
Aleksander Lempinen

MLOps approach for system performance optimization for

machine learning systems

Master’s Thesis in Information Technology

June 12, 2024

University of Jyväskylä

Faculty of Information Technology

Author: Aleksander Lempinen

Contact information: aleksander.lempinen@gmail.com

Supervisor: Tommi Mikkonen

Title: MLOps approach for system performance optimization for machine learning systems

Työn nimi: MLOps lähestymistapa järjestelmän suorituskyvyn optimointiin koneoppimisjär-

jestelmille

Project: Master’s Thesis

Study line: Educational Technology

Page count: 61+0

Abstract: There are numerous practical challenges related to development or operation of

machine learning systems in real-world scenarios, and the field of MLOps brings DevOps

practices from software engineering to machine learning. This thesis investigated whether

using early stopping with system metrics leads to more efficient hyperparameter tuning when

resource constraints exist. The experiments conducted measured system performance includ-

ing mean step time, CPU utilization, and memory utilization on 4 datasets and 4 machine

learning algorithms with varying hyperparameters such as batch size and learning rate. Find-

ings indicate that increased mean step time and memory utilization with large batch sizes

could potentially be leveraged for early stopping.

Keywords: machine learning, MLOps, DevOps, artificial intelligence, AutoML, hyperpa-

rameter optimization, performance

Suomenkielinen tiivistelmä: Koneoppimisjärjestelmien kehittämiseen tai käyttöön liittyy

lukuisia käytännön haasteita reaalimaailman skenaarioissa, ja MLOps tuo DevOps-käytännöt

ohjelmistotekniikasta koneoppimiseen. Tässä opinnäytetyössä tutkittiin, johtaako varhaisen

pysäytyksen käyttäminen järjestelmämetriikoiden kanssa tehokkaampaan hyperparametrien

optimointiin, kun on olemassa resurssirajoitteita. Eksperimenteissä mitattiin järjestelmän

suorituskykyä, mukaan lukien keskimääräinen askelaika, prosessorin käyttöaste ja muistin

i

käyttöaste neljällä datasetillä ja neljällä koneoppimisalgoritmilla, joiden hyperparametrit,

kuten eräkoko ja oppimisnopeus, vaihtelivat. Tulokset osoittavat, että suurten eräkokojen

myötä lisääntynyttä keskimääräistä askelaikaa ja muistin käyttöastetta voitaisiin mahdollis-

esti hyödyntää varhaisessa pysäytyksessä.

Avainsanat: koneoppiminen, MLOps, DevOps, tekoäly, AutoML, hyperparametrioptimointi,

suorituskyky

ii

List of Figures
Figure 1. Relation of machine learning algorithms to types of machine learning 4
Figure 2. DevOps is the intersection between Development, Operations and Quality

Assurance . 7
Figure 3. MLOps is the intersection between Machine Learning and DevOps. 10
Figure 4. Methodology workflow steps with the focus on model learning and best

model selection . 14
Figure 5. Change in training and test loss during model training with classification

workloads . 21
Figure 6. Change in training and test loss during model training with regression workloads22
Figure 7. Change in classification accuracy during model training . 22
Figure 8. Change in mean step time during model training . 23
Figure 9. Change in CPU utilization during model training . 23
Figure 10. Change in memory utilization during model training . 24
Figure 11. Effects of different batch sizes on test loss on the MNIST and Diabetes datasets25
Figure 12. Effects of different batch sizes on test loss on the Red Wine and Wave

Energy datasets. 26
Figure 13. Effects of different learning rates on test loss on the MNIST and Diabetes

datasets . 27
Figure 14. Effects of different learning rates on test loss on the Red Wine and Wave

Energy datasets. 28
Figure 15. Effect of different batch size on accuracy with classification workloads 29
Figure 16. Effect of learning rate on accuracy with classification workloads 30
Figure 17. Effect of batch size on mean step time with classification workloads 31
Figure 18. Effect of batch size on mean step time with regression workloads 32
Figure 19. Effect of learning rate on mean step time with classification workloads 33
Figure 20. Effect of learning rate on mean step time with regression workloads 34
Figure 21. Effect of batch size on CPU utilization with classification workloads. 35
Figure 22. Effect of batch size on CPU utilization with regression workloads 36
Figure 23. Effect of learning rate on CPU utilization with classification workloads 37
Figure 24. Effect of learning rate on CPU utilization with regression workloads 38
Figure 25. Effect of batch size on memory utilization with classification workloads 39
Figure 26. Effect of batch size on memory utilization with regression workloads 40
Figure 27. Effect of learning rate on memory utilization with classification workloads 41
Figure 28. Effect of learning rate on memory utilization with regression workloads 42

List of Tables
Table 1. Summary of the datasets used. 16
Table 2. Summary of the algorithms. 16
Table 3. Summary of the metrics . 17

iii

Contents
1 INTRODUCTION . 1

2 THE INTERSECTION OF MACHINE LEARNING AND OPERATIONS 3
2.1 Fundamentals of Machine Learning . 3

2.1.1 Practical machine learning . 3
2.1.2 Model evaluation . 5

2.2 DevOps: principles of Software Development and Operations 6
2.2.1 Benefits of DevOps . 6
2.2.2 Performance evaluation. 8

2.3 MLOps: bridging the gap between Machine Learning and DevOps. 9
2.3.1 Production machine learning systems . 9
2.3.2 Hyperparameter optimization . 11
2.3.3 Performance prediction and early stopping. 12

3 METHODS. 14
3.1 Methodology . 14
3.2 Experimental setup . 15

3.2.1 Software and Hardware. 15
3.2.2 Datasets . 15
3.2.3 Algorithms . 16
3.2.4 Metrics and evaluation. 17
3.2.5 Machine learning experiment workflow . 18

3.3 Experiments and Results . 18
3.3.1 Experiment 1: Changes in system performance during model training . . 18
3.3.2 Experiment 2: Effects of hyperparameter changes on system metrics . . . 19

4 DISCUSSION. 43
4.1 Research Questions revisited . 43

4.1.1 RQ1: How does system performance change over time during model
training? . 43

4.1.2 RQ2: How do changes in hyperparameters affect system perfor-
mance during model training? . 44

4.1.3 RQ3: How does early stopping on system performance criteria af-
fects the compute budget during model training? . 44

4.2 Interpretation . 44
4.2.1 Implications for research . 45
4.2.2 Implications for practice. 46

4.3 Limitations. 46
4.4 Future Work . 47

5 CONCLUSIONS. 48

BIBLIOGRAPHY . 49

iv

1 Introduction

Machine learning and artificial intelligence have been a hot topic of discussion in the past

decade. While there is a mountain of academic research on machine learning methods and

tools, a lack of attention is paid to practical, real-world challenges encountered when de-

veloping or operating machine learning systems. DevOps has previously addressed similar

challenges in software engineering, and a field of machine learning operations or MLOps,

which is DevOps applied to ML, has emerged. MLOps focuses on solving challenges related

to operating real-world machine learning systems (Kreuzberger, Kühl, and Hirschl 2023).

Real-world machine learning systems are widely deployed in production in various domains

(Cabrera et al. 2023). Examples of machine learning systems in different fields include rec-

ommender systems (Li et al. 2023), targeted ads (Domingos 2012), drug design (Domingos

2012), or search engines (Domingos 2012).

Most recent breakthroughs that have generated media attention have been in the fields of

computer vision in the form of latent diffusion models (Rombach et al. 2022) such as Sta-

ble Diffusion (Stability AI 2022) for generating images from prompts and natural language

processing in the form of large language models (Touvron et al. 2023) such as ChatGPT

(OpenAI 2022). There have also been great developments in tooling for machine learning,

such as Tensorflow (Abadi et al. 2016), Pytorch (Paszke et al. 2019) or scikit-learn (Pe-

dregosa et al. 2011) for model development, Ray (Liaw et al. 2018), Horovod (Sergeev and

Del Balso 2018) or DeepSpeed (Rasley et al. 2020) for distributed training and MLFlow

(Chen et al. 2020) or Tensorboard (Abadi et al. 2016) for machine learning monitoring.

Despite wide adoption and many successes, there are still challenges with machine learning

systems in practice (Dai and Meng 2023). The required amount of computation for ma-

chine learning has been on the rise (Sarker 2021), particularly the amount of incoming data

has required new solutions such as distributed or federated learning (Dai and Meng 2023).

Realistic computational budgets and practical efficiency in real-world scenarios have only

recently been started to be researched (Prabhu et al. 2023). According to an OpenAI tech-

nical blog, the trend is exponential, and more compute leads to better performance (Amodei

1

and Hernandez 2018). Increased compute requirements also mean increased costs, such as

financial, operational, and environmental costs. Strubell et al. (2020) bring attention to the

environmental impact of training models and, in particular, hyperparameter tuning, during

which costs of training many relatively inexpensive models quickly add up.

In addition to cost, there are other requirements. For example, edge machine learning sys-

tems encounter system requirements such as latency and energy use and have limited re-

sources such as memory or compute (Chen and Ran 2019). Ways of meeting these require-

ments include hyperparameter tuning, reducing the number of parameters in the model, and

model compression such as knowledge distillation (Chen and Ran 2019).

Early stopping has been used as a cost optimization technique to reduce training time by

stopping training when the performance of the model stops improving on the validation set

(Prechelt 1998). More recent work on larger models shows that models might still improve

later if training continues for a longer time (Hoffer, Hubara, and Soudry 2018). Using early

stopping with other performance metrics, such as system metrics, has yet to be as thoroughly

studied.

This thesis aims to investigate whether using early stopping with system metrics leads to

more efficient hyperparameter tuning when there are resource constraints. The investigation

is limited to a small set of widely available machine learning algorithms and datasets to re-

duce compute costs. The thesis’s theoretical significance is that hyperparameter optimization

techniques can be used with system metrics. The practical outcomes are reducing costs and

tuning models to fit system performance constraints.

This thesis is structured in the following manner: Chapter 2 contains background information

about machine learning, DevOps, and MLOps and how they relate. Chapter 3 describes the

performed experiments and their methods and design, including research questions, datasets,

and algorithms used, and concludes with the results of the experiments. Chapter 4 revisits the

research questions and discusses the interpretation of the results, limitations, related work,

and future work. Chapter 5 concludes the thesis by summarizing key findings.

2

2 The intersection of Machine Learning and Operations

Software involving machine learning adds additional complexity to the overall system. De-

veloping, deploying, and monitoring machine learning systems involves both traditional

software system concepts and some new machine learning specific concepts. Section 2.1

introduces machine learning and evaluating model performance from a practical perspective.

Section 2.2 introduces DevOps and performance evaluation. Section 2.3 combines machine

learning and DevOps for production machine learning systems and introduces hyperparam-

eter optimization and performance prediction.

2.1 Fundamentals of Machine Learning

Real-world applications of machine learning are often messy, with numerous decisions for

the developer that can result in different behavior of the machine learning model. This section

introduces machine learning from a practical standpoint, including necessary performance

metrics for model training and empirical performance evaluation.

2.1.1 Practical machine learning

Writing programs and developing algorithms to complete specific tasks is a labor-intensive

task requiring professional programming expertise. A different approach is to develop generic

algorithms that can change behavior by learning. The field studying these types of algorithms

is called machine learning. Machine learning algorithms learn by applying an optimization

algorithm to adjust the set of parameters called a model, and this process is called training

the model (LeCun, Bengio, and Hinton 2015).

Machine learning is widely used in applications like search, drug design, or ad placement

and can also be known as data mining or predictive analytics (Domingos 2012). Developing

machine learning systems, which are systems that are based on machine learning, can be

a difficult task. Unlike traditional software development, experiments with both code and

data as inputs are central to machine learning development (Zaharia et al. 2018), and re-

producibility of the experiments is often problematic. While plenty of research focuses on

3

more efficient machine learning methods, datasets, and data quality, the biggest bottleneck

is human cycles (Domingos 2012). Faster development iterations improve the developer ex-

perience for machine learning system developers or researchers, and an important metric to

pay attention to and optimize for is the mean iteration cycle.

Machine learning can be practiced with two different goals in mind. First is explanatory

modeling with the purpose of scientific theory building and testing, and the second is pre-

dictive modeling, mainly used outside scientific research (Shmueli 2010). One practical

difference is that, unlike predictive modeling, explanatory modeling rarely uses holdout test

sets or cross-validation for evaluation (Shmueli 2010). The lack or presence of evaluation on

a test set can be used as a heuristic to quickly determine whether a machine learning project

is explanatory or predictive. However, even explanatory modeling benefits from evaluating

the predictive power (Shmueli 2010). In their paper, Domingos (2012) assume all machine

learning is predictive and state that machine learning should generalize beyond the training

set. It is important to consider the end goals of a machine learning project because common

practices in a research setting might not apply to creating machine learning systems in a

practical setting.

Machine
Learning

Reinforcement
Learning

Supervised
Learning

Unsupervised
Learning

Stochastic
Gradient
Descent

Support
Vector

Machine

Logistic Regression

Perceptron

Figure 1. Relation of machine learning algorithms to types of machine learning

Machine learning algorithms can be categorized as supervised, unsupervised, semi-supervised,

or reinforcement learning (Sarker 2021). These types of machine learning and some common

4

algorithms are shown in figure 1. The main differences between the types of algorithms are

related to whether the model learns using labeled, unlabeled data or by interacting with the

environment (Sarker 2021). Unsupervised learning does not require labeled data, an advan-

tage for problems where labels are uncommon (Le et al. 2012). Supervised machine learning

can be further split into classification for discrete and regression for continuous labels.

Some machine learning models, such as neural networks, support vector machines, or logis-

tic regression, can be trained in an iterative manner using optimization techniques such as

Stochastic Gradient Descent (SGD). Updating the gradient by the learning rate η is a step

and is usually performed on a small subset of the data called a batch (Shallue et al. 2019).

The magnitude of the update The number of passes over the entire dataset is called epochs

(Shallue et al. 2019).

2.1.2 Model evaluation

Performance evaluation of machine learning models is usually done empirically using cross-

validation (Forman and Scholz 2009; Sokolova and Lapalme 2009). Cross-validation in-

volves splitting the data into k-folds and using all but one of the folds for training and the

last one for validating the performance of the model, after which the procedure is repeated

k times with each fold being used for validation (Cawley and Talbot 2010). For example,

3-fold validation would use a third of the data for validation and two-thirds for training re-

peated three times. The performance metrics collected during the computationally expensive

cross-validation are typically averaged (Cawley and Talbot 2010). These types of global av-

erages might not be desirable, and instead of random folds, the data can be sliced according

to some criterion, such as by country, and allow detecting performance differences between

slices (Breck et al. 2017).

Machine learning training involves minimizing optimization criteria such as log loss, squared

hinge loss, or Cauchy-Schwarz Divergence (Janocha and Czarnecki 2017). Depending on

the application, different loss metrics are chosen, such as resistance to noisy data or labels

(Janocha and Czarnecki 2017). The loss metric is sometimes not informative of model per-

formance, such as with classification tasks. In these cases, performance metrics such as

5

accuracy, precision, recall, specificity, error rate, AUC, and F-score are used (Sokolova and

Lapalme 2009; Forman and Scholz 2009). Metrics such as accuracy are well defined, but the

final F-score from cross-validation may be computed in several ways, resulting in different

results (Forman and Scholz 2009).

Even more informative metrics can be created for specific applications. For example, Torrabla

and Efros (2011) developed performance metrics to compare different datasets and determine

a "market value" for the data by using the generalization performance of machine learning

models on the datasets. Defining the correctness of the prediction is an important part when

defining performance metrics (Lin et al. 2014)

2.2 DevOps: principles of Software Development and Operations

DevOps is a well-known topic in the field of software engineering that brings together devel-

opment, operations, and sometimes quality assurance. This intersection between concepts is

demonstrated in figure 2. This section briefly introduces DevOps and provides an overview

of the main benefits of continuous integration, deployment, and performance evaluation.

Later, it describes the importance of performance metrics with examples and wraps up the

section by introducing performance prediction.

2.2.1 Benefits of DevOps

DevOps can be defined as a development methodology bringing development and opera-

tions together with a focus on software quality, collaboration between development and op-

erations, process speed and rapid feedback (Jabbari et al. 2016; Mishra and Otaiwi 2020;

Waller, Ehmke, and Hasselbring 2015; Perera, Silva, and Perera 2017). Defining DevOps

precisely can be difficult as there is no consensus on the exact definition (Smeds, Nybom,

and Porres 2015; Jabbari et al. 2016; Mishra and Otaiwi 2020). DevOps can be viewed from

different points of view, such as culture, collaboration, automation, measurements, and mon-

itoring (Mishra and Otaiwi 2020; Waller, Ehmke, and Hasselbring 2015). DevOps focuses

on speed and quality with incremental changes that are recurrent and continuous (Mishra and

Otaiwi 2020). The goal is to bridge the gap between development and operations (Smeds,

6

Operations

Development

Quality
Assurance

DevOps

Figure 2. DevOps is the intersection between Development, Operations and Quality Assur-

ance

Nybom, and Porres 2015). This is done through sharing tasks and responsibilities from de-

velopment to deployment and support (Mishra and Otaiwi 2020).

Continuous integration, continuous deployment, and continuous monitoring are well-known

practices in DevOps (Waller, Ehmke, and Hasselbring 2015) describing the automatic nature

of integrating, deploying, and monitoring code changes. Feedback includes performance

metrics data, which is then fed as input during planning and development (Smeds, Nybom,

and Porres 2015). Performance profiling and monitoring are similar activities, and the main

difference is whether it is done during the development process or operations respectively

(Waller, Ehmke, and Hasselbring 2015) with DevOps bridging the gap between them (Brun-

nert et al. 2015). Continuous benchmarking allows for detecting performance regressions

7

during continuous integration (Waller, Ehmke, and Hasselbring 2015) and infrastructure

monitoring with a feedback loop allows for performance optimization in production (Smeds,

Nybom, and Porres 2015).

Performance evaluation is a valuable tool for optimizing the overall system design and tailor-

ing for a specific production environment in addition to correctly sizing resources (Brunnert

et al. 2015; Waller, Ehmke, and Hasselbring 2015). Resource demands might change de-

pending on the inputs (Brunnert et al. 2015), making it essential to systematically measure

performance based on code changes, configuration changes, and data changes. Performance

evaluation is directly tied to defining and collecting performance metrics and monitoring.

2.2.2 Performance evaluation

Performance metrics are fundamental to all performance evaluation activities, such as profil-

ing or monitoring (Brunnert et al. 2015). Common metrics involve measuring the CPU, but

other metrics such as memory usage, network traffic, or I/O usage do not have precise defini-

tions (Brunnert et al. 2015). Collecting metrics happens through hardware-based or software

monitors instrumented into software through code modification or indirectly, for example,

through middleware interception (Brunnert et al. 2015). Metrics can be event-driven, trig-

gering a monitor with every occurrence or based on sampling at fixed time intervals (Brunnert

et al. 2015). The types of metrics collected and what information is expected depending on

the performance goals and the life cycle of the software (Brunnert et al. 2015).

Metrics can be divided into application metrics such as response time or throughput and re-

source utilization metrics such as CPU utilization or available memory (Brunnert et al. 2015).

Little peer-reviewed research is available with specifics on which metrics are to be collected

or how they are defined. Kounev et al. (2020) in their textbook on systems benchmarking,

bring up the following quality attributes for benchmark metrics: easy to measure, repeatable,

reliable, linear, consistent, and independent. Most metrics will not satisfy all the above qual-

ity attributes, and aggregated higher-level composite metrics are required (Kounev, Lange,

and Von Kistowski 2020). Cloud computing has introduced more objectives to optimize and

metrics for monitoring such as energy consumption, privacy, or time to scalability (Aslan-

8

pour, Gill, and Toosi 2020).

Measurement-based performance evaluation requires a system to test while model-based

performance evaluation allows predicting the performance of the future system (Brunnert et

al. 2015). This type of performance prediction allows for better planning and comparing use

cases, primarily when an existing legacy system exists with measured performance metrics

(Brunnert et al. 2015).

2.3 MLOps: bridging the gap between Machine Learning and DevOps

MLOps is a new concept for building and running real-world machine learning systems.

MLOps can be described as the intersection between machine learning and DevOps, as

demonstrated in figure 3. This section introduces the concept of MLOps and provides context

for the types of problems it aims to solve. Later in the section, the concepts of hyperparam-

eter optimization, performance prediction, and early stopping are introduced. The section

finishes with performance metrics related to machine learning systems, their business objec-

tives, and overall system performance.

2.3.1 Production machine learning systems

MLOps bridges the gap between ML practitioners and DevOps (Moreschi et al. 2023). While

machine learning research focuses on improving models, the industry needs to be able to de-

sign production-ready machine learning pipelines (Posoldova 2020). The data often used for

research is of higher quality than real-world data that is often messy, unstructured, and unla-

beled (Posoldova 2020). Continuous integration, deployment, and automated testing are also

relevant to machine learning systems (Posoldova 2020), which are familiar concepts from

DevOps. A new concept of MLOps addresses this issue of designing and maintaining ma-

chine learning systems just like DevOps addressed it for traditional software (Kreuzberger,

Kühl, and Hirschl 2023).

Managing technical debt is even more critical in machine learning systems because of ma-

chine learning specific issues that cannot be solved with traditional methods (Sculley et

al. 2015). The main culprit for the challenges with machine learning systems is that data

9

Machine
Learning DevOpsMLOps

Figure 3. MLOps is the intersection between Machine Learning and DevOps.

changes the system’s behavior and cannot be expressed with code alone (Sculley et al. 2015).

Challenges like entanglement, correction cascades, or feedback loops are common with ma-

chine learning systems and are difficult to diagnose with common tools (Sculley et al. 2015).

Requirements for a machine learning system are different depending on the task. For exam-

ple, speech and object recognition might have no particular performance requirements dur-

ing training but have strict latency and computational resource restrictions when deployed to

serve large amounts of users (Hinton, Vinyals, and Dean 2015). MLOps has to consider both

machine learning performance metrics that are familiar to machine learning and software

performance metrics that are familiar to DevOps and software engineering. Feedback from

metrics collected during development and monitoring production systems are core MLOps

principles (Kreuzberger, Kühl, and Hirschl 2023). For example, possible meta-level require-

ments include users requesting data deletion and prohibitions on specific features like age or

deprecated sources (Breck et al. 2017).

Performance measuring software is not new, but ML brings additional challenges in the form

10

of models and data, which requires a modified approach (Breck et al. 2017). It is also impor-

tant to note that not every data scientist or machine learning engineer working on machine

learning systems has a software engineering background (Finzer 2013) and might lack the

necessary knowledge to apply software engineering best practices to machine learning sys-

tems. Machine learning system monitoring must be carefully designed (Sculley et al. 2015).

Hyperparameter optimization is a kind of performance optimization that aims to improve

machine learning metrics. Training the model to completion is not always necessary to ver-

ify that the training code is correct, and the training loss is decreasing (Breck et al. 2017).

2.3.2 Hyperparameter optimization

Parameters given as part of a configuration to the machine learning model are called hy-

perparameters (Yang and Shami 2020). Examples of hyperparameters include learning rate,

number of layers in a neural network, regularization coefficients, batch size, step size, or

initialization conditions (Maclaurin, Duvenaud, and Adams 2015; Baker et al. 2017; Breck

et al. 2017). Hyperparameter tuning or hyperparameter optimization can be defined as find-

ing the optimal hyperparameter values by searching through possible hyperparameter values

(Baker et al. 2017). This hyperparameter search can also demonstrate whether the training

is stable and reliable (Breck et al. 2017).

The main goal of hyperparameter optimization is to reduce the amount of expert labor re-

quired for creating high-performance machine learning models (Baker et al. 2017). Another

benefit of finding optimal hyperparameters is that it can help achieve state-of-the-art perfor-

mance in machine learning systems (Maclaurin, Duvenaud, and Adams 2015). Hyperparam-

eter optimization techniques include grid search, random search, gradient-based optimiza-

tion, and Bayesian optimization, and they have different benefits and limitations (Yang and

Shami 2020).

Similar concepts to hyperparameter optimization are neural architecture optimization and

meta modeling where model structure or modeling algorithm is treated as a tunable parameter

(Baker et al. 2017). This allows for automating the creation of neural networks from scratch

(Baker et al. 2017). The amount of potential neural network architecture configurations is

11

large, and checking them is computationally expensive (Baker et al. 2017).

Tuning hyperparameters is generally a difficult task (Maclaurin, Duvenaud, and Adams

2015). Traditional hyperparameter tuning methods such as Bayesian optimization are un-

feasible for more than 10-20 hyperparameters (Maclaurin, Duvenaud, and Adams 2015).

More advanced techniques are required if a larger amount of tunable hyperparameters is de-

sired. Performance prediction is a crucial step to reduce the computation required for neural

architecture search and hyperparameter optimization (Baker et al. 2017). Memory consump-

tion, power consumption, and training time are relevant considerations that can be taken into

account by setting boundary conditions to whether the hyperparameter tuning trial is worthy

of continuing (Yu and Zhu 2020).

Training models faster can allow for using more data for better model performance and

for using more complex models in new types of situations (Shallue et al. 2019). During the

training of machine learning models, the main focus is on achieving good model performance

and the associated costs (Shallue et al. 2019). Cost can be measured in training time or the

price for hardware but is better measured by time or hardware price per training step with

compute budgets defined either in the required number of steps or used training time (Shallue

et al. 2019). It is essential to efficiently use the available compute budget because training

on even simple datasets can require large amounts of computation for each configuration of

hyperparameters to saturate model performance (Shallue et al. 2019). It is essential to apply

compute resources efficiently in realistic workloads, which is a combination of the dataset,

training algorithm, and model (Shallue et al. 2019).

2.3.3 Performance prediction and early stopping

Data gathered at the beginning of model training can be used to predict the performance of

the trained model given the chosen hyperparameters (Baker et al. 2017). A small sample

of hyperparameter configurations can be used for training a performance prediction model,

which then can be used to predict the performance for the rest of hyperparameter configura-

tions with only a small amount of training (Baker et al. 2017).

Early stopping is a technique in which model training is halted before completion to avoid

12

wasting computational resources (Prechelt 1998). Early stopping can be based on a threshold

value decided upon ahead of time or based on a performance prediction model (Baker et

al. 2017). Low thresholds for rejection of suboptimal solutions will radically reduce the

amount of computation required but run the risk of rejecting an optimal solution as well

(Baker et al. 2017).

In addition to machine learning performance metrics and system performance metrics, ma-

chine learning systems will have their performance metrics tied to product or organization

metrics such as user churn rate or click-through rate (Shankar et al. 2022). From a machine

learning system performance perspective, important metrics include CPU usage, GPU usage,

task completion time, inference time, and latency (Cardoso Silva et al. 2020). Choosing the

right metrics to evaluate a machine learning system is essential, and the metrics will differ

for different machine learning systems (Shankar et al. 2022).

13

3 Methods

The approach for the thesis is empirical and experimental, as is common in machine learning

and software engineering research. Section 3.1 describes the research methodology used in

this thesis and introduces the research questions. Section 3.2 introduces the experimental

setup, including software and hardware, datasets, algorithms, metrics, and specific experi-

ment workflow. Section 3.3 contains the details about the experiments and the results of the

experiments.

3.1 Methodology

This thesis uses a methodology for machine learning experiment design (Fernandez-Lozano

et al. 2016). The methodology, as shown in Figure 4, consists of a workflow with the fol-

lowing steps: Dataset, Data Preprocessing, Model Learning, and Best Model Selection. The

main focus of the thesis is on Model Learning and Best Model Selection with an empha-

sis on using system performance metrics. Advanced preprocessing techniques or achieving

state-of-the-art model performance are out of the scope of this thesis.

Dataset Data
preprocessing

Model
Learning

Best Model
Selection

Figure 4. Methodology workflow steps with the focus on model learning and best model

selection

This master’s thesis asks the following research questions:

• RQ1: How does system performance change over time during model training?

• RQ2: How do changes in hyperparameters affect system performance during model

training?

• RQ3: How does early stopping on system performance criteria affect computational

budgets during model training?

14

3.2 Experimental setup

The experimental setup was chosen to be realistic and representative of a machine learning

practitioner using common machine learning tools on a development machine. The available

computational resources for the thesis limit the scope of investigated workloads. This section

first describes the hardware and software used for the experiments. Afterwards, the focus

is on workloads, datasets, and algorithms used in the experiments and the metrics to be

collected and used for evaluation. Finally, the exact workflows that were used for each

experiment are described in detail.

3.2.1 Software and Hardware

Experiments were performed using Ray Tune (2.7.1) (Liaw et al. 2018). MLFlow (2.7.1)

(Chen et al. 2020) was used for recording metrics and tracking experiments. Scikit-learn

(1.3.2) (Pedregosa et al. 2011) for training, collecting machine learning performance met-

rics, and evaluating machine learning models. Psutil (Rodola 2023) was used for collecting

system performance metrics from the operating system. The hardware used to perform the

experiments consisted of Intel Core i7-9700 @ 3.00GHz CPU and Nvidia 3060 GPU.

3.2.2 Datasets

OpenML (Vanschoren et al. 2014) was a source of benchmarking datasets for both classifi-

cation (Bischl et al. 2017) and regression (Fischer, Feurer, and Bischl 2023) tasks. In total,

two classification task and two regression task datasets summarized in table 1 were chosen

to keep the amount of computation reasonable.

The mnist_784 dataset consisted of 70000 images of handwritten digits, with each feature

representing a pixel with the task of classifying which digit the image represents. The di-

abetes dataset consisted of 785 measurements of female patients with the task to classify

whether the patient tests positive for diabetes. The wave_energy dataset consisted of 72000

different positions for 16 buoys with the regression task to predict the total amount of energy

produced. The 16 wave energy converter features were dropped as the target variable is total

energy. The red_wine dataset consisted of 1599 measurements of red wine samples with the

15

regression task of predicting the quality of the wine.

Dataset Type Task Instances Features

mnist_784 image classification 70000 785

diabetes tabular classification 768 9

wave_energy tabular regression 72000 33

red_wine tabular regression 1599 12

Table 1. Summary of the datasets used.

3.2.3 Algorithms

Algorithms were chosen to support training in batches without being computationally heavy.

Linear regression, perceptron, logistic regression, and support vector machine (SVM) are

based on stochastic gradient descent (SGD) implementation found in Scikit-learn (Pedregosa

et al. 2011). Algorithms and hyperparameters are summarized in Table 2. Model training,

evaluation, and hyperparameter optimization were performed in parallel with each worker

process using one CPU core each.

Hyperparameters such as batch size and learning rate were selected using grid search, and

the search space was determined with preliminary experiments so that the optimal solution

is not too close to the boundaries. Batch size search space was {30,300,3000,30000}. The

learning rate search space was {0.1,0.01,0.001,0.0001}.

Algorithm Loss Hyperparameters

Linear regression squared batch size, learning rate

Perceptron hinge batch size, learning rate

Logistic regression log batch size, learning rate

Support Vector Machine hinge batch size, learning rate

Table 2. Summary of the algorithms

16

3.2.4 Metrics and evaluation

Metrics to be evaluated can be divided into machine learning metrics and system perfor-

mance metrics and are summarized in Table 3. Machine learning metrics consisted of train-

ing loss, validation loss, accuracy for classification, and root mean squared error for regres-

sion, respectively. System compute performance was measured through mean training step

time and CPU utilization percentage. System memory performance was measured through

memory use of the process, and computational budget was measured as elapsed wall-time

required for training the model. Training loss was computed with each training step, and the

rest of the metrics were computed every 100 training steps. Machine learning metrics were

computed using scikit-learn (Pedregosa et al. 2011), and system performance metrics were

collected from the operating system using psutil (Rodola 2023).

Metric Type

training loss machine learning

validation loss machine learning

accuracy machine learning

root mean squared error machine learning

mean training step time system performance

total training time system performance

CPU utilization (%) system performance

memory (MB) system performance

Table 3. Summary of the metrics

In accordance with Ray documentation (The Ray Team,) to avoid double counting memory

used by the object store, the memory usage of the worker was computed in the following

way:

memory = resident set size (RSS)− shared memory usage (SHR)

Machine learning models were validated by splitting the dataset into a 70% training set and

a 30% test set and only using the training set for training the model and only the test set to

17

compute the test loss.

3.2.5 Machine learning experiment workflow

Experiments consisted of dataset loading, preprocessing, and several model training and

evaluation runs with different configurations. Classification workloads consisted of MNIST

and Diabetes datasets with SVM, perceptron, and, in the case of the Diabetes dataset, logistic

regression algorithm. Regression workloads consisted of red wine and wave energy datasets

with the SVM algorithm.

Dataset loading and preprocessing consisted of downloading the dataset, splitting into test

and train sets and loading them into shared memory. Each algorithm and hyperparameter

combination was a separate run using Ray Tune. Model training was performed by first

initializing the model and then fitting the model one batch at a time and collecting metrics

every 100 steps.

To ensure that measurements are not sensitive to other processes running on the system, the

metrics are averaged over three runs for each workload and hyperparameter.

The average of all the runs was visualized for each metric and inspected for clear patterns

with the focus on system performance metrics.

3.3 Experiments and Results

The first experiment was performed to determine whether system performance is constant

during model training. The second experiment was conducted to determine how changes in

the hyperparameters affect system performance metrics. For both experiments, the collected

metrics are visualized and interpreted.

3.3.1 Experiment 1: Changes in system performance during model training

Both training loss and validation loss decreased during training classification workloads on

the MNIST dataset, as seen in Figure 5. Training and validation loss also decreased on

18

regression workloads on Red Wine and Wave Energy datasets shown in Figure 6.

Accuracy did not increase or decrease during model training on the MNIST dataset but did

increase at the beginning of training before leveling off for the diabetes dataset, as demon-

strated by Figure 7. There was little difference between different algorithms with the same

dataset, but a clear difference between datasets.

Mean step time shown in Figure 8 has dips and peaks during training, but overall is level for

each workload. There was a clear difference of mean step time between the MNIST dataset

and the rest of the datasets.

CPU utilization Figure 9 remained level for each of the workloads. The CPU utilization was

different for most of the workloads.

Memory utilization Figure 10 increased in the beginning training for Wave Energy and

MNIST datasets before leveling off. Diabetes and Red Wine memory utilization remained

level during training. Memory utilization was higher for the MNIST and Wave Energy

datasets than for the Diabetes and Red Wine datasets.

3.3.2 Experiment 2: Effects of hyperparameter changes on system metrics

Test loss for classification and regression workloads depended on the batch size, as seen in

Figure 11 and Figure 12. For smaller batch sizes, the test loss curve was less steep and

converged slower than for large batch sizes, except with Logistic Regression on the Diabetes

dataset. Too large of a learning rate did not lead to convergence, as seen in Figure 13 and

Figure 14.

Batch size had mixed effects on classification workloads, as seen in Figure 15. On the

MNIST dataset, batch size had no effect on accuracy. On the Diabetes dataset, smaller batch

sizes resulted in lower accuracy, especially with Logistic Regression. Learning rate had no

effect on accuracy, as seen in Figure 16.

Mean step time was constant with smaller datasets such as Diabetes or Red Wine and de-

pended on the batch size with larger datasets such as MNIST and Wave Energy. As can be

seen in Figure 17 and Figure 18 very large batch sizes resulted in higher mean step time.

19

Learning rate had no effect on mean step time, as seen in Figure 19 and Figure 20.

CPU utilization did not depend on batch size or learning rate for classification workloads as

shown in Figure 21 and Figure 23 or for regression workloads as shown in Figure 22 and

Figure 24.

Memory utilization was constant with smaller datasets but not with larger datasets. As can

be seen in Figure 25, memory utilization was higher for large batch sizes for the MNIST

dataset, and in Figure 26, memory utilization was higher for large batch sizes for the Wave

Energy dataset. Learning rate had no effect on memory utilization as seen in Figure 27 and

Figure 28.

20

0

1

2

H
in

g
e

L
o
ss

×105 SVM - MNIST

Train Test

0

1

2

H
in

ge
L

os
s

×105 Perceptron - MNIST

0

1

2

H
in

ge
L

os
s

×103 SVM - Diabetes

0

1

2

H
in

ge
L

os
s

×103 Perceptron - Diabetes

0 1 2 3 4 5

Steps ×104

0

1

2

L
og

L
os

s

×101 Logistic Regression - Diabetes

Figure 5. Change in training and test loss during model training with classification workloads

21

0

1

2

3

4

×1023 Red Wine

Train Test

0 1 2 3 4 5

Steps ×104

0.0

0.5

1.0

1.5

×1041 Wave Energy

S
q
u

a
re

d
E

rr
o
r

Figure 6. Change in training and test loss during model training with regression workloads

0 1 2 3 4 5

Steps ×104

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

MNIST − SVM
MNIST − Perceptron
Diabetes− SVM

Diabetes− Perceptron
Diabetes− LogisticRegression

Figure 7. Change in classification accuracy during model training

22

0 1 2 3 4 5

Steps ×104

0

5

10

15

20

25

30

35

40

M
ea

n
S

te
p

T
im

e
(m
s)

MNIST − SVM
MNIST − Perceptron
Diabetes− SVM
Diabetes− Perceptron

Diabetes− LogisticRegression
RedWine− SquaredError
WaveEnergy − SquaredError

Figure 8. Change in mean step time during model training

0 1 2 3 4 5

Steps ×104

0

20

40

60

80

100

120

MNIST − SVM
MNIST − Perceptron
Diabetes− SVM
Diabetes− Perceptron

Diabetes− LogisticRegression
RedWine− SquaredError
WaveEnergy − SquaredError

C
P

U
(%

)

Figure 9. Change in CPU utilization during model training

23

0 1 2 3 4 5

Steps ×104

0

50

100

150

200

250

300

R
A

M
(M

B
)

MNIST − SVM
MNIST − Perceptron
Diabetes− SVM
Diabetes− Perceptron

Diabetes− LogisticRegression
RedWine− SquaredError
WaveEnergy − SquaredError

Figure 10. Change in memory utilization during model training

24

0

1

2

3

4

H
in

g
e

L
os

s
×105 SVM - MNIST

0

1

2

3

4

H
in

ge
L

os
s

×105 Perceptron - MNIST

0

1

2

3

4

H
in

ge
L

os
s

×103 SVM - Diabetes

0

1

2

3

4

H
in

ge
L

os
s

×103 Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

1

2

3

4

L
og

L
os

s

×101 Logistic Regression - Diabetes

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 11. Effects of different batch sizes on test loss on the MNIST and Diabetes datasets

25

0.0

0.5

1.0

×1025 SVM - Red Wine

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

1

2

×1041 SVM - Wave Energy

S
q
u

ar
ed

E
rr

or

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 12. Effects of different batch sizes on test loss on the Red Wine and Wave Energy

datasets

26

0

2

4

6

8

H
in

g
e

L
os

s
×104 SVM - MNIST

0

2

4

6

8

H
in

ge
L

os
s

×104 Perceptron - MNIST

0

1

2

3

H
in

ge
L

os
s

×103 SVM - Diabetes

0

1

2

3

H
in

ge
L

os
s

×103 Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

1

2

3

L
og

L
os

s

×101 Logistic Regression - Diabetes

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 13. Effects of different learning rates on test loss on the MNIST and Diabetes datasets

27

0

1

2

3

4

×1029 SVM - Red Wine

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

2

4

6

×1045 SVM - Wave Energy

S
q
u

ar
ed

E
rr

or

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 14. Effects of different learning rates on test loss on the Red Wine and Wave Energy

datasets

28

0.00

0.25

0.50

0.75

1.00

SVM - MNIST

0.00

0.25

0.50

0.75

1.00

Perceptron - MNIST

0.00

0.25

0.50

0.75

1.00

SVM - Diabetes

0.00

0.25

0.50

0.75

1.00

Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0.00

0.25

0.50

0.75

1.00

Logistic Regression - Diabetes

A
cc

u
ra

cy

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 15. Effect of different batch size on accuracy with classification workloads

29

0.00

0.25

0.50

0.75

1.00

SVM - MNIST

0.00

0.25

0.50

0.75

1.00

Perceptron - MNIST

0.00

0.25

0.50

0.75

1.00

SVM - Diabetes

0.00

0.25

0.50

0.75

1.00

Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0.00

0.25

0.50

0.75

1.00

Logistic Regression - Diabetes

A
cc

u
ra

cy

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 16. Effect of learning rate on accuracy with classification workloads

30

0

2

4

6
×102 SVM - MNIST

0

2

4

6
×102 Perceptron - MNIST

0

2

4

6

SVM - Diabetes

0

2

4

6

Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

2

4

6

Logistic Regression - Diabetes

M
ea

n
S

te
p

T
im

e
(m
s)

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 17. Effect of batch size on mean step time with classification workloads

31

0

1

2

3

4

SVM - Red Wine

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

5

10

15

20
SVM - Wave Energy

M
ea

n
S

te
p

T
im

e
(m
s)

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 18. Effect of batch size on mean step time with regression workloads

32

0

2

4

6
×101 SVM - MNIST

0

2

4

6
×101 Perceptron - MNIST

0

2

4

6

SVM - Diabetes

0

2

4

6

Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

2

4

6

Logistic Regression - Diabetes

M
ea

n
S

te
p

T
im

e
(m
s)

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 19. Effect of learning rate on mean step time with classification workloads

33

0

2

4

6

SVM - Red Wine

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

2

4

6

SVM - Wave Energy

M
ea

n
S

te
p

T
im

e
(m
s)

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 20. Effect of learning rate on mean step time with regression workloads

34

0

25

50

75

100

125

SVM - MNIST

0

25

50

75

100

125

Perceptron - MNIST

0

25

50

75

100

125

SVM - Diabetes

0

25

50

75

100

125

Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

25

50

75

100

125

Logistic Regression - Diabetes

C
P

U
(%

)

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 21. Effect of batch size on CPU utilization with classification workloads

35

0

25

50

75

100

125

SVM - Red Wine

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

25

50

75

100

125

SVM - Wave Energy

C
P

U
(%

)

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 22. Effect of batch size on CPU utilization with regression workloads

36

0

25

50

75

100

125

SVM - MNIST

0

25

50

75

100

125

Perceptron - MNIST

0

25

50

75

100

125

SVM - Diabetes

0

25

50

75

100

125

Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

25

50

75

100

125

Logistic Regression - Diabetes

C
P

U
(%

)

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 23. Effect of learning rate on CPU utilization with classification workloads

37

0

25

50

75

100

125

SVM - Red Wine

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

25

50

75

100

125

SVM - Wave Energy

C
P

U
(%

)

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 24. Effect of learning rate on CPU utilization with regression workloads

38

0

100

200

300

400

SVM - MNIST

0

100

200

300

400

Perceptron - MNIST

0

100

200

300

400

SVM - Diabetes

0

100

200

300

400

Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

100

200

300

400

Logistic Regression - Diabetes

R
A

M
(M

B
)

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 25. Effect of batch size on memory utilization with classification workloads

39

0

200

400

600

SVM - Red Wine

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

200

400

600

SVM - Wave Energy

R
A

M
(M

B
)

batch size = 64 batch size = 512 batch size = 4096 batch size = 32768

Figure 26. Effect of batch size on memory utilization with regression workloads

40

0

100

200

300

400

SVM - MNIST

0

100

200

300

400

Perceptron - MNIST

0

100

200

300

400

SVM - Diabetes

0

100

200

300

400

Perceptron - Diabetes

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

100

200

300

400

Logistic Regression - Diabetes

R
A

M
(M

B
)

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 27. Effect of learning rate on memory utilization with classification workloads

41

0

100

200

300

400

SVM - Red Wine

0.0 0.2 0.4 0.6 0.8 1.0

Steps ×104

0

100

200

300

400

SVM - Wave Energy

R
A

M
(M

B
)

eta0 = 0.0001 eta0 = 0.001 eta0 = 0.01 eta0 = 0.1

Figure 28. Effect of learning rate on memory utilization with regression workloads

42

4 Discussion

After presenting the results of the experiments, the next step is to interpret them and put them

into context while considering limitations. Section 4.1 revisits and answers each research

question in detail. Section 4.2 brings together the interpretation and introduces implications

for research and practice. Section 4.3 addresses the limitations, and section 4.4 discusses

future work.

4.1 Research Questions revisited

Research questions are answered by revisiting the research questions in the context of the

results. Each research question is discussed separately in detail.

4.1.1 RQ1: How does system performance change over time during model training?

System performance remained constant within an individual training run, but there were

differences between runs. In particular, there was a sensitivity to workloads with large dif-

ferences if the dataset or, in some cases, the algorithm was different.

Mean step time was much higher for workloads using the MNIST dataset compared to the

rest of the workloads. This was not a surprising result, as the MNIST data consists of images

represented by numerous features, resulting in more computation necessary for each training

step. The level of CPU utilization percentage seemed to be dependent on the time the run

was performed and not on the workload. Surprisingly, it was not a reliable or a useful metric

for measuring compute efficiency during model training.

Similarly, memory utilization was larger for workloads with larger datasets, but the differ-

ence was not as drastic as with mean step time. The workloads chosen were not particularly

memory intensive and the Python process overhead contributed the most to the total process

memory utilization.

43

4.1.2 RQ2: How do changes in hyperparameters affect system performance during

model training?

Changes in learning rate did not affect system performance metrics either with classification

or regression workloads. In contrast, workloads with large datasets were sensitive to large

batch sizes, while workloads with small datasets were not.

The difference in mean step time with different batch sizes was not very noticeable when

the chosen batch size was small and very noticeable when the chosen batch size was large,

assuming the workload had a large dataset. As with RQ1, CPU utilization was not a useful

metric even with different hyperparameters. Memory utilization grew with large batch size

if the workload had a large dataset. In particular, the largest dataset, MNIST, had the largest

effect on mean step time and memory utilization with an increased batch size.

4.1.3 RQ3: How does early stopping on system performance criteria affects the com-

pute budget during model training?

The model’s system performance could be predicted without fully training it as the system

performance did not change during training. Large batch sizes increased mean step time and

memory utilization on workloads with large datasets.

The amount of training required could potentially be reduced if early stopping was used

based on system performance criteria. For example, if the system performance criteria are to

use less than 400MB of memory, then runs that exceed this threshold will be early stopped

and not consume the total compute budget.

4.2 Interpretation

The results are interpreted in two parts. In the first part the discussion focuses on impli-

cations for research in an academic context. The second part of the discussion focuses on

implications for practice in an industrial or commercial context.

44

4.2.1 Implications for research

Cardoso Silva et al. (2020) in their paper identify key system metrics for monitoring a pro-

duction machine learning system. Key metrics identified include task completion time, CPU

and GPU usage, memory usage, disk input/output, and network traffic, and their collection

was implemented in a tool called Ubenchmark (Cardoso Silva et al. 2020). The researchers,

in particular, focus on empirically monitoring and performance benchmarking of the ma-

chine learning system.

This thesis builds upon existing literature with contributions related to measuring system

performance metrics during machine learning model training. The first contribution is mea-

suring system performance metrics, including mean step time during model training on dif-

ferent workloads. Mean step time is an important metric that is more informative than CPU

utilization percentage when evaluating compute efficiency. Having a baseline on how differ-

ent system performance metrics behave during model training allows for comparing results

and has implications for planning experiments, hyperparameter optimization and techniques

like early stopping.

The second contribution is measuring the effects of hyperparameters on system performance.

Not all hyperparameters affect every metric, and there is a certain amount of overhead, which

is constant and does not depend on the value of the hyperparameter. Measuring which hy-

perparameters affect system performance allows us to focus on hyperparameters with the

biggest impact if compute budget is an issue. This can be further applied to setting criteria

for early stopping, such as maximum memory or maximum mean step time.

The final contribution is introducing the concept of using system performance metrics for

early stopping during hyperparameter optimization. Large datasets might stretch hardware

capabilities and setting resource constraints can be necessary for efficient experimentation.

For example constraining memory utilization might allow for training several models in

parallel on different processor cores or on hardware with a limited amount of memory.

45

4.2.2 Implications for practice

Measuring system performance metrics during model training allows for debugging and per-

formance optimization during development. In addition, during real-world operation of ma-

chine learning systems monitoring system performance metrics allows for planning for ade-

quate model training hardware and detecting anomalies during model training. In particular,

knowing that system performance metrics remain mostly constant during model training al-

lows for performance prediction without wasting resources to fully train the model, resulting

in reduced costs. It is also possible to check early during the training process whether the

model will fit resource constraints. Counterintuitively, CPU utilization was not a useful met-

ric, and metrics such as mean step time should be used for measuring compute efficiency of

model training.

Real-world training of machine learning systems will benefit from using fewer system re-

sources for similar results. Especially with cloud computing it is possible to save on compute

costs by reducing memory utilization and picking smaller and cheaper server instances. It

is also important from a development perspective to determine thresholds after which there

are diminishing results. Increasing the batch size for example might result in larger memory

utilization and longer mean step time, but not affect accuracy or test loss.

Early stopping without training the model to completion can be a cost-saving measure and

allow for either a smaller compute budget or the use of the compute budget more efficiently.

For example, by early stopping when the mean step time grows without the test loss con-

verging faster, the saved model training steps can be used with a different hyperparameter

configuration in which the test loss converges faster.

4.3 Limitations

While the reliability is good due to the computational and repeatable nature of experiments,

available resources and the scope of the thesis resulted in some trade-offs that affect internal

and external validity.

The main issues with the experiments are a lack of variety and a small sample of work-

46

loads and metrics. Increasing the sample size of datasets evaluated would make the required

amount of compute resources considerably larger. The lack of variety is a more difficult

problem to tackle as choosing more realistic datasets would require more sophisticated pre-

processing steps, making the results depend on arbitrary choices and becoming less repro-

ducible and less useful.

The requirement to collect metrics between batches, which requires support for continuing

training, is not always supported in readily available implementations. This, in practice,

limited the selection to a handful of algorithms based on stochastic gradient descent and

might not be applicable to other types of algorithms. Metrics also suffered from a similar

limitation as not all process-level metrics are easily available from Python and some metrics,

such as disk or network usage, are not applicable to the performed experiments.

Limited compute resources also affected the ability to run different hyperparameter config-

urations. Testing many more hyperparameter configurations would allow the establishment

of a trend line and overhead thresholds, which would be a useful tool for performance pre-

diction. At the same time this would require more compute resources.

4.4 Future Work

In addition to early stopping during hyperparameter tuning, other techniques related to AutoML,

such as performance prediction and neural architecture search, could also be applied to sys-

tem performance metrics. This would potentially allow for more efficient compute budget

allocation and for faster experimentation.

The machine learning practice community would benefit from more thorough research into

system performance metrics and reporting of metrics in machine learning research. Cur-

rently, if published benchmarks and comparisons do not include system performance metrics,

additional experimentation or search of alternative sources of information is required.

47

5 Conclusions

The aim of this thesis was to investigate whether using early stopping with system metrics

leads to more efficient hyperparameter tuning when there are resource constraints. Experi-

ments focused on training machine learning models based on stochastic gradient descent on

a small set of benchmark datasets and recording system performance metrics during model

training. This thesis offers contributions to both research and practice.

Investigating system performance metrics during model training provided several insights.

System performance remained constant during model training allowing for better planning

of experiments during research by predicting system performance without fully training the

model. In practice this would allow for tailoring model training to for example reduce hard-

ware costs or fit within resource constraints.

48

Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, et al. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems, arXiv:1603.04467. Visited on March 5, 2024. https://doi.org/10.48550/

arXiv.1603.04467. arXiv: 1603.04467 [cs].

Amodei, Dario, and Danny Hernandez. 2018. AI and Compute. https://openai.com/research/ai-

and-compute. Visited on July 29, 2023.

Aslanpour, Mohammad S., Sukhpal Singh Gill, and Adel N. Toosi. 2020. “Performance

Evaluation Metrics for Cloud, Fog and Edge Computing: A Review, Taxonomy, Benchmarks

and Standards for Future Research”. Internet of Things 12:100273. ISSN: 2542-6605, visited

on March 26, 2024. https://doi.org/10.1016/j.iot.2020.100273.

Baker, Bowen, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2017. Accelerating Neu-

ral Architecture Search Using Performance Prediction, arXiv:1705.10823. Visited on Jan-

uary 25, 2023. https://doi.org/10.48550/arXiv.1705.10823. arXiv: 1705.10823 [cs].

Bischl, Bernd, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel

Lang, Rafael G. Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. 2017. OpenML Bench-

marking Suites. https://arxiv.org/abs/1708.03731v3. Visited on November 16, 2023.

Breck, Eric, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. 2017. “The ML Test

Score: A Rubric for ML Production Readiness and Technical Debt Reduction”. In Proceed-

ings of IEEE Big Data.

Brunnert, Andreas, Andre van Hoorn, Felix Willnecker, Alexandru Danciu, Wilhelm Has-

selbring, Christoph Heger, Nikolas Herbst, et al. 2015. Performance-Oriented DevOps: A

Research Agenda, arXiv:1508.04752. Visited on January 17, 2023. https://doi.org/10.48550/

arXiv.1508.04752. arXiv: 1508.04752 [cs].

49

https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://arxiv.org/abs/1603.04467
https://doi.org/10.1016/j.iot.2020.100273
https://doi.org/10.48550/arXiv.1705.10823
https://arxiv.org/abs/1705.10823
https://doi.org/10.48550/arXiv.1508.04752
https://doi.org/10.48550/arXiv.1508.04752
https://arxiv.org/abs/1508.04752

Cabrera, Christian, Andrei Paleyes, Pierre Thodoroff, and Neil D. Lawrence. 2023. Real-

World Machine Learning Systems: A Survey from a Data-Oriented Architecture Perspective,

arXiv:2302.04810. Visited on March 4, 2024. https://doi.org/10.48550/arXiv.2302.04810.

arXiv: 2302.04810 [cs].

Cardoso Silva, Lucas, Fernando Rezende Zagatti, Bruno Silva Sette, Lucas Nildaimon dos

Santos Silva, Daniel Lucrédio, Diego Furtado Silva, and Helena de Medeiros Caseli. 2020.

“Benchmarking Machine Learning Solutions in Production”. In 2020 19th IEEE Interna-

tional Conference on Machine Learning and Applications (ICMLA), 626–633. https://doi.

org/10.1109/ICMLA51294.2020.00104.

Cawley, Gavin C, and Nicola L C Talbot. 2010. “On Over-fittingg inModel Selectionn and-

Subsequent Selection Biass inPerformance Evaluation”.

Chen, Andrew, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann Hong,

Andy Konwinski, et al. 2020. “Developments in MLflow: A System to Accelerate the Ma-

chine Learning Lifecycle”. In Proceedings of the Fourth International Workshop on Data

Management for End-to-End Machine Learning, 1–4. DEEM’20. New York, NY, USA: As-

sociation for Computing Machinery. ISBN: 978-1-4503-8023-2, visited on October 24, 2023.

https://doi.org/10.1145/3399579.3399867.

Chen, Jiasi, and Xukan Ran. 2019. “Deep Learning With Edge Computing: A Review”. Pro-

ceedings of the IEEE 107 (8): 1655–1674. ISSN: 0018-9219, 1558-2256, visited on July 29,

2023. https://doi.org/10.1109/JPROC.2019.2921977.

Dai, Shuang, and Fanlin Meng. 2023. “Addressing Modern and Practical Challenges in Ma-

chine Learning: A Survey of Online Federated and Transfer Learning”. Applied Intelligence

53 (9): 11045–11072. ISSN: 1573-7497, visited on March 7, 2024. https://doi.org/10.1007/

s10489-022-04065-3.

Domingos, Pedro. 2012. “A Few Useful Things to Know about Machine Learning”. Com-

munications of the ACM 55 (10): 78–87. ISSN: 0001-0782, visited on March 14, 2023. https:

//doi.org/10.1145/2347736.2347755.

50

https://doi.org/10.48550/arXiv.2302.04810
https://arxiv.org/abs/2302.04810
https://doi.org/10.1109/ICMLA51294.2020.00104
https://doi.org/10.1109/ICMLA51294.2020.00104
https://doi.org/10.1145/3399579.3399867
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1007/s10489-022-04065-3
https://doi.org/10.1007/s10489-022-04065-3
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1145/2347736.2347755

Fernandez-Lozano, Carlos, Marcos Gestal, Cristian R. Munteanu, Julian Dorado, and Ale-

jandro Pazos. 2016. “A Methodology for the Design of Experiments in Computational In-

telligence with Multiple Regression Models”. PeerJ 4:e2721. ISSN: 2167-8359, visited on

February 15, 2023. https://doi.org/10.7717/peerj.2721.

Finzer, William. 2013. “The Data Science Education Dilemma”. Technology Innovations in

Statistics Education 7 (2). Visited on January 17, 2023. https://doi.org/10.5070/T572013891.

Fischer, Sebastian Felix, Matthias Feurer, and Bernd Bischl. 2023. “OpenML-CTR23 – A

Curated Tabular Regression Benchmarking Suite”. In AutoML Conference 2023 (Workshop).

Visited on November 16, 2023.

Forman, George, and Martin Scholz. 2009. “Apples-to-Apples in Cross-Validation Studies:

Pitfalls in Classifier Performance Measurement”.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in a Neural

Network, arXiv:1503.02531. Visited on February 3, 2023. https://doi.org/10.48550/arXiv.

1503.02531. arXiv: 1503.02531 [cs, stat].

Hoffer, Elad, Itay Hubara, and Daniel Soudry. 2018. Train Longer, Generalize Better: Clos-

ing the Generalization Gap in Large Batch Training of Neural Networks, arXiv:1705.08741.

Visited on August 2, 2023. https://doi.org/10.48550/arXiv.1705.08741. arXiv: 1705.08741

[cs, stat].

Jabbari, Ramtin, Nauman bin Ali, Kai Petersen, and Binish Tanveer. 2016. “What Is De-

vOps? A Systematic Mapping Study on Definitions and Practices”. In Proceedings of the

Scientific Workshop Proceedings of XP2016, 1–11. XP ’16 Workshops. New York, NY, USA:

Association for Computing Machinery. ISBN: 978-1-4503-4134-9, visited on March 7, 2024.

https://doi.org/10.1145/2962695.2962707.

Janocha, Katarzyna, and Wojciech Marian Czarnecki. 2017. On Loss Functions for Deep

Neural Networks in Classification, arXiv:1702.05659. Visited on August 27, 2023. https :

//doi.org/10.48550/arXiv.1702.05659. arXiv: 1702.05659 [cs].

51

https://doi.org/10.7717/peerj.2721
https://doi.org/10.5070/T572013891
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.48550/arXiv.1503.02531
https://arxiv.org/abs/1503.02531
https://doi.org/10.48550/arXiv.1705.08741
https://arxiv.org/abs/1705.08741
https://arxiv.org/abs/1705.08741
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.48550/arXiv.1702.05659
https://doi.org/10.48550/arXiv.1702.05659
https://arxiv.org/abs/1702.05659

Kounev, Samuel, Klaus-Dieter Lange, and Jóakim Von Kistowski. 2020. Systems Bench-

marking: For Scientists and Engineers. Cham: Springer International Publishing. ISBN: 978-

3-030-41704-8 978-3-030-41705-5, visited on August 23, 2023. https://doi.org/10.1007/

978-3-030-41705-5.

Kreuzberger, Dominik, Niklas Kühl, and Sebastian Hirschl. 2023. “Machine Learning Op-

erations (MLOps): Overview, Definition, and Architecture”. IEEE Access 11:31866–31879.

ISSN: 2169-3536. https://doi.org/10.1109/ACCESS.2023.3262138.

Le, Quoc V., Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Cor-

rado, Jeff Dean, and Andrew Y. Ng. 2012. Building High-Level Features Using Large Scale

Unsupervised Learning, arXiv:1112.6209. Visited on February 3, 2023. https://doi.org/10.

48550/arXiv.1112.6209. arXiv: 1112.6209 [cs].

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning”. Nature 521

(7553): 436–444. ISSN: 1476-4687, visited on June 15, 2023. https : / / doi . org / 10 . 1038 /

nature14539.

Li, Yang, Kangbo Liu, Ranjan Satapathy, Suhang Wang, and Erik Cambria. 2023. Recent

Developments in Recommender Systems: A Survey, arXiv:2306.12680. Visited on March 5,

2024. https://doi.org/10.48550/arXiv.2306.12680. arXiv: 2306.12680 [cs].

Liaw, Richard, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion

Stoica. 2018. Tune: A Research Platform for Distributed Model Selection and Training,

arXiv:1807.05118. Visited on February 22, 2023. https: / /doi .org/10.48550/arXiv.1807.

05118. arXiv: 1807.05118 [cs, stat].

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,

Piotr Dollár, and C. Lawrence Zitnick. 2014. “Microsoft COCO: Common Objects in Con-

text”. In Computer Vision – ECCV 2014, edited by David Fleet, Tomas Pajdla, Bernt Schiele,

and Tinne Tuytelaars, 740–755. Lecture Notes in Computer Science. Cham: Springer Inter-

national Publishing. ISBN: 978-3-319-10602-1. https://doi.org/10.1007/978-3-319-10602-

1_48.

52

https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1109/ACCESS.2023.3262138
https://doi.org/10.48550/arXiv.1112.6209
https://doi.org/10.48550/arXiv.1112.6209
https://arxiv.org/abs/1112.6209
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.48550/arXiv.2306.12680
https://arxiv.org/abs/2306.12680
https://doi.org/10.48550/arXiv.1807.05118
https://doi.org/10.48550/arXiv.1807.05118
https://arxiv.org/abs/1807.05118
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48

Maclaurin, Dougal, David Duvenaud, and Ryan P. Adams. 2015. Gradient-Based Hyper-

parameter Optimization through Reversible Learning, arXiv:1502.03492. Visited on Febru-

ary 3, 2023. https://doi.org/10.48550/arXiv.1502.03492. arXiv: 1502.03492 [cs, stat].

Mishra, Alok, and Ziadoon Otaiwi. 2020. “DevOps and Software Quality: A Systematic

Mapping”. Computer Science Review 38:100308. ISSN: 1574-0137, visited on January 17,

2023. https://doi.org/10.1016/j.cosrev.2020.100308.

Moreschi, Sergio, Gilberto Recupito, Valentina Lenarduzzi, Fabio Palomba, David Hast-

backa, and Davide Taibi. 2023. Toward End-to-End MLOps Tools Map: A Preliminary Study

Based on a Multivocal Literature Review, arXiv:2304.03254. Visited on March 24, 2024.

https://doi.org/10.48550/arXiv.2304.03254. arXiv: 2304.03254 [cs].

OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt. Visited on July 24,

2023.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, et al. 2019. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library”. In Advances in Neural Information Processing Systems, volume 32. Curran

Associates, Inc. Visited on March 5, 2024.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python”.

Journal of Machine Learning Research 12 (85): 2825–2830. ISSN: 1533-7928, visited on

October 25, 2023.

Perera, Pulasthi, Roshali Silva, and Indika Perera. 2017. “Improve Software Quality through

Practicing DevOps”. In 2017 Seventeenth International Conference on Advances in ICT for

Emerging Regions (ICTer), 1–6. https://doi.org/10.1109/ICTER.2017.8257807.

Posoldova, Alexandra. 2020. “Machine Learning Pipelines: From Research to Production”.

IEEE Potentials 39 (6): 38–42. ISSN: 1558-1772. https: / /doi .org/10.1109/MPOT.2020.

3016280.

53

https://doi.org/10.48550/arXiv.1502.03492
https://arxiv.org/abs/1502.03492
https://doi.org/10.1016/j.cosrev.2020.100308
https://doi.org/10.48550/arXiv.2304.03254
https://arxiv.org/abs/2304.03254
https://doi.org/10.1109/ICTER.2017.8257807
https://doi.org/10.1109/MPOT.2020.3016280
https://doi.org/10.1109/MPOT.2020.3016280

Prabhu, Ameya, Hasan Abed Al Kader Hammoud, Puneet Dokania, Philip H. S. Torr, Ser-

Nam Lim, Bernard Ghanem, and Adel Bibi. 2023. “Computationally Budgeted Continual

Learning: What Does Matter?” In 2023 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 3698–3707. IEEE Computer Society. ISBN: 9798350301298,

visited on March 7, 2024. https://doi.org/10.1109/CVPR52729.2023.00360.

Prechelt, Lutz. 1998. “Automatic Early Stopping Using Cross Validation: Quantifying the

Criteria”. Neural Networks 11 (4): 761–767. ISSN: 0893-6080, visited on August 2, 2023.

https://doi.org/10.1016/S0893-6080(98)00010-0.

Rasley, Jeff, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. “DeepSpeed:

System Optimizations Enable Training Deep Learning Models with Over 100 Billion Param-

eters”. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, 3505–3506. KDD ’20. New York, NY, USA: Association for

Computing Machinery. ISBN: 978-1-4503-7998-4, visited on March 4, 2024. https://doi.org/

10.1145/3394486.3406703.

Rodola, Giampaolo. 2023. Giampaolo/Psutil. Visited on November 2, 2023.

Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.

2022. High-Resolution Image Synthesis with Latent Diffusion Models, arXiv:2112.10752.

Visited on July 22, 2023. https://doi.org/10.48550/arXiv.2112.10752. arXiv: 2112.10752

[cs].

Sarker, Iqbal H. 2021. “Machine Learning: Algorithms, Real-World Applications and Re-

search Directions”. SN Computer Science 2 (3): 160. ISSN: 2661-8907, visited on March 7,

2024. https://doi.org/10.1007/s42979-021-00592-x.

Sculley, D., Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner,

Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Dennison. 2015. “Hidden

Technical Debt in Machine Learning Systems”. In Advances in Neural Information Process-

ing Systems, volume 28. Curran Associates, Inc. Visited on August 13, 2023.

Sergeev, Alexander, and Mike Del Balso. 2018. Horovod: Fast and Easy Distributed Deep

Learning in TensorFlow, arXiv:1802.05799. Visited on March 5, 2024. https://doi.org/10.

48550/arXiv.1802.05799. arXiv: 1802.05799 [cs, stat].

54

https://doi.org/10.1109/CVPR52729.2023.00360
https://doi.org/10.1016/S0893-6080(98)00010-0
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.48550/arXiv.2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.48550/arXiv.1802.05799
https://doi.org/10.48550/arXiv.1802.05799
https://arxiv.org/abs/1802.05799

Shallue, Christopher J., Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig,

and George E. Dahl. 2019. “Measuring the Effects of Data Parallelism on Neural Network

Training”. Journal of Machine Learning Research 20 (112): 1–49. ISSN: 1533-7928, visited

on September 28, 2023.

Shankar, Shreya, Rolando Garcia, Joseph M. Hellerstein, and Aditya G. Parameswaran.

2022. Operationalizing Machine Learning: An Interview Study, arXiv:2209.09125. Visited

on December 7, 2022. https : / /doi .org/10.48550/arXiv.2209.09125. arXiv: 2209.09125

[cs].

Shmueli, Galit. 2010. “To Explain or to Predict?” Statistical Science 25 (3). ISSN: 0883-

4237, visited on March 14, 2023. https://doi.org/10.1214/10-STS330. arXiv: 1101.0891

[stat].

Smeds, Jens, Kristian Nybom, and Ivan Porres. 2015. “DevOps: A Definition and Perceived

Adoption Impediments”. In Agile Processes in Software Engineering and Extreme Program-

ming, edited by Casper Lassenius, Torgeir Dingsøyr, and Maria Paasivaara, 166–177. Lecture

Notes in Business Information Processing. Cham: Springer International Publishing. ISBN:

978-3-319-18612-2. https://doi.org/10.1007/978-3-319-18612-2_14.

Sokolova, Marina, and Guy Lapalme. 2009. “A Systematic Analysis of Performance Mea-

sures for Classification Tasks”. Information Processing & Management 45 (4): 427–437.

ISSN: 0306-4573, visited on August 27, 2023. https://doi.org/10.1016/j.ipm.2009.03.002.

Stability AI. 2022. Stable Diffusion Public Release. https://stability.ai/blog/stable-diffusion-

public-release. Visited on July 24, 2023.

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. 2020. “Energy and Policy Con-

siderations for Modern Deep Learning Research”. Proceedings of the AAAI Conference on

Artificial Intelligence 34 (09): 13693–13696. ISSN: 2374-3468, visited on July 29, 2023.

https://doi.org/10.1609/aaai.v34i09.7123.

The Ray Team. Memory Management — Ray 2.7.1. https://docs.ray.io/en/latest/ray-core/scheduling/memory-

management.html. Visited on November 1, 2023.

55

https://doi.org/10.48550/arXiv.2209.09125
https://arxiv.org/abs/2209.09125
https://arxiv.org/abs/2209.09125
https://doi.org/10.1214/10-STS330
https://arxiv.org/abs/1101.0891
https://arxiv.org/abs/1101.0891
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1609/aaai.v34i09.7123

Torralba, Antonio, and Alexei A. Efros. 2011. “Unbiased Look at Dataset Bias”. In CVPR

2011, 1521–1528. Colorado Springs, CO, USA: IEEE. ISBN: 978-1-4577-0394-2, visited on

August 27, 2023. https://doi.org/10.1109/CVPR.2011.5995347.

Touvron, Hugo, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,

Timothée Lacroix, Baptiste Rozière, et al. 2023. LLaMA: Open and Efficient Foundation

Language Models, arXiv:2302.13971. Visited on July 24, 2023. https://doi.org/10.48550/

arXiv.2302.13971. arXiv: 2302.13971 [cs].

Vanschoren, Joaquin, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. “OpenML: Net-

worked Science in Machine Learning”. ACM SIGKDD Explorations Newsletter 15 (2): 49–

60. ISSN: 1931-0145, visited on November 16, 2023. https : / /doi .org/10.1145/2641190.

2641198.

Waller, Jan, Nils C. Ehmke, and Wilhelm Hasselbring. 2015. “Including Performance Bench-

marks into Continuous Integration to Enable DevOps”. ACM SIGSOFT Software Engineer-

ing Notes 40 (2): 1–4. ISSN: 0163-5948, visited on January 17, 2023. https:/ /doi.org/10.

1145/2735399.2735416.

Yang, Li, and Abdallah Shami. 2020. “On Hyperparameter Optimization of Machine Learn-

ing Algorithms: Theory and Practice”. Neurocomputing 415:295–316. ISSN: 09252312, vis-

ited on January 25, 2023. https://doi.org/10.1016/j.neucom.2020.07.061. arXiv: 2007.15745

[cs, stat].

Yu, Tong, and Hong Zhu. 2020. Hyper-Parameter Optimization: A Review of Algorithms

and Applications, arXiv:2003.05689. Visited on January 10, 2024. https://doi.org/10.48550/

arXiv.2003.05689. arXiv: 2003.05689 [cs, stat].

Zaharia, M., A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski, Siddharth Murching,

et al. 2018. “Accelerating the Machine Learning Lifecycle with MLflow”. IEEE Data Eng.

Bull., visited on March 14, 2023.

56

https://doi.org/10.1109/CVPR.2011.5995347
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2735399.2735416
https://doi.org/10.1145/2735399.2735416
https://doi.org/10.1016/j.neucom.2020.07.061
https://arxiv.org/abs/2007.15745
https://arxiv.org/abs/2007.15745
https://doi.org/10.48550/arXiv.2003.05689
https://doi.org/10.48550/arXiv.2003.05689
https://arxiv.org/abs/2003.05689

	1 Introduction
	2 The intersection of Machine Learning and Operations
	2.1 Fundamentals of Machine Learning
	2.1.1 Practical machine learning
	2.1.2 Model evaluation

	2.2 DevOps: principles of Software Development and Operations
	2.2.1 Benefits of DevOps
	2.2.2 Performance evaluation

	2.3 MLOps: bridging the gap between Machine Learning and DevOps
	2.3.1 Production machine learning systems
	2.3.2 Hyperparameter optimization
	2.3.3 Performance prediction and early stopping

	3 Methods
	3.1 Methodology
	3.2 Experimental setup
	3.2.1 Software and Hardware
	3.2.2 Datasets
	3.2.3 Algorithms
	3.2.4 Metrics and evaluation
	3.2.5 Machine learning experiment workflow

	3.3 Experiments and Results
	3.3.1 Experiment 1: Changes in system performance during model training
	3.3.2 Experiment 2: Effects of hyperparameter changes on system metrics

	4 Discussion
	4.1 Research Questions revisited
	4.1.1 RQ1: How does system performance change over time during model training?
	4.1.2 RQ2: How do changes in hyperparameters affect system performance during model training?
	4.1.3 RQ3: How does early stopping on system performance criteria affects the compute budget during model training?

	4.2 Interpretation
	4.2.1 Implications for research
	4.2.2 Implications for practice

	4.3 Limitations
	4.4 Future Work

	5 Conclusions
	Bibliography

