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We study the origin of the real intermediate state subtraction problem and compare its different solutions.
We show that the ambiguity in subtraction schemes arises from the on-shell approximation for the 2-point
functions that reduces the Schwinger-Dyson equations to the Boltzmann limit. We also suggest a new
subtraction scheme which, unlike the earlier definitions, never leads to negative scattering rates. This
scheme also quantifies the validity of the on-shell limit in terms of an effective one-particle weight function
RðΔÞ, where Δ measures the region around the resonance associated with the real state.
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I. INTRODUCTION

There is a long-standing issue in setting up consistent
kinetic equations for particle distribution functions when
relevant scattering processes involve real particles that also
appear as intermediate states. The problem is that the
resonant on-shell scattering processes overlap with the
decay contributions in the kinetic equations, which results
in double counting unless some subtraction procedure is
established for the scattering rates. Such a procedure,
referred to as the real intermediate state (RIS) subtraction,
was first set up in [1–3]. The RIS subtraction has since been
discussed in various different forms [4–30], and an alter-
native method that does not rely on the RIS subtraction was
recently suggested in [31]. Typically the RIS subtraction is
performed at the level of Boltzmann equations, implement-
ing some formal way to isolate and remove the on-shell
part, DonðsÞ, from the full Breit-Wigner (BW) propagator
DBWðsÞ, thus replacing it with the off-shell part, DoffðsÞ,
that is used for scattering amplitudes. However, this
procedure is inherently ambiguous due to the ambiguity
in the definition of a “real” particle with unstable states.

As a result, there is large freedom in the definition of the
RIS subtraction, and different RIS-subtraction schemes are
even known to lead to apparently unphysical negative
scattering cross sections [24].
In this article we study and compare different solutions to

the RIS problem. We also study the emergence of the
problem in the context of Boltzmann equations (BE)
and then from a more fundamental perspective of the
Schwinger-Dyson (SD) equations for the 2-point functions.
SD equations are a fully consistent setup for studying
unstable particles with no notion of the real intermediate
states. We will show how the problem arises when the SD
equations are reduced to the spectral limit. This also makes
the effect of RIS subtraction to different reaction channels
evident. We then suggest a new definition for the RIS
subtraction, which does not suffer from the negative cross
sections. The new scheme quantifies the ambiguity in the
RIS subtraction in terms of an effective one-particle weight
function RðΔÞ < 1 for the approximate real states, whereΔ
measures the size of the kinematic region around the
resonance that is counted to contribute to the real particle.
For the real-particle picture to be a good approximation,
one should be able to chooseΔ, which is much smaller than
the characteristic energy scale in the system, such that
RðΔÞ ≈ 1. Failing to satisfy these conditions signals the
breakdown of the on-shell limit, and a BE network with the
decay channel should not be used, or should be interpreted
with due care.
The article is structured as follows: We begin by

revisiting the main RIS-subtraction schemes in Sec. II,
where we lay out the RIS subtraction at the level of
propagators via formal propagator modifications. We then
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apply this method to an explicit example in Sec. III and
demonstrate how the standard RIS contribution emerges
from the s-channel interaction. In Sec. IV we study the
origin of the RIS problem in the Schwinger-Dyson for-
malism in the case of the Yukawa theory. We show how the
RIS problem arises in the on-shell limit, when the reso-
nance overlaps with the kinematic region of interest for the
problem at hand. This then motivates us to suggest our new
RIS-subtraction scheme in Sec. V. In Sec. VI we perform
numerical comparisons between different subtraction meth-
ods including our new proposal and conclude in Sec. VII.

II. REVIEW OF THE RIS-SUBTRACTION
SCHEMES

The goal of the RIS-subtraction procedure is to somehow
eliminate the on-shell part from the finite-width Breit-
Wigner propagator:

DBWðsÞ ¼
1

s −m2 þ imΓ
→ DoffðsÞ; ð1Þ

where s is the Mandelstam variable, m is the mass of the
propagating intermediate particle, and Γ is its total decay
width. The on-shell part DonðsÞ ¼ DBWðsÞ −DoffðsÞ is
then reduced to a delta function in the limit Γ → 0. It is
associated with the decay processes, while the remainder
DoffðsÞ is thought to describe the off-shell scattering
processes. For this task, different technical schemes have
been proposed. Let us begin with the standard RIS-
subtraction (SRS) scheme that is applied at the level of
the propagator function squared.
The standard subtraction scheme is based on the simple

observation that the squared BW propagator itself has a
formal delta-function limit:

jDBWðsÞj2 ¼
1

mΓ
mΓ

ðs −m2Þ2 þ ðmΓÞ2 ≈
π

mΓ
δðs −m2Þ; ð2Þ

where the last equality holds approximately for small Γ.
Interpreting the right-hand side of (2) as the on-shell
propagator for a finite Γ can then be used as the definition
for the squared off-shell propagator:

jDSRS
off ðsÞj2 ¼ jDBWðsÞj2 −

π

mΓ
δðs −m2Þ: ð3Þ

This procedure works for the resonances isolated in a single
channel. However, we may have for example a process with
s- and t-channel contributions where the s-channel is
resonant. Then the collision integral is proportional to

jMsj2 þ jMtj2 þ 2Re½M�
sMt�: ð4Þ

The rule (3) is not sufficient to deal with the resonant
propagator in the mixing term, as it only tells how to

remove the on-shell part from the propagator squared
contributions.
To avoid this issue, a subtraction procedure at the level of

the propagator is needed. This was discussed in [4] but, to
our knowledge, properly proposed later in [5]. Here one
starts by writing

DBWðsÞ ¼
s −m2

ðs −m2Þ2 þ ðmΓÞ2 − i
mΓ

ðs −m2Þ2 þ ðmΓÞ2
¼ Re½DBWðsÞ� þ iIm½DBWðsÞ�
→ Re½DBWðsÞ� − iπδðs −m2Þ: ð5Þ

In the last line the limit Γ → 0 was assumed (only) in the
imaginary part of the propagator. One can use this result to
complete the SRS scheme for the interference term in (4),
setting

DSRS
off ðsÞ≡DBWðsÞ þ iπδðs −m2Þ ð6Þ

at the propagator level, whenever a single resonant propa-
gator (as opposed to a squared one) is encountered. In the
principal value subtraction (PVS) scheme suggested in [5]
one reverses the logic and assumes that the off-shell
propagator is just the real part of the Breit-Wigner
propagator:

DPVS
off ðsÞ≡Re½DBWðsÞ�: ð7Þ

Also in the PVS scheme different definitions for the
propagator and for the squared propagator are needed,
which require some care. One might naively think that the
on-shell part of the squared propagator would be just
jDonj2 ≡ jDBWj2 − jRe½DBW�j2 ¼ jIm½DBW�j2, but this is
not the correct subtraction, because the imaginary part
squared produces only half of the on-shell contribution:

jIm½DBW�j2 →
π

2mΓ
δðs −m2Þ: ð8Þ

As pointed out in [12–14], this issue is particularly relevant
in the resonant leptogenesis literature.
The problem is that when we extract a distribution from a

function the remainder is also a distribution, and one must
be careful when taking the square. The explicit case at point
here is that

�
PV

�
1

x

��
2

≠ PV

�
1

x2

�
; ð9Þ

where PV refers to the principal value part of the function.
Indeed, while 1=x has the principal value sequence
PVð1=xÞ¼Reð1=ðxþ iεÞÞ¼x=ðx2þϵ2Þ, the correspond-
ing sequence for 1=x2 is
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PV

�
1

x2

�
¼ Re

�
1

ðx� iεÞ2
�

¼ x2 − ε2

ðx2 þ ε2Þ2 : ð10Þ

In these expressions, the limit ϵ → 0 is of course assumed.
From this exercise one infers that the correct squared
propagator in the PVS scheme for a finite Γ is

DPVS
off ðsÞ ¼ ðs −m2Þ2 − ðmΓÞ2

ððs −m2Þ2 þ ðmΓÞ2Þ2 ð11Þ

aswas indeed suggested in [6]. Subtracting this off-shell part
from the full BW propagator one finds that

jDPVS
on ðsÞj2 ¼ jDBWðsÞj2 − jDPVS

off ðsÞj2

¼ 2ðmΓÞ2
ððs −m2Þ2 þ ðmΓÞ2Þ2

→
π

mΓ
δðs −m2Þ: ð12Þ

That is, the narrow-width limit in the PVS scheme requires
the use of the delta sequence πδðxÞ ¼ 2ε3=½x2 þ ε2�2.
The formulas for the SRS scheme (3) and (6) for the PVS

scheme (7) and (11) are equivalent up to order Γ2. The PVS
scheme also has a well defined Γ → 0 limit for the off-shell
propagators:

DΓ¼0
off ðsÞ → PV

�
1

s −m2

�
;

jDΓ¼0
off ðsÞj2 → PV

�
1

ðs −m2Þ2
�
: ð13Þ

The limiting case (13) can be understood as yet another
subtraction scheme. We stress that the subtraction scheme
dependence affects only the off-shell propagators. All
schemes were designed to have the same on-shell limits:

DonðsÞ ¼ −iπδðs −m2Þ;
jDonðsÞj2 ¼

π

mΓ
δðs −m2Þ: ð14Þ

There is no a priori reason to prefer one scheme over the
other, although the limiting scheme (13) is perhaps con-
ceptually most consistent, as we shall argue later. It seems
that most confusion related to RIS subtraction in the
literature has resulted from a failure to realize that each
scheme requires separate formulas for the off-shell propa-
gator and the squared off-shell propagator functions.
Finally, we point out that the above discussion is not
restricted to s-channel processes. Resonances can appear
also in t- and u-channels. When this happens, the sub-
traction should be performed as in the s-channel case.
A fundamental problem in all above schemes is that they

can occasionally lead to negative reaction rates. This can
happen because the off-shell propagators are negative near

on-shell; if the scattering process is enhanced there, the
integrated rates may also become negative. This is an
apparently unphysical result, but it does not necessarily
lead to a failure of the kinetic equation network. We shall
return to these issues in Sec. VI.

III. A MINIMAL EXAMPLE OF DOUBLE
COUNTING

Here we show that the decay contribution to kinetic
equations indeed corresponds to the contribution from the
on-shell propagator in the scattering channel. To this end
we consider a setting with unspecified particles a, b, and c,
and for demonstrative purpose focus only on the processes
shown in Fig. 1. We want to track the distribution function
of species c, whose kinetic equation can be written as

L½fcðp1Þ� ¼ Ccaa↔ccðp1Þ þ Ccb↔ccðp1Þ; ð15Þ

where the Liouville operator L½fðpÞ�≡ ð∂t −Hp∂pÞfðpÞ.
To allow for analytic calculation, we work in the Maxwell-
Boltzmann (MB) approximation, 1� fi ≈ 1 and feqi ¼
e−βEi for i ¼ a; b; c, and assume that particles a and b
are in equilibrium. We will prove that when the inter-
mediate b particle is treated at the idealized resonant limit,
the equilibrium contribution of the scattering term reduces
exactly to the equilibrium decay term.
We start by evaluating the equilibrium scattering term in

the MB limit:

Ccðaeqaeq ↔ ccÞ

¼ 1

2Ec
p1

Z
p2;k1;k2

ð2πÞ4δð4Þðk1 þ k2 − p1 − p2Þ

× jMaa↔ccj2
�
feqa ðk1Þfeqa ðk2Þ − fcðp1Þfcðp2Þ

�
; ð16Þ

where
R
p≡

R
d3p=½2Epð2πÞ3�. The integral over momenta

k1 and k2 is easily performed when one demands that the
detailed balance holds: feqa ðk1Þfeqa ðk2Þ ¼ feqc ðp1Þfeqc ðp2Þ.
Furthermore, factoring the squared matrix element as
jMaa↔ccj2 ¼ jMaa↔bj2jDbj2jMb↔ccj2 we end up with

ð17Þ

FIG. 1. Minimal viable set of interaction processes demonstrat-
ing a double counting of process (b) when the propagator in
(a) becomes on-shell.
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where λðx; y; zÞ ¼ ðx − y − zÞ2 − 4yz. To compare with the
decay term, we need to evaluate

Ccðbeq ↔ ccÞ ¼ 1

2Ec
p1

Z
p2;q

ð2πÞ4δð4Þðq − p1 − p2Þ

× jMb↔ccj2
�
feqb ðqÞ − fcðp1Þfcðp2Þ

�
:

ð18Þ

The detailed balance condition again allows us to replace
feqb ðqÞ by feqc ðp1Þfeqc ðp2Þ. Writing the three-dimensional
integral over momentum q as a four-dimensional
integral with the measure δðq2 −m2

bÞð2πÞ−3d4q and using
δð4Þðq − p1 − p2Þ to carry out integration over d4q, the
decay term then becomes

ð19Þ

Showing the equality of Eqs. (17) and (19) amounts to
establishing equality of the boxed quantities. To this end,
we write the jMaa↔bj2 matrix element in Eq. (17) in terms
of the decay width:

1

8π
jMaa↔bj2 ¼

2m3
b

λ1=2ðm2
b; m

2
a; m2

aÞ
BRb→aaΓ; ð20Þ

where Γ≡P
i Γb→fig is the full decay width of the b

particle and BRb→fig ¼ Γb→fig=Γ is the branching ratio
to final state i. Furthermore, writing the propagator
jDb

BWj2 ¼ jDoff j2 þ jDonj2, where the off- and on-shell
results are given in (3) and (14), the boxed part of the
scattering term (17) becomes

1

8πs
λ1=2ðs;m2

a;m2
aÞjMaa↔bj2jDb

BWj2

→ 2hðsÞBRb→aa

�
πδðs −m2

bÞ þmbΓjDb
off j2

	
; ð21Þ

where we defined

hðsÞ ¼ m2
b

s
λ1=2ðs;m2

a; m2
aÞ

λ1=2ðm2
b; m

2
a; m2

aÞ
: ð22Þ

In the on-shell limit s → m2
b the function hðsÞ → 1 proving

that the on-shell part of the scattering term is indeed equal
to the decay term contribution:

Ccðaeqaeq ↔ bon ↔ ccÞ ¼ BRb→aaCcðbeq ↔ ccÞ: ð23Þ

This is the doubly counted state which the RIS subtraction
is devised to remove via

Ccðaa ↔ ccÞ þ Ccðb ↔ ccÞ
→ Ccðaa ↔ boff ↔ ccÞ þ Ccðb ↔ ccÞ; ð24Þ

i.e. by dropping the on-shell part of the scattering term.
Finally all 2-2 process with different initial states, including
elastic channels, should be included so that their corre-
sponding branching ratios, as in Eq. (23), sum upP

i BRi ¼ 1.

IV. THE ORIGIN OF THE RIS PROBLEM

The previous example verified the double counting
between the decay and scattering channels, and showed
that the on-shell s-channel propagator defined in (14)
indeed corresponds to the decay contribution. In this
section we shall take a look at the problem from a more
general point of view.

A. Spectral functions

A simple interacting system where the RIS problem may
arise is the Yukawa theory with a scalar field φ and a
fermion field ψ . If φ is too light to decay into a fermion pair,
isolated poles exist for both φ and ψ , and no RIS problem
exists, however. In this case the vacuum scalar spectral
functions Aφ and Aψ can be written as follows:

Aφ ¼ πϵðk0ÞðRφδðs −m2
φÞ þ ρφðsÞÞ;

Aψ ¼ πϵðk0Þð=kþmψÞ
�
Rψδðs −m2

ψÞ þ ρψ ðsÞ
	
; ð25Þ

where ρφ;ψðsÞ are the continuum (off-shell) parts to the
spectral functions and the one-particle weight functions Rφ;ψ

are constrained to be less than unity by the spectral sum rules.
Indeed, 1π

R
dk0k0Aφ ¼ 1 and 1

π

R
dk0Aψ ¼ γ0 imply that

Rφ;ψ ¼ 1 −
1

2π

Z
dsρφ;ψðsÞ < 1: ð26Þ

The continuum parts ρφ;ψðsÞ may to a good accuracy be
computed perturbatively using spectral free-theory propaga-
tors. In this case one can also derive a goodBEapproximation
for kinetic equations reducing theSDequations to the on-shell
limit using the spectral propagators:

iΔ<
φ ¼ 2πϵðk0ÞRφfφðkÞδðs −m2

φÞ;
iS<ψ ¼ 2πϵðk0Þð=kþmψ ÞRψfψðkÞδðs −m2

φÞ; ð27Þ

and moreover

ΔH
φ ¼ PV

�
Rφ

s −m2
φ

�
;

iΔ11
φ ¼ iΔH

φ þ 2πϵðk0ÞRφ

�
fφðkÞ þ

1

2

�
δðs −m2

φÞ; ð28Þ
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where Δ11
φ is the Feynman propagator, whose Hermitian

component is given by ΔH
φ. Similar equations hold for the

fermion ψ . One can usually set Rφ;ψ ¼ 1 to a good approxi-
mation for perturbative couplings. We kept them here to
emphasize that in an interacting theory the one-particle states
do not exhaust the entire state space of the system. However,
in the current setup where isolated poles exist, the on-shell
formulas (27) and (28) provide a good parametrization for the
system.
When mφ > 2mψ , φ is unstable and no longer has an

isolated pole. In this case the spectral solutions do not
strictly speaking exist, and it is not possible to derive the
BE limit for the φ field without further approximations. For
example, if the energy scales one is interested in do not
overlap with the φ resonance, one may be able to derive a
good BE limit for the problem based on the spectral
parametrization for the fermion and treating φ only as
an intermediate resonance. The RIS problem becomes
acute only when the relevant energy scales do overlap
with the resonance and one implements an on-shell kinetic
equation also for φ, as we shall see in the next section.
The on-shell limit can often be a good approximation

also for unstable particles. When this is so, it would seem
natural to use the spectral limit for all propagator functions,
including the Hermitian parts. This would give rise to the
limiting subtraction prescription (13), which in this sense is
the most natural scheme to use. But this choice is not
unique, as we shall see below.

B. Schwinger-Dyson equations

We now discuss the RIS problem in the context of SD
equations. We emphasize that the full SD equations, which
span the entire phase space of the 2-point functions, do not
need RIS subtraction. The issue emerges only when the SD
equations for unstable particles are reduced to the on-shell
limit. The SD equations for the Yukawa theory can be
schematically written as

Δφ ¼ Δφ;0 þ Δφ;0 ⊗ Πφ ⊗ Δφ;

S ¼ Sψ ;0 þ Sψ ;0 ⊗ Σψ ⊗ Sψ ; ð29Þ

where Δφ;0 and Sψ ;0 are the free propagators and Δφ and Sψ
are the full propagators. In the direct space representa-
tion the convolutions are defined as ðA ⊗ BÞðx; yÞ≡R
d4zAðx; zÞBðz; yÞ, where z0 lives on the complex

time contour. In real time the SD equations split into
Kadanoff-Baym (KB) equations for the pole functions and
for the Wightman functions. In the bosonic case we get

ðΔ−1
φ;0 − Πp

φÞ ⊗ Δp
φ ¼ 1;

ðΔ−1
φ;0 − ΠH

φ Þ ⊗ Δs
φ ¼ Πs

φ ⊗ ΔH
φ þ Csφ; ð30Þ

where p ¼ r, a refer to the retarded and advanced pole
functions and s ¼ h; i to the statistical Wightman functions,
and we defined the collision terms

C<φ ¼ 1

2



Π>

φ ⊗ Δ<
φ − Π<

φ ⊗ Δ>
φ

� ð31Þ

and C>φ ¼ −C<φ . Similar decomposition can be derived for
the fermionic correlation functions Sp;sψ ; see e.g. [32]. The
KB equations usually cannot be solved without further
approximations, such as the spectral ansatz (27). The
reduction of the KB equations to the spectral limit is a
delicate task [32–34]. However, to understand the RIS
problem, it is sufficient to concentrate on the collision terms
C<φ;ψ , which in the end emerge as the collision integrals in
Boltzmann equations.
In Fig. 2 we show the diagrams contributing to Eq. (29)

up to two loops in the two-particle irreducible (2PI)
expansion. Dashed lines correspond to φ-propagators
and continuous ones to ψ -propagators, and thin (thick)
lines correspond to the free (full) propagators. We empha-
size that the two-loop diagrams shown in Fig. 3 are not
included in full SD equations. They are already accounted
for by the one-loop diagrams, because the full SD equations
sum all perturbative corrections associated with the dia-
grams included in the 2PI expansion. However, when
simplifying approximations are imposed, the consistency
of the 2PI expansion breaks down and some non-2PI
diagrams may need to be inserted by hand. The simplest
example is the case where we treat the φ-field as a
resonance and drop it from the SD equation network.
In this case the scalar decay diagrams are not summed
by the SD equations and the last diagram in Fig. 3 must
be included perturbatively into the SD equation for the
ψ-field.
The spectral limit is more delicate. Here the SD equation

for the φ-field is kept, but all collision integrals are reduced
to the on-shell limit, where the one-loop terms reduce to
the decay terms in the BEs. While the BEs still sum these

FIG. 2. The diagrams contributing to the SD equations in the
Yukawa theory to the two-loop order in the 2PI expansion. Thin
lines indicate the free and thick lines the full propagators. Blue
dashed lines express cuts defined similarly to Fig. 3.
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on-shell contributions to all orders, this summation com-
pletely misses all off-shell contributions. The 2PI expan-
sion is again broken and the off-shell parts of the diagrams
shown in Fig. 3 must be included perturbatively. The RIS
problem has thus entered.
The cuts in two-loop diagrams indicated by blue dashed

lines in Fig. 2 give only the interference terms (e.g. between
the s- and t-channels) in the collision integrals, while the
squared matrix elements in each channel emerge from the
cuts in the forbidden diagrams of Fig. 3. The summation
argument applies to all noncut internal propagators, and so
the need for subtraction concerns all channels and all
matrix elements including the interference terms in colli-
sion integrals. In the present example the on-shell condition
is kinematically forbidden from appearing in fermion lines,
but it affects the scalar propagators in the last diagrams in
Figs. 2 and 3.
The standard on-shell reduction of the SD equations to

BEs explicitly uses the spectral propagators of Eqs. (27)
and (28). However, one can replace the Hermitian principal
value propagators by other off-shell propagators with no
change to the reduction procedure. Indeed, the different
subtraction schemes discussed so far are but different
definitions for the Hermitian propagator functions in the
spectral ansatz. From this point of view all schemes are
equally good. In the next section we will introduce another
subtraction scheme that is free of the issue of negative rates
and provides a quantitative estimate for the validity of the
BE limit.

V. CUT-SUBTRACTION SCHEME

In the previous section we saw that both the need for and
the ambiguity of the RIS subtraction arise when the full
solutions to the SD equations are approximated by spectral
solutions. The validity of the spectral limit clearly depends
on the resonance width Γ. For a small width, excitations
around the resonance may give nearly identical contribu-
tions to physical processes, allowing them to be treated as
an effective single-particle state. If Γ is very small, the

integrated weight of such states may even saturate the
spectral sum rule. This is the case when the usual spectral
reduction of the SD equations to the BE limit with free
theory normalization R ¼ 1 is valid. If the physical process
changes significantly over the resonance region, however,
the spectral approximation starts to break down.
We quantify these simple observations by defining the

following cut-subtraction scheme:

DΔ
offðaÞ ¼

�
1 − Θða −m2;ΔÞ�DBWðaÞ; ð32Þ

where a ¼ s, t, or u, depending on the channel one is
looking at, and the cut function Θ singles out a region
around the resonance. The simplest choice is the top-hat
function:

Θðx;ΔÞ ¼ θðΔ − xÞθðxþ ΔÞ: ð33Þ

The squared off-shell propagator does not need a separate
rule in this scheme. The propagator in Eq. (32) is again
assumed to replace the Hermitian parts in the Feynman and
anti-Feynman propagators in spectral decomposition, e.g.
in Eq. (28). Combined with this prescription, the statistical
propagators in Eq. (27) (as well as the spectral parts of the
Feynman and anti-Feynman propagators), are rescaled by a
weight function:

RðΔÞ≡ 1

π

Z
dsΘðs −m2;ΔÞmΓjDBWðsÞj2: ð34Þ

It should be obvious that none of these changes interfere
with the on-shell reduction of the SD equations.
The precise form of the cut function in Eq. (33) is

not relevant, and the characteristic width Δ will
depend on the problem. The weight function will give a
quantitative measure for the validity of the spectral limit.
To see how this works, consider some physical quantity
F , which is an integral over, say, the Mandelstam
variable s:

F ¼
Z

dsFðsÞjDBWðsÞj2: ð35Þ

For example the vacuum contribution to the ψ collision
integral from process ψψ̄ → ψψ̄ , coming from the cut
in the last diagram in Fig. 3 would have this form. We can
now divide F into on- and off-shell contributions
F ¼ F on þ F off , where

F off ¼
Z

dsFðsÞjDΔ
offðsÞj2 ð36Þ

and

FIG. 3. Additional perturbative diagrams needed in the on-shell
limit. The numbers are the closed time path indices singling out
the embedded self-energy diagram Σ> ¼ Σ21, and blue dashed
lines indicate cuts corresponding to these indices. Red dotted
lines in the internal boson propagators Δ11 and Δ22 indicate that
these propagators are included without their on-shell parts.
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F on ¼
1

mΓ

Z
dsFðsÞΘðs −m2;ΔÞmΓjDSðsÞj2

≈ RðΔÞπ Fðm
2
SÞ

mSΓS
: ð37Þ

In the second linewe assumed thatFðsÞ remains essentially a
constant in the cut region and then used Eq. (34). This clearly
corresponds to replacing jDBWðsÞj2 inside the on-shell region
with a weighted delta function: πRðΔÞδðs −m2Þ=ðmΓÞ.
If F indeed described the process ψψ̄ → ψψ̄ , then the

on-shell part in Eq. (37) would be exactly canceled by the
on-shell vacuum decay term φ → ψψ̄ arising from the one-
loop diagram in the fermion SD equation in Fig. 2. Indeed,
because of our rule for weighting the statistical propagators
by RðΔÞ, the latter is given by the standard vacuum decay
termmultiplied by RðΔÞ. The exact calculation equating the
two is essentially the same we presented in Sec. III, with
b ¼ φ and aa; cc → ψψ̄ .
Our scheme in corresponds to setting ΔH

φ → DΔ
off and

Rφ → RðΔÞ in Eqs. (27) and (28). All collision integrals
can then be computed from these functions following
standard finite temperature field theory methods. One then
recovers the standard tree level rules for computing
collision integrals, augmented with the scaling of the phase
space factors fφ → RðΔÞfφ and replacing DBW → DΔ

off for
all intermediate scalar propagators. Extensions to more
complicated theories where also fermions can be unstable
should be obvious.
We should emphasize one important difference between

our scheme and the other subtraction schemes. Consider
the case where F is a constant. In this case all standard
schemes give F off ¼ 0, whereas in the cut scheme
F off ¼ Fð1 − RðΔÞÞ. The latter one is the qualitatively
correct result. The standard schemes thus overestimate the
weight of the effective one-particle states, which forces the
flat-weight integrals of the off-shell parts to vanish in
compensation. The effect underestimates the off-shell
contributions also for a nonconstant FðsÞ and may even
lead to a negative cross section if the corresponding FðsÞ is
enhanced near the resonance. The cut-subtraction scheme
does not suffer from these problems by construction.
The particle picture makes sense only if the approxima-

tion in Eq. (37) holds with a large enough Δ, such as
RðΔÞ ≃ 1. Indeed, if FðsÞ changed rapidly in the scale mΓ,
we would be forced to use very small Δ ≪ mΓ to extract
FðsÞ outside the integral. This would then give RðΔÞ ≪ 1,
showing that the one-particle contribution to the process is
very small. Of course, the particle picture would not make
sense in this limit. Nevertheless, the cut-subtraction pro-
cedure allows for a continuous mapping between the limit
where the particle picture is valid [RðΔÞ ≃ 1] and the
resonance limit where φ no longer is part of the thermal
bath [RðΔÞ ≃ 0].

VI. NUMERICAL EXAMPLES

In this section we compare quantitatively the predictions
of the SRS and PVS schemes and study the cut scheme as a
function of Δ in a physical system where RIS subtraction is
needed, at least in principle. To be specific, and to keep the
discussion as simple as possible, we consider the dark
matter freeze-out in the singlet extension of the standard
model (e.g. [35–39]), where the DM-abundance calcula-
tions have been recently studied to high precision
[30,31,40–42]. The model is described by the Lagrangian

L ¼ 1

2
ð∂μSÞ2 −

1

2
λhsh2S2 þ � � � ; ð38Þ

where h is the Standard Model Higgs, S is a singlet scalar,
and dots refer to other terms whose precise form is not
relevant here, including the SM Lagrangian. We focus on
the h and S particle densities governed by the following set
of coupled Boltzmann equations:

L½fhðp1Þ� ¼ Chh↔SSðp1Þ þ Chh↔ðSMÞðp1Þ þ Chother;

L½fSðk1Þ� ¼ CSSS↔hðk1Þ þ CSSS↔ðSMÞðk1Þ þ CSother: ð39Þ

The scattering process SS ↔ ðSMÞ describes the anni-
hilation of the S scalars to the standard model (SM)
particles via s-channel Higgs boson resonance. Other
channels that could affect these densities, not relevant
for the present discussion, are contained in Ch;Sother. The
RIS subtraction is necessary in this model, because the
decay and inverse decay terms h ↔ SS and h ↔ ðSMÞ
already account for the on-shell part of the scattering term
as discussed in previous sections.
To perform a full comparison we should solve Eq. (39)

using the different schemes for the off-shell propagator in
the scattering integral. In the momentum dependent case
the collision integrals should be arranged to contain an
integral over s, as was done e.g. in [41], to facilitate the cut
regularization. We will instead concentrate on the simpler
momentum integrated version of Eq. (39), where the
relevant dynamics are given by the thermal averaged cross
section [43]1

1In thermal equilibrium this rate is exact when S scalars are
treated in spectral approximation and we assume the MB
statistics. Indeed, in thermal equilibrium the full solution to
the Higgs SD equation is iΔ<

h ¼ 2feqAh, where Ah ¼
ϵðk0ÞmΓDBWðsÞ. With these assumptions the one-loop collision
term in the SDE for S is given by Eq. (19), with the delta function
replaced by ðmΓ=πÞDBWðsÞ. Tracing the derivation in Sec. III
backwards, one can establish the equality of that result and (17)
which, when integrated over the initial momentum, gives (40)
with the BW propagator. From this result one then must subtract
the on-shell part, which eventually gives (40).
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hvMϕlσXi ¼
1

8m4
STK

2
2ðmS

T Þ
Z

∞

4m2
S

dss3=2v2SðsÞK1

� ffiffiffi
s

p
T

�
σXðsÞ

≡
Z

∞

4m2
S

dsFðsÞjDX
h ðsÞj2: ð40Þ

Here v2S ¼ 1–4m2
S=s and KiðxÞ are the modified Bessel

functions of the second kind. In the second line we
extracted the subtracted propagator function, letting FðsÞ
describe the rest of the integrand, and the index X refers to
the subtraction scheme.
The s-channel cross section, from which FðsÞ can be

read off using Eq. (40), is given by [39]

σXðsÞ ¼
y2ðλhsvÞ2
vS

ffiffiffi
s

p jDX
S ðsÞj2Γhð

ffiffiffi
s

p Þ; ð41Þ

where v ¼ 246 GeV is the SM-Higgs vacuum expectation
value and Γh ¼ ΓSS þ ΓSM is the total width of a virtual
Higgs particle with an effective mass

ffiffiffi
s

p
. The rate for

h → SS is ΓSS ¼ ðλhsvÞ2vS=ð32π
ffiffiffi
s

p Þ. For the exact defi-
nition of ΓSM see Ref. [39].
Figure 4 shows the s-channel thermal average hvMϕlσXi

in different subtraction schemes for a particular set of
parameters given in the figure caption. The solid red line
shows the PVS-subtracted propagator as a function of a
varying effective width ϵ. The dash-dotted black line is the
SRS-subtracted result corresponding to Eq. (3), while the
blue dashed line shows the result for the PVS propagator
(11) with ϵ ¼ ϵos ≡mhΓos, and the green dashed line
shows the spectral PV propagator, Eq. (14). We take the
area between the dashed lines corresponding to two
constant width PVS schemes as indicative of the funda-
mental ambiguity in the calculation of the scattering rate
using the SRS- and PVS-subtraction schemes.
In Fig. 5 we show the thermal averaged results in the cut

scheme, Eqs. (32) and (37), as a function of the width of the

cut area Δ. The solid purple line presents the off-shell
scattering contribution, and the solid yellow line shows the
on-shell part. The solid black line shows the full thermal
integral, which here agrees with the sum of the off- and
on-shell cut contributions. Note that a relatively large Δ
is needed to make the off-shell cut result agree with
the standard subtraction schemes, or equivalently to
have RðΔÞ ≈ 1. Indeed, to get RðΔÞ ¼ 0.99, one needs
Δ ¼ 70ϵos. But even then one finds 1 − rð70ϵosÞ≈
4 × 10−4, where rðΔÞ is the sum of the two cut contribu-
tions divided by the full result. This shows that the effective
particle approximation works very well. This is as expected
since the resonance is very narrow Γos=T ≈ 0.01. The
difference between the standard subtraction schemes is
also not visible in this scale.
In Fig. 6 we show results of a computation with a

larger coupling λhs ¼ 0.01 and at a higher temperature
T ¼ 50 GeV. The variation between different PVS and

FIG. 4. Comparison of the off-shell parts of the thermal
averaged cross section in Eq. (40) for the standard subtraction
schemes. We used mh ¼ 125 GeV, mS ¼ 50 GeV, λhs ¼ 0.001,
and T ¼ 5 GeV.

FIG. 5. The solid purple curve corresponds to the off-shell
averaged cross section in the cut scheme, Eq. (36), and the solid
yellow curve shows the on-shell result, Eq. (37). The black line is
the full integral computed with the BW propagator. We used the
same parameters as in Fig. 4.

FIG. 6. Same as in Fig. 5, but for parameters λhs ¼ 0.01 and
T ¼ 50 GeV. Note that the standard subtraction scheme results
are all negative in this case.
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SRS schemes is about 10% here, which is still too small to
be visible in the plot, but we see that all schemes give
negative scattering cross sections. However, the sum of the
on-shell and off-shell contributions still is very close to
(and in the SRS case exactly) the full result. This demon-
strates what we already stated above: both SRS and PVS
schemes overestimate the on-shell parts, which then
must be compensated by unphysical negative scattering
contributions. In the cut case all contributions remain
positive of course. However, we now have a larger width
Γos=T ≈ 0.09, which implies that one cannot choose as
large Δ as in the first example. The deviation of the cut
contributions from the exact result, given by 1 − rðΔÞ, is
shown in the inset of Fig. 7. We see that already for
Δ ¼ 10ϵos we have a percent level deviation from the
accurate result, while Rð10ϵosÞ ≈ 0.93 is still well below
unity. In this case the best spectral modeling of the system
would correspond to a cut scheme with Δ ≈ 5 and R ≈ 0.9;
e.g. there should be a suppression in the decay channel
contributions to the collision integrals.
Finally, in Fig. 8 we present results for the same case as

in Fig. 6, but at a lower temperature of T ¼ 5 GeV. Here
the SRS and the PVS scenarios again give positive results
with a dispersion of about 25%. One might then think that
the division to on-shell and off-shell contributions still
makes sense, but this is not the case, as can be seen from the
cut-scheme results. The sum of the cut contributions starts
to deviate from the full result already when Δ > ϵos and the
off-shell contribution gets completely erased before the on-
shell result reaches its maximum. In this case the Higgs
resonance cannot be treated as an on-shell particle. Or
conversely, if one insists in doing so, one should use
Δ < ϵos, giving strong suppression to the decay contribu-
tions: R < 0.5.
To conclude this section we note that none of the

scenarios discussed above was realistic in the sense that
one needed to deal with the problem of on- and off-shell

division. In the singlet model the accurate evaluation of the
final dark matter abundance only requires that the kinetic
description is valid near the freeze-out temperature, which
does not require a kinetic equation for the on-shell
excitations of the Higgs field. There are other realistic
settings [24,30,44], where these effects may be relevant,
however, and our examples display qualitatively the prob-
lems one might encounter. Overall the standard schemes
work rather well and are indistinguishable when applied
correctly. Moreover, even the negative cross sections are
not necessarily fatal, although the accuracy of schemes
leading to them is difficult to assess without more detailed
computations.

VII. CONCLUSIONS

In this article we revisited the well-known RIS sub-
traction problem. The RIS subtraction is necessary for the
resonant scattering channels when the intermediate state
causing the resonance is also included as a real state in the
on-shell kinetic equation network. Over the years many
different methods to perform the RIS subtraction have been
proposed, with some of them leading to erroneous results
and sometimes to negative scattering cross sections.
We took a fresh look into the different RIS schemes that

have appeared in the literature. We pointed out how to
extend the standard RIS-subtraction scheme to interference
matrix elements and emphasized the need to use the correct
sequences for different propagator functions in the princi-
pal value scheme. It indeed seems that most errors in the
literature associated with these schemes have arisen from
not realizing that the off-shell propagator and the squared
off-shell propagator need separate definitions.
We then discussed the origin of the RIS problem from

the Schwinger-Dyson equation point of view. The freedom
in the definition of the RIS-subtracted propagators corre-
sponds to a freedom in defining the Hermitian part of the
pole functions when Schwinger-Dyson equations for unsta-
ble particles are reduced to the spectral limit. We used this

FIG. 8. The same as in Fig. 6, but now in the temperature
T ¼ 5 GeV.

FIG. 7. Shown is the weight function RðΔÞ for the parameters
used in Fig. 6. The inset shows the deviation of the sum of cut
contributions from the full thermal integral, as explained in
the text.
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insight to propose a more physical cut-subtraction scheme,
where the modes within distance Δ from the resonance are
associated with the on-shell state and those outside this
interval are treated as virtual states. This method avoids the
negative cross sections and provides a direct measure, in
terms of an on-shell weight function RðΔÞ, to estimate
when the on-shell particle picture is a consistent
description.
We finished by a detailed numerical comparison of the

different subtraction schemes in a toy model which
qualitatively reproduces the various issues that can be
encountered with the different subtraction schemes. We
pointed out that the negative cross sections in the SRS and

PVS schemes, while unphysical at face value, arise to
compensate for the overestimated on-shell contributions
in these schemes. This problem never appears in the
cut scheme. It would obviously be interesting to make
detailed comparisons of the different approaches in
more realistic setups and with full out-of-equilibrium
computations.
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