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Abstract. A multiperiod portfolio optimization is described with Monte Carlo sampled risky asset paths under
realistic constraints on the investment policies. The proposed approach can be used with various
asset and risk models. It is flexible as it does not require dynamic programming or any transfor-
mations. As examples, the variance and semivariance risks are considered leading to mean-variance
and mean-semivariance formulations, respectively. A quasi-Newton method with an adjoint gra-
dient computation can solve the resulting optimization problems efficiently. Numerical examples
show efficient frontiers together with optimal asset allocations computed for mean-variance and
mean-semivariance portfolios with two and five assets.
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1. Introduction. The single-period mean-variance optimization introduced by Markowitz
[24] is the classical way to select investment portfolios. Dynamic and multiperiod generaliza-
tion of this approach offers a more realistic model for portfolios as they can incorporate more
constraints for investments as well as time- and wealth-dependent asset allocations. These
generalizations offer robust asset allocations which are insensitive to model misspecification
as was shown by van Staden, Dang, and Forsyth [29]. Continuous dynamic asset allocation
problems have known analytical solutions with certain constraints. For example, Bielecki et al.
[3] derive a solution when bankruptcy is not allowed, and when shorting selling is not allowed,
Li, Zhou, and Lim [23] give an explicit solution. When discrete rebalancing is performed and
realistic constraints are imposed on the portfolios, an analytical solution is not available in
general and portfolio strategies need to be found numerically. This paper considers this case.

Brandt et al. [4] consider Monte Carlo simulation-based discrete-time portfolio allocation
problems. While their approach is fairly flexible, it assumes the asset allocation to be inde-
pendent of current wealth. This is restrictive and leads to suboptimal investment strategies.
Instead, it is preferable to consider time- and wealth-dependent asset allocations to maxi-
mize the final wealth under a given level of risk aversion. These are called precommitment
strategies by Basak and Chabakauri [2] and are typically not time-consistent; see [28], for ex-
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SC42 RAINO A. E. M\"AKINEN AND JARI TOIVANEN

ample. In the case of the mean-variance optimization, there is an induced objective function
for which the solution is time-consistent [12], [8], [31]. Cong and Oosterlee [6], [7] construct
these precommitment strategies based on Monte Carlo simulated risky asset paths. Their
approach drives a suboptimal multistage strategy to an optimal one using backward recursive
programming. They perform the common transformation of the mean-variance problem with
nonlinear conditional variance to a linear-quadratic (LQ) problem by an embedding technique
by Li and Ng [22]. Another approach to constructing precommitment strategies is to formu-
late a Hamilton--Jacobi--Bellman (HJB) partial differential equation (PDE) for the strategy.
This is an elegant approach that avoids sampling risky asset paths, but its numerical imple-
mentation is fairly cumbersome and, unlike Monte Carlo--based methods, it does not scale
well for multiple risky assets. This HJB PDE approach has been considered by Wang and
Forsyth [32], Dang and Forsyth [9], and Forsyth and Vetzal [13], for example.

Recently, several studies, including [5], [16], [26], [25], [30], have proposed neural net-
works (NNs) for financial optimization problems without relying on dynamic programming.
These studies describe the control by an NN and the loss function is given by the financial
objective. The resulting NN training problem is solved using the usual stochastic gradient
methods in this context. Here we propose a similar, non--dynamic programming--based ap-
proach describing the control by a more traditional polynomial interpolation similar to many
dynamic programming--based financial optimization studies including [6], [7], [9], [13], [32].
We solve the resulting optimization problems by a quasi-Newton optimization method. The
proposed approach has two benefits: polynomial interpolations have well-established approxi-
mation convergence properties, and the quasi-Newton methods have fast convergence leading
to shorter computation times.

This paper describes an optimization approach based on Monte Carlo simulated risky
asset paths. The optimization is performed directly to the objective function given by the
desired combination of the expected final wealth and the risk measure without any transfor-
mation. This leads to a nonlinear optimization problem for time- and wealth-dependent asset
allocations for which it is easy to impose constraints. This proposed approach is flexible and
can be easily generalized for many cases.

Quasi-Newton methods offer an efficient way to solve the resulting optimization problems.
Particularly methods based on Broyden--Fletcher--Goldfarb--Shanno (BFGS) approximation
[11] of the Hessian matrix have been shown to be efficient and are very popular. These methods
require the gradient of the objective function with respect to the optimization variables, that
is, the time- and wealth-dependent asset allocations. The adjoint technique gives an efficient
way to compute this gradient. With Monte Carlo simulations Giles [14], [15] describes this
technique. Kaebe, Maruhn, and Sachs [18] employ it to calibrate a market model. To the best
of our knowledge, in the scientific literature, these techniques have not been used before to
construct asset allocation strategies. Instead of applying automatic differentiation to compute
the gradient, we derive an analytical expression for the gradient, which can be used for the
efficient implementation of the method. The efficient frontier of possible portfolios is obtained
by optimizing the portfolios with varying levels of investor risk aversion. We present numerical
examples for the case of one and four risky assets.

The outline of this paper is the following: Section 2 describes the mean wealth-risk mea-
sure optimization problem. Section 3 gives the details of Monte Carlo simulation of the wealth
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MONTE CARLO PORTFOLIO OPTIMIZATION SC43

as well as computation of the variance and semivariance of the final wealth which are the risk
measures studied in this paper. Section 4 proposes a numerical solution method for the result-
ing optimization problem. Section 5 presents numerical examples of portfolio optimization.
Section 6 gives the conclusions.

2. Mean wealth-risk measure portfolio optimization. Let there be I + 1 investment
assets. Let the ith asset Si follow the stochastic differential equation (SDE)

dSi = \mu iSidt+ \sigma iSidZi,(2.1)

where \mu i is the growth rate, \sigma i is the volatility, and Zi is the Wiener process. The correlation
between these processes is specified by the correlation matrix. When the volatility is zero the
asset is riskless.

The accumulated total wealth W : [0, T ]\rightarrow \BbbR follows the SDE\left\{     dW =W

\Biggl[ 
I+1\sum 
i=1

pi
\bigl( 
\mu idt+ \sigma idZi

\bigr) \Biggr] 
+ \pi dt,

W (0) =w0,

(2.2)

where \pi is a contribution rate, pi = pi(t,W ) is the proportion of the wealth invested in the
ith asset Si

t at time t, and w0 is the initial wealth. The last asset SI+1 is assumed to be
riskless, that is, \sigma I+1 = 0 and r := \mu I+1 is the riskless interest rate. Thus, the number of risky
assets is I. The proportion of the wealth invested in the riskless asset is pI+1 = 1 - 

\sum I
i=1 p

i.
Eliminating the proportion of the riskless asset from (2.2) we obtain the equivalent SDE that
is better suited for computations:\left\{     dW =W

\Biggl[ 
r dt+

I\sum 
i=1

pi
\bigl( 
(\mu i  - r)dt+ \sigma idZi

\bigr) \Biggr] 
+ \pi dt,

W (0) =w0.

(2.3)

Let P = (p1 \cdot \cdot \cdot pI)T contain the proportions pi, i = 1, . . . , I. Furthermore, let E[WP (T )]
and RM[WP (T )] denote the expected value and risk measure for the final wealth W (T ) when
following an investment strategy P . Typical risk measures are the variance Var[\cdot ] and the
semivariance Semivar[\cdot ]. The semivariance is a special case of downside risk models [10].
Under a discrete-time investment strategy, it leads to a well-posed problem [17]. The aim is
to find a strategy P \ast 

\lambda \in \scrP ad such that

P \ast 
\lambda = arg max

P\in \scrP ad

(E[WP (T )] - \lambda RM[WP (T )]) ,(2.4)

where \lambda > 0 describes the investor's risk aversion which grows with \lambda . Varying \lambda gives the
Pareto optimal portfolios. The set \scrP ad defines allowed strategies. Forbidding short selling
leads the lower bound p\mathrm{m}\mathrm{i}\mathrm{n} for the proportions pi, i = 1, . . . , I, to be zero. Let p\mathrm{m}\mathrm{a}\mathrm{x} be the
allowed amount of leverage. For example, allowing a 2:1 leverage ratio corresponds to p\mathrm{m}\mathrm{a}\mathrm{x} = 2,
while no leverage allowed corresponds to p\mathrm{m}\mathrm{a}\mathrm{x} = 1. The proportions have to satisfy pi \leq p\mathrm{m}\mathrm{a}\mathrm{x}.
Furthermore, the sum of the proportions has to be at most p\mathrm{m}\mathrm{a}\mathrm{x}, that is,

\sum I
i=1 p

i \leq p\mathrm{m}\mathrm{a}\mathrm{x}.
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SC44 RAINO A. E. M\"AKINEN AND JARI TOIVANEN

3. Monte Carlo simulation of wealth. For the moment, let the investment policy P be
given and fixed. We approximate the solution of the SDE (2.3) by using the classical Euler--
Maruyama scheme. Let \Delta t = T/N be the time step, and let \bfitZ \in \BbbR K\times I\times N be an array of
normally distributed pseudorandom numbers. In this paper, K is the number of Brownian
paths.

Let Wn
k denote the kth random approximation of W (n\Delta t). These values at the nth time

step are collected to the vector \bfitW n = (Wn
1 \cdot \cdot \cdot Wn

K) \in \BbbR K . One step of the numerical scheme
reads

\bfitW n+1 =

\Biggl[ 
1 +\Delta tr+

I\sum 
i=1

\bfitP n
i (\bfitW 

n)\odot 
\Bigl( 
\Delta t

\bigl( 
\mu i  - r

\bigr) 
+
\surd 
\Delta t\sigma i\bfitZ n

i

\Bigr) \Biggr] 
\odot \bfitW n +\Delta t\pi ,(3.1)

where the vectors \bfitP n
i (\bfitW 

n) contain the proportions evaluated at (tn,W
n
k ) for k = 1, . . . ,K,

i.e., \bfitP n
i (\bfitW 

n) =
\bigl( 
pi(tn,W

n
1 ) \cdot \cdot \cdot pi(tn,Wn

K)
\bigr) 
.

Moreover, the vector \bfitZ n
i \in \BbbR K contains the K random numbers for the ith asset at the

time step n, and \odot is the elementwise vector product operator.1 This can be expressed in a
more compact form

\bfitW n+1 =\bfitS n(\bfitP n)\odot \bfitW n +\Delta t\pi ,(3.2)

where

\bfitS n(\bfitP n) = 1+\Delta tr+

I\sum 
i=1

\bfitP n
i (\bfitW 

n)\odot 
\Bigl( 
\Delta t

\bigl( 
\mu i  - r

\bigr) 
+
\surd 
\Delta t\sigma i\bfitZ n

i

\Bigr) 
.(3.3)

The expected final wealth is given by

E
\bigl( 
\bfitW N

\bigr) 
= 1

K

K\sum 
k=1

WN
k .(3.4)

Its variance and semivariance are given by

Var
\bigl( 
\bfitW N

\bigr) 
= 1

K

K\sum 
k=1

\bigl( 
WN

k  - E
\bigl( 
\bfitW N

\bigr) \bigr) 2
and

Semivar
\bigl( 
\bfitW N

\bigr) 
= 1

K

K\sum 
k=1

\bigl( 
min

\bigl\{ 
WN

k  - E
\bigl( 
\bfitW N

\bigr) 
, 0

\bigr\} \bigr) 2
,

(3.5)

respectively. Note that unlike here sometimes the semivariance is defined with the inverse of
the number of samples below the expected value instead of the inverse of the number of all
samples.

1Here we adopt the MATLAB style notation: If \bfitx ,\bfity ,\bfitz \in \BbbR n, \beta \in \BbbR , then \bfitz = \bfitx \odot \bfity + \beta means zi = xiyi +
\beta , i=1, . . . , n.
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MONTE CARLO PORTFOLIO OPTIMIZATION SC45

4. Fully discrete optimization problem. Until now the policy P has been a continuous
vector-valued function of time and wealth. Next, we introduce a parametrized strategy Ph =
(p1h \cdot \cdot \cdot pIh), where each proportion depends only on a finite number of parameters.

Consider the M \times N grid G := \{ 0=\scrW 1<\scrW 2< \cdot \cdot \cdot <\scrW M =W\mathrm{m}\mathrm{a}\mathrm{x}\} \times \{ 0= t0<t1< \cdot \cdot \cdot <
tN - 1\} , where tn = n\Delta t and W\mathrm{m}\mathrm{a}\mathrm{x} is large enough such that Wk(t) \in [0,W\mathrm{m}\mathrm{a}\mathrm{x}] for all paths.
Let \{ \psi m,n(t,W )\} be the set of piecewise bilinear C0-continuous basis functions associated
with G, where each \psi m,n has the value one at (tm,Wn) and zero elsewhere. Moreover, let us
use the following notation for a set of I\cdot M \cdot N parameters:

\BbbP = (\bfitp 1 . . .\bfitp I)\in \BbbR I\cdot M \cdot N , \bfitp i = (pm,n)\in \BbbR M \cdot N , i= 1, . . . , I.

Now, we can define the following discretized proportions of the strategy Ph:

pih(\bfitp 
i; t,W ) =

M\sum 
m=1

N - 1\sum 
n=0

pim,n\psi m,n(t,W ).

The parametrized and discretized optimization problem then reads

\BbbP \ast 
\lambda = argmax

\BbbP \in \scrU 
\scrJ \lambda (\BbbP ),(4.1)

where the discrete objective function is defined by

\scrJ \lambda (\BbbP ) := J\lambda 
\bigl( 
\bfitW N (\BbbP )

\bigr) 
=E

\bigl( 
\bfitW N

\bigr) 
 - \lambda RM

\bigl( 
\bfitW N

\bigr) 
.(4.2)

The set of admissible parameters in (4.1) is defined by

\scrU = \{ \BbbP \in \BbbR I\cdot M \cdot N | \BbbP \mathrm{m}\mathrm{i}\mathrm{n} \leq \BbbP \leq \BbbP \mathrm{m}\mathrm{a}\mathrm{x} and \bfitA \BbbP \leq \bfitb \} ,(4.3)

where the lower bound vector \BbbP \mathrm{m}\mathrm{i}\mathrm{n} and the upper bound vector \BbbP \mathrm{m}\mathrm{a}\mathrm{x} result from the lower
and upper bounds for the proportions pi, i = 1, . . . , I, and the linear constraint \bfitA \BbbP \leq \bfitb 
results from the limit for the leverage. The definitions of these vectors and the matrix \bfitA are
given by \BbbP \mathrm{m}\mathrm{i}\mathrm{n} = p\mathrm{m}\mathrm{i}\mathrm{n}\bfite I\cdot M \cdot N , \BbbP \mathrm{m}\mathrm{a}\mathrm{x} = p\mathrm{m}\mathrm{a}\mathrm{x}\bfite I\cdot M \cdot N , \bfitA = \bfitI M \cdot N \otimes \bfite TI , and \bfitb = p\mathrm{m}\mathrm{a}\mathrm{x}\bfite M \cdot N , where
\bfite n = (1 \cdot \cdot \cdot 1)T \in \BbbR n, In is the n\times n identity matrix, and \otimes is the Kronecker product operator.

To efficiently utilize gradient-type methods for the numerical solution of (4.1), it is es-
sential to have the exact gradient \nabla \BbbP \scrJ \lambda (\bfitW 

N (\BbbP )) rather than relying on its finite difference
approximation. Exact gradient computations can be performed manually or with the as-
sistance of automatic differentiation tools readily accessible in popular software libraries for
machine learning and artificial intelligence, such as TensorFlow [1]. In what follows, we derive
a concise expression for the gradient using the classical adjoint approach. Following that, we
provide a brief overview of the advantages and challenges associated with the application of
automatic differentiation tools.

The partial derivatives of the objective function with respect to the parameters defining
the discrete investment strategy can be computed using the adjoint formulation [14] holding
fixed the randomly generated Brownian path increments for every particular path calculation.
In what follows, we assume a general parametrization of pih = pih(\bfitp 

i; t,W ), \bfitp i \in \BbbR M \cdot N , that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SC46 RAINO A. E. M\"AKINEN AND JARI TOIVANEN

is, the calculations are not restricted to any particular parametrization. We assume that the
mapping \BbbP \mapsto \rightarrow \bfitW N is smooth and derive formally the explicit formula for \partial \scrJ \lambda 

\partial pj
, where pj is a

component of \BbbP .
Using the notation of section 3 we can express the Monte Carlo simulation of the wealth

as the state problem\Biggl\{ 
\bfitW 0 =w0,

\bfitW n+1 =\bfitS n(\bfitP n)\odot \bfitW n +\Delta t\pi , n= 0, . . . ,N  - 1.
(4.4)

Define the Lagrangian with a set of Lagrange multipliers \BbbY := \{ \bfitY 0, . . . ,\bfitY N\} :

\scrL \lambda =\scrJ \lambda (\bfitW 
N ) - 

N - 1\sum 
n=0

(\bfitY n+1)
\mathrm{T}
(\bfitW n+1  - \bfitS n(\bfitP n)\odot \bfitW n  - \Delta t\pi ) - (\bfitY 0)

\mathrm{T}
(\bfitW 0  - w0).(4.5)

As \BbbW := \{ \bfitW 0, . . . ,\bfitW N\} satisfies (4.4) for all \BbbP , we may choose \BbbY freely. We have \scrJ \lambda (\bfitW 
N ) =

\scrL \lambda (\BbbP ,\BbbW ,\BbbY ) and

\partial \scrJ \lambda 

\partial pj
=
\partial \scrL \lambda 

\partial pj
= (\nabla \bfitW N\scrJ \lambda )

\mathrm{T}\partial \bfitW 
N

\partial pj
 - 

N - 1\sum 
n=0

\bigl( 
\bfitY n+1

\bigr) \mathrm{T}\Bigl( \partial \bfitW n+1

\partial pj
 - \partial \bfitS n(\bfitP n)

\partial pj
\odot \bfitW n(4.6)

 - \partial \bfitS 
n(\bfitP n)

\partial W
\odot \partial \bfitW n

\partial pj
\odot \bfitW n  - \bfitS n(\bfitP n)\odot \partial \bfitW n

\partial pj

\Bigr) 
 - (\bfitY 0)

\mathrm{T}\partial \bfitW 0

\partial pj
.

Above we have denoted

\partial \bfitS n(\bfitP n)

\partial W
:=

I\sum 
i=1

(\Delta t(\mu i  - \mu i+1)pih
\prime 
+
\surd 
\Delta t\sigma ipih

\prime \odot \bfitZ n
i ),

\partial \bfitS n(\bfitP n)

\partial pj
:=

I\sum 
i=1

(\Delta t(\mu i  - \mu i+1)
\bullet 
pih +

\surd 
\Delta t\sigma i

\bullet 
pih \odot \bfitZ n

i )

with

pih
\prime 
:=

\partial ph(\bfitp 
i, tn,\bfitW 

n)

\partial W
and

\bullet 
pih :=

\partial ph(\bfitp 
i, tn,\bfitW 

n)

\partial pj
.(4.7)

Rearranging terms in (4.6) gives

\partial \scrL \lambda 

\partial pj
=

N - 1\sum 
n=0

(\bfitY n+1)
\mathrm{T}\partial \bfitS n(\bfitP n)

\partial pj
\odot \bfitW n +

\biggl( 
\partial \bfitW N

\partial pj

\biggr) \mathrm{T} \bigl( 
\bfitY N  - \nabla \bfitW N\scrJ \lambda 

\bigr) 
(4.8)

 - 
N - 1\sum 
n=0

\biggl( 
\partial \bfitW n

\partial pj

\biggr) \mathrm{T}\biggl( 
\bfitY n  - \partial \bfitS n(\bfitP n)

\partial W
\odot \bfitW n \odot \bfitY n+1  - \bfitS n(\bfitP n)\odot \bfitY n+1

\biggr) 
.

If we choose \BbbY to be the solution of the adjoint model\left\{   \bfitY N =\nabla \bfitW N\scrJ \lambda (\bfitW 
N ),

\bfitY n =
\partial \bfitS n(\bfitP n)

\partial W
\odot \bfitW n \odot \bfitY n+1 +\bfitS n(\bfitP n)\odot \bfitY n+1, n=N - 1,N - 2, . . . ,0,

(4.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MONTE CARLO PORTFOLIO OPTIMIZATION SC47

then only the first term in (4.8) is nonzero and we avoid calculating \partial \bfitW n

\partial pj
. Thus, we finally

have

\partial \scrJ \lambda 

\partial pj
=

N - 1\sum 
n=0

(\bfitY n+1)
\mathrm{T}\partial \bfitS n(\bfitP n)

\partial pj
\odot \bfitW n.(4.10)

Remark 4.1. In the derivation of the formulas (4.9), (4.10), the part depending on the
specific parametrization is contained in the derivatives appearing in (4.7). The continuous
piecewise linear parametrization of the investment policy, ph, is not continuously differentiable
with respect to W . Thus, it may happen that (4.10) only gives a directional derivative.
However, it is well known that standard quasi-Newton methods are relatively robust and
efficient even in the nonsmooth case. For more discussion on that topic, see [20], [21], for
example.

Remark 4.2. When it comes to using graph-based automatic differentiation tools like
TensorFlow for solving large-scale stochastic optimal control problems, researchers noted, as
seen in [19], that these tools, while optimized for training neural networks, face significant
challenges due to high memory and initialization requirements. For this reason, it is preferable
to use a manually computed gradient like the one in (4.10) when the number of parameters
is large.

A ``common subexpression elimination technique"" introduced in [19] selectively uses the
automatic differentiation leading to a comparable efficiency with a manually computed gra-
dient. Applying this technique to our case would involve using the automatic differentiation
to calculate derivatives \nabla \bfitW \scrJ \lambda ,

\partial \bfitS 
\partial \bfitW , and \partial \bfitS 

\partial \BbbP in (4.9)--(4.10) instead of applying it directly to
the black box \BbbP \mapsto \rightarrow J\lambda (\BbbP ).

5. Numerical portfolio optimization examples. In this section, we present two examples
dealing with one risky asset and one example dealing with four risky and correlating assets.
The computations have been performed using MATLAB [27] with the gradient computations
implemented using (4.10). The final time and time step for Monte Carlo simulations are
T = 20 and \Delta t = 0.25, respectively, leading to N = 80 time steps. In this section, we have
used K = 1000000 paths. For the strategy p there are M = 31 grid points in the W direction
with the last grid point at W\mathrm{m}\mathrm{a}\mathrm{x} = 30, and the grid is refined for small W values. In practical
computations, we employ the constant approximation p(tn, x) = p(tn,W\mathrm{m}\mathrm{a}\mathrm{x}), x>W\mathrm{m}\mathrm{a}\mathrm{x}, to
ensure the use of a reasonably small constant W\mathrm{m}\mathrm{a}\mathrm{x}.

In optimization, the quasi-Newton method with the BFGS approximation of the Hessian
matrix was used. To guarantee a robust convergence of the optimizer for all the sampled
\lambda values, we used 50 iterations for optimizations with one risky asset and 250 iterations
for optimizations with four risky assets. The likely reason for a larger number of required
iterations in the case of the higher-dimensional problem is not the larger number of parameters,
but the multiple correlated investment assets.

5.1. Portfolio with one risky asset and no leverage. We start by considering a pension
plan example with one risky asset, that is, I = 1 with the following parameters: the interest
rate r = 0.03, the volatility of the risky asset \sigma 1 = 0.15, the growth rate of the risky asset
\mu 1 = 0.0795, the contribution rate \pi = 0.1, and the initial wealth w0 = 1. Short selling is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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forbidden leading to p\mathrm{m}\mathrm{i}\mathrm{n} = 0. Borrowing is not allowed leading the maximum proportion of
the wealth invested in the risky asset to be p\mathrm{m}\mathrm{a}\mathrm{x} = 1.

We compute the efficient frontiers using the variance and the semivariance as the risk
measure. Furthermore, we compute also the efficient frontier given by the constant proportions
p when increasing this constant from zero to one. These efficient frontiers are formed by
performing the optimization for 11 values for the risk aversion parameter \lambda .

The mean-variance and mean-semivariance frontier plots for all three investment strategies
are shown in Figure 1. The final wealth probability distributions for the three strategies
when E[W (T )] = 8 are depicted in Figure 2. The corresponding mean-variance and mean-
semivariance optimized controls p are depicted in Figure 3.

We studied the convergence with respect to M (the number of discretization points in the
W -direction) and with respect to K (the number of paths). The other parameters were the
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Figure 1. The mean-variance and mean-semivariance frontiers for the mean-variance optimized portfolios,
the mean-semivariance optimized portfolios, and the constant proportion portfolios.
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Figure 2. The probability distributions for the final wealth when E[W (T )] = 8 for the three investment
strategies.
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Figure 3. Mean-variance and mean-semivariance optimized proportions p for E[W ] = 8.
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Figure 4. Left: Difference err(i,M) := | \scrJ \lambda i,M,106  - J\dagger 
i | . Right: Difference err(i,K) := | \scrJ \lambda i,31,K  - J\sharp 

i | . Due
to logarithmic y-axes, values with err= 0 are not plotted.

same as above. Let \scrJ i,M,K := \scrJ \lambda i
(\BbbP \ast ), where \BbbP \ast is the optimal control computed with M

grid points in the W -direction and using K paths. Let J\dagger 
i =\scrJ i,61,106 and J \sharp 

i =\scrJ i,31,4\times 106 . We

consider the values J\dagger 
i , J

\sharp 
i good approximations to the exact optimal objective function values

and we compare them with the values obtained using smaller M or K. In the latter case, we
take the average of 100 cost evaluations using a different sets of paths. The results of the tests
are depicted in Figure 4. From these tests, we can conclude that the empirical error in \scrJ \lambda is
roughly \sim 1/M2 and \sim 1/

\surd 
K. These results are consistent with the theoretical convergence

properties of piecewise linear interpolation and the Monte Carlo method.

5.2. Portfolio with one risky asset and leverage. We keep the parameters the same as
in section 5.1 except now the maximum leverage is given by p\mathrm{m}\mathrm{a}\mathrm{x} = 1.5. This is the example
considered by Wang and Forsyth [32] and Cong and Oosterlee [6]. The mean-variance and
mean-semivariance efficient frontiers are formed by performing the optimization for 11 values
for the risk aversion parameter \lambda . The mean-variance and mean-semivariance frontiers are
shown in Figure 5. The mean-variance frontier agrees well with the efficient frontiers presented
in [32, 6].
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Figure 5. The mean-variance and mean-semivariance frontiers for the mean-variance and mean-
semivariance optimized portfolios and the constant proportion portfolios when the maximum leverage is
p\mathrm{m}\mathrm{a}\mathrm{x} = 1.5.
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Figure 6. The mean-variance and semi-semivariance frontiers for the mean-variance and mean-
semivariance optimized portfolios for four risky assets.

5.3. Portfolio with four risky assets. This is a generalization of the previous examples
which adds three more risky assets. The volatilities of the four risky assets are given by
the vector \bfitsigma = (0.15 0.12 0.09 0.06)T , and their growth rates are given by the vector \bfitmu =
(0.0795 0.07 0.06 0.05)T . The correlation matrix between the risky assets is

\bfitC =

\left(    
1 0.6 0.2 0.1
0.6 1 0.4 0.2
0.2 0.4 1 0.4
0.1 0.2 0.4 1

\right)    .

As before the interest rate is r= 0.03, the final time is T = 20, and the initial wealth is w0 = 1.
The short selling is not allowed and there is no leverage leading to p\mathrm{m}\mathrm{i}\mathrm{n} = 0 and p\mathrm{m}\mathrm{a}\mathrm{x} = 1.
The mean-variance and mean-semivariance efficient frontiers are formed by performing the
optimization for 13 values for the risk aversion parameter \lambda . The mean-variance and mean-
semivariance frontier plots for the two optimized investment strategies are shown in Figure 6.
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Figure 7. The probability distributions for the final wealth when E[W (T )] = 8 for one and four risky assets.

The final wealth probability distributions for the mean-variance optimized portfolios with
E[W (T )] = 8 for two (one risky) and five (four risky) asset cases are depicted in Figure 7.

6. Conclusions. We presented a very generic Monte Carlo-based approach for portfolio
optimization. The models for the asset and the risk can be easily changed. The approach
does not require dynamic programming or any transformations. Restrictions on the investment
policies can be easily incorporated. In this paper, we used the variance and the semivariance
as the risk measure. The numerical examples considered cases with two and five assets.

Acknowledgment. We thank the anonymous referees whose constructive comments im-
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