäki, Joona
Resurgent perturbation theory
Master’s thesis
Department of Physics, University of Jyväskylä, 2024, 125 pages.

The aim of this thesis was to study the theory of resurgence and how it relates to
perturbation theory. Resurgence theory is exponentially accurate asymptotic theory
and it gives us tools to resum divergent series via the Borel resummation procedure.
The essence of resurgence is in the singularities of the Borel transformed asymptotic
series which correspond to exponentially small factors that ordinary perturbation
theory misses, the non-perturbative effects. As an application of resurgence in
quantum mechanics the exact WKB method was studied. The standard WKB
method is known as an approximation method but via resurgence it can be shown
to be an exact method. Using the exact WKB we can find the exact quantization
conditions for spectral problems geometrically using Stokes graphs.

Keywords: Asymptotics, Resurgence theory, non-perturbative effects, Exact WKB
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Tiivistelmä

Marjamäki, Joona
Resurgenttinen häiriöteoria
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2024, 125 sivua

Tämän tutkielman tavoitteena oli tutkia resurgenssiteoriaa ja miten se kytkeytyy
häiriöteoriaan. Resurgenssiteoria on eksponentiaalisen tarkka asymptoottinen teoria
ja sen avulla voimme uudelleensummata hajoavia sarjoja Borel summauksen avul-
la. Resurgenssiteorian ydin on Borel muunnetun hajoavan sarjan singulariteeteissä
joihin kytkeytyy eksponentiaalisen pienet tekijät, joita ei voida selvittää tavallisen
häiriöteorian avulla, niin kutsutut ei-häiriöteoreettiset ilmiöt. Resurgenssiteorian
sovelluksena kvanttimekaniikkaan tutkittiin eksaktia WKB menetelmää. Tavallinen
WKB menetelmä tiedetään olevan approksimatiivinen menetelmä, mutta resurgenssi-
teorian avulla siitä saadaan tarkka menetelmä. Eksaktin WKB menetelmää voidaan
käyttää eksaktien kvantisaatioehtojen selvittämiseksi geometrisesti käyttäen Stokesin
graafeja.

Avainsanat: Asymptotiikka, Resurgenssi teoria, ei-häiriöteoreettiset ilmiöt, Eksakti
WKB
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1 Introduction

In physics the problems that are exactly solvable are usually only found in textbooks
so one has to resort to different approximation schemes to find a solution to the
problem at hand. One such a method is perturbation theory where the observable to
be calculated is expanded as a power series in a small variable

O =
∑

n

anλ
n (1.1)

where the 0th order term is given by an exactly solvable system and it can lead to
extremely accurate results such as the QED electron anomalous magnetic moment
[1]. However, in many cases the perturbation series is divergent and has a vanishing
radius of convergence. For instance in quantum field theories the perturbation series
are generally divergent [2, 3] or the WKB series in semiclassical quantum mechanics
[4]. These divergent perturbation series are called asymptotic series.

Naturally a question arises how can these asymptotic series give us any meaningful
information if the series diverges? Classical asymtotics answers this by showing
that even though the series is asymptotic it can give accurate approximations when
optimally truncated. Furthermore it has been found that the asymptotic perturbative
expansion contains information about the exact answer in the form of non-pertubative
information. This connection between perturbative and non-perturbative physics is
formalized by the theory resurgence.

Resurgence arose as a need to create a exponentially accurate asympototic theory
[5] and was developed by Jean Écalle [6]. The main aim of the resurgent theory is to
formalize a resummation method for divergent series, that is we can assign a value
to a divergent series. The framework for this is Borel analysis: given a asymptotic
series φ with coefficients of at most factorial growth, an ∼ A−nn!, one can improve
the convergence by the means of Borel transform and get a convergent series with
finite radius convergence on a Riemann surface called the Borel plane defined by the
singularities of the Borel transform Bφ. If this new function fulfills certain conditions
about analytic continuation and growth at infinity, the directional Laplace transform
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gives an analytic function with the divergent series being its asymptotic expansion.
This is Borel-Laplace transform is know as the Borel resummation

Sθφ(λ) =
∫ ∞eiθ

0
dζ e−λζB[φ](ζ) ∼ φ(λ) (1.2)

If Bφ has a singularity along the direction θ, also known as the Stokes line, the
Borel resummation becomes ambiguous depending on which side the integration
path avoids the singularity. This is the well known Stokes phenomena of asymptotic
expansions and is entirely encoded by the singularities of the Borel transform. The
difference between these two resummations, the discontiuity of the Borel sum along
θ is described by the Stokes automorphism Sθ

Sθ− = Sθ+ ◦ Sθ (1.3)

and the discontinuity is exponential, that is, non-perturbative in nature.

In quantum mechanics one of the main goals of resurgence is derive the exact
quantization condition in spectral problems using the exact WKB method. The
WKB method, named after Wentzel, Kramers and Brillouin [7–9] is usually known as
an approximation method to high energy-states but via resurgence it can be shown
to exact, applying everywhere in the spectrum. The exact WKB was pioneered by
Voros using the Écalle theory in [10] and was further developed in [11, 12].

In the exact WKB method the WKB series are made into analytic resurgent
functions via the Borel resummation method and the connection problem is solved
geometrically using Stokes graphs which describe the Borel summability of the WKB
wave functions and the Stokes phenomena. Due to the divergence of the WKB series
at the turning points a certain normalization convention has to be defined. Inside
a Stokes region WKB wave functions normalized at different turning points are
connected by the Voros symbols Vγ. Solving the connection problem leads to the
exact quantization condition given by the Voros symbols

f(Vγ1 ,Vγ2 ,Vγ3 , . . . ) = 0 (1.4)

The above quantization condition is exact because it includes Voros symbols corre-
sponging to the non-perturbative tunneling regions.

The discontinuity of the Borel sum of Voros symbols is encoded by the Delabere-
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Dillinger-Pham (DDP) formula [11]

SVγi
=
∏
j=2

Vγi

(
1 + Vγj

)(γj ,γi) (1.5)

The discontinuity is non-perturbative and determined by its perturbative expansion.
In this thesis we first give a theoretical background on asymptotics, Borel re-

summation, resurgence theory and the exact WKB method. After which we study
the resurgent perturbation theory via the quantum resurgence of the Airy-type
Schrödinger equation first deriving the asymptotics expansions via the method of
steepest descents focusing the Riemann surface structure, then studying the Stokes
phenomena and finally the resurgence. The Airy-type Schrödinger equation is an
important example understanding the exact WKB as it forms the building blocks of
the Stokes graphs of more complicated potentials. After this we focus on the exact
quantization condition of quantum mechanics and derive these for a few cases using
the exact WKB framework. Finally we discuss the conclusions and future outlook of
resurgence.
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2 General theory

The resurgence theory is a theory for resummation of divergent asymptotic series
and before we delve into resurgence, we have to understand what asymptotic se-
ries, or expansions, are. In this chapter we introduce most definitions, theorems
and results used in asymptotics and resurgence theory. We’ll use an example to
illustrate the definitions and to understand them better. Let’s start with the example:

Example 2.1. Consider the following first order differential equation, also known
as the Euler equation1,

φ′(z) − aφ(z) = −1
z

(2.1)

with a ∈ C \ {0} and let’s say that we want to study the behavior of the solutions at
the irregular singular pointz = ∞. From the theory of ordinary differential equations
we know that the general solution is

ϕ(z) = Ceaz + eaz
∫ ∞

z
dt
e−at

t
(2.2)

Because the homogenous solution is non-analytic at z = ∞ the constant must be
C = 0. Thus

ϕ(z) = eaz
∫ ∞

z
dt
e−at

t
= eazE1(az) as z → ∞ (2.3)

where E1(z) is the exponential integral and can be expanded as [13]

E1(z) = −γ − log z −
∞∑

n=1

(−1)nzn

n!n (2.4)

where γ is the Euler-Mascheroni constant, γ = limm (∑m
n=1 1/n− lnm) = 0.5772 . . . .

1The name is due to Euler studying the properties of a divergent series which is a solution of
the equation with z = a = 1.
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Then

ϕ(z) = eaz

(
−γ − log az −

∞∑
n=1

(−1)n(az)n

n!n

)
(2.5)

The convergence of the above expansion becomes very slow as z grows larger. To
get an approximation accurate to three significant digits (with a = 1) for z = 2 we
need 9 terms in the series, for z = 5, 19 terms and for z = 10, 36 terms. So for large
values of z this expansion is very inefficient.

On the other hand we could have tried to solve the equation by making a series
ansatz of the form

φ(z) =
∞∑

n=0
anz

−n (2.6)

which leads to the solution
φ(z) =

∞∑
n=0

(−1)nn!
(az)n+1 (2.7)

This series, known as the Euler series, has a radius of convergence of 0, which means
that it diverges for all z ∈ C . How can a series which diverges everywhere be of any
use to us? Turns out that these divergent series, which are also called asymptotic
series (see definition 2.6), are of great use and play an important role in physics. For
instance, asymptotic series gives an approximation to our solution and often even
just the first terms gives an accurate approximation.

Now the error of the approximation given by the first term of the series, 1/az
(again with a = 1), is 0.596 for z = 1, 0.0104 for z = 5, 0.00156 for z = 10, 0.000409
for z = 20 and 1.94 · 10−6 for z = 100. As one can see, even the first term of the
asympotic series gives more and more accurate approximation z grows.

One difference to the convergent expansion is that we cannot keep adding terms
to inrease accuracy since series diverges. However there exists methods to obtain
more accurate approximations as discussed in [14],[15].

Is there a connection between our two solutions? It turns out that the series
solution (2.7) is an asymptotic expansion of the integral solution (2.3) and we write
this as

ϕ(z) =
∫ ∞

z
dt
e−a(t−z)

t
∼ φ(z) =

∞∑
n=0

(−1)nn!
(az)n+1 as z → ∞ (2.8)

Now that we have an example what an asymptotic series looks like and why they
are useful we will define them properly.
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2.1 Asymptotics

We’ll start by giving the basic definitons of asymptotics in the complex plane, and
then discuss the Stokes phenomena that arises for the asymptotic expansions in the
complex plane. More information can be found in the appendix and for example in
[4, 16].

Definition 2.2 (Asymptotic to). Let x0 ∈ R and f, g : R → R be functions, such
that g(x) ̸= 0 in a neighbourhood of x0, except possibly at x0. Then we say that

f(x) ∼ g(x) as x → x0, (2.9)

if the relative error between f and g goes to zero as x → x0, that is,

f(x) − g(x) = o(g(x)) as x → x0, (2.10)

where
f(x) = o(g(x)) as x → x0, (2.11)

if
lim

x→x0

f(x)
g(x) = 0. (2.12)

On the real line there is at most two possible directions along which we approach
x0 so we can easily distinguish the asymptotic behaviour whether we approach from
below or above x0. On the other hand, in the complex plane the limit z → z0 includes
all the possible paths along which z → z0, so we can’t distinguish these two limits
anymore. This leads to nonuniqueness of the asympotic behaviour. Another cause
for nonuniqueness is z approaching infinity as this includes (among all other possible
paths) z → ±∞ along the real line.

A solution for this problem is to restrict along which paths z can approach z0.
This restriction is called the sectorial domain:

Definition 2.3 (Sectorial domain). A sectorial domain is a simply connected domain
D(θ1,θ2) between the rays z0 + eiθ1 [0,∞) and z0 + eiθ2 [0,∞), θ1 < θ2. The angle
θ2 − θ1 is called the opening of D. An example is shown in figure 1.

Now we can define the asymptotic relation in the complex plane:



16

Definition 2.4 (Asymptotic relation in the complex plane). Let z0 ∈ C and f, g :
C → C be complex functions, such that g(z) ̸= 0 in a neighbourhood of z0, except
possibly at z0. Then we say that

f(z) ∼ g(z) as z → z0, (2.13)

if
f(z) − g(z) = o(g(z)) as z → z0, (2.14)

such that z → z0 along paths that lie in the sector of validity D(θ1, θ2) that depend
on the functions f and g.

Re

Im

z0

D(θ1, θ2)

θ2

θ1

Figure 1. The sector of validity D(θ1, θ2), between angles θ1 and θ2, where
the asymptotic relation is valid. The paths along which z → z0 must lie in this
region.

Now that we know what it means for two function to be asymptotic, we can
define the asymptotic series. Let’s consider the formal series

φ(z) =
∞∑

n=0
anϕn(z), (2.15)

where an ∈ C and ϕn(z) are complex functions. Notice that symbol φ(z) representing
the formal series is not a function in general since the series is usually divergent.
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Definition 2.5 (Asymptotic sequence). A sequence (ϕn(z))n of complex functions
with a limit point z0 in the Riemann sphere C ∪ {∞} is an asymptotic sequence if
there exists neighbourhood U of z0 such that ϕn(z) ̸= 0, z ∈ U \ {z0} and for all n

lim
z→z0

ϕn+1

ϕn

= 0. (2.16)

Definition 2.6 (Asymptotic expansion in the complex plane). Let f : C → C be a
complex function and (ϕn)n be an asymptotic sequence for z → z0. The formal series

φ(z) =
N∑

n=0
anϕn(z), (2.17)

is an asymptotic expansion, in the sense of Poincaré, of f(z) to N as z → z0 in the
sectorial domain D(θ1,θ2), if for all N

lim
z→z0

f(z) −∑N
n=0 anϕn(z)

ϕN(z) = 0 (2.18)

or equivalently, if there exists constant KN > 0 such that for all N
∣∣∣∣∣f(z) −

N−1∑
n=0

anϕn(z)
∣∣∣∣∣ ≤ KN |ϕN(z)| , (2.19)

and we write
f(z) ∼

N∑
n=0

anϕn(z), z → z0. (2.20)

Furthermore, the asymptotic expansion of the function f(z) is unique in the sectorial
domain.

Allthough the asymptotic expansion of f(z) is unique, the asymptotic expansion
is not unique to the function f(z): An asymptotic expansion is asymptotic to a class
of functions differing by exponentially small terms. Notice that asymptoticity is
differs from the concept of convergence such that we are interested in what happens
to the partial sum ∑N

n anϕn when z → z0 compared to when N → ∞ and that
asymptocity is a relative property of the expansion coefficients and the class of
functions which it is asymptotic to. Asymptoticity of an expansion doesn’t mean
anything without knowing the function it is asymptotic to.
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In our example 2.1 we had the series

φ(z) =
∞∑

n=0

(−1)nn!
(az)n+1 (2.21)

with an = (−1)nn!/an+1 and ϕn(z) = z−n−1. The sequence (z−n−1)n is an asymptotic
sequence for z → ∞ since

lim
z→∞

z−(n+1)−1

z−n−1 = lim
z→∞

z−1 = 0 (2.22)

Furthermore, the series is an asymptotic expansion of the function

ϕ(z) =
∫ ∞

z
dt
e−a(t−z)

t
=
∫ ∞

0
dζ

e−zζ

ζ + a
(2.23)

as z → ∞ in the sectorial domain Dδ = {z ∈ C : |arg z| < π/2 − δ, δ ∈ (0,π/2)},
shown in figure 2, where we made the change of variables ζ = a(t− z)/z.

Let SN−1 = ∑N−1
n=0 (−1)nζn/an+1. Using the relation

ζSN−1 = 1 − aSN−1 + (−1)N−1 ζ
N

an
(2.24)

we can write 1/(ζ + a) as

1
z + a

= SN−1 + (−1)N

aN

ζN

a+ u
(2.25)

and substituting this into the equation (2.3) we get

ϕ(z) =
∫ ∞

0
dζ

e−zζ

(ζ + a) =
∫ ∞

0
dζ e−zζ

(
SN−1 + (−1)N

aN

ζN

a+ u

)

=
N−1∑
n=0

(−1)n

an+1

∫ ∞

0
dζ e−zζζn + (−1)N

aN

∫ ∞

0
dζ

e−zζζN

ζ + a

=
N−1∑
n=0

(−1)n

an+1
1

zn+1 Γ(n+ 1) + (−1)N

aN

∫ ∞

0
dζ

e−zζζN

ζ + a

=
N−1∑
n=0

(−1)nn!
(az)n+1 + (−1)N

aN

∫ ∞

0
dζ

e−zζζN

ζ + a
(2.26)
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Then ∣∣∣∣∣ϕ(z) −
N−1∑
n=0

(−1)nn!
(az)n+1

∣∣∣∣∣ =
∣∣∣∣∣(−1)N

aN

∫ ∞

0
dζ

e−zζζN

ζ + a

∣∣∣∣∣
≤ 1

|a|N
∫ ∞

0
dζ

e−ζ Re zζN

|ζ + a|
(2.27)

Assume Re a > 0. Then |ζ + a| ≥ |Re a|. Since z ∈ Dδ, sin δ ≤ Re z/ |z|. Thus

≤ |a|−N

|Re a|

∫ ∞

0
dζ e−ζ|z| sin δζN

≤ |a|−N

|Re a|
1

|z|N+1 (sin δ)N+1

∫ ∞

0
dω e−ωωN

≤ |a|−N

|Re a|
Γ(N + 1)

|z|N+1 (sin δ)N+1

=: KN |z|−N−1 (2.28)

Thus
ϕ(z) =

∫ ∞

0
dζ

e−zζ

(ζ + a) ∼
∞∑

n=0

(−1)nn!
(az)n+1 as z → ∞ (2.29)

0

Re

Im

Dδ

δ

δ

Figure 2. The sectorial domain Dδ, where |arg z| < π
2 − δ.
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2.1.1 Stokes phenomenon

As noted in the previous section, to have unique asymptotic behaviour in the complex
plane, we had to restrict our domain to sectorial domains, where the asymptotic
relation was valid. This means for the same analytic function different asymptotic
expansion hold in different sectors, also known as the Stokes phenomenon. These
different sectors are called Stokes regions and the lines separating the regions are
called either Stokes lines or anti-Stokes lines depending on the behaviour of the
expansion along these lines.

Assume that the asymptotic relation f(z) ∼ g(z) as z → z0 holds in some
sectorial domain D(θ1,θ2). By our definition 2.4, this means that f(z) − g(z) is small
compared to g(z) and in f(z) = g(z) + (f(z) − g(z)) we neglect the latter smaller
term, which is called subdominant or recessive compared with with dominant terms
f(z) and g(z). As we approach the boundary of the sector, the subdominant term
f − g becomes less subdominant and at the boundary f − g and g are equal in
magnitude, they are purely oscillatory. This line at boundary where the subdominant
and dominant terms become equal in magnitude is called the anti-Stokes line. Inside
the sector, there is line where the terms are most unequal, they are purely real. This
line is called the Stokes line. Some references as [4] define the Stokes and anti-Stokes
lines oppositely, but our definitions is the one used in the resurgence framework.

When we cross the anti-Stokes line, the subdominant term becomes dominant
and dominant term becomes subdominant. This exchange of roles is the Stokes
phenomenon and was first discovered by G.G. Stokes in 1864 [17].

Another equivalent definitions of the Stokes phenomena, Stokes lines and anti-
Stokes lines are given within the Borel resummation method, exact WKB method
and steepest descent method [18], [19], [20].

In our example the solution for the Euler equation was

ϕ(z) = Ceaz +
∫ ∞

0
dζ

e−zζ

ζ + a

=: ϕ1(z) + ϕ2(z) (2.30)

and we wanted physical solutions, that is, solutions that don’t blow up at infinity.
Here ϕ1 is the dominant solution and ϕ2 subdominant. When the argument of z
becomes ±π/2, they become oscillatory. We have found the anti-Stokes line, the
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imaginary axis. After crossing the imaginary axis ϕ1 becomes subdominant and ϕ2

dominant and at the negative real axis they become most subdominant and dominant
respectively. This is the Stokes line. Because the solution ϕ2 tends to infinity on the
left half-plane the physical solution is

ϕ(z) = Ceaz as z → ∞, arg z ∈
(
π

2 ,
3π
2

)
(2.31)

2.2 Borel summation

In perturbation theory we expand our physical observable in a small parameter,

O =
∑

n

anλ
n (2.32)

where for example λ = ℏ in WKB, coupling constant λ = g in perturbative quantum
field theory. If the perturbation series is divergent asymptotic expansion with zero
radius of convergence how can we calculate the value of the observable? For a series
with coefficients growing not faster than n! the Borel summation gives a method of
resummation of the divergent series.

2.2.1 Borel transformation

In regards to asympotics we want to work at infinity rather than at the origin, so we
set z = 1/λ and consider the space of formal power series without a constant term
z−1C[z−1]

z−1C[z−1] :=
{
φ(z) =

∞∑
n=0

an

zn+1 = a0

z
+ a1

z2 + a2

z3 + . . .
∣∣∣ an ∈ C

}
(2.33)

This space becomes an algebra when equipped with the Cauchy product, see [21],
and is called the formal or multiplicative model.

The Borel analysis of divergent formal series starts with improving the convergence
of the divergent series by the means of the formal Borel transform.

Definition 2.7 (Borel transform). The formal Borel transform is a linear map
B : z−1C[z−1] → C[ζ] defined by

B : φ(z) =
∞∑

n=0

an

zn+1 7→ φ̂(ζ) =
∞∑

n=0

an

n! ζ
n (2.34)
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where C[ζ] is the set of formal Borel transforms and it is a convention to use the
indeterminate ζ and the "hat" notation.

The space C[ζ] of formal Borel transforms forms a convolutive algebra when
equipped with the convolution product

(φ̂ ∗ ψ̂)(ζ) = Bφ ∗ Bψ (2.35)

and is called the convolutive model.

Because the Borel transform was defined on z−1C[z−1] where the Cauchy product
doesn’t have a unit element, the convolutive algebra has no unit element. This can
be remedied by constructing an extended convolutive algebra on the space C × C[ζ]
by defining δ := (1,0) ∈ C × C[ζ] and denote the extended algebra by Cδ ⊕ C[ζ].
Then we can define the extended Borel transform

B : C[z−1] → Cδ ⊕ C[ζ], B(1) = δ (2.36)

and the unital convolutive algebra Cδ ⊕ C[ζ] with

B(ψ) = B(c+ φ) = cδ + φ̂ (2.37)

where ψ = c + φ ∈ C ⊕ z−1C[z−1]. The complex number c is called the residual
coefficient.

For convergent Borel transforms the convolution product is defined by the convo-
lution integral:

Let φ̂, ψ̂ ∈ Cδ ⊕ C{ζ} and let R < min{ρ1, ρ2}, where ρ1 and ρ2 are the conver-
gence radii of the analytic germs φ̂ and ψ̂ respectively. Then the formula

(φ̂ ∗ ψ̂)(ζ) =
∫ ζ

0
du φ̂(u)ψ̂(ζ − u). (2.38)

defines a holomorphic function in the disk B(0,R) with a radius of convergence ≥ R.

The Borel transform has the following properties:

(i)
B(z−α−1) = ζα

Γ(α + 1) , α > −1 (2.39)
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(ii)

B
(
d

dz
φ

)
= −ζφ̂(ζ) (2.40)

(iii)
B(φ(z + c)) = e−cζφ̂(ζ), c ∈ C (2.41)

(iv)
B(z−1φ) =

∫ ζ

0
du φ̂(u) (2.42)

(v)
B(zφ) = d

dζ
φ(ζ) (2.43)

Example 2.8. The Borel trasform of the Euler series (2.7) is

φ̂(ζ) = B(φ(z)) = B
( ∞∑

n=0

(−1)nn!
(az)n+1

)
=

∞∑
n=0

(−1)n

an+1 ζ
n = 1

ζ + a
(2.44)

A particularly interesting subset of formal power series is a type of series called
Gevrey series and especially Gevrey order 1 series.

Definition 2.9 (Gevrey series of order 1
s
). A formal series ∑∞

n=0 anz
−n−1 is said to

be of Gevrey order 1
s
, or 1

s
-Gevrey, if there exists constants α > 0 and A > 0 such

that for all n the coefficients an satisfy

|an| ≤ αAn(n!)s. (2.45)

The constants α and A do not depend on n. The set of all 1
s
-Gevrey series is denoted

by C[z−1]1/s. For 1-Gevrey series we also use the notation CG[z−1].

Example 2.10. The Euler series is a 1-Gevrey series:

|an| =
∣∣∣∣∣(−1)nn!
an+1

∣∣∣∣∣ = n!
an+1 := αAnn! (2.46)

with α = A = a−1.

The connection between 1-Gevrey series and the Borel tranform is that usually our
formal series is divergent but its coefficients an don’t grow faster than the factorial n!.
In the Borel transform we divide the coefficients of the formal series by the factorial
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n! so that we can improve its convergence and get a convergent series in the Borel
ζ-plane.

Proposition 2.11. A formal power series φ ∈ z−1C[z−1] is 1-Gevrey series if and
only if its Borel transform has a positive radius of convergence, φ̂ = Bφ ∈ C{ζ}.

Proposition 2.12. A formal power series φ ∈ z−1C[z−1] is convergent, i.e. φ ∈
z−1C{z−1}, if and only if its Borel transform φ̂ = Bφ defines an entire function of
exponential order.

From the above results we can see that if we have a divergent series, its Borel
transform cannot be an entire function, it has singularities in the Borel plane. Thus if
a divergent series φ ∈ C[z−1] is 1-Gevrey series, its Borel transform φ̂ = Bφ ∈ C{ζ}
defines an analytic germ at the origin in the Borel plane (ζ-plane) with a radius
of convergence defined by the nearest singularity. This gives us the notion that
analytical continuation can be used in the Borel-plane in hopes of getting a suitable
analytic extension of the original divergent series when transformed back into to the
original complex plane. This transformation is achieved by the Laplace transform:
Using the gamma function

n! = Γ(n+ 1) =
∫ ∞

0
dt e−ttn = zn+1

∫ ∞

0
dζ e−zζζn (2.47)

we can write the formal series as

φ(z) =
∞∑

n=0

an

zn+1 =
∞∑

n=0
an

∫ ∞

0
dζ e−zζ ζ

n

n!

=
∫ ∞

0
dζ e−zζ

∞∑
n=0

an

n! ζ
n

= L(Bφ)(z) (2.48)

From the above equation we see that the Borel transform is an inverse of the
Laplace transform, B = L−1. The equality to the ordinary integral repsesentation of
the inverse Laplace transform can be seen as follows:
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2πiL−1φ(z) =
∫ σ+i∞

σ−i∞
dz ezζφ(z) =

∫ σ+i∞

σ−i∞
dz ezζφ(z) +

∫
CR

dz ezζφ(z)︸ ︷︷ ︸
=0, R→∞

= lim
R→∞

(∫ σ+iR

σ−iR
+
∫

CR

)
dz ezζφ(z) = lim

R→∞

∞∑
n=0

an

(∫ σ+iR

σ−iR
+
∫

CR

)
dz

ezζ

zn+1

= lim
R→∞

∞∑
n=0

an · 2πiRes(ezζ/zn+1, 0)

= 2πi
∞∑

n=0
an

1
n! lim

z→0

dn

dzn

(
zn+1 e

zζ

zn+1

)

= 2πi
∞∑

n=0

an

n! ζ
n (2.49)

where CR(t) = σ + Reit, π/2 ≤ t ≤ 3π/2, and the integral over CR goes to 0 as R
goes to ∞ since Re(ζ(σ+ reit)) = ζσ+ ζR cos t and cos t < 0 for all π/2 ≤ t ≤ 3π/2.
And thus

L−1φ = Bφ. (2.50)

2.2.2 Directional Laplace Transform

If we our Borel transform has singularities along the positive real line we can’t use
the regular Laplace transform. But we can define a Laplace transform along a ray
from the origin other than the positive real line where the Borel transform is analytic.

Definition 2.13 (Directional Laplace transform). The Laplace transform in the
direction θ is defined as a linear map Lθ:

(Lθφ̂)(z) =
∫ ∞eiθ

0
dζ e−zζφ̂(ζ) (2.51)

where the path of integration is a ray from the origin, ζ = teiθ, t ∈ [0,∞). If
φ̂ is analytic and exponentially bounded, |φ̂(ζ)| ≤ Aec0ζ , A,c0 > 0, along the ray
eiθR+ the integral converges and Lθφ̂ is analytic on the half-plane Πθ

c0 := {z ∈ C :
Re(zeiθ) > c0}.

The usual properties of the Laplace transform also apply to the directional Laplace
transform.

The directional Laplace transform maps exponentially bounded analytic functions
along a ray in the Borel ζ-plane to analytic functions on a half-plane in the original
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complex z-plane. If the exponentially bounded function φ̂ is a Borel transform Bφ
of a 1-Gevrey series φ, then the directional Laplace transform Lθφ̂ admits the series
φ as an asymptotic expansion and we write

(Lθφ̂)(z) ∼ φ(z) as z → ∞ (2.52)

Proof can be found in [21].

2.2.3 Borel summation

Now we can define a composite operator Sθ := Lθ ◦B which maps formal power series
φ ∈ C[z−1] to analytic functions φ̄ := Sθφ = (Lθ ◦ B)φ = Lθφ̂ on the half-plane
Πθ

c0 and Sθφ is called the Borel-Laplace summation or the Borel sum of the formal
power series φ. The Borel-Laplace summation gives us a tool for resummation of the
divergent 1-Gevrey series.

Definition 2.14 (Borel-Laplace summation). Let φ 1-Gevrey series with a non-zero
residual coefficient. Then we define the linear map Sθ as

Sθφ(z) = Lθ(Bφ)(z) = Lθ(cδ + φ̂)(z) = c+
∫ ∞eiθ

0
dζ e−zζφ̂(ζ), (2.53)

and the series φ is called Borel summable in the direction θ. The Borel summation
is an algebra homomorphism.

If a Borel transform of a 1-Gevrey series is exponentially bounded, then replacing
(Lθφ̂)(z) by (Sθφ)(z) in (2.52) we get that

(Sθφ)(z) ∼ φ(z) as z → ∞ (2.54)

Example 2.15. We found before that the Euler series (2.7)

φ(z) =
∞∑

n=0

(−1)nn!
(az)n+1 (2.55)

is a 1-Gevrey series and its Borel transform is

φ̂(ζ) = 1
ζ + a

(2.56)
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Borel Transform

Laplace

Transform

Asymptotic

Expansion

Convergent SeriesFormal Series

ϕ(z) =
∞∑

n=0

an
zn+1

B [ϕ] (ζ) =
∞∑

n=0

an
n!
ζn

Analytic function

Sθϕ(z) =

∫ ∞eiθ

0

dζe−zζB [ϕ] (ζ)

Figure 3. Borel summation graph

The Borel transform φ̂(ζ) is analytic in the disc D = {ζ ∈ C : |ζ| < |a|} and it can
be analytically continued along any direction θ ̸= arg(−a) and it is exponentially
bounded with c0 = 0. Then for all directions θ ≠ arg(−a) the Borel sum of the Euler
series is

(Sθφ)(z) =
∫ ∞eiθ

0
dζ

e−zζ

ζ + a
(2.57)

and ∫ ∞eiθ

0
dζ

e−zζ

ζ + a
∼

∞∑
n=0

(−1)nn!
(az)n+1 as z → ∞ (2.58)

For a > 0 and θ = 0 this is the same result as in example 2.1.

2.2.4 Lateral Borel sum

In the last example the Borel sum was well-defined for all directions but arg(−a)
because the function φ̂(ζ) = 1/(ζ + a) has a pole at ζ = −a. To understand what
happens on the singular direction we deform our path of integration to go around
the singularity.

Definition 2.16 (Lateral Borel sum). Let φ be a formal series with residual coefficient
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ω

θ

Sθ+

Sθ−

Figure 4. The lateral Borel sums in the direction of θ

c. Then we define the right (θ+ > θ) and the left (θ− < θ) lateral Borel sum as

Sθ+
φ(z) = c+

∫ ∞eiθ+

0
dζ e−zζφ̂(ζ) (2.59)

Sθ−
φ(z) = c+

∫ ∞eiθ−

0
dζ e−zζφ̂(ζ) (2.60)

where θ± = θ ± ε for some small ε > 0.

The name right and left comes from the singularity being seen on the right or on
the left when integrating along the direction θ+ or θ−.

We know by the monodromy theorem that analytic continuations of φ̂ along two
different paths are equal only if the paths are homotopic. Because of the singularity
ω the paths corresponging to the lateral Borel sums aren’t homotopic and thus lateral
Borel sums do not give rise to the same analytic continuation.

Example 2.17. For simplicity assume that a > 0. Then the singular direction of
the Borel transform of the Euler series is θ = π and the lateral Borel sums are

Sπ+
φ(z) =

∫ −∞−iε

0
dζ

e−zζ

ζ + a
(2.61)

Sπ−
φ(z) =

∫ −∞+iε

0
dζ

e−zζ

ζ + a
(2.62)
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Now the difference between the lateral Borel sums is

(Sθ+ − Sθ−)φ(z) =
∫ ∞eiθ+

0
dζ e−zζ e

−zζ

ζ + a
−
∫ ∞eiθ−

0
dζ

e−zζ

ζ + a

=
∫

H
dζ

e−zζ

ζ + a

=
∫

Cε

dζ
e−zζ

ζ + a

= −2πieaz (2.63)

where H is the Hankel contour coming from ∞ to ζ = −a along the negative real
axis, going around the singlularity ζ = −1 clockwise along Cε, the circular path of
radius ε around ζ = −1, and going back to ∞ along the negative real axis as shown
in the figure 5. On the third line we used fact that the integrals along the negative
real axis cancel out.

Remembering the general solution of the Euler equation (2.2) we notice that
the difference between the lateral Borel sums is exactly the homogenous solution.
Due to the properties of the Borel summation the lateral Borel sums are themselves
solutions of the Euler equation so their linear combination should also be a solution.

Because the lateral Borel sums differ in the singular direction there is a disconti-
nuity in the Borel summation when crossing the singular direction. This shouldn’t
come as a surprise beacuse of the Stokes phenomena and due to this the singular
direction is the Stokes line. The region divided by the Stokes line is the Stokes
region.

∞
−1 0

ε Cε

H
Figure 5. The Hankel contour around the point ζ = −a.
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2.3 Resurgence theory

As we saw before the Borel transform of a divergent formal series has a finite positive
radius of convergence. This meant that there exist singularities in the Borel plane
and that the Borel transform defines an analytic germ at the origin with the radius
of convergence defined by the nearest singularity. And for the Borel summation to
be well defined the Borel transform had to be analytically continuable along the
direction of integration. In the Euler equation example the Borel transform had only
one singularity and it could analytically continued to C \ {a}. But what if there are
infinitely many singularities such that the Borel transform cannot be analytically
continued along any direction? Well then the Laplace integral isn’t defined and the
Borel sum doesn’t make sense. This leads to having some restriction on the number
of singularities that the Borel transform has. The analytic germs which satisfy these
conditions on the Borel plane are called resurgent functions and the formal series
corresponding to these are resurgent formal series.

Important fact to note is that the Borel plane is a Riemann surface (see Appendix
C) and that there might be infinitely many singularites. This is nicely illustrated by
the following example:

Consider a formal series whose Borel transform is

φ̂(ζ) = 1
ζ

Log(ζ + 1) (2.64)

where Log z is the principal branch of the logarithm. Now the Borel plane is the
Riemann surface of the logarithm. Clearly ζ = −1 is a logarithmic singularity and
ζ = 0 is a removable singlarity on the principal sheet. If we analytically continue φ̂
such that that path γ goes once anticlockwise around ζ = −1 the continuation is

φ̂γ(ζ) = 1
ζ

(Log(ζ + 1) + 2πi) = 2πi
ζ

+ 1
ζ

Log(ζ + 1) (2.65)

Now the removable singularity ζ = 0 becomes a pole on an other Riemann sheet.
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2.3.1 Simple resurgent functions

As noted above, the Borel plane is a, possibly infinite sheeted, Riemann surface. In
its most abstract definition, a Riemann surface is just a two dimensional manifold
with a complex structure (see Appendix C). Now an other way to define the Riemann
surface if we know the positions of all of the singularities is to define it as an universal
covering of the complex plane with the singularities removed.

Definition 2.18 (Riemann surface). Let Γ ⊂ C be a possibly infinite disrete subset.
Let Σ̂ be the set of equivalence classes of paths γ : [0,1] → C \ Γ with fixed endpoint
homotopy. Then let π : Σ̂ → C \ Γ be the covering map such that π(ζ) = γ(1), where
γ is a representative of the equivalence class ζ = [γ]. Then Σ̂ is a Riemann surface
by pulling back by π the complex structure of C \ Γ.

Now we can define the restriction on the singularities of the Borel transform in
the Borel plane.

Definition 2.19 (Endlessly continuable). An analytic germ at the origin φ̂ ∈ C{ζ}
is endlessly continuable on the Riemann surface Σ̂ if for every R > 0 there exists
finite set ΓR(φ̂) ∈ C of singularities of φ̂ such that φ̂ can be analytically continued
along all paths γ whose length is less than R avoiding the singularities ΓR(φ̂).

Definition 2.20 (Resurgent function). An endlessly continuable function φ̂ on the
Riemann surface Σ̂ is called a resurgent function. The formal series whose Borel
transform is a resurgent function is called a formal resurgent series. The space of
resurgent fuctions is denoted by R̂ and the space of formal resurgent series by R̂.

Sometimes the Laplace transform of a endlessly continuable function is called a
resurgent function [22].

The space of resurgent functions is an algebra when equipped with the convolution
product and it is stable under the convolution. For more details see [21], [23].

For now we will focus on a class of resurgent functions with a certain type of
singularities. We restrict the singularities to be either poles or logarithmic singularities
and call these simple singularities.

Definition 2.21 (Simple Singularity). An analytic function φ̂ in a open disk B ⊂ C
is said to have a simple singlularity at ω, ω in closure of B, if there exists α ∈ C and
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0

γ

ωj

Figure 6. The path γ of analytic continuation of endlessly continuable germ φ̂

two analytic germs at the origin Φ̂, R ∈ C{ζ} such that

φ̂(ζ) = α

2πi(ζ − ω) + 1
2πiΦ̂(ζ − ω) log(ζ − ω) +R(ζ − ω) (2.66)

for all ζ ∈ D close enough to ω, i.e. |ζ − ω| is small enough. α is the residuum of φ̂,
Φ̂ the variation or minor of the singularity of φ̂ at ω and R the analytic terms close
to ω. The mapping σω

σωφ̂ = αδ + Φ̂ ∈ Cδ ⊕ C{ζ} (2.67)

describes the singularity of φ̂ at ω. Similarly in the formal model we define

σωφ = α + Φ ∈ C ⊕ CG[z−1] (2.68)

where Φ = B−1Φ̂.

Definition 2.22 (Simple resurgent function). A simple resurgent function is any
φ̂ ∈ Cδ ⊕ C{ζ} endlessly continuable on the Riemann surface R̂ such that for any
ω ∈ Γ and for each γ starting from the origin, avoiding all the singularities and
ending in the disk D, D ∩ Γ = {ω}, the the branch of analytic continuation of φ̂ has
a simple singularity at ω. The space of simple resurgent is denoted by R̂S

The space of simple resurgent functions R̂S is a subalgebra of the convolution
algebra and the algebra of resurgent functions. This means that it is stable under
convolution and the convolution product of simple resurgent functions yields new
singularities which are either poles or logarithmic singularities.

Example 2.23. (i) The Euler series is a simple resurgent series and its Borel
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transform a simple resurgent function since

φ̂(z) = 1
ζ + a

= 2πi
2πi(ζ + a) =: α

2πi(ζ − ω) (2.69)

with α = 2πi and ω = −a.

(ii) The function φ̂(ζ) = ζ−1 Log(ζ + 1) is a simple resurgent function:

φ̂γ(ζ) = 1
ζ

(Log(ζ + 1) + 2πiN) = 2πiN
ζ

+ 1
ζ

Log(ζ + 1) (2.70)

where N ∈ Z indexes the Riemann sheets. The singular behaviour is

α + Φ̂(ζ) = (2πi)2N + 2πi
ζ − 1 (2.71)

which means that principal sheet we have logarithmic sigularity on all the other
sheet a pole and a logarithmic singularity.

Example 2.24. Let φ̂(ζ) = 1
ζ − ω1

and ψ̂(ζ) = 1
ζ − ω2

. Then the convolution
product is

(φ̂ ∗ ψ̂)(ζ) =
∫ ζ

0
du φ̂(u)ψ̂(ζ − u) =

∫ ζ

0
du

1
u− ω1

1
ζ − u− ω2

(2.72)

Using partial fraction decomposition we get

(φ̂ ∗ ψ̂)(ζ) = 1
ζ − (ω1 + ω2)

(∫ ζ

0
du

1
u− ω1

+
∫ ζ

0
du

1
u− ω2

)

= 1
ζ − (ω1 + ω2)

[
log

(
1 − ζ

ω1

)
+ log

(
1 − ζ

ω2

)]
(2.73)

(i) if ω1 = ω2 =: ω, then we can write the convolution as

(φ̂ ∗ ψ̂)(ζ) = 2
ζ − 2ω (log(ζ − ω) − logω +Miπ)

= 2πiM
ζ − 2ω + 2

ζ − 2ω log
(

1 + ζ − 2ω
ω

)
(2.74)
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On the other hand we could have written this as

(φ̂ ∗ ψ̂)(ζ) = 2
(ζ − ω) − ω

log(ζ − ω) +R(ζ − ω)

= 2φ̂(ζ − ω) log(ζ − ω) +R(ζ − ω) (2.75)

From these equations we see that the convolution is a simple resurgent function
with a pole at ζ = 2ω and a logarithmic singularity at ζ = ω.

(ii) if ω1 ̸= ω2, then φ̂ ∗ ψ̂ is simple resurgent function at ζ = ω1 and at ζ = ω2:

(φ̂ ∗ ψ̂)(ζ) = 1
ζ − (ω1 + ω2)

[
log

(
1 − ζ

ω1

)
+ log

(
1 − ζ

ω2

)]

= 1
ζ − ω2 − ω1

log(ζ − ω1)

+ Mπi− log(ω1)
ζ − (ω1 + ω2)

log
(

1 − ζ

ω2

)

= 1
2πiΦ̂ω1(ζ − ω1) log(ζ − ω1) +Rω1(ζ − ω1) (2.76)

where R(ζ) is analytic in the disk {|ζ + ω1| < |ω2|}. Notice that

Φ̂ω1(ζ) = 2πi
ζ − ω2

= 2πiψ̂(ζ). (2.77)

Similarly for ζ = ω2

Φ̂ω2(ζ) = 2πi
ζ − ω1

= 2πiφ̂(ζ). (2.78)

Then the convolution can be written as

(φ̂ ∗ ψ̂)(ζ) = ψ̂(ζ − ω1) log(ζ − ω1) +Rω1(ζ − ω1) (2.79)

(φ̂ ∗ ψ̂)(ζ) = φ̂(ζ − ω2) log(ζ − ω2) +Rω2(ζ − ω2) (2.80)

For ζ = ω1 +ω2 we get that the convolution is a simple resurgent function with
a pole at ζ = ω1 + ω2: If argω1 ̸= argω2, taking any analytic continuation of
φ̂ ∗ ψ̂ along a path γ avoiding ω1 and ω2 and taking a path η = γ ∗ [0, ω1 + ω2]
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we get by Cauchy’s integral formula

(φ̂ ∗ ψ̂)γ(ζ = ω1 + ω2) = 1
ζ − (ω1 + ω2)

(∫
γ

du

u− ω1
−
∫

γ

du

u+ ω1

)

= 1
ζ − (ω1 + ω2)

(∫
η

du

u− ω1
+
∫

η

du

u− ω2

)

= 2πi
ζ − (ω1 + ω2)

(
n(η, ω1) + n(η, ω2)

)
= 2πiN
ζ − (ω1 + ω2)

(2.81)

where N is the sum of winding numbers of ω1 and ω2 along η. With N = 0
ζ = ω1 + ω2 is a removable singularity. If argω1 = argω2 =: θ and |ω1| ̸= |ω2|,
then with ω1 = r1e

iθ and ω2 = r2e
iθ, r1 ̸= r2 taking a path γ going from 0 to

ω1 + ω2 avoiding ω1 and ω2 by anti-clockwise half-circles we get

(φ̂ ∗ ψ̂)γ(ω1 + ω2) = 1
ζ − (ω1 + ω2)

(∫
γ

du

u− ω1
+
∫

γ

du

u− ω2

)

= 1
ζ − (ω1 + ω2)

(∫
γω1

du

u
+
∫

γω2

du

u

)

= 1
ζ − (ω1 + ω2)

(∫ −1

−r1
+
∫

C1
+
∫ r2

1
+
∫ −1

−r2
+
∫

C1
+
∫ r1

1

)
= 1
ζ − (ω1 + ω2)

(− ln r1 + πi+ ln r2 − ln r2 + πi+ ln r1)

= 2πi
ζ − (ω1 + ω2)

(2.82)

where γω1 is a path from −r1 to -1, going around origin to 1 and then going to
r2. Similarly for γω2 .

Looking again at the simple resurgent structure of the convolution in the equations
(2.79) and (2.80)

(φ̂ ∗ ψ̂)(ζ) = ψ̂(ζ − ω1) log(ζ − ω1) +Rω1(ζ − ω1) (2.83)

(φ̂ ∗ ψ̂)(ζ) = φ̂(ζ − ω2) log(ζ − ω2) +Rω2(ζ − ω2) (2.84)

we can see the origin of the name resurgence. At the singularity of the resurgent
function φ̂(ζ) = 1/(ζ − ω1) we find the resurgence or reappearance of the resurgent
function ψ̂(ζ) = 1/(ζ − ω2) and at the singularity of ψ̂ we find the resurgence of φ̂.
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2.3.2 Stokes automorphism

In section 2.2.4 we noticed that along the singular, or Stokes, direction the Borel
sum is discontinuous and the lateral Borel sums are different functions. There is
an ambiguity in the resummation. How can we can calculate the observable if the
resummation is ambiguous? Turns out, that the lateral Borel sums are conncted via
an automorphism called the Stokes automorphism Sθ:

Sθ− = Sθ+ ◦ Sθ (2.85)

The Stokes automorphism describes the full discontinuity across the Stokes line.
To understand how the Stokes automorphism behaves we consider a simple

resurgent function

φ̂(ζ) = α

2πi(ζ − ω) + 1
2πiΦ̂(ζ − ω) log(ζ − ω) +R(ζ − ω) (2.86)

with a singularity at ζ = ω and which is holomorphic along the ray |ω| eiθ[1,∞),
θ = argω. The logarithmic branch cut is along the aforementioned ray and the
argument has values in (θ, θ + 2π] Then deforming the paths of integrations of the
lateral Borel sums into a Hankel contour, going around ω clockwise as in figure 7,
we get

ω0 ω0
Sθ−

θ θ=

Sθ+

H

ε

Figure 7. The the contour of Sθ− along the direction θ− deformed into contour
of Sθ+ and the Hankel contour.

(
Sθ+ − Sθ−)

φ(z) =
∫

H
dζ e−zζφ̂(ζ)

= α

2πi

∫
H
dζ

e−zζ

ζ − ω
+ 1

2πi

∫
H
dζ e−zζΦ̂(ζ − ω) log(ζ − ω) (2.87)
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The first integral is

∫
H
dζ

e−zζ

ζ − ω
=
∫ ω+εeiθ

∞eiθ
dζ

e−zζ

ζ − ω
+
∫

Cε

dζ
e−zζ

ζ − ω
+
∫ ∞eiθ

ω+εeiθ
dζ

e−zζ

ζ − ω

=
∫

Cε

dζ
e−zζ

ζ − ω

= −2πie−zω (2.88)

where Cε(t) = ω + εe−it, θ ≤ t ≤ θ + 2π. The second integral is

=
∫

H
dζ e−zζΦ̂(ζ − ω) log(ζ − ω)

=
(∫

Cε

+
∫ ∞eiθ+iε

ω+εeiθ+iε
−
∫ ∞eiθ−iε

ω+εeiθ−iε

)
dζ e−zζΦ̂(ζ − ω) log(ζ − ω)

= e−zω

(∫
C′

ε

+
∫ ∞eiθ+iε

εeiθ+iε
−
∫ ∞eiθ−iε

εeiθ−iε

)
dζ e−zζΦ̂(ζ) log ζ (2.89)

Now C ′
ε(t) = εe−it, θ+ ε ≤ t ≤ θ+ 2π− ε, and since Φ̂ is analytic germ at the origin

it defines a holomorphic function around the origin and hence is continuous, we can
choose ε small enough that Φ̂ is bounded in a closed disk which includes C ′

ε. Then
∣∣∣∣∣
∫

C′
ε

dζ e−zζΦ̂(ζ) log(ζ)
∣∣∣∣∣ ≤

∫
C′

ε

|dζ| e− Re(zζ)
∣∣∣Φ̂(ζ) log ζ

∣∣∣
≤ ε

∫ θ+2π−ε

θ+ε
dt e−ε cos t Re(z)

∣∣∣Φ̂(εe−it)
∣∣∣ (ln ε+ t)

−→ 0 ε → 0 (2.90)

since ε ln ε → 0, ε → 0. Because of the logarithmic branch cut along the direction θ,
in the limit ε → 0 we get log(ζ + εeiθ+iε) → log(ζ) − 2πi. Then the integral in (2.89)
is equal to

−2πie−zω
∫ ∞eiθ

0
dζ e−zζΦ̂(ζ) (2.91)
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Thus the difference between the lateral Borel sums is

(
Sθ+ − Sθ−)

φ(z) = −αe−zω − e−zω
∫ ∞eiθ

0
dζ e−zζΦ̂(ζ)

= −e−zω
∫ ∞eiθ+

0
dζ e−zζ

(
αδ + Φ̂(ζ)

)
= −e−zωLθ+(

αδ + Φ̂(ζ)
)

= −e−zωSθ+(
α + Φ(z)

)
(2.92)

where Φ(z) = B−1(Φ̂(ζ)) and we used the fact that integrals along θ and θ+ are equal
due to Cauchy’s theorem . We can write the above equation as

Sθ−
φ(z) = Sθ+

φ(z) + e−zωSθ+(α + Φ)

= Sθ+ ◦
(
Id +e−zωσω

)
φ(z) (2.93)

and
Sθ− = Sθ+ ◦

(
Id +e−zωσω

)
(2.94)

As we can see there is a discontinuity along the singular direction θ between the
lateral Borel sums. This discontinuity is described by the Stokes automorphism Sθ

Sθ = Id +e−zωσω (2.95)

It is an automorphism since the lateral Borel sums are homomorphisms.

0

ω1 ω2 ω3 ω4

θ

Sθ−

=
0

ω1 ω2 ω3 ω4

θ

Sθ+

Hi

Figure 8. The contour of Sθ− deformed into contour of Sθ+ and the Hankel
contours Hi around the points ωi. Note that the contours are actually in the
direction θ since the functions Φ̂ωi

are holomorphic along the ray |ωi| eiθ[1,∞).
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If our simple resurgent function φ̂ is not holomorphic along the direction θ

and it has multiple simple singularities on the ray along θ the above calculation
isn’t valid anymore. (For example the convolution of φ̂ = 1/(ζ + 1) with itself
φ̂ ∗ φ̂ = 2/(ζ + 2) log(1 + ζ) has two singularities along the negative real line:
logarithmic singularity at ζ = −1 and a pole at ζ = −2). An easy fix is to deform
the path along θ− into a concatenation of path along θ+ and Hankel contours coming
from infinity in the direction θ+, going around the singularities anti-clockwise and
going back to infinity along θ+ as shown in the figure 8: Choosing the branch of the
logarithm to be along the direction θ+ we get

(Sθ+ − Sθ−)φ =
∑

ωi∈Γθ

∫
Hωi

dζ e−zζφ̂(ζ) (2.96)

where Γθ is the set of singularities along θ and Hωi
is the Hankel contour along the

singularity ωi. We can calculate the integrals along the Hankel contours using the
same arguments as before and get

Sθ−
φ = Sθ+

φ+
∑

ωi∈Γθ

e−zωiSθ+(
αωi

+ Φωi

)

= Sθ+ ◦

Id +
∑

ωi∈Γθ

e−zωiσωi

φ(z) (2.97)

and as an operator

Sθ− = Sθ+ ◦
(

Id +
∑

ωi∈Γθ

e−zωiσωi

)
(2.98)

Now we define the Stokes automorphism in the general case as

Definition 2.25 (Stokes automorphism). The automorphism Sθ : RS → RS,

Sθ = Id +
∑

ωi∈Γθ

e−zωiσωi
(2.99)

Sθ− = Sθ+ ◦ Sθ (2.100)

is called the Stokes automorphism and it describes the discontinuity between the
lateral Borel sums along a singular direction.
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2.4 Exact WKB

2.4.1 WKB solutions of the Schrödinger equation

Starting with the Schrödinger equation
(

−ℏ2 d
2

dz2 + V (z)
)
ψ(z) = Eψ(z) (2.101)

we can write it in the form

(
d2

dz2 + 1
ℏ2p

2(z)
)
ψ(z) = 0 (2.102)

where we defined the momentum p(z) = (E − V (z))1/2. A common choice in the
literature is to use p̃(z) = −ip(z). We’ll keep the "classical momentum" notation.
The domain of the Schrödinger equation is the two sheeted Riemann surface Σ of
the momentum, it is the two-fold covering of C \ P , where P is the set of turning
points and poles of p(z).

Making an ansatz of the form

ψ(z, ℏ) = exp
(∫ z

du Y (u,ℏ)
)

(2.103)

where Y is a formal series of powers of ℏ:

Y (z,ℏ) =
∞∑

n=−1
ℏnYn(z) = ℏ−1Y−1(z) + Y0(z) + ℏY1 + · · · (2.104)

translates the Scrödinger equation (2.102) into a Riccati equation

dY

dz
+ Y 2 = − 1

ℏ2p
2(z). (2.105)

Inserting the series to (2.105) and comparing the powers of ℏ we get the recursion
relation 

Y−1 = ±ip(z)

2Y−1Yn+1 +
∑

j+k=n

YjYk + dYn

dz
= 0

(2.106)
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If the momentum was also a function of ℏ, i.e.

p(z, ℏ) =
∞∑

n=0
ℏnpn(z) (2.107)

the recursion relation is
Y−1 = ±ip(z)

2Y−1Yn+1 +
∑

j+k=n

YjYk + dYn

dz
= pn+2(z)

(2.108)

Since we have to possible determinations of the momentum p on the Riemann
surface Σ defined by it and by the above recursion relation the coefficients Yn are
odd in p, we have two formal solutions

Y ±(z, ℏ) =
∞∑

n=−1
ℏnY ±

n (z) = ±ℏ−1p(z) + · · · (2.109)

of the Riccati equation (2.105).

Writing Y ± as a sum of its even and odd powers of ℏ

Y = Yeven + Yodd (2.110)

and plugging into (2.105) and comparing odd powers of ℏ we get

Y ′
odd + 2YevenYodd = 0 (2.111)

from which we find
Yeven = −1

2
Y ′

odd

Yodd

= −1
2
d

dz
log Yodd (2.112)

Thus the formal solution can be written in terms of only odd powers:

Y (z,ℏ) = −1
2
d

dz
log Yodd + Yodd

=: −1
2
d

dz
logQ+Q (2.113)

where we defined Q as odd powers of Y :

Q = Yodd = ℏ−1Y−1 + ℏY1 + ℏ3Y3 + · · · =:
∞∑

n=0
ℏ2n−1Q2n−1 (2.114)
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Thus our ansatz (2.103) becomes

ψ±(z, ℏ) = 1√
Q

exp
(

±
∫ z

duQ(u,ℏ)
)
. (2.115)

These solutions are known as the formal WKB solutions of the Schrödinger
equation (2.102)

Definition 2.26 (Formal WKB solutions). The formal WKB soltutions of the
Schrödinger equation are

ψ±(z, ℏ) = 1√
Q

exp
(

±
∫ z

duQ(u,ℏ)
)
. (2.116)

where

Q(z, ℏ) =
∞∑

n=0
ℏ2n−1Q2n−1(z) (2.117)

Q−1(z) = Y−1 = ip(z) (2.118)

is an asymptotic series in ℏ and the functions Q2n−1 are multi-valued and holomorphic
on the Riemann surface Σ. Furthermore, defining the action integral as

S(z) = i
∫ z

du p(u) (2.119)

we can write the WKB solutions as

ψ±(z, ℏ) = 1√
Q

exp
(

±1
ℏ
S(z)

)
exp

(
±
∫ z

du
(
Q(u,ℏ) − i

ℏ
p(z)

))
(2.120)

Definition 2.27 (Well normalized formal WKB solutions). The formal WKB
solutions (2.116) are called well normalized in the Riemann surface Σ. Around a
turning point a the coefficients of Q(z,ℏ) have a singularity. The WKB solution

ψ±(z, ℏ) = 1√
Q

exp
(

±
∫ z

a
duQ(u,ℏ)

)
. (2.121)

is well normalized at a turning point if the integral is defined as
∫ z

a
duQ(u,ℏ) = 1

2

∫
γ
duQ(u,ℏ) (2.122)

where γ is a path around the turning point as shown in figure ??
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a z

γz

Figure 9. Normalization at a turning point.

This is due to the fact that when crossing to the other Riemann sheet, the
momentum changes sign. Around a pole = ∞ the normalization is

ψ±(z, ℏ) = 1√
Q

exp
(

± i

ℏ

∫ z

a
du p(u)

)
exp

(
±
∫ z

∞
du
(
Q(u,ℏ) − i

ℏ
p(z)

))
(2.123)

since Q− iℏ−1p is integrable at infinity.

The formal WKB solutions (2.116) can be expanded as a formal series in ℏ

ψ±(z,ℏ) = exp
(

±1
ℏ
S(z)

) ∞∑
n=0

ℏn+ 1
2ψ±

n (z) (2.124)

an in the leading order

ψ±(z,ℏ) = ℏ1/2

p(z)1/2 exp
(

± i

ℏ

∫ z

du p(u)
)

(2.125)

This is the well-known WKB approximation [4].

2.4.2 Stokes lines and graphs

Definition 2.28 (Stokes lines and Stokes regions). Let a be a turning point of the
Schrödinger equation. Then the Stokes lines of the Schrödinger equation are curves
defined by the equation

Im
∫ z

a
du ip(u) = 0 (2.126)

The regions divided by the Stokes lines are the Stokes regions.
The Stokes lines can be classified to types. An unbounded Stokes line connects a

turning point and ∞ and bounded Stokes lines connect two turning points as shown
in figure 10.

The Stokes regions cannot be bounded so the bounded Stokes lines cannot be
cyclically connected
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a a1 a2

Figure 10. Examples of unbounded and bounded Stokes lines.

The formal WKB solutions (2.116) are Borel summable in the Stokes regions
[§2.8 19], [Theorem 5.12 24]

2.4.3 Borel summation of formal WKB solutions

From the properties (2.39) and (2.41) of the Borel transform 2.7 we can define Borel
transform for formal series with non-integer powers and exponential factors as

B : eAz
∞∑

n=0

an

zn+α
7→

∞∑
n=0

an

Γ(n+ α)(ζ + A)n+α−1 (2.127)

where α /∈ Z−

Then the Borel transform of the formal WKB solutions is

ψ̂±(z,ζ) = B(ψ±(z,ℏ))(ζ) =
∞∑

n=0

ψ±
n (z)

Γ(n+ 1
2) (ζ ± S(z))n− 1

2 (2.128)

And the Borel sum
Sθψ±(z,ℏ) =

∫ ∞eiθ

S(z)
dζ e−ζ/ℏψ̂±(z,ζ) (2.129)

The formal WKB symbols are Borel summable in the Stokes regions 2.28. This
is proved for example in [19] and [24].

Resurgence properties of formal WKB solutions not fully proved, [19],[24],[22]

Definition 2.29 (Stokes graph). A Stokes graph of the Schrödinger equation is a
graph in the Riemann surface Σ of the momentum whose vertices are turning points
and poles and edges are the Stokes lines.
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Classically forbidden regions are correspond to the Stokes lines: the tunneling
regions are bounded Stokes lines and Borel resummation is discontinous along this
direction

2.4.4 Airy-type Stokes graph

Locally around every non-degenerate turning point the potential looks like Airy like
potential V (z) ∼ ±cz. Thus the Airy-type Schrödinger equation

ψ′′(z) − 1
ℏ2 zψ(z) = 0 (2.130)

is an important case and its Stokes graphs can be used as a building blocks of the
Stokes graph of the Schrödinger equation with general potential.

The Airy momentum function is

pAi(z) = −iz1/2 (2.131)

with a turning point at z = 0. The Stokes lines are given by the equation (2.126)

0 = Im
∫ z

0
du i(−iu1/2) = − Im

∫ z

0
du u1/2 = − Im 2

3z
3/2 (2.132)

Thus the Stokes line are given by

arg z = 2kπ
3 (2.133)

and shown in figure 11.
The connection formula of the WKB wave fuctions, the Borel sums of the WKB

solutions, across the Stokes line labeled + from the region I to the region II is


S0−ψ+
a,I = S0+ψ+

a,II + iS0+ψ−
a,II

S0−ψ−
a,I = S0+ψ−

a,II

(2.134)

and across the Stokes line labeled − from the region II to the region III is


S
2π
3 −ψ+

a,II = S
2π
3 +ψ+

a,III

S
2π
3 −ψ−

a,I = S
2π
3 +ψ−

a,II + iS
2π
3 +ψ+

a,III

(2.135)
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II

III

I

a
+

−

−

Figure 11. The Airy-type Stokes graph with the turning point a. The label ±
denotes where the WKB solution ψ± is dominant and the red line is a branch
cut.

In matrix form we can write these asψ+
a,I

ψ−
a,I

 = M+

ψ+
a,II

ψ−
a,II

 (2.136)

and ψ+
a,I

ψ−
a,I

 = M−

ψ+
a,II

ψ−
a,II

 (2.137)

where we defined the matrices

M+ =
1 i

0 1

 and M− =
1 0
i 1

 (2.138)

Across the branch cut we haveψ+
a,III

ψ−
a,III

 = Mb

ψ+
a,IV

ψ−
a,IV

 (2.139)

where

Mb = M−1
− M−1

+ M−1
− =

 1 0
−i 1

1 −i
0 1

 1 0
−i 1

 =
 0 −i

−i 0

 (2.140)

The above connection formulas are proved in for example [10] and [25] in the
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exact WKB formalism and in the section 3.4 using the steepest descent method.

2.4.5 Voros symbols

On the Riemann surface Σ of the momentum p we define a cycle γ to be a path
such that the analytic continuation of momentum along this path gives the same
determination of the momentum. On the two sheeted Riemann surface this means that
if γ goes through the branch cut, it has cross it again to give the same determination.
Let λ be a path between points z0 and z in the Riemann surface Σ not crossing the
branch cut. Then the WKB solution can be written as

ψ(z, ℏ) = 1√
Q

exp
(∫

λ
duQ(u,ℏ)

)
(2.141)

Then analytic continuation of the WKB solution along a cycle γ is

ψγ = Q−1/2
γ exp

(∫
λ+γ

duQ(u,ℏ)
)

= (−i)n(γ)Q−1/2 exp
(∫

λ
duQ(u,ℏ)

)
exp

(∮
γ
duQ(u,ℏ)

)
= (−i)n(γ)ψ exp

(∮
γ
du
(
Q(u,ℏ) − iℏ−1p(u)

))
exp

(
i

ℏ

∮
γ
du p(u)

)
(2.142)

where n(γ) is the index of the cycle γ, that is the number of times in encircles the
turning points. The multiplier (−i)n(γ) comes from the fact that Q is odd in p so
Q1/2 has four fold monodromy. For a cycle that goes around the turning point twice
we have (−i)n(γ) = −1.

In the equation (2.142) we define the exponential terms as the Voros symbols.

Definition 2.30 (Voros symbols). Let γ be a cycle in the Riemann surface Σ of the
momentum p. Then the Voros symbols for the cycle γ are the formal series

Vγ = exp
(∮

γ
duQ(u,ℏ)

)
(2.143)

and
aγ = exp

(∮
γ
du
(
Q(u,ℏ) − iℏ−1p(u)

))
(2.144)

The integral
Sγ = i

∮
γ
du p(u) (2.145)
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is called the action integral. The Voros symbols are connected by

Vγ = aγe
Sγ/ℏ (2.146)

Now consider two WKB solutions normalized at different turning points a1 and
a2, see Definition 2.27. The wave functions are connected by the the Voros symbol
Vγ. The Voros symbol changes normalization between the turning points:

ψ±
a1(z,ℏ) = 1√

Q
exp

(
±
∫ z

a1
duQ(u,ℏ)

)
= 1√

Q
exp

(
±
(∫ a2

a1
+
∫ z

a2

)
duQ(u,ℏ)

)
= 1√

Q
exp

(
±1

2

(∫
γ12

+
∫

γ2

)
duQ(u,ℏ)

)
= exp

(
±1

2

∫
γ12
duQ(u,ℏ)

) 1√
Q

exp
(

±1
2

∫
γ2
duQ(u,ℏ)

)
= exp

(
±1

2

∫
γ12
duQ(u,ℏ)

) 1√
Q

exp
(

±
∫ z

a2
duQ(u,ℏ)

)
= V ±1/2

γ12 ψ±
a2(z,ℏ) (2.147)

where the paths γ1,γ2 and γ12 are shown in figure 12 . This can be written in the

a2a1

a2 a1

z

γ2γ1 γ12

Figure 12. The contours γ1, γ2 and γ12 which define the normalization at
turning points and the Voros symbol Vγ12 .

matrix form as ψ+
a1

ψ−
a1

 = Na1a2

ψ+
a2

ψ−
a2

 (2.148)

where

Na1a2 =
V 1/2

γ12 0
0 V −1/2

γ12

 (2.149)

is the change of normalization matrix.
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2.4.6 DDP formula

The Voros symbols are Borel summable in the Stokes regions but if the path of
integration intersects a bounded Stokes line the Borel summability breaks and there
is a discontinuity between the lateral Borel sums. This means that a bounded Stokes
line causes Stokes phenomena of the Voros symbols. This is due to the changing of
Stokes graphs depending on arg ℏ, as shown in figure 37 in the case of the double
well potential.

This discontinuity between the lateral Borel sums of the Voros symbols is described
by the Delabaere-Dillinger-Pham (DDP) formula [22]. The DDP formula is resurgence
relation: the Voros symbols of a classically allowed region is related to the Voros
symbols of a classically forbidden tunneling region and the discontinuity is non-
perturbative.

Before stating the DDP formula we define an intersection form (γ,β) between
two paths γ and β on the Riemann surface Σ of the momentum. It is normalized
such that (x-axis,y-axis) = +1 and the rules are shown in figure 13.

Theorem 2.31 (DDP formula). The lateral Borel sums of the Voros symbols for a
cycle γ are related by the DDP formula

Sθ− [Vγ] = Sθ+ [Vγ]
(
1 + Sθ+ [Vγ0 ]

)−(γ0,γ)
(2.150)

Sθ− [aγ] = Sθ+ [aγ]
(
1 + Sθ+ [aγ0 ]

)−(γ0,γ)
(2.151)

where (·,·) is the intersection form of the cycles γ0 and γ and γ0 a cycle surrounding
the turning points.

Thd DDP formula is originally proved in [11], and a more recent proof can be
found in [19].

Using the Stokes automorphism (2.85) the DDP formula can be written as

Sθ [aγ] = aγ (1 + aγ0)−(γ0,γ) (2.152)

Sθ [Vγ] = Vγ (1 + Vγ0)−(γ0,γ) (2.153)
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γ2

γ1 γ1

γ2 γ2

γ1

γ1

γ2

γ1

γ2 γ2

γ1

(γ1, γ2) = +1 (γ1, γ2) = −1 (γ1, γ2) = 0

(γ1, γ2) = +1 (γ1, γ2) = −1 (γ1, γ2) = 0

Figure 13. The rules for finding the intersection number (γ1,γ2). The first path
γ1 is drawn horizontally and the second path γ2 vertically.
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3 Quantum Resurgence of the Airy equation

The work on this chapter was inspired by work of Jidoumou [18].
Consider the Airy Schrödinger equation

ψ′′(q) − 1
ℏ2 qψ(q) = 0 (3.1)

where q is complex variable. The well known integral representation solutions of the
Airy equation [13] translate to

Ak(q,ℏ) = − 1
2πi

∫
γk

du e− 1
ℏ ( 1

3 u3−qu)

= − 1
2πi

∫
γk

du e− 1
ℏ s(u,q) (3.2)

where the path γk are shown in figure 14 and where we defined the function

s(u) := s(u,q) = 1
3u

3 − qu (3.3)

Re

Im

D0

D1

D2

γ0

γ1

γ2

Figure 14. The contours γ0, γ1 and γ2 which define the solutions of the Airy
Schrödinger equation
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The two linearly independent solutions of the Schrödinger equation are chosen to
be A := A0 and B := iA2 − A1 so the general solution is

ψ(q,ℏ) = c1A(q,ℏ) + c2B(q,ℏ) (3.4)

The asymptotic expansions of the Airy equation are well know but to illustrate
the Riemann surface structure and the Borel summation procedure we will derive
the expansions using the steepest descent method. For a more detailed introduction
see for example [4].

The steepest contours are those along which exp(−s(u)/ℏ) changes most rapidly
as |1/ℏ| → ∞ or equivalently those along which Im s(u) is constant, i.e. constant
phase contours. Thus the steepest contours are given by the equation

Im s(u) = constant (3.5)

and some of them are shown in figure 15. The saddle points of s(u) are ±q1/2 since

s′(u) = u2 − q = 0 ⇐⇒ u = ±q1/2. (3.6)

For now taking q > 0 real, we have

s(q1/2) = −2
3q

3/2 and s(−q1/2) = 2
3q

3/2 (3.7)

so
−1
ℏ

Re s(q1/2) = 2
3q

3/2 1
ℏ

and 1
ℏ

Re s(−q 1
2 ) = −2

3q
3/2 1

ℏ
. (3.8)

Thus the +q1/2 is the dominant saddle and −q1/2 is the recessive saddle and we
denote them as

ud := +q1/2 and ur := −q1/2. (3.9)

From figure 15 one can see that the contours γk can only be deformed to steepest
descent contours that go through the saddle points. The steepest descent contours
are shown in figure 16 and denoted by Ck.

To find the full asymptotic expansion we start with a change of variables

ζ = s(u,q) = 1
3u

3 − qu, du = du

dζ
dζ (3.10)
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Figure 15. Contour plot of s(u) with q = 1: the black lines are some of the
steepest contours, and the color shading gives the level curves such that the
darker colors indicate steepest descent contours and the lighter colors indicate
steepest ascent contours.

and define the function
Â(ζ) = − 1

2πi
du

dζ
, (3.11)

and the paths Γk = s(Ck) which are shown in the figure 17. Then the solutions to
the Schrödinger equation can be written as

Ak(q,ℏ) = − 1
2πi

∫
Γk

dζ e−ζ/ℏÂ(ζ) (3.12)

which is almost in the familiar form of the Laplace transform. The use notation hat-A
and variable ζ implies that the function Â is defined on the Borel ζ-plane. Next
we’ll show that the function Â is multi-valued in the complex-plane but well-defined
on Riemann surface of u(ζ).
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Re

Im

C0

C1

C2

ud

ur

u-plane

Figure 16. The steepest descent contours Ck deformed from γk in the u-plane.
In reality the contours go through the saddle points, but the above contours are
drawn for clarity.

3.1 Riemann surface structure of the multi-valued function
u(ζ)

The inverse of the function ζ defined by the change of variables (3.10), u(ζ) is a
multi-valued function with branch points

ζd := s(ud) = −2
3q

3/2 and ζr := s(ur) = 2
3q

3/2 (3.13)

and the Riemann surface Σu of u(ζ) is locally around the branch points the Riemann
surface of a square root. This can be seen as follows:

The Taylor expansions of ζ around the saddle points ud and ur are

ζ = −2
3q

3/2 + q1/2(u− q1/2)2 + 1
3(u− q1/2)3 (3.14)

and

ζ = 2
3q

3/2 − q1/2(u+ q1/2)2 + 1
3(u+ q1/2)3 (3.15)

From these it is easy to see that
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u(ζ) − q1/2 ∼ ±q−1/4(ζ + 2
3q

3/2)1/2 (3.16)

and
u(ζ) + q1/2 ∼ ±iq−1/4(ζ − 2

3q
3/2)1/2 (3.17)

From the above equations one can see that the change of variables ζ = s(u)
introduces branch cuts to the ζ plane because of the square root terms, as shown in
figure 17. The points ζd = −(2/3)q3/2 and ζr = (2/3)q3/2 are branch points of u(ζ)
and therefore also branch points of Â(ζ). The Riemann surface Σu is two sheeted
Riemann surface: the multi-valued function u(ζ) has 3 different determinations but
the domains of these determinations overlap such that a 2 sheeted Riemann surface
is formed. This can be seen after explicitly giving the paths Γk = s(Ck).

Now because the paths of steepest descent are also paths of constant phase, that
is

Im s(u) = constant u ∈ |Ck| , (3.18)

the paths Ck will transform to paths Γk determined by

Im ζ = constant. (3.19)

Since along the steepest descent paths Re s(u) → ∞ as |u| → ∞ we have

Re ζ → ∞ as |ζ| → ∞. (3.20)

From these conditions we get that the paths Γk come from infinity along the Re ζ-axis,
turn around at the point ζr or ζd and tend back to infinity along the Re ζ-axis, as
shown in figure 17.

Now that we know how the contours Γk look like we can find what the three
determinations of u(ζ) are:

i) u0(ζ): defined by Γ0, holomorphic in the cut plane C \ [ζr,∞)

ii) u1(ζ): defined by Γ2, holomorphic in the cut plane C \ [ζd,∞), whose extension
from the left is singular at the point ζr and extension from the right is holomor-
phic at the point ζr. This follows from the path C1 coming from infinity, going
through the saddle point ur first, then ud and finally going back to infinity it
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doesn’t see the point ur again.

iii) u2(ζ): defined by Γ2, holomorphic in the cut plane C \ [ζd,∞), whose extension
from the left is holomorphic at the point ζr and extension from the right is
singular at the point ζr. Similarly this follows from the path C2 coming from
infinity, going through the saddle point ud first, then ur where it’s singular and
then going to infinity.

Now using these determinations of u(ζ) we can construct the two-sheeted Riemann
surface Σu, see figures 17, 18 and 19.

When the path C1 comes from infinity, it first goes through the saddle point ur

and then to the saddle point ud, at same time when the path Γ1 comes from from
infinity it sees the branch point ζr on the left (from the right) and continues to
the branch point ζd. From ud C1 continues to infinity. On the other hand Γ1 goes
through the branch cut to the second sheet. Why it has to go to another sheet and
not remain on on first sheet? Because as C1 continues to infinity from ud it never
sees the saddle point ur. The same must be true for Γ1 and the branch point ζr, it
doesn’t see ζr again so Γ1 must go to infinity on a another sheet.

In the case of Γ2 it comes from infinity on the second sheet because it doesn’t
see the branch point ζr and crosses to the first sheet at ζd. On the first sheet Γ2 sees
the branch point ζr on right (from the left) and continues to infinity along the first
sheet.

Another way to visualize that the Riemann surface will be two-sheeted and not
three-sheeted as it would be in the case is to look at the graph of the function
ζ = 1

3u
3 − qu shown in figure 20. From the graph we can see that locally around

the points ur and ud the graph looks like a parabola, which corresponds to square
root like behavior of u(ζ) shown in equations (3.16) and (3.17), and that one branch
around ζr agrees with one branch around ζd. In the case where q → 0 we’d get the
three-sheeted Riemann surface.
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ζd ζr

Γ0

u0 ζ-plane

l1

l2
ζd ζr

Γ1

u1 ζ-plane

l2

l4

l1

ζd ζr

Γ2

u2 ζ-plane
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l3 l1

Figure 17. The paths Γk and the determinations of uk(ζ). The colors correspond
to different parts of contours Ck. The "nail" indicates the direction where
singularity is seen.

ur ud

l1

l2

l3 l4

u− plane

Figure 18. The steepest descent contour divided to different parts lk to construct
the Riemann surface.

3.2 Asymptotic expansion of the Airy functions Ak(q,ℏ)

In the equations (3.16) and (3.17) we obtained the first and second terms in the
expansion of u(ζ). To obtain the full expansion we can use the Lagrange inversion
theorem [26]: for a power series of the form

w = f(z) = f(a) +
∞∑

k=m

bk(z − a)k, m ≥ 2, bm ̸= 0 (3.21)

with a as a critical point of f , the series of the inverse function z(w) is the Puiseux
series with a algebraic branch point at b = f(a) of order m− 1:

z(w) = a+
∞∑

k=1
ak(w − b)k/m (3.22)
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Figure 19. Another visualization of the paths Γk on different sheets of the
Riemann surface

where the coefficients are given by

ak = 1
k! lim

ζ→a

dk−1

dζk−1

( ζ − a

(f(ζ) − b)1/m

)k
 (3.23)

Now because our series expansions of ζ = s(u) are expanded at the saddle points,
the inverse series are given by the Puiseux series

u(ζ) = ud/r +
∞∑

k=2
ak(ζ − ζd/r)k/2 (3.24)

where the coefficients are given by

ak = 1
k! lim

u→ud/r

dk−1

duk−1

( u− ud/r

(s(u) − ζd/r)1/2

)k
 (3.25)
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u

ur

ud

Figure 20. The graph of ζ = 1
3u

3 − qu.

The Taylor expansions of ζ = s(u) were

s(u) = ζd/r + ud/r(u− ud/r)2 + 1
3(u− ud/r)3 (3.26)

so the function inside the square brackets in the Puiseux coefficients can be written
as

(u− ud/r)k(
ud/r(u− ud/r)2 + 1

3(u− ud/r)3
)k/2 =

(
ud/r + 1

3(u− ud/r)
)−k/2

(3.27)

Denoting

g(u) = ud/r + 1
3(u− ud/r) with g′(u) = 1/3 and lim

u→ud/r

g(u) = ud/r (3.28)

the Puiseux coefficients can be written as

ak = 1
k! lim

u→ud/r

dk−1

duk−1

(
g(u)−k/2

)
(3.29)
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The derivatives give

dk−1

duk−1

(
g(u)−k/2

)
= dk−2

duk−2

(
−1

3
k

2g(u)−k/2−1
)

= dk−3

duk−3

(
(−1)2 1

32

(
k

2 + 1
)
k

2g(u)−k/2−2
)

= . . .

= dk−k

duk−k

(
(−1)k−1 1

3k−1

(
k

2 + k − 2
)(

k

2 + k − 3
)

· · ·
(
k

2 + 1
)
k

2g(u)−k/2−(k−1)
)

= (−1)k−1 1
3k−1

(
k

2 + k − 2
)(

k

2 + k − 3
)

· · ·
(
k

2 + 1
)
k

2q
−k/4−(k−1)/2 (3.30)

When k is even, k = 2m, m ∈ N, we have
(
k

2 + k − 2
)(

k

2 + k − 3
)

· · ·
(
k

2 + 1
)
k

2
= (m+ 2m− 2)(m+ 2m− 3) · · · (m+ 2)(m+ 1)m

= Γ(m+ 2m− 1)
Γ(m)

= Γ(3m− 1)
Γ(m) (3.31)

where we used the formula

x(n) = x(x+ 1)(x+ 2) · · · (x+ n− 1) = Γ(x+ n)
Γ(x) (3.32)

Thus for even values of k the coefficients are

a2m = − 1
(2m)!32m−1

Γ(3m− 1)
Γ(m) q−(6m+2)/4 (3.33)

where we used (−1)k−1 = (−1)2m−1 = −1.

For odd k, k = 2m+ 1
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(
k

2 + k − 2
)(

k

2 + k − 3
)

· · ·
(
k

2 + 1
)
k

2
= (3m− 1/2)((3m− 1/2) − 1) · · · ((3m− 1/2) − (2m− 2))((3m− 1/2) − (2m− 1))

= Γ((3m− 1/2) + 1)
Γ((3m− 1/2) − (2m− 1))

= Γ(3m+ 1/2)
Γ(m+ 1/2) (3.34)

where we used the formula

Γ(z + 1)
Γ(z − k) = z(z − 1)(z − 2) · · · (z − k) (3.35)

Thus for odd values of k the coefficients are

a2m+1 = 1
(2m+ 1)!32m

Γ(3m+ 1/2)
Γ(m+ 1/2) q

−(6m+1)/4 (3.36)

Thus the expansion of the function u(ζ) around the point ζd is

u(ζ) = ud ±
∞∑

m=0
a2m+1(ζ − ζd)m+1/2 +

∞∑
m=1

a2m(ζ − ζd)m (3.37)

where the the ± refer to the two different branches of the square root around the
point ζd. The series converges in the disk D(ζd, r) where r is the distance between
the branch points, r = |ζr − ζd| = 4

3q
3/2.

Since the saddle point −q1/2 is analytic continuation of q1/2 by e2πi:

−q1/2 = eπiq1/2 = (e2πiq)1/2, (3.38)

we can find the expansion around ζr by the analytic continuation

q → e2πiq (3.39)

Now

q3/2 → e3πiq3/2 = −q3/2 (3.40)
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so

ζd → ζr, (3.41)

and

q(−6m+1)/4 → ei(−6m+1)π/2q(−6m+1)/4 = i(−1)mq(−6m+1)/4 (3.42)

q(−6m+2)/4 → ei(−6m+2)π/2q(−6m+1)/4 = (−1)m+1q(−6m+1)/4 (3.43)

so

a2m+1 → i(−1)ma2m+1 (3.44)

a2m → (−1)m+1a2m (3.45)

Thus the expansion around ζr is given by

u(ζ) = ur ± i
∞∑

m=0
(−1)ma2m+1(ζ − ζr)m+1/2 +

∞∑
m=1

(−1)m+1a2m(ζ − ζr)m (3.46)

with disk of convergence D(ζd, r), r = |ζr − ζd| = 4
3q

3/2.

Since the function u(ζ) has three determinations defined on Riemann surface R̂u,
it follows from equation (3.11) that function Â(ζ) also has also three determinations

Âk(ζ) = − 1
2πi

duk

dζ
(3.47)

Then the Airy functions can be written as

Ak(q,ℏ) =
∫

Γk

dζ e−ζ/ℏÂk(ζ) (3.48)

where the paths Gk are shown in figure 21.

In the following we will denote by Â+
k the extension from the right and by Â−

k
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0
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0

ζd ζr

Γ1 A−
1

A+
1

ζd ζr

Γ2 A−
2

A+
2

Figure 21. The paths Γk in the ζ-plane corresponding to the Airy functions Ak

and the extension extensions of Âk from the left and from the right.

the extension from the left of Â as shown in figure 21. Now

A0(q,ℏ) =
∫

Γ0
dζ e−ζ/ℏÂ0(ζ)

=
∫ ζr

∞
d e−ζ/ℏÂ−

0 (ζ) +
∮

ζr,ε

dζ e−ζ/ℏÂ0(ζ) +
∫ ∞

ζr

dζ e−ζ/ℏÂ+
0 (ζ)

= −
∫ ∞

ζr

dζ e−ζ/ℏÂ−
0 (ζ) +

∫ ∞

ζr

dζ e−ζ/ℏÂ+
0 (ζ)

=
∫ ∞

ζr

dζ e−ζ/ℏ(Â+
0 − Â−

0 )(ζ) (3.49)

where the second integral was calculated using equations (3.46) and (3.47):

∮
ζr,ε

dζ e−ζ/ℏÂ0(ζ)

= − 1
2πi

∮
ε
dζ e−ζ/ℏ

(
±iq−1/4

2(ζ − ζr)1/2 + holomorphic
)

= ∓ iq−1/4

2 · 2πi

∫ 2π

0
dt
iεe−xεeit

√
εeit/2

= ∓ iq−1/4

4πi · i
√
ε
∫ 2π

0
dt e−xεeiθ−it/2

−→ 0 as ε → 0 (3.50)

where
∮

ζr,ε means that we integrate along a contour t ∈ [0, 2π] → ζr + εeit. Similar
calculation shows that ∮

ζd,ε
dζ e−ζ/ℏÂ1,2(ζ) = 0 (3.51)
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ζd ζr

Γ1

−γ+

γ+

ζd ζr

Γ2

−γ−
γ−

Figure 22. The deformations of paths Γ1 and Γ2. The blue color indicates that
the path lies on the second Riemann sheet. Note that the singularity at ζr is
seen in the first sheet.

Deforming the path Γ1 and Γ2 as shown in figure 22 we get

A1(q,ℏ) =
∫

Γ1
dζ e−ζ/ℏÂ1(ζ)

=
∫

−γ+
dζ e−ζ/ℏÂ−

1 (ζ) +
∮

ζd,ε
dζ e−ζ/ℏÂ1(ζ) +

∫
γ+
dζ e−ζ/ℏÂ+

1 (ζ)+

+
∫ ζr

∞
dζ e−ζ/ℏÂ+

1 (ζ) +
∮

ζr,ε
dζ e−ζ/ℏÂ+

1 (ζ) +
∫ ∞

ζr

dζ e−ζ/ℏÂ+
1 (ζ)

= −
∫

γ+
dζ e−ζ/ℏÂ−

1 (ζ) +
∫

γ+
dζ e−ζ/ℏÂ+

1 (ζ)

=
∫

γ+
dζ e−ζ/ℏ(Â+

1 − Â−
1 )(ζ) (3.52)

where the path γ+ is the path from ζd to infinity avoiding ζr from the left as shown
in figure 23.

ζd ζr

γ+

ζd ζr

γ−

Figure 23. The path γ+ circumvents ζr above and the path γ− below.
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Similarly for A2 we get

A2(q,ℏ) =
∫

Γ2
dζ e−ζ/ℏÂ2(ζ)

=
∫ ∞

ζr

dζ e−ζ/ℏÂ−
2 (ζ) +

∮
ζr,ε

dζ e−ζ/ℏÂ2(ζ) +
∫ ζr

∞
dζ e−ζ/ℏÂ−

2 (ζ)

+
∫

−γ−
dζ e−ζ/ℏÂ−

2 (ζ) +
∮

ζd,ε
dζ e−ζ/ℏÂ1,2(ζ) +

∫
γ−
dζ e−ζ/ℏÂ+

2 (ζ)+

= −
∫

γ−
dζ e−ζ/ℏÂ−

2 (ζ) +
∫

γ+
dζ e−ζ/ℏÂ+

2 (ζ)

=
∫

γ−
dζ e−ζ/ℏ(Â+

2 − Â−
2 )(ζ) (3.53)

where the path γ− is shown in figure 23.
From the figures 17 and 21 one sees that Â+

2 = Â−
1 and Â−

2 = Â+
1 , so

Â+
2 − Â−

2 = −(Â+
1 − Â−

1 ) (3.54)

Then defining the functions

Âr := Â+
0 − Â−

0 (3.55)

Âd := Â+
1 − Â−

1 (3.56)

we get

A0(q,ℏ) = e−ζr/ℏ
∫ ∞

0
dζ e−ζ/ℏÂr(ζ + ζr) (3.57)

A1(q,ℏ) = e−ζd/ℏ
∫

γ+
dζ e−ζ/ℏÂd(ζ + ζd) (3.58)

A2(q,ℏ) = −e−ζd/ℏ
∫

γ−
dζ e−ζ/ℏÂd(ζ + ζd) (3.59)

where the γ+ and γ− are the paths shown in figure 23 but shifted such that they
start from origin and the singularity is at ζr − ζd.

One then notices that right hand sides of above equations are in the from of Borel
and lateral Borel sums:

A0(q,ℏ) = e−ζr/ℏS0(B−1(Âr(ζ + ζr))) := e−ζr/ℏS0Ar(q,ℏ) (3.60)

A1(q,ℏ) = e−ζd/ℏS0+(B−1(Âd(ζ + ζd))) := e−ζd/ℏS0+Ad(q,ℏ) (3.61)

A2(q,ℏ) = −e−ζd/ℏS0−(B−1(Âd(ζ + ζd))) := −e−ζd/ℏS0−Ad(q,ℏ) (3.62)



66

Now using equations (3.46) and (3.47) we have

Â0 = − 1
2πi

du

dζ

= − 1
2πi

[
±i

(ζ − ζr)1/2

∞∑
m=0

(−1)ma2m+1(m+ 1/2)(ζ − ζr)m

+
∞∑

m=1
(−1)m+1a2mm(ζ − ζr)m−1

]
(3.63)

The extension from the right of u(ζ) is given by negative imaginary singular part
in (3.46) and the expansion from the left is given the positive imaginary part. Then
we get

Âr(ζ) = (Â+
0 − Â−

0 )(ζ)

= − 1
2πi

(
− i− (+i)

) ∞∑
m=0

(−1)ma2m+1(m+ 1/2)(ζ − ζr)m−1/2

= 1
2π (ζ − ζr)−1/2

∞∑
m=0

(−1)ma2m+1(2m+ 1)(ζ − ζr)m (3.64)

Because the above series converges, it inverse Borel transform is a divergent
asymptotic series:

Ar(q,ℏ) = B−1(Âr(ζ + ζr))

= 1
2π

∞∑
m=0

(−1)ma2m+1(2m+ 1)Γ(m+ 1/2)ℏm+1/2 (3.65)

where the Borel transform was defined by

ℏν+1 −→ ζν

Γ(ν + 1) , ν ̸= 0,− 1,− 2, . . . (3.66)

Similarly for Â1 the extension from the right is given by negative singular part
in (3.37) and from the left by the negative singular part. Then the discontinuity Âd

can be written as
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Âd(ζ) = (Â+
1 − Â−

1 )(ζ)

= − 1
2πi

(
1 − (−1)

) ∞∑
m=0

a2m+1(m+ 1/2)(ζ − ζd)m−1/2

= i

2π (ζ − ζd)−1/2
∞∑

m=0
a2m+1(2m+ 1)(ζ − ζd)m (3.67)

(3.68)

and the inverse Borel transform is

Ad(q,ℏ) = B−1(Âd(ζ + ζd))

= i

2π

∞∑
m=0

a2m+1(2m+ 1)Γ(m+ 1/2)ℏm+1/2 (3.69)

Using the the equation (3.36) for a2m+1 we have

a2m+1(2m+ 1)Γ(m+ 1/2) = (6m)!Γ(1/2)
32m(2m)!43m(3m)!q

−(6m+1)/4, (3.70)

where we used the Legendre multiplication formula

22z−1Γ(z)Γ(z + 1/2) = Γ(1/2)Γ(2z). (3.71)

Thus the formal series Ar(q,ℏ) and Ad(q,ℏ) can be written as

Ar(q,ℏ) = 1
2
√
π
q−1/4ℏ1/2

(
1 +

∞∑
m=1

(−1)mbmℏm

)
(3.72)

and
Ad(q,ℏ) = i

2
√
π
q−1/4ℏ1/2

(
1 +

∞∑
m=1

bmℏm

)
(3.73)

where
bm = (6m)!

32m(2m)!43m(3m)!q
−3m/2, m ≥ 1. (3.74)

It can be shown that the Borel series (3.72) and (3.73) can be analytically
continued along the positive real axis and that the Laplace integrals converge, see
for example Appendix 1 in[18]. Thus the Borel sums are asymptotic to the inverse
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Borel transforms
S0Ar(q,ℏ) ∼ Ar(q,ℏ) as ℏ → 0 (3.75)

S0+Ad(q,ℏ) ∼ Ad(q,ℏ) as ℏ → 0 (3.76)

S0−Ad(q,ℏ) ∼ Ad(q,ℏ) as ℏ → 0 (3.77)

and the asymptotic expansions of the functions Ak(q,ℏ) are given by

A0(q,ℏ) ∼ 1
2
√
π
q−1/4ℏ1/2 exp

(
−2

3q
3/2 1

ℏ

)(
1 +

∞∑
m=1

(−1)mbmℏm

)
, (3.78)

A1(q,ℏ) ∼ i

2
√
π
q−1/4ℏ1/2 exp

(2
3q

3/2 1
ℏ

)(
1 +

∞∑
m=1

bmℏm

)
, (3.79)

A2(q,ℏ) ∼ − i

2
√
π
q−1/4ℏ1/2 exp

(2
3q

3/2 1
ℏ

)(
1 +

∞∑
m=1

bmℏm

)
, (3.80)

as ℏ → 0. Then the asymptotic expansions of the solutions of the Airy equation are

A(q,ℏ) = A0(q,ℏ) ∼ 1
2
√
π
q−1/4ℏ1/2 exp

(
−2

3q
3/2 1

ℏ

)(
1 +

∞∑
m=1

(−1)mbmℏm

)
(3.81)

and

B(q,ℏ) = i (A2(q,ℏ) − A1(q,ℏ))

∼ −2ie−ζd/ℏAd(q,ℏ)

= 1√
π
q−1/4ℏ1/2 exp

(2
3q

3/2 1
ℏ

)(
1 +

∞∑
m=1

bmℏm

)
(3.82)

3.3 Stokes phenomena of resurgent symbols e−ζr/ℏAr and
e−ζd/ℏAd

In the steepest descent method the Stokes phenomena occurs when the steepest
descent contour goes through multiple saddle points which happens on the Stokes
lines [20]. Transforming into the Borel plane the Stokes phenoma occurs when the
point corresponging to the recessive saddle point lies on the cut from the point
corresponding to the dominant saddle point [18].

Now the Stokes lines are defined as the directions in the complex q-plane which
correspond to the case where the recessive point ζr lies on the cut from the dominant
point ζd to infinity in the complex ζ-plane (Borel-plane). In the complex u-plane
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this happens when a steepest descent contour goes through a second saddle point.
From equation (3.5) we see that this happens when

Im
(
s(ud) − s(ur)

)
= 0 (3.83)

or equivalently
Im

(
ζd − ζr

)
= 0 (3.84)

This gives
Im(q3/2) = 0 ⇐⇒ 3

2 arg q = kπ ⇐⇒ arg q = 2kπ
3 (3.85)

Thus the Stokes lines of the Airy function are

L0 = [0,∞), (3.86)

L1 = ei2π/3[0,∞), (3.87)

L2 = e−i2π/3[0,∞) (3.88)

as shown in figure 24 and are exactly the same as we found in 2.4.4

S0

S1

S2

L0

L1

L2

2π
3

q-plane

Figure 24. The Stokes lines Lk of the Airy equation and the Stokes regions Sk

bounded by the Stokes lines in the comlex q-plane.

In deriving the equations (3.61) and (3.62):

A1(q,ℏ) = e−ζd/ℏS0+Ad(q,ℏ)

A2(q,ℏ) = −e−ζd/ℏS0−Ad(q,ℏ)
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the deformation of the paths Γ1 and Γ2 used is not the only possible deformation.
We can deform them by "pulling" the singular part through the cut between the
branch points to the other sheet, as shown in figure 25, and get

Γ1 = γr ∗ γ−
d and Γ2 = γr ∗ γ+

d (3.89)

ζd ζr

Γ1

ζd ζr

Γ2

Figure 25. Another deformation of paths Γ1 and Γ2. The blue lines indicate
that the path lies on the second Riemann sheet.

Then we have

A1(q,ℏ) =
∫

Γ1
dζ e−ζ/ℏÂ1(ζ)

=
(∫

γ−
d

+
∫

γr

)
dζ e−ζ/ℏÂ1(ζ)

=
∫

−γ−
dζ e−ζ/ℏÂ−

1 (ζ) +
∫ ∞

ζd

dζ e−ζ/ℏÂ+
1 (ζ) +

∮
ζd,ε

dζ e−ζ/ℏÂ1(ζ) (3.90)

+
∫ ζr

∞
dζ e−ζ/ℏÂ−

1 (ζ) +
∮

ζd,ε
dζ e−ζ/ℏÂ1(ζ) +

∫ ∞

ζr

dζ e−ζ/ℏÂ+
1 (ζ)

=
∫

γ−
dζ e−ζ/ℏ

(
Â+

1 − Â−
1

)
(ζ) +

∫ ∞

ζr

dζ e−ζ/ℏ
(
Â+

1 − Â−
1

)
(ζ) (3.91)

where we used that Â1 is integrable at ζs and ζr, γ− is the path shown in figure 23.
From figure 17 we see that Â−

1 has the negative imaginary singular part in (3.46)
(the parts l2 have the same determination) and by crossing to the another sheet Â+

1
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must have the positive imaginary singular part. Then as in (3.64)

(Â+
1 − Â−

1 )(ζ) = − 1
2πi

(
i− (−i)

) ∞∑
m=0

(−1)ma2m+1(m+ 1/2)(ζ − ζr)m−1/2

= − 1
2π (ζ − ζr)−1/2

∞∑
m=0

(−1)ma2m+1(2m+ 1)(ζ − ζr)m

= −Âr(ζ) (3.92)

(3.93)

Thus we get, after a change of variables ζ = ζ + ζd and ζ = ζ + ζr

A1(q,ℏ) = e−ζd/ℏ
∫

γ−
dζ e−ζ/ℏÂd(ζ + ζd) + e−ζd/ℏ

∫ ∞

0
dζ e−ζ/ℏ(−Ar)(ζ + ζr)

= e−ζd/ℏS0−
Ad(q,ℏ) − e−ζr/ℏS0Âr(q,ℏ) (3.94)

Now a similar calculation for A2 gives

A2(q,ℏ) = e−ζd/ℏ
∫

γ+
dζ e−ζ/ℏ(Â+

2 − Â−
2 )(ζ + ζd) + e−ζd/ℏ

∫ ∞

ζr

dζ e−ζ/ℏ(Â+
2 − Â−

2 )(ζ)

=e−ζd/ℏ
∫

γ+
dζ e−ζ/ℏ(−Âd)(ζ + ζd) + e−ζd/ℏ

∫ ∞

ζr

dζ e−ζ/ℏ(−Âr)(ζ + ζr)

= −e−ζd/ℏS0+
Ad(q,ℏ) − e−ζr/ℏS0Ar(q,ℏ) (3.95)

where Â+
2 has the positive imaginary singular part in (3.46) and Â−

2 has the negative
imaginary singular part, so at ζr

(Â+
2 − Â−

2 )(ζ) = −Âr(ζ) (3.96)

Since Âr(ζ + ζr) is holomorphic in a strip along [0,∞),

S0Ar(q,ℏ) = S0−Ar(q,ℏ) = S0+Ar(q,ℏ) (3.97)

we get

A1(q,ℏ) = S0−
(
e−ζd/ℏAd(q,ℏ) − e−ζr/ℏAr(q,ℏ)

)
(3.98)

A2(q,ℏ) = S0+
(

− e−ζd/ℏAd(q,ℏ) − e−ζr/ℏAr(q,ℏ)
)

(3.99)

Thus we have two different Borel sums of A1: (3.61) and (3.98) and two Borel sums



72

of Â2: (3.62) and (3.99)

A1(q,ℏ) = S0+
(
e−ζd/ℏAd(q,ℏ)

)
(3.100)

A1(q,ℏ) = S0−
(
e−ζd/ℏAd(q,ℏ) − e−ζr/ℏAr(q,ℏ)

)
(3.101)

A2(q,ℏ) = S0−
(

− e−ζd/ℏAd(q,ℏ)
)

(3.102)

A2(q,ℏ) = S0+
(

− e−ζd/ℏAd(q,ℏ) − e−ζr/ℏAr(q,ℏ)
)

(3.103)

As mentioned the before, the Stokes phenomena is given be the discontinuity
between the lateral Borel sums. As we can see from the above equations there is
a discontinuity between the lateral Borel sums: when we cross the Stokes line L0

from below the recessive point ζr (saddle ur) starts to contribute to the asymptotic
expansion. Why it didn’t contribute before we crossed the Stokes line? Below the
Stokes line L0, the recessive point ζr is "hidden" on the second Riemann sheet as
seen in figure 26. As the argument of q varies, the points ζd and zr rotate in the
complex ζ-plane and in the case arg q < 0 the recessive point ζr lies on the second
sheet of the Riemann surface defined by the branch point ζd.

arg q = 0

arg q > 0

arg q < 0

ζd ζr

ζd

ζd

ζr

ζr

1st sheet

2nd sheet

1st sheet

2nd sheet

Figure 26. Rotation the points ζd and ζr when crossing the Stokes line L0. The
red lines are the branch cuts.

Another way to see this is to look at how the steepest descent contours in the
u-plane behave as the argument of q varies. When arg q < 0 the contour γ1 cor-
responding to A1 in (3.2) can be deformed to the steepest descent contour going
through the dominant saddle ud (the intersection of the orange lines) as shown in
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figure 27, so there is no contribution from the recessive saddle ur.

When arg q > 0, 28, the deformation of the contour γ1 into a steepest descent
contour first goes through the recessive saddle ur (the intersection of the blue lines)
and then the dominant saddle ud (intersection of the orange lines). Thus both saddles
contribute to the asymptotic expansion. The transformation of these contours to the
ζ-plane are shown in figure 29.

-2 -1 1 2
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2
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-600
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600

Figure 27. arg q = −π/3 Left: the steepest descent contours on the u-plane.
Blue lines cross at the recessive saddle ur = −q1/2 and orange lines cross the
dominant saddle ud = q1/2. Right: Level curves.

3.4 Crossing of the Stokes line

What happens to our full solution of the Airy Schrödinger equation (3.4) when we
cross a Stokes line? Because the function Âr (3.64) is Borel summable along the
positive real axis it holds that

S0
(
e−ζr/ℏAr(q,ℏ)

)
= S0− (

e−ζr/ℏAr(q,ℏ)
)

= S0+ (
e−ζr/ℏAr(q,ℏ)

)
(3.104)

so the function A = A0 doesn’t change when crossing the Stokes line L0. On the
other hand, using the equations (3.100) - (3.103) the second linearly independent
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Figure 28. arg q = π/3 Left: the steepest descent contours on the u-plane.
Blue lines cross at the recessive saddle ur = −q1/2 and orange lines cross the
dominant saddle ud = q1/2. Right: Level curves.

solution B = iA1 − iA2 can be written as

B+(q,ℏ) = S0+ (2ie−ζd/ℏAd(q,ℏ) + ie−ζr/ℏAr(q,ℏ)
)

(3.105)

B−(q,ℏ) = S0− (2ie−ζd/ℏAd(q,ℏ) − ie−ζr/ℏAr(q,ℏ)
)

(3.106)

As we saw before, along the Stokes line L0 the asymptotics of B was given by
B ∼ −2ie−ζd/ℏAd, so crossing the Stokes line introduces the term ±iA. On the
anti-Stokes line between the Stokes lines L0 and L1 the functions A and B change
roles, A becomes dominant and B becomes recessive. Thus the crossing of the Stokes
line L1 yields B → B and A → A± iB. And similarly for L2. Thus the crossing of
a Stokes line L0 is given by


BI = BII + iAII

AI = AII
(3.107)

and of L1 
AII = AIII + iBIII

BII = BIII
(3.108)
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ζd

ζr

ζ-plane

1st sheet

2nd sheet

ζd

ζr

ζ-plane

1st sheet

2nd sheet

Figure 29. Transformations of the rotated steepest descent contours to the
ζ-plane. Left: arg q < 0. Right: arg q > 0.

and of L2 
AI = AIV + iBIV

BI = BIV
(3.109)

The above equations are the connection formula for the Airy-Schrödinger equation.
These can also be written in matrix form:

M0 =
1 0
i 1

 M1,2 =
1 i

0 1

 (3.110)

where 0,1,2 refer to the corresponding Stokes line.

Crossing of the branch cut along the negative real axis is given by the difference
on either side of the branch cut. Above the branch cut in the region III we have
A+ iB and below in the region IV A− iB. This leads to the connection formula

Mb =


AIII = −iBIV

BIII = −iAIV
(3.111)

and in the matrix form  0 −i
−i 0

 (3.112)

The four matrices M0,M1,M2 and Mb describe the monodromy around the turing
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arg q 0

-2 -1 1 2
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π
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arg q
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3
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1

2
arg qπ

Figure 30. Behaviour of steepest descent contours on the u-plane when q rotates
in the q-plane. Blue lines cross at the saddle ur = −q1/2 and the orange lines
cross at the saddle ud = q1/2.

point such that

M2MbM1M0 =
1 0

0 1

 = M−1
0 M−1

1 M−1
b M−1

2 (3.113)

3.5 Stokes regions

From figure 30 we can see that for the function

A0(q,ℏ) = − 1
2πi

∫
γ0
du e−xs(u,q) (3.114)

the path γ0 can only be deformed to go through the saddle −q1/2 when

−2π
3 < arg q < 2π

3 . (3.115)
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S0

S1

S2

L0

L1

L2

A0

q-plane

Figure 31. Extension A0 of Ar in the sector S2 ∪ S0

Thus the same asymptotic relation for A0 holds in this sector and we will denote it
A0 (figure 31):

A0 := extension of e−ζr/ℏAr in the sector |arg q| < 2π
3 . (3.116)

On the Riemann surface this means that the point ζd is "hidden" on the other
sheet and doesn’t contribute to the asymptotic expansion, that is, there is no Stokes
phenomena for Ar along L0. But when q crosses the Stokes line L1 or L2, ζd crosses
the junction of the two sheets around ζr and reappears on the same sheet as ζr and
starts to contribute to the asymptotic expansion. Now the roles of ζr and ζd have
changed, ζr is the dominant term and ζd recessive. Thus on the edges of the sector,
A0 is dominant and on the bisector L0 it is recessive.

After crossing the Stokes lines L1 and L2, ζr becomes the dominant term and
ζd recessive, until along the anti-Stokes line arg q = π they become same order of
magnitude and purely imaginary (q3/2 → −iq3/2) . This leads to an oscillating
behaviour rather than exponentially decaying/growing behaviour.
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ζd ζr

ζ-plane

arg q = 0

ζd

ζr

ζ-plane

arg q = π
6

ζd

ζr

ζ-plane

arg q = π
3

ζdζr

ζ-plane

arg q = 2π
3

ζd

ζr

ζ-plane

arg q = 5π
6

ζd

ζr

ζ-plane

arg q = π

Figure 32. Behaviour of the points ζr and ζd as q rotates. At arg q = 2π/3, ζd

appears on the junction of two sheets around ζr and becomes "visible".

Thus the asymptotic expansion of A0(q,ℏ) is given by

A0(q,ℏ) ∼ A0(q,ℏ) = e−ζr/ℏAr(q,ℏ)

= 1
2
√
π
q−1/4ℏ1/2 exp

(
−2

3q
3/2 1

ℏ

)(
1 +

∞∑
m=1

(−1)mbm(q)ℏm

)
, |arg q| < 2π

3
(3.117)

and

A0(q,ℏ) ∼ e−ζr/ℏAr(q,ℏ) + e−ζd/ℏAd(q,ℏ), 2π
3 < arg q < π or − 2π

3 < arg q < −π

(3.118)

When finding the explicit expansion we have to use q = |q| ei arg q, so the form
depends on the argument of q. On the anti-Stokes line arg q = π the expansion is
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given by (??):

A0(q,ℏ) ∼ e−iπ/4

2
√
π

|q|−1/4 ℏ1/2 exp
(
i
2
3x |q|3/2

)(
1 +

∞∑
m=1

(−i)mbm(|q|)ℏm

)

+ eiπ/4

2
√
π

|q|−1/4 ℏ1/2 exp
(

−i23x |q|3/2
)(

1 +
∞∑

m=1
imbm(|q|)ℏm

)

= 1
2
√
π

|q|−1/4 ℏ1/2

(ei( 2
3 x|q|3/2− π

4 ) + e−i( 2
3 x|q|3/2− π

4 )
)1 +

∑
m=2,4,6...

bm(|q|)ℏm


+ i

(
ei( 2

3 x|q|3/2− π
4 ) − e−i( 2

3 x|q|3/2− π
4 )
) ∑

m=1,3,5...

bm(|q|)ℏm


= 1√

π
|q|−1/4 ℏ1/2

 cos
(2

3x |q|3/2 − π

4

) ∞∑
m=0

b2m(|q|)ℏ2m

+ sin
(2

3x |q|3/2 − π

4

) ∞∑
m=0

b2m+1(|q|)ℏ2m−1

 (3.119)

For the function
A1(q,ℏ) = − 1

2πi

∫
γ1
du e−xs(u,q) (3.120)

we see that in the Stokes region S0 the path of steepest descent goes through both
saddles, or equivalently ζd and ζr lie on the same Riemann sheet in the ζ-plane,
thus both contributing to the asymptotic expansion. At arg q = π/3, ζr becomes
the dominant term and after q crosses the Stokes line L1 at arg q = 2π/3 the point
zd, which is maximally subdominant on L1, disappears on the other sheet since it
crosses the cut between the two sheets around the dominant point ζr. It reappears
after q crosses the Stokes line L0 since rotation by 4π/3 in the q-plane correspond to
2π rotation in the ζ-plane. Thus the the asymptotics of A1(q,ℏ) are

A1(q,ℏ) ∼ e−ζd/ℏAd(q,ℏ) − e−ζr/ℏAr(q,ℏ), q ∈ S0 (3.121)

and
A1(q,ℏ) ∼ −e−ζr/ℏAr(q,ℏ), 2π

3 < arg q < 2π. (3.122)

and
A1(q,ℏ) ∼ e−ζd/ℏAd(q,ℏ), −2π

3 < arg q < 0. (3.123)

Similarly for the function A2(q,ℏ) we have
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A2(q,ℏ) ∼ −e−ζd/ℏAd(q,ℏ) − e−ζr/ℏAr(q,ℏ), q ∈ S2 (3.124)

and
A2(q,ℏ) ∼ −e−ζr/ℏAr(q,ℏ), −4π

3 < arg q < 0. (3.125)

and
A2(q,ℏ) ∼ e−ζr/ℏAr(q,ℏ), 0 < arg q < 4π

3 . (3.126)

For the second solution of the Airy equation

B(q,ℏ) = iA2 − iA1 (3.127)

we had the asymptotic expansion

B(q,ℏ) ∼ −2ie−ζd/ℏAd

= 1√
π
q−1/4ℏ1/2 exp

(2
3q

3/2ℏ−1
)(

1 +
∞∑

m=1
bm(q)ℏm

)
(3.128)

Since the subdominant term becomes of equal magnitude with the dominant term at
the anti-Stokes lines arg q = ±π/3 the above relation is valid between these lines,
that is, in the sector

|arg q| < π

3 . (3.129)

The subdominant term has different coefficients depending on which direction the
Stokes line L0 is crossed.

3.6 Resurgence

From equation the equation (3.64)

Âr(ζ + ζr) = 1
2π

∞∑
m=0

(−1)mΓ(3m+ 1/2)
32m(2m)!Γ(m+ 1/2)q

−(6m+1)/4ζm−1/2 (3.130)
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the structure of simple resurgent function isn’t obvious, but taking the inverse Borel
transform as before we have

Ar(q,ℏ) = 1
2π

∞∑
m=0

(−1)mΓ(3m+ 1/2)
32m(2m)! q−(6m+1)/4ℏm+1/2

= 1
2
√
π
q−1/4ℏ1/2

(
1 +

∞∑
m=1

(−1)mΓ(3m+ 1/2)√
π32m(2m)! q−3m/2ℏm

)
(3.131)

and define the formal series

φr(ℏ) :=
∞∑

m=1

(−1)mΓ(3m+ 1/2)√
π32m(2m)! q−3m/2ℏm (3.132)

and denote the coefficients by cm. Now using the Legendre multiplication formula

22z−1Γ(z)Γ(z + 1/2) = Γ(1/2)Γ(2z). (3.133)

we have
Γ(3m+ 1/2) = Γ(1/2)Γ(6m)

26m−1Γ(3m) (3.134)

so

cm = (−1)mΓ(6m)
32m(2m)!26m−1Γ(3m)

= (−1)mΓ(6m)
32m42mmΓ(2m)Γ(3m) (3.135)

where we used (2m)! = Γ(2m+ 1) = 2mΓ(2m). Now using the Gauss multiplication
formula

n−1∏
k=0

Γ(z + k/n) = (2π)
1
2 (n−1)n

1
2 −nzΓ(nz) (3.136)

we have

Γ(6m) = (2π)− 1
2 (1−6)6− 1

2 +6m
6−1∏
k=0

Γ(m+ k/6)

= (2π)− 5
2 66m− 1

2 Γ(m)Γ(m+ 1/6)Γ(m+ 1/3)Γ(m+ 1/2)Γ(m+ 2/3)Γ(m+ 5/6),
(3.137)
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Γ(3m) = (2π)− 1
2 (1−3)33m− 1

2
3−1∏
k=0

Γ(m+ k/3)

= (2π)−133m− 1
2 Γ(m)Γ(m+ 1/3)Γ(m+ 2/3) (3.138)

and

Γ(2m) = (2π)− 1
2 (1−2)22m− 1

2
2−1∏
k=0

Γ(m+ k/2)

= (2π)− 1
2 22m− 1

2 Γ(m)Γ(m+ 1/2), (3.139)

so

cm = (−1)m

32m42mm
· (2π)− 5

2 +1+ 1
2 66m− 1

2

33m− 1
2 22m− 1

2
· Γ(m+ 1/6)Γ(m+ 5/6)

Γ(m)

= (−1)m66m

2π32m+3m42m+mm
· Γ(m+ 1/6)Γ(m+ 5/6)

Γ(m)

= (−1)m

2π

(3
4

)m Γ(m+ 1/6)Γ(m+ 5/6)
m! (3.140)

where we had
66m

2π32m+3m42m+m
=
(

66

35 · 44

)m

=
(3

4

)m

. (3.141)

Now

φr(ℏ) =
∞∑

m=1

(−1)m

2π

(3
4

)m Γ(m+ 1/6)Γ(m+ 5/6)
m! q−3m/2ℏm

= −3
4 · q

−3/2

2π

∞∑
m=0

(−1)m
(3

4

)m Γ(m+ 11/6)Γ(m+ 7/6)
(m+ 1)! q−3m/2ℏm+1. (3.142)

Taking the Borel transform we get

φ̂r(ζ) = Bφr(x) = −3
4 · q

−3/2

2π

∞∑
m=0

Γ(m+ 11/6)Γ(m+ 7/6)
Γ(m+ 2)(m)!

(
−3

4q
−3/2ζ

)m

= −3
4 · q

3/2

2π
Γ(11/6)Γ(7/6)

Γ(2)
Γ(2)

Γ(11/6)Γ(7/6)

[

×
∞∑

m=0

Γ(m+ 11/6)Γ(m+ 7/6)
Γ(m+ 2)(m)!

(
−3

4q
−3/2ζ

)m
]

= − 5
48q

−3/2F (11
6 ,

7
6 , 2; −3

4q
−3/2ζ), (3.143)
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where F is the Gauss hypereometric function

F (a, b, c ; z) = Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(n+ a)Γ(n+ b)
n!Γ(n+ c) zn (3.144)

and

Γ(11/6)Γ(7/6) = 5
6 · 1

6Γ(5/6)Γ(1 − 5/6) = 5
6 · 1

6
π

sin 5π
6

= 5
36 · 2π (3.145)

using the reflection formula

Γ(z)Γ(1 − z) = π

sin πz , z /∈ Z. (3.146)

Because we have c = 2 = 11
6 + 7

6 −1 = a+b−1, this leads to the Gauss hypergeometric
function having logarithmic dependence [27] (Theorem 5.1). Now the hypergeometric
function can be written as

F (a, b , a+ b− 1 ; z)

= Γ(a+ b− 1)
Γ(a− 1)Γ(b− 1)F (a, b, 2 ; 1 − z) log(1 − z) + 1

1 − z

Γ(a+ b− 1)
Γ(a)Γ(b)

+ Γ(a+ b− 1)
Γ(a− 1)Γ(b− 1)

∞∑
m=0

Γ(m+ a)Γ(m+ b)
Γ(a)Γ(b)(m+ 1)!

[
ψ(m+ a) + ψ(m+ b)

− ψ(m+ 2) − ψ(m+ 1)
]

(1 − z)m

m! (3.147)

where ψ is the logarithmic derivative of the gamma function, i.e. the digamma
function

ψ(z) = Γ′(z)
Γ(z) . (3.148)
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Now using equation (3.147) we get

φ̂r(ζ) =−5q−3/2

48

 Γ(2)
Γ(11/6)Γ(7/6)

1
1 + 3

4q
−3/2ζ

+ Γ(2)
Γ(5/6)Γ(1/6)F (11

6 ,
7
6 , 2; 1 + 3

4q
−3/2ζ) log(1 + 3

4q
−3/2ζ)

+ Γ(2)
Γ(5/6)Γ(1/6)

∞∑
m=0

Γ(m+ 11/6)Γ(m+ 7/6)
Γ(11/6)Γ(7/6)(m+ 1)!

[
ψ(m+ 11/6) + ψ(m+ 7/6)

− ψ(m+ 2) − ψ(m+ 1)
]

(1 + 3
4q

−3/2ζ)m

m!


= − 3q−3/2

2π · 4(1 + 3
4q

−3/2ζ)

− 5q−3/2

2π · 48F (11
6 ,

7
6 , 2; 1 + 3

4q
−3/2ζ)

(
log(ζ + 4

3q
3/2) + log(3

4q
−3/2)

)
− 5q−3/2

2π · 48

∞∑
m=0

Γ(m+ 11/6)Γ(m+ 7/6)
Γ(11/6)Γ(7/6)(m+ 1)!

[
ψ(m+ 11/6) + ψ(m+ 7/6)

− ψ(m+ 2) − ψ(m+ 1)
] (3

4

)m

q−3m/2 (ζ + 4
3q

3/2)m

m! (3.149)

(3.150)

Since the hypergeometric function F (a,b,c; z) is analytic when ζ /∈ [1,∞), we have
that
F (11

6 ,
7
6 , 2; 1 + 3

4q
−3/2ζ) is analytic when ζ /∈ [0,∞) and the series in the last term

converges for
∣∣∣ζ + 4

3q
3/2
∣∣∣ < 4

3q
3/2. Then denoting by R(ζ + 4

3q
3/2) the sum of the

series term and the analytic term at ζ = −4
3q

3/2 in the second term we have

φ̂r(ζ) = − 3q−3/2

2π · 4(1 + 3
4q

−3/2ζ) − 5q−3/2

2π · 48F (11
6 ,

7
6 , 2; 1 + 3

4q
−3/2ζ) log(ζ + 4

3q
3/2)

+R(ζ + 4
3q

3/2)

= α

2πi(ζ + 4
3q

3/2) + 1
2πiΦ̂r(ζ + 4

3q
3/2) log(ζ + 4

3q
3/2) +R(ζ + 4

3q
3/2) (3.151)

where the residuum is
α = −i (3.152)

and the minor is
Φ̂r(ζ) := −5iq3/2

48 F (11
6 ,

7
6 , 2; 3

4q
−3/2ζ) (3.153)
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Then we have the resurgence relation

σ−4/3q3/2φ̂r(ζ) = αδ + Φ̂r

= −iδ − 5iq3/2

48 F (11
6 ,

7
6 , 2; 3

4q
−3/2ζ)

= −i
(
δ + 5iq3/2

48 F (11
6 ,

7
6 , 2; 3

4q
−3/2ζ)

)

= −i (δ − φ̂r(−ζ)) . (3.154)

or equivalently in the formal model

σ−4/3q3/2φr(ℏ) = −i (1 + φr(−ℏ)) . (3.155)

where we used
Bφr(−ℏ) = −φ̂r(−ζ) (3.156)

Setting φ̃r(ℏ) := 1 + φr(ℏ) we get

σ−4/3q3/2φ̃r(ℏ) = −iφ̃r(−ℏ). (3.157)

Using equation (3.73):

Ad(q,ℏ) = i

2
√
π
q−1/4ℏ1/2

(
1 +

∞∑
m=1

bmℏm

)

= i

2
√
π
q−1/4ℏ1/2 (1 + φd(ℏ)) (3.158)

we get the relation
φd(x) = φ(−x). (3.159)

Thus we get the resurgence relations

σ−4/3q3/2φ̃r(ℏ) = −iφ̃d(ℏ) (3.160)

and
σ4/3q3/2φ̃d(ℏ) = −iφ̃r(ℏ) (3.161)
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As we can see the at the Borel singlularity of φ̃r we find the resurgence of φ̃d and
vice versa. Furthermore the resurgence relations

SπAr = Ar + e4/3q3/2/ℏσ−4/3q3/2Ar = Ar − ie4/3q3/2/ℏAd (3.162)

and

S0Ad = Ad + e−4/3q3/2/ℏσ4/3q3/2Ad = Ad − ie−4/3q3/2/ℏAr (3.163)

which are exactly the same Stokes phenomena we found before.
The above resurgence relations to show that we would have only needed to know

the asymptotic expansion of one solution to the Airy-Schrödinger equation and from
its properties in the Borel plane we would find the asymptotic series corresponding
to the other solution and the full Stokes phenomena across the Stokes lines. This
shows the power of resurgence, one only needs to find one perturbative asymptotic
expansion and its Borel analysis gives us the whole Stokes phenomena and the
connection formulas.
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q

V (q)

E > 0

a2a1

Figure 33. Harmonic oscillator potential with positive energy

4 Exact quantization condition

Resurgence and especially exact WKB is a great tool to solve the exact quantization
conditions for spectral problems due to being able capture the non-pertubative
tunneling effects to the energy spectrum. The exact quantization condition is given
by the Voros symbols 2.30 which are resurgent functions in ℏ and can be written
implicitly as

f(Vγ1 ,Vγ2 ,Vγ3 , . . . ) = 0 (4.1)

4.1 Harmonic oscillator

In this example we study the harmonic oscillator and how the exact WKB formalism
leads to the well known exact quantization condition. The harmonic oscillator
potential is of the form V (q) = q2 as shown in figure 33. Then the momentum is

p(q) = (E − V (q))1/2 = (E − q2)1/2 (4.2)

and the turning points are a1 = −
√
E and a2 =

√
E. Now consider the case where

the energy is postive, E > 0. Locally around the turning points the Stokes graph
is the Airy type Stokes graph and the Stokes graph of the harmonic oscillator with
positive energy is shown figure 34.

To derive the exact quantization condition we analytically continue the wave
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II IIII

a2a1

−

+

+

−

+

+

γ23

a2a1

Figure 34. The Stokes graph of the harmonic oscillator with E > 0. The red
line is a branch cut and blue cycle corresponds to the Voros symbol. The labeling
of Stokes lines is given by the boundary condition.

function form the region I to the region III. The connection formula is then
ψ+

a1,I

ψ−
a1,I

 = M+

ψ+
a1,II

ψ−
a1,II

 = M+Na1a2

ψ+
a2,II

ψ−
a2,II

 = M+Na1a2M+

ψ+
a2,III

ψ−
a2,III


= M+Na1a2M+Na2a1

ψ+
a1,III

ψ−
a1,III


=
1 i

0 1

V 1/2
γ12 i

0 V −1/2
γ12

1 i

0 1

V −1/2
γ12 i

0 V 1/2
γ12

ψ+
a1,III

ψ−
a1,III


=
1 i(1 + Vγ12)

0 1

ψ+
a1,III

ψ−
a1,III


=
ψ+

a1,III + i(1 + Vγ12)ψ−
a1,III

ψ−
a1,III

 (4.3)

Now issuing the boundary condition that we have a physical solution in the region I
we get that ψI ∼ ψ+

a1,I because ψ− is exponentially growing and ψ+ exponentially
deacying in I. This leads to the labeling of the Stokes lines shown in figure ?? and
that the wave function ψ−

a1,III is exponentially growing in the region III. To have a
physical solution the the region III the coefficient of ψ−

a1,III needs to be zero. This
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gives the exact quantization condition

1 + Vγ12 = 0 (4.4)

Because −1 = e(2n+1)π the quantization condition gives
∫

γ12
duQ(u,ℏ) = (2n+ 1)π = 2πi

(
n+ 1

2

)
(4.5)

Now the integral on the LHS is
∫

γ12
duQ(u,ℏ) = i

ℏ

∫
γ12
du p(u) +

∫
γ12
du
(
ℏQ1 + ℏ3Q3 + · · ·

)
(4.6)

Using the recursion relation (2.106) we have

Q−1 = ip = i
√
E − q2 (4.7)

Q1 = − i(2E + 3q2)
8(E − q2)5/2 (4.8)

Now
∫

γ12
du ℏQ1 = iℏ

8

∫
−γ12

du
2E + 3u2

(E − u2)5/2 (4.9)

The above integral can be calculated using residues at infinity: with a change of
variables u = 1/t we have

Res(f(u), u = ∞) = − Res
( 1
t2
f
(1
t

)
, t = 0

)
(4.10)

Now

1
t2
f
(1
t

)
= 2Et3 + 3t

(Et2 − 1)5/2 = (2Et3 + 3t)(−1)−5/2
(

1 + 5
2Et

2 +O(t4)
)

(4.11)

Since the above function is analytic at t = 0

Res
( 1
t2
f
(1
t

)
, t = 0

)
= 0 (4.12)
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and thus
∫

γ12
du ℏQ1 = 0 (4.13)

Similar calculations show that the integrals of the higher order terms also vanish.
Thus

∫
γ12
duQ(u,ℏ) = i

ℏ

∫
γ12
du p(u) = i

ℏ

∫
γ12
du

√
E − u2 (4.14)

Similarly the residues at infinity give

Res(
√
E − u2,∞) = − Res

(
i

t3

√
1 − Et2, 0

)
= i

E

2 (4.15)

and
∫

γ12
duQ(u,ℏ) = i

ℏ
2πi2E2 = −πi

ℏ
E (4.16)

Now from the exact quantization condition (4.5) we get

E = −2ℏ
(
n+ 1

2

)
(4.17)

Because E > 0 above is only valid for n = −1,− 2, . . . , therefore

Em = 2ℏ
(
m+ 1

2

)
, m = 0, 1, 2, . . . (4.18)

which is the familiar harmonic oscillator quantization.

4.2 The double well

In this example we move onto a little more complicated problem and consider the
symmetric double well where the potential is of the form

V (q) = (q2 − b)2, b > 0 (4.19)

and that the energy is positive, E > 0, as shown in figure 35. Now the turning points
are non-degenerate and given by q = ±

√
b±

√
E. the Stokes graph of the double

well can again be constructed using the Airy-type Stokes graphs at the turning points
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q

V (q)

E > 0

a1 a2 a3 a4

Figure 35. The symmetric double well potential with E > 0.

and it’s shown in figure 36.

The Stokes line between the turning points a2 and a3 corresponding to the
tunneling region is a bounded Stokes line. On a bounded Stokes line the Borel
summability of the WKB solutions breaks and the connection formula across this
Stokes line isn’t valid anymore. Furthermore, the Voros symbols Vγ12 and Vγ34 are
not Borel summable along the real axis, an imaginary ambiguity appears depending
on arg ℏ. The Stokes graph with arg ℏ > 0 is shown in figure 37.

Let’s consider the case arg ℏ > 0 and analytic continuation of the wave function
from the region I to III as shown in figure 37 with the boundary condition ψ ∼ ψ−

in I and the parity condition ψ(0) = 0 for an antisymmetric(odd) wave function and
ψ′(0) = 0 for a symmetric(even) wave function. Then the connection formula is

ψ+
a4,I

ψ−
a4,I

 = M−Na4a3M−Na3a4

ψ+
a4,III

ψ−
a4,III


=
 1 0
i(1 + Vγ34) 1

ψ+
a1,III

ψ−
a1,III


=
 ψ+

a4,III

i(1 + Vγ34)ψ+
a4,III + ψ−

a4,III

 (4.20)

Then the full solution is

ψIII = i(1 + Vγ34)ψ+
a4,III + ψ−

a4,III (4.21)
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+

Figure 36. The Stokes graph of the symmetric double well potential with
E > 0.

IIIIII

a4a3
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−

a2a1
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−

+

+

γ34γ12 γ23

Figure 37. The Stokes graphs of the double well with arg ℏ > 0 and the cycles
corresponding to the Voros symbols. The labeling is given by the boundary
condition ψI ∼ ψ−.
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In the antisymmetric case the parity condition gives

0 = ψIII(0)

= i(1 + Vγ34) exp
(∫ 0

a4
duQ(u,ℏ)

)
+ exp

(
−
∫ 0

a4
duQ(u,ℏ)

)
(4.22)

Since the momentum doesn’t change its determination between a2 and a4 the integral
in the exponential can be written as

∫ 0

a4
duQ(u,ℏ) =

(∫ a3

a4
+
∫ 0

a3

)
duQ(u,ℏ)

=
(∫ a3

a4
+1

2

∫ a2

a3

)
duQ(u,ℏ)

=
(1

2

∮
γ43

+1
2

1
2

∮
γ32

)
duQ(u,ℏ)

= −
(1

2

∮
γ34

+1
4

∮
γ23

)
duQ(u,ℏ)

(4.23)

where γ34 and γ23 are the cycles surrounding the turning points a3, a4 and a2, a3

respectively.

Then the parity condition becomes

0 = i(1 + Vγ34) + exp
(

−2
∫ 0

a4
duQ(u,ℏ)

)
= i(1 + Vγ34) + exp

((∮
γ43

+1
2

∮
γ32

)
duQ(u,ℏ)

)
= i(1 + Vγ34) + Vγ34V

1/2
γ23

⇐⇒ 0 = 1 + V −1
γ34 − iV 1/2

γ23

= 1 + Vγ12 − iV 1/2
γ23 (4.24)

where we used V −1
γ34 = Vγ12 .

In the symmetric case ψ′(0) = 0 we have

ψ′
III(0) = i(1 + Vγ34)

[
Q′(0)
Q3/2(0) +Q1/2(0)

]
exp

(∫ 0

a4
duQ(u,ℏ)

)

+
[
Q′(0)
Q3/2(0) −Q1/2(0)

]
exp

(
−
∫ 0

a4
duQ(u,ℏ)

)
(4.25)
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Since p′(q) = −1
2 − V ′(q) (E − V (q))−1/2 and the derivative of the potential vanished

at the origin p′(0) = 0. Thus Q′
−1(0) = 0 and using the recursion relation (2.106) we

find that Q′
2n+1(0) = 0 for all n = 0,1,2, . . . . Thus the parity condition reduces to

0 = i(1 + Vγ34) − exp
(

−2
∫ 0

a4
duQ(u,ℏ)

)
= i(1 + Vγ34) − Vγ34V

1/2
γ23

⇐⇒ 0 = 1 + V −1
γ34 + iV 1/2

γ23

= 1 + Vγ12 + iV 1/2
γ23 (4.26)

Thus the exact quantization condition is

1 + Vγ12 − iηV 1/2
γ23 = 0 (4.27)

where η = −1 in the antisymmetric(odd) case and η = 1 in the symmetric(even)
case.

4.2.1 Energy splitting

The symmetric double well is a great example where ordinary perturbation theory
fails and leads to a degenerate bound state which are not possible in one dimension.
The tunneling effects, which are non-perturbative(exponential) in nature, gives
the required non-degeneracy and these can be found using the exact quantization
condition.

We will calculate the energy and the energy splitting in first order (for more
detailed discussion see [28]). To make calculations more simple, we set b = 1 in the
symmetric double well potential, V (q) = (q2 − 1)2. The exact quantization condition
was

1 + Vγ12 − iηV 1/2
γ23 = 0 (4.28)

where the cycles γ12 and γ23 are show in figure 37. The Voros symbol Vγij
in leading
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order is

Vγij
= exp

(∮
γij

duQ(u,ℏ)
)

= exp
(∮

γij

du
(
i

ℏ
p(u) + ℏQ1(u) + ℏ3Q3(u) + · · ·

))

= exp
(
i

ℏ

∮
γij

du
(
p(u) +O(ℏ2)

))

= exp
(1
ℏ
Sγij

)
+O(ℏ2) (4.29)

The action integrals Sγ12 and Sγ23 can be written as [28](derivation for the first one
in Appendix D)

Sγ12(E) = iπ

2 E 2F1

(1
4 ,

3
4 ,2;E

)
(4.30)

Sγ23(E) = − π√
2

(1 − E) 2F1

(1
4 ,

3
4 ,2; 1 − E

)
(4.31)

(4.32)

where 2F1 is the hypergeometric function [13]. Then in leading order Sγ12 is

Sγ12(E) ∼ iπ

2 E (4.33)

and Sγ23

Sγ23(E) ∼ − π√
2Γ(7/4)Γ(5/4)

= −8
3 (4.34)

so the Voros symbols in leading order are

Vγ12 ∼ exp
(
iπ

2ℏE
)

(4.35)

Vγ23 ∼ exp
(

− 8
3ℏ

)
(4.36)

Perturbatively the quantization condition is 1 + Vγ12 = 0 and it gives

2πi
(
n+ 1

2

)
= 1

ℏ
Sγ12 ∼ iπ

2ℏE 2F1

(1
4 ,

3
4 ,2;E

)
∼ iπ

2ℏE (4.37)
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from which we find
E(n,ℏ) ∼ 4ℏ

(
n+ 1

2

)
(4.38)

Because there is no dependence on the parity of the wave functions the perturbative
ground state is degenerate.

We have to take into account the non-perturbative part −iηV 1/2
γ23 in the quanti-

zation condition to get the tunneling effects on the ground state and therefore the
non-degeneracy. We’ll make an ansazt for the energy

E(n,ℏ) = 4ℏ
(
n+ 1

2

)
+ ε (4.39)

where ε is a small parameter such that the energy deviates from that of the pertur-
bative harmonic energy. Then the Voros symbol Vγ12 can be written as

Vγ12 ∼ exp
(
iπ

2ℏE
)

= exp
(
iπ

2ℏ

(
4ℏ
(
n+ 1

2

)
+ ε

))
= exp

(
2πi

(
n+ 1

2

))
exp

(
iπ

2ℏε
)

= − exp
(
iπ

2ℏε
)

(4.40)

Now the exact quantization condition becomes

0 = 1 + Vγ12 − iηV 1/2
γ23

∼ 1 − exp
(
iπ

2ℏε
)

− iη exp
(

− 4
3ℏ

)
(4.41)

from which we find that

ε = 2ℏ
iπ

log
(
1 − iηe−4/3ℏ

)
∼ 2ℏ
iπ

(
−iηe−4/3ℏ

)
= −2ℏ

π
ηe−4/3ℏ (4.42)

and that the energy in leading order is

E(n,ℏ) ∼ 4ℏ
(
n+ 1

2

)
− 2ℏ

π
ηe−4/3ℏ (4.43)
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Now the energy splitting between even(η = 1) and odd(η = −1) states is

∆E(n,ℏ) = Eodd(n,ℏ) − Eeven(n,ℏ) ∼ 2ℏ
π
e−4/3ℏ (4.44)

4.2.2 Stokes phenomena

The Stokes phenomena of the Voros symbols of the double well shown in figure 38
are described by the DDP formula 2.31

Sθ− [Vγ12 ] = Sθ+ [Vγ12 ]
(
1 + Sθ+ [Vγ23 ]

)−(γ23,γ12)
(4.45)

Sθ− [Vγ34 ] = Sθ+ [Vγ34 ]
(
1 + Sθ+ [Vγ23 ]

)−(γ23,γ34)
(4.46)

+

−

−

−

−

+

+

−

+

+

γ34γ12 γ23
1.

2.

3.

4.

Figure 38. The Stokes graph of the double well with cycles γ12,γ23 and γ34.
The small circles indicate the crossing of cycles.

The intersection numbers are calculated using the rules given in 13 and shown
pictorially in figure 39

(γ23,γ12) = +1 (4.47)

(γ23,γ34) = −1 (4.48)
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1. 2.

3. 4.

γ12

γ23

γ12

γ23

γ34

γ23

γ12

γ23

(γ23, γ12) = 0 (γ23, γ12) = +1

(γ23, γ34) = 0 (γ23, γ34) = −1

Figure 39. The calculation of intersection numbers of double well cycles
pictorially.

Then the DDP formula becomes

Sθ− [Vγ12 ] = Sθ+ [Vγ12 ]
(
1 + Sθ+ [Vγ23 ]

)−1
(4.49)

Sθ− [Vγ34 ] = Sθ+ [Vγ34 ]
(
1 + Sθ+ [Vγ23 ]

)+1
(4.50)

or using the Stokes automorphism

S [Vγ12 ] = Vγ12 (1 + Vγ23)−1 (4.51)

S [Vγ34 ] = Vγ34 (1 + Vγ23)+1 (4.52)

These resurgence relations show that the perturbative expansions of the Voros
symbols Vγ12 and Vγ34 are related to the non-perturbative expansion of the Voros
symbol Vγ23 .
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5 Conclusions and outlook

The main goal of this thesis was to learn the basics of resurgent perturbation theory
starting with an introductory approach to asymptotics, continuing to basics of the
resurgence theory and as an application examine the quantum resurgence of the
Airy-type Schröringer equation and the exact quantization conditions arising from
the exact WKB analysis. The Airy equation is a standard example in asymptotics
and it is also great example in resurgence and a important case in exact WKB.

Why resurgence theory? The resurgence theory gives us a tool to make sense of
divergent series and resum them via Borel resummation and makes the theory of
asymptotics more rigorous. The Stoke phenomena is fully encoded in the singularities
of the Borel plane. Furthermore, via resurgence we can generate the non-perturbative
physics from perturbative information. For instance the exact WKB gave us a
method to find the non-perturbative level splitting in the symmetric double well,
which is not possible via standard perturbation theory. More tools in resurgence
which go beyond the scope of this thesis are found using transseries [29] and alien
calculus [20, 21, 30] and in exact WKB the case of degenerate turning points [22, 31,
32].

Some of the problems and issues encountered in resurgence theory were that
the closure of the algebra of resurgent functions was proved only in cases where
the location of Borel singularities were known a priori. Furthermore the resurgence,
meaning endless continuability, of the WKB wave functions isn’t proved as mentioned
in [19, 22, 24]. However Nikolaev mentions in [24] that a proof could be found. More
practical problems can be found from the fact the full behaviour of the coefficients
of the perturbative expansion is needed to prove asymptocity and the 1-Gevrey class
growth condition.

One of the main difficulties writing this thesis was the mathematical complexity
of resurgence and the theory being scattered mainly in research papers and many
results given without definitive proofs. As such we will end this thesis with a list of
recommended references for a further study resurgence theory. For asymptotics the
book by Bender and Orszag [4] is a great start. Perhaps the most rigorous works are
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done by Sauzin and a great, but mathematically rigorous, introduction is found in
[21]. More friendly introductions which have more details on alien calculus can be
found in [20, 30, 33]. For exact WKB we recommend [19, 25, 32, 34].
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A Asymptotics

A.1 What are asymptotic expansions?

Asymptotic expansions are series expansions that may divergent or convergent.
Examples of asymptotic series were discovered in the early 18th century but the
theory of asymptotic expansions was started by Stieltjes and Poincaré in late 19th
century [16, 35]. The definition given by Poincaré in 1886 was [36]: A divergent
series

A0 + A1

x
+ A2

x2 + · · · + An

xn
+ · · · (A.1)

where the sum of the first n+ 1 terms is Sn, represents asymptotically a function
J(x) if

xn(J − Sn) (A.2)

tends to 0 if x grows indefinitely. In fact, if x is sufficiently large, we have

xn(J − Sn) < ε,

ε very small. The error
J − Sn = ε

xn
, (A.3)

associated with the function J by taking the first n+ 1 terms of the series, is then
extremely small.

In this thesis we will use a little modified definition of asymptotic expansions
than that of originally given by Poincaré. First, we will define notation describing
the relative behaviour of two functions.

Definition A.1. Let z0 ∈ C and f, g : C → C be complex functions, such that
g(z) ̸= 0 in a neighbourhood of z0, except possibly at z0. Then we define the following
relations:

i) Asymptotically bounded: We say that

f(z) = O(g(z)) as z → z0, (A.4)
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if there exists constants C ≥ 0 and δ > 0 such that

|f(z)| ≤ C |g(z)| whenever |z − z0| < δ, (A.5)

or equivalently if ∣∣∣∣∣f(z)
g(z)

∣∣∣∣∣ is bounded. (A.6)

ii) Asymptotically smaller: We say that

f(z) = o(g(z)) as z → z0, (A.7)

or
f(z) ≪ g(z) as z → z0, (A.8)

if for all ε > 0 there is δ > 0 such that

|f(z)| ≤ ε |g(z)| whenever |z − z0| < δ, (A.9)

Or equivalently if
lim

z→z0

f(z)
g(z) = 0. (A.10)

iii) Asymptotic: For f, g : R → R we say that

f(x) ∼ g(z) as x → x0, (A.11)

if the relative error between f and g goes to zero as x → x0, that is,

f(x) − g(x) = o(g(x)) as x → x0, (A.12)

or equivalently
lim

x→x0

f(x)
g(x) = 1. (A.13)

For example we have

a) z sin z = O(z), z → 0

b) z = o(z−1), z → 0

c) ex + x ∼ ex, x → +∞
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d) x2 ≁ x, x → 0

e) x ≁ 0, x → 0. Only the zero function can be asymptotic to zero.

If we have any sequence functions where the next term vanishes faster than the
previous one, we will call it an asymptotic sequence:

Definition A.2 (Asymptotic sequence). A sequence {ϕ0(z), ϕ1(z), ϕ2(z), . . . } of
complex functions with a limit point z0 ∈ C ∪ {∞} is an asymptotic sequence if
there exists neighbourhood U of z0 such that ϕn(z) ̸= 0, z ∈ U \ {z0} and for all n

lim
z→z0

ϕn+1

ϕn

= 0. (A.14)

For example the sequence {zn} is an asymptotic sequence for z0 = 0 and the
sequence {1/zn} is an asymptotic sequence for z0 = ∞.

Now we can give the definition of an asymptotic expansion. First we give the
definition for real valued functions of real variable x. There will be two equivalent
definitions. The case for complex valued functions of a complex variable z will be
discussed afterwards.

Definition A.3 (Asymptotic expansion). Let {ϕn} be an asymptotic sequence for
x → x0. The formal series ∑n anϕn is an asymptotic expansion of f(x) to N as
x → x0 if for all N

lim
x→x0

f(x) −∑N
n=0 anϕn(x)

ϕN(z) = 0 (A.15)

and we write
f(x) ∼

N∑
n=0

anϕn(x) x → x0. (A.16)

From the equation (2.18) it can be seen that if an asymptotic expansion for a
given asymptotic sequence {ϕn} exists, the coefficients an are uniquely determined
inductively by

aN = lim
x→x0

f(x) −∑N−1
n=0 anϕn(x)

ϕN(x) (A.17)

Thus the asymptotic expansion of a function f(x) is unique.
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Although the asymptotic expansion of a function f(x) is unique, the asymptotic
expansion isn’t unique to the function f(x). An asymptotic expansion is asymptotic
to class of functions differing by subdominant, or exponentially small, function. This
can be seen by the following example:

If a function f(x) has an asymptotic expansion f(x) ∼ ∑
anx

n, x → 0, then the
function g(x) = f(x)+e−1/x has the same asymptotic expansion g(z) ∼ ∑

anx
n, x →

0, since e−1/x/xn → 0, x → 0, i.e. e−1/x = o(xn), x → 0.

Next we will give and prove an equivalent definition of an asymptotic expansion.

Proposition A.4 (Equivalent asymptotic expansion definition). Let {ϕn} be an
asymptotic sequence for x → x0. The formal series ∑n anϕn is an asymptotic
expansion of f(x) to N as x → x0 if and only if there exists constant KN > 0 such
that for all N ∣∣∣∣∣f(x) −

N−1∑
n=0

anϕn(x)
∣∣∣∣∣ ≤ KN |ϕN(x)| (A.18)

Proof. Let f(x) have an asymptotic expansion. Then there exist a neighbourhood of
x0 for every ε > 0 such that

∣∣∣∣∣f(x) −
N−1∑
n=0

anϕn(x)
∣∣∣∣∣ =

∣∣∣∣∣f(x) +
N∑

n=0
anϕn(x) + aNzϕN(x)

∣∣∣∣∣
≤
∣∣∣∣∣f(x) +

N∑
n=0

anϕn(x)
∣∣∣∣∣︸ ︷︷ ︸

≤ε

+ |aNϕN(x)|

≤ (|aN | + ε) |ϕN |

= KN |ϕN | . (A.19)

Conversely if the equation (??) holds then dividing by |ϕN−1| and taking the
limit x → x0 we get

∣∣∣∣∣f(x) −∑N−1
n=0 anϕn(x)
ϕN−1

∣∣∣∣∣ ≤ KN

∣∣∣∣∣ ϕN

ϕN−1

∣∣∣∣∣ −→ 0, x → x0 (A.20)

from which we get the equation (2.18).
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Remark A.5. i) The Taylor expansion of a function f(x) with an = f (n)(x0)/n!
and ϕn(x) = (x− x0)n fulfills our definition of an asymptotic expansion. Thus
the asymptotic expansion can be a convergent expansion.

ii) On the other hand, the Fourier expansion, which is a convergent expansion, is
not an asymptotic expansion.

iii) The concept of asymptoticity differs from the concept of convergence such that
we are interested in what happens to the partial sum ∑N

j=0 anϕn when x → x0

compared to when N → ∞.

iv) Convergence is a property of the expansion coefficients and convergence can
be proved without knowing the function the expansion converges.

v) Asymptoticity is a relative property of the expansion coefficients and the
function which the expansion is asymptotic to. Asymptoticity of an expansion
doesn’t mean anything without knowing the function it is asymptotic to.

Asymptotic expansions on the complex plane

Why do we need a different definition in the complex plane? Let’s take a look at
the behaviour of the function sinh(1/z) = 1

2(e1/z − e−1/z) when z → 0. If z ∈ [0,∞),
then we can approach 0 only along one path z → 0+and our definition ?? gives the
following asymptotic relation:

sinh(1/z) ∼ 1
2e

1/z as z → 0+. (A.21)

Now, on the other hand, if z ∈ C then z → 0 means that z can approach 0 along all
possible paths in the complex plane - even if our starting point is on the positive
real axis. So for the four paths z = t, z = −t, z = it and z = −it with t ∈ [0,∞)
our definition gives the following asymptotic relations:

sinh(1/z) ∼ 1
2e

1/z as z → 0, z = t (A.22)

sinh(1/z) ∼ −1
2e

−1/z as z → 0, z = −t (A.23)

sinh(1/z) ∼ −i sin
(1
t

)
as z → 0, z = it (A.24)

sinh(1/z) ∼ i sin
(1
t

)
as z → 0, z = it. (A.25)
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This means that the our function sinh(1/z) doesn’t have a unique asymptotic behav-
ior in the complex plane as z → 0.

To make the asymptotic relation unique in the complex plane, we have to restrict
the paths along which z → z0 to a sector of validity D(θ1, θ2), as shown in the figure
1, where the angles θ1 and θ2 depend on the functions that are asymptotic.

Definition A.6 (Asymptotic relation in the complex plane). Let z0 ∈ C and
f, g : C → C be complex functions, such that g(z) ̸= 0 in a neighbourhood of z0,
except possibly at z0. Then we say that

f(z) ∼ g(z) as z → z0, (A.26)

if
f(z) − g(z) = o(g(z)) as z → z0, (A.27)

such that z → z0 along paths that lie in the sector of validity D(θ1, θ2) that depend
on the functions f and g. An example is shown in figure 1.

Re

Im

z0

D(θ1, θ2)

θ2

θ1

Figure 40. The sector of validity D(θ1, θ2), between angles θ1 and θ2, where
the asymptotic relation is valid. The paths along which z → z0 must lie in this
region.

For our example of sinh(1/z) the asymptotic relations in the equations (A.22)-
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(A.25) are valid in the regions |arg z| < π/2, π/2 < arg z < 3π/2, arg z =
π/2, arg z = −π/2 respectively and the relations are unique in these regions.

Now we are ready to define of the asymptotic expansions in the complex plane:

Definition A.7 (Asymptotic expansion in the complex plane). Let f : C → C be a
comlex function and {ϕn} be an asymptotic sequence for z → z0. The formal series∑

n anϕn is an asymptotic expansion of f(z) to N as z → z0 in the sector of validity
D(θ1,θ2), as shown in figure 40, if and only if there exists constant KN > 0 such that
for all N ∣∣∣∣∣f(z) −

N−1∑
n=0

anϕn(z)
∣∣∣∣∣ ≤ KN |ϕN(z)| . (A.28)
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B Singularities, branches, branch cuts and branch
points of functions

B.1 Singularities

Definition B.1 (Singular point of a holomorphic function). Let f : U → C be
holomorphic in the open set U ⊂ C. We say that a boundary point ω ∈ ∂U is a
singular point of f if there doesn’t exist a open neighbourhood V of ω, a function g

holomorphic in V and a open subset U ′ ⊂ U such that ω ∈ ∂U ′ and

f|U ′∩V = g|U ′∩V . (B.1)

We can further classify singularities into isolated and non-isolated singularities
and branch points (section B.4).

Definition B.2 (Isolated singularity). A point z0 ∈ C is an isolated singularity of a
function f if f is analytic in the punctured disk B∗(z0,r) for some r > 0.

Definition B.3 (Non-isolated singularity). A point z0 ∈ C is a non-isolated sin-
gularity of a function f if z0 is a singularity of f and for every r > 0 there exists
another singularity of f in the disk B∗(z0,r). z0 is an accumulation point of isolated
singularities

Definition B.4 (Types of isolated singularities). Let z0 ∈ C be an isolated singularity
of a function f . z0 is

(i) a removable singularity if there exists a function g analytic on B(z0,r) and
g(z) = f(z) for every z ∈ B∗(z0,r).
Or if an = 0 when n < 0 in the Laurent series expansion of f

(ii) a pole of f if there exists a function g analytic on. B(z0,r), g(z0) ̸= 0 and
n ∈ N such that f(z) = g(z)

(z−z0)n for all z ∈ B∗(z0,r). The order of the pole is
min

{
n ∈ N : f(z) = g(z)

(z−z0)n

}
.

Or if an ̸= 0 for finitely many n < 0 in the Laurent series expansion.
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(iii) an essential singularity if it is neither a removable singularity nor a pole.
Or if an ̸= 0 for infinitely many n < 0 in the Laurent series expansion.

Example B.5. i) The point z = 0 is a removable singularity of the function
f(z) = sin z

z
since

sin z
z

= z−1
(
x− 1

3!z
3 + 1

5!z
5 + · · ·

)
(B.2)

= 1 − 1
3!z

2 + 1
5!z

4 + · · · (B.3)

ii) The point ζ = ω is a third order pole of

1
(ζ − ω)3 . (B.4)

iii) The point z = 0 is an essential singularity of the function

f(z) = e1/z (B.5)

since it is neither a pole or a removable singularity.

B.2 Branches of functions

Let f : U → C be holomorphic in the open set U ⊂ C. If f is not injective, it doesn’t
have an inverse, that is, there doesn’t exist a function g such that f(g(z)) = z ∀z ∈ U .
An example of such function is the complex exponential function for which the familiar
inverse, the logarithm, isn’t well-defined on C. But if we were to define the logarithm
on a open connected set D such that the exponential function becomes injective, the
complex logarithm becomes well defined. A way to do such a restriction is to define
D as D = {z ∈ C : arg(z) ∈ (θ, θ + 2kπ], k ∈ R}. Then exp(log(z)) = z, ∀z ∈ D.

Noticing that the chosen domain D is not unique (in fact there are uncountable many
choices), we’ll call the complex logarithm defined on D a branch of the logarithm.
This leads to the following definition

Definition B.6 (Branch of a (inverse) function). Let f : U → C be holomorphic
in the open set U ⊂ C and D ⊂ f(U) be a domain (open and connected). Then a
function g : D → U is a branch of the inverse function f−1 if g is continuous on D

and f(g(z)) = z for all z ∈ D
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B.3 Branch cuts

Let f(z) = arg(z), that is, the argument of a complex number. Since the complex
exponential is 2πi-periodic any complex number z has multiple different representa-
tions in polar form, z = rei arg z. In order to have only a single representation of z a
common solution is to limit the range of arg z to an interval (θ − 2π, θ]. But as a
consequence, this makes the function arg z discontinuous along the line eiθ[0,∞):

Let θ = π, so arg z ∈ (−π, π]. Let z be in the negative real axis, z = −x and
let’s try to approach z along a line parallel to the imaginary axis. Now

lim
ε→0

(
arg(−x+ iε) − arg(−x− iε)

)
= π − (−π) = 2π ̸= 0. (B.6)

Thus the argument function is not continuous at any point on the negative real axis.
This line of discontinuity is called a branch cut of the function, and we will define it
as follows:

Definition B.7 (Branch cut). A branch cut of a holomorphic multi-valued function
is a curve in the complex plane across which the function is discontinuous. Most
commonly the the branch cut is chosen along the negative real axis and choosing
this branch as a principal branch of the function but the branch cut doesn’t need to
be a straight line.

Equivalently we can say that a branch cut for a multivalued-function f is a curve
in the plane on whose complement we can pick a holomorphic branch of f . Thus a
branch cut must contain all the branch points

Example B.8. i) The square root function
√
z and the logarithm log z can have

a branch cut along any direction but the usual choice is the negative real axis
and this is called the principal branch.

ii) The function
√

1 − z2 has a branch cut [−1,1].
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B.4 Branch points

Definition B.9 (Branch point). The following are equivalent definitions:

i) A branch point of a multi-valued function f is a point z such that there doesn’t
exist an open neighbourhood U of z on which the function f has a single-valued
branch.

ii) A branch point of a multi-valued function f is a point z such that if the function
f is n-valued at that point, all of its neighbourhoods contain a point at which
the function has more than n−values.

iii) A point z is a branch point of a function f if analytically continuing f along a
closed path around the point z leads to a different function.

Let’s illustrate these definitions with an examples

Example B.10. i) Let f(z) =
√
z. Then z = 0 is a branch point of f : The

square root function is single-valued at the origin, f(0) = 0. But if we take
a neighbourhood of 0, B(0, ε), then for any ω ∈ B(0, ε),

√
ω =

√
reiθ/2 =

√
rei( θ

2 +nπ) =
√
rei θ

2 (−1)n, n ∈ N. Thus
√
z is two-valued at any ω ∈ C \ {0}.

On the other hand if we analytically continue
√
z along a circle path around

z = 0 starting at z = 1, that is arg z goes from 0 to 2π, we get
√

1 = 1 ̸= −1 =
eiπ = ei 2π

2 =
√

1.

ii) Let f(z) = log z. Taking any branch of the logarithm arg z ∈ (θ, θ + 2π], all
the neighbourhoods of z = 0 contain a point on the branch cut and therefore
we can’t define single-valued branch of f .

iii) Let f(z) = e−z1/k . z = 0 is an essential singularity of f and a branch point
since analytic continuation around the origin yields a different function.

If we compare the to examples above, we notice that in the case of the square
root that going around the origin twice gets us to the same function we started
with and with the exponential going around k times gives original function. But
with the logarithm we won’t ever get to the same function. This leads us to think
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that there are different types of branch points. Indeed, there are three different
classes of branch points, algebraic, transcendental and logarithmic branch points.
The branch point of a square root is algebraic, of the logarithm logarithmic and of
the exponential transcendental. The transcendental branch point differs from the
algebraic because it is also an essential singularity.
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C Riemann surfaces

C.1 What are Riemann surfaces?

Let’s consider the complex square root function f(z) =
√
z. The point z can

be written in polar form as z = reiθ. Because of the periodicity of the complex
exponential function the same point can also be written as z = reiθ+2πim for any
m ∈ Z. Now taking the square root of z we get

√
z =

√
rei θ

2 and
√
z =

√
rei θ

2 +πim,

That is, the square root is multi-valued and therefore not well-defined. This issue
lead to the definition of branches of inverse functions.

Another way to make the square root a well-defined function is to replace the
complex plane with a new domain which consists of two copies of the complex plane
"glued together", such that, eiθ and eiθ+2πim are now different points on this new
domain. This new domain is called the Riemann surface (of the square root) and the
two copies are called sheets of the Riemann surface. Now on the Riemann surface,
the square root function is single-valued.

C.2 Examples of Riemann surfaces

i) the simplest Riemann surface is the complex plane C

ii) Riemann sphere: compactification of the complex plane C ∪ {∞}. The point
∞ can be considered as the north pole of the Riemann sphere

iii) square root: Two sheeted Riemann surface

iv) logarithm: Infinite sheeted Riemann surface

v) torus: The Riemann surface of the double well, V = (q2 − 1)2 is a torus since
p2(z) − (E − V (z)) = 0 is a genus g = 1 elliptic curve.
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C.3 Abstract Riemann surfaces

Riemann surfaces are two dimensional manifolds with an additional complex structure:
Let X be a two-dimensional manifold (a space that locally looks like the Euclidean

space R2). A complex chart on X is the pair (ϕ, U), where the coordinate map
ϕ : U ⊂ X → V ⊂ C is a homeomorphism and ⋃

i Ui is a covering of X. Two
complex charts are (ϕi, Ui) are holomorphically compatible if the transition map
ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is biholomorphic. A complex atlas is the
collection of all holomorphically compatible charts, {(ϕi, Ui) : X ⊂ ⋃

i Ui}. Two
complex atlases are called analytically equivalent if every chart of the two atlases are
holomorphically compatible with each other. Finally, a complex structure on X is
the equivalence class of analytically equivalent atlases.

Definition C.1 (Riemann surface). A Riemann surface is the pair (X,Σ), where X
is a connected two-dimensional manifold and Σ is a complex structure on X.

For more details about abstract Riemann surfaces can be found in [37].

C.4 Riemann surface as a universal covering

Consider the possibly infinite discrete set subset Γ ⊂ C. Then we can define a
Riemann surface as a universal covering of C \ Γ. Consider the set P of all paths
starting from the origin and lying in C \ Γ and define an equivalence relation ∼ on
P as homotopy with fixed endpoints: γ ∼ γ0 if and only if there exist a continuous
function H : [0,1] × [0,1] → C \ Γ such that

H(t,0) = γ0(t), H(t,1) = γ(t) (C.1)

H(0,s) = γ0(0), H(1,s) = γ0(1) (C.2)

Then the Riemann surface R is defined as the set of all equivalence classes

R := P/ ∼ (C.3)

with the covering map

π : R → C \ Γ (C.4)

π(ζ) = γ(1) (C.5)
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where γ ∈ P is a representative of the equivalence class ζ = [γ] and the complex
structure is the complex structure of C \ Γ pulled back by π.
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D Double well action integral

In the double well potential V (q) = (q2 − 1)2 the action in integral is

Sγ12 = i
∮

g12
du p(u) = i

∮
g12
du
√
E − (u2 − 1)2 (D.1)

Expanding the the square root in powers of E it can written as

√
E − (u2 − 1)2 = i(u2 − 1)

(
1 − E

(u2 − 1)

)

= i
∞∑

n=0

(−1)nΓ(3/2)
n!Γ(3/2 − n)(u2 − 1)2n−1E

n (D.2)

Then the action integral is

Sγ12 = i2
∞∑

n=0

(−1)nΓ(3/2)
n!Γ(3/2 − n)E

n
∮

g12
du

1
(u2 − 1)2n−1 (D.3)

The integrand can be written as

1
(u2 − 1)2n−1 = 1

(u+ 1)2n−1(u− 1)2n−1 (D.4)

and since u = −1 is between the turning points = −
√

1 ±
√
E it is a (2n − 1)th

order pole for n ≥ 1. Letting m = 2n− 1 the residue at u = −1 is

Res(f,− 1) = 1
(m− 1)! lim

u→−1

dm−1

dum−1

(
(u− 1)−m

)
(D.5)
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and where the derivatives are

dm−1

dum−1

(
(u− 1)−m

)
= dm−2

dum−2

(
−m(u− 1)−m−1

)
= dm−3

dum−3

(
(−1)2m(m+ 1)(u− 1)−m−2

)
...

= dm−m

dum−m

(
(−1)m−1m(m+ 1) · · · (m+ (m− 2))(u− 1)−m−(m−1)

)
= (−1)m−1m(m+ 1) · · · (2m− 1)(u− 1)−2m+1

(D.6)

Using the formula

x(n) = x(x+ 1)(+2) · · · (x+ n− 1) = Γ(x+ n)
Γ(n) (D.7)

the residue is

Res(f,− 1) = 1
(m− 1)! lim

u→−1

(−1)m−1Γ(2m− 1)
Γ(m)(u− 1)2m−1

= Γ(4n− 3)
Γ(2n− 1)2(−2)4n−3 (D.8)

and the action integral becomes

Sγ12 = i2
∞∑

n=1

(−1)nΓ(3/2)
n!Γ(3/2 − n)E

n −2πiΓ(4n− 3)
Γ(2n− 1)2(−2)4n−3

= 2πiΓ(3/2)
∞∑

n=0

(−1)n+1Γ(4n+ 1)En+1

(n+ 1)!Γ(1/2 − n)Γ(2n+ 1)2(−2)4n+1

= 2πiΓ(3/2)E
2

∞∑
n=0

(−1)nΓ(4n+ 1)En

(n+ 1)!Γ(1/2 − n)Γ(2n+ 1)224n

(D.9)

Using the Gauss multiplication formula

n−1∏
k=0

Γ(z + k/n) = (2π)
1
2 (n−1)n

1
2 −nzΓ(nz) (D.10)
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we have

Γ(4n+ 1) = 4n(2π)−3/244n−1/2Γ(n)Γ(n+ 1/4)Γ(n+ 1/2)Γ(n+ 3/4) (D.11)

and
Γ(2n+ 1) = 2n(2π)−1/222n−1/2Γ(n)Γ(n+ 1/2) (D.12)

and using the Euler reflection formula Γ(z)Γ(1 − z) = π
sin πz

Γ(1/2 − n) = π

(−1)nΓ(n+ 1/2) (D.13)

Then the action integral becomes

Sγ12 = πiΓ(3/2)E
∞∑

n=0

(−1)nΓ(4n+ 1)En

(n+ 1)!Γ(1/2 − n)Γ(2n+ 1)224n

= πi

√
π

2 E
∞∑

n=0

Γ(n+ 1/4)Γ(n+ 3/4)√
2π3/2n!Γ(n+ 2)

En

= iE

2
√

2
Γ(1/4)Γ(3/4)

Γ(2) 2F1

(1
4 ,

3
4 ,2;E

)
(D.14)

where 2F1 is hypergeometric function

2F1(a, b, c ; z) = Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(n+ a)Γ(n+ b)
n!Γ(n+ c) zn (D.15)

Finally using Γ(1/4)Γ(3/4) =
√

2π we get

Sγ12 = iEπ

2 2F1

(1
4 ,

3
4 ,2;E

)
(D.16)
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