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Abstract
In an authentic flight simulator, the instructor is traditionally located behind the 
learner and is thus unable to observe the pilot’s visual attention (i.e. gaze behav-
iour). The focus of this article is visual attention in relation to pilots’ professional 
learning in an Airbus A320 Full Flight Simulator. For this purpose, we measured 
and analysed pilots’ visual scanning behaviour during flight simulation-based train-
ing. Eye-tracking data were collected from the participants (N = 15 pilots in train-
ing) to objectively and non-intrusively study their visual attention behaviour. First, 
we derived and compared the visual scanning patterns. The descriptive statistics 
revealed the pilots’ visual scanning paths and whether they followed the expected 
flight protocol. Second, we developed a procedure to automate the analysis. Specifi-
cally, a Hidden Markov model (HMM) was used to automatically capture the actual 
phases of pilots’ visual scanning. The advantage of this technique is that it is not 
bound to manual assessment based on graphs or descriptive data. In addition, dif-
ferent scanning patterns can be revealed in authentic learning situations where gaze 
behaviour is not known in advance. Our results illustrate that HMM can provide a 
complementary approach to descriptive statistics. Implications for future research 
are discussed, including how artificial intelligence in education could benefit from 
the HMM approach.

Keywords  Adult learning · Simulations · Applications in subject areas · Eye 
tracking · Hidden Markov model
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1  Introduction

Simulations can enhance learning in multiple ways (Bergamo et al., 2022; Huang 
et al., 2022). In short, throughout the history of using computers to support edu-
cation, simulations have been used to provide learners with a virtual environment 
in which to practice real-world scenarios, enabling them to rehearse their knowl-
edge and skills in a safe setting (Kneebone, 2003). In aviation, the first ground-
based flight simulator was introduced in 1909 (Krag, 2017). Currently, simulators 
are used to systematically train pilots in a wide range of scenarios (Salas et al., 
1998), including critical moments of the flight, i.e. take-offs, landings, instru-
ment approaches, and emergency procedures (Lekea et al., 2021; Villafaina et al., 
2021). The primary benefit of aviation simulations is their ability to provide a 
safe training environment for making decisions, solving problems, and experi-
menting with different ways to operate (Harris et al., 2023). For example, pilots 
can practise complex manoeuvres and emergency procedures without the risk of 
damaging a real aircraft. Simulations are also used to replicate rare or uncommon 
scenarios, allowing pilots to gain experience (Myers et al., 2018). One advantage 
of simulations is that they provide immediate feedback to learners and allow them 
to see the consequences of their actions in real time (Jeffries, 2005). This feed-
back can be further used to help learners focus on areas where they need to learn 
new skills or improve their performance. Overall, simulations have been proven 
to be a valuable tool for enhancing professional learning and expertise develop-
ment (see Lehtinen et al., 2020) by providing learners with a safe environment in 
which to practice real-world scenarios.

1.1 � Professional learning in vision‑intensive professions

Professional learning and expertise development refer to the development of the 
essential knowledge, skills, and attitudes for professionals to perform their jobs. 
In short, professional learning can be understood as learning processes that occur 
during work and learning that can be utilised for work (Gruber & Harteis, 2018; 
Lehtinen et al., 2020). In practice, it involves activities that help individuals learn 
and stay up to date within their fields (Vähäsantanen et al., 2017). Visual expertise 
is an essential part of professional learning and expertise development in vision-
intensive professions, where professionals need to make decisions based on complex 
visual materials (e.g. Bellenkes et al., 1997; Jossberger, 2022; Lounis et al., 2021; 
Lu et  al., 2020; Ziv, 2016). Visual expertise can be understood as a high level of 
proficiency and skill in a particular area of visual perception, such as recognising 
and interpreting visual patterns and/or identifying specific objects (Gegenfurtner 
et  al., 2011; Lehtinen et  al., 2020). For aviation pilots, visual expertise is crucial 
because one must be able to interpret and react to complex visual cues while flying. 
For instance, pilots must accurately navigate in changing weather conditions and 
make split-second decisions (Ahmadi et al., 2022). Without sufficient visual exper-
tise, pilots risk making errors that could have disastrous consequences.
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Pilots rely heavily on their visual senses to scan the flight path (subsequently 
referred to as the scan path), make decisions, and detect potential hazards in real 
time (see Ryffel et  al., 2019). The specific areas of visual expertise are visual 
focus of attention, attention allocation (subsequently focus of attention), and vis-
ual scanning (e.g. Bellenkes et  al., 1997; Chaudhuri et  al., 2022; Lounis et  al., 
2021; Lu et al., 2020; Jin et al., 2021). The focus of attention (Chaudhuri et al., 
2022) refers to the selective and conscious concentration of a pilot’s mental 
resources on a particular stimulus, object, or task. This is a cognitive process that 
involves the ability to concentrate on what is most important at any given moment 
and filter out irrelevant information. The pilot’s focus of attention is defined as 
the pilot’s gaze on relevant targets (e.g. air traffic control and weather informa-
tion) and/or certain gaze paths for processing information (see also Chaudhuri 
et  al., 2022; Palazzi et  al., 2018), and this can be measured by using eye track-
ing and gaze/fixation starting and ending times in the designated areas of interest 
(AOI).

Visual scanning involves shifting one’s attention between AOIs via scan paths 
(see Kang et  al., 2014). During visual scanning, pilots depend on various instru-
ments and systems to assist them during flying. These include the aircraft’s instru-
ments, navigation aids, and communications systems as well as external sources, 
such as air traffic control and weather information. For example, during take-off and 
landing, pilots use visual scanning to ensure the aircraft is on the correct runway, 
aligned with the centreline, and at the correct altitude and speed. Thus, they are 
switching their attention between the outside environment (i.e. looking out of the 
window (OTW) and cockpit panels and indicators, such as the primary flight display 
(PFD, indicating artificial horizon, speed, altitude and flight path), navigation dis-
play (ND, indicating map and lateral flight path), flight control unit (FCU, including 
controls for speed, heading, altitude and autoflight system), and other cockpit panels. 
Overall, visual scanning is a critical skill for pilots that needs to be learned to ensure 
their ability to safely and efficiently operate an aircraft. Behrend and Dehais (2020) 
showed that the pilot role assignment (whether a pilot is flying or monitoring) plays 
an important role in visual scanning and decision-making behaviour.

When training pilots, it is essential to teach visual scanning, that is, how to look 
at the right place at the right time (correct scan paths). First, pilots need to learn to 
correctly focus their attention, be aware of their surroundings, and be able to scan, 
for example, the external environment for potential hazards. Second, they need to 
focus on the right instruments at the right time to ensure they are taking the cor-
rect actions and flying the plane safely. In relation to the above requirements, many 
studies highlight the importance of experience and the role of the level of practice 
on visual scanning behaviour (Gao & Wang, 2024; Haslbeck & Zhang, 2017). More 
experienced pilots can distribute their attention between instruments and exterior, 
whereas novices may focus more on the instruments (Lijing & Lin, 2016). The vis-
ual scanning patterns of more experienced pilots can be more flexible and adapt-
able, which can increase caution in unexpected flight scenarios as reflected, e.g., 
in go-around decision making (Dehais et al., 2017; Gao & Wang, 2024). Jin et al. 
(2021) found that experienced pilots were better at allocating their attention between 
relevant flight instruments and indicators. In addition to experience, changes in the 
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visual scanning patterns naturally reflect the state of flying and the complexity of the 
task at hand (Diaz-Piedra et al., 2019). Therefore, in practice, pilots’ visual expertise 
is gained through training, experience, and exposure to different stimuli.

So far, the pedagogical problem has been that in an authentic flight simulator, the 
instructor is behind the learner and unable to observe the learner’s gaze behaviour 
because of space constraints (Fig. 1, right). This makes it difficult or even impos-
sible for the instructor to provide timely feedback on the learner’s visual scanning. 
Our study seeks to investigate how advancements in eye-tracking technology could 
be applied to respond to this challenge (see also Lounis et  al., 2021; Niehorster 
et al., 2020; Ryffel et al., 2019).

1.2 � Eye tracking as a tool to study and support professional learning

Eye-tracking technology makes it possible to accurately and non-invasively track 
where a person is looking (or not looking) and for how long (Kok & Jarodzka, 
2017; Van Gog & Jarodzka, 2013; Ziv, 2016). This information can reveal learn-
ers’ information processing related to their attention, perception, and decision-
making (Lai et al., 2013; Rappa et al., 2019). For example, in the context of pilot 
training, eye-tracking has been acknowledged as one of the pivotal technological 
methods to improve aviation safety by incorporating learning (Jin et  al., 2021; 
Mengtao et  al., 2023). Eye-tracking allows one to objectively trace the focus 
of attention processes (including scan paths) without interrupting the exercise. 
Tracking the movement of learners’ eyes and measuring fixations and fixation 
durations provide insights into the learner’s attention and how their gaze patterns 
may relate to decision-making (Holmqvist et  al., 2011; Ziv, 2016). Despite this 
potential, studies have identified several concerns related to enhancing flying per-
formance, such as a lack of training interventions (Ziv, 2016). For the future, the 
challenge is how gaze dynamics can be used to infer pilots’ attention and how this 
information can be used a) to develop pedagogical approaches to support visual 

Fig. 1   Flight academy’s Airbus A320 Full Flight Simulator
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scanning and b) to personalise instructions for different pilots (e.g. Rainieri et al., 
2021; Sullivan et  al., 2011), both of which can be accomplished either techno-
logically or pedagogically, as further elaborated in the discussion section.

In terms of the pedagogical design, one of the most crucial issues is the bal-
ance between activities designed before (to do this we have to understand the 
learning needs of the pilots at the general level in advance) and during the learn-
ing process (to do this we have to capture the individual learning processes of 
each pilot). It has been argued that the combination of learning analytics and 
real-time eye tracking has the potential to meet these challenges in evaluating 
user models of subject content (e.g., Wang et  al., 2021). For example, analysis 
of the visual scanning of professionals can provide an overview of the optimal 
performance and behaviour in a specific task, which can then be used as a base-
line for assessing students’ individual performance. Furthermore, combining the 
optimal baseline and students’ individual performance could provide informa-
tion supporting personalised learning. Capturing and automatically analysing 
gaze data could provide valuable insights into how learners utilise their visual 
scanning techniques and support the provision of objective, individual, and fine-
grained feedback even during the simulation (see Ryffel et al., 2019; Rudi et al., 
2020; Ahmadi et  al., 2022). This kind of information about learners’ behaviour 
and scanning processes can also increase trainees’ self-awareness and help them 
evaluate their techniques and decision-making during the simulation training (see 
Muehlethaler & Knecht, 2016).

Currently, eye-tracking techniques are becoming more broadly available for 
learning settings, and there is a growing interest in capturing professional learners’ 
information processing through eye tracking and relating it to their attention, percep-
tion, and decision-making. Relatedly, there is considerable hype regarding the possi-
bilities of current technological advancements. Therefore, this development calls for 
a better understanding of many technological and pedagogical questions: How can 
learners’ information processing be captured through their eyes in vision-intensive 
professions? How can information processing be visualised in pedagogically mean-
ingful ways? What needs to be understood to design simulations that provide feed-
back for instructors and learners automatically, even in real time?

We use eye tracking and gaze modelling to study the visual scanning of pilots. 
Based on international aviation guidelines, there is an expected protocol regarding 
where pilots should be focusing and how they should shift their attention (subse-
quently referred to as the dynamic trace of attention) (Wickens et  al., 2001; Ziv, 
2016; EASA, 2020). Gathering and processing visual information in a dynamic 
aircraft environment is an essential aspect of pilots’ competencies (e.g., EASA, 
2020). In essence, the pilots are required to learn “when to look where to assure 
that the dynamic processes are under control” (Wickens et al., 2001, p. 1). First, we 
use descriptive statistics to examine pilots’ gaze dynamics in terms of fixations and 
fixation durations and whether this behaviour complies with the protocols of dif-
ferent landing scenarios that the pilots should follow. Second, we aim to automate 
our analyses by using hidden Markov model (HMM) to identify the visual scanning 
behaviour of the pilots in order to provide that information to instructors later. The 
following two research questions guide our study:
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RQ1: How do pilots visually scan the indicators and the window during landing 
scenarios in a flight simulator?
RQ2: How can we automatically detect whether pilots demonstrate the expected 
visual scanning behaviour during landing scenarios?

2 � Materials and methods

2.1 � Participants and experimental design

At the core of the experimental design and the data collection are flight scenarios 
performed in an Airbus A320 Full Flight Simulator environment (see Fig. 1). Simu-
lator training is a mandatory part of the professional learning for all commercial 
pilots. The flight scenarios were authentic in the sense that they simulated real work-
ing scenarios that do not differ from scenarios practised in the simulator training or 
situations that pilots face in their work. In this context, understanding the dynamics 
of attention, especially during takeoff and landing, is crucial. In this study, we focus 
on the landing phase of each scenario, specifically, the three stages of three landing 
scenarios where pilots must follow a specific visual scanning strategy. A full-flight 
simulator realistically mimics cockpit instruments and provides a visual represen-
tation of the environment. Participants conducted a one-hour simulation, covering 
three scenarios requiring manual control of the aircraft during approach and land-
ing based on visual cues, highlighting the importance of such scenarios in pilot 
training. The scenarios were: a calm wind approach, an approach with significant 
crosswind challenging the maintenance of the correct flight path, and an approach 
with a technical system failure. The final approach and landing, requiring active 
scanning of visual cues, particularly in poor visibility, were the study’s focus. This 
phase includes a "transition to visual," where pilots shift their scanning from flight 
instruments to external cues, such as runway lights, at a determined decision alti-
tude. Below this altitude, pilots are expected to change their scanning pattern and 
land using external cues, shifting their attention gradually to these cues. Hence, our 
analysis divides the final approach’s visual scanning into three stages (see below), 
where the scanning strategy is anticipated to change.

The participants were (already graduated) Airbus A320 pilots, and the data con-
sisted of eye-tracking data from 43 landing missions conducted by 15 participants. 
The time of landing scenarios ranged from 31.0 s to 40.7 s (M = 36.4 s, SD = 2.2 s). 
The stages times of the landing scenarios were as follows: The first stage ranged 
from 2.0 s to 4.4 s (M = 3.1 s, SD = 0.6 s), the second stage ranged from 12.6 s to 
16.8  s (M = 14.8  s, SD = 1.0  s), and the third stage ranged from 14.1  s to 23.0  s 
(M = 18.6 s, SD = 2.1 s).

Ethical approval for the research was granted by The Human Sciences Ethics 
Committee of the University of Jyväskylä, and the research was conducted following 
the guidelines of the World Medical Association’s (WMA) Declaration of Helsinki 
(each participant provided written consent to participate in the study). A data avail-
ability statement: Due The Human Sciences Ethics Committee of the University of 
Jyväskylä decision 755/13.00.04.00/2020 data can not be made available.
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We used eye tracking to record how the pilot flying (PF) observed their working 
environment and how they gathered information from the instruments, such as the 
PFD and OTW view of the simulator. Eye-tracking data were collected from the 
participants during the scenarios using the Ergoneers Dikablis Glasses 3 (sampling 
rate 60 Hz). The main AOIs in this study relevant for the visual scanning during the 
approach were the PFD and the OTW views (cf. Faulhaber et al., 2022). PFD is the 
main source of information during the approach, and it shows information like the 
altitude, speed, and turn coordinator. In this study the PFD was analysed as a whole, 
i.e. as a one AOI. The OTW view is essential in the later stage of the approach and 
during landing, when the runway can be seen visually. We also captured possible 
glances to ND and FCU. Figure 3a–c depict the compiled multi-video and superim-
posed eye-tracking views of the experiment, analyzed AOIs, and different stages of 
the expected visual scanning pattern.

For the descriptive statistics (RQ1), we focused on visual scanning behaviours 
around predetermined auditory callouts that are made in the aircraft during a typical 
landing.

An ideal visual scanning pattern (see Fig.  2) includes three phases and should 
roughly match the three flight stages:

Stage 1: After the first automated callout ‘Hundred above’(100 feet above the 
decision altitude) and before the actual landing procedure starts, following 
’Approach lights’ (verbal confirmation of visual contact with external cues), the 
pilot should still observe and monitor the PFD and other indicators (Figs. 2 and 
3a). The ‘Hundred above’ callout is a safety measure and a reminder that the pilot 
is approaching the decision altitude at which the pilot must decide whether to 
continue the approach to landing or execute a missed approach.
Stage 2: Between the callouts ‘Approach lights’ (latest at the decision altitude) 
and at ’One hundred’, the transition to primarily using external visual cues 
begins, and the pilot should start to switch their attention between the PFD and 
OTW (Figs. 2 and 3b). The callout ‘One hundred’ refers to the altitude being 100 
feet above the ground during the final approach phase. This is a critical phase of 
flight, and the callout serves to alert the flight crew that they are nearing the run-
way and should be in the final stages of preparing for landing.

Fig. 2   Illustration of the three stages during a landing scenario, based on the four announcements made, 
and a representation of the ideal visual scanning behaviour that pilots are expected to follow
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Stage 3: In the last part between ‘One hundred’ and ‘Reverse green’, the pilots 
should only be looking at the OTW (Figs. 2 and 3c) in order to land the aircraft 
at the optimal touch down point on the runway. The callout ‘Reverse green’ indi-
cates that the aircraft is on the ground, thrust reversers are active and working 
as expected. Thrust reversers are used to help slow the aircraft down after land-
ing, reducing their reliance on wheel brakes and allowing for shorter landing dis-
tances.

For the second research question (RQ2), the same eye-tracking data were used, 
but the actual visual scanning phases of the pilots were modelled in an automatic 
way using an HMM. In this study, an HMM was used to automatically detect the dif-
ferent phases of the landing procedure. In line with the methodological terminology 

Fig. 3   a In the first stage, after the first callout ‘Hundred above,’ the PF should primarily monitor the 
PFD. b In the second stage, after the callout ‘Approach lights,’ the PF should switch attention between 
the PFD and OTW. c In the third stage, after the callout ‘One hundred’, the PF should only be looking at 
the OTW
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related to HMMs, we will use the term ‘states’ to refer to the steps that can be auto-
matically detected in the eye-tracking data. We will continue to use the term ‘stages’ 
for the pre-identified steps and ‘phases ‘ when referring to the actual visual scan-
ning behaviour of the pilots. In short, stages are expected to take place based on the 
predetermined announcements, and, in answering RQ1, we need to know precisely 
when those announcements are made in order to describe how well the pilots’ visual 
scanning is matching these announcements. Regarding RQ2, the automatic HMM 
analysis is not restricted to the announcements. Rather, we identify the different 
states from the data independently from the announcements.

2.2 � Data analysis

To answer RQ1 regarding how pilots visually scan the indicators and the window 
during landing scenarios in the flight simulator, the percentage of time focused on 
the PFD and OTW was calculated for each landing stage. In stage two, the num-
ber of times the pilot switched attention between the PFD and OTW was counted. 
With these descriptive statistics, we can see if the pilot is monitoring the landing 
scenario as we would expect based on the four announcements. However, this is a 
manual and time-consuming process for the flight instructor. Thus, we also present 
one potential method for automatically detecting the pilot’s visual scanning accuracy 
and consistency, that is, when the pilot is and is not monitoring as expected (RQ2).

To answer RQ2 regarding how to automatically detect whether pilots demonstrate 
the expected visual scanning behaviour during landing scenarios, we used an HMM. 
The HMM approach provides an unsupervised, model based method for analysing 
unlabeled data, meaning that while we do know the exact time points when different 
flight stages start and end, we do not know when the pilots switch their visual scan-
ning patterns to different phases. The fact we do not know the actual change points 
in the scanning patterns means that we cannot use supervised classification meth-
ods such as decision trees, and developing ad-hoc rules for the labelling is also not 
trivial. In addition and in contrast to ad-hoc methods, HMMs also provide automatic 
uncertainty estimates for the latent state probabilities, which allows coherent assess-
ment of the labelling accuracy. HMMs are also more robust to outliers and measure-
ment noise compared to methods such as observational level Markov models. For 
example, the number of observed states (e.g., observed AOIs) can be larger than the 
assumed true number of distinct gazing patterns, and occasional record of single 
AOI within a long sequence of other AOIs can be automatically “smoothed out” so 
that it does not necessarily impact the latent state trajectory.

Specifically, to analyse the scanning of the indicators and the window based on 
the input messages of the simulator and the aviation protocol the pilots are taught, 
we utilised an HMM to analyse eye-tracking data. In general, Markov models are 
used to model stochastic processes, where the probability of the next state depends 
on the previous states. In HMMs, this Markov process is not observed directly 
but rather through observations, which depend on this latent process (e.g. Helske 
et al., 2018; Rabiner, 1989). To date, HMMs have been used to analyse, for exam-
ple, fixation sequences during visual inspection in a home appliance facility (Ulutas 
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et al., 2020), eye-tracking data of air traffic control officers (Muthumanickam et al., 
2019), sustained attention in visual object tracking (Kim et al., 2020), complex life 
sequence data (Helske et al., 2018), and productivity in open-ended inquiry (Tissen-
baum, 2020).

The sequences of fixations to AOIs (i.e. PFD, OTW) were extracted using Ergon-
eers D-Lab V. 3.55. From D-lab the AOIs name, its starting and ending time and 
its duration in milliseconds was extracted. The pre-processing of the sequences 
involved discretisation, which means that the landing scenarios of the pilots, which 
usually last around 30 to 40 s in total, were divided into time intervals of 150 ms. 
We selected this interval based on existing research on detecting fixations in a simi-
lar context (e.g. Allsop et  al., 2016; Chen & Tsai, 2015; Li et  al., 2014; Negi & 
Mitra, 2020; Udale et  al., 2022; Wu et  al., 2019). Each of the time intervals was 
coded with the AOI that the participant was looking at the most during the interval. 
One pilot quickly glanced at the ND during the third landing (2 times, 2.5% of the 
landing time). As ND is right next to the PFD and only one pilot looked at it quickly 
and as it is also acceptable to sometimes look at the ND during a landing, it was 
coded as a PFD in the analyses. This AOI sequence of a pilot was then used as an 
input sequence to the HMM. The HMMs were estimated via maximum likelihood in 
the R environment (v4.2.1; R Core Team, 2022) using the seqHMM package (Hel-
ske & Helske, 2019).

2.2.1 � Hidden Markov model

We used a discrete-time HMM as a probabilistic method to gain information about 
the latent visual scanning patterns of the pilots. The HMM, a type of dynamic 
Bayesian network, consists of two state sequences: one observed and one so-called 
‘hidden’, or latent, state sequence. With the HMM, it is possible to find latent states 
that might not be directly visible in the data. In the first-order Markov model, the 
next state’s probability distribution is predicted by the preceding state. In an HMM, 
the observed state’s outcomes are predicted by the hidden states, and the next hidden 
states are predicted by the previous hidden states. Thus, while we do not observe 
the hidden state sequence, we can estimate it based on the observed state sequence, 
which depends on the hidden states. We will present a brief overview of the HMM, 
but for a more comprehensive explanation, see, for example, Rabiner (1989).

Let (Ot)t=1,…,T denote an observed state sequence of length T and (Xt)t=1,…,T 
denote a hidden state sequence of the same length T. The observed state sequence 
can obtain an observed state from the set V = {v1, …, vM}, which has M states. Simi-
larly, the hidden state sequence can obtain a hidden state from the set S = {s1, …, 
sN} that has N states. To model the HMM, three more parameters are also needed: a 
transition matrix A, an emission matrix B, and an initial probability vector π.

Now the N × N transition matrix A = {aij | aij = P(Xt = sj | Xt-1 = si)} is the prob-
ability of moving from hidden state si at time t-1 to hidden state sj at time t. The 
NxM emission matrix B = {bi(k) | bi(k) = P(Ot = vk | Xt = si)} is the probability that 
the observed state Ot = vk, given that the hidden state Xt = si at time t. An initial prob-
ability vector π = {πi|πi = P(X1 = si)} is the probability that the hidden sequence starts 
with a hidden state si. We denote the HMM parameters as µ = (A,B,π).
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To efficiently compute the probability of P(O|µ) (likelihood of the model), we 
used a forward–backward algorithm (Baum & Petrie, 1966; Rabiner, 1989). To find 
the parameter set µ that maximises P(O|µ), we used the Baum–Welch algorithm, 
a special case of the expectation–maximisation (EM) algorithm (Dempster et  al., 
1977; Rabiner, 1989). It is an iterative procedure that finds the best estimate of µ 
that locally maximises P(O|µ). When the HMM parameters have been estimated, 
the next step is often to find the optimal (most likely) hidden state sequence for the 
given observed sequence, which is found by using the Viterbi algorithm (Rabiner, 
1989; Viterbi, 1967). Alternatively, output of the forward–backward algorithm can 
be used to compute the posterior probabilities of a specific state at a specific time 
point given the observed data and the model.

In a so-called fully connected HMM, the states can transition between them-
selves without restrictions. There is also a possibility to restrict the transitions. In 
this study, we used a so-called left-to-right HMM (LRHMM), in which the transi-
tions between the states can either stay the same or move to a higher index (Rabiner, 
1989). We restricted the transitions so that the states could only move one index 
higher or stay the same. Especially in this case, the posterior probabilities provide a 
straightforward way to assess the uncertainty in the timing of state transitions.

3 � Results

In the following section, we describe where the pilots are looking and for how long 
during the three stages (RQ1) of the three landing scenarios. We describe if and how 
pilots visually scan the indicators and OTW in terms of temporal accuracy and con-
sistency in relation to what we would expect based on the predetermined announce-
ments of the flight simulator and the protocol. Then, in Section 3.2, we model the 
pilots’ visual scanning behaviour using an HMM. We show that the HMM can pro-
vide complementary information to descriptive statistics. Specifically, the actual 
visual scanning behaviour (RQ2) of the pilots can be modelled in an automatic way 
through modelled states.

3.1 � Descriptive statistics on visual scanning

3.1.1 � Following the optimal scanning behaviour in three predefined stages 
of landing scenarios

In general, the predetermined auditory announcements define the behavioural 
prompts that should guide pilots’ performance. It is essential for the pilots to start 
and end the visual scanning behaviour at a correct point in time based on the 
announcements (see Fig.  2). Overall the pilots looked at the PFD (34.5%), OTW 
(65.2%) and FCU (0.3%) during all the landings. Five pilots looked at the FCU in 
seven different landings. Using gaze behaviour data and the overall time pilots used 
to direct their visual attention to the PFD and OTW, we first examined the start and 
end of the visual scanning sequence in relation to the predetermined announcements. 
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Figure 4 presents the percentages of time that the pilots are looking through the win-
dows during the first stage of the landing scenario. As we can see in Fig. 4, in nine 
(21%) landing scenarios pilots are looking at the window too early. For instance, in 
the second landing scenario of pilot ID05, the pilot is looking over 25% of the time 

Fig. 4   Temporal precision of timing with respect to the predetermined announcements. Percentage of 
time (x-axis) that pilots (Indicated by Idxx number on the Y-axis) are looking at the OTW during the first 
stage (left side; the green horizontal bars; we expect 0% here, as the focus should be on the indicators) 
and at the indicators during the third stage (right side; the red horizontal bars; we also expect 0% here, 
as during this third stage the focus needs to be on the OTW) of the three (Idxx.1, Idxx.2, Idxx.3) landing 
scenarios. Note that the first stage times range from 2.0 s to 4.4 s (M = 3.1 s, SD = 0.6 s), and the third 
stage times range from 14.1 s to 23.0 s (M = 18.6 s, SD = 2.1 s)
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at the window during this first stage. Overall, six pilots show a premature gaze to the 
OTW before the second announcement. Further, Fig. 4 shows whether the sequence 
was started too early in the first stage (i.e. before the second announcement) and if it 
ended too late in the third stage (i.e. after the third announcement) (see description 
of the third stage in this article) by showing the share of overlap of the ‘unexpected’ 
AOI with the duration of the actual stage.

In the second stage, that is, in the middle of the landing scenario between the 
‘Approach lights’ and ‘One hundred’ announcements (see, Fig.  2), pilots are sup-
posed to divide their attention between the window and the indicator by looking 
back and forth. Figure 5 presents the percentages pilots are looking at the indica-
tors during the second stage of the landing scenarios along with the number of tran-
sitions between the indicators and the window. Since the pilots are taught to look 
roughly half of the time at the indicators and the other half at the window, a dashed 
line at 50% was added to the figure. Vertical lines at 35% and 65% illustrate the 
variation in the pilots’ scanning patterns which, based on discussions with the flight 
instructors, was still considered to be within acceptable limits for the second stage. 
In addition, pilots should shift their attention a couple of times, meaning that for the 
time looking at the specific AOI, we also considered the number of shifts between 
the two AOIs. In sixteen (37%) landings, the pilots are looking at the indicators too 
long, and in five (12%) landings, the pilots are looking at the window too long. In 
twenty-two (51%) landings, the pilots are monitoring as taught in the second stage: 
half of the time at the indicators and shifting fairly often between the AOIs. The 
shifting mean was 8.5 (SD = 2.5).

During the last stage, the visual scanning is supposed to be the opposite of the 
first stage. Specifically, in the third stage, pilots are supposed to focus mainly on 
the outside environment, that is, to look through the window and not at the instru-
ment panel. As we can observe in Fig.  4, which presents the percentages of time 
pilots are looking at the indicators, most pilots are still checking the indicators. The 
pilots are only looking purely out the window as taught in five (12%) of the landing 
scenarios. In the other landings, during which they are looking at indicators, they 
are looking at the indicators less than 5% of the time in 13 (30%) of the landing 
scenarios. In the other 25 (58%) cases, the pilots are looking at the indicators more 
than 5% of the time. For instance, pilot ID02 is looking at the indicators more than 
20% of the time during the third stage of the third landing scenario (see Appendix 
1). The pilots exhibited a general tendency to continue scanning the PFD after the 
final announcement.

3.1.2 � Two descriptive examples

Next, we shall further illuminate the landing scenario with AOIs in two selected 
cases, pilot ID08 and ID10. Figure  6 shows the pilots’ (ID08) AOIs in three dif-
ferent landing scenarios. On the colour dot, the pilot starts looking at the AOI, and 
the colour line continuing from it indicates how long the pilot keeps looking at the 
AOI. The first grey vertical line indicates the first announcement, ‘Hundred above’, 
when the landing scenario starts, and the second grey vertical line indicates the 
fourth (last) announcement, ‘Reverse green’, when the landing scenario ends. The 
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first black vertical line indicates the second announcement, ‘Approach lights’, when 
the first stage ends and the second stage starts, and the second black vertical line 
indicates the third announcement, ‘One hundred’, when the second stage ends and 

Fig. 5   Visual scanning behaviour dynamics based on gaze transitions and division of attention between 
the PFD and OTW. Percentage of time (x-axis) that pilots (Indicated by Idxx number on the Y-axis) are 
looking at the indicators during the second stage of the three (Idxx.1, Idxx.2, Idxx.3) landing scenarios. 
In this figure we expect the percentage to be around 50% (indicated by the dashed vertical line). All land-
ing scenarios in which this 50% was approached (i.e. between 35 and 65%, indicated by the two vertical 
dotted lines) are coloured in green, while the other cases (i.e. deviating from the expected 50%) are col-
oured in orange. At the end of the bar, the number of switches (i.e. looking back and forth at the window 
and indicators) are listed
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the third stage starts. We can see that in the first stage, the pilot mainly looks only at 
the PFD (‘Hundred above’ – ‘Approach lights’), in the second stage, the pilot starts 
to shift between the indicators and the window and in the last stage, the pilot mainly 
looks only at the window.

Figure 7 shows the pilot’s (ID10) AOIs in three different landing scenarios. The 
pilot looks only at the indicators in the first stage during all of the landings and 

Fig. 6   Pilot ID08’s three landing scenarios. The vertical axis shows the observed AOIs that the pilot is 
looking at during the landings, and the horizontal axis shows the time in seconds. At the coloured dot, 
the pilot starts looking at the AOI, and the line continuing from it indicates how long the pilot keeps 
looking at the AOI. The two grey vertical lines indicate the announcements ‘Hundred above’ and 
‘Reverse green’, respectively, and the two black vertical lines indicate the announcements ‘Approach 
lights’ and ‘One hundred’, respectively

Fig. 7   Three landing scenarios of pilot ID10 (see Fig. 6 for details on the interpretation of this figure)
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mainly outside in the third stage. However, in the second stage, pilot ID10 does 
not shift attention between the indicators and window very often. Especially in the 
second landing scenario, the pilot mainly looks at the PFD (> 90%) in the second 
stage and shifts attention only three times throughout the whole landing scenario. 
Additionally, in the third landing, the pilot starts to shift attention much later in the 
second stage; this shift occurs at the end of second stage and at the beginning of the 
third stage – too late relative to the taught visual monitoring.

Finally, when considering the individual differences of the pilots, the analysis 
revealed that, for example, pilots ID08 and ID03 showed an accurate start of the 
scanning sequence in most of the landings and relatively consistent visual scanning 
behaviour based on their attention distribution and number of gaze transitions (see 
Appendix 1 for a detailed overview of all pilots). Similarly, pilots ID05 and ID06 
showed relatively consistent gaze behaviour but also a tendency to start the visual 
scanning slightly earlier than was expected based on the second announcement 
(Appendix 1). However, several landings showed inconsistent scanning behaviour 
and delayed ending capered what was expected (e.g. ID02, ID10).

In sum, the descriptive statistics show how the pilots are monitoring the instru-
ments and the window and whether they are looking at the areas we expect them to 
look at, given the specific announcements in the flight simulator (see Fig. 2). How-
ever, the disadvantage of investigating the descriptive figures is that in an authen-
tic learning situation, the flight instructor would have to look at each participant 
separately, which is a time-consuming manual process that is prone to errors. Fur-
thermore, we need to know these stages in advance (e.g. based on predetermined 
announcements). Therefore, more automated options are needed to provide instruc-
tors with an overview of the visual scanning behaviours of all pilots, which will 
also allow identifying outliers, requesting details on their scanning behaviour, and 
investigating why they show different visual scanning behaviours. To respond to this 
need, we will next present a potential modelling approach for detecting accuracy and 
consistency in visual scanning behaviour.

3.2 � Detecting visual scanning behaviour automatically

An HMM model was used to detect different states of visual scanning. In the follow-
ing, we demonstrate that a modelling approach using an HMM can provide comple-
mentary information to descriptive statistics based on gaze behaviour. In short, the 
descriptives and figures of the ‘raw’ AOI data can contain considerable noise and 
mislabelling for various reasons (Muthumanickam et  al., 2019). Therefore, with a 
large number of AOIs and time points, it can be challenging to interpret the results 
accurately. HMMs can help by providing ‘smoothed’ estimates that provide a clearer 
picture of what is happening. In our descriptive results presented above, the three 
stages are defined by the announcements. However, with HMM models, the model 
estimates when the three phases are actually taking place, based on the actual visual 
scanning of the pilots. For announcements, the points are fixed, and they can be used 
to check whether the pilot has monitored exactly as taught. But, with the help of an 
HMM, where the monitoring of this pilot starts and ends can be made visible. This 
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makes it possible to compare the actual monitoring with the most optimal monitor-
ing based on the announcements. Thus, HMM models may help to pinpoint learn-
ers’ monitoring patterns more easily.

First, we introduce the landing scenarios and the LRHMM that is used to esti-
mate the three actual phases for all pilots individually. Second, examples of the 
individual pilots’ results based on the HMM will be presented. In the future, this 
kind of information could be useful for personalising instructions for different pilots. 
Finally, we conclude our results with a heatmap (Fig. 10) of the pilots’ visual scan-
ning sequences, which illustrates the overall picture of all the landings. This infor-
mation can be useful in developing pedagogical approaches to support professional 
learning.

3.2.1 � Landing scenarios and LRHMM

We use the LRHMM to estimate the states of the pilots during the landing sce-
narios. With this model, we can estimate the three states for all pilots individually. 
We use the same model for all of the pilots in every landing scenario. As there are 
three stages taught to pilots during the landing scenarios, we give three states to the 
LRHMM as well. With the model and these three hidden states, our aim is to try to 
identify the actual phases corresponding to the pilot’s observation. To find the sec-
ond phase in the landing scenario, where the pilot switches between the indicators 
and window, we fix the second state’s emission probabilities. Based on our a priori 
expectation that the pilots should monitor the indicators and window equally and the 
descriptive statistics from the observed data, which indicate that the pilots are look-
ing at the PFD, on average, 58.2% of the time in the second stage, at the FCU 0.4% 
and at the window 41.4% of the time, we fix the second state probabilities to 59% 
(PFD), 40% (OTW) and 1% (FCU). See Appendix 3 for estimated transition and 
emission probabilities.

3.2.2 � Individual‑level results for all landing scenarios

Next, we briefly introduce all of the landing scenarios of all pilots. In Appendix 
2, all landing scenarios of all pilots are visualised in graphs. These graphs provide 
information regarding where and how the pilots are looking throughout the landing 
scenarios and thus provide an in-depth view for further analysis and feedback from 
instructors. The data can be used to provide overall information regarding the pilots 
visual scanning, as illustrated above (see Figs. 2, 3, 4 and 5). However, the detailed 
graphs in Appendix 2 could also be presented using a type of dashboard to the flight 
instructor or even to the pilots, allowing for a more in-depth analysis of individual 
visual scanning paths. For instance, looking at the three landing scenarios of pilot 
ID08 (Figs. 6 and 8 and row 8 in Appendix 2), we can observe the visual scanning 
throughout all three phases of the three landing scenarios. On the colour dot, the 
pilot starts looking at the AOI, and the colour line continuing from it indicates how 
long the pilot continues to look at the AOI. The first black vertical line indicates the 
second announcement, ‘Approach lights’, and the second black vertical line indicates 
the third announcement, ‘One hundred’. We can see that the pilot only looks at the 
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PFD in the first phase, starts to shift between the indicators and the window in the 
second phase, and looks mainly at the window in the final phase. It might be said 
that the third landing scenario of pilot ID08 is a text-book example of visual scan-
ning during the landing: indicators during phase 1, switching during phase 2, and 
looking at the outside environment during phase 3.

Figure 8 shows the three landing scenarios of pilot ID08 based on the LRHMM. 
The first white area indicates the first state of the model, the grey area indicates 
the second state, and the last white area indicates the third state of the model. We 
can see that the model finds the three different phases based on the pilot’s monitor-
ing. In the second landing scenario, where the pilot is monitoring exactly as they 
are taught in training, the model also starts its second state (grey area) right at the 
second announcement and ends it a bit later following the third announcement. In 
the third landing scenario, the model finds the second state a little after the second 
announcement, indicating that the pilot starts to shift between the AOIs later than 
they are taught in the training but ends at the right time at the third announcement; 
that is, they change their monitoring at the right time. In the first landing scenario, 
the model’s second state starts a little after the announcement. The pilot changes 
the monitoring marginally late but also ends long before the third announcement. 
As we can see from the raw data, the pilot does not perform systematic monitor-
ing in the second phase of the first landing scenario. Rather, the pilot looks outside 
for a long time, and after that, only a few quick times at the indicator. According 
to the model, this pilot is looking too briefly at the indicators and thus locates the 
third state before the third announcement, indicating that the pilot is starting the 
final monitoring phase too early.

Figure 9 shows the three landing scenarios of pilot ID10 with the LRHMM. As 
can be seen from the recorded gaze transitions between the OTW and PFD and the 

Fig. 8   Pilot ID08’s three landing scenarios, as shown in Figure 6, but now with the LRHMM. The first 
white area indicates the first state, the grey area indicates the second state, and the last white area indi-
cates the third state. The darker the grey area is, the higher the posterior probability is to be in the second 
state. The two red vertical lines indicate the most probable change point from state to another state
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modelling results, pilot ID10 does not exhibit the consistent visual scanning behav-
iour instructed in the training. The clearest deviation from the expected visual 
scanning behaviour can be seen in the second landing scenario: there is only one 
glance to the OTW, and the LRHMM identifies the second phase as only a very 
brief moment before the final callout. Here the second state is not clearly visible, 
but the model is bound to find all three states, so it finds the second state right at 
the third announcement, when the pilot switches from the indicator to the window. 
In other words, the model indicates that the pilot monitors the first phase until the 
third announcement and remains in the second phase for less than a second, when 
the pilot changes AOIs and then starts monitoring the third phase at the correct time. 
The difference between the announcement and the start of a second state and the 
briefness of the second phase quickly alert the instructor that the pilot’s monitoring 
is incorrect. In the first landing scenario, the model locates the second state in the 
middle of the third announcement. It regards the small glances to the window as too 
quick in the second stage. In the third landing scenario, the second state also starts 
late. The pilot looks outside quickly at the right time at the second announcement 
but does not systematically shift between the AOIs until the model’s second state 
starts.

3.2.3 � The overall representation of the HMM

Figure  10 depicts the overall results of the states detected by the HMM. It is a 
heatmap illustrating all pilots’ monitoring states in all landing scenarios with the 
announcements. It summarises the pilots’ overall monitoring behaviour and how 
their monitoring is related to the three stages based on the announcements (see 
Fig.  2). The darker the colour, the more pilots are engaging in the same visual 
behaviour at the same time in the second phase of the monitoring. As we can see 

Fig. 9   Pilot ID10’s three landing scenarios, as shown in Fig. 7, but now with the LRHMM (see Fig. 8 for 
details on the interpretation of this figure)



	 Education and Information Technologies

1 3

for a few of the pilots, the behaviour starts a bit earlier than expected (based on the 
expected stages in Fig. 2), and there is a tendency to continue the visual scanning 
after the last announcement.

While the heatmap is informative on a general level and shows the summary of 
the full group of pilots, the disadvantage is that relevant information regarding indi-
viduals is lost, and it does not show which pilots, in which landing scenarios, are 
showing (sub)optimal visual scanning. Therefore, it is also important to examine the 
information in more detail, and the black horizontal lines in Fig. 10 shows the vis-
ual scanning behaviour/second state of HMM of all landing scenarios for all pilots, 
allowing for a quick overview of every landing scenario for every pilot.

4 � Discussion

In vision-intensive professions, it is critical that the professionals’ visual atten-
tion behaviour matches predefined scenarios. This ensures the safe completion of 
tasks and efficient monitoring of operations. In this study, we investigated pilots’ 
gaze behavior during three landing scenarios, and our findings offer insights into the 
pilots’ visual scanning processes (RQ1). Eye tracking facilitated objective and non-
intrusive observations of how accurately pilots looked at the right places at the right 
times (see also Peißl et al., 2018). This information could be valuable for refining 
pilot education and training practices in the future. In teaching landings, particular 
attention must be paid to three aspects. First, pilots tend to look out the window too 
early during challenging landing scenarios. Second, during landing, pilots have a 

Fig. 10   Heatmap of all pilots’ visual scanning in all landing scenarios. The second state is indicated in 
orange. The darker the colour, the more pilots switched their attention at that point, which we expect 
between the second and third announcements, indicated by the two black vertical lines (see also Fig. 2). 
Furthermore, the black horizontal lines represent all individual pilots’ second states. Please note that as 
the time between the two announcements is not exactly the same for all pilots, we standardise this to 
ensure that the black vertical lines indicate the exact moment of the announcement
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tendency to look at the indicators for too long. And third, during practice, there is a 
general tendency to continue scanning the PFD after the final announcement.

We also aimed to take a step towards more automated analysis by seeking an 
automatic method to determine whether pilots exhibit the expected visual scan-
ning behavior during landing scenarios (RQ2). The results showed that an HMM 
was capable of modeling the various states of pilots’ gaze behavior. The novel 
contribution of our study is that we combined existing techniques and procedures, 
such as eye tracking and HMM, to build a specific case for the field of pilot train-
ing. Through this study, we sought to contribute to the empirical literature on how 
technological tools (such as eye-tracking glasses) and analysis procedures (such as 
HMM) can be integrated with a focus on enhancing the learning and training envi-
ronment for professionals in light of their further professional development. Namely, 
we were able to automatically detect actual phases of visual scanning within the dif-
ferent landing scenarios of the pilots through HMM. Thus, our study is one empiri-
cal example in which the advantage of HMM technique is that we are not bound 
to manual decisions based on graphs or descriptive data. In the future, it might be 
possible to identify patterns also in less clear learning situations, for instance, when 
no specific announcements are made and the number of hidden states is not known 
in advance. In such cases, models with varying numbers of states can be estimated 
and compared using common statistical model selection methods. Future research, 
including more complex task representations, should further help to uncover the 
opportunities and practical applicability in the field.

Our findings are in line with previous reports that eye tracking seems to have the 
potential to capture the temporal features of gaze behaviour (e.g. Niehorster et al., 
2020; Rudi et al., 2020). However, gaze behaviour patterns are not yet systematically 
used in pilot training, and when they are used, they are often analysed after the train-
ing, resulting in delayed feedback. Although the importance of immediate feedback 
has been recognised (Lefrançois et  al., 2021), steps remain to be taken to enable 
more immediate feedback to learners in a simulation environment. Furthermore, 
the manual analysis of eye-tracking data is resource-intensive. Our study is one step 
towards integrating eye tracking with analytics technology in the future, in order to 
enhance learning and support the development of adaptive learning systems (Tsai 
et al., 2022). In particular, there is an increasing trend in educational Artificial Intel-
ligence (AI) to identify resources and pedagogical approaches that are considered 
appropriate for learners’ needs and can predict potential outcomes and recommend 
the next steps of the learning process for them (e.g. Zhang & Aslan, 2021).

Despite acknowledged challenges (Mengtao et al., 2023), HMMs will contribute 
to real-time analysis (e.g. as in speech recognition) or very close to real-time analy-
sis. The results of this study can be used to provide immediate feedback on gaze 
behaviour to learners immediately after they finish their landing scenarios. How-
ever, the results can also be used to support future developments in pilot training. 
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In this respect, combining real-time eye-tracking data with HMMs and AI-based 
estimations of the number of states to be expected might allow the provision of real-
time on-the-fly information regarding how pilots are scanning the visual informa-
tion. This could inform not only instructors by providing just-in-time feedback but 
also the flight simulator software itself, enabling it to provide more personalised 
adapted feedback, which may lead to more effective training approaches. In prac-
tice, this would mean that the model would first be trained on previous experiments 
(this gives us the estimates for the model parameters, i.e. the transition and emission 
probabilities), and then we could feed data on new individuals into the HMM and 
get so-called online predictions of the current state (as well as correct our previous 
predictions, if necessary).

From a pedagogical perspective, pilots’ visual scanning is an integral part of their 
expertise development (Lu et al., 2020; Ziv, 2016), thus making it crucial for pilot 
training. This study presented the results in easily comprehensible graphs that could 
be displayed on dashboard-type instruments in the future, making the information 
useful for human (e.g. instructors or pilots) interpretation. These types of graphs 
could be built into a dashboard to inform instructors about the overall and individual 
performance of their trainees. A practical implication is that we could automati-
cally provide instructors with information about the performance of their trainees 
by providing an overall view of the full group (see e.g. the heatmap in Fig. 10) as 
well as more detailed information (see e.g. individuals in Appendix Fig. 11). More 
generally, our results could support professional learning and expertise development 
in visual-intensive professions, in which decisions are based on visual information 
indicators (Gegenfurtner et al., 2022; Jossberger, 2022).

It seems clear that eye tracking could be useful in all professional learning and 
expertise development settings in which there is a need to ensure that learners are 
focusing on the right information at the right time. Despite this potential, pilot edu-
cation has been primarily based on a minimum number of hours of flying. At the 
same time, there is increasing interest in how eye tracking can be applied in pilot 
education (see Lefrançois et  al., 2021; Niehorster et  al., 2020). For example, Ziv 
(2016) illustrated that experienced pilots frequently looked at flight instruments 
but did not focus on each instrument for too long. Sullivan et al. (2011) found that 
gaze parameters and scan management skills were associated with pilots’ total flight 
hours and that experienced pilots shifted their gaze between the map display and 
OTW more often than novices. Regarding visual expertise, we would like to high-
light that one specific area of interest has been overlooked – what is excluded (i.e. 
what is not looked at) can have just as much of an impact on professional perfor-
mance as what is looked at. For example, in the case of pilots’ professional learn-
ing and expertise development, analysing eye movements may be particularly useful 
for detecting when learners do not pay attention to the right place at the right time. 
Eye-tracking technology can support the development of more personalised training 



1 3

Education and Information Technologies	

programmes and enable pilot trainers to adjust their teaching approaches by identi-
fying areas in which learners struggle or lack attention (see also Niehorster et al., 
2020).

4.1 � Limitations and strengths

First, all limitations of the case-study approach should be kept in mind, as the 
research is exploratory and limited by the sample size. Namely, a small sample size 
may not fully encompass all the different factors that impact pilots’ visual attention 
during training, such as their level of experience, the type of aircraft they are fly-
ing, or the environmental conditions. Second, in educational settings, many open 
challenges still exist related to data, analytical methods, and educational practices 
(Wang et al., 2021). Third, regarding automatic analysis, the model was not always 
completely right. For example, the first landing of pilot ID08 showed accurate and 
consistent visual scanning behaviour, but the HMM indicated that visual scanning 
happened only partially, complementing the descriptive results. Fourth, we used 
HMMs in an offline way (after data collection and AOI extraction). While HMMs, 
in general, can be applied for online (real-time) prediction problems as well, future 
research is needed to examine how HMMs and other machine learning methods 
could be used efficiently for processing gaze data in real time. Fifth, statistical meth-
ods assessing the accuracy and uncertainty of the output of HMMs should be fur-
ther studied, especially in the case of real-time automatic analysis. This is challeng-
ing because we do not know the ground truth (when the pilot switch between the 
scanning stages), but the robustness and stability of the HMM parameter estimates 
with respect to different but comparable datasets could be studied with additional 
data sources. Sixth, in authentic situations, two pilots are flying an aircraft, as flying 
involves numerous tasks, including navigation, monitoring and managing avionics 
and systems, and making critical decisions. Please note that in this study, we focused 
only on one of the pilots. In the future, the approach presented in this research needs 
to be extended to examine the interaction and collaborative sensing of the pilot-in-
flying and co-pilot using dual eye tracking.

Despite the acknowledged limitations, our study has several strengths. The sam-
ple is unique, including professional pilots flying in an authentic full-flight simula-
tor. The study is located at the frontline of empirical studies in professional learning 
focusing on if and how pilots are visually scanning the indicators during challenging 
landing scenarios. Information about visual expertise is also critical in other vision-
intensive professional learning situations where actions need to be taken based on 
the visual information obtained. Several recent studies have indicated this need, for 
example, surgeons need to perform surgeries accurately based on visual informa-
tion, teachers need to capture visual information about the classroom during scaf-
folding etc. (Haataja et. al., 2019; Jarodzka et al., 2021). Our results regarding the 
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HMM may be helpful for including AI in teaching–learning processes. Finally, 
this study was conducted in a multidisciplinary context, involving researchers and 
experts from different fields. Whereas educational researchers (Authors 1, 2, 6, and 
7) specialise in evaluating learning processes with multimodal data in technology-
enhanced learning settings, the researcher’s expertise in aviation (Author 5) brought 
in the necessary information about the specific context. The role of the two research-
ers specialising in educational technology (Authors 4, 9) focused on the simulation 
environment itself and how to collect and analyse multimodal data on learning pat-
terns and behaviours. Finally, the statistics researchers (Authors 3, 8) had specific 
methodological expertise, especially with regard to HMM models. Thus, although 
the data may seem limited in terms of the number of participants, data collected 
through eye-tracking classes can be efficiently and reliably analysed with statistical 
methods.

4.2 � Conclusions

Simulations play a critical role in modern aviation training, ensuring that pilots are 
well prepared to handle a wide range of scenarios safely and effectively. So far, in 
authentic flight simulators, instructors have been located behind the learner and thus 
unable to see what the pilot is looking at and focusing attention on. Using eye track-
ing allowed us to analyse gaze paths to determine how the pilots were observing 
their working environment. This study demonstrated that pilots’ visual scanning 
behaviour during landing can be successfully detected using eye tracking and mod-
elled utilising HMMs. Automated analysis of gaze behaviour is a prerequisite for 
adaptive learning systems capable of providing individualised learning support. It 
could be particularly useful for the future development of flight simulator software. 
Automatic detection of whether professionals are looking at the right place at the 
right time could provide immediate feedback to instructors and pilots during flights. 
Then, based on this information, flight simulators would be able to detect subopti-
mal visual scanning behaviour, indicate essential attention points during the landing 
scenario, and instruct pilots on where to look and how to proceed. Overall, descrip-
tive statistics and HMMs appear to complement each other. In the future, the HMM 
approach could be used as a basis for identifying the best scanning strategies and 
developing tools that provide automated information and feedback on specific pilot 
competencies to cadets and flying instructors. Providing individual feedback in real 
time could allow pilots to assess and correct their operations during the learning 
process.
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Appendix 1 Please see Fig. 11.

Fig. 11   Figures of the landings without HMM
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Appendix 2

Appendix 2. represents the individual results for each pilot based of the HMM. The 
grey areas indicate temporally where the model defines the scanning sequence to 
happen. In general, HMM results are aligned with the descriptive statistics and indi-
cate accuracy and consistency of visual scanning. Please see Fig. 12.

Fig. 12   Figures of the landings with HMM
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Appendix 3 Please see Table 1.
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