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ON THE DISCRETISED ABC SUM-PRODUCT PROBLEM

TUOMAS ORPONEN

ABSTRACT. Let 0 ă β ď α ă 1 and κ ą 0. I prove that there exists η ą 0 such that the
following holds for every pair of Borel sets A,B Ă R with dimH A “ α and dimH B “ β:

dimHtc P R : dimHpA ` cBq ď α ` ηu ď α´β

1´β
` κ.

This extends a result of Bourgain from 2010, which contained the case α “ β. The paper
also contains a δ-discretised, and somewhat stronger, version of the estimate above, and
new information on the size of long sums of the form a1B ` . . . ` anB.
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1. INTRODUCTION

Let A,B,C Ă R be large but finite sets. Is it true that there exists some c P C such that
|A ` cB| " |A|? Here | ¨ | refers to cardinality. Not necessarily: consider for example

An “
!

1
n1{2 ,

2
n1{2 , . . . , 1

)

and Bn “
!

1
n1{4 ,

2
n1{4 , . . . , 1

)

“ Cn. (1.1)

It is not hard to check that for every ǫ ą 0, there exists n P N such that |An ` BnCn| ď
nǫ|A|, so in particular |An ` cBn| ď nǫ|A| for all c P Cn. The problem can be fixed by
adding one assumption: |B||C| " |A|. Then, a positive answer to the question follows
easily from the Szemerédi-Trotter theorem [39] applied to the planar set A ˆ B. The
requirement |B||C| " |A| is also necessary, as one can see by variants of (1.1).

The ABC sum-product problem, stated above, also makes sense in contexts where
the Szemerédi-Trotter bound is not available, for example if A,B,C Ă Zp, and p P N

is prime. Again, it turns out that the lower bound |B||C| " |A| yields the existence of
c P C with |A ` cB| " |A|. One way to show this is to adapt elementary techniques of
Garaev [11], Glibichuk and Konyagin [12], and Bourgain [4]. The details can be found in
[29]. Another way is to apply directly an incidence bound in finite fields due to Stevens
and de Zeeuw [38]. The theorem of Stevens and de Zeeuw gives a stronger lower bound
for |A ` cB| than the elementary approach (see [29, Proposition 1.3] for the details), but
ultimately relies on the polynomial method.

The purpose of this paper is to consider the δ-discretised ABC sum-product problem in
R, and lower bounds for dimHpA ` cBq, the Hausdorff dimension of A ` cB. The δ-
discretised problem is otherwise the same as the question we started with, but instead
of counting the cardinality |A ` cB|, we seek lower bounds for the δ-covering number
|A ` cB|δ for some small scale δ ą 0. We will also assume that the sets A,B,C are δ-
separated, and have cardinalities |A| “ δ´α, |B| “ δ´β , and |C| “ δ´γ . In this variant of
the problem, hypotheses on |B||C| need to be coupled with additional non-concentration
conditions to hope for positive results. The following theorem of Bourgain [5] from 2010
(extending his own work [2] from 2003) treats the case A “ B:

Theorem 1.2 (Bourgain). Given α P p0, 1q and γ, κ ą 0, there exist ǫ0, ǫ ą 0 such that that the
following holds for δ ą 0 sufficiently small.

Let ν be a probability measure on r0, 1s satisfying νpBpx, rqq ď rγ for all x P R and 0 ă
r ď δǫ0 . Let additionally A Ă r0, 1s be a δ-separated set with |A| ě δ´α, which also satisfies the
non-concentration condition |A X Bpx, rq| ď rκ|A| for x P R and δ ď r ď δǫ0 .



ON THE DISCRETISED ABC SUM-PRODUCT PROBLEM 3

Then, there exists a point c P sptpνq such that

|A ` cA|δ ě δ´α´ǫ. (1.3)

Remark 1.4. Bourgain’s theorem admits the following stronger version, which, to the best
of my knowledge, was first stated and proved by He [17, Theorem 1] (see also [5, (7.43),
p. 221] for a slightly weaker result): under the assumptions of Theorem 1.2, there exists
a point c P sptpνq such that |πcpGq|δ ě δ´α´ǫ for all subsets G Ă A ˆ A of cardinality
|G| ě δǫ|A|2. Here πcpx, yq “ x ` cy. This version is useful for proving lower bounds
for dimHpA ` cAq. Bourgain also proved such lower bounds in [5, Theorem 4] without
explicitly mentioning the stronger version of Theorem 1.2: while his proof is correct,
it requires some care from the reader to extract all the details. Applying the stronger
version directly is simpler, see [17, Theorem 2].

To see the connection between Theorem 1.2 and the ABC problem, let C Ă r0, 1s be
a δ-separated set satisfying |C X Bpx, rq| ď rγ |C| for all x P R and δ ď r ď δǫ0 . Then
the uniformly distributed probability measure ν on the δ-neighbourhood of C satisfies
νpBpx, rqq . rγ , and it follows from (1.3) that there exists c P C with |A ` cA|δ ě δ´α´ǫ.

Theorem 1.2 formally only treats the case A “ B, but an inspection of its proof (or,
more directly, an application of [5, Theorem 3]), reveals that the result remains valid for
two different δ-separated sets A,B Ă r0, 1s, provided that |A| “ |B|, or at least |B| « |A|.
The precise meaning of "«" is defined via the various constants appearing in [5, Theorem
3]. To the best of my knowledge, Theorem 1.2 does not cover the case where |A| “ δ´α

and |B| “ δ´β with β ă α (the case β ą α is not relevant here: then |A` cB|δ & |B| " |A|
for any c P R with |c| „ 1).

The following conjecture would correspond to the assumption |B||C| " |A| which
suffices in the discrete variants (on R and Zp) of the ABC sum-product problem:

Conjecture 1.5. Let α, β, γ P p0, 1q with β ď α and γ ą α ´ β. Assume that A,B,C Ă r0, 1s
are δ-separated sets with cardinalities |A| ď δ´α, |B| “ δ´β , and |C| “ δ´γ . Assume moreover
that |B X Bpx, rq| . rβ|B| and |C X Bpx, rq| . rγ |C| for all x P R and r ą 0. Then, there
exists ǫ “ ǫpα, β, γq ą 0 and a point c P C such that |A ` cB|δ &α,β,γ δ´ǫ|A|.

The lower bound for γ in Conjecture 1.5 is necessary, but the non-concentration as-
sumptions on B and C are quite likely not sharp. The main result of this paper is the fol-
lowing partial result, where the lower bound γ ą α´β is upgraded to γ ą pα´βq{p1´βq:

Theorem 1.6. Let 0 ă β ď α ă 1 and κ ą 0. Then, for every γ P ppα ´ βq{p1 ´ βq, 1s, there
exist ǫ0, ǫ, δ0 P p0, 1

2
s, depending only on α, β, γ, κ, such that the following holds. Let δ P 2´N

with δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s satisfy the following hypotheses:

(A) |A| ď δ´α.
(B) |B| ě δ´β , and B satisfies the following Frostman condition:

|B X Bpx, rq| ď rκ|B|, δ ď r ď δǫ0 .

Further, let ν be a Borel probability measure with sptpνq Ă r1
2
, 1s, and satisfying the Frostman

condition νpBpx, rqq ď rγ for x P R and 0 ă r ď δǫ0 . Then, there exists a point c P sptpνq such
that the following holds: if G Ă A ˆ B is any subset with |G| ě δǫ|A||B|, then

|πcpGq|δ ě δ´ǫ|A|, where πcpx, yq “ x ` cy.
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Theorem 1.6 with α “ β recovers Theorem 1.2, and the stronger version in Remark 1.4.
In fact, Theorem 1.6 is formally stronger than Theorem 1.2, since Theorem 1.6 does not
impose any non-concentration conditions on A. This is useful in proving Corollary 1.11
below. Theorem 1.6 easily yields the following corollary for Hausdorff dimension:

Corollary 1.7. Let 0 ă β ď α ă 1 and κ ą 0. Then, there exists η “ ηpα, β, κq ą 0 such that
if A,B Ă R are Borel sets with dimH A “ α, dimH B “ β, then

dimHtc P R : dimHpA ` cBq ď α ` ηu ď α´β
1´β

` κ.

The case α “ β is already contained in Bourgain’s paper [5]. The reduction from
Theorem 1.6 to Theorem 1.7 is a standard pigeonholing argument, and goes the same
way as the proof of [17, Theorem 2]. For completeness, I give the details in Section 5.6. A
"continuous" version of Conjecture 1.5 would imply that the number pα ´ βq{p1 ´ βq in
Corollary 1.7 can be replaced by α ´ β.

The lower bound on |πcpGq|δ in Theorem 1.6 is indispensable for deducing Corollary
1.7, but makes Theorem 1.6 difficult to prove with a direct assault. Instead, Theorem 1.6
will be formally reduced to the following simpler version, which only treats G “ A ˆ B:

Theorem 1.8. Let 0 ă β ď α ă 1 and κ ą 0. Then, for every γ P ppα ´ βq{p1 ´ βq, 1s, there
exist ǫ, ǫ0, δ0 P p0, 1

2
s, depending only on α, β, γ, κ, such that the following holds. Let δ P 2´N

with δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s satisfy the following hypotheses:

(A) |A| ď δ´α.
(B) |B| ě δ´β , and B satisfies the following Frostman condition:

|B X Bpx, rq| ď rκ|B|, δ ď r ď δǫ0 .

Further, let ν be a Borel probability measure with sptpνq Ă r0, 1s, satisfying the Frostman condi-
tion νpBpx, rqq ď rγ for x P R and δ ď r ď δǫ0 . Then, there exists c P sptpνq such that

|A ` cB|δ ě δ´ǫ|A|.
Theorem 1.8 is the heart of the paper, but as far as I know, it is also news that Theorem

1.6 can be literally reduced to Theorem 1.8. This takes some work, but is mostly a matter
of "standard techniques" in additive combinatorics. Since these details can be carried out
without reference to the rest of the paper, they are postponed to Section 5.1.

Remark 1.9. As written above, Theorem 1.6 is deduced from Theorem 1.8 in Section 5.1. A
variant of this problem is the following. Assume that we want to prove Theorem 1.6 with
a fixed non-concentration exponent "κ". Can we deduce it from the version of Theorem
1.8 with the same κ? The answer is "almost": it turns out that in order to deduce Theorem
1.6 for a fixed non-concentration exponent κ ą 0, we only need to invoke Theorem 1.6
with non-concentration exponent κ̄ P p0, κq arbitrarily close to κ: however, the values of
the constants ǫ, δ0 produced by the argument will tend to 0 as κ̄ Õ κ. The reductions
in Section 5.1 will be written in such a way that this claim becomes apparent – and the
matter will be further refreshed in Remarks 5.11, 5.37, and 5.57.

1.1. Related work. A relevant piece of recent literature is the paper of Guth, Katz, and
Zahl [13], where the authors extend an argument (due to Garaev [11]) from finite fields
to give a new, relatively simple, proof of Bourgain’s Theorem 1.2. Given that the Zp

analogue of Conjecture 1.5 is known [29], it may be plausible that Conjecture 1.5 can be
solved by extending the Zp argument in the fashion of Guth, Katz, and Zahl. I was not
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able to carry this out, and here is why. The proof in [29] is chiefly based on the following
lemma: if A,B Ă Zp are sets with |A| “ pα and |B| “ pβ , then for every η ą 0 there exists
an integer n “ npα, β, ηq P N, and choices a1, . . . , an P ˘A such that

|a1B ` . . . ` anB| & p´η mint|A||B|, pu. (1.10)

I was not able to extend the finite field techniques in [29] to (directly) prove a δ-discretised
analogue of (1.10). However, once Theorem 1.8 is known, it can be applied to make
partial progress towards a δ-discretised analogue of (1.10) (a sharper result would follow
from Conjecture 1.5 in the same way):

Corollary 1.11. Let β, γ P p0, 1q and 0 ă η ă γp1´βq. Then, there exists ǫ0, δ0 ą 0 and n P N,
depending on β, γ, η, such that the following holds for all δ P p0, δ0s. Let B,C Ă pδ ¨ Zq X r0, 1s
be non-empty sets satisfying

|B X Bpx, rq| ď rβ|B| and |C X Bpx, rq| ď rγ |C| (1.12)

for x P R and δ ď r ď δǫ0 . Then, there exist points c1, . . . , cn P C such that

|c1B ` . . . ` cnB|δ ě δ´γ´βp1´γq`η “ δ´β´γp1´βq`η .

Remark 1.13. A classical projection theorem of Kaufman [20] implies the existence of c P C

such that |B ` cB|δ ' maxtδ´β , δ´γu. For γ ą β, a recent sharpening of Kaufman’s
theorem by the author and Shmerkin [28] even yields |B ` cB|δ ě δ´γ´η for some η “
ηpβ, γq ą 0, and for δ ą 0 small enough (to be clear, this statement is only a corollary
of the main result in [28]). In comparison, Corollary 1.11 gives a far more substantial
improvement, but at the cost of adding the number of summands. I give the simple
proof straight away.

Proof of Corollary 1.11. Start by applying Theorem 1.8 with

α :“ β ` γp1 ´ βq ´ η P pβ, 1q, β, κ :“ β, and γ.

Note that γ ą pα´βq{p1´βq, so the parameters are admissible. Let ǫ, ǫ0, δ0 P p0, 1
2
s be the

constants given by Theorem 1.8 with α, β, γ, κ. Let ν :“ |C|´1 ¨ H0|C be the normalised
counting measure on C , which satisfies the Frostman condition νpBpx, rqq ď rγ for all
x P R and δ ď r ď δǫ0 by (1.12). We also note that |B| ě δ´β by (1.12) applied with r “ δ,
and B satisfies the κ “ β-dimensional Frostman condition required in Theorem 1.8.

We construct a sequence of sets Hn Ă δ ¨Z, n P N, with the following greedy algorithm.
We first define H1 :“ pc1Bqδ arbitrarily, where Aδ :“ pδ ¨Zq XApδq. Then, we assume that
Hn has already been defined for some n ě 1, and we let

Hn`1 :“ Hn ` pcn`1Bqδ Ă δ ¨ Z,
where cn`1 P C maximises |Hn`cB|δ among all choices c P C . We observe (by induction)
that Hn Ă pδ ¨Zq X r0, ns, so |Hn| ď nδ´1. For arbitrary N P N with N ě 2, it follows from
the pigeonhole principle that there exists n P t1, . . . , N ´ 1u such that

|Hn`1| ď 2pNδ´1q1{pN´1q|Hn| ď 4δ´1{pN´1q|Hn|. (1.14)

Indeed, if the first inequality failed for every n P t1, . . . , N ´ 1u, then

|HN | ą 2pNδ´1q1{pN´1q|HN´1| ą . . . ą 2N´1pNδ´1qpN´1q{pN´1q|H1| ě 2N´1Nδ´1,
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contradicting that HN Ă pδ ¨ Zq X r0, N s. By definition of Hn`1, (1.14) implies

|Hn ` cB|δ . |Hn`1| ď 4δ´1{pN´1q|Hn|, c P C. (1.15)

We now choose N P N so large that 4δ´1{pN´1q ď δ´ǫ{2, where ǫ “ ǫpα, β, γq ą 0 was
one of the constants produced by Theorem 1.8. Since B and ν satisfy the hypotheses of
Theorem 1.8, we see from (1.15) that A :“ Hn must fail the hypotheses. However, the
only hypotheses on A in Theorem 1.8 are

A Ă pδ ¨ Zq X r0, 1s and |A| ď δ´α.

Of course Hn Ć r0, 1s, but this is not really relevant: we may find k P t0, . . . , n ´ 1u such
that |Hn X rk, k ` 1s| ě 1

N
|Hn|. Now, defining instead A :“ pHn X rk, k ` 1sq ´ tku, we

have A Ă pδ ¨ Zq X r0, 1s, and |A ` cB|δ ď δ´ǫ{2|Hn| ď δ´ǫ|A| by (1.15), for δ ą 0 so small
that δ´ǫ{2 ě N . This violates Theorem 1.8, unless

|Hn| ě |A| ą δ´α “ δ´β´γp1´βq`η ,

and this is what the corollary claimed. �

The ABC sum-product problem is, of course, related to the highly active area of sum-
product theory. The main open question is the Erdős-Szemerédi sum-product conjecture
[8]: if A Ă R or A Ă Zp is a finite set (p P N is prime), the E-S conjecture asks to prove
that

maxt|A ` A|, |A ¨ A|u &ǫ |A|2´ǫ, ǫ ą 0.

The research around this problem is too active to survey here: I only mention the papers
[32] of Rudnev-Stevens and [24] of Mohammadi-Stevens for some current world records,
and further references. For results on the the δ-discretised variant of the Erdős-Szemerédi
problem, see [13] by Guth-Katz-Zahl, and [7] by Dąbrowski, the author, and Villa.

Bourgain’s δ-discretised sum-product estimate, Theorem 1.2, has been extended in
various ways beyond the real line. For example, He [17] found a version of the the-
orem in R

n. Closely related are also the works [3, 6] by Bourgain-Gamburd, [16] by
He, [18] by He-de Saxcé, [1] by Benoist-de Saxcé, and [21] by Li. These papers con-
tain δ-discretised sum-product or product theorems in various Lie groups. Viewing the
δ-discretised ABC sum-product problem as a special case of a δ-discretised incidence
problem between points and δ-tubes in R

2, the papers [10, 14] are also relevant.
Theorems 1.2 and 1.8 can be viewed as statements concerning linear projections of

planar sets, as discussed more in the next subsection. Starting with this interpretation,
one may ask if analogous statements hold for non-linear projections. Examples of par-
ticular interest are the pinned distance projections △xpyq “ |x ´ y| and the radial projections
πxpyq “ px ´ yq{|x ´ y|. Again, the literature is too broad for a survey, but see the re-
cent papers [36] by Shmerkin, [37] by Shmerkin-Wang, and [31] by Raz-Zahl for recent
exciting developments and more references.

Finally, Conjecture 1.5 was recently solved by the author [27] for Ahlfors-regular sets
A,B Ă r0, 1s. In fact, a much stronger result can be obtained for such sets. Let α, β P
p0, 1q. Assume that A,B Ă R are closed sets, A is α-Ahlfors-regular and B is β-Ahlfors-
regular. Then

dimHtc P R : dimpA ` cBq ă α ` ηu “ 0

for η :“ βp1 ´ αq{p2 ´ αq ą 0. (The paper [27] also contains a δ-discretised version.)
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1.2. Comparison to classical projection theorems. A popular topic in fractal geometry
is to study the orthogonal projections of subsets of Rd. In this section we will see what
"classical" projection theorems in fractal geometry have to say about the size of A ` cB.

For e P S1, let πe : R2 Ñ spanpeq be the orthogonal projection. A theorem of Kaufman
[20] from 1968, sharpening a seminal result of Marstrand [22], states the following: if
K Ă R

2 is a compact set with dimension dimH K “ t, then

ΣpK, sq :“ dimHte P S1 : dimH πepKq ď su ď s, 0 ď s ă t. (1.16)

Another classical estimate, due Peres-Schlag [30] but building on a Fourier-analytic tech-
nique introduced by Falconer [9], shows that

ΣpK, sq ď maxt1 ` s ´ t, 0u, 0 ď s ď t. (1.17)

A folklore conjecture (made explicit in [25]) proposes to improve (1.16)-(1.17) to ΣpK, sq ď
maxt2s ´ t, 0u for 0 ď s ă t. Bourgain [5] showed that ΣpK, sq Ñ 0 as s Ñ t{2, which
supports the conjecture. A recent preprint [28] of the author and Shmerkin additionally
shows that ΣpK, sq ď s ´ ǫ for some ǫ “ ǫps, tq ą 0, for all 0 ď s ă t.

The connection between orthogonal projections and the A` cB problem is the follow-
ing. Take K “ A ˆ B, where A,B Ă R. Then, for e P S1 ztp0, 1q, p0,´1qu, the projection
πepKq can, up to rescaling, be rewritten as A ` cB, for a suitable c “ cpeq P R. With this
in mind, the bounds (1.16)-(1.17) can be used to deduce the following.

Let 0 ă β ď α ă 1. Assume that A,B Ă R are Borel sets with dimH A “ α and
dimHB “ β. Then, (1.16)-(1.17) applied with t :“ dimHpA ˆ Bq ě α ` β yield

dimHtc P R : dimHpA ` cBq ď αu ď mintα, 1 ´ βu.
In contrast, letting η Ñ 0 in Corollary 1.7 gives the upper bound pα ´ βq{p1 ´ βq. This
bound is ă α for all α ă 1, and also ă 1 ´ β whenever 0 ă β ď α ă 3

4
. If α ą 3

4
, then the

"1 ´ β" estimate coming from (1.17) is better for some values of β, e.g. β “ 1
2
.

The conjectured bound ΣpK, sq ď maxt2s ´ t, 0u would imply the (Hausdorff dimen-
sion version of) Conjecture 1.5:

dimHtc P R : dimHpA ` cBq ď αu “ ΣpA ˆ B,αq ď maxt2α ´ t, 0u ď α ´ β.

To summarise, Corollary 1.7 is stronger than all previous results in the case K “ A ˆ B

and s “ α “ dimHA ă 3
4
, whereas the conjecture ΣpK, sq ď maxt2s ´ t, 0u is even

stronger than (the Hausdorff dimension version of) Conjecture 1.5.

1.3. Paper outline and proof sketch. The proof of Theorem 1.6 has two distinct compo-
nents: the first one is a reduction to Theorem 3.28, which differs from Theorem 1.6 in the
following aspects: (a) ν satisfies a Frostman condition on all scales δ ď r ď 1, (b) the set
B has small doubling, that is |B ` B| ď δ´ǫ|B|, and (c) the conclusion |πcpGq|δ ě δ´ǫ|A|
is only required for G “ A ˆ B. These reductions are performed in several steps:

Theorem 3.28
§3.3ùñ Theorem 3.15

§3.2ùñ Theorem 3.1

§3.1ùñ Theorem 1.8
§5.4ùñ Theorem 5.4

§5.3ùñ Theorem 5.3
§5.5ùñ Theorem 1.6.
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The outline of the paper is that the reduction from Theorem 1.8 to Theorem 3.28 is per-
formed first, then Theorem 3.28 is proved with a direct argument, and finally Theorem
1.6 is reduced to Theorem 1.8 in Section 5.1.

The additional assumptions (a)-(c) in Theorem 3.28 are technically important. How-
ever, at the current level of discussion, all the theorems above are indistinguishable. So,
for example, the reader may think that the following outline concerns the proof of Theo-
rem 1.8, which has the simplest statement.

For the sake of exposition, I make the following additional assumptions on A and B.
Both sets have a "tree" (or "Cantor set") structure: for a suitable parameter m P N, each
dyadic interval I P Dms intersecting A contains exactly RApsq sub-intervals in Dmps`1q

which intersect A. The same is assumed of B. The numbers RApsq and RBpsq are known
as the branching numbers of A and B, respectively. Assume that the scale parameter δ ą 0

has the special form δ “ 2´mN for some N P N (thus RApsq “ 1 “ RBpsq for s ě N , since
A,B were assumed to be δ-separated). We make even more assumptions:

(P1) For every s P N, either RBpsq “ 1 or RApsq “ 2m.
(P2) |B| “ δ´β , and for every s P N, either RBpsq “ 1 or RBpsq “ 2m.

Property (P2) needs the small doubling assumption |B`B| ď δ´ǫ|B|. Now, as we will see
in a moment, the key question turns out to be: given a scale s P N with RBpsq “ 1, what
upper bound can we guarantee for RApsq? It turns out that we can easily use (P1)-(P2) to
deduce an answer.

Assume that RApsq ě 2Γm for all s P t0, . . . , N ´ 1u “: rN s with RBpsq “ 1. Write
N :“ ts P rN s : RBpsq “ 1u, and note that RApsq “ 2m for all s P rN s zN by assumption
(P1). Now, we may calculate a lower bound on the cardinality of A as follows:

2αmN ě |A| “
ź

sPrNs

RApsq “
ź

sPrNs zN

RApsq ¨
ź

sPN

RApsq ě 2mpN´|N |q ¨ 2Γm|N |. (1.18)

On the other hand, by assumption (P2), we have

2βmN “ |B| “
ź

sPrNs zN

2m “ 2mpN´|N |q, (1.19)

so may solve N ´ |N | “ βN and |N | “ p1 ´ βqN . Plugging this information into (1.18)
yields Γ ď pα ´ βq{p1 ´ βq. This is where the numerology in Theorem 1.8 comes from.
Namely, the argument above shows that if Γ ą pα ´ βq{p1 ´ βq, then there exists at least
one scale s P rN s such that RApsq ď 2Γm. In fact, the same must be true for a positive
fraction of the scales, say G Ă rN s, where |G|{N only depends on Γ ´ pα ´ βq{p1 ´ βq.

After this observation, we focus attention separately on pieces of A ˆ B of the form
pAXIqˆpBXJq, where I, J P Dms are intervals intersecting A,B, respectively, and s P G.
By definition, |AXI|mps`1q “ RApsq ď 2Γm for some Γ slightly larger than pα´βq{p1´βq.
To be precise, we choose pα´βq{p1´βq ă Γ ă γ, where γ is the Frostman exponent of the
measure ν in Theorem 1.8. If we additionally knew that |B X J |2´mps`1q “ RBpsq ě 2ǫm

for some ǫ ą 0, and the points in B X J are well enough separated, we could at this
point use an elementary argument (essentially the "potential theoretic method" due to
Kaufman [20]) to deduce that

|pA X Iq ` cpB X Jq|2´mps`1q ě 2ǫm|A X I|2´mps`1q (1.20)
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for a generic choice c P C “ sptpνq. This argument is crucially based on γ ą Γ, see
Lemma 4.43 for the details. After this, summing up the increments (1.20) for all s P G

would complete the proof of Theorem 1.8.
A major problem is that, as a matter of fact, |B X J |2´mps`1q “ RBpsq “ 1 for all s P G.

This follows from our assumption (P1), since RApsq ď 2Γm ă 2m for all s P G. To solve
the problem, we follow Bourgain’s proof of Theorem 1.2 rather faithfully: instead of
considering individual scales s P rN s, we recombine consecutive elements of rN s into
longer intervals I Ă rN s where the branching of B is small but non-trivial, say RBpIq “
2ǫm|I|. Then, we carry out calculations similar to the ones we saw at (1.18)-(1.19) to make
sure that also RApIq ď 2Γm|I| for a subset of these intervals I with substantial total
length. At the end of the day, the intervals I with RBpIq “ 2ǫm|I| and RApIq ď 2Γm|I|,
will actually play the role we had written for the scales G in the discussion above.

There are numerous places in the arguments below where I either follow Bourgain’s
argument for the case A “ B, or at least draw heavy inspiration from such an argument.
Bourgain’s influence on this paper will be treated as an absolute constant, and not spelled
out every time separately.

1.4. Acknowledgements. I would like to thank Pablo Shmerkin for clarifying a point
about applying his inverse theorem [34, Theorem 2.1], see Remark 4.7. I’m also grateful to
the reviewer for reading the manuscript carefully and making many helpful suggestions.

2. NOTATION AND PRELIMINARIES

2.1. Dyadic cubes and covering numbers. Let Dn be the family of dyadic cubes in R
d

with side-length 2´n. We will only use this notation for n ě 0. For Q “ x`r0, 2´nqd P Dn,
we associate the affine map TQpyq :“ 2npy ´ xq, which rescales Q to r0, 1qd.

If µ is a Borel measure on R
d, and E Ă R

d is a Borel set with µpEq ą 0, we write
µE :“ µpEq´1µ|E for the renormalised restriction of µ to E. This notation is most commonly
used in the case E “ Q P Dn. In this special case, we additionally define the notation

µQ :“ TQµQ.

Here fνpHq :“ νpf´1Hq refers, in general, to the push-forward of a measure ν under a
map f . For a dyadic rational r “ 2´n, and a bounded set A Ă R

d, we write |A|r for the
least number of cubes in Dn required to cover A (in the introduction, we used the same
notation for the r-covering number, which is comparable up to a multiplicative constant).
We will also write Aprq for the open r-neighbourhood of A, and

Ar “ pr ¨ Zq X Aprq.

Finally, for n P N, n ě 1, we abbreviate rns :“ t0, . . . , n ´ 1u.

2.2. Entropy. If pΩ, µq is a probability space, and F is a countable µ-measurable partition
of Ω, we denote the F-entropy of µ by

Hpµ,Fq :“
ÿ

FPF

µpF q log 1
µpF q ,
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with the convention 0 ¨ log 0 “ 0. If E ,F are two countable partitions, we denote the
conditional F-entropy of µ relative to E by

Hpµ,F | Eq :“
ÿ

EPE

µpEqHpµE ,Fq. (2.1)

If F refines E (each element of E can be written as a disjoint union of elements of F), the
conditional entropy can be alternatively written as

Hpµ,F | Eq “ Hpµ,Fq ´ Hpµ, Eq. (2.2)

For a proof, see [26, Proposition 3.3]. In practice, we will only be concerned with Dn-
entropies of compactly supported Borel probability measures on R

d, where Dn is the
partition of Rd into dyadic cubes of side-length 2´n. In this special case Dn`1 always
refines Dn, so the formula (2.2) is available. We record the following simple lemma,
whose proof is a combination of [26, Lemma 3.5] and [26, Remark 3.6]:

Lemma 2.3. Let µ be a Borel probability measure on R
d, and let π : Rd Ñ R

D be linear. Let
n P N, and let 0 “ n0 ă n1 ă . . . ă nh “ n be an arbitrary partition of t0, . . . , nu. Then,

Hpπµ,Dnq ě
h´1
ÿ

j“0

ÿ

QPDnj

µpQq ¨ HpπµQ,Dnj`1´nj
| D0q.

The inner summation only runs over those Q P Dnj
with µpQq ą 0.

A basic fact about entropy (which follows from Jensen’s inequality) is that

|tF P F : µpF q ą 0u| ď N ùñ Hpµ,Fq ď logN.

In particular, if π : Rd Ñ R
D is L-Lipschitz in Lemma 2.3, then

HpπµQ,Dnj`1´nj
| D0q “ HpπµQ,Dnj`1´nj

q ´ HpπµQ,D0q ě HpπµQ,Dnj`1´nj
q ´ CL,

where C ě 1 only depends on d,D. Therefore, the lower bound of Lemma 2.3 can be
upgraded to

Hpπµ,Dnq ě

¨

˝

h´1
ÿ

j“0

ÿ

QPDnj

µpQq ¨ HpπµQ,Dnj`1´nj
q

˛

‚´ h ¨ CL. (2.4)

We mention two further useful fact about entropy: first, if E ,F are two countable µ-
measurable partitions such that

|tF P F : F X E0u| ď N and |tE P E : E X F0u| ď N

for all E0 P E and F0 P F , then |Hpµ, Eq ´ Hpµ,Fq| ď logN . Second, entropy (and also
conditional entropy) is concave. We will use the convexity of entropy in the following
form: if µ, ν are two Borel probability measures on R

d, then

Hpµ ˚ ν,Dnq ě
ż

Hpµx,Dnq dνpxq, (2.5)

where µx is the probability measure defined by µxpHq “ µpH ´ xq. Since pµ ˚ νqpHq “
ş

µxpHq dνpxq for all Borel sets H Ă R
d, one may view µ ˚ ν as a convex combination

of the measures µx. Formally, (2.5) is deduced by applying Jensen’s inequality to the
concave function fprq “ r logp1{rq on r0, 1s, and the random variable X : x ÞÑ µxpQq in
the probability space pRd, νq (for fixed Q P Dn).
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3. THREE INITIAL REDUCTIONS

This section contains a reduction of Theorem 1.8 to a special case, where we addition-
ally assume that |B ` B| ď δ´ǫB |B|, and νpBpx, rqq ď 40 ¨ rγ for all x P R and r ě δ (see
Theorem 3.28). It seems difficult to do achieve this reduction in a "single pass": instead,
we add the extra assumptions in two separate steps (Sections 3.1 and 3.2). After these
steps, we arrive at Theorem 3.15, where the assumptions are present, but unfortunately
the conclusion is also a little stronger. Then, the final reduction to Theorem 3.28 "restores"
the weaker conclusion, but maintains the additional assumptions. This is the version of
Theorem 1.8 we will eventually be able to prove directly.

3.1. Reduction to the case where B has small doubling. The purpose of this section
is to reduce the proof of Theorem 1.8 to the following version, where the hypothesis
|B ` B| ď δ´ǫB |B| has been added. This does not come for free: the price to pay is that
the conclusion of Theorem 3.1 is also a little stronger (that is, more difficult to prove).

Theorem 3.1. Let 0 ă β ď α ă 1 and κ ą 0. Then, for every γ P ppα ´ βq{p1 ´ βq, 1s,
there exist ǫ0, ǫ, ǫB , δ0, ρ P p0, 1

2
s, depending only on α, β, γ, κ, such that the following holds. Let

δ P 2´N with δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s satisfy the following hypotheses:

(A) |A| ď δ´α.
(B) |B| ě δ´β , and B satisfies the following Frostman condition:

|B X Bpx, rq| ď rκ|B|, δ ď r ď δǫ0 .

Assume moreover that |B ` B| ď δ´ǫB |B|.
Further, let ν be a Borel probability measure with sptpνq Ă r0, 1s, and satisfying the Frostman
condition νpBpx, rqq ď rγ for x P R and δ ď r ď δǫ0 . Then, there exists a point c P sptpνq such
that |A1 ` cB|δ ě δ´ǫ|A| for all A1 Ă A with |A1| ě p1 ´ ρq|A|.
Remark 3.2. The following concerns Theorem 3.1, and also all other versions of Theorem
1.6 or Theorem 1.8 in this paper: while the results claim the existence of c P sptpνq (with
certain properties), they can be formally upgraded to the existence of c P C , where C Ă R

is an arbitrary δ-dense subset of sptpνq. In particular, any subset C Ă R of full ν measure
will work. The reason is that bounds for |A ` cB|δ (or |A1 ` cB|δ) are invariant, up to a
change in constant factors, if the point c P sptpνq is replaced another point c1 P R with
|c ´ c1| ď δ. I leave further details to the reader.

The proof will use the following version of the Plünnecke-Ruzsa inequality:

Lemma 3.3 (Plünnecke-Ruzsa inequality). Let δ P 2´N, let A,B1, . . . , Bn Ă R be arbitrary
sets, and assume that |A ` Bi|δ ď Ki|A|δ for all 1 ď i ď n, and for some constants Ki ě 1.
Then, for every ǫ ą 0, there exists a subset A1 Ă A with |A1|δ ě p1 ´ ǫq|A|δ such that

|A1 ` B1 ` . . . ` Bn|δ .ǫ,n K1 ¨ ¨ ¨Kn|A1|δ.
This form of the inequality is due to Ruzsa [33]. For a more general result, see [15,

Theorem 1.5], by Gyarmati-Matolcsi-Ruzsa. To be accurate, these statements are not
formulated in terms of δ-covering numbers, but one may consult [13, Corollary 3.4] by
Guth-Katz-Zahl to see how to handle the reduction.

Remark 3.4. In a typical result in this paper, such as Theorem 1.8, we are given a list of
parameters p1, . . . , pm, and we are asked to find positive constants ǫ1, . . . , ǫn which only
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depend on p1, . . . , pm. Additionally, we are given a "known" theorem, such as Theo-
rem 3.1, which outputs positive constants ǭ1, . . . , ǭl given a list of parameters p̄1, . . . , p̄k.
To deduce the "unknown" theorem from the "known" one, the algorithm is always the
same. First, fix the parameters p1, . . . , pm. Second, modify them suitably to produce new
parameters p̄1, . . . , p̄k. Third, apply the "known" theorem with parameters p̄1, . . . , p̄k to
gain access to the constants ǭ1, . . . , ǭl. Since the parameters p̄1, . . . , p̄k were functions of
p1, . . . , pm, so are the constants ǭ1, . . . , ǭl. Therefore, it is legitimate to define the constants
ǫ1, . . . , ǫn, depending on all of the data p1, . . . , pm, p̄1, . . . , p̄k, and ǭ1, . . . , ǭl.

Proof of Theorem 1.8 assuming Theorem 3.1. Letα, β, γ, κ be the constants given in Theorem
1.8. Our task is to find ǫ, ǫ0, δ0 P p0, 1

2
s depending on α, β, γ, κ, such that the claims of

Theorem 1.8 are satisfied. To do this, we fix some β̄ ă β slightly smaller than β so that
still

γ ą pα ´ β̄q{p1 ´ β̄q.
Then, we apply Theorem 3.1 with the parameters α, β̄, γ, κ{4, and first extract the con-
stants ǭ, ǭ0, ǭB , δ̄0, ρ̄ ą 0, depending only on α, β̄, γ, κ{4. Now, we claim that Theorem 1.8
holds with constants

ǫ0 :“ 2
κn

and ǫ :“ 2´n´1ǭ, (3.5)

where
n :“ maxtr2{pκǭ0qs, r2{ǭB su (3.6)

and any δ0 P p0, δ̄0s with the additional requirements

2n`1 ď δ
´ǭB{2
0 and δ

β̄´β
0 ě 2n. (3.7)

The choice of the constants ǫ, ǫ0 does not depend on the parameter ρ̄ ą 0, but at the very
end of the proof (see below (3.14)), there will be an additional requirement for δ0 ą 0,
which depends on n, ρ̄; this is not spelled out explicitly, since the bounds depend on the
implicit – nonetheless effective – constants in Lemma 3.3.

To prove Theorem 1.8, fix δ P p0, δ0s, and assume that A,B Ă pδ ¨ Zq X r0, 1s and ν

satisfy the assumptions of Theorem 1.8 with parameters α, β, γ, κ and ǫ0, as specified
in (3.5). Thus |A| ď δ´α, and |B| ě δ´β , and |B X Bpx, rq| ď rκ|B| for all x P R and
δ ď r ď δǫ0 . We claim that there exists c P sptpνq such that |A ` cB|δ ě δ´ǫ|A|.

Write kB for the k-fold sum B ` . . . ` B. Clearly kB Ă pδ ¨ Zq X r0, ks, so

|kB| ď k ¨ δ´1, k ě 1. (3.8)

We claim that for any n ě 1, there exists 1 ď k ď n such that

|2kB ` 2kB| “ |2k`1B| ď 2δ´1{n|2kB|. (3.9)

Indeed, if this were not the case, then

2nδ´1
(3.8)
ě |2nB| ą 2δ´1{n|2n´1B| ą 4δ´2{n|2n´2B| ą . . . ą 2nδ´n{n|B| ě 2nδ´1,

a contradiction. We then apply this observation with n P N as in (3.6), and we pick
1 ď k ď n such that (3.9) holds. Write B̄ :“ 2kB for this choice of "k", so

|B̄ ` B̄| ď 2δ´1{n|B̄|. (3.10)

Recalling that 1{n ď ǭB{2, this looks promising for the purpose of applying Theorem 3.1
to the pair of sets A and B̄. But does B̄ satisfy a Frostman condition? It turns out that it
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does, with constants "κ{4" and "ǭ0". The following argument is copied from [5, Section
8.2]. Assume, to reach a contradiction, that there exists some dyadic scale

r P rδ, δǭ0 s (3.6)Ă rδ, δ2{pκnqs (3.5)“ rδ, δǫ0 s, (3.11)

and a point a P R, such that |B̄ X Bpa, rq|δ ě C0r
κ{2|B̄| for a suitable absolute constant

C0 ě 1. Now, since r ď δǫ0 , we know by hypothesis that B satisfies |B XBpx, rq| ď rκ for
all x P R. Consequently |B̄|r ě |B|r ě r´κ, and

|B̄ ` B̄|δ & |B̄|r ¨ |B̄ X Bpa, rq|δ
ě C0|B|r ¨ rκ{2|B̄|
ě C0r

´κ ¨ rκ{2|B̄|
ě C0δ

´1{n|B̄|,

using r ď δǭ0 ď δ2{pκnq in the final inequality. If C0 ě 1 was chosen large enough, this
lower bound contradicts the small doubling property (3.10). We conclude that

|B̄ X Bpx, rq| ď C0r
κ{2|B̄|, δ ď r ď δǭ0 . (3.12)

There are also a few smaller issues before we can apply Theorem 3.1 to B̄: evidently
|B̄| ě |B| ě δ´β , but unfortunately B̄ Ă r0, 2ns instead of B̄ Ă r0, 1s. Regardless, there
exists some an interval I0 “ rm,m ` 1s Ă r0, 2ns such that |B̄ X I0| ě |B̄|{2n. We define

B̄m :“ pB̄ X I0q ´ tmu Ă pδ ¨ Zq X r0, 1s,

so |B̄m| ě |B̄|{2n. Then,

|B̄m ` B̄m|
(3.10)
ď 2δ1{n|B̄|

(3.6)´(3.7)
ď δ´ǭB |B̄m| and |B̄m| ě 2´nδ´β

(3.7)
ě δ´β̄ .

Finally,

|B̄m X Bpx, rq|
(3.12)
ď C02

nrκ{2|B̄m|
(3.7)
ď rκ{4|B̄m|, r P rδ, δǭ0 s.

Now we have shown that the triple A, B̄m, ν satisfies all the hypotheses of Theorem 3.1
with parameters α, β̄, γ, κ{4, and ǭ0, ǭB , δ̄0. It follows that there exists c P sptpνq with the
property that if A1 Ă A is any subset with |A1| ě p1 ´ ρ̄q|A|, then

|A1 ` cB̄m|δ ě δ´ǭ|A|. (3.13)

We now claim that |A` cB|δ ě δ´ǫ|A| for this specific c P sptpνq, which will complete the
proof of Theorem 1.8. If this fails, then by the Plünnecke-Ruzsa inequality, Lemma 3.3,
we find a subset A1 Ă A of cardinality |A1| ě p1 ´ ρ̄q|A| such that

|A1 ` cB̄m|δ . |A1 ` cp2kBq|δ .n,ρ̄ δ
´2nǫ|A| (3.5)“ δ´ǭ{2|A|. (3.14)

This contradicts (3.13) for δ ą 0 small enough, depending on n, ρ̄. This contradiction
completes the proof of Theorem 1.8. �
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3.2. Reducing the Frostman constant of ν. Let ν be the measure appearing in the state-
ment of Theorem 1.8 or 3.1. We assumed that νpBpx, rqq ď rγ for all scales δ ď r ď δǫ0 .
We will need, in fact, is that ν satisfies the Frostman condition νpBpx, rqq ď Crγ for all
r ě δ, and with an absolute constant C ě 1. It turns out that this can be achieved, even-
tually with C “ 40. In this section, we reduce the proof of Theorem 3.1 to the following:

Theorem 3.15. Let 0 ă β ď α ă 1 and κ ą 0. Then, for every γ P ppα ´ βq{p1 ´ βq, 1s,
there exist ǫ, ǫ0, ǫB , δ0, ρ P p0, 1

2
s, depending only on α, β, γ, κ, such that the following holds. Let

δ P 2´N with δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s satisfy the following hypotheses:

(A) |A| ď δ´α.
(B) |B| ě δ´β , and B satisfies the following Frostman condition:

|B X Bpx, rq| ď rκ|B|, δ ď r ď δǫ0 .

Assume moreover that |B ` B| ď δ´ǫB |B|.
Further, let ν be a Borel probability measure with sptpνq Ă r´1, 1s which satisfies the Frostman
condition νpBpx, rqq ď 20rγ for x P R and r ě δ. Then, there exists a point c P sptpνq such that

|A1 ` cB|δ ě δ´ǫ|A1|
for all subsets A1 Ă A with |A1| ě p1 ´ ρq|A|.

The proof will require the Plünnecke-Ruzsa inequality, that is Lemma 3.3 in the previ-
ous section, and also the following [40, Exercise 6.5.12] in the book of Tao and Vu:

Lemma 3.16. Let A,B Ă δ ¨ Z, and assume that |A ` B| ď K|A| for some K ě 1. Then, for
every N ě 1 and ρ ą 0, there exists a subset A1 Ă A with |A1| ě p1 ´ ρq|A| with the property

|A1 ´ B| .ρ,n K2N {N |A|1`1{N .

The exercise is only stated with constant ρ “ 1
2
, but if one reads the subsequent hint

about how to solve the exercise, it is clear (based on [40, Exercise 6.5.1]) that any ρ ą 0

will work, at the cost of making the implicit constant larger. We are then prepared to
reduce Theorem 3.1 to Theorem 3.15.

Proof of Theorem 3.1 assuming Theorem 3.15. The argument roughly follows [5, Section 5]
in Bourgain’s paper. Fix the constants α, β, γ, κ from the statement of Theorem 3.1. Our
task is to find the constants ǫ0, ǫ, ǫB , δ0, ρ P p0, 1

2
s, depending only on α, β, γ, κ. This will

be accomplished by applying Theorem 3.15 with constants α, β, γ, κ{2. Recall from the
statement of Theorem 3.15 that there exist constants ǭ0, ǭ, ǭB , δ̄0, ρ̄ ą 0, which only depend
on the constants α, β, γ, κ{2. We begin by choosing ǫ ą 0 so small that

C

log2p1{ǫq ď ǭ ðñ ǫ ď 2´C{ǭ (3.17)

for a suitable absolute constant C ą 0 to be determined later. We now pick the other
constants ǫ0, ǫB P p0, 1

2
s so that

ǫ0 ` ǫB :“ mintκǭ0{8, ǭB{2u. (3.18)

We choose δ0 ď δ̄0, and additionally δ0 needs to satisfy a few other restrictions, which we
explain on the spot. We finally choose ρ ą 0 so small that

p1 ´ ρqp1 ´ ρ ´ ?
ρq ě p1 ´ ρ̄q. (3.19)
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With these choices of constants, fix δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s be sets, and
let ν be a Borel probability measure on r0, 1s, satisfying the hypotheses in Theorem 3.1.
To land in a situation where Theorem 3.15 becomes applicable, we consider initially the
measure ν̄ :“ ν ˚ p´νq, where ´νpAq :“ νp´Aq. Evidently sptpν̄q Ă r´1, 1s. As Bourgain
shows in [5, (5.5)], the measure ν̄ has the property

ν̄pBpx, rqq ď 4 ¨ ν̄pBp0, rqq ď 4 ¨ sup
yPR

νpBpy, rqq, x P R, r ą 0. (3.20)

Now, let c0 ě 0 be the infimum of the numbers such that

ν̄pBp0, c0qq ą 5 ¨ cγ0 , (3.21)

if any such numbers exist. Evidently c0 P r0, 1s, since ν̄ is a probability measure on
Bp0, 1q. If no c0 as in (3.21) exists, then let c0 :“ maxt|c| : c P sptpν̄qu, and note that

5 ¨ cγ0 ě ν̄pBp0, c0qq ě ν̄pBp0, 1qq “ 1 ùñ c0 ě 5´1{γ ě δǫ0 , (3.22)

assuming here that δ0 ě δ is sufficiently small in terms of γ, ǫ0. Assume then that c0, as
in (3.21), exists. Since supyPR νpBpy, rqq ď rγ for all 0 ă r ď δǫ0 by assumption, (3.20)
implies that c0 ě δǫ0 . In both cases, c0 ě δǫ0 . Moreover, we note that sptpνq X tc0,´c0u ‰
H in both cases (in the non-trivial case, otherwise some smaller value of c0 would also
satisfy (3.21)).

We then consider the re-normalised measure ν̄c0 defined by

ν̄c0pHq :“ 1
ν̄pBp0,c0qq ¨ ν̄|Bp0,c0qpc0 ¨ Hq, H Ă R,

which satisfies sptpν̄c0q “ c´1
0 ¨pspt ν̄XB̄p0, c0qq Ă r´1, 1s. Clearly ν̄c0 is a Borel probability

measure. Moreover, if x P R and r P rδ, 1s, then, assuming that c0 P r0, 1s was defined via
(3.21), we have

ν̄c0pBpx, rqq ď ν̄pBpc0x, c0rqq
ν̄pBp0, c0qq

(3.20)
ď 4 ¨ ν̄pBp0, c0rqq

5 ¨ cγ0
ď 4 ¨ 5 ¨ pc0rqγ

5 ¨ cγ0
“ 4 ¨ rγ .

If c0 was, instead, defined as c0 “ maxt|c| : c P sptpν̄qu, then ν̄pBp0, c0qq “ 1, so

ν̄c0pBpx, rqq ď ν̄pBpc0x, c0rqq
ν̄pBp0, c0qq

(3.20)
ď 4 ¨ ν̄pBp0, c0rqq ď 20 ¨ pc0rqγ ď 20 ¨ rγ .

The same estimates are also true for r ą 1, since }ν̄c0} “ 1. Therefore, in any case ν̄c0

satisfies the hypotheses of Theorem 3.15 with Frostman constant 20.
We will not apply Theorem 3.15 directly to the sets A,B, but rather to A, pc0Bqδ, where

pc0Bqδ “ pδ ¨ Zq X pc0Bqpδq Ă pδ ¨ Zq X r0, 1s.

Evidently |pc0Bqδ| & c0|B| ě δǫ0 |B| by (3.22). It follows that

|pc0Bqδ ` pc0Bqδ| . |B ` B| ď δ´ǫB |B| . δ´ǫ0´ǫB |pc0Bqδ|.

Since ǫ0 ` ǫB ď ǭB{2 by (3.18), and if δ ą 0 is sufficiently small, we conclude that pc0Bqδ
satisfies the small doubling assumption in Theorem 3.15 with constant ǭB. We moreover
claim that pc0Bqδ satisfies the Frostman condition |pc0Bqδ XBpx, rq| ď rκ{2|pc0Bqδ| for all
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δ ď r ď δǭ0 . To see this, fix δ ď r ď δǭ0 ď δ2ǫ0 ď c0δ
ǫ0 (by (3.18) and (3.22)), and note that

|pc0Bqδ X Bpx, rq| . |B X Bpx, c´1
0 rq|

ď pc´1
0 rqκ ¨ |B|

. c´2
0 ¨ rκ ¨ |pc0Bqδ|

ď δ´2ǫ0 ¨ rκ{2 ¨ rκ{2 ¨ |pc0Bqδ|
(3.18)
ď δ2ǫ0 ¨ rκ{2 ¨ |pc0Bqδ|.

This implies |pc0Bqδ X Bpx, rq| ď rκ{2|pc0Bqδ|, provided that δ0 ě δ is sufficiently small.
We have now shown that Theorem 3.15 is applicable with the parameters α, β, γ, κ{2 to
the the sets A, pc0Bqδ, and the measure ν̄c0 .

Since δ ď δ0 ď δ̄0, Theorem 3.15 implies the existence of a point c P sptpν̄c0q Ă r´1, 1sX
c´1
0 ¨ psptpνq ´ sptpνqq such that

|A1 ` cpc0Bqδ| ě δ´ǭ|A| (3.23)

for all subsets A1 Ă A with |A1| ě p1 ´ ρ̄q|A|. Note that the point c P sptpν̄c0q in (3.23) can
be written as c “ c´1

0 ¨ pc1 ´ c2q for certain points c1, c2 P sptpνq. Therefore

|A1 ` pc1 ´ c2qB|δ “ |A1 ` c1´c2
c0

¨ c0B|δ & |A1 ` cpc0Bqδ|δ ě δ´ǭ|A| (3.24)

for all A1 Ă A with |A1| ě p1 ´ ρ̄q|A|. We now claim that there exists c̄ P tc1, c2u such that

|A1 ` c̄B|δ ě δ´ǫ|A|, A1 Ă A, |A1| ě p1 ´ ρq|A|, (3.25)

assuming that δ0 ě δ is small enough, depending on ǫ, ρ. This will prove Theorem 3.1.
Assume that (3.25) fails for both c̄ P tc1, c2u, and let A1

1, A
1
2 Ă A be subsets of cardinal-

ities |A1
j | ě p1 ´ ρq, j P t1, 2u, such that

|A1
1 ` c1B| ă δ´ǫ|A| and |A1

2 ` c2B| ă δ´ǫ|A|. (3.26)

We first observe from the second inequality in (3.26) that

|A1
2 ` c2B|δ ď δ´ǫ|A| ď 2δ´ǫ|A1

2|.
By Lemma 3.16, for N ě 1 there exists a subset A2

2 Ă A1
2 of cardinality |A2

2| ě p1 ´ ρq|A1
2|

such that
|A2

2 ´ c2B|δ .ρ,N pδ´ǫq2N |A1
2|1`1{N . δ´ǫ¨2N`2´1{N |A2

2|. (3.27)

We apply this with N „ log2p1{ǫq satisfying ǫ¨2N`2 „ ?
ǫ. Since with this choice ǫ¨2N`2 „?

ǫ ! 1{ log2p1{ǫq „ 1{N , we have ǫ ¨ 2N`1 ` 1{N ď 2{N „ 1{ log2p1{ǫq, and we deduce
from (3.27) that

|A2
2 ´ c2B|δ .ǫ,ρ δ

´C0{ log2p1{ǫq|A2
2|

for some absolute constant C0 ą 0.
Now, recall that |A1

1| ě p1 ´ ρq|A| and |A2
2| ě p1 ´ ρq|A1

2| ě p1 ´ ?
ρq|A|. Consequently,

the intersection A1 :“ A1
1 X A2

2 satisfies |A1| ě p1 ´ ρ ´ ?
ρq|A|. Evidently,

|A1 ` c1B| ď δ´ǫ|A| . δ´C0{ log2p1{ǫq|A1| and |A1 ´ c2B| .ρ,ǫ δ
´C0{ log2p1{ǫq|A1|.

By Lemma 3.3, there exists a further subset A2 Ă A1 with

|A2| ě p1 ´ ρq|A1| ě p1 ´ ρqp1 ´ ρ ´ ?
ρq|A|

(3.19)
ě p1 ´ ρ̄q|A|
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such that

|A2 ` c1B ´ c2B|δ .ǫ,ρ δ
´2C0{ log2p1{ǫq|A2|

(3.17)
ď δ´ǭ{2|A|.

This contradicts (3.24) for δ ą 0 small enough, depending on ǫ, ρ, and proves (3.25). The
proof of Theorem 3.1 is complete. �

3.3. Removing reference to subsets. In the previous reductions, we have upgraded the
assumptions of Theorem 1.8 in two ways: we have arranged the set B to have small
doubling, and the Frostman constant of ν to be 20. However, there has been a price:
whereas Theorem 1.8 only claims that |A ` cB|δ ě δ´ǫ|A| for some c P sptpνq, Theorem
3.15 claims the existence of c P sptpνq such that |A1 ` cB|δ ě δ´ǫ|A1| for all A1 Ă A

with |A1| ě p1 ´ ρq|A|. It turns out that this innocent-looking difference makes Theorem
3.15 difficult to prove with a direct assault. Therefore, we need a final reduction to the
following statement:

Theorem 3.28. Let 0 ă β ď α ă 1 and κ ą 0. Then, for every γ P ppα ´ βq{p1 ´ βq, 1s,
there exist ǫ, ǫ0, ǫB , δ0 P p0, 1

2
s, depending only on α, β, γ, κ, such that the following holds. Let

δ P 2´N with δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s satisfy the following hypotheses:

(A) |A| ď δ´α.
(B) |B| ě δ´β , and B satisfies the following Frostman condition:

|B X Bpx, rq| ď rκ|B|, δ ď r ď δǫ0 .

Assume moreover that |B ` B| ď δ´ǫB |B|.
Further, let ν be a Borel probability measure with sptpνq Ă r´1, 1s satisfying the Frostman
condition νpBpx, rqq ď 40 ¨ rγ for x P R and r ě δ. Then, there exists a point c P sptpνq such
that |A ` cB|δ ě δ´ǫ|A|.

Theorem 3.28 only differs from Theorem 3.15 in its (superficially) weaker conclusion,
and in that the Frostman constant of ν has increased from 20 to 40.

Proof of Theorem 3.15 assuming Theorem 3.28. Fix the parameters 0 ă β ď α ă 1, κ, and
γ ą pα ´ βq{p1 ´ βq from Theorem 3.15. As usual, our task is to find the parameters
ǫ, ǫ0, ǫB , δ0, ρ such that Theorem 3.15 is satisfied. In doing so, we apply Theorem 3.28 to
the parameters 0 ă β ď ᾱ ă 1 and κ, where ᾱ P pα, 1q is arbitrary such that the key
inequality γ ą pᾱ ´ βq{p1 ´ βq still holds. Then, we let

ǭ, ǭ0, ǭB , δ̄0 ą 0 (3.29)

be the constants given by Theorem 3.28 with parameters ᾱ, β, κ, γ. We now begin defin-
ing the parameters ǫ, ǫ0, ǫB , δ0, ρ. We set

ǫ0 :“ ǭ0 and ǫB “ ǭB. (3.30)

We will need that δ0 ď δ̄0, and there will be an additional (simple) dependences on the
allowed parameters, which will be explained when they arise. To define the parameters
ǫ, ρ, fix a natural number N „ 1{ǭ, so that the following holds:

pN ´ 1q´1 ă ǭ{2. (3.31)

Then, let

ǫ :“ ᾱ ´ α

2N`1
. (3.32)
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Finally, define ρ ą 0, depending only on ǭ, so small that
`

2p1 ´ p1 ´ ρqN q
˘1{2N ď 1

2
. (3.33)

This is possible, since the inequality is clearly true for ρ “ 0.
We now make the counter assumption that Theorem 3.15 fails for certain δ P p0, δ0s,

A,B Ă pδ ¨ Zq X r0, 1s, and a Borel probability measure ν on r´1, 1s, satisfying the hy-
potheses of Theorem 3.15 with parameters α, β, κ, γ, and the constants ǫ0, ǫ, δ0 described
above. This means that for every c P C “ sptpνq, there exists a subset Ac Ă A with the
properties

|Ac| ě p1 ´ ρq|A| and |Ac ` cB|δ ď δ´ǫ|A|. (3.34)
The plan is to use this information to construct a new set Ā Ă pδ ¨ Zq X r0, 1s, and a new
probability measure ν̄ on r´1, 1s, such that the triple Ā, B, ν̄ satisfies the hypotheses of
Theorem 3.28 with parameters ᾱ, β, κ, γ and constants ǭ0, ǭB , but nevertheless |Ā` cB| ă
δ´ǭ|Ā| for all c P sptpν̄q. This contradiction will complete the proof of Theorem 3.15.

Given such a set Ac Ă A for every c P C , we observe that
ż

. . .

ż

|Ac1 X . . . X AcN | dνpc1q ¨ ¨ ¨ dνpcN q ě p1 ´ ρqN |A| (3.35)

by Hölder’s inequality. Consider the set

Ω :“ tpc1, . . . , cN q P CN : |Ac1 X . . . X AcN | ě 1
2

|A|u.
If "I" temporarily stands for the integral in (3.35), we have

p1 ´ ρqN |A| ď I ď νN pΩcq ¨ 1
2
|A| ` p1 ´ νN pΩcqq ¨ |A|,

which can be rearranged to νN pΩcq ď 2p1 ´ p1 ´ ρqN q. Consequently

νN pΩq ě 1 ´ 2p1 ´ p1 ´ ρqN q “: 1 ´ θ0. (3.36)

For c1, . . . , cn P C fixed, we define

Ωc1¨¨¨cn :“ tpcn`1, . . . , cN q P CN´n : pc1, . . . , cN q P Ωu.
It follows from Fubini’s theorem that

νN´npΩc1¨¨¨cnq “
ż

νN´n´1pΩc1¨¨¨cncq dνpcq (3.37)

for all c1, . . . , cn P C , and 1 ď n ď N ´ 2. The same remains true for n “ 0, if the left
hand side is interpreted as νN pΩq. Equation (3.37) also remains valid for n “ N ´ 1 if we
define the notation νN´n´1 “ ν0 as follows:

ν0pΩc1¨¨¨cN´1cq :“ 1Ωpc1, . . . , cN´1, cq. (3.38)

We will use this notation in the sequel.
For pc1, . . . , cN q P Ω fixed, we write

Ac1¨¨¨cN :“ Ac1 X . . . X AcN ùñ |Ac1¨¨¨cN | ě 1
2
|A|. (3.39)

We now construct a sequence of sets Hn Ă δ ¨ Z, 1 ď n ď N . At the same time, we will
construct subsets C1, . . . , CN Ă C , and points cn P Cn, 1 ď n ď N , with the properties

νN´npΩc1¨¨¨cnq ě 1 ´ θn and νpCnq ě 1 ´ θn, 1 ď n ď N, (3.40)

where we define inductively
θn :“

a

θn´1 ě θn´1.
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In particular, the first part of (3.40) with n “ N shows that pc1, . . . , cN q P Ω, recall the
notation (3.38). As a second remark, recalling the definition of θ0 “ 2p1 ´ p1 ´ ρqN q, and
combining this with the definition of ρ in (3.33), one sees that θn ď 1

2
for all 1 ď n ď N .

To begin with, we define

C1 :“ tc P C : νN´1pΩcq ě 1 ´ θ1u,
and we choose an arbitrary element c1 P C1. Since

1 ´ θ0 ď νN pΩq “
ż

νN´1pΩcq dνpcq ď νpCc
1q ¨ p1 ´ θ1q ` p1 ´ νpCc

1qq “ ´θ1 ¨ νpCc
1q ` 1

by (3.36), we observe that νpCc
1q ď θ0{θ1 “ θ1, and consequently νpC1q ě 1 ´ θ1. In

particular C1 ‰ H. We then define

H1 :“ pc1Bqδ.
Assume inductively that H1, . . . ,Hn and C1, . . . , Cn Ă C , and cj P Cj , 1 ď j ď n ď N ´1,
have already been constructed, and satisfy (3.40). We pick an element cn`1 P Cn`1, where

Cn`1 :“ tc P C : νN´n´1pΩc1¨¨¨cncq ě 1 ´ θn`1u, 1 ď n ď N ´ 1.

For n “ N ´ 1, the notation νN´n´1pΩc1¨¨¨cncq should be interpreted as in (3.38), so

CN “ tc P C : 1Ωpc1, . . . , cN´1, cq ě 1 ´ θNu “ tc P C : pc1, . . . , cN´1, cq P Ωu.
For an arbitrary choice cn`1 P Cn`1, we note that the first part of (3.40) is satisfied with
index "n ` 1", by the definition of Cn`1.

The set Cn`1 also satisfies the second part of (3.40) with index "n ` 1", since

1 ´ θn
(3.40)
ď νN´npΩc1¨¨¨cnq (3.37)“

ż

νN´n´1pΩc1¨¨¨cncq dνpcq ď ´θn`1 ¨ νpCc
n`1q ` 1,

and consequently νpCc
n`1q ď θn{θn`1 “ θn`1, and νpCn`1q ě 1 ´ θn`1.

Whereas c1 P C1 was chosen arbitrarily, the element cn`1 P Cn`1 is chosen in such
a way that the quantity |Hn ` cn`1B|δ is maximised, among all possible choices cn`1 P
Cn`1. We then define

Hn`1 :“ Hn ` pcn`1Bqδ.
Continuing in this manner produces a distinguished sequence pc1, . . . , cN q P Ω, which
we fix for the remainder of the argument, and a sequence of sets H1, . . . ,HN .

Note that Hn Ă pδ ¨ Zq X r0, N s for all 1 ď n ď N by a straightforward induction,
so |Hn| ď 2Nδ´1. Therefore, by the pigeonhole principle, there exists an index n P
t1, . . . , N ´ 1u such that

|Hn`1| ď p2Nδ´1q1{pN´1q|Hn| ď 4δ´1{pN´1q|Hn|. (3.41)

For this particular index n P t1, . . . , N ´ 1u, we then have |Hn ` cB|δ . |Hn`1| ď
4δ´1{pN´1q|Hn| for all c P Cn`1 by the definition of Hn`1, and therefore

|Hn ` cB|δ ď δ´ǭ{2|Hn|, c P Cn`1, (3.42)

recalling (3.31), and assuming that δ ą 0 is small enough.
We now claim that (3.42) violates Theorem 3.28 with parameters ᾱ, β, κ, γ, and with

the objects
Ā :“ Hn, B, and ν̄ :“ νpCn`1q´1 ¨ ν|Cn`1

. (3.43)
We need to check the following items to contradict Theorem 3.28:
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(a) |Ā| ď δ´ᾱ,
(b) |B| ě δ´β and |B ` B| ď δ´ǭB |B|, and B satisfies a Frostman condition with

exponents κ and ǭ0,
(c) ν̄ satisfies a Frostman condition with exponent γ and constant 40.

Point (b) is true by assumption (and since we chose ǫB “ ǭB and ǫ0 “ ǭ0 in (3.30)), so only
(a) and (c) need to be verified. We first use the Plünnecke-Ruzsa inequality to establish
(a), assuming that δ ą 0 is sufficiently small in terms of N, ᾱ. Clearly Ā can be written as
a sum of n ď N sets of the form pcmBqδ, for some 1 ď m ď n, where cm is an index in
the (fixed) sequence pc1, . . . , cN q P Ω. Noting that Ac1¨¨¨cN Ă Acm Ă A, each of these sets
individually satisfies

|Ac1¨¨¨cN ` pcmBqδ| . |Acm ` cmB|δ
(3.34)
ď δ´ǫ|A|

(3.39)
ď 2δ´ǫ|Ac1¨¨¨cN |.

We may therefore infer that

|Ā| .N,ρ δ
´2N ǫ|A| ď δ´2N ǫ´α.

from Lemma 3.3. This inequality implies |Ā| ď δ´ᾱ for small enough δ ą 0, recalling our
choice of ǫ at (3.32).

We move to (c). Recalling (3.43), and from (3.40) that νpCn`1q ě 1 ´ θN ě 1
2
, we have

ν̄pBpx, rqq ď 2 ¨ νpBpx, rqq ď 40 ¨ rγ, x P R, r ě δ.

We have now reached a situation which violates Theorem 3.28 for the choice of param-
eters ᾱ, β, κ, γ: the objects Ā, B, ν̄ satisfy all the hypotheses (by (a)-(c)), but nevertheless
we have |Ā`cB|δ ď δ´ǭ|Ā| for all c P Cn`1, a set of full ν̄ measure, by (3.42). This violates
Theorem 3.28, since ǭ ą 0 was the constant associated to ᾱ, β, κ, γ. Therefore the counter
assumption (3.34) is false, and the proof of Theorem 3.15 is complete.

To be precise, we have ignored that Ā Ă r0, N s instead of Ā Ă r0, 1s. This can be dealt
with as in the proof of Corollary 1.11, or below (3.12). We leave this to the reader. �

3.4. Bonus reduction. We have now reduced the proof of Theorem 1.8 to the proof of
Theorem 3.28. For notational convenience in the future, we mention one final reduction:
we may assume that 1 P sptpνq. Indeed, assume that Theorem 3.28 is known under
this extra assumption. Then, let A,B, ν be a general triple as in Theorem 3.28. Since
ν is a probability measure, sptpνq Ă r´1, 1s and νpBpx, rqq ď 40 ¨ rγ , the point c0 P
sptpνq X r´1, 1s with maximal absolute value satisfies

|c0| ě 40´1{γ .

Consider the measure ν̄pAq :“ νpc0Aq. Observe that ν̄pBpx, rqq ď 40 ¨ rγ and sptpν̄q “
c´1
0 sptpνq. Therefore 1 P sptpν̄q Ă r´1, 1s, so ν̄ satisfies the extra assumption. We then

apply the (assumedly known) version of Theorem 3.28 to A, pc0Bqδ, ν̄. The set pc0Bqδ will
have slightly worse constants than B, in a manner depending on γ only, so the theorem
needs to be applied with appropriately modified parameters. Once this has been done,
we find a point c “ c´1

0 c1 P sptpν̄q, where c1 P sptpνq, such that

|A ` cB|δ & |A ` pc1{c0q ¨ pc0Bqδ|δ “ |A ` cpc0Bqδ|δ ě δ´ǫ|A|,
and the proof of Theorem 3.28 (without the extra assumption) is complete.
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4. PROOF OF THEOREM 3.28

4.1. Preliminaries. We have now reduced the proof of Theorem 1.8 to the proof of The-
orem 3.28. We fix the parameters α, β, γ, κ, with 0 ă β ď α ă 1 and pα ´ βq{p1 ´ βq ă
γ ď 1. We also fix sets A,B Ă pδ ¨ Zq X r0, 1s and a Borel probability measure ν with
sptpνq Ă r´1, 1s, satisfying all the hypotheses of Theorem 3.28 with sufficiently small
constants ǫ0, ǫB ą 0 to be determined later. For future reference, we write

|A| “: δ´ᾱ, 0 ď ᾱ ď α. (4.1)

We make a counter assumption: |A ` cB|δ ă δ´ǫ|A| for all c P sptpνq. Since we may
assume that 1 P sptpνq by Section 3.4, we have the assumptions

|A ` B| ď δ´ǫ|A| and |B ` B| ď δ´ǫB |B|. (4.2)

If ǫ, ǫB ą 0 in (4.2) are small enough, depending only on α, β, κ, γ, we will be able to
find a point c P sptpνq such that |A ` cB|δ ě δ´ǫ|A|. This will violate the counter as-
sumption, and prove Theorem 3.28. The necessary values of ǫ “ ǫpα, β, γ, κq ą 0 and
ǫB “ ǫBpα, β, γ, κq ą 0 in (4.2) will be fixed during the proof of Proposition 4.12.

4.2. Shmerkin’s inverse theorem. In the case A “ B, Bourgain [5] used an assumption
of the form (4.2) to obtain, up to passing to a subset, a special multi-scale structure inside
A: informally speaking, when passing from one scale to the next, either A has full branch-
ing, or then no branching. Similar statements have, after Bourgain’s work, been proved by
Hochman [19] and Shmerkin [34] in the case where A ‰ B, and where A and B may have
completely different sizes. This is our situation, and we will apply Shmerkin’s theorem,
which we state in Theorem 4.6.

Definition 4.3 (δ-sets and measures, L2-norms). Let δ P 2´N be a dyadic rational. A
subset of pδ ¨ Zq X r0, 1q is called a δ-set. A probability measure supported on a δ-set is
called a δ-measure. The L2-norm of a δ-measure µ is defined by

}µ}L2 :“
˜

ÿ

zPδ¨Z

µptzuq2
¸1{2

.

We will only be concerned with δ-measures of the form µ “ |A|´1H0|A, where A Ă
r0, 1q is a δ-set. Then }µ}L2 “ |A|´1{2.

Definition 4.4 (Uniform sets). Let m,N P N, and set δ :“ 2´mN P 2´N. For A Ă r0, 1q and
s P t0, . . . , N ´ 1u, write ImspAq :“ tI P Dms : A X I ‰ Hu for the collection of dyadic
intervals of side-length 2´ms (these are denoted Dms) with non-empty intersection with
A. We say that A is pm,Nq-uniform if

RApsq :“ |I X A|2´mps`1q , I P ImspAq,
is independent of the choice of I P ImspAq. We may also write that A is pm,N,RAq-
uniform if the branching numbers RA need emphasising.

In the definition of RApsq, is it important to remember that |H|r is, by definition, the
number of dyadic r-intervals intersecting H – instead of the r-covering number. This
distinction has hardly mattered earlier in the paper.

As in [34], we will only consider uniform sets which are also δ-sets. It was observed by
Bourgain [5] that every δ-set contains a uniform subset of "comparable" cardinality. Thus,
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the possibility of finding uniform subsets has nothing to do, yet, with an assumption like
(4.2). To explain what (4.2) implies, we introduce the following terminology:

Definition 4.5 (η-polarised pair). Let m,N P N, δ “ 2´mN , and η ą 0. A pair of pm,Nq-
uniform sets pA,Bq is pη,m,Nq-polarised, if

RBpsq ą 1 ùñ RApsq ě 2p1´ηqm, s P t0, . . . , N ´ 1u.
If A “ B, we say that A (instead of pA,Aq) is pη,m,Nq-polarised.

Note that RApsq ď 2m for all s P t0, . . . , N ´ 1u, so RApsq ě 2p1´ηqm means that
RApsq is nearly maximal. Bourgain [5] proved that if A is a δ-set with |A ` A| ď δ´ǫ|A|,
then A contains a uniform subset A1 such that |A1| ě δη |A|, and A1 is η-polarised, where
η “ oǫp1q. This means that either RA1psq “ 1 or RA1psq ě 2p1´ηqm for all scales "s".

Versions of Bourgain’s "polarisation theorem", explained above, for two different sets
were found by Hochman [19] and Shmerkin [34]. Hochman first showed that if µ, ν are
probability measures on r0, 1q, then the entropy inequality Hpµ ˚ νq ď Hpµq ` ǫ implies
a measure-theoretic version of the polarisation phenomenon for µ, ν. The set version,
below, was established by Shmerkin [34] (with a proof very different from [19]):

Theorem 4.6 (Shmerkin). Let η ą 0, and let mpηq P N be sufficiently large, depending on η.
Then, for all m ě mpηq there exists ǫ “ ǫpη,mq ą 0 such that the following holds for all large
enough N P N. Let δ “ p2´mqN , and let A,B Ă r0, 1s be δ-sets such that

|A ` B| ď δ´ǫ|A|.
Then, there exist pm,Nq-uniform sets A1 Ă A and B1 Ă B such that |A1| ě δη |A|, |B1| ě δη |B|,
and pA1, B1q is pη,m,Nq-polarised.

Remark 4.7. To be accurate, Theorem 4.6 is a slight refinement of Shmerkin’s theorem: [34,
Theorem 2.1] literally contains the following statement: if η ą 0 and m0 P N, then there
exists m “ mpη,m0q ě m0 and ǫ “ ǫpη,m0q ą 0 as in Theorem 4.6. However, if one inspects
the proof of [34, Theorem 2.1], one observes that the only dependence of m “ mpη,m0q
on m0 is "m ě m0", and any choice of m ě m0 works, provided that m is also sufficiently
large in terms of η. This is precisely what Theorem 4.6 says.

As another remark, Shmerkin’s theorem actually concerns a pair of δ-measures µ1, µ2

instead of δ-sets: the measures of interest for our application are simply µ1 “ |A|´1H0|A
and µ2 “ |B|´1H0|B , and with such choices [34, Theorem 2.1] implies Theorem 4.6.

Remark 4.8. We will be applying Theorem 4.6 to dyadic scales of the form δ “ 2´ℓmN ,
where ℓ,m,N P N. Since δ “ p2´mqℓN “ p2´ℓmqN , a δ-set A Ă r0, 1q may be pm, ℓNq-
uniform, pℓm,Nq-uniform, or both. The former condition means that the branching num-
bers Rm

A psq “ |AX I|2´mps`1q are well-defined for m P rℓN s, whereas the latter means that
the branching numbers Rℓm

A pσq “ |A X I|2´ℓmpσ`1q are well-defined for σ P rN s. It is clear
that every pm, ℓNq-uniform 2´ℓmN -set is pℓm,Nq-uniform, and indeed

Rℓm
A pσq “

ℓpσ`1q´1
ź

s“ℓσ

Rm
A psq, σ P rN s.

The converse is generally not true, so pm, ℓNq-uniformity is a strictly stronger property
than pℓm,Nq-uniformity. We will also be interested in pairs pA,Bq which are sometimes
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pη,m, ℓNq-polarised, and sometimes pη, ℓm,Nq-polarised. In contrast to uniformity, there
is no simple implication between these two properties.

In addition to Shmerkin’s theorem, we will also need a lemma from its proof:

Lemma 4.9. Let m, ℓ,N P N, δ “ 2´ℓmN , and let A Ă r0, 1q be an pm, ℓNq-uniform δ-
set. Then A is also pℓm,N,Rℓm

A q-uniform for some RA : rN s Ñ t1, . . . , 2ℓmu. If S Ă rN s is
arbitrary, there exists A1 Ă A which is pm, ℓNq-uniform, and also pℓm,N,Rℓm

A1 q-uniform with

|A1| ě |A| ¨
ź

σPS

Rℓm
A pσq´1, and Rℓm

A1 pσq “
#

1, σ P S,

Rℓm
A pσq, σ R S.

A similar statement holds true if S Ă rℓN s, with the only difference that "Rℓm
A pσq" and "Rℓm

A1 pσq"
should be replaced by "Rm

A psq" and "Rm
A1 psq" for s P rℓN s.

The lemma above is [34, Lemma 3.7]. To be accurate, the statement about A1 remaining
pm, ℓNq-uniform is not part of the statement of [34, Lemma 3.7], but the 3.8-line proof
quickly reveals that pm, ℓNq-uniformity is not violated when passing between A and A1;
the only point is to "collapse" all the branching of A for levels corresponding to σ P S , or
equivalently for s P tℓσ, ℓpσ ` 1q ´ 1u for all σ P S .

4.3. Applying the inverse theorem. We start by fixing the following parameters:
$

’

&

’

%

ℓ “ ℓpα, β, γ, κq P N,

η “ ηpα, β, γ, κq P p0, 1q,
m0 P N with m0 ě p40 ` C0q{η.

(4.10)

Here C0 ą 0 is an absolute constant to be specified later. In fact, the values of all
these constants will be specified later, but as indicated above, all of them only depend
on α, β, γ, κ. For the reader interested in seeing specific choices, we refer to (4.23) and
the discussion afterwards. Recall that the set B satisfies the Frostman condition |B X
Bpx, rq| ď rκ|B| for all δ ď r ď δǫ0 , where we may freely choose ǫ0 “ ǫ0pα, β, κ, γq ą 0.
We choose

ǫ0 :“ η. (4.11)

We will assume that η, ǫ, ǫB ă 1{1000 in the sequel (but these upper bounds will generally
not suffice). This section is devoted to the proof of the following proposition, whose
proof will also finalise the choice of the parameters ǫ, ǫB ą 0, relative to η:

Proposition 4.12. There exist ǫ, ǫB ą 0 and m ě m0, depending on α, β, γ, κ, such that the
following holds for all δ P 2´N of the form δ “ 2´ℓmN , N P N. Assume that A,B Ă r0, 1s
are δ-sets satisfying the small doubling assumptions (4.2). Then there exist subsets A1 Ă A and
B1 Ă B with the following properties:

(1) A1 and B1 are pm, ℓNq-uniform with |A1| ě δη|A| and |B1| ě δη{2|B|.
(2) The pair pA1, B1q is pη,m, ℓNq-polarised.
(3) The set B1 is pη{2, ℓm,Nq-polarised.

Remark 4.13. In the sequel, we will always work with scales of the form δ “ 2´ℓmN with
the fixed parameters ℓ,m, which depend on α, β, γ, κ. In other words, we initially prove
Theorem 3.28 (and find the constants ǫ, ǫ0, ǫB) for only scales of this special form. After
this has been accomplished, it is easy to check that the case of general scales δ P 2´N is a
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corollary, assuming that the upper bound δ0 “ δ0pα, β, γ, κq ą 0 for δ is sufficiently small.
The reason is that if δ P 2´N is arbitrary, then there exists a scale of the form δ̄ “ 2´ℓmN

with δ ď δ̄ .α,β,γ,κ δ. We leave the rest of this reduction to the reader.
As another remark, we will later in the paper need to assume that ǫ “ ǫpα, γq ą 0 is

sufficiently small that
ǫ

1 ´ α ´ ǫ
ď γ

2
. (4.14)

This requirement should be combined with the one coming from Proposition 4.12.

Proof of Proposition 4.12. We begin by applying Theorem 4.6 with constant η3 ą 0 to the
pair pB,Bq, for which we assumed in (4.2) that |B ` B| ď δ´ǫB |B|. Assume that m ě
mpη3q P N is sufficiently large that Theorem 4.6 applies. Assume additionally that m ě
m0, where m0 is the constant from (4.10). Then, if ǫB “ ǫBpη3, ℓmq “ ǫBpα, β, γ, κq ą 0

and δ “ p2´ℓmqN are sufficiently small, we find an pℓm,Nq-uniform subset B1 Ă B such
that |B1| ě δη

3 |B|, and B1 is pη3, ℓm,Nq-polarised. We have now fixed the value of the
parameter ǫB ą 0 in (4.10) (and hence in Theorem 3.28)!

Next, note that |A ` B1| ď |A ` B| ď δ´ǫ|A|. We therefore may apply Theorem 4.6
again to the pair pA,B1q, again with parameter η3 ą 0. If ǫ “ ǫpη3,mq ą 0 is sufficiently
small, we find an pm, ℓNq-uniform subset A1 Ă A with |A1| ě δη

3 |A| ě δη |A|, and an
pm, ℓNq-uniform subset B2 Ă B1 such that

|B2| ě δη
3 |B1|, (4.15)

and pA1, B2q is pη3,m, ℓNq-polarised. In particular pA1, B2q is pη,m, ℓNq-polarised. We
have now fixed the value of the parameter ǫ ą 0 in (4.2)!

Are we done with properties (1)-(3) in Proposition 4.12? Not quite: while passing from
B1 to B2, we might have lost the pη3, ℓm,Nq-polarisation of B1. The plan will be to pass
to a final pm, ℓNq-uniform subset B3 Ă B2 which is pη{2, ℓm,Nq-polarised, and such that
|B3| ě δη{4|B2|. Then finally

|B3| ě δη{4|B2| ě δη{4`η3 |B1| ě δη{4`2η3 |B| ě δη{2|B|.
Also pA1, B3q remains pη,m, ℓNq-polarised, since this property is not violated by replac-
ing B2 by an pm, ℓNq-uniform subset, for example B3.

Write

S0 :“ tσ P rN s : Rℓm
B1 pσq “ 1u and S1 :“ tσ P rN s : Rℓm

B1 pσq ě 2p1´η3qℓmu.
Since B1 was constructed to be pη3, ℓm,Nq-polarised, we have rN s “ S0 Y S1, and

|B1| “
ź

σPS1

Rℓm
B1 pσq ě 2p1´η3qℓm|S1|.

Now, let Sbad :“ tσ P S1 : Rℓm
B2 pσq ă 2p1´η{2qℓmu, and Sgood :“ S1 zSbad. (Note that the

numbers Rℓm
B2 pσq are well-defined, since B2 is pm, ℓNq-uniform, hence pℓm,Nq-uniform.)

Then, since evidently Rℓm
B2pσq ď Rℓm

B1 pσq “ 1 for all σ P S0, we have

|B2| “
ź

σPSbad

Rℓm
B2pσq ¨

ź

σPSgood

Rℓm
B2pσq ď 2p1´η{2qℓm|Sbad | ¨ 2ℓmp|S1|´|Sbad|q

“ 2ℓm|S1|´pη{2qℓm|Sbad|.
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On the other hand, recalling that δ “ 2ℓmN , we have

|B2|
(4.15)
ě δη

3 |B1| “ δη
3 ¨

ź

σPS1

Rℓm
B1 pσq ě 2´η3ℓmN`p1´η3qℓm|S1|.

Combining these inequalities and dividing both sides by 2ℓm|S1| yields

2´pη{2qℓm|Sbad | ě 2´η3ℓmN´η3ℓm|S1| ùñ |Sbad| ď 2η2N ` 2η2|S1| ď pη{4qN,

noting that 16η2 ď η since η ă 1{1000. At this point, we simply apply the "collapsing"
Lemma 4.9 to the the pm, ℓNq-uniform set B2, and the set of scales S :“ Sbad. The result
is an pm, ℓNq-uniform subset B3 Ă B2, which is also pℓm,N,Rℓm

B3 q-uniform, with

Rℓm
B3pσq “

#

Rℓm
B2pσq, σ R Sbad,

1, σ P Sbad.
,

and
|B3| ě |B2| ¨

ź

σPSbad

Rℓm
B2pσq´1 ě |B2| ¨ 2´ℓm|Sbad| ě δη{4 ¨ |B2|.

Then B3 is pη{2, ℓm,Nq-polarised, since if Rℓm
B3pσq ą 1, then necessarily σ P Sgood, hence

Rℓm
B3pσq “ Rℓm

B2pσq ě 2p1´η{2qℓm by definition. Now the pair of sets A1, B3 (in place of
A1, B1) satisfies all the requirements (1)-(3) in Proposition 4.12. �

4.4. Pruning B1 to improve separation I. It will be useful to reduce B1 to a further sub-
set, in order to gain a little extra separation. We prove the following proposition:

Proposition 4.16. Let B1 Ă B be the pm, ℓNq-uniform pη{2, ℓm,Nq-polarised set found in
Proposition 4.12. Then, there exists an pm, ℓNq-uniform pη, ℓm,Nq-polarised subset B2 Ă B1

with |B2| ě δη{2|B1|, and which satisfies the following separation property:

s P rℓN s, I1, I2 P ImspB2q, I1 ‰ I2 ùñ distpI1, I2q ě 2´ms. (4.17)

Proof. We perform a straightforward "top down" reduction of B1. At scale s “ 0, there
is only one interval r0, 1q P I0pB1q, so (4.17) is clear. At scale s “ 1, remove I X B1 from
B1 for at most every second interval I P ImpB1q. This results in a new set B1

1 Ă B1 with
|B1

1| ě 1
2

|B1| points, and
Rm

B1
1
p0q :“ |B1

1|2´m ě 1
2
Rm

B1 p0q.
Next, for s “ 2, consider every (remaining) interval in ImpB1

1q. For each I P ImpB1
1q, at

most 1
2

of the intervals from I2mpB1
1q contained in I need removal to ensure (4.17) at level

s “ 2. However, the (minimal) number may vary depending on the choice of I P ImpB1
1q.

Fortunately, by removing some extra I2mpB1
1q-intervals if necessary, we may make the

number independent of I P ImpB1
1q. This way, the number of remaining points in B1

1

again gets reduced by at most a factor of 1
2
. For the remaining points, say B1

2, the new
branching numbers Rm

B1
2
p2q :“ |B1

2 X I|2´2m are independent of the choice of I P ImpB1
2q,

and of course Rm
B1

2
p0q “ Rm

B1
1
p0q (in general, the removal process at level s never alters the

branching numbers at levels ă s ´ 1). Hence B1
2 is again pm, ℓNq-uniform.

Once the deletion process has been executed successively at all levels s P t1, . . . , ℓNu,
the remaining set B2 :“ B1

N satisfies

|B2| ě 2´ℓN |B1| “ δ1{m ¨ |B1| ě δη{2 ¨ |B1|,
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recalling that m ě m0 ě 2{η ě 1{η by Proposition 4.12 and (4.10). Also, B2 remains
pm, ℓNq-uniform, with Rm

B2psq ě 1
2
Rm

B1 psq for s P rℓN s. This implies that if Rℓm
B2pσq ą 1,

then
Rℓm

B2pσq ě 2´ℓRℓm
B1 pσq ě 2´ℓ`p1´η{2qℓm “ 2p1´η{2´1{mqℓm ě 2p1´ηqℓm,

by the pη{2, ℓm,Nq-polarisation of B1, and using that m ě m0 ě 2{η, recall (4.10). In
other words, B2 is pη, ℓm,Nq-polarised, as claimed. �

Since |B1| ě δη{2|B| by Proposition 4.16, we have |B2| ě δη{2|B1| ě δη|B|. Also, since
pA1, B1q is pη,m, ℓNq-polarised, the same is true of pA1, B2q. To simplify notation, we will
remove one prime, that is, assume that B1 already satisfies the separation property (4.17)
constructed for B2 in the proposition above. To summarise the progress so far:

‚ |A1| ě δη |A| and |B1| ě δη|B|,
‚ pA1, B1q is pη,m, ℓNq-polarised and B1 is pη, ℓm,Nq-polarised,
‚ B1 satisfies the separation property (4.17).

4.5. Intervals with small but non-zero B1-branching. For intervals I Ă rℓN s and J Ă
rN s, and for D1 P tA1, B1u, we define

Rm
D1pIq :“

ź

sPI

Rm
D1psq and Rℓm

D1 pJ q :“
ź

σPJ

Rℓm
D1 pσq.

We also define NB1 to consist of the maximal intervals I Ă rN s such that Rℓm
B1 pIq “ 1.

Thus the intervals in NB1 partition the set tσ P rN s : Rℓm
B1 pσq “ 1u.

Lemma 4.18. Write |B| :“ δ´β1 , where β1 ě β by the hypothesis of Theorem 3.28. Then the
following lower bound holds for the total length of the intervals in NB1 :

ÿ

IPNB1

|I| ě p1 ´ β1

1´η
q ¨ N.

Remark 4.19. We remark that β1 ď α` ǫ ă 1 (recall (4.14) for the second inequality). Oth-
erwise |A ` B| ě |B| “ δ´β1 ą δ´ǫ|A|, violating our counter assumption (4.2). Therefore
1 ´ β1 ą 0, which will be (tacitly) needed several times below.

Proof. Let NB1 :“ YNB1 Ă rN s. Note that if σ P rN s zNB1 , then Rℓm
B1 pσq ą 1, and conse-

quently Rℓm
B1 pσq ě 2p1´ηqℓm, by the pη, ℓm,Nq-polarisation of B1. It follows that

2β1ℓmN “ δ´β1 ě |B1| “
ź

σPrNs zNB1

Rℓm
B1 pσq ě 2p1´ηqℓm¨pN´|NB1 |q.

Consequently N ´ |NB1 | ď pβ1{p1 ´ ηqq ¨ N , and finally

|NB1 | ě N ´ β1

1´η
¨ N “ p1 ´ β1

1´η
q ¨ N,

as claimed. �

We would next like to extend the intervals I P NB1 to the left in such a manner that the
B1-branching numbers of the extended intervals are relatively small, but not vanishingly
small; say, we keep extending left until the extension I Ą I satisfies Rℓm

B1 pIq „ 2ζℓm|I|

for some small parameter ζ ą 0. Unfortunately, this is not always possible: consider
for example a scenario where the elements in NB1 are singletons. Then, as soon as an
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interval (a singleton) I P NB1 is extended to the left by a single element σ P rN s, we have
Rℓm

B1 pσq « 2ℓm by the polarisation of B1, and hence

Rℓm
B1 pI Y tσuq “ Rℓm

B1 pσq « 2ℓm “ 2ℓm|IYtσu|{2.

The right hand side is far too large for our purposes. This issue is not possible to over-
come as long as we are fixated with the single scale partition rN s, and here arises the
need to play with the two different scale partitions rN s and rℓN s.

The solution is to identify every interval I P NB1 with another, ℓ-times longer, sub-
interval of rℓN s. More precisely, for every I “ tσ, . . . , τu Ă rN s, we define the interval

ℓI :“ tℓσ, ℓσ ` 1, . . . , ℓpτ ` 1q ´ 1u Ă rℓN s.
Thus, for example ℓt0u “ rℓs, and ℓrN s “ rℓN s. It is easy to check that the branching
numbers interact with this operation as follows:

Rm
D1pℓIq “ Rℓm

D1 pIq, D1 P tA1, B1u, I Ă rN s.
In particular:

I P NB1 ùñ Rℓm
B1 pIq “ 1 ùñ Rm

B1 pℓIq “ 1. (4.20)

Motivated by this observation, we define

ℓNB1 :“ tℓI : I P NB1u.
The intervals in NB1 partition tσ P rN s : Rℓm

B1 pσq “ 1u by definition. The intervals in ℓNB1

are contained in the set ts P rℓN s : Rm
B1 psq “ 1u by (4.20), but may not cover it. However,

we may infer the following lower bound for their total length form Lemma 4.18:

Corollary 4.21. The following lower bound holds for the total length of the intervals in Nm
B1 :

ÿ

J PℓNB1

|J | ě p1 ´ β1

1´η
q ¨ ℓN.

Proof. This follows immediately from Lemma 4.18 and the relation |ℓI| “ ℓ|I| (noting
also that if I1,I2 Ă rN s with I1 X I2 “ H, then ℓI1 X ℓI2 “ H). �

Next, instead of extending the intervals in NB1 to the left, as we first proposed, we do
this to the intervals in ℓNB1 . More precisely, fix a small parameter

ζ “ ζpα, β, γ, κq ą 0 with η !α,β,γ,κ ζ ă κ{2. (4.22)

It will eventually turn out that η, ζ ą 0 will need to be chosen so small that
´

1 ´ β1

1´η
´ 2η

κ

¯

´
´

α´p1´ηqpβ1´η´2ζq
Γ

¯

ě 1
2

¨ rp1 ´ β1q ´ pα ´ β1q{Γs, (4.23)

where pα´βq{p1´βq ă Γ ă γ is a constant to be fixed in (4.29), which satisfies Γ ě γ{2. It
might look suspicious that the requirement in (4.23) depends on β1, and not just α, β, κ, γ.
To see that this is not a problem, denote the left hand side Lpβ1q and the right hand side
1
2

¨ Rpβ1q. With this notation, one can easily check that

|Lpβ1q ´ Rpβ1q| . η

κ
` η ` ζ

γ
and Rpβ1q ě Rpβq &α,β,γ 1.

The lower bound on Rpβq follows from Γ ą pα ´ βq{p1 ´ βq. From these estimates,
one sees that if η, ζ ą 0 are chosen small enough depending only on α, β, γ, κ, then
|Lpβ1q ´ Rpβ1q| ď 1

2
Rpβq ď 1

2
Rpβ1q, and hence Lpβ1q ě 1

2
¨ Rpβ1q, as in (4.23).
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In addition to the constraint in (4.23), we will finally (after (4.59)) need to take η suffi-
ciently small in terms of ζpγ´Γq{4. Of course (4.23) is compatible with such a constraint.

Enumerate ℓNB1 “ tI1,I2, . . . ,Iku, where max Ij ă minIj`1. Start with Ik, and recall
that Rm

B1 pIkq “ 1 by (4.20). Begin extending Ik to the left, adding elements of rℓN s one
by one, until (the newly defined interval) Ik satisfies

(a) Rm
B1 pIkq ě 2ζm|Ik|, or

(b) 0 P Ik, and Rm
B1 pIkq ă 2ζm|Ik|.

In both cases (a)-(b) we have the upper bound

Rm
B1 pIkq ă 2ζmp|Ik |´1q ¨ 2m ď 2mpζ|Ik|`1q ď 2mp2ζq|Ik |, (4.24)

choosing here ℓ “ ℓpα, β, γq ě 1 sufficient large that

ℓ ě ζ´1 ùñ ζ|Ik| ě ℓζ ě 1.

This will be legitimate, since ζ only depends on α, β, γ, κ. Later, in (4.37), we will need to
couple this requirement with ℓ ě ǫ´1, where ǫ “ ǫpα, β, γq ą 0.

The extended interval Ik may have "swallowed" a number of the previous intervals
Ij P ℓNB1 : note however that if Ij X Ik ‰ H for some 1 ď j ă k, then actually Ij Ă Ik,
since Rm

B1 pIjq “ 1 (in other words, there is no reason why the extension algorithm would
terminate in the middle of Ij). Let Ik1 P ℓNB1 be the right-most interval which does
not intersect (equivalently: is not contained in) the extension Ik. If no such interval
remains, the algorithm terminates. Otherwise, repeat the extension procedure with Ik1 .
Continue in this manner until all the intervals in ℓNB1 are contained in (precisely) one of
the extensions. Then rename the extensions as tJ1, . . . ,Jlu.

Since all the intervals in ℓNB1 are contained in one of the extensions Ji, we have
ř |Ji| ě p1 ´ β1{p1 ´ ηqq ¨ ℓN by Corollary 4.21. Unfortunately, the leftmost interval
J1 will be "useless" to us in case it was generated by case (b) (of course the intervals
J2, . . . ,Jl, if any exist, were generated by case (a)). We will next argue that J1 is so short
in this case that its removal makes virtually no difference for the sum

ř |Ji|.
If the interval J1 was indeed generated by case (b), then J1 “ t0, . . . , hu for some

h P t0, . . . , ℓN ´ 1u. Writing r :“ 2´mph`1q ě δ, then

|B1|r ď Rm
B1pJ1q ă 2ζm|J1| “ 2ζmph`1q “ r´ζ . (4.25)

If r ě δǫ0 “ 2´ǫ0ℓmN , then

|J1| “ h ` 1 ď ǫ0 ¨ ℓN
(4.11)
ď η ¨ ℓN. (4.26)

On the other hand, if δ ď r ă δǫ0 , then the Frostman condition for B yields

|B1 X Bpx, rq| ď |B X Bpx, rq| ď rκ|B| ď rκ ¨ δ´η |B1|, x P R,

and consequently

r´ζ
(4.25)
ą |B1|r ě r´κ ¨ δη .

This yields rκ´ζ ě δη , and since ζ ă κ{2 by (4.22), we have r ě δ2η{κ. Recalling that
r “ 2´mph`1q and δ “ 2´ℓmN , this rearranges to

|J1| “ h ` 1 ď 2η
κ

¨ ℓN.



ON THE DISCRETISED ABC SUM-PRODUCT PROBLEM 29

Combining this estimate with (4.26), we reach the following conclusion: if N` stands for
the intervals among tJ1, . . . ,Jlu which were generated by case (a), then

ÿ

J PN`

|J | ě
l
ÿ

i“1

|Ji| ´ |J1| ě p1 ´ β1

1´η
´ 2η

κ
q ¨ ℓN. (4.27)

To recap, the intervals in N` are subsets of rℓN s, they are roughly compositions of a few
intervals in ℓNB1 , plus a little extra, and

2ζm|J | ď Rm
B1 pJ q

(4.24)
ď 2mp2ζq|J |, J P N`. (4.28)

4.6. Branching of A1 on typical intervals in N`. In this section we are concerned with
upper bounding the numbers Rm

A1pJ q for J P N`. We already sketched these computa-
tions in Section 1.3. Recall that γ ą pα ´ βq{p1 ´ βq is one of the parameters specified in
the statement of Theorem 3.28. Write

Γ :“ 1
2

¨ α´β
1´β

` 1
2

¨ γ P ppα ´ βq{p1 ´ βq, γq, (4.29)

and decompose N` “ N low
` Y N

high
` , where

N low
` :“ tJ P N` : Rm

A1pJ q ď 2Γm|J |u and N
high
` :“ N` zN low

` . (4.30)

We remark that Γ ě γ{2 ą 0, since β ď α.
We claim that the total length of intervals in N low

` must be reasonably large; in the
sequel, these will be the only "useful" intervals for us. More precisely, if η, ζ ą 0 are
sufficiently small (as chosen in (4.23)), then

ÿ

J PN low
`

|J | ě 1
2
rp1 ´ βq ´ pα ´ βq{Γs ¨ ℓN. (4.31)

Note that p1 ´ βq ´ pα ´ βq{Γ ą 0, since Γ ą pα ´ βq{p1 ´ βq. To prove (4.31), set

N :“ YN` Y ts P rℓN s : Rm
B1 psq “ 1u Ă rℓN s.

We start by claiming that

|rℓN s zN| ě pβ1 ´ η ´ 2ζq ¨ ℓN. (4.32)

To see this, start with the estimate

δη´β1 ď |B1| ď
ź

sPN

Rm
B1 psq ¨

ź

sPrℓNs zN

2m “ 2m|rℓNs zN| ¨
ź

sPN

Rm
B1 psq. (4.33)

The last factor can further be decomposed to those indices "s" with Rm
B1 psq “ 1 (which in

total contribute "1" to the product), and then a product over the intervals J P N`:

ź

sPN

Rm
B1 psq “

ź

J PN`

Rm
B1 pJ q

(4.28)
ď

ź

J PN`

2mp2ζq|J | ď 2mp2ζqℓN . (4.34)

Recalling that δ “ 2´ℓmN , and combining (4.33)-(4.34), leads to

2m|rℓNs zN| ě 2ℓmNpβ1´η´2ζq,

which is equivalent to (4.32).
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We continue with the proof of (4.31). Note that, by the pη,m, ℓNq-polarisation of
pA1, B1q, we have Rm

A1psq ě 2p1´ηqm for all m P rℓN s zN Ă ts P rℓN s : Rm
B1 psq ą 1u.

Consequently,

δ´α ě |A1| “
ź

sPN

Rm
A1psq ¨

ź

sPrℓNs zN

2p1´ηqm ě 2p1´ηqm|rℓNs zN| ¨
ź

J PN`

Rm
A1pJ q. (4.35)

For the first factor, we will derive a lower bound from (4.32). Regarding the second factor,
recall the high and low branching families from (4.30), and write H :“ YN

high
` . Then,

ź

J PN`

Rm
A1pJ q ě

ź

J PN high
`

2Γm|J | “ 2Γm|H|.

Consequently, combining (4.35) with (4.32) and the estimate above, we find that

2αℓmN ě 2p1´ηqpβ1´η´2ζqℓmN ¨ 2Γm|H|,

or equivalently

|H| ď α ´ p1 ´ ηqpβ1 ´ η ´ 2ζq
Γ

¨ ℓN.

If η, ζ “ 0, then we would have just shown that |H| ď Γ´1pα´β1qℓN . Since, on the other
hand, the intervals in N` have total length at least p1 ´ β1qℓN by (4.27) (still assuming
η, ζ “ 0), we may conclude that the intervals in N low

` have total length at least rp1´β1q ´
pα ´ β1q{Γs ¨ ℓN . Finally, if the parameters η, ζ are chosen appropriately, more precisely
as in (4.23), then the slightly weaker estimate (4.31) holds, namely

ÿ

J PN low
`

|J | ě 1
2

¨ rp1 ´ β1q ´ pα ´ β1q{Γs ¨ ℓN ě 1
2

¨ rp1 ´ βq ´ pα ´ βq{Γs ¨ ℓN.

The final inequality only uses β ď β1 and Γ ď γ ď 1.

4.7. Pruning B1 to improve separation II. Fix an interval J “ tt´r, t´r`1, . . . , tu P N`,
as defined above (4.28). Then, (4.28) means that if I P Impt´rqpB1q is a fixed interval of
length 2´mpt´rq intersecting B1, we have 2ζmr ď |tJ P Impt`1qpB1q : J Ă Iu| ď 2p2ζqmr .
How well are these intervals J Ă I separated? By (4.17), we already know that any two
distinct intervals in Impt`1qpB1q are separated by at least 2´mpt`1q, but this is far too weak
for our purposes: for purposes to become apparent later, we would like the intervals J to
be closer to 2´mpt´rq-separated, and the only control for "r" we have is the lower bound
r ě ℓ (recalling that each interval in N` contains an interval in ℓNB1).

The better separation is "morally true" for the following reason: the interval J was
created by combining levels with almost trivial branching, until roughly the first moment
we saw some non-trivial branching. If the words "almost" and "roughly" could be omit-
ted, we would be done: then each interval I P Impt`1qpB1q would be a "single child" of
its parent in Impt´rqpB1q, and since the intervals in Impt´rqpB1q are 2´mpt´rq-separated by
(4.17), the same would be true of the intervals in Impt`1qpB1q.

The words "almost" and "roughly" cannot be omitted, so we need to force the separa-
tion by trimming B1 to a further pη,m, ℓNq-uniform subset B2 Ă B1. Write

ξ :“ pγ ´ Γq{4, (4.36)
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where Γ was defined in (4.29). In particular, ξ &α,β,γ 1. We also impose the following
additional condition on the constant ℓ P N selected at (4.10):

ℓ ě ξ´1 “ 4
γ´Γ

. (4.37)

Recall that J “ tt ´ r, . . . , tu P N` was the shortest extension (to the left) of a certain
interval J0 P ℓNB1 with the property Rm

B1 pJ q ě 2ζm|J | “ 2ζmpr`1q. Consequently, the
subinterval Jξ “ tt ´ tp1 ´ 2ξqru, . . . , tu does not yet have this property, that is,

Rm
B1 pJξq ă 2ζm|Jξ| “ 2ζmptp1´2ξqru`1q. (4.38)

Here we used that tp1 ´ 2ξqru ă r, which is true because ξr ě ξℓ ě 1 by (4.37).
Now, it follows from a combination of (4.38), and Rm

B1 pJ q ě 2ζm|J | “ 2ζmpr`1q, that

Rm
B1 pJ zJξq ě 2ζmpr´tp1´2ξqruq ě 22ξζmr ě 2ξζmpr`1q “ 2ξζm|J |. (4.39)

We are then prepared to define the desired subset B2 Ă B1. Let Sξ :“ YtJξ : J P N`u,
and apply the "collapsing" Lemma 4.9 to the pm, ℓNq-uniform set B1, and the set of scales
Sξ Ă rℓN s. The product is an pm, ℓNq-uniform subset B2 Ă B1 such that

Rm
B2 psq “

#

Rm
B1 psq, s R Sξ,

1, s P Sξ.

In particular, Rm
B2psq “ Rm

B1 psq for all s P J zJξ, for J P N`, so (4.39) remains valid for
the set B2:

Rm
B2pJ q ě Rm

B1 pJ zJξq ě 2ξζm|J |. (4.40)

In fact, the first inequality is an equation, since Rm
B2psq “ 1 for all s P Jξ Ă Sξ. Curiously,

we will have no use for a "global" lower bound for |B2|, although it would be easy to
deduce from (4.28) that |B2| ě δ2ζ ¨ |B1|. From now on, only the "local" branching esti-
mate (4.40) will be needed, and "global" lower bound |B1| ' δ´β has already been fully
exploited in previous sections (where the relation between γ, α and β appeared).

The point of reducing B1 to B2 was to improve the 2´mpt`1q-separation of distinct in-
tervals I P Impt`1qpB1q to something resembling 2´mpt´rq-separation. This has now been
accomplished. More precisely, assume that J “ tt ´ r, . . . , tu P N`, let I P Impt´rqpB2q,
and and let I1, I2 P Impt`1qpB2q be distinct. Then, since

Rm
B2psq “ 1, s P Jξ “ tt ´ tp1 ´ ξqru, . . . , tu,

the intervals I1, I2 are contained inside distinct intervals

Î1, Î2 P Impt´tp1´ξqruqpB2q Ă Impt´tp1´ξqruqpB1q.

Consequently, using also that tp1 ´ ξqru ě p1 ´ ξqr ´ 1, and ξr ě ξℓ ě 1,

distpI1, I2q ě distpÎ1, Î2q
(4.17)
ě 2´mpt´tp1´ξqruq

ě 2´ξmr´m ¨ 2´mpt´rq

ě 2´2ξmpr`1q ¨ 2´mpt´rq. (4.41)

Inequality (4.41) is more clearly phrased in the following way:
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Lemma 4.42. Let J “ tt ´ r, . . . , tu P N`, ∆J :“ 2´mpt´rq, and δJ :“ 2´mpt`1q. Let
I P Impt´rqpB2q be a dyadic interval of length ∆J intersecting B2, and let I1, I2 P Impt`1qpB2q
be distinct with I1, I2 Ă I . Then,

distpI1, I2q ě
ˆ

δJ

∆J

˙2ξ

¨ |∆J |.

Proof. Observing that δJ {∆J “ 2´mpr`1q, this inequality is just a rewording of (4.41). �

4.8. Elementary projection estimates. The plan is to prove lower bounds for |A1 ` cB2|δ
by, roughly speaking, establishing separately lower bounds for |pA1 X Iq ` cpB2 X Jq|δ ,
where I, J Ă r0, 1q are suitable dyadic intervals intersecting A1, B2, and then combining
the results. In this section, we will prove an auxiliary result which will imply the required
lower bounds for |pA1 X Iq ` cpB2 X Jq|δ . To be more accurate, instead of proving lower
bounds for |pA1 X Iq ` cpB2 X Jq|δ directly, we prove (stronger) lower bounds for the
entropies of suitable measures supported on pA1 X Iq ` cpB2 X Jq (see (4.58)). This is
(only!) done for the reason that such "multi-scale" information about entropy is cleaner
to combine than "multi-scale" information about cardinalities.

We introduce the following notation. Dyadic cubes in R
d of side-length 2´n are de-

noted Dn. If µ is a Borel probability measure on R
d, and n P N, we write

µpnq :“
ÿ

QPDn

µpQq
LdpQq ¨ Ld|Q.

Thus µpnq is a "2´n-discretisation of µ". Note that µpnq P L2pRdq XL8pRdq. We also define
the projections πcpx, yq :“ x ` cy for px, yq P R

2 and c P R.

Lemma 4.43. Let ∆ “ 2´n P 2´N, and let γ, γA, γB P p0, 1s, and C ě 1. Let A,B Ă Dn be
collections of dyadic ∆-intervals with |A| “ ∆´γA and |B| “ ∆´γB . We assume the following
separation from B, for some ξ P p0, 1s:

distpI1, I2q ě ∆ξ for distinct I1, I2 P B. (4.44)

Let

‚ Let µ be a probability measure with sptµ Ă pYAqˆpYBq with the property that µpQq ď
C∆γA`γB for Q P Dn.

‚ Let ν be a probability measure on r´1, 1s such that νpIq ď C∆γ for all I P Dn.

Then,
ż 1

´1

}pπcµqpnq}22 dνpcq . C ¨ maxt∆γA`γB´1,∆γ´1´ξu. (4.45)

Remark 4.46. To help interpreting the upper bound (4.45), let us mention the "trivial"
estimate }pπcµqpnq}22 . ∆γA´1 for every c P r0, 1q. This could be deduced rather easily
from (4.47) below. Therefore, (4.45) beats the trivial bound whenever γ ą γA ` ξ.

Proof of Lemma 4.43. By definition,

pπcµqpnq “
ÿ

IPDn

πcµpIq
∆

¨ L1|I “
ÿ

IPDn

µpπ´1
c pIqq
∆

¨ L1|I . c P r´1, 1s.
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Consequently,

}pπcµqpnq}22 “
ÿ

IPDn

ˆ

µpπ´1
c pIqq
∆

˙2

¨ ∆ “ 1

∆
¨
ÿ

IPDn

pµ ˆ µqptpp, qq : p, q P π´1
c pIquq. (4.47)

Therefore,

∆ ¨
ż 1

´1

}pπcµqpnq}22 dνpcq „
ż 1

´1

ÿ

IPDn

pµ ˆ µqptpp, qq : p, q P π´1
c pIquq dνpcq

“
¨ ż

ÿ

IPDn

1tp,qPπ´1
c pIqupcq dνpcq dµppq dµpqq.

We split the outer integration into

Ωnear :“ tpp, qq : |p ´ q| ă 10∆u and Ωfar :“ tpp, qq : |p ´ q| ě 10∆u.
Regarding Ωnear, we only use the observation that if p, q P A ˆ B and c P r0, 1s are fixed,
then there is at most one interval I P Dn such that p, q P π´1

c pIq. Since µ, ν are probability
measures, and µpBpx, 10∆qq . C∆γA`γB for every x P R

2, this leads to
¨

Ωnear

ÿ

IPDn

1tp,qPπ´1
c pIqupcq dνpcq dµppq dµpqq . pµ ˆ µqpΩnearq . C∆γA`γB . (4.48)

We then consider integral over the domain Ωfar. A basic, easy to verify, observation is
this: if p, q P R

2 are fixed and distinct, then the set

Ipp, qq :“ tc P r0, 1s : p, q P π´1
c pIq for some I P Dnu

is contained in an interval of length . ∆{|p ´ q|, and in particular can be covered by
. |p ´ q|´1 dyadic intervals of length ∆.

We combine this with the following additional observation. Note that all the tubes
π´1
c pIq make an angle ď π{4 with the y-axis (this is attained for c “ 1, and for c “ 0, the

tubes π´1
c pIq are vertical). Therefore,

p, q P A ˆ B, |p ´ q| ě 10∆ and D c P r´1, 1s s.t. p, q P π´1
c pIq ùñ |py ´ qy| ą ∆.

Here py, qy P B refer to the second coordinates of p, q. Namely, if |p ´ q| ě 10∆ and
|py ´ qy| ă ∆, then |px ´ qx| ě 9∆, which makes the pair p, q too "horizontal" to be
contained in any common tube π´1

c pIq, with c P r´1, 1s and I P Dn. Now, recalling our
assumption (4.44) that distpI1, I2q ě ∆ξ for distinct I1, I2 P B, the conclusion |py ´qy| ą ∆

can be amplified substantially: |py ´ qy| ą ∆ implies that py, qy lie in distinct intervals in
B, hence |p ´ q| ě |py ´ qy| ě ∆ξ . Therefore:
¨

Ωfar

ż

ÿ

IPDn

1tp,qPπ´1
c pIqupcq dνpcq dµppq dµpqq “

¨

ΩFAR

ż

Ipp,qq
. . . dνpcq dµppq dµpqq,

with ΩFAR “ tpp, qq : |p ´ q| ě ∆ξu. Now, for every pair pp, qq P ΩFAR, we note that the
set Ipp, qq Ă r0, 1s can be covered by . |p ´ q|´1 ď ∆´ξ dyadic intervals of length ∆, and
for each c P Ipp, qq, there is exactly one I P Dn such that p, q P π´1

c pIq. Therefore,
ż

Ipp,qq

ÿ

IPDn

1tp,qPπ´1
c pIqupcq dνpvq “ νpIpp, qqq . C∆γ´ξ, pp, qq P ΩFAR,
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and consequently
¨

Ωfar

ż

ÿ

IPDn

1tp,qPπ´1
c pIqupcq dνpcq dµppq dµpqq . C∆γ´ξ.

Combining this estimate with (4.48), we arrive at (4.45). �

We will next deduce, as a corollary, an entropy version of Lemma 4.43. For this pur-
pose, we record the following [35, Lemma 3.6] by Shmerkin:

Lemma 4.49. Let µ be a Borel probability measure on R
d. The following relation holds between

the Dn-entropy Hpµ,Dnq of µ, and the L2-norm of µpnq:

Hpµ,Dnq ě dn ´ log }µpnq}22. (4.50)

Here, and below, "log" refers to logarithm in base 2.

Corollary 4.51. Let ∆ “ 2´n P 2´N, and assume that A,B, µ, ν, γA, γB , γ,C, and ξ have the
same meaning as in Lemma 4.43. Then,

ż 1

´1

Hpπcµ,Dnq dνpcq ě n ¨ mintγA ` γB, γ ´ ξu ´ logC ´ logC0, (4.52)

where C0 ą 0 is an absolute constant.

Proof. First combine (4.50) (with d “ 1) and Jensen’s inequality to deduce that
ż 1

´1

Hpπcµ,Dnq dνpcq ě n ´
ż 1

´1

log }pπcµqpnq}22 dνpcq ě n ´ log

ˆ
ż 1

0

}pπcµqpnq}22 dνpcq
˙

.

Here,
ż 1

´1

}pπcµqpnq}22 dνpcq ď C0Cmaxt2np1´γA´γBq, 2np1`ξ´γqu

for some absolute constant C0 ą 0, by Lemma 4.43. These inequalities give (4.52). �

4.9. Projecting pieces of A1 ˆB2. We next put Corollary 4.51 to work in our "real-world"
situation. We recall the following notation from Section 2.1. Assume that µ is a Borel
probability measure on R

d (we will use this for both d “ 1 and d “ 2), and let Q P Dn be
a dyadic cube of side-length 2´n such that µpQq ą 0. Let TQ : Q Ñ r0, 1qd be the rescaling
map with TQpQq “ r0, 1qd. We define the measures

µQ :“ 1
µpQq ¨ µ|Q and µQ :“ TQµQ. (4.53)

In this section, µ “ µA1 ˆ µB2 , where µA1 is the normalised counting measure on A1, and
µB2 is the normalised counting measure on B2 (defined in Section 4.7). For s P rℓN s, we
will write

Dmspµq :“ tI ˆ J : I P ImspA1q and J P ImspB2qu “ tQ P Dms : µpQq ą 0u.
Fix

J “ tt ´ r, . . . , tu P N low
` .

As defined in (4.30), this means that Rm
A1pJ q ď 2Γm|J |, where Γ P ppα ´ βq{p1 ´ βq, γq Ă

rγ{2, γq was the parameter specified in (4.29). For now, it is only important to remember
that γ ´ Γ &α,β,γ 1. Fix intervals I0 P Impt´rqpA1q and J0 P Impt´rqpB2q. Write

AI0 :“ tI 1 P Impt`1qpA1q : I 1 Ă I0u and BJ0 :“ tJ 1 P Impt`1qpB2q : J 1 Ă J0u.
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Then

|AI0| “ Rm
A1pJ q ď 2Γm|J | and |BJ0 | “ Rm

B2pJ q
(4.40)
ě 2ξζm|J |. (4.54)

In particular, we may write

Rm
A1 pJ q “ |AI0| “ 2γAm|J | and |BJ0| “ 2γBm|J | (4.55)

for some 0 ď γA ď Γ and γB ě ξζ . Then, write

Q0 :“ I ˆ J P Dmpt´rqpµq, n :“ m|J | “ mpr ` 1q and ∆ :“ 2´n “ 2´mpt`1q

2´mpt´rq
ě δ.

Consider the normalised measure µQ0 , as in (4.53). The measure µQ0 is supported on a
product of the form pYAq ˆ pYBq “ TQ0

ppYAI0q ˆ pYBJ0qq, where A,B are the families of
∆-intervals obtained by normalising the intervals in AI0 and BJ0 by a factor of 2mpt´rq. It
follows from the pm, ℓNq-uniformity of A1 and B2 that

µQ0pQq ď p|A||B|q´1 “ p|AI0 ||BJ0|q´1 (4.55)“ ∆γA`γB , Q P Dn.

Moreover, the intervals in B satisfy the following separation property by Lemma 4.42:

I1, I2 P B, I1 ‰ I2 ùñ distpI1, I2q ě ∆2ξ.

These facts place us in a position to apply Corollary 4.51 to the measure µQ0 :

ż 1

´1

HpπcµQ0 ,Dnq dνpcq ě n ¨ mintγA ` γB, γ ´ 2ξu ´ log 40 ´ logC0. (4.56)

The parameter "ξ" was initially chosen (see (4.36)) so that 2ξ ď pγ ´ Γq{2. Since γA ď Γ,
this leads to

γ ´ 2ξ ě γA ` pγ ´ Γq ´ 2ξ ě γA ` pγ ´ Γq{2.

Recalling also that γB ě ξζ by (4.54), and ζ P p0, 1q (see (4.22) for a reminder), we find

mintγA ` γB , γ ´ 2ξu ě mintγA ` ξζ, γA ` pγ ´ Γq{2u “ γA ` ξζ. (4.57)

Before the final conclusion, let us recall that n “ mpr ` 1q “ m|J |, and observe that

γA ¨ n “ γA ¨ m|J | (4.55)“ logRm
A1pJ q.

Therefore, (4.56)-(4.57) yield

ż 1

´1

HpπcµQ0 ,Dm|J |q dνpcq ě n ¨ pγA ` ξζq ´ log 40 ´ logC0

“ logRm
A1pJ q ` ξζ ¨ m|J | ´ log 40 ´ logC0 (4.58)

for all J “ tt ´ r, . . . , tu P N low
` and for all Q0 “ I ˆ J P Dmpt´rqpµq.
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4.10. Final multiscale argument. As in the previous section, let µA1 be the normalised
counting measure on the set A1, let µB2 be the normalised counting measure on the setB2,
and let µ “ µA1 ˆ µB2 . Recall also that Dmspµq “ tQ P Dms : µpQq ą 0u for s P rℓN s. We
warn the reader that the notation "Dms" will in this section refer to both dyadic squares
in R

2, and dyadic intervals in R. The meaning should always be clear from context.
The purpose fo this section is to show that there exists c P sptpνq such that

1
ℓmN

¨ Hpπcµ,DℓmN q ě ᾱ ` ξζ ¨ 1
2

rp1 ´ βq ´ pα ´ βq{Γs ´ 2η. (4.59)

Here ᾱ was the constant (defined in (4.1)) such that |A| “ δ´ᾱ. The lower bound in (4.59)
yields a lower bound for |A1 ` cB2|δ, and consequently |A ` cB|δ: since Hpπcµ,DℓmN q ď
log |A1 ` cB2|δ ď log |A ` cB|δ, and ℓmN “ ´ log δ, we deduce from (4.59) that

log |A ` cB|δ
´ log δ

ě ᾱ ` ξζ ¨ 1
2
rp1 ´ βq ´ pα ´ βq{Γs ´ 2η.

If η ą 0 is sufficiently small, depending only on α, β, γ, κ, this implies |A ` cB|δ ě
δ´ᾱ´η “ δ´η|A|. Of course it is important here that the values of ξ “ pγ ´ Γq{4 (see
(4.36)) and ζ ą 0 (see (4.22)) are independent of ᾱ, although they may depend on α. This
proves Theorem 3.28: either (4.2) fails, and |A ` cB|δ ě δ´ǫ|A| with c “ 1 P sptpνq, or
(4.2) holds, and in this case |A` cB|δ ě δ´η|A| for the point c P sptpνq provided by (4.59).

It remains to prove (4.59). This will be accomplished by combining (4.58) with the
following uniform lower bound:

Lemma 4.60. Let J “ ts, . . . , tu Ă rℓN s, and let Q0 P Dmspµq. Then,

HpπcµQ0 ,Dm|J |q ě logRm
A1pJ q ´ 1, c P r0, 1s. (4.61)

Proof. Let I P ImspA1q and J P ImspB2q such that Q0 “ I ˆ J . Then µQ0 “ µI
A1 ˆ µJ

B2 ,
hence πcµ

Q “ µI
A1 ˚ µJ

B2 , and finally

HpπcµQ0 ,Dm|J |q “ HpµI
A1 ˚ µJ

B2 ,Dm|J |q ě
ż

HppµI
A1qx,Dm|J |q dµJ

B2 pxq, (4.62)

where the inequality follows from the concavity of entropy (we discussed this at (2.5)),
and where pµA1qIxpHq :“ µI

A1pH ´ xq for H Ă R. From the definition of entropy, one has

HppµI
A1 qx,Dm|J |q “ HpµI

A1 ,Dm|J | ´ xq,
where Dm|J | ´ x refers to the family of p´xq-translated dyadic intervals. Now, for x P R

fixed, every intervals in Dm|J | can be covered by 2 intervals in Dm|J | ´ x and vice versa.
This implies that

|HpµI
A1 ,Dm|J | ´ xq ´ HpµI

A1 ,Dm|J |q| ď log 2 “ 1, x P R. (4.63)

Furthermore, by definition,

HpµI
A1 ,Dm|J |q “ ´

ÿ

LPDm|J |

µI
A1pLq log µI

A1pLq.

Since A1 is pm, ℓN,Rm
A1 q-uniform, either µI

A1pLq “ 0, or then µI
A1pLq “ Rm

A1pJ q´1 for every
L P Dm|J |. Therefore

HpµI
A1 ,Dm|J q “ Rm

A1pJ q´1.

In combination with (4.62)-(4.63), this yields (4.61). �
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Recall the intervals N low
` Ă N`, defined in (4.30). In this section, the properties of

these intervals will be used via the formula (4.58), and we additionally need to recall that
ÿ

J PN low
`

|J | ě 1
2
rp1 ´ βq ´ pα ´ βq{Γs ¨ ℓN (4.64)

by (4.31). Let P be the partition of rℓN s which is induced by the intervals in N low
` . In other

words, P consists of the intervals in N low
` , and the maximal complementary intervals. We

write
Puseless :“ P zN low

` ,

and we enumerate P “ tJ1,J2, . . . ,Jhu, where 1 ď h ď ℓN . We write Jj “ tsj , . . . , tju
for 1 ď j ď h, so s1 “ 0, th ` 1 “ ℓN , and sj`1 “ tj ` 1 for all 1 ď j ă h. We artificially
define sh`1 :“ ℓN , so the relation sj`1 “ tj ` 1 also remains valid for j “ h.

We abbreviate

Dj :“ Dmsj pµq :“ tI ˆ J : I P ImsjpA1q and J P ImsjpB2qu.
We then apply the entropy lower bound in Lemma 2.3, and its corollary (2.4), to the
partition 0 “ ms1 ă . . . ă msh ă msh`1 “ ℓmN of t0, . . . , ℓmNu, and the 2-Lipschitz
maps πc : R2 Ñ R with c P r´1, 1s:

ż 1

´1

Hpπcµ,DℓmN q dνpcq “
h
ÿ

j“1

ÿ

QPDj

µpQq
ż 1

´1

HpπcµQ,Dmsj`1´msj | D0q dνpcq

ě ´C0h `
h
ÿ

j“1

ÿ

QPDj

µpQq
ż 1

´1

HpπcµQ,Dmptj´sj`1qq dνpcq. (4.65)

Above, tj ´ sj ` 1 “ |Jj|. For Jj P N low
` , and Q P Dj , we recall from (4.58) that

ż 1

´1

HpπcµQ,Dm|Jj |q dνpcq ě logRm
A1pJjq ` ξζ ¨ m|Jj| ´ log 40 ´ logC0.

For J P Puseless we have to settle with the estimate
ż 1

0

HpπcµQ,Dm|Jj |q dνpcq ě logRm
A1pJjq ´ 1

from Lemma 4.60. Plugging these bounds into (4.65) (and redefining C0 as C0 ` 1) yields
ż 1

´1

Hpπcµ,DℓmN q dνpcq ě ´p40 ` C0qh `
ÿ

J PP

logRm
A1pJ q ` ξζ

ÿ

J PN low
`

|J |

(4.64)
ě log |A1| ` ξζ ¨ 1

2
rp1 ´ αq ´ pα ´ βq{Γs ¨ ℓmN ´ hp40 ` C0q.

Recalling that |A1| ě δη|A| ě 2pᾱ´ηqℓmN , there exists c P sptpνq with

HℓmN pπcµq ě
`

ᾱ ` ξζ ¨ 1
2
rp1 ´ αq ´ pα ´ βq{Γs ´ η

˘

´ hp40`C0q
ℓmN

Here hp40 ` C0q{pℓmNq ď p40 ` C0q{m0 ď η by the choice of m0 at (4.10), and since we
chose m ě m0 in Proposition 4.12. Therefore we have established (4.59), and completed
the proof of Theorem 3.28.
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5. HAUSDORFF DIMENSION ESTIMATES

The purpose of this final section is to reduce Theorem 1.6 to Theorem 1.8, and to use
Theorem 1.6 to prove the Hausdorff dimension result, Corollary 1.7.

Remark 5.1. The threshold γ ą pα ´ βq{p1 ´ βq familiar from Theorems 1.6 and 1.8 plays
no particular role in this section: if we knew that Theorem 1.8 holds for all γ P pτ, 1s for
some parameter τ “ τpα, βq P p0, 1q, then the argument would below would show that
Theorem 1.6 also holds for γ ą τ . This is relevant to know if one eventually manages to
solve Conjecture 1.5, and proves Theorem 1.8 with threshold τpα, βq “ α ´ β.

5.1. Reducing Theorem 1.6 to Theorem 1.8: outline. The reduction from Theorem 1.6
to Theorem 1.8 proceeds in several stages. First, in Section 5.2, we prove the following
toy version of Theorem 1.6: instead of allowing for general subsets of the form G Ă
A ˆ B with |G| ě δǫ|A||B|, this version (Theorem 5.3) only treats subsets of the form
G “ A ˆ B1 with |B1| ě δǫ|B|. The conclusion is that there exists c P sptpνq such that
|A ` cB1| ě δ´ǫ|A| for all B1 Ă B with |B1| ě δǫ|B|.

Even the toy version, Theorem 5.3, is not proved directly: we will pass through a toy-
toy version, Theorem 5.4, where we are first allowed to replace A ˆ B by a subset of
the form A ˆ B̄, and then the conclusion explained above is established for A ˆ B̄ in
place of A ˆ B. Fortunately, the passage between the toy and toy-toy versions can be
accomplished by a formal exhaustion argument, which I learned from He’s paper [17].

The toy-toy version is eventually deduced, in Section 5.4, by a direct argument from
the main Theorem 1.8. This is the heart of the matter. Instead of giving details here, I
mention a key difficulty: this reduction, and various other steps of the argument would
be simpler if we a priori knew that

|A ` A| « |A| and |B ` B| « |B|. (5.2)

(In this heuristic discussion, I will leave the meaning of "«" to the reader’s imagination.)
In the case |A| « |B|, treated by Bourgain in [5], this is automatic: if |A`cB|δ « |A| « |B|
for some c P r1

2
, 1s, then (5.2) holds by Plünnecke’s inequality. However, in our situa-

tion B is typically much smaller than A, and now the property |A ` cB|δ « |A| implies
neither property in (5.2). Nevertheless, (5.2) is needed, technically because Lemma 5.16
is useless without (5.2). Roughly speaking, Theorem 5.4 is proved by making a counter
assumption, and using it to generate new sets Ā ‰ A and B̄ ‰ B which satisfy the origi-
nal hypotheses, and additionally (5.2). At some level, this argument is reminiscent of the
proof of the asymmetric Balog-Szemerédi-Gowers theorem in [40] (see Theorem 5.38).

Once we have the toy version, Theorem 5.3, at our disposal, it remains to deduce
Theorem 1.6 from Theorem 5.3. This step is based on the asymmetric Balog-Szemerédi-
Gowers theorem – unlike the other steps. We make a counter assumption that for every
c P sptpνq there exists a subset Gc Ă Aˆ B with |G| ' |A||B| such that |πcpGq|δ / |A|. By
the B-S-G theorem, this yields for every c P sptpνq subsets Ac Ă A and Bc Ă B such that
|Ac| ' |A|, |Bc| ' |B|, and |Ac ` cBc|δ / |A|. With the help of probabilistic arguments,
and the Plünnecke-Ruzsa inequality (Lemma 3.3), this allows us to construct a new δ-
separated set H Ă r0, 1s with |H| / |A|, and a subset C Ă sptpνq with νpCq ' 1, such that
|H ` cBc|δ / |H| for all c P C . This violates the first toy version, Theorem 5.3, applied to
H,B and finally concludes the proof of Theorem 1.6.
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5.2. A toy version. Theorem 1.6 claims the existence of c P sptpνq such that |πcpGq| ě
δ´ǫ|A| for all G Ă AˆB with |G| ě δǫ|A||B|. A toy problem is to find c P sptpνq such that
|A ` cB1|δ ě δ´ǫ|A| for all B1 Ă B with |B1| ě δǫ|B|. Instead of approaching Theorem 1.6
directly, we will first solve this toy problem:

Theorem 5.3. Let 0 ă β ď α ă 1 and κ ą 0. Then, for every γ P ppα ´ βq{p1 ´ βq, 1s, there
exist ǫ0, ǫ, δ0 P p0, 1

2
s, depending only on α, β, γ, κ, such that the following holds. Let δ P 2´N

with δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s satisfy the following hypotheses:

(A) |A| ď δ´α.
(B) |B| ě δ´β , and B satisfies the following Frostman condition:

|B X Bpx, rq| ď rκ|B|, δ ď r ď δǫ0 .

Further, let ν be a Borel probability measure with sptpνq Ă r0, 1s, and satisfying the Frostman
condition νpBpx, rqq ď rγ for x P R and 0 ă r ď δǫ0 . Then, there exists c P sptpνq such that if
B1 Ă B satisfies |B1| ě δǫ|B|, then |A ` cB1| ě δ´ǫ|A|.

5.3. Reduction to a weaker toy theorem. Even Theorem 5.3 is hard to prove with a direct
assault. We will first need to reduce it to an even weaker version. In the statement,
we use the following notation (slightly adapted) from He’s paper [17]. Given two sets
A,B Ă r0, 1s X pδ ¨ Zq, we write

EpA | B, ǫq :“ tc P R : DB1 Ă B such that |B1| ě δǫ|B| and |A ` cB1|δ ă δ´ǫ|A|u.

Theorem 5.4. Let 0 ă β ď α ă 1 and κ, θ ą 0. Then, for every γ P ppα ´ βq{p1 ´ βq, 1s, there
exist ǫ0, ǫ, δ0 P p0, 1

2
s, depending only on α, β, γ, κ, such that the following holds. Let δ P 2´N

with δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s satisfy the following hypotheses:

(A) |A| ď δ´α.
(B) |B| ě δ´β , and B satisfies the following Frostman condition:

|B X Bpx, rq| ď rκ|B|, δ ď r ď δǫ0 .

Further, let ν be a Borel probability measure with sptpνq Ă r0, 1s, and satisfying the Frostman
condition νpBpx, rqq ď rγ for x P R and 0 ă r ď δǫ0 . Then, there exists a subset B1 Ă B such
that νpEpA | B1, ǫqq ď δǫ.

I learned this reduction from the paper of He [17, Proposition 25], and his proof works
here, up to modifying the notation. The full details are recorded below nonetheless.

Proof of Theorem 5.3 assuming Theorem 5.4. Let α, β, γ, κ be the parameters given in Theo-
rem 5.3, so that γ ą pα ´ βq{p1 ´ βq. Our task is to find the constants ǫ, ǫ0, δ0 P p0, 1

2
s,

depending only on α, β, γ, κ. Start by applying Theorem 5.4 with parameters α, β̄, γ, κ̄,
where κ̄ P p0, κq is arbitrary, and also and β̄ ă β is arbitrary with the property that the
key inequality

γ ą pα ´ β̄q{p1 ´ β̄q
remains valid. Let ǭ, ǭ0, δ̄0 P p0, 1

2
s be the constants given by Theorem 5.4, associated to

the parameters α, β̄, γ, κ̄. We define

ǫ0 :“ ǭ0 and ǫ :“ min

"

ǭ

2
,

pκ ´ κ̄qǭ0
4

,
β ´ β̄

2

*

. (5.5)
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We assume that δ0 ď δ̄0, and there will be a few additional requirements, where for
example δ ď δ0 needs to be taken small enough relative to the difference ǭ ´ ǫ. I will not
gather these requirements together; they will be pointed out where they appear.

Let δ P 2´N with δ ď δ0, and let A,B, ν be the objects from Theorem 5.3, satisfying the
assumptions of that theorem with constants α, β, κ, γ, and ǫ0, δ0 as above. In particular,

|B| ě δ´β and |B X Bpx, rq| ď rκ|B| for x P R and δ ď r ď δǫ0 . (5.6)

Evidently A,B, ν also satisfy the hypotheses of Theorem 5.4 with constants α, β̄, γ, κ{2,
and ǭ0. We now perform an "exhaustion" argument to construct a finite sequence of
disjoint subsets B1, . . . , BN Ă B with the property

νpEpA | Bj, ǭqq ď δǭ, 1 ď j ď N. (5.7)

Let B1 Ă B be the set given initially by Theorem 5.4. We then assume inductively that we
have already constructed disjoint B1, . . . , Bn Ă B for some n ě 1. There are two options:

ˇ

ˇ

ˇ
B z

n
ď

j“1

Bj

ˇ

ˇ

ˇ
ă δ2ǫ|B| or

ˇ

ˇ

ˇ
B z

n
ď

j“1

Bj

ˇ

ˇ

ˇ
ě δ2ǫ|B|. (5.8)

In the former case, the inductive construction terminates, and we define N :“ n. In the
latter case, we apply Theorem 5.4 to the objects A, ν, and B1 :“ B z Ťn

j“1Bj . This is

legitimate, because |B1| ě δ2ǫ|B| ě δ´β´2ǫ ě δ´β̄ , and

|B1 X Bpx, rq|
(5.6)
ď rκ|B| ď δ´2ǫrκ|B1|

(5.5)
ď rκ̄|B1|, x P R, δ ď r ď δǫ0 “ δǭ0 .

Therefore A,B1, ν satisfy the hypotheses of Theorem 5.4 with constants α, β̄, κ̄, γ, ǭ0. Con-
sequently, there exists a further subset Bn`1 Ă B1 “ B z Ťn

j“1Bj with the property
νpEpA | Bn`1, ǭqq ď δǭ. This completes the inductive construction of the sequence
B1, . . . , BN . The construction terminates in ď δ´ǭ steps, because the sets Bj satisfy
|Bj | ě δ´ǭ. Indeed, since νpEpA | Bj, ǭqq ă 1, there exists c P sptpνq z EpA | Bj, ǭq,
and then |A||Bj | ě |A ` cBj |δ ě δ´ǭ|A|.

When the inductive procedure eventually terminates, we write B0 :“ ŤN
j“1Bj . By

(5.8), we have |B zB0| ă δ2ǫ|B|. Now, note that the claim of Theorem 5.3 is equivalent to
proving that sptpνq z EpA | B, ǫq ‰ H. We will prove this by showing that EpA | B, ǫq has
small ν measure. The first step is to establish the following inclusion:

EpA | B, ǫq Ă
ď

J

č

jPJ

EpA | Bj , ǭq, (5.9)

where the index set J runs over all subsets of t1, . . . , Nu with
ř

jPJ |Bj | ě δǫ|B|{4. The
proof is nearly verbatim the same as in [17, Proposition 25], but I record the details here
for completeness. If c P EpA | B, ǫq, then by definition there exists a subset Bc Ă B with
|Bc| ě δǫ|B| and |A ` cBc|δ ă δ´ǫ|A|. Let J :“ t1 ď j ď N : |Bc X Bj| ě δǭ|Bj |u.
Then c P EpA | Bj , ǭq for all j P J , since B1

j :“ Bc X Bj Ă Bj satisfies |B1
j| ě δǭ|Bj | and

|A ` cB1
j |δ ă δ´ǫ|A| ď δ´ǭ|A|. This proves (5.9), once we verify that

ř

jPJ |Bj | ě δǫ|B|{4.
To see this, recall that |B zB0| ď δ2ǫ|B|. This implies that Bc has large intersection with

B0 (assuming that δ ą 0 is sufficiently small):

|Bc X B0| ě 1
2

¨ δǫ|B|.
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Then, if δ ą 0 is small enough, and recalling that ǫ ď ǭ{2, we have

1
2

¨ δǫ|B| ď |Bc X B0| “
N
ÿ

j“1

|Bc X Bj | ď
ÿ

jRJ

δǭ|Bj| `
ÿ

jPJ

|Bj| ď 1
4

¨ δǫ|B| `
ÿ

jPJ

|Bj |.

Rearranging,
ř

jPJ |Bj | ě δǫ|B|{4. We have now established the inclusion (5.9).
Finally, it follows from (5.9) and [17, Lemma 20] that

νpEpA | B, ǫqq ď ν

˜

ď

J

č

jPJ

EpA | Bj , ǭq
¸

ď 4δǭ´ǫ ă 1, (5.10)

assuming once more that δ ą 0 is small enough in the final inequality. The proof of [17,
Lemma 20] is, again, so short that we provide the details for the reader’s convenience. If
c P Ť

J

Ş

jPJ EpA | Bj, ǭq, then
řN

j“1p|Bj |{|B|q ¨ 1EpA|Bj ,ǭqpcq ě δǫ{4. Consequently,

ν

˜

ď

J

č

jPJ

EpA | Bj, ǭq
¸

ď 4δ´ǫ
N
ÿ

j“1

|Bj |
|B| ¨ νpEpA | Bj, ǭqq

ď 4δ´ǫ max
1ďjďN

νpEpA | Bj , ǭqq
(5.7)
ď 4δ´ǫ`ǭ.

This concludes the proof of Theorem 5.3. �

Remark 5.11. The proof above demonstrated that in order to deduce Theorem 5.3 for a
fixed constant "κ" from Theorem 5.4, one only needs to apply Theorem 5.4 for any value
κ̄ ă κ arbitrarily close to κ (but the value of the constant ǫ Ñ 0 as κ̄ Õ κ).

5.4. Proof of the weaker toy theorem. In this section, we prove Theorem 5.4 by reducing
it to Theorem 1.8, which we have already established. We will need a few auxiliary
results. One is the Plünnecke-Ruzsa inequality for different summands, Lemma 3.3 (only
with ǫ “ 1

2
). Another auxiliary result will concern the existence of tight subsets:

Definition 5.12. For τ, T ą 0 and N P N, a set A Ă δ ¨ Z is called pτ, T,Nq-tight if

max
1ďkďN

|kA|
|kA1| ď T for all A1 Ă A with |A1| ě δτ |A|.

It will be useful to observe that if A is pτ, T,Nq-tight, and 0 ă τ 1 ď τ , then A is also
pτ 1, T,Nq-tight, simply because there are fewer sets A1 Ă A to consider.

Lemma 5.13. Let τ ą 0, N P N, and let A Ă pδ ¨ Zq X r0, 1s be a set with |A| ě δ´N2τ . Then,

there exists a pτ, 2δ´1{N , Nq-tight subset A1 Ă A of cardinality |A1| ě δN
2τ |A|.

Proof. We find a sequenceA “: A0 Ą A1 Ą . . . Ą AN2 as follows. Assuming that Aj´1 has
already been selected, and 1 ď j ď N2, we let Aj Ă Aj´1 be a subset with |Aj | ě δτ |Aj´1|
such that the quantity

max
1ďkďN

|kAj´1|{|kA1|

is maximised among all subsets A1 Ă Aj´1 with |A1| ě δτ |Aj´1|. Thus, we see that if
max1ďkďN |kAj´1|{|kAj | ď T , then Aj´1 is pτ, T,Nq-tight.

Observe that
|AN2 | ě δN

2τ |A| ě 1 and |NA| ď Nδ´1. (5.14)
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Writing T :“ 2δ´1{N , we now claim that there exists an index j P t1, . . . , N2u with

max
1ďkďN

|kAj´1|{|kAj | ď T. (5.15)

Indeed, if this fails, then by the pigeonhole principle there exists a fixed choice k P
t1, . . . , Nu, and n indices j1, . . . , jN P t1, . . . , N2u such that the converse inequality

|kAji | ă T´1|kAji´1|, 1 ď i ď N,

holds. Since Aj Ă Aj´1, the inequality |kAj | ď |kAj´1| holds for every index j P
t1, . . . , N2u, and |kAji | ă T´1|kAji´1| for the n special indices ji P t1, . . . , N2u. This
forces

1
(5.14)
ď |kAN2 | ď |kAjN | ă T´N |kA|

(5.14)
ď p2´Nδq ¨ pNδ´1q ď 1,

a contradiction. Now A1 :“ Aj´1 Ă A, as in (5.15), is pτ, T,Nq-tight, and |A1| ě |AN2 | ě
δN

2τ |A|. This completes the proof of the lemma. �

Finally, we will need the following lemma, which is a δ-discretised version of [29,
Lemma 3.1], or alternatively a version of Bourgain’s computations [5, (7.18)-(7.19)] for
two different sets (the presence of two different sets adds no difficulties):

Lemma 5.16. Let C1, C2, C3 ą 0, and assume that A,B Ă δ ¨ Z are sets with |A ` A| ď C1|A|
and |B ` B| ď C2|B|. Let moreover c P R, and let G Ă A ˆ B be an arbitrary subset with
|G| ě |A||B|{C3. Then |A ` cB|δ . C1C2C3|πcpGq|δ .

Proof. Note that

|A ` cB|δ .
ÿ

tPδ¨Z

1pA`cBqpδqptq.

Fix t P pδ ¨ Zq X pA ` cBqpδq and find pa, bq P A ˆ B such that distpt, πcpa, bqq ď δ. Then

distpt, πcp´G ` px, yqqq ď distpt, πcpa, bqq ď δ, px, yq P G ` pa, bq.
Moreover, any candidates px, yq P G ` pa, bq satisfy

px, yq P G ` pa, bq Ă pA ˆ Bq ` pA ˆ Bq “ pA ` Aq ˆ pB ` Bq,
so there are ě |G ` pa, bq| “ |G| points px, yq P pA ` Aq ˆ pB ` Bq with the property
distpt, πcp´G ` px, yqqq ď δ. It follows that

1pA`cBqpδqptq “ 1 ď 1

|G|
ÿ

px,yqPpA`AqˆpB`Bq

1πcp´G`px,yqqpδqptq.

Since |πcpGq|δ „ |πcp´G ` px, yqq|δ for every px, yq P pδ ¨ Zq2, we have

|A ` cB|δ .
1

|G|
ÿ

px,yqPpA`AqˆpB`Bq

ÿ

tPδ¨Z

1πcp´G`px,yqqpδqptq

.
|A ` A||B ` B||πcpGq|δ

|G| ď C1C2C3|πcpGq|δ ,

as claimed. �

We are now ready to carry out the main task in this section, namely reducing the proof
of Theorem 5.4 to Theorem 1.8, which we repeat here for the reader’s convenience:
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Theorem 5.17. Let 0 ă β ď α ă 1 and κ ą 0. Then, for every γ P ppα ´ βq{p1 ´ βq, 1s, there
exist ǫ0, ǫ, δ0 P p0, 1

2
s, depending only on α, β, γ, κ, such that the following holds. Let δ P 2´N

with δ P p0, δ0s, and let A,B Ă pδ ¨ Zq X r0, 1s satisfy the following hypotheses:

(A) |A| ď δ´α.
(B) |B| ě δ´β , and B satisfies the following Frostman condition:

|B X Bpx, rq| ď rκ|B|, δ ď r ď δǫ0 .

Further, let ν be a Borel probability measure with sptpνq Ă r0, 1s, and satisfying the Frostman
condition νpBpx, rqq ď rγ for x P R and δ ď r ď δǫ0 . Then, there exists a point c P sptpνq such
that

|A ` cB|δ ě δ´ǫ|A|.
Proof of Theorem 5.4 assuming Theorem 5.17. Fix the parameters 0 ă β ď α ă 1, κ ą 0,
and γ P ppα ´ βq{p1 ´ βq, 1s, as in Theorem 5.4. Start by applying Theorem 5.17 with the
following slightly modified parameters:

0 ă β̄ ď ᾱ ă 1, κ̄ P p0, κq, and γ̄ ą pᾱ ´ β̄q{p1 ´ β̄q,
where ᾱ ą α and β̄ ă β and γ̄ ă γ are arbitrary choices such that the final inequality
is valid. The choice of κ̄ P p0, κq is arbitrary. As usual, the parameters ᾱ, β̄, γ̄ should
be viewed as functions of α, β, γ, but we leave finding explicit expressions to the reader.
Any future dependence on ᾱ, β̄, γ̄ will, in fact, be a dependence on α, β, γ. Then, let

ǭ0, ǭ, δ̄0 ą 0

be the constants given by Theorem 5.17, which only depend on ᾱ, β̄, κ̄, γ̄, and such that
the conclusion of Theorem 5.17 is valid. Our task is to find constants ǫ, ǫ0, δ0 ą 0, which
may depend on all of the constants α, ᾱ, β, β̄, γ, γ̄, κ, κ̄, ǭ0, ǭ, δ̄0, such that Theorem 5.4 is
valid with constants α, β, γ, κ. The choice of ǫ0 is particularly simple:

ǫ0 “ ǭ0. (5.18)

For δ0, we will need that δ0 ď δ̄0, and there will be an additional dependence on ᾱ, ǭ,
which will be clarified during the proofs of (5.28) and (5.34). To define the constant
ǫ P p0, 1

2
s, we first introduce an auxiliary natural number N P N satisfying

3

N
` 1

log2 N
ď ǭ{2. (5.19)

Then, we choose ǫ ą 0 so small that

N4N`1ǫ ď min
 

ǭ0pκ ´ κ̄q, β ´ β̄, ᾱ ´ α
(

and ǫ ď ǭ0pγ ´ γ̄q. (5.20)

We now claim that Theorem 5.4 holds with the constants ǫ, ǫ0, δ0 (given the parameters
α, β, γ, κ). Let δ P 2´N with δ ď δ0, and let A,B, ν be objects satisfying the hypotheses
of Theorem 5.4 with constants α, β, γ, κ, ǫ0. Thus A,B Ă r0, 1s X pδ ¨ Zq, |A| ď δ´α, and
νpBpx, rqq ď rγ for x P R and δ ď r ď δǫ0 “ δǭ0 . Further, |B| ě δ´β , and

|B X Bpx, rq| ď rκ|B|, x P R, δ ď r ď δǫ0 “ δǭ0 . (5.21)

The claim is that there exists a subset B1 Ă B such that νpEpA | B1, ǫqq ď δǫ. We proceed
by making a counter assumption:

Counter assumption. νpEpA | B1, ǫqq ą δǫ for all B1 Ă B.
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We will use our Counter assumption and Lemmas 5.13 and 5.16 to construct a se-
quence tHnuNn“1 Ă δ ¨Z with |Hn| ď δ´ᾱ. The point will be, omitting all technical details,
that once this sequence has been constructed, we will find an index n P t0, . . . , N ´ 1u
with the property that |Hn ` cB| ă δ´ǭ|Hn| for all c P sptpνq. This (or the more technical
version of it) will violate Theorem 5.17, and show that the Counter assumption is false.

Let tτnuNn“0 be the finite decreasing sequence

τn :“ N4N´3nǫ, 0 ď n ď N. (5.22)

While we construct the sets Hn, we will simultaneously find elements c1, c2, . . . , cN P
C “ sptpνq, subsets Cn Ă C of measure νpCnq ě δǫ, and a decreasing sequence B “:

B0 Ą B1 Ą . . . Ą BN with the following three properties:
(1) |Bn`1| ě δτn |Bn| for 0 ď n ď N ´ 1,
(2) |A ` cnBn| ă δ´ǫ|A| for 1 ď n ď N ,
(3) Bn is pτn, 2δ1{N , Nq-tight for 1 ď n ď N .

In particular, it follows from property (1) that

|Bn| ě δNτ0 |B| ě δN
4N`1ǫ|B|, 0 ď n ď N. (5.23)

To initialise the definition of the sets Bn, Cn,Hn, and the elements cn P C , set B0 :“ B

and H0 :“ H. (the properties (2)-(3) do not concern the case n “ 0). Assume that the
sets Bn have already been constructed for some 0 ď n ď N ´ 1, and recall the notation
pHqδ :“ pδ ¨ Zq X Hpδq for arbitrary H Ă R. By the Counter assumption applied to the
set B1 :“ Bn Ă B, there now corresponds a subset

Cn`1 :“ EpA | Bn, ǫq X C Ă C (5.24)

of measure νpCn`1q ě δǫ with the property that for all c P Cn`1, there is a further subset
B̄c Ă Bn of cardinality |B̄c| ě δǫ|Bn| such that |A ` cB̄c| ă δ´ǫ|A|. We will define Hn`1

as either Hn`1 :“ Hn ` Hn Ă δ ¨ Z, or

Hn`1 :“ Hn ` pc ¨ NBcqδ Ă δ ¨ Z, (5.25)

where c P Cn`1, and Bc Ă B̄c Ă Bn is a certain set satisfying the constraints (1)-(3).
It turns out that subsets of this kind exist for all c P Cn`1: this will be proved shortly,
but should be taken for granted for now. For every c P Cn`1, we then pick the subset
Bc Ă B̄c Ă Bn which satisfies (1)-(3), and maximises the number |Hn ` c ¨ NBc|δ, among
all possible c P Cn`1, and subsets Bc Ă B̄c satisfying (1)-(3). Once the optimal c P Cn`1

and Bc Ă B̄c Ă Bn have been located, we finally check if

|Hn ` c ¨ NBc|δ ě |Hn ` Hn|.
If this happens, then Hn`1 is defined as in (5.25). Otherwise Hn`1 :“ Hn `Hn. Note that
in both cases

|Hn ` Hn| ď |Hn`1|. (5.26)

If Hn was defined by (5.25), for some

cn`1 :“ c P Cn`1,

then we set Bn`1 :“ Bc Ă Bn, where Bc is the maximising set found above. If Hn`1 “
Hn ` Hn, we simply define Bn`1 :“ Bn, and cn`1 :“ cn. Note that in all cases the
properties (1)-(3) are satisfied, and Bn`1 is pτn`1, 2δ

1{N , Nq-tight. This is even true if
Bn`1 was defined via the "second scenario" as Bn`1 “ Bn: indeed, since H0 “ H, this



ON THE DISCRETISED ABC SUM-PRODUCT PROBLEM 45

is only possible if n ě 1, and then we already know that Bn is pτn, 2δ1{N , Nq-tight. Then
Bn`1 “ Bn is also pτn`1, 2δ

1{N , Nq-tight simply because τn`1 ď τn.
This completes the inductive definition of the sets Bn, Cn,Hn, and elements cn P C ,

for 1 ď n ď N . Note that Hn Ă pδ ¨Zq X r0, Nns by a straightforward induction, so |Hn| ď
2Nnδ´1. Therefore, by the pigeonhole principle, there exists an index n P t0, . . . , N ´ 1u
such that

|Hn ` Hn|
(5.26)
ď |Hn`1| ď p2Nnδ´1q1{N |Hn| ď 2Nδ´1{N |Hn|. (5.27)

Since H0 “ H ‰ H1, the middle inequality cannot be satisfied with n “ 0, and we see
that actually n P t1, . . . , N ´ 1u. We now claim that, for this particular index n, fixed for
the remainder of the argument, it holds that

|Hn ` cBn|δ ă δ´ǭ|Hn|, c P Cn`1, (5.28)

assuming that the upper bound δ0 ą 0 for δ is sufficiently small, depending only on
N (hence "ǭ" by our choice (5.19)). To see this, we first record that 2kBn Ă 2NB Ă
pδ ¨ Zq X r0, 2N s for all 1 ď k ď N , so by another application of the pigeonhole principle,
there exists an index 0 ď k ď log2pN ´ 1q such that

|2k`1Bn| ď p2N`1δ´1q1{ log2 N |2kBn|. (5.29)

We also fix this index k P t0, . . . , log2pN ´ 1qu for the remainder of the argument.
Now, to prove (5.28), fix c P Cn`1 Ă r0, 1s, and recall the subset B̄c Ă Bn defined right

below (5.24), satisfying |B̄c| ě δǫ|Bn| and |A ` cB̄c| ă δ´ǫ|A|. We use Lemma 5.13 to find
a pτn`1, 2δ

´1{N , Nq-tight subset Bc Ă B̄c Ă Bn of cardinality

|Bc| ě δN
2τn`1 |B̄c|

(5.22)
ě δN

2N4N´3pn`1qǫ`ǫ|Bn|
ě δpN4N´3n´1`1qǫ|Bn|
ě δN

4N´3nǫ|Bn| “ δτn |Bn|. (5.30)

We used the elementary inequality N4N´3n´1 ` 1 ď N4N´3n, for N ě 2 and 0 ď n ď N .
A combination of (5.30), the tightness of Bc, and the inequality |A ` cBc|δ ă δ´ǫ|A|,

shows that Bc Ă B̄c Ă Bn satisfies all the requirements (1)-(3), and is therefore a competi-
tor in the definition of Hn`1. In particular, now we have shown that such competitors
exist for all c P Cn`1. Moreover, since 2k ď N (as in (5.29)), it follows that

|Hn ` c ¨ 2kBc|δ . |Hn ` c ¨ NBc|δ . |Hn`1|
(5.27)
ď Nδ´1{N |Hn|. (5.31)

With this bound in mind, we next plan to show that |Hn ` cBn|δ (the left hand side of
(5.28)) is controlled by |Hn ` c ¨ 2kBc|δ. To achieve this, we apply Lemma 5.16 to the
sets Hn, 2

kBn Ă δ ¨ Z, and the subset G “ Hn ˆ 2kBc Ă Hn ˆ 2kBn which satisfies
|G| “ |Hn||2kBn|{C3 with constant C3 “ |2kBn|{|2kBc|:

|Hn ` cBn|δ . |Hn ` c ¨ 2kBn|δ

.
|Hn ` Hn|

|Hn| ¨ |2k`1Bn|
|2kBn| ¨ |2kBn|

|2kBc|
¨ |Hn ` c ¨ 2kBc|δ. (5.32)

Apart from (5.31), the individual factors are bounded from above as follows:

‚ |Hn ` Hn|{|Hn| ď 2Nδ´1{N by (5.27),
‚ |2k`1Bn|{|2kBn| ď p2N`1δ´1q1{ log2 N by (5.29),
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‚ |2kBn|{|2kBc| ď 2δ´1{N by the pτn, 2δ´1{N , Nq-tightness of Bn, and by (5.30).

Plugging these estimates into (5.32) yields

|Hn ` cBn|δ .N δ´3{N´1{ log2 N |Hn|
(5.19)
ď δ´ǭ{2|Hn|, c P Cn`1. (5.33)

This completes the proof of (5.28), if δ ą 0 is small enough depending on ǭ, N , both of
which only depend on α, β, γ, κ.

We next plan to use (5.28) to contradict Theorem 5.17 with parameters ᾱ, β̄, γ̄, κ̄, and
the objects Hn, Bn, and ν̄ “ νpCn`1q´1 ¨ ν|Cn`1

. The first task it to use the Plünnecke-
Ruzsa inequality, Lemma 3.3, to show that

|Hn| ď δ´ᾱ, (5.34)

assuming that δ ą 0 is sufficiently small in terms of N, ᾱ. Indeed, note that Hn can be
written as a sum of ď Nn ď NN sets of the form pcmBmqδ, for some 1 ď m ď n. Each of
these sets individually satisfies |A ` cmBm|δ ă δ´ǫ|A|. We may therefore infer that

|Hn| .N δ´2NN ǫ|A| ď δ´2NN ǫ´α.

from Lemma 3.3. This inequality implies (5.34) for small enough δ ą 0, recalling our
choice of constants at (5.20).

Recall from (5.21) that the set B satisfies a Frostman condition with exponent κ:

|B X Bpx, rq| ď rκ|B|, x P R, δ ď r ď δǫ0 .

Since Bn Ă B, and |Bn| ě δN
4N`1ǫ|B| by (5.23) we deduce that Bn satisfies a Frostman

condition with parameters ǭ0 “ ǫ0 (recall (5.18)) and κ̄:

|Bn X Bpx, rq| ď δ´N4N`1ǫrκ|Bn|
(5.20)
ď rκ̄|Bn|, x P R, δ ď r ď δǭ0 . (5.35)

Moreover, since |B| ě δ´β by assumption (see above (5.21)), we have

|Bn| ě δN
4N`1ǫ|B|

(5.20)
ě δ´β̄ . (5.36)

Finally, we verify that the probability measure ν̄ “ νpCn`1q´1 ¨ν|Cn`1
satisfies a Frostman

condition with exponent γ̄. Since ν itself satisfies the Frostman condition νpBpx, rqq ď rγ

for all δ ď r ď δǫ0 “ δǭ0 , and νpCn`1q ě δǫ, we see that

ν̄pBpx, rqq ď δ´ǫνpBpx, rqq ď δ´ǫrγ
(5.20)
ď rγ̄ , x P R, δ ď r ď δǭ0 .

We have now reached a situation which violates Theorem 5.17 for the choice of parame-
ters ᾱ, β̄, κ{2, γ̄ . The objects Hn, Bn, ν̄ satisfy all the hypotheses by (5.34)-(5.36), but nev-
ertheless |Hn ` cBn|δ ă δ´ǭ|Hn| for all c P Cn`1 according to (5.28), where Cn`1 is a set
of full ν̄ measure. Therefore the Counter assumption is false, and the proof of Theorem
5.4 is complete.

To be precise, we have cut one corner: Hn may not be a subset of r0, 1s: we only know
that Hn Ă r0, Nns Ă r0, NN s. However, one can easily fix this by picking the most Hn-
populous unit interval rr, r ` 1s Ă r0, Nns, which contains ě N´N |Hn| ě δǭ{4|Hn| points
of Hn if δ ą 0 is small enough, and replacing Hn by H̄n :“ Hn X rr, r ` 1s ´ tru Ă r0, 1s.
After replacing Hn with H̄n, the estimate (5.33) remains valid with constant δ´3ǭ{4 instead
of δ´ǭ{2. This is still good enough to imply (5.28). �
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Remark 5.37. In order to deduce Theorem 5.4 for a fixed exponent "κ" from Theorem 5.17,
the argument above only needed to apply Theorem 5.17 with exponent κ̄ ă κ arbitrarily
close to κ (but ǫ Ñ 0 in Theorem 5.4 as κ̄ Õ κ).

5.5. Proof of the main theorem. In this section, we finally prove Theorem 1.6 by reduc-
ing it to its toy version, Theorem 5.3. We will need the asymmetric Balog-Szemerédi-
Gowers theorem, see the book of Tao and Vu, [40, Theorem 2.35]. We state the result in
the following slightly weaker form (following Shmerkin’s paper [34, Theorem 3.2]):

Theorem 5.38 (Asymmetric Balog-Szemerédi-Gowers theorem). Given ζ ą 0, there exists
ξ ą 0 such that the following holds for δ P 2´N small enough. Let A,B Ă pδ ¨Zq X r0, 1s be finite
sets, and assume that there exist c P r1

2
, 1s and G Ă A ˆ B satisfying

|G| ě δξ|A||B| and |tx ` cy : px, yq P Gu|δ “ |πcpGq|δ ď δ´ξ|A|. (5.39)

Then there exist subsets A1 Ă A and B1 Ă B with the properties

|A1||B1| ě δζ |A||B| and |A1 ` cB1|δ ď δ´ζ |A|. (5.40)

Remark 5.41. In the references for Theorem 5.38 cited above, the assumption |πcpGq|δ ď
δ´ξ |A| in (5.39) is replaced by |π1pGq| ď δ´ξ |A|, and the conclusion (5.40) is replaced by
|A1 ` B1| ď δ´ζ |A|. For c P r1

2
, 1s, it is easy to see that the two variants of the theorem are

formally equivalent. The details are left to the reader. The idea is to begin by applying
the standard version of Theorem 5.38 to the sets Bc :“ pcBqδ Ă δ ¨Z and Gc :“ tpx, pcyqδq :
px, yq P Gu Ă A ˆ Bc, which satisfy |Bc| „ |B|, |Gc| „ |G|, and |π1pGcq| . δ´ξ |A|.

Proof of Theorem 1.6 assuming Theorem 5.3. Let α, β, γ, κ be the constants for which we are
supposed to prove Theorem 1.6. Thus γ ą pα ´ βq{p1 ´ βq. Our task is to find the
constants ǫ, ǫ0, δ0 P p0, 1

2
s such that the conclusion of Theorem 1.6 holds. To this end, pick

κ̄ P p0, κq arbitrarily, and ᾱ ą α, β̄ ă β, and γ̄ ă γ in such a way that the key inequality

γ̄ ą pᾱ ´ β̄q{p1 ´ β̄q

persists. This can be done explicitly in such a way that ᾱ, β̄, γ̄ are functions of α, β, γ:
therefore, any future dependence on ᾱ, β̄, γ̄ will, in fact, be a dependence on α, β, γ.

Let ǭ, ǭ0, δ̄0 P p0, 1
2

s be the constants given by Theorem 5.3 applied with parameters
ᾱ, β̄, γ̄, κ̄. We now define ǫ, ǫ0, δ0 based on ǭ, ǭ0, δ̄0. First, we set ǫ0 :“ ǭ0. We also fix
δ0 P p0, δ̄0s. There will be a few additional requirements on δ0, depending on α, β, γ, κ

only. These will be clarified when they arise. We then finally determine the constant ǫ.
First, we fix a natural number N „ 1{ǭ, sufficiently large that the following holds:

pN ´ 1q´1 ă ǭ{2. (5.42)

Then, we fix the auxiliary constant

ζ :“ min

"

ǭ

20N
,
ǭ0pκ ´ κ̄q

2N
,

ᾱ ´ α

2NpN ` 1q ,
β ´ β̄

2N
,
ǫ0pγ ´ γ̄q

2N

*

. (5.43)

Now, let ǫ :“ ξpζq ą 0 be the constant given by Theorem 5.38 applied with the constant
ζ ą 0 from (5.43). This means that if c P r1

2
, 1s, and G Ă A ˆ B satisfies |G| ě δǫ|A||B|

and |πcpGq|δ ď δ´ǫ|A|, then there exist A1 Ă A and B1 Ă B as in (5.40).
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Armed with these choices of parameters, we are prepared to prove Theorem 1.6. Fix
δ P 2´N with δ ď δ0, and let A,B, ν be a triple satisfying the hypotheses of Theorem 1.6
with constants α, β, γ, κ. To recap once more, |A| ď δα, and |B| ě δ´β , and

|B X Bpx, rq| ď rκ|B|, x P R, δ ď r ď δǫ0 “ δǭ0 . (5.44)

Also, ν is a probability measure on r1
2
, 1s satisfying νpBpx, rqq ď rγ for all δ ď r ď δǫ0 .

We claim that there exists c P C :“ sptpνq such that whenever G Ă AˆB is a subset with
|G| ě δǫ|A||B|, then |πcpGq|δ ě δ´ǫ|A|.

We make a counter assumption: the property above fails for every c P C . Then, by
the choice ǫ “ ξpζq, and Theorem 5.38, for every c P C there exist subsets Ac Ă A and
Bc Ă B, for every c P C , with the properties

|Ac ˆ Bc| ě δζ |A||B| and |Ac ` cBc|δ ď δ´ζ |A|. (5.45)

We observe that
ż

. . .

ż

|pAc1 ˆ Bc1q X . . . X pAcN ˆ BcN q| dνpc1q ¨ ¨ ¨ dνpcN q ě δNζ |A||B|

by Hölder’s inequality. Using pAˆBq X pC ˆDq “ pAXCq ˆ pB XDq, and Chebyshev’s
inequality, and νpRq “ 1, it follows that the set

Ω :“ tpc1, . . . , cN q P CN : |pAc1 X . . . X AcN q ˆ pBc1 X . . . X BcN q| ě 1
2
δNζ |A||B|u (5.46)

satisfies
νN pΩq ě 1

2
¨ δNζ (5.47)

For c1, . . . , cn P C fixed, we define

Ωc1¨¨¨cn :“ tpcn`1, . . . , cN q P CN´n : pc1, . . . , cN q P Ωu.
It follows easily from Fubini’s theorem that

νN´npΩc1¨¨¨cnq “
ż

νN´n´1pΩc1¨¨¨cncq dνpcq (5.48)

for all c1, . . . , cn P C , and 1 ď n ď N ´ 2. The same remains true for n “ 0, if the left
hand side is interpreted as νN pΩq, and c1 ¨ ¨ ¨ cnc “ c. Equation (5.48) also remains valid
for n “ N ´ 1 if we define the notation νN´n´1 “ ν0 as follows:

ν0pΩc1¨¨¨cN´1cq :“ 1Ωpc1, . . . , cN´1, cq. (5.49)

We will use this notation in the sequel.
For pc1, . . . , cN q P CN fixed, we define decreasing sequences of sets tAc1¨¨¨cnuNn“1 and

tBc1¨¨¨cnuNn“1 as follows:

Ac1¨¨¨cn :“ Ac1 X . . . X Acn and Bc1¨¨¨cn :“ Bc1 X . . . X Bcn , 1 ď n ď N.

The definition formally makes sense for pc1, . . . , cN q P CN , but will only be useful for
pc1, . . . , cN q P Ω. Namely, if pc1, . . . , cN q P Ω, then it follows from the definition (5.46) that

|Ac1¨¨¨cn | ě |Ac1¨¨¨cN | ě 1
2

¨ δNζ |A| and |Bc1¨¨¨cn | ě 1
2

¨ δNζ |B|. (5.50)

We now construct the sets tHnuNn“1 Ă δ ¨ Z. At the same time, we will construct subsets
C1, . . . , CN Ă C , and points cn P Cn, 1 ď n ď N , with the properties

νN´npΩc1¨¨¨cnq ě 2´n´1δNζ and νpCnq ě 2´n´1δNζ , 1 ď n ď N. (5.51)



ON THE DISCRETISED ABC SUM-PRODUCT PROBLEM 49

In particular, the first part of (5.51) with n “ N shows that pc1, . . . , cN q P Ω, recall the
notation (5.49). To begin with, we define

C1 :“ tc P C : νN´1pΩcq ě 2´2δNζu,
and we choose an arbitrary element c1 P C1. Since

ż

νN´1pΩcq dνpcq “ νN pΩq ě 2´1δNζ

by (5.47), and the case n “ 0 of (5.48), we observe that νpC1q ě 2´2δNζ by Chebyshev’s
inequality. In particular C1 ‰ H. We then define

H1 :“ pc1Bc1qδ.
Assume inductively that H1, . . . ,Hn and C1, . . . , Cn Ă C , and cj P Cj , 1 ď j ď n ď

N ´ 1, have already been constructed, and satisfy (5.51). We then pick an element cn`1 P
Cn`1, where

Cn`1 :“ tc P C : νN´n´1pΩc1¨¨¨cncq ě 2´n´2δNζu, 1 ď n ď N ´ 1.

For n “ N ´ 1, the notation νN´n´1pΩc1¨¨¨cncq should be interpreted as in (5.49), so

CN “ tc P C : 1Ωpc1, . . . , cN´1, cq ě 2´N´1δNζu “ tc P C : pc1, . . . , cN´1, cq P Ωu.
For an arbitrary choice cn`1 P Cn`1, we note that the first part of (5.51) is satisfied with
index "n ` 1", simply by the definition of Cn`1.

The set Cn`1 also satisfies the second part of (5.51) with index "n ` 1", by

2´n´1δNζ
(5.51)
ď νN´npΩc1¨¨¨cnq (5.48)“

ż

νN´n´1pΩc1¨¨¨cncq dνpcq,

and Chebyshev’s inequality.
Whereas c1 P C1 was chosen arbitrarily, the element cn`1 P Cn`1 is chosen in such

a way that the quantity |Hn ` cn`1Bc1¨¨¨cn`1
|δ is maximised, among all possible choices

cn`1 P Cn`1. For this choice of cn`1 P Cn`1, we define

Hn`1 :“ Hn ` pcn`1Bc1¨¨¨cn`1
qδ.

Proceeding in this manner yields a sequence of sets H1, . . . ,HN , and a distinguished
sequence pc1, . . . , cN q P Ω, which we fix for the remainder of the argument. We record
that if pc1, ¨ ¨ ¨ , cnq, 1 ď n ď N ´ 1, is an initial sequence of pc1, ¨ ¨ ¨ , cN q, then

|Bc1¨¨¨cnc| ě 1
2
δNζ |Bc1¨¨¨cn | ě δǭ|Bc1¨¨¨cn |, c P Cn`1. (5.52)

The second inequality simply follows from our choice of ζ at (5.43). To see the first
inequality, recall from the definition of c P Cn`1 that (in particular) Ωc1¨¨¨cnc ‰ H (in
the case n “ N ´ 1 simply pc1, . . . , cn, cq P Ω). This means that there exists a sequence
pc1

n`2, . . . , c
1
N q P CN´n´1 such that pc1, . . . cn, c, c1

n`2, . . . , c
1
N q P Ω. Consequently,

|Bc1¨¨¨cnc| ě |Bc1 X ¨ ¨ ¨Bcn X Bc X Bc1
n`2

X ¨ ¨ ¨Bc1
N

| ě 1
2
δNζ |B| ě 1

2
δNζ |Bc1¨¨¨cn |

by the definition of Ω, see (5.46).
Note that Hn Ă pδ ¨ Zq X r0, ns for all 1 ď n ď N by a straightforward induction, so

|Hn| ď 2Nδ´1. Therefore, by the pigeonhole principle, there exists an n P t1, . . . , N ´ 1u
such that

|Hn`1| ď p2Nδ´1q1{pN´1q|Hn| ď 4δ´1{pN´1q|Hn|. (5.53)
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We now consider the objects

Ā :“ Hn, B̄ :“ Bc1¨¨¨cn , and ν̄ :“ νpCn`1q´1ν|Cn`1
. (5.54)

We will show in a moment these objects satisfy the hypotheses of Theorem 5.3 with con-
stants ᾱ, β̄, κ̄, γ̄, and ǭ0. First, however, we conclude the proof of Theorem 1.6, taking
this for granted. By Theorem 5.3, there exists c̄ P Cn`1 (a set of full ν̄ measure) such that
whenever B1 Ă B̄ is a set of cardinality |B1| ě δǭ|B|, we have

|Hn ` c̄B1|δ “ |Ā ` c̄B1|δ ě δ´ǭ|Ā| “ δ´ǭ|Hn|. (5.55)

(To be accurate, Theorem 5.3 only claims this for some c̄ P sptpν̄q, but the proof showed,
see (5.10), that actually the set of non-admissible c P sptpν̄q have measure strictly smaller
than 1, so we can pick c P Cn`1.) However, for every c P Cn`1, the set B1 :“ Bc1¨¨¨cnc Ă
Bc1¨¨¨cn “ B̄ satisfies

|B1|
(5.52)
ě δǭ|B̄| and |Hn ` cB1|δ . |Hn`1|

(5.53)
ď 4δ´1{pN´1q|Hn|

(5.42)
ď δ´ǭ{2|Hn|. (5.56)

The inequality |Hn ` cB1|δ . |Hn`1| follows from the fact that whenever c P Cn`1, the
set Hn ` pcB1qδ “ Hn ` pcBc1¨¨¨cncqδ is a competitor in the definition of Hn`1. With the
choice c “ c̄ P Cn`1, the inequalities (5.55)-(5.56) are mutually incompatible for δ ą 0

small enough, depending on ǭ “ ǭpα, β, γ, κq ą 0. A contradiction has been reached.
It remains to check that that the objects in (5.53) satisfy the hypotheses of Theorem 5.3

with constants ᾱ, β̄, κ{2, γ̄ , and ǭ0. More precisely:

(a) |Ā| ď δ´ᾱ,
(b) |B̄| ě δ´β̄ , and B̄ satisfies a Frostman condition with exponent κ̄, for r P rδ, δǭ0 s,
(c) ν̄ satisfies a Frostman condition with exponent γ̄.

We first use the Plünnecke-Ruzsa inequality to establish (a), assuming that δ ą 0 is suf-
ficiently small in terms of N, ᾱ. It is clear by induction that Hn can be written as a sum
of n ď N sets of the form pcmBc1¨¨¨cmqδ, for some 1 ď m ď n. Noting that Ac1¨¨¨cn Ă Acm ,
each of these sets individually satisfies

|Ac1¨¨¨cn ` pcmBc1¨¨¨cmqδ | . |Acm ` cmBcm|δ
(5.45)
ď δ´ζ |A|

(5.50)
ď 2δ´pN`1qζ |Ac1¨¨¨cn |.

We may therefore infer that

|Hn| .N δ´NpN`1qζ |A| ď δ´NpN`1qζ´α.

from the Plünnecke-Ruzsa inequality, Lemma 3.3, applied with Ac1¨¨¨cn in place of A (and
finally also using |Ac1¨¨¨cn | ď |A| ď δ´α, see above (5.44)). This inequality implies |Hn| ď
δ´ᾱ for small enough δ ą 0, recalling our choice of ζ at (5.43).

We move to (b). Recall from (5.44) that the set B satisfies the assumptions of Theorem
1.6 with constants ǫ0, κ ą 0:

|B X Bpx, rq| ď rκ|B|, x P R, δ ď r ď δǫ0 “ δǭ0 .

Since Bc1¨¨¨cn Ă B, and |Bc1¨¨¨cn | ě 1
2
δNζ |B| by (5.50), we deduce that Bc1¨¨¨cn satisfies a

Frostman condition with exponent κ̄:

|Bc1¨¨¨cn X Bpx, rq| ď 2δ´Nζrκ|Bc1¨¨¨cn | ď rκ̄|Bc1¨¨¨cn |, x P R, δ ď r ď δǭ0 .
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The final inequality uses our choice of ζ in (5.43), and also assumes that δ ą 0 is suffi-
ciently small, depending on ǭ0, κ. Moreover, since |B| ě δ´β by assumption, we have

|Bc1¨¨¨cn | ě 1
2
δNζ |B|

(5.43)
ě δ´β̄ .

Let us finally check (c), namely that the probability measure ν̄ “ νpCn`1q´1 ¨ ν|Cn`1
satis-

fies a Frostman condition with exponent γ̄. Indeed, recalling from (5.51) that νpCn`1q ě
2´n´2δNζ , we have

ν̄pBpx, rqq ď 2n`2δ´NζνpBpx, rqq ď 2N`2δ´Nζ ¨ rγ , x P R, δ ď r ď δǭ0 .

Since rγ ď δǫ0pγ´γ̄qrγ̄ for r ď δǫ0 , by our choice of ζ in (5.43), the right hand side is
bounded from above by rγ̄ for all δ ą 0 small enough, depending on N, γ, γ̄ (all of which
only depend on α, β, γ, κ). We have now verified that the objects Ā, B̄, ν̄ from (5.54)
satisfy the hypotheses of Theorem 5.3. This concludes the proof of Theorem 1.6. �

Remark 5.57. Once again, in order to deduce Theorem 1.6 for a fixed exponent "κ" from
Theorem 5.3, we only needed to apply Theorem 5.3 with a fixed exponent κ̄ P p0, κq,
as close to κ as we desire. Combining this with the previous similar Remarks 5.11-5.37,
we obtain the conclusion alluded to in Remark 1.9: to deduce Theorem 1.6 for a fixed
exponent "κ" from Theorem 1.8, we only needed to apply Theorem 1.8 for κ̄ P p0, κq
arbitrarily close to κ.

5.6. Proof of Corollary 1.7. I close the paper by recording the (standard pigeonholing)
proof of Corollary 1.7, whose statement is recalled here:

Corollary 5.58. Let 0 ă β ď α ă 1 and κ ą 0. Then, there exists η “ ηpα, β, κq ą 0 such that
if A,B Ă R are Borel sets with dimH A “ α, dimH B “ β, then

dimHtc P R : dimHpA ` cBq ď α ` ηu ď α´β
1´β

` κ.

Proof. It is easy to reduce to the case where A,B are compact, A,B Ă r0, 1s, and HαpAq ą
0 and HβpBq ą 0. In this case, one may use Frostman’s lemma [23, Theorem 8.8] to
find Borel probability measures µA, µB with sptpµAq Ă A, sptpµBq Ă B, and satisfying
µApBpx, rqq ď CAr

α and µBpBpx, rqq ď CBr
β for all balls Bpx, rq Ă R. If η ą 0 is small

enough, we will show that dimHE ď pα ´ βq{p1 ´ βq ` κ, where

E :“ Eη :“ tc P r1
2
, 1s : dimHpA ` cBq ă α ` ηu.

It is easy to show (by rescaling considerations) that this implies Corollary 1.7, where
r1
2
, 1s is replaced by R. It is well-known that the set E Ă r1

2
, 1s is Borel. Consequently,

if the inequality fails, one may use Frostman’s lemma again to find a Borel probability
measure ν, supported on E, satisfying νpBpx, rqq ď Cνr

γ for all x P R and r ą 0, where
γ ě pα ´ βq{p1 ´ βq ` κ.

For future reference, we fix some parameters ᾱ ą α, β̄ ă β, and γ̄ ă γ such that the
inequality

γ̄ ą pᾱ ´ β̄q{p1 ´ β̄q (5.59)

still holds. We then let ǭ, ǭ0, δ̄0 ą 0 be the constants provided by Theorem 1.6 applied
with parameters ᾱ, β̄, κ “ β̄, γ̄. We pick η ą 0 in the definition of E so small that

η ă mintǭ, ᾱ ´ αu. (5.60)
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Fix c P sptpνq Ă E, so dimHpA ` cBq ă α ` η. This means that for a given fixed
threshold δ0 :“ 2´j0 P 2´N (the requirements will depend on α, β, γ, CA, CB , Cν ), one
may find a countable cover Ic of A ` cB, consisting of disjoint dyadic intervals of length
ℓpIq ď δ0, such that

ÿ

IPIc

ℓpIqα`η ď 1. (5.61)

Below, we will often write that something holds "for small enough δ ą 0": this will
always mean "assuming that the upper bound δ0 for δ has been chosen sufficiently small,
depending on the parameters α, β, γ, CA, CB , Cν . In particular, we will take δ0 ď δ̄0.

The "tubes" Tc :“ tπ´1
c pIquIPIc cover A ˆ B Ą sptpµA ˆ µBq, so

ż

E

ÿ

TPTc

pµA ˆ µBqpT q dνpcq “ 1.

Recall that δ0 “ 2´j0 , and let Ij
c :“ tI P Ic : ℓpIq “ 2´ju for j ě j0. Write also T

j
c :“

tπ´1
c pIqu

IPIj
c
. Since Tc “ Ť

jěj0
T

j
c , there exists j ě j0 such that

ż

E

ÿ

TPT j
c

pµA ˆ µBqpT q dνpcq & j´2.

Write δ :“ 2´j for this index j. According to the estimate above, there exists a subset
E1

δ Ă E of measure νpE1
δq & j´2 “ log2p1{δq´2 such that for each c P E1

δ, the tubes T P T
j
c

cover a subset Gc Ă sptpµA ˆµBq of measure pµA ˆµBqpGcq & log2p1{δq´2. In particular,
we record that

|πcpGcq|δ ď |T j
c | ď δ´α´η , c P E1

δ, (5.62)

by (5.61). For the remainder of this argument, we use the notation f / g to abbreviate an
inequality of the form f ď C log2p1{δqCg for some constant C ą 0, which may depend
on the Frostman constants α, β, γ, CA, CB , Cν . In particular, j´2 “ log2p1{δq´2 ' 1.

For x P R, let Iδpxq P Dδ be the unique dyadic interval of length δ with x P Iδpxq. We
now split the set A as follows:

A “
ď

ρP2´N

Apρq :“ tx P A : ρ ď µApIδpxqq ă 2ρu.

We define the sets Bpρq Ă B similarly. Since µApIδpxqq ď CAδ
α and µBpIδpyqq ď CBδ

β ,
we see that Apρq ‰ H implies ρ ď CAδ

α, and Bpρq ‰ H implies ρ ď Cβδ
β . We also

note that Apρq can be expressed as the intersection of A with certain dyadic intervals
Apρq Ă Dδ. The same is true for Bpρq, for certain dyadic intervals Bpρq Ă Dδ.

Let µApρq be the restriction of µA to the intervals Apρq, and similarly let µBpρq be the
restriction of µB to the intervals in Bpρq. Then

ÿ

ρ1

ÿ

ρ2

ż

E1
δ

pµApρ1q ˆ µBpρ2qqpGcq « 1, (5.63)

so it follows from the pigeonhole principle that
ż

E1
δ

pµApρAq ˆ µBpρAqqpGcq « 1



ON THE DISCRETISED ABC SUM-PRODUCT PROBLEM 53

for some fixed choices ρA ď CAδ
α and ρB ď CBδ

β (noting that values ρ1, ρ2 ď δ2 cannot
contribute substantially to the sum in (5.63)). In particular, there exists a further subset
Eδ Ă E1

δ with the property pµApρAq ˆ µBpρBqqpGcq « 1 for all c P Eδ. We now abbreviate

µ̄A :“ µApρAq and µ̄B :“ µBpρBq,
so }µ̄A} « 1 « }µ̄B}. The measure µ̄A is supported on the closure of the intervals in
ApρAq, and µ̄B is supported on the closure of the intervals in BpρBq. Let

Aδ :“ pδ ¨ Zq X pYApρAqq and Bδ :“ pδ ¨ Zq X pYBpρBqq .
We observe that

ρA ¨ |Aδ| „ }µA} « 1 ùñ ρA « |Aδ|´1, (5.64)
and similarly ρB « |Bδ|´1. Since ρA ď CAδ

α, we record that

|Aδ | « ρ´1
A ' δ´α. (5.65)

We next claim that, somewhat conversely, |Aδ | ď δ´ᾱ if δ ą 0 is sufficiently small. To see
this, fix an arbitrary c P Eδ. Since pµ̄A ˆ µ̄BqpGcq « 1, there exists b P sptpµ̄Bq such that

µ̄ApGcpbqq « 1, where Gcpbq “ tx P sptpµ̄Aq : px, bq P Gcu.
Now, if Gcpbq :“ tI P ApρAq : Gcpbq X I ‰ Hu, we see that µ̄ApIq „ ρA for all I P Gcpbq,
and µ̄ApYGcpbqq ě µ̄ApGcpbqq « 1. Moreover, we observe that |Gcpbq|δ . |πcpGcq|δ, since
πcpGcq Ą Gcpbq ` bc. Putting these observations together,

|Aδ | (5.64)« ρ´1
A / ρ´1

A ¨ µ̄ApYGcpbqq . |Gcpbq|δ . |πcpGcq|δ
(5.62)
ď δ´α´η . (5.66)

Since α ` η ă ᾱ by (5.60), the inequality |Aδ| ď δ´ᾱ holds for δ ą 0 sufficiently small.
Next, since ρB ď CBδ

β , we record that

|Bδ| « ρ´1
B ' δ´β ùñ |Bδ| ě δβ̄ , (5.67)

where the implication holds if δ ą 0 is sufficiently small. Moreover, for x P R and r ě δ,
we note that every point y P Bδ X Bpx, rq is contained in an interval Iypδq P BpρBq with
µBpIypδqq ě ρB . Since Iypδq Ă Bpx, 2rq, we deduce that

|Bδ X Bpx, rq| ď ρ´1
B ¨ µBpBpx, 2rqq ď ρ´1

B ¨ CBp2rqβ / rβ|Bδ |. (5.68)

In particular, for the parameter ǭ0 ą 0 fixed below (5.59), we have |Bδ XBpx, rq| ď rβ̄|Bδ|
for δ ď r ď δǭ0 , provided that δ ą 0 is small enough.

Finally, the measure νδ :“ νpEδq´1 ¨ ν|Eδ
satisfies

νδpBpx, rqq / νpBpx, rqq ď Cνr
γ , r ą 0, (5.69)

so the inequality νδpBpx, rqq ď r´γ̄ holds for all r ď δǭ0 , provided that δ ą 0 is small
enough. The estimates (5.66)-(5.69), and (5.59), imply that the triple Aδ, Bδ, νδ satisfies all
the hypotheses of Theorem 1.6 with constants ᾱ, β̄, κ “ β̄, γ̄, and ǭ0. Consequently, there
exists c P Eδ Ă E1

δ (a set of full νδ measure) such that

|πcpGq|δ ě δ´ǭ|Aδ|
(5.65)
' δ´α´ǭ (5.70)

for all subsets G Ă Aδ ˆ Bδ of cardinality |G| ě δǭ|A||B|. We argue that this contradicts
(5.62). The only issue is that set Gc Ă sptpµA ˆ µBq is not exactly a subset of Aδ ˆ Bδ. To
fix this, recall that nevertheless pµ̄A ˆ µ̄BqpGcq « 1. Let

Gc :“ tI ˆ J P ApρAq ˆ BpρBq : pI ˆ Jq X Gc ‰ Hu.
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Then Gc is a cover of Gc, and pµ̄A ˆ µ̄BqpQq „ ρAρB « |Aδ|´1|Bδ|´1 for all Q “ I ˆJ P Gc.
Consequently,

|Gc| & pρAρBq´1 ¨ pµ̄A ˆ µ̄BqpGcq « |Aδ||Bδ|.
Now, let Gc,δ Ă pAδ ˆBδqXGcp2δq be subset of cardinality |Gc,δ| ' |Aδ ||Bδ|. In particular
|Gc,δ| ě δǭ|Aδ||Bδ | for δ ą 0 small enough. Therefore the estimate (5.70) holds for G “
Gc,δ. On the other hand, since Gc,δ Ă Gcp2δq, we have

|πcpGc,δq|δ . |πcpGcq|δ ď δ´α´η

by (5.62). Since we chose η ă ǭ in (5.60), this estimate is not compatible with (5.70). A
contradiction has been reached, and the proof of Corollary 1.7 is complete. �
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