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Exposure to excess ionising radiation can cause cellular damage and thus affect 
organism health. Bank voles (Clethrionomys glareolus) inhabiting the Chornobyl 
Exclusion Zone (CEZ) may be exposed to elevated levels of radiation due to the 
presence of radionuclides in the environment following the accident in the 
nuclear power plant. One of the reported impacts of exposure to high dose of 
radiation is a change in the composition of the gut microbiota. Whether this 
change alters the metabolites is not known. For example, many gut microbes 
could perform similar functions, in which case the alteration of the microbiota 
may not have a notable effect on the services provided to the host, e.g. metabolite 
production. Addressing this knowledge gap, bank vole faecal samples were 
collected from contaminated and uncontaminated areas within the CEZ and 
uncontaminated areas outside the CEZ and near Kyiv. The microbiota and 
metabolite composition of all samples was collected as part of the Earth 
Microbiome 500 project. Briefly, the microbiota were characterised using 16S 
rRNA v4 amplicon sequencing, with data processed in QIIME2 and analysed 
using packages within PHYLOSEQ and VEGAN. Metabolite determined using 
untargeted metabolomics (ultra-high performance liquid chromatography 
coupled to a mass spectrometer), with peak calling in MZmine and subsequent 
data analyses in PHYLOSEQ/VEGAN. I found that (1) radiation significantly 
affected the alpha and beta diversities of gut microbiota, but not the metabolites 
and (2) the changes in gut bacteria diversity were not readily associated with the 
changes in metabolite diversity. These results strengthened an earlier 
understanding that exposure to an increased level of radiation alters the gut 
microbiota of bank voles. Since exposure radiation affected the gut microbiota 
diversity, but no association was found between changes in gut microbiota and 
metabolites, this reinforces a complexity of understanding whether changes in 
microbiota communities inferred from amplicon sequencing data can be 
interpreted in term of alterations to key services such as the provision of 
metabolites. 
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Ionisoivalla säteilylle altistuminen voi aiheuttaa soluvaurioita ja siten vaikuttaa 
isännän terveyteen, kuten muuttamalla suolistomikrobistoa. Metsämyyrä 
(Clethrionomys glareolus) on uudelleen asuttanut Chornobyl Exclusion Zone (CEZ) 
-aluetta tapahtuneen ydinvoimalaonnettomuuden jälkeen, mikä tarjoaa 
ainutlaatuisen mahdollisuuden tutkia kroonisen pieniannoksisen säteilyn 
pitkäaikaisia biologisia vaikutuksia. On olemassa tutkimuksia, jotka osoittavat, 
että suurille säteilyannoksille altistuneiden metsämyyrien suolistomikrobisto on 
muuttunut. Ei kuitenkaan tiedetä, vaikuttaako nämä suolistomikrobiston 
muutokset isännän terveyteen muuttamalla suolistomikrobistojen tuottamia 
metaboliitteja. Esimerkiksi, mitä läheisempää sukua mikrobit ovat toisilleen, sitä 
samankaltaisemmat ovat niiden isännälle tarjoamat hyödyt, kuten metaboliittien 
tuotanto. Asian tutkimiseksi metsämyyrien ulostenäytteitä kerättiin saastuneilta 
alueilta CEZ:ssä sekä saastumattomilta alueilta CEZ:n ja Kiovan läheltä. Näytteet 
sekä niiden mikrobi että metaboliitti koostumukset kerättiin osana Earth 
Microbiome 500 -projektia. Lyhyesti, mikrobiota tunnistettiin käyttämällä 16S 
rRNA v4 amplikoni sekvensointia, saatu data käsiteltiin QIIME2:lla ja analysointi 
suoritettiin PHYLOSEQ ja VEGAN ohjelmapaketeilla. Metaboliitit määriteltiin 
kohdistamattomalla metabolomiikalla (ultra-korkean suorituskyvyn 
nestekromatografia yhdistettynä massaspektrometriin), saatu data käsiteltiin 
MZmine ohjelmalla ja analysointi suoritettiin PHYLOSEQ ja VEGAN 
ohjelmapaketeilla. Havaitsin, että (1) säteily vaikutti suolistomikrobiston alfa ja 
beeta diversiteetteihin, mutta ei metaboliittien ja (2) näillä muutoksilla ei ollut 
assosiaatiota keskenään. Nämä tulokset vahvistivat aikaisempien tutkimusten 
tuloksia sekä havainnollistivat suolistomikrobiston ja metaboliittien välistä 
kompleksia suhdetta.  
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TERMS AND ABBREVIATIONS 

Terms 
 
ALLAS The object storage service provided by CSC. 
Feature A unique amplicon sequence variant or mass-to-charge 

profile of metabolite. 
Functional redundancy An ecological phenomenon where various species are 

filling similar, or even identical, roles in the same 
ecosystem functionality. 

Taxa Groups of one or more organism populations are 
classified together by their features. 

  
 

Abbreviations 
 
CEZ Chornobyl Exclusion Zone 
CH contaminated sampling area in CEZ 
CL uncontaminated sampling area in CEZ 
EIC extracted ion chromatogram 
EMP500 the Earth Microbiome Project 500 
LC liquid chromatography 
KL uncontaminated area near Kyiv 
MC mass spectrometry 
ROS reactive oxygen species  

SV   sequence variant 
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Exposure to an increased level of ionising radiation is often damaging to living 
organisms. Radiation can cause damage to the cell membrane and single- and 
double-stranded breaks in DNA, which both are regarded as lethal or leading to 
the events causing apoptosis or necrosis, with mitosis-linked death being the 
most numerous ones causing apoptosis (Cohen–Jonathan et al. 1999). Radiation 
also causes increased activity of macrophages soon after a single dose of 30 Gy, 
which can increase the amount of reactive oxygen species (ROS), which can lead 
to considerable damage to the structure of the cell (Kim et al. 2014). Additionally 
to direct injuries in cells after ionising radiation causing oxidative damages by 
reactive oxygen species (ROS), induced gene expression can be thought to be an 
indirect injury in the cells, which further can increase the amount of 
proinflammatory cytokines, also affecting the amount of reactive oxygen species 
(ROS), and inflammations leading to the death of the cell (Kim et al. 2014). 

The universe has natural radiation, but the Earth's ozone layer and 
magnetosphere protect Earth's organisms from cosmic radiation (Mousseau 
2021). However, there are places in the world where radioactive nuclides 
originate from anthropogenic events such as nuclear bombs, their testing, and 
nuclear power plant accidents (Mousseau 2021). The immediate effects of atomic 
bombs on humans have been relatively well studied (Mousseau 2021). However, 
the long-term consequences of a constant low level of radiation still require 
further research, as does its impact on the biosphere (Mousseau 2021). 

On April 26 1986, an accident at reactor 4 of the former nuclear power plant 
at Chornobyl, Ukraine, led to the release of about 9 million terabecquerels of 
radionuclides into the atmosphere, with the fallout largely deposited in Eastern 
Europe, Western Russia, and Fenno-Scandinavia (Møller and Mousseau 2006). 
To limit human exposure to high concentrations of persistent environmental 
radionuclides (notably Strontium-90 (half-life of 29 years), Cesium-137 (half-life 
of 30 years), and Plutonium-239 (half-life of 24,000 years) (Møller and Mousseau 
2015)), the Chornobyl Exclusion Zone (CEZ) was established at an approximately 
30 km radius around the site of the accident (Møller and Mousseau 2006). 
Wildlife inhabiting the CEZ provide the best-studied natural models of the 
biological impacts of exposure to elevated levels of ionising radiation derived 
from environmental radionuclides (Mousseau 2021). 

A hazardous environment can affect the functional pathways of the 
microbes, and the radiation can be associated with changes in the host's gut 
microbe composition (Lavrinienko et al. 2018a). A several studies study shows 
that bank voles' gut microbiome is affected by environmental radiation by 
changing composition (Lavrinienko et al. 2018a, 2018b, 2021), but there is also a 
study where the effect was not discovered when using small sample size and no 
replication (Antwis et al. 2021). However, it is unknown if this apparent impact 
of radiation exposure has any health consequences, for example, if the change in 
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the bacterial community affects the functional roles of the gut microbiome but 
not the functional outcome, the metabolites. This phenomenon, where the 
changes in microbiota composition do not affect the function as taxa closely 
related to each other usually have similar functions, i.e. similar metabolic e.g. 
many bacteria belonging in phylum of Firmicutes participates in dietary fibre 
fermentation (Sun et al. 2023), is known as functional redundancy. 

Functional diversity of microbial communities is complex, and it can be 
divided into two perspectives: measuring the traits at taxa level or community 
level (Escalas et al. 2019). The measurements that bases on the traits studied at 
taxa-level resembles the approach used in macrobial functional studies. 
Unravelling the functional niches of taxa enables a better understanding of 
community dynamics when the link between the phylogeny and function, and 
the identification of functional redundancy is untangled. Since the introduction 
of next-generation sequencing methods, the genotypic trait are widely microbial 
trats (Escalas et al. 2019). However, functional pathways identified from 
metagenomes may be more relevant as functional traits (Escalas et al. 2019). To 
use genotypic traits as a standard for microbial functional ecology, the validation 
of the link between the genotypic traits and phenotypic traits need to be done. 
Phenotypic traits include i.e. metabolic capabilities (Barberán et al. 2017) when 
considering the taxa-centered perspective. The lack of the culturable 
representatives for most microbial groups can create its own challenges 
(Barberán et al. 2017). However, the current available database of taxon-traits, 
helps to fill the gap between the functional ecology of micro- and microorganisms 
(Escalas et al. 2019). Previous studies presents an example of how to reckon the 
functional diversity using the taxa-traits approach; the distribution of abundance 
across the trait and its effects on the distribution of functionality in communities 
can be used to cluster species according to their biological characteristics (Escalas 
et al. 2019). 

The gut microbiota can provide many functions for its host, one of the most 
important of which is the production of metabolites, for example, as part of the 
nutrient metabolism of the host (Jandhyala et al. 2015, Andoh 2016, Lukáčová et 
al. 2023, Sun et al. 2023). A few studies of bank voles' gut microbiota have been 
revealed to have a high diversity of taxa, and environmental factors, such as 
pollution and radiation, can affect the gut microbiota composition (Lavrinienko 
et al. 2018a, Brila et al. 2021), yet it is still unknown if a change in microbiota 
community associates with change in function (provision of metabolites) that 
could impact the health of the host. However, recent advances in untargeted 
metabolomics using standardised protocols and analytical methods enable 
quantifying bacteria diversity association with metabolic diversity, i.e. 
metabolite production (Shaffer et al. 2022).  

The effect of environmental changes on the phylogenetic and functional 
alpha diversity differs depending on the studied species and composition of the 
gut microbiota when mammals are kept in captivity (Koziol et al. 2023). 
Metabolic diversity studies have been done in humans and models, but in 
wildlife there are very few studies. For wildlife, the contribution of phylogenetic 
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diversity to metabolic diversity still needs to be studied more, as well as the 
contribution of rare taxa to metabolic diversity. Taxa from the same family have 
similar or identical functions, and as taxa get less related to each, i.e. are 
phylogenetically farther apart other, the function differs more. Because 
environmental radiation alters the microbiota composition (Lavrinienko et al. 
2018a, b, 2021), the differences should be seen when considering the effect of the 
contaminated environment on the phylogenetic and functional diversities 
compared to the uncontaminated environment. Whether the amount of rare taxa 
changes and how this affects the metabolic composition (e.g. changes in the 
outliers of metabolic data) needs to be studied. 

In this thesis, the bank vole (Clethrionomys glareolus) is used as a model 
species for studying the effects of radiation to the gut microbiota and metabolism. 
The bank vole is a small rodent that inhabits the mixed woodlands of much of 
northern Europe and Asia (Amori 2008). While bank voles inhabiting 
contaminated areas within the CEZ show no clear evidence of acute health 
impacts (such as an increase in DNA damage or mutation rate (Kesäniemi et al. 
2018, 2019)), exposure to radionuclides tends to associate with poor health. For 
example, bank vole populations in contaminated areas within the CEZ exhibit an 
increase in frequency of cataracts (Lehmann et al. 2016). Also, bank voles exposed 
to radionuclides show signs of metabolic remodelling (Kesäniemi et al. 2019), an 
increase in damage to telomeres and mitochondrial DNA (Kesäniemi et al. 2019b) 
and changes in genome content of satellite DNA and the ribosomal RNA cassette 
(Jernfors et al. 2021). An impact of radionuclide exposure on the condition of 
animal digestive tracts also seems possible because the gut microbiota of bank 
voles inhabiting areas contaminated by radionuclides differs to the gut 
microbiota of animals that are not exposed to radionuclides (Lavrinienko et al. 
2018a, 2020). This association between exposure to radionuclides and a change in 
gut microbiota occurs in other rodents (such as species of Apodemus mice) 
inhabiting the CEZ (the external dose rate 0.313 - 0.498 mGy day-1 in 
contaminated area) and at the site of the Fukushima nuclear accident in Japan 
(the external dose rate 0.174 - 0.233 mGy day-1 in contaminated area) 
(Lavrinienko et al. 2021). 

The thesis has two general aims: (1) to determine whether a change in gut 
microbiota associated with exposure to elevated levels of radiation (via exposure 
to environmental radionuclides) elicits a corresponding change in the diversity 
of faecal metabolites, and (2) to quantify what aspects of gut microbiota (e.g. 
species diversity or phylogenetic diversity), if any, can best explain variation in 
metabolite diversity. 

As the functional redundancy of the gut microbiota supports the host to 
tolerate to changes in the environment, for example, by securing meaningful 
metabolic interactions (Koziol et al. 2023), I hypothesise that differences in bank 
vole gut microbiota are not associated with the change in function (production of 
metabolites). The less related taxa are to each other, the more their functions 
differ, which is why phylogenetic diversity should have more effect on 
metabolite diversity than species diversity. Since previous studies have shown 
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that radiation alters the composition of the gut microbiota, and since the 
production of metabolites is one of its primary functions, I hypothesized that 
bank voles' exposure to elevated environmental values also affects the diversity 
of metabolites. 

I will address my aims and test my hypothesis using samples of bank vole 
faeces collected from animals inhabiting contaminated and uncontaminated 
areas as a model. The samples were collected and processed according to the 
protocol of Earth Microbiome Project 500 (EMP500) (Shaffer et al. 2022, 
https://earthmicrobiome.org/emp500/). These samples provided data for 16S 
amplicon sequencing and untargeted metabolomics. I conduct Shannon diversity, 
Jaccard distance, and Bray-Curtis dissimilarity tests to inspect microbiota and 
metabolite data changes in environment with elevated levels of ionising radiation. 
I found that increased levels of environmental radiation increased the variation 
in the diversity of taxa, which strengthened earlier knowledge of radiation’s 
effect on the gut microbiota (Lavrinienko et al. 2018a, b, 2021, Jernfors et al. 2024) 
as well as contradicted some other results (Antwis et al. 2021). The increased 
levels of environmental radiation did not significantly decrease the variation in 
metabolite diversity. Additionally, the Jaccard distance and the Bray-Curtis 
dissimilarity were used to inspect the correlation of metabolite and bacteria data. 
These led to the discoveries that pairwise dissimilarities among the microbiota 
and metabolite samples did not correlate. These results support the earlier 
knowledge of effect of radiation on gut microbiota. However, clear evidence of 
functional redundancy was not discovered. 

2.1  Sample collection and preparation 

Faecal samples of bank voles (Clethrionomys glareolus) were collected from 
contaminated areas (CH1 and CH2) in the Chornobyl Exclusion Zone (CEZ) with 
higher radiation dose rates (mean of 30.1 µSv/h) and uncontaminated areas (CL1 
and CL2, a mean dose of 0.25 µSv/h) within the CEZ (Figure 1A) and near Kyiv 
(KL, a mean does of 0.33 µSv/h) with lower radiation dose rates by Lavrinienko 
et al. during May to July 2016 (Lavrinienko et al. 2018a). In context, safety limits 
for workers who expose to radiation is 20 mSv/year and 1 mSv/year for general 
public (Niu 2011). Measured ambient radiation levels at each trapping location 
were measured with a hand-held Geiger-Mueller dosimeter (Inspector, 
International Medcom Inc., CA, USA), placed one cm above the ground 
(Lavrinienko et al. 2018a). Ambient dose rate measurements give a reasonable 
approximation of the external absorbed dose rate for bank voles (Beresford et al. 
2008). 

Bank voles were live-captured using Ugglan Special2 live traps from mixed 
forest habitats from three study areas in Ukraine: the (1) east and (2) west side of 

2 METHODS AND MATERIALS 
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Dnieper river near Kyiv, and from (3) Gluboke lake and (4) Vesnyane within the 
CEZ, henceforth referred as uncontaminated (areas 1 and 2) and contaminated 
(areas 3 and 4) groups (Lavrinienko et al. 2018a). At each location, 16 traps were 
placed in a grid with an inter-trap distance of 20 m up to three trapping nights 
per trapping site. Traps were checked the following morning, and caught animals 
were transferred to the laboratory for internal absorbed dose rate estimation, 
body size measurement (body weight and head width), and faecal sampling. The 
sampling was performed within three weeks to reduce the effect of seasonal 
variation (Maurice et al. 2015). For this study, faecal metabolite data from 
sampling sites CH3 and KL2 from Lavrinienko et al. (Lavrinienko et al. 2018a) 
were not included as they were not included in archived metadata 
(Supplementary 1, available in the ALLAS, https://docs.csc.fi/data/Allas/) (see 
Figure 1A for the sampling sites). 

 Faecal samples for metabolomics and microbiota analysis were collected 
from live animals immediately after capture (see (Lavrinienko et al. 2018a)). 112 
samples, including males and females, were collected, with 88 of these samples 
frozen (-80°C) and the remaining 24 samples stored in ethanol (Lavrinienko et al. 
2018a). All faecal samples were divided into two aliquots, stored on dry ice and 
then archived at -80°C. One aliquot of each sample was sent (on dry ice) to 
laboratory in University of California SD, US, for faecal metagenomics and 
untargeted metabolomics (see Thompson et al. 2018 and Shaffer et al. 2022 for 
methods). 

2.2 Sample analysis 

Bank vole faecal microbiota were characterised using 16S amplicon sequencing 
that targeted the variable region four (v4) of the bacterial 16S rRNA locus. Briefly, 
faecal samples were sent to the EMP500 
(https://earthmicrobiome.org/emp500/) following the standard submission 
protocol (Thompson et al. 2018) where they were processed using standardised, 
published laboratory methods (Thompson et al. 2018, Shaffer et al. 2022) (that 
included two rounds of DNA extraction and sequencing per sample to ensure 
sufficient coverage for all submitted samples). The primers 515F (Parada et al. 
2016) (5’-GTGYCAGCMGCCGCGGTAA-3’) and 806R (Apprill et al. 2015) (5’-
GGACTACNVGGGTWTCTAAT-3’) were used for PCR (that included Illumina 
adapters, barcodes as described in (Caporaso et al. 2011, 2012). Each 25 µl PCR 
contained Platinum Hot Start PCR master mix (0.8X final reaction concentration), 
0.2 µM each primer, and 1 µl of template DNA. Thermal cycling conditions (on 
384-well plates) were 94 °C, 3 min, followed by 35 cycles of 94 °C for 1 min, 50 °C 
for 1 min, 72 °C for 105 s, and then 72 °C for 10 min. All PCRs were completed in 
triplicate 25 µl reactions that were then pooled, cleaned using an UltraClean PCR 
Clean-Up kit (QIAGEN) following the manufacturer’s instructions, quantified to 
check DNA quality and quantity, and then sequenced using Illumina chemistry. 

The samples for untargeted metabolomics were submitted by Lavrinienko 
et al. (Lavrinienko et al. 2018a) to the EMP500, and the metabolite data were 
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obtained using liquid chromatography with tandem mass spectrometer (LC-
MS/MS) (Liu and Locasale 2017) as described in the EMP500 (Shaffer et al. 2022, 
https://earthmicrobiome.org/emp500/) (Supplementary 1, available in the 
ALLAS, https://docs.csc.fi/data/Allas/). Briefly, the samples were extracted, 
subjected to solid phase extraction (SPE) and resuspended for mass spectrometry. 
Ultra-high performance liquid chromatography (UHPLC) (Vanquish, Thermo 
Fisher) coupled to a quadrupole-Orbitrap mass spectrometer (Q Exactive, 
Thermo Fisher) was used to obtain mass spectra (Shaffer et al. 2022). The 
metabolite data for bank voles were archived (Supplementary 1, available in the 
ALLAS, https://docs.csc.fi/data/Allas/) and available for analysis. 

2.3 Sample design 

To determine the effect of radiation dose on microbiota and metabolite diversity, 
samples were divided into three categories based on the radiation levels and 
sampling location (Figures 1A and 1B). These three categories were named as a 
treatment_1 and treatment_2 in metadata (Appendix 1 and 2). Treatment_1 
consisted of three treatment groups based on those three categories. Treatment 
group “hot” consisted of samples from contaminated sampling sites CH1 and 
CH2, “clean” of samples from uncontaminated sampling sites CL1 and CL2, and 
“control” of samples from uncontaminated sampling site KL. Treatment_2 
consisted of uncontaminated (uncont.) samples (from sampling sites CL1, CL2, 
and KL) and contaminated (cont.) samples (from sampling sites CH1 and CH2). 
(1) contaminated samples (from sampling sites CH1 and CH2) had elevated dose 
of ionising radiation (mean of 30.1 µSv/h) and were sourced from the CEZ, while 
the uncontaminated samples were derived from (2) the CEZ (sample sites CL1 
and CL2, with a mean dose of 0.25 µSv/h) or (3) near Kyiv (sample site KL, with 
a mean dose of 0.33 µSV/h) (Lavrinienko et al. 2018a). The estimated radiation 
doses of the uncontaminated samples were close to natural background levels of 
<0.1 µSv/h (Mousseau 2021). Variation among (1) CH and other sites can be 
attributed to effects of radiation dose, whereas variation between CH/CL and 
KL are likely due to a marked difference in geographic location. 

2.4 Methods 

2.4.1 Detection of metabolomic features 

To identify the metabolites from the LC-MS/MS data, I processed the mass-
spectra using MZmine (3.9.0) (Schmid et al. 2023), using best practice to remove 
features associated with laboratory reagents (i.e. metabolites that may be derived 
from the plastic/glassware, or the extraction process). See Appendix 3 and 4 for 
parameters used and full details of used modules of each step-in sample 
processing, respectfully. Briefly, mass detection was performed to define the 
threshold value to filter out the “noise”, i.e. the impurities from the raw data. The 
noise level was visually set to filter the background noise from the MS level 1 
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scans. The second mass detection was performed to filter out the background 

Figure 1. Geographical maps of sampling locations within and outside Chornobyl Exclusion Zone 
(CEZ). A. The bank voles’ (Clethrionomys glareolus) faecal samples’ collection location 
around the Chornobyl Nuclear Power Plant (CNPP) within the Chornobyl Exclusion 
Zone. Faecal samples were collected from trapped bank voles from contaminated areas 
(CH1 and CH2) with elevated radiation levels and from uncontaminated areas (CL1 and 
CL2) within the Chornobyl Exclusion Zone. Faecal samples was also collected from 
uncontaminated areas (KL) outside the Chornobyl Exclusion Zone and near Kyiv 
(Kiova). Map data ©2024 Google. The image was modified by adding dark black texts 
and editing the CNPP icon afterwards. B. Chornobyl radiation map. Chornobyl 
Exclusion Zone is marked as a blue circle. Chornobyl power plant is marked as a star. 
Red to darker orange areas indicates the amount of Cesium-137 radiation. "File: 
Chernobyl radiation map 1996 30km zone.png" by CIA Factbook, Sting (vectorisation), 

MTruch (English translation), Makeemlighter (English translation), 四葉亭四迷  is 
licensed under CC BY-SA 2.5. To view a copy of this license, visit 
https://creativecommons.org/licenses/by-sa/2.5/?ref=openverse. 
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noise from the MS level 2 scans. The second mass detection’s noise level was also 
defined visually. The first and the second mass detection was done for each raw 
data file. 

The mass-detected data was used to build an extracted ion chromatogram 
(EIC) for each mass-to-charge (m/z) value for each raw data file using the ADAP 
chromatogram builder (Myers et al. 2017) module. The parameter for minimum 
consecutive scans was determined by inspecting the raw data’s usual minimum 
number of data points of the LC peaks. 

The local minimum resolver module was used to split the “shoulders” of 
LC peaks into individual features using appropriate parameters determined by 
inspecting apparently noisy EICs and good EICs in a few feature lists. The 
parameters were set to obtain the feature list of LC peaks with the minimum 
amount of noise but with as many separated peaks as possible (Appendix 3). 

Next, a 13C isotope filter (isotopic grouping) module was performed to 

filter out the features corresponding to 13C isotopes of the same analyte. Then, 

an isotope pattern finder (isotopic peak finder) module was performed to search 

for isotope patterns in the feature list. Following this, the join aligner module was 

used to align the detected peak in the samples through a match score (based on 

the mass and retention time of each peak and the mass spectrometer's tolerance 

range). These modules produced a feature list, from which apparent 

contaminants could be subtracted (based on their appearance in blank samples), 

and also fill the gaps in the aligned feature table, remove the misaligned feature 

list rows and finally, to obtain the feature table. 

The features were grouped based on retention time, feature shape, and 
feature height correlation using the metaCorrelate feature grouping module  
(Schmid et al. 2021, 2023). Metabolomics data processing resulted in a total of 
15,778 features in all 91 metabolomics samples which included the LC-MS/MS 
information (Supplementary 2, available in the ALLAS 
https://docs.csc.fi/data/Allas/) 

2.4.2 16S microbiota feature detection 

Reads for the EMP500 data were demultiplexed, trimmed to 150 bp and denoised 
using the default parameters in DEBLUR (Amir et al. 2017) to generate feature 
tables. Feature tables are archived in QIITA (study: 13114) 
(https://qiita.ucsd.edu/) (Gonzalez et al. 2018). 

The feature tables that contained data from bank voles were obtained from 
QIITA (https://qiita.ucsd.edu/) and merged using QIIME2’s (2023.5) (Estaki et 
al. 2020) ‘feature-table’ plugin, with the ‘filter-features’ option used to retain data 
for bank voles, as well as the negative (extraction and run) controls used for each 
flow cell (n=185 samples in total). These data provided between 9,240 and 97,927 
reads per sample. Taxonomy was assigned to features using the naive Bayes 
classifier (Bokulich et al. 2018) implemented by the QIIME2’s feature-classifier 
(classify-sklearn) plugin trained against the SILVA (139_99) database of 16S 
sequences (Quast et al. 2013, https://www.arb-silva.de/) that had been aligned 

https://qiita.ucsd.edu/
https://qiita.ucsd.edu/
https://www.arb-silva.de/
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and trimmed to the v4 region of the rRNA locus (i.e. to match the 515 and 806 
primer pair). The feature table was then filtered (taxa filter-table plugin) to remove 
all features that were not assigned a bacterial taxonomic classification (i.e. as 
either Archaea, Eukaryota, mitochondria, chloroplast, or unassigned). After this, a 
midpoint rooted phylogenetic tree was constructed using FASTREE (phylogeny 
align-to-tree-mafft-fasttree plugin) and the (i) feature table, (ii) phylogenetic tree, 
(iii) taxonomic classification, and (iv) metadata were exported to PHYLOSEQ 
(McMurdie and Holmes 2013). Next, possible contaminants were removed using 
DECONTAM (Davis et al. 2018). From all the microbiota samples 27,201 features 
were detected (Supplementary 3, available in the ALLAS 
https://docs.csc.fi/data/Allas/). 

2.5 Statistical analysis and data visualization 

Both microbiota (bacteria) and metabolomics data were analysed in R (4.2.1) 
statistical software (R Core Team 2021) using PHYLOSEQ (McMurdie and 
Holmes 2013) as a part of the vegan package (2.6.2) (Oksanen et al. 2022). See all 
used packages and version from Appendix 5. R was used via CSC – IT center for 
Science (https://csc.fi/en/). 

2.5.1 Statistical analysis and data visualization of metabolomics data 

First, the metabolite data (91 samples) was normalized for statistical analysis and 
data visualization using log-transformation (FENG et al. 2014). The Shannon 
entropy was used as an unweighted method to calculate the differences in the 
composition of metabolites between different contaminations (dose of radiation) 
within individual bank vole within three samples groups (clean, control and hot) 
(see Supplementary 4, available in the ALLAS, https://docs.csc.fi/data/Allas/). 
Statistical Bartlett’s test was used to determine homogeneity of variances. 
Observed features were used as a weighted method to calculate the number of 
different metabolites present. The pairwise dissimilarities among the samples in 
each feature table were calculated using the binary Jaccard metric and weighted 
Bray-Curtis metric to examine the importance of feature (i.e. metabolite) 
abundance. The effect of dose on gut metabolites was determined using 
permutation analysis of variance (PERMANOVA) (Stevens 2019). 

2.5.2 Statistical analysis and data visualization of bacteria data 

First, the bacteria data (111 samples) were normalized for statistical analysis and 
data visualization by rarefying the data using an even depth of 10,000 sequences 
without replacement. The Shannon diversity index was used as an unweighted 
method to calculate the differences in the composition of bacteria between 
different treatments (dose of radiation) within individual bank vole (see 
Supplementary 4 and Supplementary 5, both available in the ALLAS, 
https://docs.csc.fi/data/Allas/). Statistical Bartlett’s test was used to determine 
homogeneity of variances. Observed features were used as a weighted method 

https://docs.csc.fi/data/Allas/
https://docs.csc.fi/data/Allas/
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to calculate the number of different bacteria present. Statistical tests Kruskal-
Wallis and Dunn’s test were used for the non-parametric analyses to assess the 
difference between the treatments. The pairwise dissimilarities among the 
samples in each feature table were calculated using an unweighted Jaccard metric 
to examine the importance of bacteria abundance. The unweighted UniFrac 
metric (Lozupone et al. 2011) was used to account for phylogenetic differences 
among communities among pairs of samples for gut bacteria informs about the 
relative importance of rare (versus abundant) taxa and phylogenetic differences 
in gut bacteria community composition. The effect of dose on gut microbiota was 
determined using permutation analysis of variance (PERMANOVA) (Stevens 
2019). 

2.5.3 Identifying best predictors of metabolic diversity 

First, the bacterial data samples without the sample equivalent of the metabolite 
data were filtered out. This produced 91 samples for both bacteria and metabolite 
data. Two outliers, sample_040 and sample_043, were removed from the data to 
obtain the easier to read figure, so analysed data composed of 89 samples in both 
data. Microbiome (11.8.0), vegan (2.6.2) and ggplot2 (3.3.6) were used as the 
generalised linear models (GLMs) in R (4.2.1) to quantify the strength of the 
relationship (e.g. significance and effect size) between corresponding pairwise 
dissimilarities for bacteria and metabolites (see Supplementary 4, available in the 
ALLAS, https://docs.csc.fi/data/Allas/). The metabolites and bacteria data 
were not normalized for the comparing data using beta diversity. The correlation 
plot of unweighted Jaccard metric and weighted Bray-Curtis metric was used to 
examine if the changes in gut bacteria diversity could explain the changes in 
metabolite diversity. The statistical significances were examined using Mantel 
test. 

3.1 Radiation’s effect to the microbiota and metabolites alpha di-
versity 

3.1.1 Metabolites alpha diversity 

Radiation did not significantly impact on metabolite alpha diversity (Bartlett’s 
test, p = 0.806) (Table 1). Contaminated samples had higher mean alpha diversity 
of metabolites than uncontaminated samples (Figure 2A). However, 
contaminated samples had the slightest variation in alpha diversity. 
Uncontaminated samples within CEZ had more variation in alpha diversity than 
contaminated samples but smaller mean. Uncontaminated samples within CEZ 
samples also had less variation in alpha diversity than uncontaminated samples 
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outside of CEZ. Uncontaminated samples outside of CEZ had the most 
comprehensive variation in diversity and the most minor mean diversity. The 
variety and abundance of metabolites within the samples was negatively affected 
by the radiation. However, radiation had no statistically significant impact 
samples grouped by radiation levels (p = 0.806) (Table 1) when calculated using 
Bartlett’s test, suggesting that the variances are likely to be homogeneous across 
the treatment groups (clean, control, and hot).  

Figure 2. Statistical tests’ results from metabolite and bacteria data. The clean group 
presents bank voles’ (Clethrionomys glareolus) faecal samples collected from 
sampling locations from uncontaminated area within the Chornobyl Exclusion 
Zone (CL1 and CL2). The control group presents bank voles’ faecal samples 
collected from sampling locations from uncontaminated areas outside of the 
Chornobyl Exclusion Zone and near Kyiv (KL). The hot group presents bank 
voles’ faecal samples collected from contaminated area with elevated radiation 
levels within the Chornobyl Exclusion Zone (CH1 and CH2). A. The Shannon 
diversity of metabolites within individual bank voles in three different treatment 
group. B. The Shannon diversity of bacteria taxa within individual bank voles in 
three different treatment group. C. The number of different metabolites present 
within the bank voles’ faecal samples in three treatment group using Observed 
method. D. The number of different bacteria taxa present within the bank voles’ 
faecal samples in three treatment group using Observed method. 
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Radiation decreased the number of observed features (metabolites). 
Contaminated samples had the slightest variation in observed features within the 
samples but a higher amount than in uncontaminated samples (Figure 2C). 
Contaminated samples also had the highest mean of observed features. 
Uncontaminated samples within CEZ had higher variation in observed features 
but fewer than contaminated samples. Uncontaminated samples outside of CEZ 
have the highest variation in observed features but the most minor mean 
diversity. It can also be noticed that contaminated and uncontaminated samples 
within CEZ did have more metabolites within the samples (often more than 9000) 
than the uncontaminated samples outside of CEZ, where the number of 
metabolites within the samples was not weighted to high amounts but 
distributed more evenly, i.e. there was more variation in the number of features. 

3.1.2 Bacteria alpha diversity 

Radiation did not significantly affect bacteria alpha diversity when using the 
Shannon diversity index (Figure 2B) (Bartlett’s test, p = 0.184) (Table 1). The 
differences within the contaminated and uncontaminated samples were notable. 
The contaminated samples had the most notable variation, and the 
uncontaminated samples outside of CEZ had the lowest. The mean alpha 
diversity of all samples groups were quite similar to each other. The variation in 
alpha diversity within the uncontaminated samples within CEZ and 
contaminated samples differs more than in the uncontaminated samples outside 
of CEZ. The variety and abundance of bacteria taxa within the contaminated 
samples was found to be positively affected by the radiation (Figure 2B). 

Figure 3. Alpha diversity metrics of bacteria data in phylogenetic level. The clean group 
presents bank voles’ (Clethrionomys glareolus) faecal samples collected from 
sampling locations from uncontaminated area within the Chornobyl Exclusion 
Zone (CL1 and CL2). The control group presents bank voles’ faecal samples 
collected from sampling locations from uncontaminated areas outside of the 
Chornobyl Exclusion Zone and near Kyiv (KL). The hot group presents bank 
voles’ faecal samples collected from contaminated area with elevated radiation 
levels within the Chornobyl Exclusion Zone (CH1 and CH2). A. Shannon 
diversity of bacteria data in phylogenetic level. B. Observed features of bacteria 
data in phylogenetic level. C. Faith’s phylogenetic diversity (PD) of bacteria data 
in phylogenetic level.  
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However, radiation had no statistically significant impact samples grouped by 
radiation levels (p = 0.184) (Table 1) when calculated using Bartlett’s test, 
suggesting that the variances are likely to be homogeneous across the treatment 
groups (clean, control, and hot). 

The radiation significantly increased the number of observed bacteria taxa 
between the uncontaminated samples outside the CEZ and contaminated 
samples (Dunn’s test, p = 0.0491) (Table 1). The contaminated samples had the 
most considerable variation of observed taxa (Figure 2D); however, they also had 
the lowest mean of observed taxa. The uncontaminated samples outside of CEZ 
had the highest number of observed taxa of all the treatment groups. They also 
had the highest mean of observed taxa but the lowest variation. The 
uncontaminated samples had more outliers than the contaminated samples. The 
pairwise comparison test (Dunn’s test) of control and hot treatment groups 
revealed a significant difference between the groups (p = 0.049), when significant 
differences between the groups clean – hot and clean – control were not observed 
(p = 0.566, p = 0.134, respectively). 

Radiation did not have a clear effect on bacteria data when samples were 
examined in phylogenetic level. When comparing alpha diversity metrics 
Shannon diversity (Figure 3A), Observed features (Figure 3B) and Faith’s 
phylogenetic diversity (Figure 3C), no clear differences could not be found. In all 
the metrics, the uncontaminated samples outside of CEZ had the highest 

Figure 4. The pairwise dissimilarities among the samples using the Jaccard metric for 
metabolites (A) and bacteria taxa (B) combined with an ordination plot. The 
clean group presents bank voles’ (Clethrionomys glareolus) faecal samples 
collected from sampling locations from uncontaminated area within the 
Chornobyl Exclusion Zone (CL1 and CL2). The control group presents bank 
voles’ faecal samples collected from sampling locations from uncontaminated 
areas outside of the Chornobyl Exclusion Zone and near Kyiv (KL). The hot 
group presents bank voles’ faecal samples collected from contaminated area 
with elevated radiation levels within the Chornobyl Exclusion Zone (CH1 
and CH2). 
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diversity. Uncontaminated samples outside the CEZ also differed the most from 
the samples collected within the CEZ when Faith’s phylogenetic diversity was 
inspected (Figure 3C). 

3.2 Radiation’s effect to the microbiota and metabolites beta di-
versity 

3.2.1 Metabolites beta diversity 

There were no statistically significant differences in metabolite composition 
between the samples when Jaccard distance were used (PERMANOVA, p = 0.22) 
(Tabel 1). The uncontaminated samples were quite similar, and contaminated 
samples differed from uncontaminated samples when metabolites’ differences 
between the treatment groups were compared (Figure 4A). The analysis revealed 
a modest effect size, with the treatment explaining approximately 2.835% of the 
variation in composition (R2 = 0.028), however, radiation had no statistically 
significant impact on Jaccard distance, with no clear clusters of samples grouped 
by radiation levels (p = 0.22). 

Figure 5. The pairwise dissimilarities among the samples using Bray-Curtis metric for 
metabolites within treatment groups clean, control and hot (A) and treatment 
groups contam and uncontam (B) combined with an ordination plot. The clean 
group presents bank voles’ (Clethrionomys glareolus) faecal samples collected 
from sampling locations from uncontaminated area within the Chornobyl 
Exclusion Zone (CL1 and CL2). The control group presents bank voles’ faecal 
samples collected from sampling locations from uncontaminated areas outside 
of the Chornobyl Exclusion Zone and near Kyiv (KL). The hot group presents 
bank voles’ faecal samples collected from contaminated area with elevated 
radiation levels within the Chornobyl Exclusion Zone (CH1 and CH2). The 
contam presents the samples from contaminated areas (CH1 and CH2) within 
the Chornobyl Exclusion Zone and the uncont presents the samples from 
uncontaminated areas (CL1 and CL2) within the Chornobyl Exclusion Zone and 
outside of the Chornobyl Exclusion Zone (KL). 
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The radiation did not significantly affect the metabolite composition by 
increasing the dissimilarities among the samples when using Bray-Curtis metric 
(PERMANOVA, for treatment_1 group hot, clean and control, p = 0.306, for 
treatment_2 groups contaminated and uncontaminated, p = 0.371) (Tabel 1). The 
differences between the uncontaminated samples were similar, while the 
contaminated samples differed from the above (Figure 5A). Yet, the differences 
were not statistically significant, and the effect size was low (R2 = 0.026, p = 0.306). 
Additionally, treatment_2 group (contaminated and uncontaminated) was also 
examined resulting findings confirming the treatment_1 group’s (Figure 5B) also 
with no statistically significant results (R2 = 0.010, p = 0.371). 

3.2.2 Bacteria beta-diversity 

The radiation had a statistically significant impact on bacteria taxa composition 
when dissimilarities between the samples groups hot, clean and control were 
calculated using Jaccard distance (PERMANOVA, R2 = 0.02715, p = 0.001) (Table 
1). The contaminated samples differ greatly from uncontaminated samples 

Figure 6. The UniFrac metric used to account for phylogenetic differences among 
communities among pairs of samples for gut bacteria in treatment groups clean, 
control and hot. The clean group presents bank voles’ (Clethrionomys glareolus) 
faecal samples collected from sampling locations from uncontaminated area 
within the Chornobyl Exclusion Zone (CL1 and CL2). The control group presents 
bank voles’ faecal samples collected from sampling locations from 
uncontaminated areas outside of the Chornobyl Exclusion Zone and near Kyiv 
(KL). The hot group presents bank voles’ faecal samples collected from 
contaminated area with elevated radiation levels within the Chornobyl 
Exclusion Zone (CH1 and CH2). 
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(Figure 4B), and samples from uncontaminated areas within and outside the CEZ 
are similar to each other. 

The radiation had a significant effect on phylogenetic differences among 
communities among pairs of samples for gut bacteria in treatment groups clean, 
control and hot (UniFrac metric, R2 = 0.026, p = 0.001) (Figure 6). Samples within 
treatment groups clean and control were more phylogenetically alike than in 
treatment group hot, similar to the results obtained from Jaccard distance. 

Figure 7. Correlation plot of bacteria taxa and metabolite data using Bray-Curtis 
metric (A) and Jaccard metric (B). Faecal samples of bank voles’ 
(Clethrionomys glareolus) were collected from sampling locations from 
uncontaminated area within the Chornobyl Exclusion Zone and outside 
Chornobyl Exclusion Zone near Kyiv and from contaminated area with 
elevated radiation levels within the Chornobyl Exclusion Zone. Samples 
were used for both 16S rRNA v4 amplicon sequence data and untargeted 
metabolomics data. A. On x-axis m.bray present the Bray-Curtis metric of 
metabolite samples and on y-axis b.bray present the Bray-Curtis metric of 
bacteria samples. B. On x-axis m.jac present the Jaccard metric of metabolite 
samples and on y-axis b.jac present the Jaccard metric of bacteria samples. 
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3.3 The features of gut bacteria best explaining the changes in 
metabolites 

There was no significant correlation between the bacteria taxa and metabolites, 
when using the Bray-Curtis metric (Mantel test, p = 0.068931) (Figure 7A) or the 
Jaccard metric (Mantel test, p = 0.078921) (Figure 7B) (Table 1). Additionally, the 
effect size of Bray-Curtis (0.065) and Jaccard metrics (0.065) were low (Table 1).  

Table 1. Results of statistical analysis of bank voles’ faecal samples from 
contaminated area and uncontaminated area within the Chornobyl 
Exclusion Zone and from uncontaminated area outside the Chornobyl 
Exclusion Zone. See Appendix 1 and 2 for treatment groups explanation. 

Data Diversity Metric Test Tested treatment group Effect size p-value 

Metabolites 
       

 
alpha diversity Shannon Bartlett's test treatment_1 

  
0.806 

 
beta diversity Bray-Curtis PERMANOVA treatment_1 

 
0.02624 0.306 

  
Bray-Curtis PERMANOVA treatment_2 

 
0.00954  0.371 

  
Jaccard PERMANOVA treatment_1 

 
0.02835 0.22 

Bacteria 
       

 
alpha diversity Shannon Bartlett's test treatment_1 

  
0.1839 

  
Observed Dunn's test treatment_1 control - hot 

 
0.0491 

     
clean - control 

 
0.134 

     
clean - hot 

 
0.566 

  
Observed Kruskal-Wallis test treatment_1 

 
0.0184 0.138 

 
beta diversity Jaccard PERMANOVA treatment_1 

 
0.02715 0.001 

  
UniFrac PERMANOVA treatment_1 

 
0.02626 0.001 

Bacteria 
compared 
to 
metabolites 

beta diversity Bray-Curtis Mantel test 
  

0.0649 0.068931 

  
Jaccard Mantel test 

  
0.0649 0.078921 

 

Radiation can cause various issues to the hosts living in contaminated area, e.g. 
change the composition on microbiota community (Lavrinienko et al. 2018a, 2021) 
and affect metabolism pathways (Kesäniemi et al. 2019a), but the effect of these 
changes to the host’s health is unknown. To address this knowledge gap, the 
bank voles (Clethrionomys glareolus) inhabiting the Chornobyl Exclusion Zone 
(CEZ) were used as a model to determine if the changes in gut microbiota 
diversity influences the services, e.g. the production of metabolites. The bank 
voles’ faecal samples were collected from contaminated and uncontaminated 
areas within the CEZ and from uncontaminated areas outside the CEZ and near 
Kyiv to examine the effect of ionising radiation on metabolite and bacteria 
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diversities as well as if changes in bacteria diversity associate the changes in 
metabolite diversity. Regarding functional redundancy, if bacteria composition 
does not change too much at the phylogenetic level, metabolite diversity should 
not be affected, as bacteria taxa closely related to each other have similar 
functions. To see if radiation has any effect on bacteria or metabolite diversity 
and, more broadly, the host’s health, both 16S amplicon sequencing and 
untargeted metabolomics (processed via LC-MS/MS) data were obtained from 
the faecal samples and data were analysed using QIIME2 and 
MZmine, both combined to R, respectively. The analysis discovered that 
radiation significantly affected the bacteria alpha and beta diversities, but not the 
metabolite alpha or beta diversities. Additionally, the association between the 
gut microbiota diversity and metabolite diversity was not found. These findings 
highlights the complexity of gut microbiota metabolite production and all the 
elements affecting that. Clear evidence of functional redundancy was also not 
discovered. 

4.1 The effect of radiation on alpha and beta diversities 

As exposure to ionising radiation significantly affected bacteria diversity when 
using alpha and beta diversity methods (Figures 2 and 4) is similar to discoveries 
of previous studies (Lavrinienko et al. 2018a, 2021, Zhu et al. 2021, Jernfors et al. 
2024), this reinforces the knowledge provided by previous studies, that radiation 
does affect the microbiota composition. The effect of radiation on alpha diversity 
has been found in gut microbes (Lavrinienko et al. 2018a, 2021) and microbes 
living in the soil (Cheng et al. 2023), but there is also contradiction (Antwis et al. 
2021). Here, the radiation positively correlated with the variety and abundance 
of bacteria within the samples (Figure 2D), which aligns with some of the results 
of previous studies (Lavrinienko et al. 2018b, 2021). As the uncontaminated 
samples were more similar to each other than contaminated samples, this suggest 
that radiation has more impact on the bacteria composition than the geographical 
location. If geographical location would affect more, the samples from CEZ 
would differ the samples collected outside the CEZ and near Kyiv. Radiation also 
impacted the similarities between the bacteria samples when considering the taxa, 
as the samples from contaminated areas differed from those from 
uncontaminated areas (Figure 4B). The results suggested, that radiation did have 
a greater impact on bacteria taxa composition than the geographical location. If 
geographical location would be more important factor, the samples collected 
within CEZ should differ from samples collected outside the CEZ as the sampling 
location are more geographically closer to each other. The impact of radiation on 
beta diversity was also discovered in earlier studies (Lavrinienko et al. 2018a, 
2021, Zhu et al. 2021). 

The effect of ionising radiation on the variety and abundance of metabolites 
was not discovered to be significant (Figure 2A and 2C) (Table 1). Additionally, 
beta diversity (Figure 4A and 5) showed no statistically significant effect of 
radiation. This suggests that radiation may have some impact on metabolite 
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diversity, but whether the metabolite production is too complex completeness or 
if the effect of functional redundancy is not enough to affect the metabolite 
production needs to be studied in the future. Faecal metabolites seem not be 
affected by radiation, which is consistent with the study done by Jernfors et al. 
(Jernfors et al. 2024). They found that metabolites (small subset of short chain 
fatty acids (SCFAs)) isolated from plasma were affected by radiation, which 
could suggest that the host itself could be more affected by the radiation than the 
gut microbiota. However, the host is a multicellular and more complex organism 
than a single-celled and rapidly dividing bacterium, so the effects of radiation 
may be more significant in more complex cellular processes. Tintori et al. found 
out that radiation did not impact on the genomes of Oschiesus tipulae (Tintori et 
al. 2023), a nematode, but mammals are more sensitive. Additionally, some 
bacteria taxa may be more resistant against the radiation (Confalonieri and 
Sommer 2011). Although my study did not identify metabolic pathways that 
resulted in a change in the diversity of metabolites, previous studies have shown 
that, the radiation affected the primary energy metabolism pathways in the livers 
of bank voles, e.g. via upregulation of genes participating in mitochondrial fatty 
acid oxidation and gluconeogenesis (Kesäniemi et al. 2019a) and altering the 
production of reactive oxygen species (ROS) (Kim et al. 2014).  Radiation can also 
participate to development of metabolic syndrome (Huang et al. 2023). Studies 
with different results underscore the need for standardized protocols related to 
the study of metabolites. 

4.2 Association between bacteria diversity and metabolite diver-
sity 

The changes in bacteria taxa diversity did not significantly associate with the 
changes in metabolite diversity. There are relatively few studies where the 
changes in microbiota community are compared to changes in metabolite, and 
even less when considering the diversity of gut bacteria and metabolite. Previous 
studies showed a positive correlation between the metabolite and microbe for 
many alpha diversity (Shaffer et al. 2022), however, the obtained results were not 
aligned with previous research. According to results of this thesis, the changes in 
gut microbiota diversity was not associated with the changes in metabolite 
diversity. The differences in the results were expected as the samples in Shaffer 
et al. study, were so different from each other and collected around the world, 
whereas here the comparable analysis was made with samples from a very small 
geographic scale. Also, Shaffer et al.  separated the primary and secondary 
metabolites, which was not done for this thesis. In plants, primary metabolites 
participate to the function related to growth and secondary metabolites 
participate functions related to environmental interaction, such as regulating on 
plants defence (Erb and Kliebenstein 2020). The possible association between, for 
example, differences in gut microbiota phylogenetic level and changes in 
metabolites would be a fascinating perspective to examine. When the 
relationship between the gut microbiota and the host’s health, possibly via 
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metabolites, is uncovered, or at least better understood, could information 
obtained from these be used, e.g. to study the health of human patients via faecal 
samples or to study the environment effect to various kind of species which could 
help to maintain and improve the global diversity of the species. 

The phenomenon of functional redundancy did not appear between the 
bacteria and metabolites samples. As the functional diversity of microbial 
communities is a complex wholeness, the link between phylogeny and function 
and the identification of functional redundancy can be complex (Escalas et al. 
2019). Also, in this study, the primary and secondary metabolites were not 
separated. A taxa-centered approach can help identify those phylogeny traits, 
including e.g. metabolism (Barberán et al. 2017). The functional diversity of a 
bacteria community can be reckoned using taxa-traits. The distribution of 
abundance across the trait values seems to affect the distribution of functionality 
in the community; the more uneven the distribution of abundance, the more 
uneven the distribution of functionality (Escalas et al. 2019). As the number of 
observed taxa (Figure 2D) does not correlate to the number of observed features 
(metabolites) (Figure 2C), i.e. as the number of taxa is increasing between the 
samples from uncontaminated areas (clean and control samples) and samples 
from contaminated areas (hot samples), but the number of features decreases 
between the samples from uncontaminated areas (clean and control samples) and 
samples from contaminated areas (hot samples), the phenomenon between the 
distribution of abundance and the distribution of functionality as described 
above seems not to occur. This highlights the perspective that both functional 
redundancy and metabolite production are very complex. 

4.3 Limitations and future aspects 

Even though the results supported other studies when considering the effect of 
radiation to the bacteria taxa composition, the effect of environmental changes, 
such as the alternation of seasons, can also affect gut microbiota rodents (Maurice 
et al. 2015). Furthermore, since metabolites are metabolic products formed when 
nutrients are broken down, the food consumed will likely also affect the 
composition of the metabolites (Jandhyala et al. 2015) and the diet changes 
during the seasons. In a contaminated area, diet sources of bank voles may also 
have received their share of the effects of radiation as diet sources may also have 
been exposed to radiation, as a result of which they may also have radiation-
induced effects that may still affect the bank voles’ gut microbiota, metabolism 
and its products, metabolites. Also, the deeper insight of host’s metabolites and 
microbiota metabolites is needed to clear conclusions; is there difference between 
the metabolites produced by the host and metabolites produced by the 
microbiota under radioactive conditions? Additionally, as bank voles are mobile 
animals and are capable of covering the distance of about 1 km (Kozakiewicz et 
al. 2007), the change of environment can also affect the results. Due to this 
possible immigration between the sampling sites, there was lot of noise in the 
samples. Rational conclusions on the effects of environmental radiation, in 
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particular, would require a study to distinguish between the effects of internal 
and external radiation on the subjects. Obtaining even more accurate and precise 
results on how environmental conditions, such as radiation, affect the gut 
microbiota requires a more significant and more geographically extensive 
sampling of samples from areas with lower and higher radiation levels to reveal 
effective doses of radiation. It is still unclear which radiation dose does impact 
the gut microbiota and which dose the gut microbiota can still recover from. 
Additionally, the longer or shorter exposure time, the dose, and early life of bank 
voles should also be inspected, for example. Typically, empirical data from wild 
animals are noisy and various study design should be used to obtain indisputable 
results. One of the most significant issues affecting the results was the lack of a 
uniform protocol or a proven course of action for handling metabolite LC-
MS/MS data so far. However, as shown in this study, the data from LC-MS/MS 
can be obtained and used for metabolomic studies, which sets the scene for more 
studies. Standards and protocol are absolute for the results of the various studies 
to be truly comparable. Standardised methods will hopefully be available shortly 
as interest in gut microbiota, the factors influencing it, and its effects on the host 
are on the rise. 

If an association is found between the production of metabolites and the gut 
microbiota, this can be used, for example, for diet metabarcoding, determining 
various intestinal microbiota imbalances, and separating genes and functions 
from bacteria (metagenomics). The filling of this gap in knowledge could be 
utilized in both ecology and evolution studies. Additionally, these finding could 
later be expanded to include medicine as, e.g. treating cancers (Plaza-Diaz and 
Álvarez-Mercado 2023) and revealing other the unknown of microbe-metabolite-
disease associations (Feng et al. 2022). 

The association of changes in gut microbial diversity and the changes in 
metabolite diversity was studied using bank voles inhabiting Chornobyl as a 
model. The effect of radiation on gut microbiota and metabolite diversity was 
studied by analysing 16S amplicon sequence and non-targeted metabolomics 
data from faecal samples collected from previous studies. The results of the 
analysis found that radiation affected the composition of the gut microbiota, but 
not the metabolite diversity. In addition, it was found that radiation had more 
effect on changes than geographical location when considering the changes in 
gut microbiota diversity. In order to study the effective dose of radiation, samples 
should be collected from a wider geographical area from both higher and lower 
radiation levels to determine the effective dose of radiation. In addition, based 
on the samples of this study, changes in the composition of gut microbiota 
diversity did not associate with the changes in metabolite diversity, i.e. the gut 
microbiota’s effect on the host's health still remains unclear. Further studies could 
investigate which taxa change affected the changes in which metabolites in order 

5 CONCLUSIONS 
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to exploit the results on an even broader scale, such as the effects of 
environmental change on living organisms and the treatment of those with 
chronic intestinal diseases. 
  



 
 

 
 

23 

ACKNOWLEDGEMENTS 

The author wishes to acknowledge CSC – IT Center for Science, Finland, for 
generous computational resources. 
  



 
 

 
 

24 

REFERENCES 

 
Amir A., McDonald D., Navas-Molina J.A., Kopylova E., Morton J.T., Zech Xu Z., 

Kightley E.P., Thompson L.R., Hyde E.R., Gonzalez A. & Knight R. 2017. 
Deblur Rapidly Resolves Single-Nucleotide Community Sequence 
Patterns. mSystems 2: e00191-16. 

Amori G. 2008. IUCN Red List of Threatened Species: Clethrionomys glareolus. 
IUCN Red List Threat. Species. 

Andoh A. 2016. Physiological Role of Gut Microbiota for Maintaining Human 
Health. Digestion 93: 176–181. 

Antwis R.E., Beresford N.A., Jackson J.A., Fawkes R., Barnett C.L., Potter E., 
Walker L., Gaschak S. & Wood M.D. 2021. Impacts of radiation exposure 
on the bacterial and fungal microbiome of small mammals in the 
Chernobyl Exclusion Zone. J. Anim. Ecol. 90: 2172–2187. 

Apprill A., McNally S., Parsons R. & Weber L. 2015. Minor revision to V4 region 
SSU rRNA 806R gene primer greatly increases detection of SAR11 
bacterioplankton. Aquat. Microb. Ecol. 75: 129–137. 

Barberán A., Caceres Velazquez H., Jones S. & Fierer N. 2017. Hiding in Plain 
Sight: Mining Bacterial Species Records for Phenotypic Trait Information. 
mSphere 2: 10.1128/msphere.00237-17. 

Beresford N.A., Gaschak S., Barnett C.L., Howard B.J., Chizhevsky I., Strømman 
G., Oughton D.H., Wright S.M., Maksimenko A. & Copplestone D. 2008. 
Estimating the exposure of small mammals at three sites within the 
Chernobyl exclusion zone--a test application of the ERICA Tool. J. Environ. 
Radioact. 99: 1496–1502. 

Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E., Knight R., 
Huttley G.A. & Gregory Caporaso J. 2018. Optimizing taxonomic 
classification of marker-gene amplicon sequences with QIIME 2’s q2-
feature-classifier plugin. Microbiome 6: 90. 

Brila I., Lavrinienko A., Tukalenko E., Ecke F., Rodushkin I., Kallio E.R., Mappes 
T. & Watts P.C. 2021. Low-level environmental metal pollution is 
associated with altered gut microbiota of a wild rodent, the bank vole 
(Myodes glareolus). Sci. Total Environ. 790: 148224. 

Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Huntley J., Fierer N., 
Owens S.M., Betley J., Fraser L., Bauer M., Gormley N., Gilbert J.A., Smith 
G. & Knight R. 2012. Ultra-high-throughput microbial community 
analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621–1624. 



 
 

 
 

25 

Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., 
Turnbaugh P.J., Fierer N. & Knight R. 2011. Global patterns of 16S rRNA 
diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. 
Sci. 108: 4516–4522. 

Cheng F., Huang X., Qin Q., Chen Z., Li F. & Song W. 2023. The effect of 
aboveground long-term low-dose ionizing radiation on soil microbial 
diversity and structure. Front. Ecol. Evol. 11. 

Cohen–Jonathan E., Bernhard E.J. & McKenna W.G. 1999. How does radiation 
kill cells? Curr. Opin. Chem. Biol. 3: 77–83. 

Confalonieri F. & Sommer S. 2011. Bacterial and archaeal resistance to ionizing 
radiation. J. Phys. Conf. Ser. 261: 012005. 

Davis N.M., Proctor D.M., Holmes S.P., Relman D.A. & Callahan B.J. 2018. Simple 
statistical identification and removal of contaminant sequences in marker-
gene and metagenomics data. Microbiome 6: 226. 

Erb M. & Kliebenstein D.J. 2020. Plant Secondary Metabolites as Defenses, 
Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. 
Plant Physiol. 184: 39–52. 

Escalas A., Hale L., Voordeckers J.W., Yang Y., Firestone M.K., Alvarez-Cohen L. 
& Zhou J. 2019. Microbial functional diversity: From concepts to 
applications. Ecol. Evol. 9: 12000–12016. 

Estaki M., Jiang L., Bokulich N.A., McDonald D., González A., Kosciolek T., 
Martino C., Zhu Q., Birmingham A., Vázquez-Baeza Y., Dillon M.R., 
Bolyen E., Caporaso J.G. & Knight R. 2020. QIIME 2 Enables 
Comprehensive End-to-End Analysis of Diverse Microbiome Data and 
Comparative Studies with Publicly Available Data. Curr. Protoc. 
Bioinforma. 70: e100. 

FENG C., WANG H., LU N., CHEN T., HE H., LU Y. & TU X.M. 2014. Log-
transformation and its implications for data analysis. Shanghai Arch. 
Psychiatry 26: 105–109. 

Feng J., Wu S., Yang H., Ai C., Qiao J., Xu J. & Guo F. 2022. Microbe-bridged 
disease-metabolite associations identification by heterogeneous graph 
fusion. Brief. Bioinform. 23: bbac423. 

Gonzalez A., Navas-Molina J.A., Kosciolek T., McDonald D., Vázquez-Baeza Y., 
Ackermann G., DeReus J., Janssen S., Swafford A.D., Orchanian S.B., 
Sanders J.G., Shorenstein J., Holste H., Petrus S., Robbins-Pianka A., 
Brislawn C.J., Wang M., Rideout J.R., Bolyen E., Dillon M., Caporaso J.G., 



 
 

 
 

26 

Dorrestein P.C. & Knight R. 2018. Qiita: rapid, web-enabled microbiome 
meta-analysis. Nat. Methods 15: 796. 

Huang R., Miszczyk J. & Zhou P.-K. 2023. Risk and mechanism of metabolic 
syndrome associated with radiation exposure. Radiat. Med. Prot. 4: 65–69. 

Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M. & 
Reddy D.N. 2015. Role of the normal gut microbiota. World J. Gastroenterol. 
WJG 21: 8787–8803. 

Jernfors T., Danforth J., Kesäniemi J., Lavrinienko A., Tukalenko E., Fajkus J., 
Dvořáčková M., Mappes T. & Watts P.C. 2021. Expansion of rDNA and 
pericentromere satellite repeats in the genomes of bank voles Myodes 
glareolus exposed to environmental radionuclides. Ecol. Evol. 11: 8754–
8767. 

Jernfors T., Lavrinienko A., Vareniuk I., Landberg R., Fristedt R., Tkachenko O., 
Taskinen S., Tukalenko E., Mappes T. & Watts P.C. 2024. Association 
between gut health and gut microbiota in a polluted environment. Sci. 
Total Environ. 914: 169804. 

Kesäniemi J., Boratyński Z., Danforth J., Itam P., Jernfors T., Lavrinienko A., 
Mappes T., Møller A.P., Mousseau T.A. & Watts P.C. 2018. Analysis of 
heteroplasmy in bank voles inhabiting the Chernobyl exclusion zone: A 
commentary on Baker et al. (2017) ”Elevated mitochondrial genome 
variation after 50 generations of radiation exposure in a wild rodent.” Evol. 
Appl. 11: 820–826. 

Kesäniemi J., Jernfors T., Lavrinienko A., Kivisaari K., Kiljunen M., Mappes T. & 
Watts P.C. 2019a. Exposure to environmental radionuclides is associated 
with altered metabolic and immunity pathways in a wild rodent. Mol. Ecol. 
28: 4620–4635. 

Kesäniemi J., Lavrinienko A., Tukalenko E., Boratyński Z., Kivisaari K., Mappes 
T., Milinevsky G., Møller A.P., Mousseau T.A. & Watts P.C. 2019b. 
Exposure to environmental radionuclides associates with tissue-specific 
impacts on telomerase expression and telomere length. Sci. Rep. 9: 850. 

Kim J.H., Jenrow K.A. & Brown S.L. 2014. Mechanisms of radiation-induced 
normal tissue toxicity and implications for future clinical trials. Radiat. 
Oncol. J. 32: 103–115. 

Kozakiewicz M., Chołuj A. & Kozakiewicz A. 2007. Long-distance movements of 
individuals in a free-living bank vole population: an important element of 
male breeding strategy. Acta Theriol. (Warsz.) 52: 339–348. 



 
 

 
 

27 

Koziol A., Odriozola I., Leonard A., Eisenhofer R., San José C., Aizpurua O. & 
Alberdi A. 2023. Mammals show distinct functional gut microbiome 
dynamics to identical series of environmental stressors. mBio 14: e01606-
23. 

Lavrinienko A., Hämäläinen A., Hindström R., Tukalenko E., Boratyński Z., 
Kivisaari K., Mousseau T.A., Watts P.C. & Mappes T. 2021. Comparable 
response of wild rodent gut microbiome to anthropogenic habitat 
contamination. Mol. Ecol. 30: 3485–3499. 

Lavrinienko A., Mappes T., Tukalenko E., Mousseau T.A., Møller A.P., Knight R., 
Morton J.T., Thompson L.R. & Watts P.C. 2018a. Environmental radiation 
alters the gut microbiome of the bank vole Myodes glareolus. ISME J. 12: 
2801–2806. 

Lavrinienko A., Tukalenko E., Mappes T. & Watts P.C. 2018b. Skin and gut 
microbiomes of a wild mammal respond to different environmental cues. 
Microbiome 6: 209. 

Lavrinienko A., Tukalenko E., Mousseau T.A., Thompson L.R., Knight R., 
Mappes T. & Watts P.C. 2020. Two hundred and fifty-four metagenome-
assembled bacterial genomes from the bank vole gut microbiota. Sci. Data 
7: 312. 

Lehmann P., Boratyński Z., Mappes T., Mousseau T.A. & Møller A.P. 2016. 
Fitness costs of increased cataract frequency and cumulative radiation 
dose in natural mammalian populations from Chernobyl. Sci. Rep. 6: 19974. 

Liu X. & Locasale J.W. 2017. Metabolomics: A Primer. Trends Biochem. Sci. 42: 274–
284. 

Lozupone C., Lladser M.E., Knights D., Stombaugh J. & Knight R. 2011. UniFrac: 
an effective distance metric for microbial community comparison. ISME J. 
5: 169–172. 

Lukáčová I., Ambro Ľ., Dubayová K. & Mareková M. 2023. The gut microbiota, 
its relationship to the immune system, and possibilities of its modulation. 
Epidemiol. Mikrobiol. Imunol. Cas. Spolecnosti Epidemiol. Mikrobiol. Ceske Lek. 
Spolecnosti JE Purkyne 72: 40–53. 

Maurice C.F., CL Knowles S., Ladau J., Pollard K.S., Fenton A., Pedersen A.B. & 
Turnbaugh P.J. 2015. Marked seasonal variation in the wild mouse gut 
microbiota. ISME J. 9: 2423–2434. 

McMurdie P.J. & Holmes S. 2013. phyloseq: An R Package for Reproducible 
Interactive Analysis and Graphics of Microbiome Census Data. PLOS 
ONE 8: e61217. 



 
 

 
 

28 

Mousseau T.A. 2021. The Biology of Chernobyl. Annu. Rev. Ecol. Evol. Syst. 52: 
87–109. 

Myers O.D., Sumner S.J., Li S., Barnes S. & Du X. 2017. One Step Forward for 
Reducing False Positive and False Negative Compound Identifications 
from Mass Spectrometry Metabolomics Data: New Algorithms for 
Constructing Extracted Ion Chromatograms and Detecting 
Chromatographic Peaks. Anal. Chem. 89: 8696–8703. 

Møller A.P. & Mousseau T.A. 2006. Biological consequences of Chernobyl: 20 
years on. Trends Ecol. Evol. 21: 200–207. 

Møller A.P. & Mousseau T.A. 2015. Strong effects of ionizing radiation from 
Chernobyl on mutation rates. Sci. Rep. 5: 8363. 

Niu S. 2011. Radiation protection of workers. SafeWork Inf. Note Ser. Int. Labour 
Organ. 

Oksanen J., Simpson G.L., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., 
O’Hara R.B., Solymos P., Stevens M.H.H., Szoecs E., Wagner H., Barbour 
M., Bedward M., Bolker B., Borcard D., Carvalho G., Chirico M., De 
Caceres M., Durand S., Evangelista H.B.A., FitzJohn R., Friendly M., 
Furneaux B., Hannigan G., Hill M.O., Lahti L., McGlinn D., Ouellette M.-
H., Cunha E.R., Smith T., Stier A., Ter Braak C.J.F. & Weedon J. 2022. 
Community Ecology Package. 2022-10-11. 

Parada A.E., Needham D.M. & Fuhrman J.A. 2016. Every base matters: assessing 
small subunit rRNA primers for marine microbiomes with mock 
communities, time series and global field samples. Environ. Microbiol. 18: 
1403–1414. 

Plaza-Diaz J. & Álvarez-Mercado A.I. 2023. The Interplay between Microbiota 
and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 13: 
703. 

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J. & 
Glöckner F.O. 2013. The SILVA ribosomal RNA gene database project: 
improved data processing and web-based tools. Nucleic Acids Res. 41: 
D590–D596. 

R Core Team. 2021. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/. 

Schmid R., Heuckeroth S., Korf A., Smirnov A., Myers O., Dyrlund T.S., Bushuiev 
R., Murray K.J., Hoffmann N., Lu M., Sarvepalli A., Zhang Z., Fleischauer 
M., Dührkop K., Wesner M., Hoogstra S.J., Rudt E., Mokshyna O., Brungs 



 
 

 
 

29 

C., Ponomarov K., Mutabdžija L., Damiani T., Pudney C.J., Earll M., 
Helmer P.O., Fallon T.R., Schulze T., Rivas-Ubach A., Bilbao A., Richter H., 
Nothias L.-F., Wang M., Orešič M., Weng J.-K., Böcker S., Jeibmann A., 
Hayen H., Karst U., Dorrestein P.C., Petras D., Du X. & Pluskal T. 2023. 
Integrative analysis of multimodal mass spectrometry data in MZmine 3. 
Nat. Biotechnol. 41: 447–449. 

Schmid R., Petras D., Nothias L.-F., Wang M., Aron A.T., Jagels A., Tsugawa H., 
Rainer J., Garcia-Aloy M., Dührkop K., Korf A., Pluskal T., Kameník Z., 
Jarmusch A.K., Caraballo-Rodríguez A.M., Weldon K.C., Nothias-
Esposito M., Aksenov A.A., Bauermeister A., Albarracin Orio A., 
Grundmann C.O., Vargas F., Koester I., Gauglitz J.M., Gentry E.C., 
Hövelmann Y., Kalinina S.A., Pendergraft M.A., Panitchpakdi M., Tehan 
R., Le Gouellec A., Aleti G., Mannochio Russo H., Arndt B., Hübner F., 
Hayen H., Zhi H., Raffatellu M., Prather K.A., Aluwihare L.I., Böcker S., 
McPhail K.L., Humpf H.-U., Karst U. & Dorrestein P.C. 2021. Ion identity 
molecular networking for mass spectrometry-based metabolomics in the 
GNPS environment. Nat. Commun. 12: 3832. 

Shaffer J.P., Nothias L.-F., Thompson L.R., Sanders J.G., Salido R.A., Couvillion 
S.P., Brejnrod A.D., Lejzerowicz F., Haiminen N., Huang S., Lutz H.L., Zhu 
Q., Martino C., Morton J.T., Karthikeyan S., Nothias-Esposito M., Dührkop 
K., Böcker S., Kim H.W., Aksenov A.A., Bittremieux W., Minich J.J., 
Marotz C., Bryant M.M., Sanders K., Schwartz T., Humphrey G., Vásquez-
Baeza Y., Tripathi A., Parida L., Carrieri A.P., Beck K.L., Das P., González 
A., McDonald D., Ladau J., Karst S.M., Albertsen M., Ackermann G., 
DeReus J., Thomas T., Petras D., Shade A., Stegen J., Song S.J., Metz T.O., 
Swafford A.D., Dorrestein P.C., Jansson J.K., Gilbert J.A., Knight R., & 
Earth Microbiome Project 500 (EMP500) Consortium. 2022. Standardized 
multi-omics of Earth’s microbiomes reveals microbial and metabolite 
diversity. Nat. Microbiol. 7: 2128–2150. 

Stevens M.H.H. 2019. adonis: Permutational Multivariate Analysis of Variance 
Using... in vegan: Community Ecology Package. 
https://rdrr.io/rforge/vegan/man/adonis.html. 

Sun Y., Zhang S., Nie Q., He H., Tan H., Geng F., Ji H., Hu J. & Nie S. 2023. Gut 
firmicutes: Relationship with dietary fiber and role in host homeostasis. 
Crit. Rev. Food Sci. Nutr. 63: 12073–12088. 

Thompson L., Ackermann G., Humphrey G., Gilbert J., Jansson J. & Knight R. 
2018. EMP Sample Submission Guide. 

Tintori S.C., Çağlar D., Ortiz P., Chyzhevskyi I., Mousseau T.A. & Rockman M.V. 
2023. Environmental radiation exposure at Chornobyl has not 
systematically affected the genomes or mutagen tolerance phenotypes of 
local worms. bioRxiv: 2023.05.28.542665. 



 
 

 
 

30 

Zhu J., Sun X., Zhang Z.-D., Tang Q.-Y., Gu M.-Y., Zhang L.-J., Hou M., Sharon 
A. & Yuan H.-L. 2021. Effect of Ionizing Radiation on the Bacterial and 
Fungal Endophytes of the Halophytic Plant Kalidium schrenkianum. 
Microorganisms 9: 1050. 



 

 
 

31 

APPENDIX 1. THE BACTERIA METADATA 

Table 2. The bacteria metadata. Sample-id is the sample identification number 
given for this thesis. Emp500 is the sample name for Earth Microbiome 
Project. Metabolite column indicates if there is a metabolomics data from 
particular sample. Treatment_1 indicates if the sample belongs to 
treatment group hot, clean or control. Treatment_2 indicates is samples 
was collected from contaminated or uncontaminated area. Storage 
indicates the storage form of the sample. 

sample-id emp500 metabolite treatment_1 treatment_2 Storage 

sample_900 13114.mousseau.88.s001 no hot contam frozen 

sample_040 13114.mousseau.88.s002 yes hot contam frozen 

sample_901 13114.mousseau.88.s003 no hot contam frozen 

sample_043 13114.mousseau.88.s004 yes hot contam frozen 

sample_051 13114.mousseau.88.s005 yes hot contam frozen 

sample_052 13114.mousseau.88.s006 yes hot contam frozen 

sample_042 13114.mousseau.88.s007 yes hot contam frozen 

sample_902 13114.mousseau.88.s008 no hot contam frozen 

sample_012 13114.mousseau.88.s009 yes clean uncont frozen 

sample_005 13114.mousseau.88.s010 yes clean uncont frozen 

sample_006 13114.mousseau.88.s011 yes clean uncont frozen 

sample_903 13114.mousseau.88.s012 no clean uncont frozen 

sample_010 13114.mousseau.88.s013 yes clean uncont frozen 

sample_904 13114.mousseau.88.s014 no clean uncont frozen 

sample_007 13114.mousseau.88.s015 yes clean uncont frozen 

sample_009 13114.mousseau.88.s016 yes clean uncont frozen 

sample_039 13114.mousseau.88.s017 yes hot contam frozen 

sample_003 13114.mousseau.88.s018 yes clean uncont frozen 

sample_905 13114.mousseau.88.s019 no clean uncont frozen 

sample_906 13114.mousseau.88.s020 no clean uncont frozen 

sample_004 13114.mousseau.88.s021 yes clean uncont frozen 

sample_907 13114.mousseau.88.s022 no clean uncont frozen 

sample_008 13114.mousseau.88.s023 yes clean uncont frozen 

sample_002 13114.mousseau.88.s024 yes clean uncont frozen 

sample_011 13114.mousseau.88.s025 yes clean uncont frozen 

sample_908 13114.mousseau.88.s026 no clean uncont frozen 

sample_909 13114.mousseau.88.s027 no hot contam frozen 

sample_047 13114.mousseau.88.s028 yes hot contam frozen 

sample_910 13114.mousseau.88.s029 no hot contam frozen 

sample_056 13114.mousseau.88.s030 yes hot contam frozen 

sample_911 13114.mousseau.88.s031 no hot contam frozen 

sample_060 13114.mousseau.88.s032 yes hot contam frozen 

sample_038 13114.mousseau.88.s033 yes hot contam frozen 

sample_041 13114.mousseau.88.s034 yes hot contam frozen 
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sample_059 13114.mousseau.88.s035 yes hot contam frozen 

sample_044 13114.mousseau.88.s036 yes hot contam frozen 

sample_061 13114.mousseau.88.s037 yes hot contam frozen 

sample_912 13114.mousseau.88.s038 no hot contam frozen 

sample_054 13114.mousseau.88.s039 yes hot contam frozen 

sample_050 13114.mousseau.88.s040 yes hot contam frozen 

sample_045 13114.mousseau.88.s041 yes hot contam frozen 

sample_049 13114.mousseau.88.s042 yes hot contam frozen 

sample_055 13114.mousseau.88.s043 yes hot contam frozen 

sample_046 13114.mousseau.88.s044 yes hot contam frozen 

sample_057 13114.mousseau.88.s045 yes hot contam frozen 

sample_048 13114.mousseau.88.s046 yes hot contam frozen 

sample_053 13114.mousseau.88.s047 yes hot contam frozen 

sample_023 13114.mousseau.88.s048 yes clean uncont frozen 

sample_025 13114.mousseau.88.s049 yes clean uncont frozen 

sample_015 13114.mousseau.88.s050 yes clean uncont frozen 

sample_017 13114.mousseau.88.s051 yes clean uncont frozen 

sample_001 13114.mousseau.88.s052 yes clean uncont frozen 

sample_028 13114.mousseau.88.s053 yes clean uncont frozen 

sample_024 13114.mousseau.88.s054 yes clean uncont frozen 

sample_019 13114.mousseau.88.s055 yes clean uncont frozen 

sample_022 13114.mousseau.88.s056 yes clean uncont frozen 

sample_014 13114.mousseau.88.s057 yes clean uncont frozen 

sample_013 13114.mousseau.88.s058 yes clean uncont frozen 

sample_016 13114.mousseau.88.s059 yes clean uncont frozen 

sample_913 13114.mousseau.88.s060 no hot contam frozen 

sample_020 13114.mousseau.88.s061 yes clean uncont frozen 

sample_058 13114.mousseau.88.s062 yes hot contam frozen 

sample_018 13114.mousseau.88.s063 yes clean uncont frozen 

sample_021 13114.mousseau.88.s064 yes clean uncont frozen 

sample_508 13114.mousseau.88.s065 yes control uncont frozen 

sample_505 13114.mousseau.88.s066 yes control uncont frozen 

sample_504 13114.mousseau.88.s067 yes control uncont frozen 

sample_509 13114.mousseau.88.s068 yes control uncont frozen 

sample_502 13114.mousseau.88.s069 yes control uncont frozen 

sample_510 13114.mousseau.88.s070 yes control uncont frozen 

sample_507 13114.mousseau.88.s071 yes control uncont frozen 

sample_914 13114.mousseau.88.s072 no control uncont frozen 

sample_503 13114.mousseau.88.s073 yes control uncont frozen 

sample_506 13114.mousseau.88.s074 yes control uncont frozen 

sample_915 13114.mousseau.88.s075 no control uncont frozen 

sample_916 13114.mousseau.88.s076 no control uncont frozen 

sample_917 13114.mousseau.88.s077 no control uncont frozen 

sample_918 13114.mousseau.88.s078 no control uncont frozen 

sample_919 13114.mousseau.88.s079 no control uncont frozen 
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sample_501 13114.mousseau.88.s080 yes control uncont frozen 

sample_511 13114.mousseau.88.s081 yes control uncont frozen 

sample_512 13114.mousseau.88.s082 yes control uncont frozen 

sample_514 13114.mousseau.88.s083 yes control uncont frozen 

sample_513 13114.mousseau.88.s084 yes control uncont frozen 

sample_516 13114.mousseau.88.s085 yes control uncont frozen 

sample_517 13114.mousseau.88.s086 yes control uncont frozen 

sample_515 13114.mousseau.88.s087 yes control uncont frozen 

sample_518 13114.mousseau.88.s088 yes control uncont frozen 

sample_032 13114.mousseau.88.s089 yes clean uncont EtOH 

sample_031 13114.mousseau.88.s090 yes clean uncont EtOH 

sample_029 13114.mousseau.88.s091 yes clean uncont EtOH 

sample_026 13114.mousseau.88.s092 yes clean uncont EtOH 

sample_033 13114.mousseau.88.s093 yes clean uncont EtOH 

sample_027 13114.mousseau.88.s094 yes clean uncont EtOH 

sample_920 13114.mousseau.88.s095 no clean uncont EtOH 

sample_030 13114.mousseau.88.s096 yes clean uncont EtOH 

sample_064 13114.mousseau.88.s097 yes hot contam EtOH 

sample_063 13114.mousseau.88.s098 yes hot contam EtOH 

sample_034 13114.mousseau.88.s099 yes clean uncont EtOH 

sample_035 13114.mousseau.88.s100 yes clean uncont EtOH 

sample_069 13114.mousseau.88.s101 yes hot contam EtOH 

sample_067 13114.mousseau.88.s102 yes hot contam EtOH 

sample_036 13114.mousseau.88.s103 yes clean uncont EtOH 

sample_037 13114.mousseau.88.s104 yes clean uncont EtOH 

sample_068 13114.mousseau.88.s105 yes hot contam EtOH 

sample_066 13114.mousseau.88.s106 yes hot contam EtOH 

sample_073 13114.mousseau.88.s107 yes hot contam EtOH 

sample_072 13114.mousseau.88.s108 yes hot contam EtOH 

sample_070 13114.mousseau.88.s109 yes hot contam EtOH 

sample_062 13114.mousseau.88.s110 yes hot contam EtOH 

sample_065 13114.mousseau.88.s111 yes hot contam EtOH 

sample_071 13114.mousseau.88.s112 yes hot contam EtOH 
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APPENDIX 2. THE METABOLITE METADATA 

Table 3. The metabolite metadata. Sample-id is the sample identification number 
given for this thesis. Emp500 is the sample name for Earth Microbiome 
Project. Metabolite column indicates if there is a metabolomics data from 
particular sample. Treatment_1 indicates if the sample belongs to 
treatment group hot, clean or control. Treatment_2 indicates is samples 
was collected from contaminated or uncontaminated area. Storage 
indicates the storage form of the sample. 

sample-id emp500 metabolite treatment_1 treatment_2 storage 

sample_001 13114.mousseau.88.s052 yes clean uncont frozen 

sample_002 13114.mousseau.88.s024 yes clean uncont frozen 

sample_003 13114.mousseau.88.s018 yes clean uncont frozen 

sample_004 13114.mousseau.88.s021 yes clean uncont frozen 

sample_005 13114.mousseau.88.s010 yes clean uncont frozen 

sample_006 13114.mousseau.88.s011 yes clean uncont frozen 

sample_007 13114.mousseau.88.s015 yes clean uncont frozen 

sample_008 13114.mousseau.88.s023 yes clean uncont frozen 

sample_009 13114.mousseau.88.s016 yes clean uncont frozen 

sample_010 13114.mousseau.88.s013 yes clean uncont frozen 

sample_011 13114.mousseau.88.s025 yes clean uncont frozen 

sample_012 13114.mousseau.88.s009 yes clean uncont frozen 

sample_013 13114.mousseau.88.s058 yes clean uncont frozen 

sample_014 13114.mousseau.88.s057 yes clean uncont frozen 

sample_015 13114.mousseau.88.s050 yes clean uncont frozen 

sample_016 13114.mousseau.88.s059 yes clean uncont frozen 

sample_017 13114.mousseau.88.s051 yes clean uncont frozen 

sample_018 13114.mousseau.88.s063 yes clean uncont frozen 

sample_019 13114.mousseau.88.s055 yes clean uncont frozen 

sample_020 13114.mousseau.88.s061 yes clean uncont frozen 

sample_021 13114.mousseau.88.s064 yes clean uncont frozen 

sample_022 13114.mousseau.88.s056 yes clean uncont frozen 

sample_023 13114.mousseau.88.s048 yes clean uncont frozen 

sample_024 13114.mousseau.88.s054 yes clean uncont frozen 

sample_025 13114.mousseau.88.s049 yes clean uncont frozen 

sample_026 13114.mousseau.88.s092 yes clean uncont EtOH 

sample_027 13114.mousseau.88.s094 yes clean uncont EtOH 

sample_028 13114.mousseau.88.s053 yes clean uncont frozen 

sample_029 13114.mousseau.88.s091 yes clean uncont EtOH 

sample_030 13114.mousseau.88.s096 yes clean uncont EtOH 

sample_031 13114.mousseau.88.s090 yes clean uncont EtOH 

sample_032 13114.mousseau.88.s089 yes clean uncont EtOH 

sample_033 13114.mousseau.88.s093 yes clean uncont EtOH 

sample_034 13114.mousseau.88.s099 yes clean uncont EtOH 

sample_035 13114.mousseau.88.s100 yes clean uncont EtOH 

sample_036 13114.mousseau.88.s103 yes clean uncont EtOH 
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sample_037 13114.mousseau.88.s104 yes clean uncont EtOH 

sample_038 13114.mousseau.88.s033 yes hot contam frozen 

sample_039 13114.mousseau.88.s017 yes hot contam frozen 

sample_040 13114.mousseau.88.s002 yes hot contam frozen 

sample_041 13114.mousseau.88.s034 yes hot contam frozen 

sample_042 13114.mousseau.88.s007 yes hot contam frozen 

sample_043 13114.mousseau.88.s004 yes hot contam frozen 

sample_044 13114.mousseau.88.s036 yes hot contam frozen 

sample_045 13114.mousseau.88.s041 yes hot contam frozen 

sample_046 13114.mousseau.88.s044 yes hot contam frozen 

sample_047 13114.mousseau.88.s028 yes hot contam frozen 

sample_048 13114.mousseau.88.s046 yes hot contam frozen 

sample_049 13114.mousseau.88.s042 yes hot contam frozen 

sample_050 13114.mousseau.88.s040 yes hot contam frozen 

sample_051 13114.mousseau.88.s005 yes hot contam frozen 

sample_052 13114.mousseau.88.s006 yes hot contam frozen 

sample_053 13114.mousseau.88.s047 yes hot contam frozen 

sample_054 13114.mousseau.88.s039 yes hot contam frozen 

sample_055 13114.mousseau.88.s043 yes hot contam frozen 

sample_056 13114.mousseau.88.s030 yes hot contam frozen 

sample_057 13114.mousseau.88.s045 yes hot contam frozen 

sample_058 13114.mousseau.88.s062 yes hot contam frozen 

sample_059 13114.mousseau.88.s035 yes hot contam frozen 

sample_060 13114.mousseau.88.s032 yes hot contam frozen 

sample_061 13114.mousseau.88.s037 yes hot contam frozen 

sample_062 13114.mousseau.88.s110 yes hot contam EtOH 

sample_063 13114.mousseau.88.s098 yes hot contam EtOH 

sample_064 13114.mousseau.88.s097 yes hot contam EtOH 

sample_065 13114.mousseau.88.s111 yes hot contam EtOH 

sample_066 13114.mousseau.88.s106 yes hot contam EtOH 

sample_067 13114.mousseau.88.s102 yes hot contam EtOH 

sample_068 13114.mousseau.88.s105 yes hot contam EtOH 

sample_069 13114.mousseau.88.s101 yes hot contam EtOH 

sample_070 13114.mousseau.88.s109 yes hot contam EtOH 

sample_071 13114.mousseau.88.s112 yes hot contam EtOH 

sample_072 13114.mousseau.88.s108 yes hot contam EtOH 

sample_073 13114.mousseau.88.s107 yes hot contam EtOH 

sample_501 13114.mousseau.88.s080 yes control uncont frozen 

sample_502 13114.mousseau.88.s069 yes control uncont frozen 

sample_503 13114.mousseau.88.s073 yes control uncont frozen 

sample_504 13114.mousseau.88.s067 yes control uncont frozen 

sample_505 13114.mousseau.88.s066 yes control uncont frozen 

sample_506 13114.mousseau.88.s074 yes control uncont frozen 

sample_507 13114.mousseau.88.s071 yes control uncont frozen 

sample_508 13114.mousseau.88.s065 yes control uncont frozen 



 

 
 

36 

sample_509 13114.mousseau.88.s068 yes control uncont frozen 

sample_510 13114.mousseau.88.s070 yes control uncont frozen 

sample_511 13114.mousseau.88.s081 yes control uncont frozen 

sample_512 13114.mousseau.88.s082 yes control uncont frozen 

sample_513 13114.mousseau.88.s084 yes control uncont frozen 

sample_514 13114.mousseau.88.s083 yes control uncont frozen 

sample_515 13114.mousseau.88.s087 yes control uncont frozen 

sample_516 13114.mousseau.88.s085 yes control uncont frozen 

sample_517 13114.mousseau.88.s086 yes control uncont frozen 

sample_518 13114.mousseau.88.s088 yes control uncont frozen 
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APPENDIX 3. USED MODULES AND PARAMETERS IN 
MZMINE 

Table 4. The used modules and parameters for detecting the features in MZmine. 

Import MS data 
  

Advanced import: false 
  

MS1 detector (Advanced): false (Factor of lowest signal)  
 

MS2 detector (Advanced): false (Factor of lowest signal)  
 

Denormalize fragment scans (traps): false 
  

Spectral library files: [] 
  

   

Mass detection 
  

Raw data files: 5E4_4_16_mousseau-88-s021-a02.mzML  
 

5D12_4_5_mousseau-88-s017-a02.mzML 
  

5E2_4_12_mousseau-88-s018-a02.mzML 
  

5A12_SPE_Blank.mzML 
  

5E5_4_17_mousseau-88-s010-a02.mzML 
  

5D11_4_4_mousseau-88-s052-a02.mzML 
  

5E3_4_14_mousseau-88-s007-a02.mzML 
  

5B10_Blank.mzML 
  

5D10_4_1_mousseau-88-s033-a02.mzML 
  

5A5_Blank.mzML 
  

5D5_Blank.mzML 
  

5E8_4_22_mousseau-88-s023-a02.mzML 
  

5E1_4_11_mousseau-88-s002-a02.mzML 
  

5E6_4_18_mousseau-88-s011-a02.mzML 
  

5E9_4_23_mousseau-88-s016-a02.mzML 
  

5E7_4_20_mousseau-88-s015-a02.mzML 
  

5E10_SPE_Blank.mzML 
  

5F2_4_27_mousseau-88-s028-a02.mzML 
  

5F1_4_26_mousseau-88-s004-a02.mzML 
  

5E11_4_24_mousseau-88-s024-a02.mzML 
  

5E12_4_25_mousseau-88-s034-a02.mzML 
  

5F4_4_30_mousseau-88-s025-a02.mzML 
  

5F8_4_36_mousseau-88-s040-a02.mzML 
  

5F3_4_28_mousseau-88-s013-a02.mzML 
  

5F9_4_37_mousseau-88-s005-a02.mzML 
  

5F6_4_32_mousseau-88-s046-a02.mzML 
  

5F5_4_31_mousseau-88-s009-a02.mzML 
  

5F7_4_35_mousseau-88-s042-a02.mzML 
  

5F10_4_38_mousseau-88-s036-a02.mzML 
  

5F11_4_39_mousseau-88-s041-a02.mzML 
  

5F12_4_40_mousseau-88-s044-a02.mzML 
  

5G1_4_41_mousseau-88-s006-a02.mzML 
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5G2_4_42_mousseau-88-s047-a02.mzML 
  

5G3_4_43_mousseau-88-s073-a02.mzML 
  

5G6_4_48_mousseau-88-s066-a02.mzML 
  

5G7_4_49_mousseau-88-s057-a02.mzML 
  

5G10_4_52_mousseau-88-s080-a02.mzML 
  

5G5_4_46_mousseau-88-s039-a02.mzML 
  

5G9_4_51_mousseau-88-s074-a02.mzML 
  

5G8_4_50_mousseau-88-s043-a02.mzML 
  

5G11_4_53_mousseau-88-s069-a02.mzML 
  

5G4_4_45_mousseau-88-s067-a02.mzML 
  

5H1_4_55_mousseau-88-s030-a02.mzML 
  

5G12_4_54_mousseau-88-s058-a02.mzML 
  

5H2_4_56_mousseau-88-s059-a02.mzML 
  

5H3_4_57_mousseau-88-s065-a02.mzML 
  

5H4_4_58_mousseau-88-s062-a02.mzML 
  

5H5_Blank.mzML 
  

5H10_4_64_mousseau-88-s050-a02.mzML 
  

5H12_4_67_mousseau-88-s045-a02.mzML 
  

5H7_4_60_mousseau-88-s035-a02.mzML 
  

5H6_4_59_mousseau-88-s068-a02.mzML 
  

5H9_4_63_mousseau-88-s051-a02.mzML 
  

6A1_4_68_mousseau-88-s063-a02.mzML 
  

5H11_4_66_mousseau-88-s071-a02.mzML 
  

5H8_4_61_mousseau-88-s070-a02.mzML 
  

6A2_4_69_mousseau-88-s037-a02.mzML 
  

6A4_4_71_mousseau-88-s064-a02.mzML 
  

6A3_4_70_mousseau-88-s061-a02.mzML 
  

6A6_4_72_mousseau-88-s081-a02.mzML 
  

6A5_Blank.mzML 
  

6A7_4_74_mousseau-88-s056-a02.mzML 
  

6A10_4_77_mousseau-88-s032-a02.mzML 
  

6A9_4_76_mousseau-88-s054-a02.mzML 
  

6B1_4_80_mousseau-88-s049-a02.mzML 
  

6A11_4_78_mousseau-88-s055-a02.mzML 
  

6B4_5_2_mousseau-88-s091-a02.mzML 
  

6B2_4_81_mousseau-88-s053-a02.mzML 
  

6A8_4_75_mousseau-88-s048-a02.mzML 
  

6A12_SPE_Blank.mzML 
  

6B5_5_5_mousseau-88-s096-a02.mzML 
  

6B3_5_1_mousseau-88-s082-a02.mzML 
  

6B7_5_7_mousseau-88-s090-a02.mzML 
  

6B6_5_6_mousseau-88-s110-a02.mzML 
  

6B9_5_9_mousseau-88-s089-a02.mzML 
  

6B8_5_8_mousseau-88-s084-a02.mzML 
  

6B11_5_10_mousseau-88-s092-a02.mzML 
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6B12_5_11_mousseau-88-s094-a02.mzML 
  

6C1_5_13_mousseau-88-s083-a02.mzML 
  

6C3_5_15_mousseau-88-s111-a02.mzML 
  

6C2_5_14_mousseau-88-s097-a02.mzML 
  

6B10_Blank.mzML 
  

6C4_5_16_mousseau-88-s099-a02.mzML 
  

6C6_5_18_mousseau-88-s106-a02.mzML 
  

6C9_5_21_mousseau-88-s103-a02.mzML 
  

6C10_5_23_mousseau-88-s087-a02.mzML 
  

6C5_5_17_mousseau-88-s100-a02.mzML 
  

6C12_5_26_mousseau-88-s098-a02.mzML 
  

6C11_5_24_mousseau-88-s093-a02.mzML 
  

6C8_5_20_mousseau-88-s102-a02.mzML 
  

6C7_5_19_mousseau-88-s085-a02.mzML 
  

6D2_5_28_mousseau-88-s086-a02.mzML 
  

6D3_5_29_mousseau-88-s109-a02.mzML 
  

6D1_5_27_mousseau-88-s105-a02.mzML 
  

6D11_5_39_mousseau-88-s101-a02.mzML 
  

6D4_5_31_mousseau-88-s112-a02.mzML 
  

6D7_5_34_mousseau-88-s088-a02.mzML 
  

6D9_5_36_mousseau-88-s107-a02.mzML 
  

6D6_5_33_mousseau-88-s104-a02.mzML 
  

6D8_5_35_mousseau-88-s108-a02.mzML 
  

6D5_Blank.mzML 
  

6E10_SPE_Blank.mzML 
  

Scan filters: MS1  level = 1  Polarity (Any) 

Scan number: <not set> 
  

Base Filtering Integer: <not set> 
  

Retention time: <not set> 
  

Mobility: <not set> 
  

MS level filter: MS1  level = 1 
 

Scan definition:  
  

Polarity: Any 
  

Spectrum type: ANY 
  

Scan types (IMS): All scan types 
  

Mass detector: Centroid 
  

Noise level: 20000.0 
  

Detect isotope signals below noise level: false 
  

Chemical elements: [Element(1464767129  S:H  AN:1) 

m/z tolerance: 5.0E-4 m/z or 10.0 ppm 
  

Maximum charge of isotope m/z: 1 
  

Denormalize fragment scans (traps): false 
  

Output netCDF filename (optional): false (null) 
  

   

Mass detection 
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Raw data files: same as for the first Mass detection 
  

Scan filters: MS2  level = 2  Polarity (Any) 

Scan number: <not set> 
  

Base Filtering Integer: <not set> 
  

Retention time: <not set> 
  

Mobility: <not set> 
  

MS level filter: MS2  level = 2 
 

Scan definition:  
  

Polarity: Any 
  

Spectrum type: ANY 
  

Scan types (IMS): All scan types 
  

Mass detector: Centroid 
  

Noise level: 1500.0 
  

Detect isotope signals below noise level: false 
  

Chemical elements: [Element(1955285241  S:H  AN:1) 

m/z tolerance: 5.0E-4 m/z or 10.0 ppm 
  

Maximum charge of isotope m/z: 1 
  

Denormalize fragment scans (traps): false 
  

Output netCDF filename (optional): false (null) 
  

   

ADAP Chromatogram Builder 
  

Raw data files: same as for the first Mass detection 
  

Scan filters: MS1  level = 1  Polarity (Any) 

Scan number: <not set> 
  

Base Filtering Integer: <not set> 
  

Retention time: <not set> 
  

Mobility: <not set> 
  

MS level filter: MS1  level = 1 
 

Scan definition:  
  

Polarity: Any 
  

Spectrum type: ANY 
  

Minimum consecutive scans: 5 
  

Minimum intensity for consecutive scans: 60000.0 
  

Minimum absolute height: 140000.0 
  

m/z tolerance (scan-to-scan): 0.002 m/z or 5.0 ppm 
  

Suffix: chromatograms 
  

Allow single scan chromatograms: {} 
  

   

Local minimum feature resolver 
  

Feature lists:  
  

Suffix: resolved 
  

Original feature list: KEEP 
  

MS/MS scan pairing: true 
  

MS1 to MS2 precursor tolerance (m/z): 0.01 m/z or 10.0 ppm  
 

Retention time filter: RtLimitsFilter[filter=Use tolerance  rtTolerance=0.15 
minutes] 
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Minimum relative feature height: true (0.25) 
  

Minimum required signals: true (1) 
  

Limit by ion mobility edges: false 
  

Merge MS/MS spectra (TIMS): false 
  

Minimum signal intensity (absolute  TIMS): false (250.0) 
 

Minimum signal intensity (relative  TIMS): true (0.01) 
 

Dimension: Retention time 
  

Chromatographic threshold: 0.95 
  

Minimum search range RT/Mobility (absolute): 0.1 
  

Minimum relative height: 0.0 
  

Minimum absolute height: 140000.0 
  

Min ratio of peak top/edge: 2.5 
  

Peak duration range (min/mobility): [0.0..3.0] 
  

Minimum scans (data points): 5 
  

   

13C isotope filter (formerly: isotope grouper) 
  

Feature lists:  
  

Name suffix: deisotoped 
  

m/z tolerance (intra-sample): 5.0E-4 m/z or 2.5 ppm 
  

Retention time tolerance: 0.075 minutes 
  

Mobility tolerance: false (null) 
  

Monotonic shape: false 
  

Maximum charge: 3 
  

Representative isotope: Most intense 
  

Never remove feature with MS2: true 
  

Original feature list: KEEP 
  

   

Isotope finder module 
  

Feature lists:  
  

Chemical elements: [Element(874926039  S:H  AN:1) 

m/z tolerance (feature-to-scan): 0.001 m/z or 5.0 ppm 
  

Maximum charge of isotope m/z: 3 
  

Search in scans: SINGLE MOST INTENSE 
  

   

Join aligner 
  

Feature lists:  
  

Feature list name: Aligned feature list 
  

m/z tolerance (sample-to-sample): 0.001 m/z or 5.0 ppm  
 

Weight for m/z: 3.0 
  

Retention time tolerance: 0.2 minutes 
  

Weight for RT: 1.0 
  

Mobility tolerance: false (null) 
  

Mobility weight: 1.0 
  

Require same charge state: false 
  

Require same ID: false 
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Compare isotope pattern: false 
  

Isotope m/z tolerance: 0.001 m/z or 5.0 ppm 
  

Minimum absolute intensity: <not set> 
  

Minimum score: <not set> 
  

Compare spectra similarity: false 
  

Spectral m/z tolerance: 0.001 m/z or 10.0 ppm 
  

MS level: 2 
  

Compare spectra similarity: Weighted cosine similarity  
 

Weights: MassBank (mz^2 * I^0.5) 
  

Minimum  cos similarity: 0.7 
  

Handle unmatched signals: KEEP ALL AND MATCH TO 
ZERO 

 
 

Original feature list: KEEP 
  

   

Filtering feature list rows 
  

Feature lists:  
  

Name suffix: rows 
  

Minimum aligned features (samples): true (abs=1 and rel=0.1)  
 

Minimum features in an isotope pattern: false (2) 
  

Validate 13C isotope pattern: false 
  

m/z tolerance: 5.0E-4 m/z or 5.0 ppm 
  

Max charge: 3 
  

Estimate minimum carbon: true 
  

Remove if 13C: true 
  

Exclude isotopes: [Element(823043095  S:O  AN:8)] 

Remove redundant isotope rows: false 
  

m/z: false ([100.0244..1347.8822]) 
  

Retention time: false (null) 
  

features duration range: false ([0.0..3.0]) 
  

Chromatographic FWHM: false ([0.0..1.0]) 
  

Charge: false ([1..2]) 
  

Kendrick mass defect: false 
  

Kendrick mass defect: [0.0..1.0] 
  

Kendrick mass base:  
  

Shift: 0.0 
  

Charge: 1 
  

Divisor: 1 
  

Use Remainder of Kendrick mass: false 
  

Parameter: No parameters defined 
  

Only identified?: false 
  

Text in identity: false () 
  

Text in comment: false () 
  

Keep or remove rows: Keep rows that match all criteria  
 

Feature with MS2 scan: false 
  

Never remove feature with MS2: true 
  

Reset the feature number ID: false 
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Mass defect: false (null) 
  

Original feature list: KEEP 
  

   

Feature filter 
  

Feature lists:  
  

Name suffix: feature 
  

Duration: true ([0.0..3.0]) 
  

Area: false ([0.0..1.0E7]) 
  

Height: false ([0.0..1.0E7]) 
  

# data points: true ([3..10000]) 
  

FWHM: false ([0.0..2.0]) 
  

Tailing factor: false ([0.5..2.0]) 
  

Asymmetry factor: false ([0.5..2.0]) 
  

Keep only features with MS/MS scan: false 
  

Original feature list: KEEP 
  

   

Feature list blank subtraction 
  

Aligned feature list:  
  

Blank/Control raw data files: 5A12_SPE_Blank.mzML 
  

5B10_Blank.mzML 
  

5A5_Blank.mzML 
  

5D5_Blank.mzML 
  

5E10_SPE_Blank.mzML 
  

5H5_Blank.mzML 
  

6A5_Blank.mzML 
  

6A12_SPE_Blank.mzML 
  

6B10_Blank.mzML 
  

6D5_Blank.mzML 
  

6E10_SPE_Blank.mzML 
  

Minimum # of detection in blanks: 11 
  

Quantification: Height 
  

Ratio type: MAXIMUM 
  

Fold change increase: true (3.0) 
  

Keep or remove features (of rows) below fold change:  REMOVE - Only keep 
features above fold 
change 

 

Create secondary list of subtracted features: false 
  

Suffix: subtracted 
  

   

Gap filling  
  

Feature lists:  
  

Name suffix: gap-filled 
  

Intensity tolerance: 0.05 
  

m/z tolerance (sample-to-sample): 0.001 m/z or 5.0 ppm  
 

Retention time tolerance: 0.12 minutes 
  

Minimum scans (data points): 1 
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Original feature list: KEEP 
  

   

Duplicate feature list rows filter 
  

Feature lists:  
  

Name suffix: dup 
  

Filter mode: NEW AVERAGE 
  

m/z tolerance: 0.001 m/z or 5.0 ppm 
  

RT tolerance: 0.1 minutes 
  

Mobility tolerance: false (Mobility tolerance: 0.008) 
  

Require same identification: false 
  

Original feature list: KEEP 
  

   

Correlation grouping (metaCorrelate) 
  

Feature lists:  
  

RT tolerance: 0.08 minutes 
  

Minimum feature height: 50000.0 
  

Intensity threshold for correlation: 30000.0 
  

Min samples filter: Min samples in all: abs=2 and rel=0  Min samples in 
group: abs=0 and 
rel=0 

 Min %-intensity 
overlap: 0.5 

Min samples in all: abs=2 and rel=0 
  

Min samples in group: abs=0 and rel=0 
  

Min %-intensity overlap: 0.5 
  

Exclude gap-filled features: true 
  

Feature shape correlation: true 
  

Min data points: 5 
  

Min data points on edge: 2 
  

Measure: PEARSON 
  

Min feature shape correlation: 0.65 
  

Min total correlation: false (0.5) 
  

Feature height correlation: true 
  

Minimum samples: 3 
  

Measure: PEARSON 
  

Min correlation: 0.65 
  

Suffix (or auto): true (cor) 
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APPENDIX 4. USED MZMINE MODULES AND EXPLANA-
TIONS 

The following modules of MZmine were used in order of shown to analyse the 
LC-MS/MS spectra. First Mass detection with higher noise level (Table 1) was 
used to define the threshold value to filter out the noise from the raw data. Then, 
second Mass detection with lower noise level (Table 1) was to define the threshold 
value to filter out the noise from the raw data. ADAP chromatogram builder was 
used to build an extracted ion chromatogram (EIC) for each mass-to-charge (m/z) 
value according to set parameters (Table 1). Local minimum resolver module was 
used to split “shoulders” in LC peaks into individual features according to set 
parameters. Parameters were mainly determined visually by inspecting a few 
noisy EIC and good EIC in a few feature lists by using Show preview box. 13C 
isotope filter (isotopic grouping) module was used to filter out the features 
corresponding to 13C isotopes of the same analyte. Isotope pattern finder (isotopic 
peak finder) module was used to search isotope patterns in selected feature list. 
Join aligner module was used to align detected peak in the samples through a 
match score, which is based on the mass and retention time of each peak and 
ranges of tolerance specified in the parameters (Table 1). Feature list rows filter 
module was used to filter out the rows that do not match to the set parameters 
(Table 1). Feature filter module was used to delete features which does not match 
with the set parameters (Table 1). Feature list blank subtraction module was used 
to subtract the features appearing in blanks. Peak finder (gap filling) module tried 
to fill the gaps in the aligned feature table. Duplicate peak filter module was used 
to help to remove misaligned feature list rows. Feature grouping (metaCorrelate) 
module was used to group features based on set parameters (Table 1). 

Table 5. The modules used in MZmine for analysing the LC-MS/MS spectra of 
bank voles’ faecal samples from in- and outside of Chornobyl Exclusion 
zone, modules parameters and their explanations.  

Module Parameter Explanation 

1. Mass detection Raw data files All raw data files were selected as the mass 
detection was to be performed on all raw 
data files. 

Scan filters -> Show -> 
MS level filter 

Select the desired MS level. As the data is 
LC-MS/MS data, first the MS level 1 mass 
detection was performed. 

Mass detector Select suitable algorithm for mass detection. 
As data was already centroided, the centroid 
algorithm was used. 

Mass detector Setup -> 
Noise level 

The noise level was set to 2.0E4 for MS level 
1 scans to filter out any signals which have 
intensity lower than 2.0E4. The noise level 
was determined by using Show preview box 
and the threshold value was visually set to 
filter the background noise out from MS 
level 1 scans. 
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2. Mass detection Raw data files All raw data files were selected as the mass 
detection was to be performed on all raw 
data files. 

Scan filters -> Show -> 
MS level filter 

Select the desired MS level. As the data is 
LC-MS/MS data and the MS level 1 mass 
detection was already performed, next the 
MS level 2 was performed. 

Mass detector Select suitable algorithm for mass detection. 
As data was already centroided, the centroid 
algorithm was used. 

Mass detector Setup -> 
Noise level 

The noise level was set to 1.5E3 for MS level 
2 scans to filter out any signals which have 
intensity lower than 1.5E3. The noise level 
was determined by using Show preview box 
and the threshold value was visually set to 
filter the background noise out MS level 2 
scans. 

ADAP 
chromatogram 
builder 

Raw data files All raw data files were selected as the ADAP 
chromatogram builder was to be performed 
on all raw data files. This module builds an 
extracted ion chromatogram (EIC) for each 
mass-to-charge (m/z) value according to set 
parameters. 

Scan filters -> Show -> 
MS level filter 

The module processes only MS level 1 scans. 

Minimum consecutive 
scans 

The minimum number of scans, where a 
m/z must be detected to build the EIC and 
retained in the feature list. The parameter 
was determined by inspecting the raw 
data’s usual minimum number of data 
points of the LC peak. 

Minimum intensity for 
consecutive scans 

Determines the minimum intensity of the 
consecutive scans to build the EIC and 
retained in the feature list. 

Minimum absolute 
height 

Determines the minimum height of the EIC, 
so it will be built and retained in the feature 
list. 

m/z tolerance (scan-to-
scan) 

Determines maximum difference between 
m/z within the EIC. 

Local minimum 
resolver 

Feature lists Select feature lists created in previous step. 

MS/MS scan pairing -> 
Show -> MS1 to MS2 
precursor tolerance 
(m/z) 

Pairs MS/MS fragmentation spectra to 
resolved features. 

MS/MS scan pairing -> 
Show -> Retention time 
filter -> Use tolerance 

Parameter was kept as default. 

Dimension Dimension to be resolved, here used 
dimension was retention time. 
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Chromatographic 
threshold 

Determines the percentage of data points in 
EIC to be filtered out before local minimum 
search. 

Minimum search range 
RT/Mobility (absolute) 

Determines the size of retention time 
window for local minimum research. Too 
low value can cut off peak edges and too 
high value can lead to incomplete peak 
separation. 

Minimum absolute 
height 

Determines the peak’s heigh (intensity) to 
be retained as a feature. 

Min ratio of peak 
top/edge 

Determines the minimum difference 
between peaks top and sides to be retained 
as a feature. 

Peak duration range Determines the acceptable range of the peak 
length. 

Minimum scans The minimum number of scans (data 
points) that resolved peak needs to have to 
retain as a feature. The parameter was 
determined by inspecting the raw data’s 
usual minimum number of data points of 
the LC peaks. 

13C isotope filter 
(isotopic 
grouping) 

Feature lists Select feature lists created in previous step. 

m/s tolerance (intra-
sample) 

The maximum difference between the 
measured and predicted m/z of the 
potential 13C isotope to be grouped as 
isotopologues. Can be strict to avoid 
discarding false 13C. 

Retention time 
tolerance 

The maximum retention time between the 
feature and its potential 13C isotope to be 
grouped as isotopologues. Can be strict to 
avoid discarding false 13C. 

Maximum charge The maximum charge state considered to 
predict 13C isotopes’ m/z. 

Isotope pattern 
finder (isotopic 
peak finder) 

Feature lists Select feature lists created in previous step. 

m/z tolerance (feature-
to-scan) 

Parameter was kept as default. 

Maximum charge of 
isotope m/z 

Parameter was kept as default. 

Join aligner Feature lists Select feature lists created in previous step. 

m/z tolerance (sample-
to-sample) 

Maximum difference between two m/z 
values to be considered the same. 

Weight for m/z Weight for m/z difference for the match 
score calculation between peak rows. 

Retention time 
tolerance 

Maximum difference between two retention 
times in order to be considered the same. 

Weight for RT Weight for retention time difference for the 
match score calculation between peak rows. 

Feature list rows 
filter 

Feature lists Select feature list created in previous step. 

Minimum aligned 
features (samples) 

The minimum number of features detected 
in the row. If less, the row will be removed. 

Keep or remove rows Keep rows that match all criteria 
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Feature filter Duration Determines the peak duration 

Data points Determines the minimum data points. 

Feature list blank 
subtraction 

Feature lists Select feature list created in previous step. 

Blank raw data files Blank raw data files 

Minimum # of 
detection in blanks 

The amount of the blanks 

Quantification Height 

Ratio type Maximum 

Fold change increase If intensity in the filtered list increases more 
than given percentage, it will not be 
removed. 

Keep or remove 
features (of rows) 
below fold change 

Remove 

Peak finder (gap 
filling) 

Feature lists Aligned feature list filtered 

Intensity tolerance Maximum allowed deviation from the 
expected peak shape in chromatographic 
direction. 

m/z tolerance (sample-
to-sample) 

The m/z range for feature search in the raw 
data. 

Retention time 
tolerance 

The retention time range for feature search 
in the raw data. 

Minimum scans (data 
points) 

1 

Duplicate peak 
filter 

Feature lists Select feature list created in previous step. 

m/z tolerance The maximum difference between duplicate 
peaks. 

RT tolerance The maximum difference between duplicate 
peaks. 

Feature grouping 
(metaCorrelate) 

Feature lists Select feature list created in previous step. 

RT tolerance 0.080 absolute (min) 

Min height Determinates the minimum feature high. 

Intensity threshold for 
correlation 

Determinates the threshold for the feature. 

Min sample filter -> 
Min sample in all 

Determinates the minimum number of 
samples. 

Min sample filter -> 
Min %-intensity 
overlap 

Determinates the minimum percent of 
overlap intensity. 

Feature shape 
correlation -> Min 
feature shape 
correlation 

Determinates the feature shape correlation. 

Feature height 
correlation -> 
Minimum sample 

Determinates the feature height correlation. 

Feature height 
correlation -> Min 
correlation 

Determinates the correlation value. 
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APPENDIX 5. USED R PACKAGED AND VERSION 

Table 6. The used R packages and versions for performing the statistical analysis 
of metabolite and bacteria data. 

Package name Version 

phyloseq 1.40.0 

ggplot2 3.3.6 

ggpubr 0.4.0 

vegan 2.6.2 

GenomeInfoDb 1.32.3 

GenomeInfoDbData 1.2.8 

bitops 1.0.7 

dplyr 1.0.9 

hrbrthemes 0.8.0 

gcookbook 2.0 

tidyverse 1.3.1 

devtools 2.4.3 

knitr 1.39 

rstatix 0.7.0 

ggsci 2.9 

plyr 1.8.7 

ComplexHeatmap 2.12.1 

RColorBrewer 1.1.3 

breakaway 4.7.9 

microbiome 1.18.0 

decontam 1.16.0 

gameofthrones 1.0.2 

R 4.2.1 

readxl 1.4.0 

DESeq2 1.36.0 

eulerr 6.1.1 

MicEco 0.9.19 

reshape2 1.4.4 

MuMIn 1.46.0 

SIBER 2.1.6 

rjags 4.13 

picante 1.8.2 

magrittr 2.0.3 
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