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Abstract: This thesis aims to research and apply various approaches to few-shot object

detection to address the real-life problem of detecting bacterial colonies. Bacteria detection

is an important topic across multiple fields. Traditional methods include chemical analysis

and various image processing algorithms. This thesis investigates the development of the

deep learning approach to the selected problem in order to find simple and effective solution.

Since manual data collection is a laborious task, this work puts emphasis on few-shot object

detection, focusing on developing an approach optimized for minimal training data with less

than 10 labeled images.

Various techniques, both model- and data-centric, are researched and utilized to identify the

most efficient solution. Methods such as data augmentations, meta-learning, and fine-tuning

are discussed and evaluated. The main emphasis of the practical part is on exploring the fine-

tuning approach, together with data enhancements such as various augmentations and the use

of additional close-domain data, and eventually comparing and analyzing their performance.

The findings suggest that fine-tuning is an effective and simple strategy for few-shot train-

ing, particularly when combined with other methods. Incorporating close-domain data sig-

nificantly enhances model performance, and data augmentations also show good results in

expanding the dataset size.
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This work advances the application of few-shot learning in data-constrained environments.

Given the specific challenge of bacteria detection, the insights gained are potentially valuable

across multiple fields and applications.

Keywords: object detection, few show detection, machine learning, bacteria colony

Suomenkielinen tiivistelmä: Tämä opinnäytetyö pyrkii tutkimaan ja soveltamaan erilaisia

lähestymistapoja vähäotos-tunnistamiseen bakteeripesäkkeiden havaitsemisessa.

Bakteerien tunnistaminen on tärkeä aihe monilla aloilla. Perinteisiä menetelmiä ovat kemi-

allinen analyysi ja erilaiset kuvankäsittelyalgoritmit. Tämä opinnäytetyö tutkii syväoppimisen

lähestymistapaa valittuun ongelmaan löytääkseen yksinkertaisen ja tehokkaan ratkaisun.

Koska manuaalinen datankeruu on työlästä, tässä opinnäytetyössä keskitytään kehittämään

lähestymistapaa vähäotos-tunnistamiseen, joka on optimoitu vähäiselle koulutusdatalle, alle

kymmenelle merkitylle kuvalle.

Opinnäytetyössä tutkitaan ja hyödynnetään erilaisia tekniikoita, sekä malli- että datakeskeisiä,

tehokkaimman ratkaisun löytämiseksi. Siinä käsitellään ja arvioidaan menetelmiä, kuten

datan parannusta, metaoppimista ja neuroverkon hienosäätämistä.

Käytännön osassa pääpaino on hienosäätömenetelmien tutkiminen yhdessä datan parannusten,

kuten erilaisten hienosäätöjen ja vastaavanlaisen lisädatan kanssa ja lopulta niiden suori-

tuskyvyn vertaamisessa ja analysoinnissa.

Tulokset osoittavat, että hienosäätö on tehokas ja yksinkertainen strategia vähäotoskoulutuk-

seen, erityisesti kun sitä yhdistetään muihin menetelmiin. Vastaavanlaisen lisädatan sisällyt-

täminen parantaa merkittävästi mallin suorituskykyä, ja datan hienosäädöt osoittavat myös

hyviä tuloksia tietojoukon laajentamisessa.

Tämä työ edistää vähäotosoppimisen soveltamista datarajoitteisissa ympäristöissä. Ottaen

huomioon bakteerien havaitsemisen haasteellisuuden, saadut tulokset ovat potentiaalisesti

arvokkaita useilla aloilla ja sovelluksissa.

Avainsanat: kohteentunnistus, harvan esityksen tunnistus, koneoppiminen, bakteeripesäke
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1 Introduction

The objective of this thesis is to detect specific fluorescent bacteria in images of Petri dishes.

The solution must be compatible with limited training data, given the challenging and time-

consuming nature of generating a substantial number of annotated images.

The rationale behind this study is rooted in the real-world utility of the proposed solution.

The problem arises from the need to detect bacteria identified in research by Nissinen et

al. 2023. These bacteria (aerobic anoxygenic phototrophic bacteria, later referenced as

AAPB) are unique because they perform photosynthesis in aerobic conditions without pro-

ducing oxygen, using diverse organic compounds as electron donors. Although traditionally

associated with aquatic ecosystems, AAPB have been discovered in various habitats, includ-

ing the phyllospheres (leaf surfaces) and endospheres (internal tissues) of boreal and subarc-

tic plants. This study found AAPB to be present in these plant microbiomes across different

climate zones in Finland, suggesting their role in plant adaptation to various environments

(Nissinen et al. 2023).

However, the task can be extended to multiple other fields and applications since object

detection of bacteria colonies includes many uses. Although methods vary according to

specific objectives, the concept remains consistent. The applications include tasks such as

testing the performance of antibiotics (Kee et al. 2013) or analyzing the safety of drinking

water (Vail et al. 2003). Therefore, this thesis has the potential to be useful across a broad

array of similar problems. Typically, the task of classifying and counting bacterial colonies

is performed manually by lab technicians, leading to potential subjectivity. Adopting an

automated approach could enhance consistency in results and simplify their work.

There are multiple approaches to automating the task of bacteria detection. This thesis will

concentrate on the image-based bacteria detection techniques that utilize Deep Learning ig-

noring the other approaches such as those that use chemical reactions.

Many image-based bacteria detection methods do not utilize Deep Learning. For instance,

there are implementations that use tools like Support Vector machines (Zhang et al., n.d.).

Such a solution includes two stages: classification and detection. The detection is achieved

1



by using structurally similar images, making separating the regions like "background" and

"container" easier and utilizing multiple image processing algorithms like Otsu’s method to

detect the important parts of the images. However, methods like the one described above

all share common issues: they are exceptionally complex and require extensive image pre-

processing, such as noise removal and the application of thresholding algorithms. Another

problem shared by such image analysis methods lies in how dependent it is on the input for-

mat and how methods must be adapted to it. For instance, the cases such as those mentioned

by Kee et al. 2013, where spectral imaging is used, are unlikely to be successfully applied to

other solutions without algorithmic changes.

With the development of neural networks, it is possible to transition this task to deep learning

algorithms, which can potentially simplify the process and offer more universal applicability.

This thesis aims to find a realistic and useful approach to detecting bacteria colonies and, in

the process, to answer the following research questions:

• What are the most effective methods for few shot detection in the selected domain?

• What role do data augmentation and synthetic data generation play in improving the

performance of few-shot object detection models for bacteria colony identification?

• Can transfer learning from related domains enhance the accuracy and ability to gener-

alize of few-shot object detection models in identifying bacteria colonies?
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2 Background

The primary objective of this thesis is to address the challenge of detecting bacteria in few-

shot datasets. Few-shot training is a subset of supervised machine learning that specializes in

handling limited data. The problem of learning on limited data includes multiple variations,

such as zero-shot, one-shot, and few-shot learning, with the latter being the main method

used in this work. The need for such methods arises from the difficulty of creating labeled

data; therefore, many real-life learning tasks suffer from a lack of sufficiently large training

datasets. Few-shot learning in its principle emulates the human way of learning where having

some previous knowledge allows it to quickly learn new things from limited examples (What

Is Few-Shot Learning? | IBM 2024).

There is no strict definition of what exactly constitutes a few-shot dataset since there is no

clear maximum limit on the number of samples. However, the data used in this work is much

smaller than what one would normally expect for a task like this, consisting of fewer than

ten labeled images, thus qualifying as an example of few-shot learning.

The use of a few-shot dataset introduces many problems, such as a low variety of data, which

would normally lead to overfitting; therefore, it is challenging to simply apply few-shot

data to any model and train it from scratch. Overfitting can be spotted by the training loss

continuing to drop during the training by the validation loss growing like shown on Figure 1.

This situation means that the model got too closely adapted to the training data and did not

learn the generalized properties. There are multiple solutions to and causes of overfitting. It

can be caused by an overly complicated model or by noisy training data, with the small size

of the training dataset being a very likely cause of these two issues, for instance by using

too complicated model for too little amount of data. There are multiple training techniques

to prevent it, such as modifying the network, early stopping, dropout, increasing the training

dataset size etc (Pothuganti 2018). Since this thesis focuses on small training datasets, it is

important to prevent overfitting.

3



Figure 1: Overiftting by Pothuganti 2018.

Few-shot learning can be applied to various tasks, which vary in difficulty. While few-

shot classification is a less complicated problem, few-shot object detection poses additional

challenges, such as training the object detector with a small amount of data (Antonelli et

al. 2022). The below mentioned methods apply to both object detection and classification

tasks but the emphasis of the work is on object detection solutions.

2.1 Convolutional neural networks

Convolutional neural networks were a breakthrough in the field of object detection since they

allowed efficient processing spatial hierarchies in high-dimensional data, which makes them

well suited for tasks like image or video processing.

CNNs introduce three new types of layers: convolutional, pooling, and fully connected ones.

The convolutional layer serves as the fundamental building block of a CNN and is used

for constructing feature maps. It contains kernels that, while small in spatial dimensions,

span the entire depth of the input image to capture all aspects of the input features. For

example, in an RGB image, each kernel processes all three color channels, reflecting a depth

of 3. These kernels, usually square (e.g., 3x3 or 5x5 pixels), slide over the input image

to produce a 2D feature map that captures essential patterns and features (see Figure 2).

The pooling layer is aimed at reducing dimensionality while retaining important features
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by applying different pooling operations like max or average pooling in order to reduce

computational load and overfitting. Fully connected layers, positioned towards the end of

a CNN architecture, contain neurons that link to all activations from the previous layer,

integrating global information from the feature maps. The layers can be arranged in various

ways. The architecture that utilizes CNNs allows for working with high-dimensional data

using fewer resources and helps avoid overfitting (O’Shea and Nash 2015).

Figure 2: Convolutional kernels representation of the input image (example by Wu 2017).

All the object detection models mentioned in this thesis are based on CNNs.

2.2 Object detection

Figure 3: Object detection milestones by Zou et al. 2019.

The history of the object detection technologies on Figure 3 shows the breakthrough that hap-

pened with the adoption of CNNs described in section 2.1. After object detection methods
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started to utilize Deep Learning they got separated in two groups: one-stage and two-stage.

Two-stage detectors operate by executing two tasks: generating proposals for the objects and

performing the classification task within the suggested bounding boxes. In contrast, one-

stage detectors simplify this process by combining the two tasks, dividing the image into a

grid, and simultaneously predicting bounding boxes and classes for each grid cell. Typically,

the first group tends to offer faster performance, while the second group achieves higher ac-

curacy. However, some one-stage detectors can combine the advantages of both types (Zou

et al. 2019).

2.2.1 RetinaNet

For instance, Lin et al. 2017 introduced RetinaNet as an example of a one-stage detector that

achieves both high performance speed and accuracy. RetinaNet employs a Focal Loss func-

tion during training to prevent easy negatives from overwhelming the training process and

to improve performance in scenarios where the image predominantly contains background

classes. It combines a Feature Pyramid Network backbone with two sub-networks used for

classification and box regression tasks. The Feature Pyramid Network efficiently discovers

objects at different scales by having each layer of the pyramid handle different dimensions of

the input image. ResNet is used as the backbone that extracts feature maps of various scales

(Lin et al. 2016).
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Figure 4: Image and caption by Lin et al. 2016: RetinaNet architecure a) producing the

multi-scale convolutional feature pyramid using a residual network (ResNet) as an encoder

(left) and a feature pyramid net (FPN) as a decoder (right). (b) Class subnet for classifying

anchor boxes (top), and box subnet for regressing from anchors boxes to ground-truth object

boxes (bottom).

The ways of approaching the problem of few-shot object detection was separated in two

groups for clarity: data-centric and model-centric. The first approach was meant to improve

the dataset and make it effectively not "few-shot" data anymore and the next approach fo-

cused on improving the model performance on the few-shot data.

The data-centric methods listed below can be used as a possible solution to improving the

few-shot dataset.

2.3 Data-centric methods

2.3.1 Data augmentations

Applying various augmentations to data is the most straightforward way to increase the train-

ing set. Augmentations not only extend the training set but also address the generality issue

of the small dataset by adding variety. For instance, Channel Dropout can help add variety

to colors, and various resizing and cropping techniques can help to learn different sizes of

objects.

However, simply applying multiple augmentations to the data is not always the right ap-

proach. Sometimes it can cause the issue of underfitting, making the training slow and inef-
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ficient (Sikka 2021). The augmentations should be selected in such a way that they achieve

two purposes: adding variety to the training data while keeping it close enough to the test

data

2.3.2 Same-domain data

Another data-based approach to improving few-shot learning is re-using another similar

dataset which has plenty of training data. Using close-domain data can solve the over-fitting

issue and increase general accuracy. For instance, as described by Casado-García et al. 2019,

fine-tuning the model with the closely-related data significantly improves performance and

the model’s ability to generalize.

2.3.3 Synthetic data

Generating synthetic data is another approach to expanding the training dataset. Various

methods exist for achieving this. For example, the VAE (Variational Autoencoder) is a type

of generative network that can create additional samples of training data, significantly en-

larging the training dataset size (Chadebec et al. 2022). A basic variational autoencoder is

composed of two parts: an encoder and a decoder. The encoder captures the input repre-

sentation and encodes it into a latent representation, while the decoder reconstructs the data

from this encoded representation. A key feature of variational autoencoders, as opposed to

standard encoders, is their ability to produce different encodings from the same input. VAEs

tend to generate diverse samples which is good for creating varied training data.

Variational autoencoders are widely used in few-shot learning in various ways and not only

as the method of generating additional data. They can be used for encoding various types

of data, so for instance they can be used as the part of meta-learning approach that will

encode some learned class features via VAEs (Han et al. 2023). While VAEs often need a

lot of training data, there are developments to apply it to few-shot setting (Chadebec and

Allassonnière 2021).

Another approach involves GANs, which work by having two networks (a generator and a

discriminator) compete with each other. GANs tend to generate less diverse data than VAEs.
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They also require more training data, which might make them less suitable for few-shot

learning, even though there are some adaptations of GANs for few-shot settings (Robb et

al. 2020).

Other method involves diffusion models, which work by applying multiple transformations

to the data in order to generate new samples. They often provide higher-quality results than

VAEs and allow for the generation of high-resolution data. While they typically require a

lot of training data, there are approaches to adapt them for few-shot learning (Giannone,

Nielsen, and Winther 2022).

The main issue with the above solutions is that they provide unlabeled data, which does

not address the problem of the expensive and labor-intensive task of manually labeling the

samples. This does not apply to all the methods, for instance, the data generated using the

style transfer retains the bounding boxes not requiring additional work as shown in bacteria

object detector by Pawłowski, Majchrowska, and Golan 2022.

The subsequent methods primarily focus on the models and training themselves, unlike the

previously described data-centric solutions.

2.4 Model-centric methods

2.4.1 Meta-learning

There are multiple approaches to meta-learning, but the main idea revolves around a network

that is "learning to learn." Meta-learning includes two parts: a base learning algorithm that

solves the objective and a meta-learning algorithm that updates the base learning algorithm.

Various algorithms fall under the definition of meta-learning as long as they work on end-to-

end optimization of the base learning algorithm (Hospedales et al. 2021).

Meta-learning can be divided into three types: metric-based, model-based, and optimization-

based. Metric-based learning focuses on discovering a good feature space for use in new

tasks, model-based learning adapts the model state to new tasks, and optimization-based

meta-learning aims to provide the fastest learning possible, with the popular MAML net-

work (Huisman, Rijn, and Plaat 2021) being an example of it. Prototypical networks (Snell,
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Swersky, and Zemel 2017) and Siamese networks (Koch, Zemel, Salakhutdinov, et al. 2015)

are examples of metric-based meta-learning and the model-based meta-learning approaches

include networks such as described by Santoro et al. 2016.

Meta-learning is often used specifically for tasks concerning few-shot data since meta-learning

algorithms allow improving the network with abundant data and later applying the improved

algorithm to few-shot or even zero-shot data. For instance, the Meta-RCNN implementa-

tion by Yan et al. 2019 suggests using meta-learning on RoI (region of interest) features,

providing state-of-the-art performance.

Many of the mentioned methods can be combined; for instance, it is possible to utilize VAEs

as part of meta-learning models as described by Han et al. 2023.

2.4.2 Metric learning

Metric learning is a subset of Machine Learning that can be helpful for few-shot training. It

is not a subtype of Meta-learning and is different from metric-based meta-learning.

Metric learning focuses on learning a distance function over objects tuned to a given task

(Kulis et al. 2013). The goal is to learn a metric or distance function that measures how

similar or dissimilar two objects are in a way that is useful for the specific task at hand, such

as classification, clustering, or retrieval tasks. This means that metric learning is different

from metric-based meta-learning in the sense that it adapts to the given task and dataset

while meta-learning aims to generalize. Metric learning is used in applications like face

recognition, where the aim is to learn a space in which distances directly correspond to a

measure of facial similarity. However, metric learning has received some criticism, with

many papers overestimating the efficiency of it and therefore causing doubts about whether

these methods are as useful as they often claim to be (Musgrave, Belongie, and Lim 2020).

As Karlinsky et al. 2019 suggests, metric learning can be incorporated into few-shot ob-

ject detection. The proposed solution includes using Distance Metric Learning (that learns

backbone network parameters, embedding space, and distributions of different categories)

classifier as a part of a standard object detection model.
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2.4.3 Fine-tuning

Fine-tuning is one of the stages of transfer learning, where the first stage includes training

the model on one dataset and then freezing and re-training only some layers on the other

dataset. Fine-tuning can improve the performance of multiple networks even if the target

dataset it not small and has enough data to be trained on the empty model. As Yosinski

et al. 2014 discovered: "transferring features and then fine-tuning them results in networks

that generalize better than those trained directly on the target dataset".

Fine-tuning is not immune to overfitting, if the fine-tuned dataset is too small or number of

parameters is large and too many of the layers are re-trained the model can overfit on the

new small dataset. Therefore it is important to understand which features can be re-trained

and which should be left frozen. Generally keeping more of the layers frozen allows the

network to keep its base features and be fine-tuned without overfitting (Yosinski et al. 2014).

Such logic is used in the approach below where the fine-tuning does not affect the base

features. Figure 5 illustrates the second stage of the fine-tuning approach used for few-

shot object detection by Wang et al. 2020. This few-shot object detection method involves

initially training the object detector on classes with abundant data, followed by fine-tuning

only the last layer of existing detectors for rare classes. The implementation is based on the

pre-trained Faster R-CNN model, where the box predictor is fine-tuned on both novel and

base classes, while the feature extractor remains unchanged. This method shows significant

improvements over existing meta-learning approaches. It not only simplifies the training

process but also enhances the model’s ability to generalize from limited data, addressing a

key challenge in few-shot learning scenarios.

Figure 5: Fine-tuning by Wang et al. 2020
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3 Data and methods

This section describes the types and amounts of data available and details on the experiments.

It also includes short conclusions and notes about the acquired results, but the full numerical

data for the results can be found in Section 4. The section includes all the attempted methods

including the ones that were decided to not be viable. Those not viable methods are shortly

listed first.

The hardware includes 2 NVIDIA RTX A4000 GPUs with 16 GB RAM each resulting in 32

GB RAM total.

3.1 Data selection

The pictures were taken with the same camera and background in order to be further analyzed

for their fluorescent properties. The process of collecting the data for object detection is

described on stage A of the Figure 6 where Petri dishes were illuminated with white light

and the picture of the dish was captured with a Rasberry Pi PiNoir Camer V2 with ordinary

RGB-settings. The process of construing and using the NIR (Near-infrared imaging system)

is described by Franz et al. 2023.
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Figure 6: Process of collecting data with NIR, image by Nissinen et al. 2023.

A typical picture was colored, had the size of 1024x1280 px and included the view of a

Petri dish, along with any bacteria and fungi colonies present. The total dataset contained

nine labeled images, two of which were used for validation. The methods used included

two approaches: using the maximum available training data (seven images) and using only

two images. This was done with the intention of discovering how reducing the training data

affected the performance of the method.

The original data provided contained 15 images, but not all of them were valid. The samples

with excessive bacterial growth were invalid and were going to be excluded from the object

detection training set. However, one more of the desired features included classifying valid

and invalid samples, therefore all the images including invalid ones were used for the training

of the classification network.
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Another limitation was the various types of bacteria in a dish that occurred in different pro-

portions. Since the classes were unevenly spread in already limited training data, it was

decided to concentrate on general bacteria detector and detect a single class called "bacteria

colony" instead of differentiating between various colony types. Usually various types of

colonies could be recognized by different colors.

The selected data was used to apply various methods and search for optimal solution for

object detection. The total available training data is shown in Figure 7. The images dis-

play varying quantities of bacterial colonies and levels of fungal contamination. Bacterial

colonies are smaller and have more defined, round shapes, whereas large, unstructured white

or gray shapes indicate fungi. This adds a layer of complexity to the task as it is crucial not

to confuse bacterial colonies with fungal overgrowth. For instance, Image 7 presents clean

data without any fungal contamination, while all other images include it to some extent, such

as Image 2, which features two large gray shapes.
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(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5 (f) Image 6

(g) Image 7

Figure 7: Maximum available object detection training set.

3.2 Ready-made solutions

For the sake of the experiment, it was decided to test the performance of an LLM on such

a task. Given the extreme popularity of LLMs and their capability to solve various tasks, it

was intriguing to determine whether they could work with this object detection task. The

model used for this test was ChatGPT-4. The query "Mark all the bacteria on the image"

produced the results displayed in Figure 8.
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Figure 8: ChatGPT result of "Mark all the bacteria on the image" query.

As is visible from Figure 8, this approach was found to be unsuitable for such a use case;

therefore, a more specialized solution had to be created and adapted to our scenario. Ac-

cording to the explanation provided by ChatGPT, the main steps involved were grayscaled,

thresholded, and contours detected. This example has demonstrated why special methods

must be used for this task and why general-purpose solutions like LLMs do not fit.

3.3 Generative networks

The selected approach was a Variational Autoencoder (VAE), chosen for its relative ease

of implementation. However, due to its resource-intensive nature, it was unable to produce

high-quality, high-resolution colored images. Another issue was that while this method could

add variety to the training data, it did not address the fundamental challenge of annotating the

data, which remained the primary difficulty. Even with additional resources, the production

of more training data was found to be resource-heavy—as is characteristic of all VAEs—and

the task of manually marking the bacteria continued to be a human responsibility. As the re-

sult, this straightforward approach to generating additional data was decided to be unsuitable
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for the intended use-case.

Figure 9: Maximum achieved resolution of 512x512 using VAE.

3.4 Meta-learning

Various implementations of meta-learning algorithms have been developed; however, diffi-

culties were encountered when trying to apply them to real use-cases. Most of the proposed

architectures were found too complicated and advanced to be written from scratch, and many

of the existing implementations were often outdated, having been updated on average at least

four years ago (Meta-R-CNN). This age led to numerous version incompatibilities, making

them impossible to be used as-is.

Some of the still-maintained models were found (Meta-Faster-R-CNN, Meta-DETR), but the

results obtained on the COCO few-shot dataset were unsatisfactory, leading to the decision

to stop the experiments. For example, one of the better-maintained networks, Meta-DETR,

required approximately 40 hours for few-shot training on the default training dataset. The

general lack of continued development, updates and documentation is a shared problem of

multiple meta-learining implementations.

It was concluded that although meta-learning algorithms could be useful, they were not eas-

ily adaptable to real-world scenarios. Due to limitations in resources, it was decided that

exploring the topic further or implementing original code was not worthwhile.

3.5 Fine-tuning

The fine-tuning approaches described below were based on the TensorFlow Object Detection

API. TensorFlow version used was 2.11.0. Although the TensorFlow Object Detection API
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had recently been deprecated, it still supported the necessary TensorFlow versions and had

extensive documentation, so it was decided to continue the experiments on it.

The selected architecture SSD ResNet50 V1 FPN 1024x1024 (RetinaNet) (see architecture

4 and more details about RetinaNet at Section 2.2.1) was taken from its Model Garden; the

code for it was manually written based on various TensforFlow tutorials and guides. As

previously mentioned, Focal Loss is one of the main features of RetinaNet architecture due

to its ability to balance positive and negative results and stop easy negative results from the

background from overwhelming the training.

Lin et al. 2017 describes the creation of focal loss formula starting from cross entropy as

follows:

CE(p,y) =

− log(p) if y = 1

− log(1− p) otherwise

where y ∈ {±1} is the ground-truth class and p ∈ [0,1] is the estimated probability for the

class with label y = 1. The above formula can be redefined through p

pt =

p if y = 1

1− p otherwise
.

which allows the previous cross entropy formula to be simplified as CE(p,y) = CE(pt) =

− log(pt) (since this notation applies to to any value of y). After introducing α ∈ [0,1] as

the weighting factor in order to fix the class imbalance and defining αt similarly to pt the α

balanced loss can be defined as:

CE(pt) =−αt log(pt)

Even though α balances the positives and negatives, it still gets overwhelmed by large class

imbalance. RetinaNet is a dense detector which finds huge amount of potential bounding

boxes therefore the huge class imbalance is inevitable and detections contain a lot of easy

negative results. To address it, Lin et al. 2017 proposes a new loss function:

FL(pt) =−(1− pt)
γ log(pt)

where (1− pt)
γ is a modulating factor and γ ≥ 0 is the tunable focusing parameter. This

formula allows those easy negative results to avoid affecting the total loss. The final version
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is the α-balanced variant of the above formula that will be used with sigmoid function for

additional stability:

FL(pt) =−αt(1− pt)
γ log(pt)

ObjectDetection API base configuration describes loss functions used by the network: Sig-

moid Focal Classification Loss (same as described above) for classification and Weight-

edSmoothL1LocalizationLoss for localization loss. All the training used the same configu-

ration with the modifications made only to post-processing section where various thresholds

and amount of detections were modified according to the test cases. For instance, IOU

threshold was set to lower value of 0.1 since the data did not expect overlapping bacteria

detections.

In the first stage, the network was pre-trained on the ImageNet dataset (the weights for which

were provided by TensorFlow). The next task involved fine-tuning it on a few-shot dataset

in various ways.

RetinaNet features two training heads (see Figure 10), where one is a subnet for classification

and the other is a subnet for box regression. The experiments below involved fine-tuning

these subnetworks.

Figure 10: RetinaNet architecture by Zaidi et al. 2021.

Adam optimizer was selected through experimental evaluation for all subsequent fine-tuning

processes since it was found to perform better than other optimizers (PMSProp was tested

as well). The pre-trained RetinaNet was available in two configurations: 640x640 and

1024x1024 pixels. The version with larger dimension was tested to perform better (as it

more closely approximated the original dimensions of the few-shot dataset) and was selected
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for all the following experiments. Network trained with larger dimensions doesn’t always

perform better and it should be selected based on the dimensions of the training data.

The methods described below include various combinations of data-centric strategies used

with fine-tuning techniques, aimed at determining the most effective method to perform few-

shot bacteria detection. The model configurations described above were same for all the

experiments (except for the next Section 3.5.1 which focused on classification task).

3.5.1 Classification fine-tuning

Since one of the subtasks of the thesis involved classifying valid and invalid samples, a

fine-tuning approach was used for this as well. The difference between valid and invalid

samples lies in the amount of bacteria and fungi growth. Samples with excessively high

numbers of either were considered invalid. As this classification task was not the main

objective of the thesis, no comparative measurements were performed. The training set

consisted of 4 valid and 4 invalid samples, which were used to fine-tune the MobileNetV2

network previously trained on the ImageNet dataset. The training included 100 epochs with

the RMSProp optimizer (see 11). After training, the network displayed 100% accuracy on

the 9-image test set. No data augmentations or changes were made or necessary.

Figure 11: Accuracy and loss of classification task based on transfer learning.
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Figure 12: Test results of the classifier of valid/invalid samples

Classifying the images is challenging because the evaluation is highly subjective, and edge

cases can be labeled differently by different people. However, the overall accuracy is high,

and cases with high confidence scores are likely to be classified correctly. Cases with lower

confidence can be flagged for additional human verification. This experiment was used to

verify whether the fine-tuning approach is helpful for the classification tasks.

All the next experiments concentrated solely on object detection.
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3.5.2 Bacteria detections after fine-tuning of the classification head only

The initial method of fine-tuning used was the simplest approach, which involved training

solely the classification head. This training was found to bring surprisingly satisfactory

results for simple cases. However, this solution could not be further extended or improved, as

the box regression head remained fixed. Nonetheless, for simple cases, this approach could

be a valid solution but due to the nature of the target dataset it did not provide sufficient

results.

(a) Image 13 test (b) Image 10 test

Figure 13: Partial fine-tuning

3.5.3 Fine-tuning data as-is

The subsequent approach to fine-tuning involved fine-tuning both the classification and box

regression heads of the network using the few-shot data without any modifications. Two

versions of the dataset were used: a 7-image dataset and a 2-image dataset. According to the

results presented in Figure 14 and 15, the model exhibited no signs of overfitting, neither with

the 7-image set nor with the 2-image set. This lack of overfitting aligns with the expectations

described in section 2.4.3 where fine-tuning is expected to provide some protection from

overfitting.

3.5.4 Augmenting data

As previously discussed in Section 2.3.1, data augmentations offer a straightforward method

to expand the dataset which is light on resources. This method combines the model-centric

22



Figure 14: Loss of fine-tuning 7 images as-

is.

Figure 15: Loss of fine-tuning 2 images as-

is.

fine-tuning solution with a data-centric augmentations approach, re-using the method de-

scribed in Section 3.5.3 but with additional augmented data.

For this purpose, the Albumentations library was used to generate augmented images (Bus-

laev et al. 2020). However, not all augmentation methods were equally effective; thus, mul-

tiple configurations were tested.

The initial approach involved experimentation with color transformations and image flip-

ping while preserving the size and shape of the image. The augmentations applied included

HorizontalFlip, VerticalFlip, and ChannelDropout, each with varying (but always less than

100%) probabilities of application. This method generated 15 augmented images for each

original training image, thus expanding the dataset to a total of 105 images for the 7-image

scenario and 30 images for the 2-image scenario.

The second approach used all the previously mentioned augmentationsa and added random

scaling of the data, aiming to enhance the detection of objects at various sizes. The scaling

and cropping parameters were not fixed; when applied, they adjusted the image dimensions

to a minimum of 200 pixels and a maximum of the original size, thus making the resulting

data much more diverse. The variety of the resulting data can be observed in Figure 16.

Since cropping was included in the augmentations, more samples were generated per image

to increase the chance of covering the entire area of the source image. Because of this,

each training image produced 30 augmented samples, resulting in a training set size of 210.
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Such size is typical for object detection training and extends beyond the scope of a few-shot

dataset. In the 2-image scenario, a dataset of 60 images was generated.

Figure 16: Samples of augmented data using various color, flipping and cropping augmenta-

tions.

3.5.5 Close domain data

A close-domain dataset containing 369 images was discovered, and the subsequent set of

experiments used various configurations with this close-domain data. The dataset predom-

inantly featured images of Petri dishes, with variations primarily in image quality and col-

oration. Most images showed minimal bacterial and fungi overgrowth. A representative

image from the close-domain dataset is shown in Figure 17. The dataset was published by

Solymosi and Nagy 2023.

The initial method involved fine-tuning the network exclusively with these 369 training im-

ages, while using the original few-shot validation images to assess performance on the target

dataset.

Given the high volume of data, this scenario no longer represented an example of few-shot

learning, theoretically permitting the training of an object detector from scratch without prior

fine-tuning. However, the objective was to compare the efficacy of the fine-tuning method

against various data enhancement strategies, thus, fine-tuning was used for consistency. In

addition to that, transfer learning often brings better performance and generalization there-

fore it’s often a good addition even when it’s not strictly required (Yosinski et al. 2014).
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Figure 17: Sample image of domain data.

3.5.6 Mixing the close domain and original data

The next set of experiments used mix of data, combining images from the few-shot and

close-domain datasets in each batch in equal proportions. The intention behind this balanced

approach was to investigate whether it helps the model in learning more effectively and

performing more accurately on few-shot data. Through this method, it was hoped to enhance

the model’s capacity to adapt to the few-shot dataset. However, this method suffered from

the lack of data since the same few-shot images were re-used in every batch. This issue

especially strongly affected the 2-image few-shot dataset scenario since the few-shot data

within the batch always had duplicates. However, it was decided to accept this limitation in

order to keep the same proportion of few-shot and same-domain data for both experiments.

It was hypothesized that such a combination could outperform the methods described in the

previous section by better adapting the model to the few-shot dataset.

3.5.7 Augmenting the close domain and original data

The next set of experiments replicated the earlier ones described in Section 3.5.6, with a

single modification: images from both datasets were subject to augmentations. The augmen-

tations applied were limited to color modifications and flips, excluding actions like cropping.

The list of selected augmentations, each with a probability of less than 1 of being applied,

included the following:

• HorizontalFlip

• VerticalFlip
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• ChannelDropout

• RandomSunFlare

The intended effect was that by combining close domain and original data, the differences

between the few-shot and close domain datasets could be minimized. It also solved the issue

of repetitive data within the same batch (for 2-image dataset) and across multiple batches

(for both datasets) mentioned in previous Section 3.5.6.
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4 Results

The chapter below presents comparative results of the validation data. The results are divided

into two categories: those achieved with a training size of 7 images versus 2 images. Some

experiments were not repeated as the size of the few-shot dataset was irrelevant for them.

The validation images can be viewed in Figure 18.

Figure 18: Images 10 and 13 used for validation.

The results in the experiments were measured separately for the two validation images from

the Figure 18 above. This distinction was made due to differences in the difficulty of the

validation images, with one (Image 10) representing a simpler case and the other (Image 13)

a more complicated case. Separate statistics were compiled to allow for a comparison of

performance on more and less advanced cases. The training was conducted on the training

dataset, which is presented in full size in Figure 7. However, it must be noted that the full

7-image dataset was used only in half of experiments, other experiments used 2 images.

4.1 Metrics interpretation

The selected metrics are standard in the field of object detection and used for comparing

performance in various object detection competitions, such as Open Images RVC, COCO

Detection Challenge, VOC Challenge, and others (Padilla et al. 2021).

Intersection over Union (IoU) is used to calculate the accuracy of box predictions—specifically,

it measures the percentage of the area overlap between the predicted and actual bounding

boxes relative to their combined area. It is assumed in this work that two bounding boxes

with the highest IoU (with a minimum threshold of 0.5) must be associated with the same
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object. While this measurement does not show the total number of correct detections, it

illustrates the precision of detecting the location of the object. In addition to that, he post-

processing setup for the Object Detection API is configured with an IoU threshold of 0.1

to automatically eliminate overlapping results (this is adapted to the target few-shot data

where objects are not supposed to overlap). This configuration influences the overall num-

ber of images detected and, consequently, affects the Precision and Recall values, which are

standardized across all experiments.

Recall and Precision are calculated based on the identified measurements: True Positives

(correctly predicted objects), False Positives (predictions of non-existent objects), and False

Negatives (objects that were not detected). Given that there is only one class ("bacteria"),

class-specific metrics are not applicable. Finding the optimal performance typically involves

optimizing the relationship between recall and precision. An increase in the minimum thresh-

old for detecting an object typically results in a decrease in precision while recall may in-

crease. Missing many positives results in a high recall, as noted by Hicks et al. 2022.

The formulas used to calculate the above values were taken from Padilla et al. 2021:

Pr =
∑

S
n=1 T Pn

∑
S
n=1 T Pn +∑

N−S
n=1 FPn

=
∑

S
n=1 T Pn

all detections
,

Rc =
∑

S
n=1 T Pn

∑
S
n=1 T Pn +∑

G−S
n=1 FNn

=
∑

S
n=1 T Pn

all ground truths
,

IOU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
,

where the dataset contains G ground-truths and the model that outputs N detections, of which

S are correct (S ≤ G).

The significance of these metrics varies depending on the application. For example, research

in the medical field often requires high sensitivity to missing positive results due to the

potential dangerous consequences of overlooking them, as mentioned by Hicks et al. 2022.

Therefore, high recall is crucial in these contexts.

This thesis is aimed at developing a solution to assist in the detection of bacterial growth
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without entirely eliminating manual work, as human verification of the results remains nec-

essary. Therefore, a few missed detections are considered acceptable, and a higher precision

is preferred. While some bacteria may be missed, they can still be identified manually, which

is more acceptable than a high volume of false predictions since adding missed predictions

is expected to be easier job for human than removing the false positives.

4.1.1 Numerical results and table interpretation

The table structure is as following:

1. Setup: stands for the experiment setup, the short descriptions of which are available in

Figures 1 and 4.

2. IoU(13): IoU for Image 13 from Figure 18.

3. IoU(10): Same but for Image 10.

4. Precision(13): Precision for Image 13.

5. Precision(10): Precision for Image 10.

6. Recall(13): Recall for Image 13.

7. Recall(10): Recall for Image 10.

8. Other(13): Other statistics for Image 13, specifically the numbers used for Preci-

sion/Recall calculation where TP = true positives, FP = false positives and FN = false

negatives.

9. Other(10): Statistics for Image 10.

10. Confidence score: Minimum confidence score of the detections.

The cases in Tables 1 and 4 follow the experiments described in the previous Section:

1. Case 1 is described by Section 3.5.3

2. Cases 2 and 3 are described by Section 3.5.4, each representing its own setup of the

augmentations, the first case including Color/Noise/Flipping augmentations and the

latter one including all of the above together with random cropping

3. Case 4 displays the results for Section 3.5.5 where only the close domain data is trained

without including the few-shot dataset into the training.

4. Case 5 is described by the setup in section 3.5.6 where the close domain and few-shot
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data is mixed in equal proportions

5. Case 6 is the variation of Case 5 with the addition of augmentations described by

Section 3.5.7

6. Case 7 is the fine-tuning of only the classification head described by Section 3.5.2

4.1.2 Tests of 7 image dataset

Test case Dataset size/ Batch size Epoch and learning rate Description

Case 1 7, BS = 2 500, 0.01 LR No augmentations, training as-is

Case 2 7*15=105, BS = 16 2500, 0.01LR Color, shape augmentations

Case 3 7*30=210, BS = 16 2500, 0.01 LR Color, shape augmentations, random size cropping and scaling

Case 4 369, BS = 16 2500, 0.01 LR Close domain training

Case 5 369+training ds, BS = 16 2500, 0.01 LR Close domain + original few shot dataset with color augmentations

Case 6 369+training ds, BS = 16 1500, 0.01 LR Close domain + original few shot dataset

Case 7 400, 0.01LR Only classifier retrained

Table 1: Description of training configurations of 7-image dataset.

Setup IoU(13) IoU(10) Precision(13) Precision(10) Recall(13) Recall(10) Other(13) Other(10)

Case 1 64% 71.8% 18% 8.7% 30.8% 67.4% TP=118, FP=537, FN=265 TP=31, FP=325,FN=15

Case 2 19% 20.7% 15.1% 13% 30% 80.4% TP=115,FP=645,FN=268 TP=37,FP=246,FN=9

Case 3 17.8% 22.9% 27.8% 20% 30% 80.4% TP=117, FP=303, FN=266 TP=37,FP=148, FN=9

Case 4 65.7% 71.6% 28.8% 30.6% 27.9% 89.1% TP=107,FP=265,FN=276 TP=41, FP=93, FN = 5

Case 5 63.2% 74.7% 32.5% 25.5% 24.5% 80.4% TP=94, FP=195, FN=289 TP=37, FP=108, FN=9

Case 6 65.2% 78.4% 23.7% 1.10 37.3% 84.8% TP=143 FP=460 FN=240 TP=39 FP=258 FN=7

Case 7 56% 63.2% 13% 32% 1.6% 54.3% Tp = 6, FP = 40, FN = 377 TP = 28, FP = 53, FN = 21

Table 2: Validation metrics for 7 image dataset with minimum confidence score 10%.

Setup IoU(13) IoU(10) Precision(13) Precision(10) Recall(13) Recall(10) Other(13) Other(10)

Case 1 64.9% 71.8% 50% 53.4% 16.7% 67.4% TP=64, FP=65, FN=319 TP=31,FP=27, FN=15

Case 2 64.1% 49.6% 44.3% 58% 24.8% 78.2% TP=95,FP=119,FN=288 TP=36,FP=26,FN=10

Case 3 30.1% 44.3% 61.9% 58.3% 18.2% 76% TP=70, FP=43, FN=313 TP=35, FP=25, FN=11

Case 4 66.9% 71.6% 53.5% 78.7% 18% 80.4% TP=69, FP=60,FN=314 TP=37,FP=10,FN=9

Case 5 64.4% 74.8% 66.7% 69.7% 13% 69.6% TP=50 FP=25 FN=333 TP=32 FP=14 FN=14

Case 6 66.9% 79.3% 56.8% 53.6% 26.1% 80.4% TP=100 FP=76 FN=283 TP=37 Fp=32 FN=9

Case 7 54.6% 62.6% 20% 42.3% 1.3% 47.8% TP = 5, FP = 20, FN = 378 TP = 22, FP = 30, FN = 24

Table 3: Validation metrics for 7 image dataset with minimum confidence score 20%
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Figure 19: 7 bacteria statistics with 10% threshold
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Figure 20: 7 bacteria statistics with 20% threshold

Figure 21: Visualizations of metrics for 7-image dataset.

4.1.3 Tests of 2 image dataset

The following experiments were conducted on a smaller dataset consisting of 2 images; the

selected images were 2 and 7, as depicted in Figure 22. All experiments were identical

except for the dataset size. Cases 4 and 7, as visible in Table 4, were not included since they

were independent of the few-shot dataset size. Case 4 did not utilize the few-shot data at all,

31



and Case 7 involved re-training only the classifier head.

Figure 22: 2-image training set: Image 2 and Image 7.

Test case Dataset size/ Batch size Epoch and learning rate Description

Case 1 2, BS = 2 2500, 0.01 LR No augmentations, training as-is

Case 2 2*15 = 30, BS = 16 2500, 0.01 LR Color, shape augmentations

Case 3 2*30 = 60 2500, 0.01 LR Color, shape augmentations, random size cropping and sclaing

Case 4 - - -

Case 5 369+training ds, BS = 16 2500, 0.01 LR Close domain + original few shot dataset with color augmentations

Case 6 369+training ds, BS = 16 1500, 0.01 LR Close domain + original few shot dataset

Case 7 - - -

Table 4: Description of training configurations of 2-image dataset.

Setup IoU(13) IoU(10) Precision(13) Precision(10) Recall(13) Recall(10) Other(13) Other(10)

Case 1 58% 75.9% 10% 29.8% 3.6% 78.3% TP = 14, FP = 126, FN = 369 TP = 36, FP = 85, FN = 10

Case 2 63% 73.6% 31.3% 28% 14% 78.2% TP = 52, FP = 114, FN = 331 TP = 36, FP = 94, FN = 10

Case 3 62.6% 75.5% 18.1% 27% 7% 82.6% TP = 27, FP = 122, FN = 356 TP = 38. FP = 104, FN = 8

Case 5 65.8% 72% 42.2% 32.8% 24% 87% TP=92 FP=126 FN=291 TP=40 FP=82 FN=6

Case 6 64.7% 77.8% 26.4% 18.6% 26.6% 84.8% TP=102 FP=285 FN=281 TP=39 FP=171 FN=7

Table 5: Validation metrics for 2 image dataset with minimum confidence score 10%.

Setup IoU(13) IoU(10) Precision(13) Precision(10) Recall(13) Recall(10) Other(13) Other(10)

Case 1 62.5% 76.5% 33% 77.8% 1.6% 76% TP = 6, FP =12, FN = 377 TP = 35, FP = 10, FN = 11

Case 2 62.1% 73.8% 43.5% 69% 4.4% 76% TP = 17, FP = 22, FN = 366 TP = 35, FP = 16, FN = 11

Case 3 67.2% 75.6% 27.6% 71.2% 2% 80% TP = 8, FP = 21, FN = 375 TP = 37, FP = 15, FN = 9

Case 5 67.4% 73% 67.2% 80.5% 10% 71.7% TP=39 FP=19 FN=344 TP=33 FP=8 FN=13

Case 6 67.2% 77.9% 65.1% 70.3% 14.6% 82.6% TP=56 FP=30 FN=327 TP=38 FP=16 FN=8

Table 6: Validation metrics for 2 image dataset with minimum confidence score 20%.
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Figure 23: 2 bacteria statistics with 10% threshold.
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Figure 24: 2 bacteria statistics with 20% threshold.

Figure 25: Visualizations of metrics for 2-image dataset.

4.2 Test dataset results

The tables above present the validation statistics collected based on two images of varying

difficulty. To clarify the comparison, solutions with better evaluation measurements were

selected to demonstrate their performance on the test data. Both the 7-image and 2-image

datasets delivered higher precision results when a minimum threshold of 20% was utilized;

33



therefore, the data below is shown only for that threshold. The test set contains more images

than those displayed, the selected images are made to represent various difficulty levels of

the data.

4.2.1 Seven image dataset results

According to the validation set metrics from Table 3, Case 4 was found to have the highest

precision, followed by Cases 5, 3, and 2. However, a significant drop in the IoU was observed

for Case 3. Given the small size of the validation set, it is reasonable to compare all four

potential best candidates against the test set. An empirical check of the results indicated that

Case 2 was the best candidate, followed by Cases 4, 3, and 5.
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Figure 26: Case 2 Image 11 Figure 27: Case 3 Image 11

Figure 28: Case 4 Image 11 Figure 29: Case 5 Image 11

Figure 30: Comparisons of the predictions on Image 11 for 7-image dataset.

The general performance on the simple cases was found to be satisfactory across all training

scenarios:
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Figure 31: Case 2 Image 10 Figure 32: Case 3 Image 10

Figure 33: Case 4 Image 10 Figure 34: Case 5 Image 10

Figure 35: Comparisons of the predictions on Image 10 (which is also part of validation set)

for 7-image dataset.

4.2.2 Two image dataset results

The best performing results for the case of the 2-image dataset, based on the data in Figure

25, was observed as follows: Case 5, Case 6, Case 4, Case 2, etc.
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Figure 36: Case 2 Image 11 Figure 37: Case 6 Image 11

Figure 38: Case 4 Image 11 Figure 39: Case 5 Image 11

Figure 40: Comparisons of the predictions on Image 11 for 2-image dataset.
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Figure 41: Case 2 Figure 42: Case 6

Figure 43: Case 4 Image 12 Figure 44: Case 5 Image 12

Figure 45: Comparisons of the predictions on Image 12 for 2-image dataset.
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Figure 46: Case 2 Image 3 Figure 47: Case 6 Image 3

Figure 48: Case 4 Image 3 Figure 49: Case 5 Image 3

Figure 50: Comparisons of the predictions on Image 3 on 2-image dataset.
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5 Discussion

5.1 Results discussion

The findings outlined in Sections 4.2.1 and 4.2.2, along with the validation metrics from

Figures 25 and 21, have led to several conclusions. As anticipated, training with 7 images

was generally observed to bring higher and more efficient results.

Several facts were revealed by the comparison between the results in 7-image and 2-image

validation measurements:

• The recall for 2-image training was found to be lower than for 7-image training, likely

due to fewer true positives being detected, which indicates a generally less effective

detector.

• No sudden IoU drops were observed in 2-image training for Cases 2-3, unlike in 7-

image training.

• The benefits of incorporating close-domain data were evident in 2-image training,

while not being as critical in the case of 7-image dataset.

• Cropping augmentations did not improve the performance of detectors in both 2- and

7-image cases, despite the fact that they significantly increased the size of the datasets.

• The larger 7-image dataset was observed to receive more benefits from augmentations

than the smaller 2-image dataset.

• While the 2-image dataset struggled to perform well using only its own few-shot data

in more complicated images, it still managed to achieve good detections for simpler

cases, as depicted in 50.

A notable observation from the close-domain training was that the integration of close-

domain data with a few-shot dataset did not yield improvements. It was initially hypoth-

esized that this combination would enhance adaptation to the few-shot dataset; however,

training was actually slowed due to the high frequency of repetitions in each batch, given

the relatively small size of the few-shot dataset. This suggests that special adaptations to

the few-shot dataset are unnecessary, as the performance was improved by the close-domain
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data alone. Adding the augmentations into few-shot and close domain data like in Case 5 did

not bring the improvements either.

The differing behaviors observed between the 7-image and 2-image dataset training might

prompt the question: Can the 7-image dataset still be considered a few-shot dataset, given

its noticeably higher performance? I would argue that it still qualifies as a few-shot dataset,

since the amount of data remains lower than what is typically required for object detection

models. For instance, the same-domain dataset used in scenarios 4-6 contains over 200

images.

5.2 Limitations and Future research

This thesis explored several methods of few-shot object detection but did not include a com-

prehensive analysis of all potential approaches. For instance, it excluded older and more

sophisticated techniques such as meta-learning, primarily due to the high computational re-

sources most meta-learning algorithms require. Additionally, many existing meta-learning

implementations suffer from outdated code and dependencies, further complicating their use.

For this reason, most approaches used in this thesis are data-centric. Future research could

expand this work by conducting a deeper review and comparison of model-centric solutions,

specifically incorporating meta-learning techniques.

This thesis does not implement any few-shot detection method with perfect accuracy; rather,

it seeks to develop its own approach based on the task at hand. For example, although the

approach described by Wang et al. 2020 allows for detecting both novel and base classes, the

implementation in this thesis did not prioritize base classes since they are not relevant to the

application. Therefore, this solution may lack reusability since it is tailored to the practical

task where preserving the detection of base classes is not critical.

The selected model-centric fine-tuning approach could be further improved by experimenting

with various backbones and training configurations, such as optimizers and learning rates.

Since this thesis included object detection of only one class ("bacteria") for the sake of sim-

plicity, future work could include multi-class bacteria detection and classification. In the case
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of the methods used in this thesis it would mean that classifier part of the network would be

fine-tuned on multiple classes of bacteria colonies instead of one.

When applied in a practical setting, this approach could also benefit from the use of active

learning, where users would annotate missed detections. These annotations could then be

incorporated into a new training dataset, gradually improving data scarcity and eventually

constructing a more adequate dataset, as suggested (Brust, Käding, and Denzler 2018). This

strategy is particularly applicable to the current use-case, where objects will be eventually

marked manually in the event of inaccurate predictions.

The performance of the selected approach was evaluated using a specialized few-shot dataset

rather than standard datasets like COCO or Pascal VOC, making direct comparisons with

other solutions challenging. Nevertheless, as most studies do not report results from real-life

data, the metrics gathered here are considered sufficiently informative.

This work can be compared with other research aimed at the same task of bacteria detection.

Multiple approaches include using larger datasets such as AGAR (Majchrowska, Pawłowski,

et al. 2021b), which contains around 18,000 images. Since the close-domain training worked

well in the experiments, it is safe to assume that utilizing an even larger dataset for this thesis

would bring even better performance. Much research utilizes large datasets such as AGAR

with various deep learning approaches using CNNs (Majchrowska, Pawłowski, et al. 2021a;

Yang et al. 2023).

Some research employs similar methods; for instance, El-Melegy, Mohamed, and Elmelegy

2019 used transfer learning to train a detector for tuberculosis bacteria. Their research uti-

lized a dataset of 500 images with augmentations to increase the amount of training data,

resulting in a total of 1,500 images. This approach achieved a recall and precision of 98.3%

and 82.6%, respectively, for detecting TB bacilli.

Generally, most approaches to this problem involve using large datasets. However, the fact

that data augmentations provided comparatively satisfactory results indicates that it is a valid

alternative approach. Not all areas have access to large datasets; therefore, it is valuable that

this thesis included experiments based on the assumption that no additional data could be

added. While object detection can be effectively performed using large datasets, the few-
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shot methods researched here still provided valuable insights for scenarios where additional

data cannot be collected.
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6 Conclusion

The problem of few-shot object detection has been studied previously, but most of the re-

search and statistics have been conducted on generated few-shot datasets instead of real-life

training data. This thesis tests various approaches in real-world scenario in order to identify

the most helpful methods and provide recommendations for approaching similar tasks.

As discussed in the Results chapter (see 5.1), Precision is the more important metric for the

selected task since it is preferable to avoid false detections. Many conclusions are built on

this assumption. It is also impossible to compare these values straightforwardly to other

solutions since their metrics are based on different datasets. Therefore, the results of various

experiments completed in this thesis will be compared only among themselves.

The thesis provides the following answers to the research questions:

1. What are the most effective methods for few shot detection in the selected domain?

The simplest approach to training on few-shot data and avoiding overfitting is to use

fine-tuning techniques. To achieve better results, the next step should include improv-

ing the data itself. The general guidance is to always include close-domain data if

available. If it is not available, extending the few-shot dataset using data augmenta-

tions can help. However, the augmentations should not be overdone, and the resulting

data should not be too different from the expected test data. Fine-tuning the pre-trained

model with improved data brings sufficient performance. Another approach that can

help mostly in simple cases is fine-tuning only classification head of the network.

2. What role do data augmentation and synthetic data generation play in improving the

performance of few-shot object detection models for bacteria colony identification?

Data augmentations play a significant role and can noticeably improve the quality and

variety of the dataset, significantly improving the quality of the model predictions.

Data generation techniques are harder to implement, require more resources, and do

not eliminate the manual labor of labeling the data. Therefore data augmentations are

the preferable approach.

3. Can transfer learning from related domains enhance the accuracy and ability to gener-
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alize of few-shot object detection models in identifying bacteria colonies? Yes, using

close-domain data significantly enhances object detection performance and might even

eliminate the need for using the few-shot dataset entirely.

The recommended approach is to use fine-tuning rather than meta-learning because of the

method’s simplicity and its modest resource requirements, coupled with some data improve-

ment methods.

The practical purpose of this thesis is to classify approaches for improving few-shot object

detection and to help researchers and developers choose the optimal solution. This thesis

does not develop a novel theory; instead, it aims to apply the existing theories to the practi-

cal problem of object detection with few-shot data. The field of few-shot learning includes

various approaches that differ significantly in difficulty, some of which are extremely chal-

lenging to implement or require substantial resources. Therefore, this comparative analysis

can help users select the most practical solution for their specific use case.
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