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Abstract. We study the motion of charged liquid drop in three dimensions where the equations of motions are given by
the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the
famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conical
singularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posedness
of the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains
Cl@_regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., C* in time and
space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed,
due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the Cl“-regularity
assumption to be optimal. We also quantify the C'°°-regularity via high order energy estimates which, in particular, implies
the well-posedness of the problem.

Mathematics Subject Classification. 35Q35, 76B03, 76B07.

Keywords. Fluid mechanics, FEuler equations, Regularity theory for incompressible fluids, Free boundary,

Non-local isoperimetric problem, Rayleigh threshold.

Contents

1. Introduction and the Main Result
1.1. State-of-the-Art
1.2.  Statement of the Main Theorem
1.3.  Overview of the Proof and the Structure of the Paper
2. Notation and Preliminary Results
2.1. Half-Integer Sobolev Spaces
2.2. Half-Integer Sobolev Spaces on a Surfaces
2.3. Geometric Preliminaries
2.4. Functional and Geometric Inequalities
3. Elliptic Estimates for Vector Fields and Functions
3.1. Regularity Estimates for Vector Fields
3.2. Regularity Estimates for Functions

4. Useful Formulas

5. Estimation of the Error Terms
6. First Regularity Estimates

7. Energy Estimates

8. Higher Regularity Estimates
9. Proof of the Main Theorem
References

Published online: 07 June 2024 % Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-024-00883-2&domain=pdf
http://orcid.org/0000-0002-1310-4904

48 Page 2 of 83 V. Julin, D. A. L. Manna JMFM

1. Introduction and the Main Result

1.1. State-of-the-Art

In this paper we study the problem of charged liquid drop from rigorous mathematical point of view.
In the model the two effecting forces are the surface tension, which prefers to keep the drop spherical,
and the repulsive electrostatic force, which both act on the boundary of the drop. The problem is well-
known and goes back to Rayleigh [48] who studied the linear stability of the sphere and showed that
the sphere becomes unstable when the total electric charge is above a given threshold. When the total
electric charge is above this Rayleigh threshold, the drop begins to elongate and may eventually form a
conical singularity at the tip with a certain opening angle. Such singularities are called Taylor cones due
to the work by Taylor [52] and the numerical and experimental evidence suggest that the charged drop
typically forms such a singularity [24,45,52,61]. In this paper our goal is to study the well-posedness of
the problem and the regularity of the solution. We refer to [46] and [30] for an introduction to the topic.

The static problem of charged liquid drop can be seen as a nonlocal isoperimetric problem and it has
been studied from the point of view of Calculus of Variations in recent years [28,29,37,46]. The main
issue is that the associated minimization problem, formulated in the framework of Calculus of Variations,
is not well-posed, in the sense that the problem does not have a minimizer [28,46]. Even more surprising
is that the results in [28,46] show that even if the total electric charge is below the Rayleigh threshold,
the sphere is not a local minimizer of the associated energy. This means that the electrostatic term is not
lower order with respect to the surface tension, which makes the problem mathematically challenging.
In order to make the variational problem well-posed one may restrict the problem to convex sets [29] or
regularize the functional by adding a curvature term [30] which could lead to the existence of minimizer
as the result in [27] suggests.

Here we study this problem from the point of view of fluid-dynamics, which is the framework studied
e.g. in [24], where the authors derive the PDE system in the irrotational case (see also [5]). Indeed, as it
is observed in [24] the problem is by nature evolutionary, where the drop deforms as a function of time
given by the Euler equations with the surface of the drop being the free boundary, which law of motions
is coupled with the system which we give in (1.3) below. The problem can thus be seen as the Euler
equations for incompressible fluids with free boundary with an additional term given by the electric field.
The Euler equations with free boundary without the electric field has been studied rather extensively in
recent years. We give only a brief overview on this challenging problem below and refer to [12,44] for more
detailed introduction to the topic. Regarding the problem with electric field we mention the recent works
by Yang [59,60] and Wang-Yang [55], where the authors study the case of the water-wave problem. We
also mention the work [20], where the authors study the Stokes flow associated with the charged liquid
drop near the sphere and show that under smallness assumption the flow is well defined.

We stress that in our case it is crucial to include the surface tension in the model since otherwise the
problem might be ill-posed. For the problem without the electric field one may study the Euler equations
also without the surface tension, when one assumes the so called Rayleigh-Taylor sign condition [17],
which one should not confuse with the Rayleigh threshold mentioned above. For the water-wave problem
the well-posedness is proven by Wu [56,57] and the general case is due to Lindblad [40], see also [3,38].
Concerning the problem with surface tension, which is closer to ours, the short time existence of solution
in the irrotational case for starshaped sets is due to Beyer-Giinther [6,7] and the general case is proven by
Coutand-Shkoller [11]. We also mention the earlier works concerning the well-posedness of the problem
in the planar case [2,34,58]. The works that are closest to ours are Shatah-Zheng [50] and Schweizer [49],
where the authors prove regularity estimates for the free boundary Euler equations with surface tension.
Our work is also inspired by Masmoudi-Rousset [44], where the authors prove similar estimates for the
Euler equations without the surface tension.
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As usual with geometric evolution equations, the Euler equations with free boundary may develop
singularities in finite time. In [13] the authors construct an example where the equations develop singu-
larities where the drop changes its topology. We stress that in the absence of the electric field, we do
not expect the flow to develop conical singularities predicted by Taylor [52], where both the curvature
and the velocity become singular. Indeed, Taylor cones are special type of singularities as the evolving
sets €; do not change their topology, but only lose their regularity. We also point out that the analysis
in [52] does not give a rigorous mathematical proof for the fact that the Taylor cone is a singularity of
the associated flow. Indeed, since there is no monotonicity formula for the Euler equations, similar to
the one by Huisken [33,43] for the mean curvature flow, there is little hope to have general classification
of the singularities at the moment. We refer to [21] and [23] which both study critical points of energy
functionals, which are very much similar to ours, with conical or cusp-like singularities. Then again, as
we interpret the Taylor cone as a singularity of the flow given by the Euler equations (1.3), it is not clear
why the singularity is a critical point of the potential energy.

1.2. Statement of the Main Theorem

We study the motion of an incompressible charged drop in vacuum in R3 and denote the fluid domain
by ©;. We assume that we have an initial smooth and compact set Qy C R? and a smooth initial velocity
field vg : Q9 — R* which evolve to a smooth family of sets and vector fields (Q¢,v(:,t))icf0,7)- The total
energy is given by
1 Q
Ji(Q,v) = = )| do + H2(0Qy) + ——— |\ 1.1
00) = 5 [ ol de 4 2 000) + s (1)

where @ > 0 and Cap() is the electrostatic capacity given by
1 .
Cap(Q) := inf {/ §|Vu|2 dr: u(z) >1forall z € Q,ue H (R},
R3

and by H?(9€) we denote the two dimensional Hausdorff measure of the set 9. Define the norm

ull g sy = IVullpzsy + [|ullLes). We denote the capacitary potential as Un € H'(R®) which is

the function for which Cap(Q) = [5s |VUq|? dz. This is equivalent to say that Ug € H'(R3) satisfies
{AUQ —0 in R3\Q

_ 1.2
Ug=1 on f). (1.2)

We denote the mean curvature of 3, = 9Q; by Hy,, which for us is the sum of the principal curvatures
given by orientation via the outer normal vy,. With this convention convex sets have positive mean
curvature. As usual we denote the material derivative of a vector field F' by

D,F =0 F + (v-V)F.
The equations of motion are given by the Euler equations with free boundary (for the derivation see [24])
Diw+Vp=0 in €
dive =0 in Q
vy = Vi on X; = 0
p=Hz, — 3|VUq, > on %,

(1.3)

where Cy = Cap(€);), V; is the normal velocity, v,, = v - v and p is the pressure. We say that the system
(1.3) has a smooth solution in time-interval (0,7) with initial data (€, vg), if there is a family of C'*>°-
diffeomorphisms (®¢);c[o,7), which depend smoothly on ¢, such that ®; = id and ®(Q) = €2, the
functions v(t, ®(t,x)) and p(t, ®(t,x)) are smooth and the equations hold in the classical sense. Moreover
we require that v(t,®(t,-)) — v as t — 0, where vy : y — R? is the initial velocity field. When the
total electric charge is zero, i.e. Q = 0, the system reduces to the more familiar Euler equations with free
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boundary with surface tension. We stress that formally it may seem that the term given by the electric
field in the pressure is of lower order than the curvature. However, even for Lipschitz domains this naive
intuition fails as we will observe in the beginning of Sect. 3.

The characteristic property of the solution of (1.3) is the conservation of the energy (1.1), i.e.,

d
@J(Qb 1)) = 07

which follows from straightforward calculation. Therefore one could guess, and we will prove this in our
main theorem, that assuming that the flow given by the system (1.3) does not develop singularities,
then it preserves the regularity of the initial data (€2p,v9) at least in sense of certain Sobolev norm. In
particular, we point out that, unlike the mean curvature flow [43], the flow given by the system (1.3) is
not smoothing.

We parametrize the moving boundary ¥; = 9€); by using a fixed reference surface I' which we assume
to be smooth and compact. We use the height function parametrization which means that for every t we
associate the function h(-,¢) : I' — R with the moving boundary ¥; as

Ye={z+h(x,t)vr(z):zeT}.
We assume that I' satisfies the interior and exterior ball condition with radius n > 0 and note that n is
not necessarily small. For example, from application point of view a relevant case is when the initial set
is star-shaped in which case it is natural to choose the reference manifold to be a sphere in which case 7
is its radius. It is clear that the height-function parametrization is well defined as long as

sup |[A(+t)[| Loy < n-
te[0,T)

Therefore we define the quantity

or =n— sup [|h(-t)|lLe(r) (1.4)
te[0,T)

and the above condition reads as o7 > 0.

As in [44,49,50] we note that we do not consider the existence in this paper. Instead, as in [49] we
assume that the following qualitative short time existence result holds.

Throughout the paper we assume that for every smooth initial set and smooth initial velocity field the
system (1.3) yhas a smooth solution which exists a short interval of time.

Since we will prove a priori estimates, we expect the existence to follow from an argument in the spirit
of [51].

In this paper we are interested in finding a priori estimates which guarantee that the system (1.3)
does not develop singularities. To this aim we fix a small @ > 0 and define

Ar = S (IRC Olleramy + Vo ) @0 + lval Ol azes,)) - (1.5)
We note that o can be any positive number. We could also replace the C1®-norm by the CTP™_norm,
but we choose to work with Holder norms as the problem is already technically involved. Our goal is to
show that if the quantity A7 is bounded then the flow can be extended beyond time T and is smooth
if the initial data is smooth. We will prove this in a quantitative way and define an energy quantity of
order [ > 1 as

!
I+1—k, 12 2
Ei(t) = kzo D U”H%k(ﬂt) + Hv(.,t)HHL%(lH)J

where [ 2(I+1)] denotes the integer part of 3 (I+1). We define the Hilbert space for half-integers H28(,)
via extension in Sect. 2. In the last term we use a Hilbert space of integer order since it simplifies the
calculations. The fact that the boundedness of Ej(t) for every [ implies the smoothness of the flow will
be clear from the results in Sect. 8. Indeed, we first show that the bound on Ej(t) implies a bound for
the pressure p. By the a priori estimate we know that the fluid domain remains C'*®-regular. We use this

, 1.6
(Q:) ( )
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and estimates for harmonic functions to conclude that the bound on the pressure implies bound on the
curvature (see Lemma 5.2), which then gives the regularity of the fluid domain £2;.

Our main result reads as follows. Recall that we assume that the reference surface I' C R? satisfies
the interior and exterior ball condition with radius 7.

Main Theorem. Assume that Qg is a smooth initial set which boundary satisfies 0Qy = {x + ho(x)vr(z) :
x € T} with |[ho|| Ly <1 and let vg € C°°(Qo; R?) be the initial velocity field. Assume that the system
(1.3) has a smooth solution in time-interval [0,T) and the parametrization satisfies

1
AT S M and or 2 M (17)

for some M > 0, where or is defined in (1.4) and Ar in (1.5). Then for every |l € N there is a constant
Cy, which depends on M,l, F;(0), and on T if T > 1, such that the flow satisfies
sup El(t) < Cl7
0<t<T

where Ey(t) is defined in (1.6). In particular, the system (1.3) does not develop singularity at time T, but
remains quantitatively smooth.

Moreover, there are Ty > 0 and M, which depend on oy, i.c., oy at t = 0, |[Hs,||m52(s0), 1V]@300)
and the CY*-norm of hg, such that the a priori estimates (1.7) hold for M up to time T= min{7T,Tp}.

Let us make a few comments on the Main Theorem. First, from the point of view of the shape of the
drop, the result says that if the parametrization of the flow remains C'**®-regular then the flow does not
develop singularities. We expect this to be optimal in the sense that, we cannot relax the C'*“-regularity
to Lipschitz regularity as the flow may create conical singularities as discussed before.

From the point of view of the velocity, the assumption on Lipschitz regularity of v, which is stronger
than the boundedness of the curlwv, is in the spirit of the Beale-Kato-Majda criterion and thus natural in
the theory of the Euler equations [41]. Indeed, in the case when the drop does not chance its shape, i.e.,
Q; = Qg the condition (1.7) reduces to

sup [|[Vu(-,t)[| Lo (0q) < o0,
te[0,T)

which guarantees that the equations do not develop singularities by standard results for the Euler-
equations [41]. Whether one may remove this condition is beyond our reach at the moment as the gradient
level estimates are a fundamental problem in the theory of the Euler equations without the free boundary.
The condition on the H?2-integrability of the normal component of the velocity v on the other hand is
related to the fact that the boundary 3; is moving. We do not expect this to be optimal but again this
problem is too involved for us to solve at the moment. Our main contribution to the problem is to find
the optimal sufficient condition for the shape of the drop which guarantee that the flow is well-defined
and provide the regularity estimates of all order [. For a drop without surface tension similar type of
estimate is proven by Ginsberg [26] with an a priori assumption on the uniform curvature bound.

Finally the last statement of the Main Theorem says that the first statement is not empty, i.e., that
the a priori estimates stay bounded up to time Ty, which depends on the initial data by requiring that
| Hso | 5250y and [Jvol| 3(0,) are bounded. We also note that since the regularity estimates in Main The-
orem are quantitative, the result can be applied for non-smooth initial data by standard approximation.
We note that all quantities in the paper depend of course on the chosen reference surface I' even if it is
not explicitly mentioned.

1.3. Overview of the Proof and the Structure of the Paper

As the paper is long we give a brief overview of the proof of the Main Theorem and of the structure of
the paper. The proof is based on energy estimates and to that aim we define the energy functional of

T Birkhauser



48 Page 6 of 83 V. Julin, D. A. L. Manna JMFM

order [ > 1 as

1 1
&(t) = 5/9 |Di+1v\2dx+§/z V- (Djv - v)[* dH?
- % |V(8§+1Ugt)|2da:+/ (VL2 G (curl v) 2 da,
2C% Q¢ Q

which is similar to the quantity in [49] defined on graphs. Here v is the velocity, Dlv is the material
derivative of order [ and |5(31+1)] denotes the largest integer smaller than £ (3l 1). Note that we need
an additional term involving the time derivative of the capacitary potential Ug,, as it appears as a high
order term in the linearization of the pressure (see Lemma 4.7). This additional term causes problems as
it is not immediately clear why the energy is positive or even bounded from below. We also define the
associated energy quantity, where we include the spatial regularity
l
I+1—Fk, |2 2 l 2
Ei(t) = 3 IDE 0l g0 o+ 1012 g g, + 1D oy + 1
k=0

Note that this quantity takes into account the natural scaling of the system (1.3), where time scales of
order 3 with respect to space as observed e.g. in [50].

We prove high order energy estimates by first showing that if Ar, or satisfy (1.7) then for all t < T
it holds

%Sl(t) < C1E(t) (1.8)

for [ > 2. The novelty of (1.8) is that the RHS has linear and not polynomial dependence on FEj(t), which
is crucial in order to show that the flow remains smooth as long as (1.7) holds. This makes the proof
technically challenging as we need to estimate all nonlinear error terms in %Sl(t) in an optimal way. We
complete the argument by proving .

E(t) < (G + &(t)) (1.9)
which holds for [ > 1. The inequalities (1.8) and (1.9) then imply the energy estimates for [ > 2 and the
quantitative C'*°-regularity of the flow.

We prove (1.8) and (1.9) by an induction argument over [, where the constants depend on sup, . E;—1(t)
which is bounded by the previous step. Therefore the first challenge is to start the argument and to bound
Ey(t). The issue is that (1.8) does not hold for | = 1. Instead, we show a weaker estimate

d
a&(t) < Ci(1+ [Ipllzr2 (00 E1 (1), (1.10)

which we expect to be sharp. Therefore in order to start the induction argument we use an ad-hoc
argument to show

T
/0 Ipll372 (g, dt < C. (1.11)

The inequalities (1.9), (1.10) and (1.11) then imply the first order energy estimate.
We show (1.11) by studying the function

D(t) = —/ pAs,v, dH?,
POy

where p is the pressure and Ay, the Laplace-Beltrami operator, and prove that it holds

d 1
$<I>(t) < _5”1’”%{2(%) + lower order terms.
We show that the a priori estimates (1.7) imply that ® is bounded and thus we obtain (1.11) by integrating
the above inequality over (0,7). We point out that the low order energy estimate is the most challenging
part of the proof as we have to work with domains with low regularity. We need rather deep results
from differential geometry, boundary regularity for harmonic functions and elliptic regularity in order to

overcome this problem. Let us finally outline the structure of the paper.

) Birkhauser
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In Sect. 2 we introduce our notation. Due to the presence of the surface tension, the problem is
geometrically involved and we need notation and tools from differential geometry to overcome these
issues. We also define the function spaces that we need which include the Hilbert spaces in the domain
H*(Q) and on the boundary H*(X) for half-integers k = 0, %, 1,.... We also recall functional inequalities
such as interpolation inequality and Kato-Ponce inequality.

In Sect. 3 we prove div-curl type estimates in order to transform the high order energy estimates
into regularity for the shape and the velocity. We first recall the result from [10] and prove its lower
order version in Theorem 3.6. In Theorem 3.9 we prove sharp boundary regularity estimates for harmonic
functions with Dirichlet boundary data by using methods from [22]. We believe that these two results are
of independent interest.

In Sect. 4 we derive commutation formulas as in [50] and formula for the material derivatives of the
pressure on the moving boundary. These formulas include four different error terms which we bound in
Sect. 5. All the error terms have different structure and therefore we need to treat them one by one,
which makes the Sect. 5 long. The further difficulty is due to the fact that the time and space derivatives
have different scaling.

The core of the proof of the Main Theorem is in the next three sections. In Sect. 6 we prove (1.11),
in Sect. 7 we prove (1.8) and (1.10), and in Sect. 8 we prove (1.9). The short final section then contains
the proof of the Main Theorem.

2. Notation and Preliminary Results

In this section we introduce our notation and recall some basic results on function spaces and geometric
inequalities. Many of these results are well-known for experts but we include them since they might be
difficult to find, while some results we did not find at all in the existing literature. Throughout the paper
C denotes a large constant, which value may change from line to line.

We first introduce notation related to Riemannian geometry. As an introduction to the topic we refer
to [39]. We will always deal with compact hypersurfaces ¥ C R3, which then can be seen as boundaries
of sets €, i.e., 02 = 3. We denote its outer unit normal by rq and denote it sometimes by vs or merely
v when its meaning is obvious from the context. We use the outward orientation and denote the second
fundamental form by By, and the mean curvature by Hy, which is defined as the sum of the principal
curvatures. Again we write simply B and H when the meaning is clear from the context. We note that
we use the convention in our notation that ¥ = 00 denotes a generic surface, ¥; = 9; denotes the
evolving surface given by the equations (1.3) and T' = 9G is our reference surface which we introduce
later. We note that the constants in the paper will depend on the chosen reference surface. We take this
for granted and do not mention it in the statements.

Since ¥ is embedded in R? it has natural metric ¢ induced by the Euclidian metric. Then (%, g) is
a Riemannian manifold and we denote the inner product on each tangent space X,Y € T, X by (X,Y),
which we may write in local coordinates as

(X,Y)=g(X,Y) = g;; X'Y7.

We extend the inner product in a natural way for tensors. We denote smooth vector fields on ¥ by 7 (%)
and by a slight abuse of notation we denote smooth kth order tensor fields on ¥ by .7%(%). We write X*
for vectors and Z; for covectors in local coordinates.

We denote the Riemannian connection on ¥ by V and recall that for a function u € C°°(%) the
covariant derivative Vu is a 1-tensor field defined for X € 7 (%) as

Vu(X) = Vxu = Xu,

i.e., the derivative of u in the direction of X. The covariant derivative of a smooth k-tensor field
F € J%(%), denoted by VF, is a (k + 1)-tensor field and we have the following recursive formula

T Birkhauser
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for Y1,...,Y;, X € 7(%)

VEYy,...,Y, X) = (VxF)(Y1,...,Y3),

where
— k: —
(VXF)(}/lavyk) :XF(YbaYk)*ZF(Yl;avXK 7Yk)
=1

Here VxY is the covariant derivative of Y in the direction of X (see [39]) and since V is the Riemannian
connection it holds VxV = Vy X + [X,Y] for every X,Y € 7(X). We denote the kth order covariant
derivative of a function u on ¥ by VFu € Z%(X). The notation V;, ---V,, u means a coefficient of
V¥*u in local coordinates. We may raise the index of V;u by using the inverse of the metric tensor ¢/ as
Viu = g¥V ju. We denote the divergence of a vector field X € 7 (2) by divs X and the Laplace-Beltrami
operator for a function v : ¥ — R by Axu. We recall that by the divergence theorem

/ divs X dH? = 0.
>

We will first fix our reference surface which we denote by I' which is a boundary of a smooth, compact
set G, i.e., I' = OG. Since G is smooth it satisfies the interior and exterior ball condition with radius 7,
and we denote the tubular neighborhood of T by N, (I") which is defined as

N, (D) = {z € R? : dist(z,T) < n}.
Then the map ¥ : I x (—n,n) — N, (T') defined as ¥(x,s) = z + svp(x) is a diffeomorphism. We say that
a hypersurface ¥, or a domain Q with 9Q = %, is C1(T")-regular for some small a > 0, when it can be
written as

Y={z+h(z)vr(z):z T},

for a C1@(I')-regular function h : I' — R with ||h|L~ < 1. In particular, all C"%(T)-regular sets are
diffeomorphic. We say that a set ¥ is uniformly C**(I")-regular if the height-function satisfies ||| 1.0 () <
C and ||h[| = < en for constants C and ¢ < 1. Finally we say that ¥ is uniformly C*-regular if ||h||c1 () <
C.

Let us next fix our notation in the ambient space R3. We denote the kth order differential of a vector
field F : R? — R™ by V¥ F, the divergence of F : R? — R3 by div F' and the Laplace operator in R? by
A. The notation (VF)T stands for the transpose of VF. When we restrict F': R3 — R3 on X, we define
its normal and tangential part as

F,:=F- vy and F,.=F—F,vs.

We use the notation x - y for the inner product of two vectors in R".
Since ¥ is a smooth hypersurface we may extend every function and vector field defined on ¥ to R3.
We may thus define a tangential differential of a vector field F': ¥ — R™ by

V. F=VF — (VFI/E) X vy
where we have extended F to R3. We may then extend the definition of divy, to fields F : ¥ — R? by
divg F = Tr(V.F) and the divergence theorem generalizes to
/divEFdH2 = / Hs(F - vs) dH>.
b b
We note that the tangential gradient of u € C*°(X) is equivalent to its covariant derivative in the sense
that for every vector field X € .7 (X) we find a vector field X : ¥ — R? which satisfies X - s = 0 and
Vxu=V, u- X.

Let us comment briefly on the notation related to the equations (1.3). We denote the derivative with
respect to time by 0y F' and the material derivative as

DtF = 615F + (’U . V)F

) Birkhauser
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The material derivative does not commute with the spatial derivative and we denote the commutation
[Dt, V]U = DtVu - VDtU

We denote by Ug the capacitary potential defined in (1.2) and denote Uy = Uq,, H; = Hy, etc...when
the meaning is clear from the context. To shorten further the notation we denote

Q
t) = ———5- 2.1
©O= G =y
We may thus write the pressure in (1.3) as

4
p=t, - Wy,
Let us next fix the notation for the function spaces. We define the Sobolev space WP (X)) in a standard
way for p € [1,00], see e.g. [4], denote the Hilbert space H!(X) = W!2(X) and define the associated norm

for u € WHP(X) as

!
lullfyins) = Z/ |VFulP dH?
k=0"%

and for p = oo

!
ullwoe sy = Z sup \?ku|.
kZOmEE

We often denote |[u|co(sy = [|ul| o (5) = sup,eyx [u(z)| for continuous function u : ¥ — R and [Julcm sy =
[|ul[yym. (). We define the Holder norm of a continuous function u : ¥ — R by
|uly) — u(z)|

[ullce(zy = l[ullp(z) + sup
zFyY
T,yeX
We define the Hélder norm for a tensor field F € 7%(X) as in [36]
[Fllco(s) = sup{|F (X1, ..., Xp)lca(s) : Xs € T(E) with || Xifcrs) <1}
Finally we define the H~!(¥)-norm by duality, i.e.,

||U’HH*1(E) = sup{/zugdHQ : ”g”Hl(E) S 1}

For functions defined in the domain u : Q@ — R we define the Sobolev space W'P(Q) as functions
which have kth order weak derivative in {2 and the corresponding norm is bounded

l
oy 2= 3 [ 1940 de < oc.
k=0

As before we denote the Hilbert space as H!(Q) = W52(Q) and define H~1(2) by duality. Finally given
an index vector a = (o), € N¥ we define its norm by

k
la] = Z Q.
i=1

Throughout the paper we use the notation SxT from [32,42] to denote a tensor formed by contraction
on some indexes of tensors S and 7', using the coefficients of the metric tensor g;; if S and 1" are defined
on the boundary Y. We also use the convention that V*u x Vv denotes contraction of some indexes of
tensors Viu and Viv for any ¢ < k and j < [. In other words, we include also the lower order covariant
derivatives.

Following the notation from [54], we first introduce the real interpolation method and then the inter-
polation spaces. Let X and Y be Banach spaces endowed respectively with the norm ||-||x and ||-||y. The

ly — z|*

T Birkhauser
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couple (X,Y) is said to be an interpolation couple if both X and Y are embedded in a Hausdorff topolog-
ical vector space V. In this case we have that X NY endowed with the norm ||v||xny = max{||v| x, ||v]v}
is a Banach space. Moreover, we also have that X +Y ={z =z +y, x € X, y € Y} endowed with the
norm

lellxey = _inf_ {llallx +lylly, = =+ v}

is a Banach space and it is immediate to check that
XNYcX,YCX+Y.
For € X +Y and t > 0 we introduce the K functional

K(t2X,Y) = _inf_ {lollx +tlylly. 2 +y =2},

For 8 € (0,1), pe[l,00) and z € X +Y we let
» * (Kt 2, X,Y)\" dt
el = [ (RGN
0

(X,Y)op={2€X+Y :|z]o,p < o0}

We note that (X,Y) ), is a Banach space.
Finally, we recall that if (X;, X2) and (Y7, Y3) are interpolation couples and F : X; + X5 — Y7 + Y3
is a linear operator which is bounded X; — Y; by M;. Then for 6 € (0,1) and p € [1,00) the operator

F (X1, Xa)ap — (Y1, Ya)a, (2.2)

and define

is bounded and we may estimate its norm by M, M.

2.1. Half-Integer Sobolev Spaces

Before giving the definition of half-integer Sobolev space in a domain, we exploit the extension properties
of Sobolev functions. Throughout the paper we assume that the boundary > = 92 is uniformly C*<(T')-
regular and thus it is H' extension domain, i.e., there is a linear operator 7' : H*(Q2) — H!(R3) such
that

1T (W) |1 sy < Cllullm @)-

We refer to [9] for the study of Sobolev spaces under Lipschitz-regularity and the references therein.
We need more regularity for the boundary for higher order Sobolev extension m > 2, although we do
not need the optimal condition. Instead, we assume the following for the second fundamental form

HBEHL‘l(E) S Cm if m= 2, ”BE”LOC(E) + ||BZ||H7H—2(E) S Cm if m > 2, (Hm)

which guarantees that we may extend a given function v € H™(2) to the whole space. Note that for
m > 4 the condition (H,,) is implied by ||Bs| gm-2(x)y < Cy, by the Sobolev-embedding, which agrees
with the assumption e.g. in [10]. In the following we do not specify that a given quantity depends on the
constant C,,, but take it for granted when we refer to the condition (H,,).

Even if there are many results for extensions of Sobolev functions in the literature, the condition (H,,)
is too weak to apply them. To this aim we need the following result.

Proposition 2.1. Let m € N, with m > 2, and let Q be a smooth domain which is uniformly C*(T)-
reqular and satisfies (H,,). Then there is an extension operator T : H™(Q) — H{(R3) such that

1T ()| sy < Cllullgm ()

) Birkhauser
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Proof. Let xg € 0. There exist § > 0 and a diffeomorphism ¥ : R3 — R3 such that ¥=1(Q N B;(x0)) =
Bf = Bin ]Ri. We note that the C*® regularity of 9Q and (H,,) imply that we may choose the
diffeomorphism such that it satisfies |[|[¥[|c1.a(gsy < C and

V2| pagsy < C if m =2, 0] sy < C if m > 2. (2.3)
For u : Q — R smooth we let v’ = u o ¥U. We may extend v’ to a function T'(u") € H™(B;) such that
1T ()| () < CHUlHHm(Bfr)-
The construction of T'(u') € H™(By) is classical but we recall it for the reader’s convenience. We define
u' (', ) Ty 20
ST N (@ =T ) <0
where A = (A1,..., A\put1) solve the system
2N =1
Y= =1

T(w) (2", 2n) = {

() = 1.
This system, known as Vandermonde system, has a unique solution, hence T’ is well defined. Finally we
define the extension operator as

T(u) ;=T )o ¥t
Let us show that T is a bounded operator.
It is straightforward to check that
1T | (1) < CllU || g (-
Let us then show that
10| 5y < Cllullme)- (2.4)
We first note that
Vu' = Vux VU
and for m > 2
V" = Z VITOg gy VT am g ylitamiy,

la| <m—1
For m = 2 we have then by Holder’s inequality, by (2.3) and by the Sobolev embedding
IV || L2,y < Cll¥ler s [ VPull L) + IV sy [Vl s ) < Cllull 2 (q)-
To treat the case m > 3 we first observe that by Sobolev embedding it holds
IV 2ull e ) < ltllimey and V20 ) < 0] g -
Hence for m > 3 we have by Holder’s inequality, by (2.3) and by the Sobolev embedding
V™ || L2,y < C((1+ 19 Fm @ey) el zm (@) + 1V 1) V™ | Lo
+ IV pa sy VPl L4 0))
S O+ Wl Em @sy) 1l 2 )
< Cllull gm0

Thus we have (2.4).
Similarly we show that

IT(u") 0 O~ | grm @By (wo)) < CITU || m(5y)-

T Birkhauser
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The claim then follows from standard covering argument. 0

Throughout the paper we will refer to the operator T' as the canonical extension operator or simply
as the extension operator. We define the half-integer Sobolev space in the domain €2 using the canonical
extension operator.

Definition 2.2. We say that a function u € L2(Q) is in H2 (Q) if

(Tu(e) - Tu(y)?
A e |x_y|3 dady < 0.

For k > 1 we say that u € H*2(Q) if u € H*(Q) and

k
el ey + 1TV )3 < o0

Finally we define the H~2 (€2)-norm by duality.

1 1
We define HZ () as the space of functions via interpolation such that v € HZ(Q) if T(u) €
(L*(R?), H'(R?))1 , and endow it with the norm

(K (t,T(u), L2(R3), HY(R3))\” dt
||UH2% = HU||%2(Q)+/ ( (6 Tw), LR, B { ))> - (2.5)
HZ(Q) 0

t1/2 t

This gives an equivalent definition for the half-integer Sobolev space.

Proposition 2.3. Let m € N, with m > 2, and let Q be a smooth domain which is uniformly C*(T')-
regular and satisfies (H,,). The norms in Definition 2.2 and (2.5) are equivalent, i.e.,

Il gy = Ml 3.
We do not give the details of the proof, but only refer to [9] and mention that it follows from the fact
that H* (R®) = (L*(R?), H'(R®)), 5, see [54].

2.2. Half-Integer Sobolev Spaces on a Surfaces

We begin by defining the space H %(E). Again there are many ways to do this. We choose the definition
via harmonic extension.

Definition 2.4. Let ¥ = 99 be uniformly €1 (I')-regular. We say that u € H2 (%) if u € L2(X) and

[|ul] = ||lul|p2(s) + inf{|| Vo[ p2(0) : v —u € H) ()} < oco.

H?2 3 (%)
We define the space H *E(E) and its norm by duality.

By standard theory the C1:®(T')-regularity of ¥ ensures that Definition 2.4 is equivalent to the defini-
tion via Gagliardo seminorm

2 2 |u(x)—u(y)|2 2 19,2
5 —— dHZdH?.
Il o) = Wl + [ [ P artzan

Moreover, this norm is also equivalent to the norm obtained via interpolation. Indeed, let us define the
interpolation space (see beginning of Sect. 2)
1
H? (2) = (LX(X), H' (D)1 »-
Let us show that

[l (2.6)

b =l
Due to the non-local nature of the problem we give the proof of (2.6) in detail.

) Birkhauser
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We fix a small § > 0 and cover X with finitely many balls of radius § centered at z; € X, i.e.,

N
2 c | Bs(a).
i=1
Since ¥ is C1:@(I), there are C*“-regular functions ¢; such that ¥ N Bys(z;) is contained in the graph of
¢; for every i = 1,..., N, when 0 is small enough. Let {n;},=1.. ~ be a partition of unity subordinated

to the open covering Bs(z;). Then it holds

HE (%) ZH%UH 3(x

Let us fix ¢ = 1,..., N and by rotating and translating the coordinates we may assume that z; = 0
and X N Bas C {(2/,¢i(2")) : ' € R?} with ¢;(0) = 0 and V¢;(0) = 0. Denote u; = nm;u and v;(z') =
ui(2', ¢;(z")). Note that then v; : R> — R, suppwv; C By C R? and suppu; C Bs C R? with §/2 < §’ < 6.
Therefore we deduce by the C'Y-regularity of ¢; that

// |u’b | )| dH2 dH2
T —

2
/ / ‘“1 uile) =W 1y a3, +2/ / (@) =W i,
$NBys J £NBas \x — | S\ Bas / SNBas \x — |

[l

i (2, ¢i(2) —uwi(y', 0 W), )
< C/ / d’ dy’ + Clul|
Bysr J Bogs (|l=" —y |2 (i (') — @ily')2)3/2 [[ullz ()
< Cloill} 3 oy + ClulZecs)

< C|lvil|? » + Clul? .
<Clll?y -+ Cllulls)

This implies Hui||H%(E) < C’||vi||H*% =) + C|lul|2(x)- Let us denote by L§(Bas ) and Hj(Bag ) for func-

tions f € L?(R?), and respectively f € H(R?), with suppf C Bags . Denote also W : Bosr — W(Basr) C R3,
U(z') = (2, p;(2’)). We may estimate

K(t,v;, L*(R?), H'(R?))
= inf {lflleae) + tlgllm ), f € L*(R?), g € H'(R?)}

< inf {IFlzee) +tllgllm g, £ € L§(Bas), g € Hy(Bas)}

<C if {|fo U L2 mnBas) + g 0 U i (mnBay, f € Lo(Basr), g € Ho(Bas)}
<C +lnf {171l 22(5nBas) + tlFl 1t 50825y £ € L§(E 0 Bag), § € Hy(5 N Bas)}
g=u;

= C K(t,u;, L3(X N Bag), Hy (X N Bas)).
Since suppu; C 3 N By, it is easy to see that
K(t,u;, L3(X N Bas), HY (XN Bas)) < C K (t,u;, L2(X), HY(X)).
Therefore, we deduce

061,13 gy < Cllull 3 < Clull .

HE (22) n)
Repeating the argument for every ¢ = 1,..., N yields

< Cllull

||uHH2 E) H2(Z

The opposite inequality can be proved in a similar way.

T Birkhauser
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We also note that we may interpolate between H %(E) and its dual and obtain by using [9, Theorem
4.1] and by a localization argument that

(H2(%),H?(%)), » = L*(%).

In order to define higher order half-integer Sobolev spaces on the boundary we use the fact that in
our setting the boundary 92 = ¥ is given by the parametrization Uy : I' — X, Ux(z) = = + h(z)vr(x),
where I' is the reference surface. In our case I' is the boundary of a smooth set G and the map W :
I'x(—n,n) = N,([T), ¥(x,s) = z+ svr(z), is a diffeomorphism. Here N, (T') is the tubular neighborhood
of I'. Therefore the projection map 7 : N, (I') — I' is well defined as

r(y) =z where y = x + svp(x) for some s € (—n,n). (2.7)

We extend 71 to whole R? and thus we may extend a given function u : I' — R to R? as (uonr) : R® — R.
In particular, the kth order derivative V¥ (uonr)(x) is well defined for all x € T', and for = € T the function
s+ (uomr)(xz+ svr(x)) is constant for |s| small. We use this extension to define the half-integer Sobolev
norm on the reference surface.

Definition 2.5. For m > 2 we say that « € H™ 2(T') if u € H™ }(T') and the norm

Jul =19 o)y g+l

_1
H™ 3(T)

is bounded.

We define the half-integer Sobolev spaces on ¥ by mapping a function u € C*°(X) back to I' by using
the parametrization Uy, : I' — X, Uy () = x + h(z)vp(x). Let us fix m > 2 and recall that

v (u ° \I’E Z Vit Wy k- ok vitak Uy, % vitamiiy,
loe|<m—1
If 3 satisfies (H,,), then arguing as in the proof of Proposition 2.1 we deduce
||u||Hm(g) ~ ||’LL o \IJZ”H"L(I‘)
Based on this we define the half-integer Sobolev space of order m — 1/2 on ¥ in the following way.
Definition 2.6. Let m > 2 be an integer and assume ¥ is C'1%(T')-regular. We say that u is in the space
H™ 2 (%) if (uo Uyg) € H™ 2(T') and define the norm as

] = [luo W]l

H™ 3 (x) H™ 3 ()

where Uy, : T' — ¥ is the parametrization Uy (x) = x + h(z)vr(x).

_1
We define the space H,' 2(X) via interpolation as the functions u € H™~ (%) such that

> (K (tu, HU(S), H™(S)\” dt
Iul? oy ) o= Nl + [ ot 4 e, 28)

We note that if 3 satisfies the assumption (H m) for m > 2 the norm H™ 3 (32) in Definition 2.6 is

equivalent with the interpolation norm Hu|| m—l (2) n (2.8). We state this in the next proposition. The
proof is similar to the argument for (2.6) and we omit it.

Proposition 2.7. Let m > 2 and assume that ¥ is uniformly CY%(T)-regular and satisfies the assumption
(H,,). Then it holds

m—1 m—1
H™ 2(X)=H, *(%) and Hu||Hm_%(E) ~ HUHH’"_%(Z)'

) Birkhauser
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2.3. Geometric Preliminaries

We begin by recalling basic results from differential geometry. We define the Riemann curvature tensor

R € 7%(%) [39,43] via interchange of covariant derivatives of a vector field Y? and a covector field Z; as
?lﬁqu — ?j?iys = Rijklgksyl7 (2 9)
?i?jZk — ?j?iZk = Rijklgl“”Zs, ’

where we have used the Einstein summation convention. We may write the Riemann tensor in local
coordinates by using the second fundamental form B as

Rijki = BiBji — BuBjk. (2.10)
We will also need the Simon’s identity which reads as
AsB;; = V;V,;H + HB;g" Bsj — | B Byj. (2.11)
Let us recall that the interpolation inequality holds for smooth compact n-dimensional hypersurface
¥ C R see e.g. [4],
IV ] 2o sy < Csllulfpnr sy 1l E o (2.12)

1k 1 1 1
=+9<—>+(1—9).
p n roon q

In particular, (2.12) holds on the reference surface I' C R? and in R™ for functions with compact support
suppu C Bpg.

In order to have the interpolation inequality for a general surface ¥ C R"™*! with control on the
constant Cy, we use the result in [42], which states that once the mean curvature Hy satisfies the bound
| Hs: || Lnts (s < C, then the above interpolation inequality holds on ¥ with uniform bound on the constant.
We state this for our purpose, where X is 2-dimensional surfaces that is uniformly C1(T')-regular and
satisfies the bound || By||4(s;) < C. The reason for the L*-curvature bound will be clear from the results
in Sect. 6. The following interpolation inequality follows from [42, Proposition 6.5].

where

Proposition 2.8. Assume ¥ C R3 is a compact 2-dimensional hypersurface which is uniformly C*(T)-
regular and satisfies the bound || Bs|| sy < M. Then for integers k,1, 0 < k <l and numbers p,r € [1,00)
and q € [1,00] we have for all tensor fields T that

1-6
IV Tl o) < CIT Nyt sy 1T S )

1k 1 1 1

== R ~(1-19).

’ 2+0< 2>+q( )
q.

The constant C depends on M, k,p,l,r,

where p and 0 € [0, 1] are given by

In particular, we have the Sobolev embedding, i.e., for p € [1,n) it holds [[ul| o+ (x) < Cllullwis(x)
with p* = 2. for p = n it holds [Jul|ras) < Cllullwrs(s) for all ¢ < oo and for p > n it holds
[ullca(sy < Cllullwrr(s) fora=1-2.

There is a danger for confusion in terminology when we use interpolation of function spaces and
interpolation inequality. We use the term ’interpolation argument’, when we interpolate between two
function spaces, and ’interpolation inequality’ or merely ’interpolation” when we refer to Proposition 2.8.

Let ¥ = 9Q C R? be a compact hypersurface in R? such that ¥ = 9Q which is C1%(T')-regular. Then
the Sobolev embedding extends to half-integers, i.e., it holds

[ullzes) < Cllull a3 (5’ for p <4

T Birkhauser
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and

ull o) < Cllul for p < 3.

H3(Q)

We need the above interpolation inequality also for half-integers and for functions defined in €. To this
aim we need to assume that ¥ satisfies the condition (H,,).

Corollary 2.9. Let m € N and ¥ C R? is compact 2-dimensional hypersurface which is uniformly C1*(T)-
reqular such that ¥ = 0 and satisfies the condition (H,,). Then for all half-integers k and | with
k <1<m and for q € [1,00] it holds

el sy < Cllall e sy lull oy,
where 0 € [0,1] is given by
2
1=k—0(1-1)+=(1-0).
q
In addition, it holds

el 0y < Cllull ooy lull (e

1 k 1 l 1
2—3+0<2—3>+q(1—9).

Moreover, the inequality (2.12) holds on Q@ C R3 with r = 2 and integers k < | < m. The constants
depends on m,q and on the CY®-norm of the heightfunction.

where 0 € [0,1] is given by

Proof. We sketch the proof only for the first claim when k = k — % for k € N and [ is an integer. By
Proposition 2.7 and by the classical interpolation theory stated in (2.2) we have

1
lull sy < Cllullaes) < Cllull; Jull2

HE =) HR1(s)

Proposition 2.8 yields
HUHHR(E) < CHUH (E)”“HLq(E)a
where 6 is given by 1 =k — 01(1 — 1) + 2(1 —61), and

6
el gy < Cllull e Nl 52,
where 0y is given by 1 = (k — 1) — 65(1 — 1) + 5(1 — 02). This implies the claim. The case when [ is half-
integer follows from the same argument. Finally the second interpolation inequality follows by extending
u to whole R3, where the inequality is well-known, and using Proposition 2.1. O

2.4. Functional and Geometric Inequalities

We begin by recalling the extension of the interpolation inequality (2.12), or the Gagliardo-Nirenberg
inequality, in R™ for fractional Sobolev spaces [8]. We state the result in the setting that we need, where
for all f € C§°(Bgr) it holds

1 lwerBry < CUF e on ) 1 1o (5 (2.13)
for 0 < s <sy,p2 € (1,00) and 0 € (0,1) which satisfy
1 1-—
5 =0s; and - = 4 + 9.
p N P2

) Birkhauser
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Next we recall the Kato-Ponce inequality, or the fractional Leibniz rule, in R™ which is proven e.g. in
[31]. We may define the norm || f{|yyx.» gy for half-integer £ > 0 and p € (1, 00) by using Bessel potentials

(D)¥ as
£ llwe.ony = 1{DY* fll Lo @n)-
The Kato-Ponce inequality, in the form we are interested in, states that for f,g € C5°(R"™) and for

numbers 2 < py, g2 < 0o and 2 < po,q; < 0o with

IR o
PLo@1 p2 g2 2
it holds
1f 9l e mny < CllSfllwres @ny g1l Lo @ny + Cllf [ Lr2 @) g1l w.az @) (2.15)
We need the following generalization of the Kato-Ponce inequality both on the boundary ¥ and in
the domain .

Proposition 2.10. Let m > 1 be an integer and assume ¥ is uniformly C1(T')-reqular and satisfies the
condition (H,,). Then for all half-integers k < m it holds
1 gllms sy < Clf s lglliee ) + Cllf L= )llgllms )
and
I £l zr ) < Cllfllae@llgllL= ) + Cllfllz=@)lgllax@)-
Moreover, assume that ||B||p1+ < M and let k € N. Then for p1,p2,q1,q2 € [2,00] with p1,q2 < 00
which satisfies (2.14) it holds
I £9llax sy < CllfllwreyllgllLa ) + Cllflea ) 19llwraz 5y -
The constants depend on M, m,k,p1,p2,q1,q2 and on the CY“-norm of the heightfunction.
Proof. The second inequality follows immediately from the property of the extension operator given by
Proposition 2.1 and by the classical Kato-Ponce inequality (2.15), see e.g. [10]. Also the first inequality
follows from a similar localization argument as we used in (2.6).
We prove the third inequality, since we will use the argument also later. First by Leibniz formula we
may write
VE(fg)= Y Vif*Vg
i+j=k
The claim thus follows once we prove
Z Hvif*ngnm(z) < CHfHWk»m(z)HgHLfn(z) + Hf||LP2(E)”g”W’W?(E)' (2.16)
i+j=k
To this aim we use Holder’s inequality as
STV Vgllasy < Y IV FllLas) IV glles)-
i+j=k i+j=k

By interpolation inequality in Proposition 2.8 we have

1 0; —0; . %
19 ) < U Iy with 6=
2

and recalling that p% + qil = p% + q% = % we have
J
= j 6, 1-6; . 2
I¥glls) < Ol lolintdyy  with 0, =
2
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In particular, i+j = k implies 0;+60; = 1. Therefore we have by Young’s inequality a’ bl < 0;a+0;b < a+b
that

_ . . 0, —0; 0; —0;
D IV Viglie < Cllfllzmalglin Y 115 11z 9l 9l el
i+j=k i+j=k

k, k,
SCHfHLMHg”L‘H (”fW P1 + Hg”W ‘12)
[1£1 r2 llgllzar

and the claim follows. O

We remark that we do not generalize the last inequality in Proposition 2.10 for half-integers k since
we do not define the space W*P (%) for p # 2, when k is not an integer. However, under the assumption
of Proposition 2.10, we obtain a weaker version which reads as follows

17903 gy < O3 g ey + 17 zoey gl acs), (2.17)

for % + % = % Again, since the proof is similar to the argument we used in (2.6) we leave it for the reader,
but refer to [15, Lemma 4.3] for the proof of the case p = ¢ = 4. In particular, when ¢ is Lipschitz, we
may estimate the product simply by

1791113 ) < CllFll 3 ) 9l ()

Next we recall (see e.g. [22]) that it holds [[ul|gx+2(sy < Cs(|Asullgr sy + [|ullz2(s)). However, the
constant depends on the curvature of ¥ and we need to quantify this dependence.

Proposition 2.11. Assume that 3 is uniformly C1%(T)-regular and satisfies ||Bs|p+ < M. For all € > 0
there exists a constant C¢ such that for k =0, %, 1 it holds
ull rve sy < (1 + )| Asullgrsy + CellullL2(s)-

Let m be an integer with m > 3 and assume that ¥ salisfies in addition the condition (H,,). Then for
every half-integer 2 < k < m it holds

ullze =) < (1 +e)|Asullgr-—2 sy + Cellullp2(s)-
The constant C. depends on €, M, m and on the C*“-norm of the heightfunction.

Proof. The case k = 0 follows from [15, Lemma 4.11] but we give the proof for the reader’s convenience.
We recall that the Riemann tensor R satisfies by (2.10) |R| < C|B|? and deduce by [22, Remark 2.4] (see
also [4]) that

192225 < [ Agul2am + C / (B2 Vul? dHz,
By Proposition 2.8 there is 6 € (0,1) such that
/E BETul dH? < |[BI2[Ful2 < Cllull [ul 28 < eljull gz + Ce 2.

This implies the claim for k£ = 0.
For the case k =1 we use (2.9

N

and integration by parts

1985 ul2as) = | T59. 909,99 F judi?
b
- / GV VI udHE + / Rk Vuw Vo) dH?
b >
> / VIV 0 dH — | R« Ve [Vl 2.
>

As before we have by Proposition 2.8 and by |R| < C|B|? that
IR % Vullz2 < ClIB|Z: [ Vullz~ < ellull s + Cel|ull 2 (2.18)

) Birkhauser



JMFM A Priori Estimates for the Motion Page 19 of 83 48
We proceed by using (2.9) and by integrating by parts
_ /E TV VIV ju
> /E TV VIV u dH + /E T2ux Rx V2u dH?
>_ /E VIV, dH — /E VIV YV — VY dH

= ClIB|IZ:[IVul 1

Y

/ VIV VY,V ju dH + / VLV [V, — VIV dH
by b
= C|BILallVullLs
> [[VPullZ: = CIBIZ: IV ullZs — IR % Vul| 2 [|VPul| .
The inequality for k£ = 1 then follows from (2.18) and from Proposition 2.8 which yields
IV2ullzs < eflullms + Cellull .

The case k = 1/2 follows from the previous two estimates and Proposition 2.7 with standard inter-
polation argument which we briefly sketch here for the reader’s convenience. We define a linear operator
F: H*(X) — H*+2(X) such that F(g) = u, where u is the solution of

Asu=g on %,
and H*(X) = {f € H*(Z) : [, f dH? = 0}. The operator F is well-defined and by the previous estimates
it satisfies
H}—HL(LQ,HQ) § C and H]:||L(H1,H3) SC
By the interpolation theory discussed in (2.2) it holds

5 <
17l 3 )_C\IgllH

I, 1
22 2(3)

Proposition 2.7 then yields

We apply this to u = u — u, where u = fz wdH? and the claim follows.
The argument for higher m and k is similar and we merely sketch it. Let k£ be an integer with
2 < k < m. Using (2.9) and arguing as above we obtain after long but straightforward calculations that

IVFulZ2(s) < IVE2AsulF2s) + C Z IVER* V' HPu 725y
a+pB<k—2
Then by (2.10), (2.16), Proposition 2.8 and by the assumption ||B||p, | B||g+—2> < C we have
Yo VRV ) 2y < CIBI L l[ull i + ClIB| oo | Bl| 2 || V| o
a+pB<k—2
< ellullgr(s) + CellullL2(s).-

This yields the claim for integers 2 < k < [.

Ifk<m- % is an half-integer but not an integer, then we may use the previous argument for integer

l:k+% < m and deduce
lullg < (1 +e)|Asullgi-2(s) + CellullL2(s).-
The same holds for [ — 1. Hence, the claim follows by Proposition 2.7 and by the same interpolation

argument we used above. [
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By using the previous proposition and the Simon’s identity (2.11) we deduce that we may bound the
second fundamental form by the mean curvature.

Proposition 2.12. Assume that X is uniformly C*(T)-regular. Then for every p € (1,00) it holds
IBsllr(s) < CA+ [[Hsl L (s))-

If in addition || Bs||pa(sy < M, then for k= %,1,2 it holds
Bl gr sy < C(1+ | Hs | gr(s))-

Finally let m > 3 be an integer and assume that 2 satisfies in addition the condition (H,,) for m. Then the
above estimate holds for all half-integers k < m. The constants depend on M,p, m and on the CY*-norm
of the heightfunction.

Proof. The first claim follows from standard Calderon-Zygmund estimate [25] and we omit it. Let us
proof the second claim for k& = % We recall the geometric fact

Ayz; = —Hyu;,

where z; = z - ¢; and v; = vy - ¢;. Then we have by Proposition 2.11 and (2.17)

3
<CY (14 V3a
i=1
3
=Y C(1+|Hsvi
=1
< COA+ sl o + 1Hsllei s lvsllwias) < CO+ || Hs|

|Bs| ZC (1 + [|Anzi|

H2(Z H%(Z H? Z))

H%(z))

H3 (%) )
The argument for k = 1 is similar.
In the case k = 2 we use the Simon’s identity (2.11) to deduce

15 Bl|72 () < IV2H (725 + ClIBLo(s,)
Proposition 2.11 yields || B||g2(s) < 2||AxB||z2(s)+C. The claim then follows from interpolation inequal-
ity (Proposition 2.8)
1B o) < ||B||1%.12 ||B||L4 < e Bllazz) + Ce-
Let us then fix m > 3, assume that ¥ satisfies the condition (H,,) for m and let k¥ < m. We use the
Simon’s identity (2.11) and Proposition 2.10 to deduce
A Bl gr-2(xy < |H | gr(sy + Cl|B % B x Bl gr—2(x)
< H|l vy + ClIBI Lo (5) | Bl -2y
< | Hl ez + el Bllar s + Ce,

where the last inequality follows from ||B| p~ < C and from interpolation. The claim then follows from
Proposition 2.11. (I

Note that by the definition of the space || - || g+ (x) in Definition 2.6 it is not yet clear if it holds
IVrullge-1(sy < Cllullae(s)
when k is not an integer. We conclude this by section by proving this in the following technical lemma.

Lemma 2.13. Let m be an integer with m > 3 and assume that 3 is uniformly CH*(T)-regular and
satisfies the condition (H,,). Then it holds

[V rull < Offull

™3 (%) H™ 3 (5)’
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Proof. Let us denote & =uo W : I' — R and in order to simplify the notation denote the extension given
by the projection in (2.7) (@onr) simply by 4. We observe that there is a matrix field A(x) = A(x, h, Vh)
such that

(Vyuo W) (z) = A(z)Vi(z) for z €T.

Therefore we have by Definition 2.6 and by Proposition 2.10
IV 0l g gy = 19700 2l g
< CllAll= [Vl

3
H™ 2

= 1AVl g
o +ClAl

)
oy IVl

m—3 _3
™5 ™5

The assumption || B| (s, |Bllgm-2(xy < C implies for the height function [|h[|c2ry < C and
2]l g (ry < C and therefore || Al zoo 1y, [|All gm—1(ry < C. Moreover, since m > 3 the Sobolev embedding

yields ||V poery < CHVﬁHH’"’%(F)' Therefore we have

IVrul < Cf|val < Cffall = Cflull

a3 (%) H™ 3 (1) H™ 3 (I) H™ 3 (5)’

3. Elliptic Estimates for Vector Fields and Functions

In this section we recall some known and provide some new div-curl type estimates for vector fields in
the domain, i.e., F : @ — R3. We will need estimates where we control the norm [|F|| g+ (o) by the div F,
curl F' in Q and with F}, on the boundary 3. The main result of the section is Theorem 3.6 where we
prove this estimate for k = 1 and require the boundary merely to satisfy || By« < C. We do not expect
the L*-integrability to be the optimal condition. However, related to this we note that we may construct
a cone 2 C R? and a harmonic function u : £ — R with zero Neumann boundary data d,u = 0 arguing
as in [21, Section 3], such that u can be written in spherical coordinates as u(p, #) = \/pf(f) for a smooth
functions f. In particular, u ¢ H?(Q2N Br) and therefore we may deduce that a necessary condition for
the curvature is at least ||Bg|r2 < C for Lemma 3.5 and Theorem 3.6 to hold.

We will also prove boundary regularity estimates for harmonic functions in Theorem 3.9, which quan-
tify the boundary regularity of the harmonic functions with respect to the regularity of the boundary. We
note that in Theorem 3.9 it is crucial to assume that the boundary is uniformly C*%(T")-regular. Indeed,
the statement does not hold for Lipschitz domains.

3.1. Regularity Estimates for Vector Fields

We begin this section by recalling the following result which is essentially from [10] (see also [53]). Recall
that we define

curl F = VF — (VF)T.

Throughout the section we assume that € is connected, but its boundary ¥ = 09 may have many
components.

Theorem 3.1. Let [ > 2 be an integer and let Q be a domain such that ¥ = 0Q is uniformly C1*(T)-regular
and HBZHH%“%E) < M. Then there exists a constant C, which depends on M,l and on the C**-norm of

the heightfunction, such that for all smooth vector fields F : Q0 — R? and every half-integers 1 < k < %l
it holds

1Emx @) < CUERl ya-y () + IF 220 + 1V Fll 1) + llewrl Fl ).
Moreover, for k= |3(l+1)] it holds

[E N0 < CUIV-Fall + (L4 1Bl g F e + 1 div Fl| ge-1 (@) + [leurl F[| g-1).

o3

T Birkhauser



48 Page 22 of 83 V. Julin, D. A. L. Manna JMFM

Proof. We first note that the assumption ”BHH%Z*I(Z) < M implies that ¥ satisfies the condition (H,,)
for m = |21 + 1] > 4. We use [10, Theorem 1.3] to deduce

1l vy < CUIVAE - v + FllL2@ + 1 div Fll e q) + [leurl Fll ge-1(q))

H’“*%(E)
for all k < [2(1+1)]. We write V.F -v = V.F, + F * B and use Proposition 2.10 to obtain

IV E - v < VoFall + Ol Fllz=lIBll -3 ) + ClIBllze= [ F]

=3 () o3 (x) o3z

Interpolation inequality yields

[l SN ar-10) < el Fllar@) + CellFl L~ (o)

"3 (%)

Thus we have the second inequality. The first one follows from the fact that for k£ < %l it holds

”B”H’“—é(m < M by the assumption. O
We combine Proposition 2.11 and Theorem 3.1 and obtain the following inequality which is suitable

to our purpose.

Proposition 3.2. Let | and ) be as in Theorem 3.1. Then for all smooth vector fields F : Q — R? and

every half-integer % <k< %l it holds

I1Fl x0) < C[AsFy|| + 1 Fl 22 + | div Fl| gr-1(q) + [[earl F|| gr-1q))-

"3 (%)
Moreover, for k= |2(1+1)] it holds

[E N0 ) < ClAsFall, + L+ 1Bl s ) Fllzee + [ div Fllgzs-1(q) + lewrl Fll gr-1(q))-

i)

Proof. Recall that ||B||H%l_1(2) < M implies that ¥ satisfies the condition (H,,) for m = |31+ 1] > 4.
The first inequality then follows from Theorem 3.1 and Proposition 2.11.
Let us then prove the last inequality. We have by Proposition 2.11 that

IV, Fl < CIASY Full e gy + 1 Fallzzcsy).

H’“*%(E)

We use the commutation formula (2.9) for the tangential gradient of u : ¥ — R and obtain
Ax(Vyu) =V, (Asu) + (B * B) %V, u.

Therefore we have by Lemma 2.13

|ASY,Fy < C (Ve (AsF)l ueg i) + | (B B) x Vo B

H"2(%)
< C([|AsF +[[(B* B)* V. F,||

"% (%) H’f*%(ﬁ))

"3 (%) H’“_f(z))'

Recall that k& = L%( + 1)]. We have by Proposition 2.10, by Lemma 2.13 and by the assumption
1Bl s < C't

1B % B) Ve Full o35 < € (IBI3~ 1VFul g + 1Bl 1Bl 1 [V+Fullz)

< ClIFll o gy + 195 Fallzoe)):

Finally we have by the Sobolev embedding and by Corollary 2.9

IV Ell oo () + [ Fnl <e||VoE ) TellEmr@) + Cel Fllpes.

o3 (%) o3 (s

The second inequality then follows from Theorem 3.1 and combining the above inequalities. O

) Birkhauser



JMFM A Priori Estimates for the Motion Page 23 of 83 48

Proposition 3.2 provides the inequality we need when we have the bound || Bx ||H%z71(2> < Cforl>2.
When | = 1 the above bound reduces to HBZHH%(E)’

Sect. 6, but is not enough to apply the results from [10,53]. Note that by the Sobolev embedding this
implies || Bx||z4(x)y < C. We need to work more in order to prove the first inequality in Theorem 3.1 under
the assumption || Bs||z+x) < C.

We begin by recalling the following Reilly’s type identity for vector fields. First, if ¢ : O — R3 is a
smooth divergence free vector field such that ¢ - v = 0 on ¥ then it holds

1
IVYlI72() = §||CU1“11/JH%2(Q) - /2<BZ e, ) dH?. (3.1)

Second, if u : 2 — R is a smooth function then it holds

which is the bound that we are able to prove in

V20l 0 = Al ~ 2 [ Asududr?

= (3.2)

- / (BsVu, Vu) dH? — / Hy:(0,u)* dH?.
¥ ¥

We give the calculations for (3.1) and (3.2) for the reader’s convenience. First, for a generic smooth
vector field F': Q — R3 it holds

3 3
1
/|diVF|2—|—§|CUI‘1F|2dl‘: E /((’)iFj)Qda;—i— E /(&FZ(‘)JFJ—&FJ@]Fl)dx
Q Q Q

ij=1 ij=1
3
= |VF|Z20) + > /Q(aiFiaij — 0,F;0;F,) du.
ij=1

By using divergence theorem twice we obtain
/ 8in‘aij dr = —/ Fi&»@ij d$+/ aij F‘il/i7 dH2
Q Q b

= / ajFiaiFj dx +/ (9ij Fiyi, dH2 - / Fiaisz/j dH2
Q ) b
Combining the two above equalities yield

, 1

HVF||2L2(Q) = leF”%?(Q) + —||cur1FH%2(Q)

2 (3.3)

+/(VFF)~de2—/divFFndH2.
b b

Assume now that 1 is a divergence free vector field such that ¥ - v = 0 on X. Since @ is a tangent
field on ¥ we have V(¢ - v) = 0 and thus Vi) o) - v = —(Vyv, ) = —(Bs), ). Therefore the equality
(3.1) follows from (3.3) and from F,, = -v = 0.

To obtain (3.2) we apply (3.3) for F = Vu and deduce

IV2ullZ2 () = 1AullZ: q) +/E((V2UvU) v — Aud,u) dH?.

We write Vu = V,u + d,uv and observe
(V2uVu) v = (VuV,u) v+ (Viuv) - vou
=V, (0,u) - Vsu — (Bg Vu, Vu) + (V2uv) - vd,u.

Again by divergence theorem

/ V. (0,u) - ViudH? = —/ Asud,udH?.
bl bl
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The equality (3.2) then follows from
Asu = Au— (V*uv)-v — Hyx 0 u. (3.4)

We remark that it is crucial in Theorem 3.1 that the boundary term on the RHS has only the normal
component of the vector field. The next lemma is a generalization of [35] and it essentially states that we
may control the vector field on the boundary by its normal or its tangential component.

Lemma 3.3. Let Q C R with ¥ = 0Q be uniformly CH%(T)-regular. Then for all vector fields F &
HY(Q;R3) it holds

1F 12y < € (IFnl3acs) + 1F 12 + iV Flidagq) + lowl Pl )
and

1F 122 < C (IFr ey + IF IR + 11 iV Fli3q) + llowl Fli2ag, )
where F,, = F-v and F, = F—F, v. Here F € H'(Q;R3) means that 1F] 1@y = IVE 2@+ Fll 2o @) <
0o. Note that Q) may be unbounded, but its boundary is compact.

Proof. We only consider the case when 2 is bounded. Let us first assume that €2 is uniformly star shaped
with respect to the origin, i.e., we have that there exists a constant ¢y > 0 such that x - v > ¢ for all
x € X. We claim that the following identity holds

div (|F|*Pz = 2(F - 2)F) = |F|* = 2curl F(F - z) — 2div F (F - z). (3.5)
Indeed, this follows from the following straightforward computation, where we denote the Dirac delta by

J
o/,

3
div(|[FPz—2(F - 2)F) = > 0; (F}x; — 2, F; F))

i,j=1
3 .
i,j=1
3
=|F|P =2(F-2)divF —2 ) (0;F; — 0;F;)Fjx;.
i,j=1

Thus we integrate (3.5) to find
/ ((z-v)|F|? = 2F,(F - z)) dH* = / |F|? — 2curl F(F - z) — 2div F(F - z) da.
by Q
Note that |F|? = |F,|? + F? and (F - z) = (2 - v)F,, + (F, - ). Therefore we have the equality

/ (= (z-v)F2+ (zv)|Fy|* — 2F,(F, - z)) dH?
2

:/ |F|? + 2curl F(F - z) — 2div F(F - z) da.
Q

We use the fact that - v > ¢p on ¥ and obtain the first claim by re-organizing the terms in above and
estimating |F,,(F, - x)| < g|Fy|? + C.F?

co/ |F,|? dH? S/(6|FT|2+CE|FH|2)dH2
b b

+ C(HFHiz(Q) + ||CU1"1FH%2(Q) + diVF”iz(Q))-

This yields the first inequality. The second follows from similar argument.
To prove the general case, i.e. when €2 is not starshaped, we use a localization argument which is
similar to [1]. O
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Remark 3.4. We observe that the proof gives us a slightly stronger estimate. Indeed, we may improve the
second inequality in Lemma 3.3 as

IF 1325 < C (IFr ey + IF 2@y + I1F div Fllpi o) + [ Feurl Flliay)) -

In order to estimate ||V F||g1(q) we first consider the case when [ is curl-free, i.e., F' = Vu. Since we
define the norm [|9,u|[ 1 . via the harmonic extension, we prove the next lemma using standard results

from harmonic analysis instead of localizing and flattening the boundary.

Lemma 3.5. Assume that Q, with X = 09, is uniformly C1*(T')-reqular and |Bs| g« < M andu:Q — R
is a smooth function. There exists a constant C, depending on M and the C1*-norm of the heightfunction,
such that it holds

IMMan<COWUH% + ull 2@ + 1 Aull 2y ) -

The reverse also holds ||0,ul| < Ollull g2

HE (%)
Proof. We have by (3.2) and (3.4) that
IV2ull72(q) < [AulF2q) + 2/((V2u v)-v— Au)d,udH> + C/ |Bsy| |Vu|? dH?.
) )

To estimate the last terms, we use the interpolation inequality (Proposition 2.8), Lemma 3.3 and the
assumption || B+ < C and have for some 6 € (0,1)

2 2 2 260
/E|BZ||VU| dH” < C||B|[ra(s) ||VU||L3(Z) < |[Vu ||H2(E [Vu HL2(2)
<ellull3z () + C:lIVullZa(s) (3.6)

< E||u||%¢2(9) + CE(||8,,u||%2(E) + HVUH%Z(Q) + ||AU||%2(Q))
< ellulltz o) + Co(I0vulliacs) + lulliz) + I1AulZ(q))-
Let us then show that
2 2 2 2 2 2
/Z((V uv) v —Au) yudh® < ellully ) + Ce(l0vully g o+ llullzz(o) + 1AulLz ). (3.7)
To this aim we denote the harmonic extension of v by v and denote f = Au. Then we have

/(v2uy)~ua,ud7{" :/ (0,(Vu-0) — (0,7 - Vu)) (Vu - ) dH?
) )
/3 (Vu-9) (Vu- ) dH? + C||0, 7l pa Z)HquLs(E
We argue as in (3.6) and obtain
”V“”i%(z) < ellullfrz o) + Cel0vullZa () + lullZ2 i) + 1172 ()-

Next we use the result from [19] for harmonic functions ¢ :  — R in C1*-domains which states that
10v@llze(s) < CpllVrplliesy  for p € (1,00).
We use this for 7 component-wise, use the fact that on ¥ it holds 7 = v and obtain
VP Lasy < OV 1acs) < 1Bllras) < C. (3.8)

Therefore we have

/E(V uv v d,udH? < /E 0y,(Vu-v) (Vu-v)dH (3.9)

+ 5||U||§12(Q) + Cs(HBuUH%?(z) + ||UH%2(Q) + ||f||%2(9))~
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Let us denote & = (Vu - ) for short and let v be the harmonic extension of @ to 2. Let us show that
v is close to w, i.e., we show that

V(@ = v)|lr20) < el Vullrz() + Ce([lfllzz0) + 1@ — vl L2 ()- (3.10)
To this aim we calculate (recall that f = Au)
At =Vf 0+2Vu: Vi (3.11)

This implies by integration by parts
IV (a— U)H%2(Q) = —/ Aw(t —v)dr = / (Vf-0+2V%u: Vi) (a—v)de
Q Q
= / fdiv((@—v) ) —2(Viu: VD) (i — v) do
Q

<C|V(a- U)||L2(Q)||f||L2(Q) + C(||V2“HL2(Q) + Hf”Lz(Q))HVﬂHL‘l(Q)||(a - v)||L4(Q)~
By standard estimates from harmonic analysis [16] and by (3.8) it holds
1970124y < CIIVF Loy < C. (312

On the other hand we have by Holder’s inequality and by Sobolev embedding (recall that &« — v = 0 on
%)

1 _ 1 _ 1 ~ 1
(@ — U)HL‘l(Q) < |[(a— U)st(g)”“ - UHIQﬂ(Q) <C|V(a- U)||z2(Q)||u - ”||z2(9)-

Therefore by combining the previous inequalities we obtain (3.10) by Young’s inequality.
We proceed by using (3.11) and by integrating by parts

/GyﬂﬂdH2:/8VﬂvdH2:/(Vﬂ'Vv+Aﬂv)dx
> > Q
= 2| Vo220 + 20V — 0) |22y + / foov)dH?

+ / —fdiv(vp) + 2(V2u : Vi)vde.
Q

Recall that 7 = v and v = @ on . Therefore we obtain by the above inequality, by ||v||z+) < Cllv| a1 (@),
(3.10) and (3.12) that

/ dyut — fudH? < g V2ul 2o
P

+ Co (V| Loy llvll L) + ||U||?{1(Q) + Hf||2L2(Q) + [|@ — U||2L2(Q))
< el V?ul 2@ + Cellvllin o) + 11720 + 18 = vllZ2(q))-
The inequality (3.7) then follows from the above and (3.9) together with

@ — U||2L2(Q) <ellVZull L2 a) + Ca||u||2L2(Q) + HU”%?(Q),

||U||H1(Q) = HaVUHH%(Z)’
and by recalling that @« = (Vu-7) = d,u on ¥ and f = Au. This yields the first claim. The second
inequality follows from reversing the previous calculations. (I

We state our lower order version of Theorem 3.1.

Theorem 3.6. Assume that Q, with ¥ = 99, is uniformly CY*(T)-regular and ||Bx|| a5y < M. There
exists a constant C, depending on M and the C%“-norm of the heightfunction, such that for all vector
fields F € H'(Q;R3) it holds

[E N s ) < M([|Fn| + 1l L2 + 1 div Fliz2 (@) + [leurl Fl| L2 (q))-

H3 (%)
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Proof. By approximation argument we may assume that F' and € are smooth. We use the Helmholtz-
Hodge decomposition and write F' = V¢ + 1) where ¢ is the unique solution of the Neumann problem

Ap=divF z€
d,¢ = Fy, reEX
with zero average and v solves

curly = curl FF z € Q)

divy) =0 x e

v-v=>0 T € M.
We also note that V¢ and 1 are orthogonal in L?(£2) and thus

/ IVo|? + || de = / |F|*dz.
Q Q
For ¢ we have by Lemma 3.5 that

[olm2(0) < C(||8V¢HH%(2) +IVelz) + 120 L2(0))

. (3.13)
< CllEnll g g + 1Fllz20) + 1 div Fllr2(e))-
For ¢ we have by (3.1)
1
V912 0y o = g lleurt sy = [ (B ) e

We use the assumption ||Bx||r+ < C, Holder’s inequality and interpolation inequality to deduce

2 2

- [[(Bs ) a1 < | Bsluscsy 012 3
< 8”1“'2%(2) + Cell9llT2 0y < el Vl72) + C=lIFl172q)-

Thus we have

||V¢||L2(Q) < C(”CUTIFHL?(Q) + HFHLZ(Q))
This together with (3.13) yields the claim. O

We proceed by using Theorem 3.6 to control the higher order norms || F'|| 2 (o) and || F'[| g3 (). We do
not need the sharp dependence on the curvature for these estimates and we state the result in a form that

is suitable for us. We also treat the case ||F' ||H @) but only for curl-free vector fields. In this case we

need the 'sharp’ curvature dependence but this time we have non-optimal dependence on the divergence.

Lemma 3.7. Assume that Q, with ¥ = 99, is uniformly CH*(T)-regular and || Bs||
all vector fields F € H3(;R3) it holds
[ ]| 3 () < C(HAanHH%(E) + (L4 | Hs | m2 )| Fl Lo () + | div F|| 20y + [[curl F| g2(q))

H%(E) < M. Then for

and

12 (0) < C([|AsFy| + 1Fll (o) + [1div Fll g (o) + llewrl Fllg q))

H3 (%)
for some constant C, depending on M and the C*®-norm of the heightfunction. Moreover, if F = Vu
then it holds

[Vull < C(l10vull sy + llull 2@ + [Aul @)

"3 ()
and for k = %, 1 it holds
lullrs ) < Clll sy
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Proof. By approximation argument we may assume that F' and €2 are smooth. Note also that by Sobolev

embedding || Bs|lra(s) < 1Bzl 43 i) < M-

Let 7 be the harmonic extension of the normal field v to . Let us define the vector fields 7; =
ei — (- e;)v for i = 1,2,3, where {e;}; is a coordinate basis of R3. For i,j we define a vector field
Fij : Q— R3 as ( Fij)k = V Fy1; - 75. We apply Theorem 3.6 for Fj; and obtain

IVFijll2) < C(|Fij - V|| + 1 FijllL2o) + [ div Fijll 2 (o) + [leurl Fijl[22(q))-

H3 (%)
Recall that (3.12) implies [|V7||paq) < C. Moreover by maximum principle it holds ||7 g ) < C.
Therefore

| div Fijl p2) < Clldiv Fllg2(a) + ClIV2FllLa@) VY L@y
< C||div Fl|g2(0) + CIIV?F | La(o).-
By interpolation we have |[V2F|[a(q) < €| F| gz) + Ce||F||12(0) and thus
1Fijllz2e) + [1div Fijllz2) < llFllas@) + Ce(ldiv Flm2q) + ([ Fllr20))-

By a similar argument

[eurl Fijll L2 () < ellFllms (@) + Ce(llcurl Fl| g2 () + [|F]|L2@)
and

3
HVFin%Z(Q) > Z V2V Fy 7 'Tj||2L2(Q) - ‘C:HF”%—I?'(Q) - C€||F||2L2(Q)'
k=1

Let us fix a point x € Q and estimate the norm

3
Z V2V, Fy () 77 - 7%

i,k l=1

First we observe that the above quantity does not depend on the choice of the coordinates in R3. Let us
choose the coordinates such that o(x) - e; = 0 for ¢ = 1,2. Then we have

3
> IVEVIR(@) i) > Z Z ViV, V, Fy(2)]%.
i,7,k,l=1 k,=114,5=1

By a simple combinatorial argument we deduce

3

> ViV V()

ijkl=1

3 2
<C Y DY VIV VIE(@)]? + CV? div F(x)|? + C|Veurl F(z)[.
kl=11i,j=1
By applying the above argument for every x we have
3
Y IVE;lie) = ol VPFlZa@) — CUIdiv i3z ) + llowl Fllge g + [ Fl72(0)-
W4,k 1=1
Combing all the previous estimates we obtain

3
IVoF 120 < Z CUF vl g ) + 120 + 1 div Fllzz(0) + llewtl Fllg2(q)).
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The first inequality follows once we show

3
> IE; - Vg S ClliAsEall g o el Fllms@ + O+ [ Hsllm) | Fllre ) (3.14)

ij=1

To this aim we first note that on ¥ it holds 7; = e; — (v - ¢;)v and therefore 7; is tangential on 3. Thus
we have

(V2F,)Ti-7j = Fij v+ V,FxBs + F %V, Bs. (3.15)
We use Proposition 2.10 and get
I9-F % Bsll, 3 ) < CIVFIL g o I1Bslliem) + CIV-Fllio sy Bl o

Recall that HBZ”H%(Z) < C'. By interpolation we have

[VrFllpee(s) < el|Fllaz) + Cel|[F[| e
Moreover, by Sobolev embedding, Proposition 2.8 and by Proposition 2.12 we have for 6 < %

Bl < CllBs| < OB g2y I Bl patsy < O+ || Hz | (s))-

7
wh 3 (x)

On the other hand, Corollary 2.9 implies

1 1
IVE] < CIVFEa1 @ < ClFl s @) IVEl L2

Hz(E
Therefore we have by the above estimates and by Young’s inequality

198 % Bsl 3 1y < el Fllsoy + ClFllo + C-(1+ [ Hs s 5) IV F 220
< el Fllas@) + C(1+ [[Hsllm2 ) 1Fll = 9),

where the last inequality follows from interpolation.
Let us then bound the last term in (3.15). We have by Proposition 2.10
|| F" % VTBEHH%(E) < || F % V:Bs| g ()
< C[F|lpe ) IVBs | sy + ClF[wras) [VBs 1o (s)
Proposition 2.12 yields || Bs| g2(sy < C(1 + ||Hs||g2(x)). Interpolation implies

IVBsllzs(sy < CllBellfe (sl Bl (s,
and
1wy < 1P 1P 1%~ o)
for some 0 € (0, 1). Therefore we have by (3.15)

1F5 - v < [IV2F| +ellFllmsm) + Ce(U+ [Hsll a2 ) 1F | e @

H2 (%) H2(Z

The inequality (3.14) then follows from Proposition 2.11 as

IV2 El| < 2| AnFa| + CellFallze(m)-

H3 () = H3 (%)

The second inequality follows from a similar argument.
Let us next prove the last part of the statement, i.e. the inequalities when F' = Vu. Let u be a solution
of the Neumann boundary problem

Au=f inQ
d,u=g¢g on?,
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where [ g = [, f and [,udz = 0. First, clearly [lul|

divergence theorem

2 2
[vulans [wrde= [woudr <ul,y ol g < Clulm@lal, -y o

Therefore by
/ u f dx
Q

and by Poincaré inequality |lu|r2q) < C||Vul r2(q) we have
lullzrr @y < Clgll -3 () + 1Fllz2(0)-
On the other hand Lemma 3.5 implies
lull 20y < Cllgll 4 ) + lullzz + 1 Fllz2(2))

ah) S < Cllul|gr(q)- By the equation and by

< ||UHL2(Q)||fHL2(Q)

< Clgl 3 o, + I 2000).
We use the two above inequalities and standard interpolation argument to deduce
lull 32y < CUlgllzcsy + 122 (@))- (3.16)
We proceed by applying (3.16) for u,, = Vu-e; —¢;, for i =1,2,3, ¢; = fE Uy, , and obtain
IVullga/2(0) < C1100 (VU L2(z) + ([ f 1 @)- (3.17)

In order to treat the first term on the RHS we let 7 be the harmonic extension of v to 2. We write
Vu =V, u+ (0,u) v and have

0,(Vu) =V, (0,u) + 0, (Vu - D)v + Vi x Vu.

Recall that we have by maximum principle [|7| -~ < C and by (3.12) ||[VD||12q) < C. We argue as in
(3.6) and obtain

IVZ* Vul L2y < IVPas) [[Vullpas) < Cllullmzo)-
We use Remark 3.4 for FF = V(Vu - 7) and (3.11) and have
18, (V- D) 725y < CUIVA(Vu - D)|[72es) + [V (Vu-2) A(Vu- )| 1) + [ Vu- 23 q))
< C(10vullFp sy + lullFragay + 117 () + IV 2] 30 o)
+ C(||[V2u* V2ux V| 1) + | Vux Vux Vi Vil piq)).
First, we obtain by using the previous estimates
IV 1210y < Clulls -

We bound the second last term by Hélder’s inequality and by the Sobolev embedding

2 2 - - 2,112 2 2

IV3ux Viux Volpye) < ClIVILa@ IV7ully g o < ellVully g o+ Cellullie g

Similarly we estimate the last term

IV%ux Vux Vir s V|| oy < CIVE |2 IV2ull, 5 o IVull s

L5 @)
< 5||VU||ng(Q) + C€||U||H2(Q)'
Therefore we have
10, (Vu)||L2(s) < 5||Vu|\Hg(Q) + C(0vull 12y + ullz2 ) + 1121 (02))-
Recall that we have

[ullr2(2) < C(llgll + £ llz2 ()

H2(Z
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Therefore the third inequality follows from (3.17).

For the last inequality we recall that while the Trace operator is not bounded T : H? (R3) — L2(RR?)
it is bounded as T': H?2 (R?) — H'(R?). We prove the statement by localization argument similar to the
one in the proof of Proposition 2.10 and we only give the sketch of the proof.

We cover ¥ with balls of radius §, Bs(x;),i = 1,..., N such that the set ¥ N Bys(x;) is contained
in the graph of ¢; and Q is above the graph. We denote the partition of unity by 7;. Let us fix ¢
and we may assume that x; = 0 and ¢;(0) = V¢;(0) = 0. By the regularity assumptions it holds
|Pillcre @2y, |Pillw2amey < C. We define ui(x) = ni(z)ui(x) and vi(2',x3) = wi(2', 23 + ¢4(z’)) for
x3 > 0 and extend v; to R? by the extension operator. Then we have by the Trace Theorem

il sy < Cllollan sy < Clloil g g

Recall that the assumption ||Bg||ps+ < C guarantees that © is an H?-extension domain. Therefore it holds

||viHH%(R3 C||uHH 3@ and the last inequality follows. O

3.2. Regularity Estimates for Functions

In this subsection we prove regularity estimates for functions u : @ — R defined as a solution of the
Dirichlet problem

{Au:f x e (3.18)

u=4g rTEY

We first consider the case when g = 0 and improve in this case the third inequality in Lemma 3.7. Here
we assume that the boundary has the regularity ||Bs|| i) < C. Note that by the Sobolev embedding
this implies || Bsl[z1(x) < C.

Proposition 3.8. Assume Q, with ¥ = 9Q, is uniformly CY*(T)-regular and HBEHH%@) < M. There
exists a constant C, depending on M and the CY“-norm of the heightfunction, such that the solution of
the problem (3.18) with zero Dircihlet boundary datum, i.e., g = 0 satisfies

10vullmr () + [ Vull 3 o < CIS

Proof. First we note that since u =0 on X then by (3.2) we have

H2 Q) — H2(Q

V2220 = 1122000 — / Hy |0y ul? A1,
By (3.6) it holds

- [ Hslouf? ar < el ey + CoI Vs

We apply Lemma 3.3 for F' = Vu and recall that « = 0 on ¥ to deduce
Vullesy < CUIVrullp2csy + [[ullar@) + 1fll2 )
<ellullgz@) + C=(llullz2@) + I fllz2@))-
Therefore we have
IV2ull72 gy < Cllullr2@) + 11fllz2 (@)

We bound ||u|| 2 (o) simply by multiplying the equation (3.18) by u and integrating by parts ||Vu||2LQ(Q) <
£l 2o llull 2()- Poincaré inequality then implies |[u z2(q) < C||f]|z2(q) and we have

lull 2 ) < CllfllL2 - (3.19)
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Let 7 be the harmonic extension of the normal field and let us define 7; = e; — (e;, ) as in the proof

of Lemma 3.7. Define u; = Vu - 7;. Observe that u; = 0 on 3 and apply (3.19) to deduce
1V2uil| L2y < CllAui| 20
We have (recall Au = f)
Au; =V f*1; +ViuxVi+ Vux Vi V.

Arguing similarly as in the proof of Lemma 3.5 and using (3.19) yields

[Aus|[r2(0) < ellullrz@) + Cllf 1)

Let us then treat the LHS of (3.20). We have (recall that 7, = e; — (e;, 7)D)
V,;Viui = V(V;Viu) - 7 + VZux Vi + Vu x Vi x Vi + Vu x V270,

Therefore arguing as in the proof of Lemma 3.5, we obtain

3

IV2uill 2y = Y IIV(V3 V) - 7il| 220
i,5,k=1

— el|ull gz ) — Cell fll @) — ClIVull Lo @) I V27| L2(0)-

(3.20)

(3.21)

(3.22)

Let us fix a point z €  and as in the proof of Lemma 3.7 we may assume that (z) - e; = 0 for i = 1,2.

Then it is easy to see that

3 2 3
>V Viu@) ml =YY (VY Viu(a), 7))
i,j,k=1 i=1 j,k=1
3

Z ViV, Viu(z) > — OV Au(z) .

This together with (3.22) yields
luill 20y 2 el VPullz2 () = Cllflla @) — CllVull L= [ V27| 12 ()
We proceed by recalling that 7 is the harmonic extension of v. We claim that it holds

V25| p2(0) < C.

Indeed, this follows from already familiar argument and we only give its outline. Define 7, = e¢; —

(3.23)

(3.24)

<6¢717>I;

as in the proof of Lemma 3.7 and let u;; = (VU 7;7;). Then it holds u;; = (Bx7;, 7;) on X and therefore

by the assumptions it holds ”uij”H%(Z < C. Arguing as in the proof of Lemma 3.5 we deduce

Hvuz’jHQL?(Q) < ||uwH2

2~112
HQ(Z) +EHV V”LQ(Q) + CE.

By applying this to every 4, j,= 1,2,3 and arguing as above we obtain (3.24).
We have by interpolation inequality in Corollary 2.9

IVallz=(0) < CIVullza@) < ClIVullfa gy IVullE2 0
Therefore by Young’s inequality and by (3.19)
IVull Lo @) IV 12 (0) < el VPull2() + CellV2ull L2 (o)
< el VPullz2) + Cell fll 2 (e)-
Hence, (3.20), (3.21) and (3.23) imply

lull 73 () < Cl fllz1(0)-
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We set F to be the linear operator such that it associates f with the unique solution u of the problem
(3.18). Then we have by (3.19) and (3.25)

[ Fllez,m2) < C and 1 Fl e ms) < C.

Then we have the inequality

IVl g

< Clfll (3.26)

H2 Q) — H2(Q

by standard interpolation theory.
We need yet to bound ||, u|| g1 (s). To this aim we extend Vu to R? by T such that
IT(V0)l,y3 oy < ClIull 3
Let us denote U = T'(Vu). Let © be the Harmonic extension of v as before, which we may also extend to
R3. We note that we may assume that the extensions have support in Br. We have by Lemma 3.7

IVu- vl gz < CIU -7 <ClU -7 3

6t 3 (®s)’

The Kato-Ponce inequality (2.15) with py = 8, g2 = 8/3 yields

10 71,13 gy < CITN 3 o 17wy + CIT Ny 1705 g

We have ||| ®s) < C and by the Sobolev embedding [|U||zsrs) < C||U]|
deduce that

a3 ms)’ We use (2.13) to

1 .k
Vo S OV i ) IV L4 gy -

w25 (Rr?)
By (3.12) we have
V|| paray < VY| L) < C
and by (3.24)
Vo1 sy < C|IV0| g2y < C.
Therefore by combining the previous inequalities we have
< U]

IVu- Vi) < CIU - 713 ey < CIV N3 oy < CITLy3 -

The result then follows from (3.26). O
We conclude this section by proving the sharp boundary regularity estimate for the Dirichlet problem.

The proof follows the argument in [22, Theoreom 4.1], with the difference that here we have Dirichlet
boundary datum, instead of the zero Neumann case.

Theorem 3.9. Assume €2, with ¥ = 99, is uniformly CY2(T)-regular and satisfies (H,,) for m > 2. Let
u € HY(°) be the solution of

Au=0 Q¢
{ u=bore (3.27)
Uu=gqg SN
Then for all integers 0 < k < m — 1 it holds
I9%ull 3 ) < CO+IBsllre-scmy + gl oy ) (3.28)

for some constant C, depending on m and on the CY“-norm of the heightfunction. Moreover, if g is
constant then the above holds for all k € N.
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Proof. Step 1: Flattening the boundary. Since ¥ is C1*(T'), for any x € ¥ we find § > 0 such that after
rotating and translating the coordinates

Q°N Bs = {(«,23) : 23 > ¢(2')}

with ¢ € C1%(Bs), $(0) = 0 and V¢(0) = 0. Consider the diffeomorfism W : Q¢ N B; — By ¥(2/,x3) —
(2', 23— ¢(2')) and let v := uo ¥~ and w := go WL, Let us extend g by its harmonic extension, denote

it by g, and thus w = §o U~! is defined in B;'. By standard calculations we deduce that v is the solution
of
{diV(A¢Vv) =0 zeBf (3.20)
v=w x3 =0,
where A is symmetric matrix which can be written as Ay = I+A(V¢) where A(V(z)) = 0if V(z) = 0.
In particular, by choosing ¢ small enough Ay is postitive definite. In weak form (3.29) reads as

/ AgVv-Vodr =0
B
for all p € Cg°(BY).

Let k be an integer as in the statement. Let us differentiate the equation (3.29) k times in tangential
directions. To this aim let us fix an index vector v = (71, v2,0) with v1 + 72 = k, and denote v = Vv
and w = VYw. Then v is the solution of

(3.30)

V=1 x3 = 0.

{div(A¢Vz7) = Y4, div(VEAGVVPY) 2 € Bf

with & = (&1, a2,0), 8 = (61,02,0), |B] <k —1 and |&| + |5] < k. In the weak form this reads as
/ AyVU-Vodr = — Z/ (VEA,VVP0) - Vo dr
By ap BT

for all p € C3°(BY).

Step 2: Choice of the test function that has zero boundary value Let ( € C§°(Bj) be a smooth cut-off
function such that ¢(z) = 1 for |z| < § and 0 < ¢ < 1. We choose a test function ¢ = (v — @)(?, which
has zero boundary value. With this choice we have

/ (AV5- V) Cdar = / (AyV - Vi) (2 da + / (AyV - VO) (0 — 0)Cda
BY ¥

B Bf
a 8 e & 8 o
—Z/ (VEAVVP0 - V(5 — )¢ dm—ZZ/ (VEA4VVP0 - VC) (0 — w)¢ dx
ap B a8’ By
— L+ I+ Is+ I,
By the assumption ¢ € C1* it holds ||Ay| = < C. Thus we may bound the first two terms as
Li+1 < CHV@”L?(B;)(HV?DHL?(B;) + o - wHL?(B;))~

The term I3 is more difficult to treat. Note first since Ay is of the form 1 + A(V ) we have a point-wise
bound by the Leibniz rule

SIVEAPIVVP <C YT (14 VMV [V V) VYA

a,B la|+|B[<k
|B|<k—1
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Hence, we obtain by Hélder’s inequality
Is <CIV (0 = D)l 2 )

@1 2k oo Ok 2k B 2k
> (L IVeel TVl NIVl

la|+15]<k * (B
Bl<k1

(Bf)

We use interpolation inequality to estimate

i 2k 177
Vol o,

<90l e IVl

+
6
Also by interpolation we have

A%KIE =y Vo]l
18]

< oll s gy IV
and |f] <k — 1. Since X is Cl’o‘—regular, we have by Schauder estimates [25] that Vv € C%(B}). Note
that ), 9 < k_Tlm and l—fl < 1. Therefore by Young’s inequality we deduce
15| SCIV@ = @) a5y (1 + 1960k e ol s
<ellV@ = D) 72 s) + el nrsppy T Cc+ VOl )

We bound the last term I similarly.
Finally we collect the previous estimates, use the ellipticity of the matrix A4 and the definition of w
and obtain

HV'EHiz(B;r/Z) < 4E||v||i[k+1(33r) + C(l + ||¢||2Hk+1(B;r) + ||w||2Hk+1(Bg’))'

Summing over all the multi index of the type (71,72) we have the control over the horizontal derivatives.
To estimate the vertical derivatives, we use the equation in the strong form as in [22], and obtain

HU”?:]kJrl(B;r/Q) < C€||U||§Ik+1(36+) + C(l + ||¢H§{k+1(3§r) + ||wH§{k+1(B;r))' (3'31)
Step 3: Going back to the original function. We need to go back to the original function u. The argument
is similar to [22] and we merely sketch it. We note that arguing as in [22, Thorem 4.1] we may control
16/l s (pry < CA+[Bsllgr-1(s))

for all £ € N. Recall that g is the harmonic extension of g. Using the assumption that the curvature
satisfies the condition (H,,) for m, we may deduce, arguing as in the proof of Proposition 2.1, that for
k <m —1 it holds

||w||Hk+1(B;r) < C||§||Hk+1(ﬂcm35) < C”QHHH—%(E)'

Obviously if g is constant the above inequality is trivial.

Fix o small such that UzexBs(z) covers Ny = {z € Q° : d(z,Q) < §} and 01 < 03 < 0. By
compactness we may choose a finite family of balls covering Ns. Choosing & small enough we have by
(3.31) and by the above inequalities

).

HUH%{kﬂ(N <C(||u||Hk+1(/\[ \Wo, )+1+HBEHHk 1(x) +||g||Hk+ =)

Since u is harmonic, the interior regularity yields
lull e+ (v, \Way) < Cliullzz,,)-
By standard estimates from harmonic analysis [16] it holds for R large
lull2(v,,) < llullzz@ensr) < CUlullLzs) + [ullz@Br)) < C(L+ l9llL2(s))-

Therefore we have

lullzes sy < € (14 1B sy + gl yesd ) -
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The claim follows from

1Vl CIVF ul3a, ).

1 <
H2 (D) —

4. Useful Formulas

In this section we focus on the equations (1.3) and assume that the family of sets (£2;):c (0,7 and velocities
v(+,t) are solution of (1.3). We derive a general formula for the commutators of the material derivative
of high order DF with spatial derivatives. We apply this to calculate [DF, V]v and [DF, V]p, which will
produce two types of error terms, (4.13) and (4.14), defined in the fluid domain €;. We will also calculate
the formula for DFp on the moving boundary ¥; in Lemma 4.7, which includes third type of error term
defined in (4.26). The precise structures of these error terms are complicated and we only need to trace
the order of the derivatives that appear. Therefore we effectively use the notation from [32]

VFf Vg
to denote a contraction of some indexes of tensors V' f and V/g for i < k and j < [. Note that we include

the lower order derivatives.
We begin by recalling the following formulas from [50]

[Dy,V]f =D;Vf - VD, f = -VuIVf, (4.1)
Dy, Vo f = =(V0)'V, f (4.2)

and
Dy, As|f = V2fxVo -V, f - Asv+ B+ VuxV,f. (4.3)

Let us also recall the material derivative of the normal field. We use the shorthand notation v = vy,
B = By, and v, = v - v. We have by [50]

Dy = —(V,v)lv (4.4)
Since V,v, = V,vTv + Bov,, we may write (4.4) as
Diyv = -V, v, + Bo,. (4.5)
We need higher order versions of the commutation formula (4.1), i.e., for
[D}, V¥|f = DIV f — VD, f.

Recall the definition of the norm of an index vector a = (a)¥_, € N

k
la| = Zai
i=1

and note that we include zero in the set of natural numbers N.

Lemma 4.1. Forl,k € N with [,k > 1 it holds
D} VHf= Y VHaDMys VT ViTer Dl 5,
la|<k—1
[B]<i-1
Proof. Let us first assume [ = 1 and prove
D,VEf —VED, f = Z Vitary wvitez g, (4.6)

jal<h—1
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We argue by induction over k and observe immediately that the case k = 1 follows from (4.1). Assume
that (4.6) holds for £ — 1 and note that by (4.1) we have

DVFf =D, V(VF 1) = VDUV L) 4+ Vo« (VF).
By induction assumption we have

VDV ) = V(YD f + Y VIR Vi)

lal<h—2

=VDf+ Y VT vitery

o <k—1

This yields the claim for [ = 1.
The proof for [ > 1 follows from a similar induction argument. Assume that the claim holds for [ — 1
and note that

DiVFf = VD, f + Di([Dy", V¥If) + [De, V(DL )
By the first claim we have

D, V(DT )= Y Vs viteDlf.
la|<k-1

On the other hand, by the induction assumption we have

DDV f =Dy Y VDM yk . x VIO DIty YDl £,
la|<k-1
[B]<I-2
We use the Leibniz rule and the first claim to deduce that
D,V Dy = VT Dty 4 N gty e ply,
|&|<on

Similar formula holds also for 'DtVHO‘l'Dtﬁ ' f. Hence, we obtain the claim. O

Let us next prove higher order commutation formulas for (4.2) and a formula for D}v and D; B. Below
ag(v) and aq g(v, B) denote bounded coefficients which depend on v and on v and B respectively.

Lemma 4.2. Forl > 1 it holds

[DLVAf= > ag(w)VD vx- % VD' x V. D) f (4.7)
|6l<i-1
and
[DLV2f = Y aap, B)VH D) vk 5 VITDy 5 YIeraplie 5. (4.8)
al<1
M‘?|§|7—1
Moreover we have
Div= > agv)VD{'vx- VD] (4.9)
[B]<i-1
and
DiB= Y aas(v, B)VFIDf x5 VIt plisty, (4.10)
la|<1
Bl<i-1
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Proof. Let us first prove (4.9). First, the claim holds for I = 1 by (4.4). Let us assume that (4.9) holds
for | — 1. Then

’DiI/ = Dt Z ag(y) V’thglv x .- *VDfl_lﬂ.
|8|<1—2

By (4.4) it holds Diag(v) = ag(v)Vv and by (4.1) we have
D,VDlv = VDY oy 4+ Vo« VDo,
Thus we deduce

Dy Y agw) VD) k- x VD u= Y as(v) VD vk x VD)
[8]<l-2 |8|<1—1

which implies (4.9).
Let us next prove (4.7). By (4.2) the claim holds for I = 1. Let us assume that the claim holds for
[ —1. Then

DV f =DV, Dy ' f+Dy . as(w)VD vx- -+ VD] v+ V. D] f.
[BI<1-2

As before we have by (4.4) Diag(v) = ag(v)Vv and by (4.2)
D,V DY f =V, DV f 4 a(v)Vu« V, DY f.
Therefore we obtain by Leibniz rule
DIV f=V.Dif + > ag(w)VD vx- VD v+ V, D/ f
1Bl<i-1

and (4.7) follows.
We notice next that (4.10) follows from B = V. and by combining (4.7) with (4.9). Finally we obtain
(4.8) by first applying (4.7) as

DiV2f =V, (DIV.f)+ > as(w)VD v % VD 'vxV, D]V, f.
[B]<i-1

The claim then follows by differentiating (4.7). O

Remark 4.3. By Lemma 4.2 we have in particular that
Divn = Z ag(y) VDt’Blv Kok V'Df"’u *Dfl+1v,
[BI<!

where 3; < [—1 for i < [. Moreover, since we may write the Laplace-Beltrami operator as Ay, f = Tr(VZ2f)
then Lemma 4.2 yields

DiAsf=AsDif + Y sy, B)VFOID) vk ok VIFO Dy o Lt plien f

laf<1
|Bl<i-1

Let us next derive formulas for the divergence and the curl of the vector field Dlv. Recall that by (1.3)
we have divv = 0 which then implies

— Ap = div(Dw) = Tr((Vv)?) = divdiv(v @ v). (4.11)
For the curl we have curl (Dyv) =0 and w = curlv = Vo — Vol satisfies (see e.g. [50])

Diw = —VovTw — wVu. (4.12)
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We will derive formulas for divDlv and curl Dlv below by using (4.11), (4.12) and the commutation
formula in Lemma 4.1. To this aim we introduce two type of error functions. The first type we denote by
Rl , which stands for any function which can be written in the form

R, = Z ag(Vv)VDflv * ok VDY, (4.13)
[81<i
for I > 0. We also use the convention that the indexes are ordered as 31 > (32 > --- > ;. The second

type of error function is slightly more general and it can be written in the form

Ry =Y. aap(VO)VDM v+ VDl x VoDt oiety, (4.14)
ol <1.[8]<t

for I > 0. Note that Rfml . has one higher order term compared to Rfﬁv. In particular, all functions of type
Rfﬁv are contained in Réulk. The reason for introducing these two notations is that we need to estimate
them in different norms. We will do this in the next section. Note that using Lemma 4.1 and —Vp = D;v
we deduce that

Lemma 4.4. Let | > 1 and denote w = curlv. Then it holds
DVl = Vox Viw + Z Vitary x yitazy,
o] <1
Moreover, curl Dlv and div Dlv can be written in the form
curl Dy = Ré}vl and divDlv = ngvl.
We may also write the divergence of Di"'lv as
div Do = divdiv(v @ Dlv) + div Ry

Proof. The first claim is an immediate consequence of Lemma 4.1 and (4.12). The second claim follows
from Lemma 4.1 and from curl (D;v) = 0. Similarly the third claim follows from Lemma 4.1 and divv = 0.

Let us then prove the last claim. We begin by proving two useful identities. First, we claim that for a
vector field F it holds

[Dy, div]F = — div(VuF). (4.16)
Indeed, since divv = 0 we have

3 3
Dt div F' — leDtF = Z ’Uzaz(aij) - 61(6]Flvj) = — Z 6‘ivj8jFi = 7le(v1)F)

i,j=1 ij=1
The second identity follows also from divev = 0 and we may write it
div div(v ® Dlv) = div(VDlvv). (4.17)

Let us prove the last claim in the case | = 1. We use (4.1), (4.11), (4.16), (4.17) and the definition of
Rpuix in (4.14) to deduce

div D?v = D, div Dyv — [Dy, div]Dyw
= D, div(Vvv) + div(Vo D)
= div(D¢(Vv o)) — div(Vo Vov) + div(RY,.)
= div(VDwv)) + div(Rp)
= divdiv(v ® Dyw)) + div(Ry,)-
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Let us assume that the claim holds for [ — 1. We argue as before and obtain by (4.16), (4.17) and by
the induction assumption
div Do = D, div Dlv — [Dy, div]Dlw
= D, div (VD] 'vv + R 2) + div(Vv Div).
We use (4.16), (4.1) and the definition of R, % in (4.14) and obtain
Dy div (VD 'vv) = div (D(VD, 'vv)) + [Dy, div)(VD, v v)
= div(VDivv) + div (VD "o x Vox v+ VD, v x D)
= div(VDlvv) + div R L
= divdiv(v ® Do) + div R}, ).
Similarly we have
D, divRy 2 =divRy} and  div(VuDjv) =div Ry}
and the claim follows. O

Let us then turn our focus on the pressure. By (4.11) and (1.3) we have that p is a solution of

—Ap =divdiv(v ® v), in Q,
p=H- D |VU]%, on %,

where Q(t) is a real valued function of time defined in (2.1) as
Q
t) = s,
©0 = Gap(@)?
U = Ug, is the capacitary potential and H = Hy;, is the mean curvature.
We need to derive the equation for Dlp. We obtain the equation for D!p in the bulk from Lemma 4.4.

Remark 4.5. By Lemma 4.4 and by (4.15) the function —ADin can be written as
—ADp = —divDLIT Vp + div[DT, Vp = div D2 4 div R .
= divdiv(v @ D) + div(R} ;).

To find the formula for D!p on the boundary ¥; is more challenging. To that aim we first need to study
the capacitary potential U. We introduce an error term which appears when we deal with the capacity
term on the boundary, i.e., for [ > 0 we denote by R%] as functions on ¥, which can be written in the
form

Ry= > aap@)Dvx- -« DMox V020 (4.18)

la|+|8]<i+1
18I

We note that v is defined in €, while U is defined in €, but they are both well-defined on the boundary
>¢. We have the following formulas for U on ¥;.

Lemma 4.6. Let | > 1. Then on X; it holds
D\VU = Ry *
and
DIFIVU =Vot'U + VU Dl

+ Z aa,ﬁ,v(v)ptﬁlv*'"*DEZ*IU*VIJ“O‘B?U.

a+|B|l+y<I+1
[BI<1-1,~v<l

) Birkhauser



JMFM A Priori Estimates for the Motion Page 41 of 83 48

Moreover we have the following formula for aiﬂU
U =-0,U(Dlv-v)+RSY on %y
Proof. The proof of the first statement is straightforward. Note that
D,VU = Vo,U + V*Uv
and
DIVU = VorU + V2UDw + V3U x v xv + V29,U % v.
Thus the first claim holds for [ = 1,2 and the second for [ = 1. The general case [ > 1 follows by an
induction argument.
For the third claim we recall that the potential satisfies U = 1 on ¥;. Therefore it holds D,;U = 0 on
Y; which we write as
U = —(VU -v).
Differentiating this yields
DU = —(VU - Djv) + > Dju»DIVU.
itj=l
i<i—1
By the first claim we have D! VU = R{]—l and thus by the definition of R{)_l in (4.18) we may write
DU = —(VU Do)+ Y aapw)Df vk % D' ox VIF19020,

lol+[8]<1
|B]<i-1

It also holds
DU =0 U+ Y aas(0)D) vs- x D)y x VIO 9T

la|+|B|<1
[BI<I-1
Since U is constant on ¥ it holds VU = 0, U v. This implies the third claim. O

We conclude this section by deriving a formula for Di+1p. Recall that

p=H— @\vm? on %, (4.19)
where Q(t) is defined in (2.1). It is well known that (e.g. [15])
DiH = —Axv, — |B|*v, + V. H -v (4.20)
where v, = v - v. Using the geometric fact
Asv = —|B*v+ V. H (4.21)
and (4.19) we obtain the formula
Dip=—Asv-v—2B:V,v—Q)(D;VU -VU) — @WUF. (4.22)

We may write (4.22) in a different form. Indeed we use VU = 9,U v = —|VU|v and obtain
~D;VU -VU = —(Vo,U - VU) — (V*Uv -v) 0,U
= —(Vo,U -VU) + (V2Uv -v) v, |VU| = (V2UVU -v,).
We notice that
(V2UVU -v,) = %(VT|VU|2 -v). (4.23)
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Moreover, we recall that U is harmonic in €2 and constant on ¥;. Therefore it holds by (3.4)

=0
~N
0=AU =AU+(V*Uv-v)+ HO,U = (V?Uv-v) — H|VU|. (4.24)
Thus we have by (4.19), (4.20), (4.23), (4.24) that
2
Dip = ~Avv, — B, — Q) (AU (2,0,0) ~ HIVUPv,) + (Vop.v) ~ Q) VI (425)

In the next lemma we find a suitable expression for Dlp for I > 1. Again we will have an error term
which in this case is defined on the boundary ¥; and is more complicated than the previous ones. We
define the error term Ri, for1 >1 as

R =R} + R} + Ry (4.26)
where

R = ~(|B]* = Q) H |VU|*)(Djv - v) + (Vrp - Dyv),
Ry, = Z o g (B)V T DIy syt and

o<1, |8]<1-1 (4.27)
Rl _ Z a Dﬁl . Dﬂlfl 141 a’)’l 1+a1 972

111 = a.87.QV)D; vk x D ok V U VTR,
laf+18]+]vI<i+1
[8]<l-1,v:<l

where the coefficients a, s ~.0(v) depend on v and on the derivatives Q) (¢) for k < I+1. Above a, 5. (B)
means that the coefficient depends on the second fundamental form. For [ = 1 we need to quantify this
dependence in which case R}, reads as

R}, = a1 (v, Vo) x B + az(v, Vo) x V2. (4.28)

The reason why Ri, has three terms is that R}, contains the error terms arising from the surface tension

and R, from the capacity. The first term R’ is separate merely from notational reasons as it contains
the highest order material derivatives.

Lemma 4.7. Forl > 2 It holds
Dip = —Ax (D} 'v-v) — Q(t) 9,U (0,0,U) + R
on Xy, where Q(t) is defined in (2.1).
Proof. We first claim that it holds
Dlp = —(AsD:" M) - v — 2B : V(D7)
—Q(t)(VOU - VU) — Q(t)(V*UVU - DL ') + RS + R
To obtain the claim (4.29) for I = 2 we first recall that by (4.3) we have
[Dy, As]v = a1 (v, Vv) * B + ag(v, Vo) x V0,

and that (4.4) implies Dyv = —(V,v)Tv and (4.2) implies [D;, V. ]Jv = a(v)Vv x Vu. We use (4.2) and
(4.4) to obtain

(4.29)

DB =Dy(V,v) =Vx(Dw)+ D, V,]v
= -V, ((V.v)'v) + a1 (v, Vv) x B
= a1(v, Vo) x B + az(v, Vv) * V2.
We differentiate (4.22) and use the above identities and have

Dip = —(AsDw) - v — 2B : V. (Dw) — Dy (Q(t)(DtVU -VU) + @\VUP) + Ry,
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Lemma 4.6 yields
Dy(D,;VU - VU) = (D}VU - VU) + (D;VU - D;VU)
= (VOU - VU) + (V2UVU - D)

+ D aap()VH9 U X VI 92U

la|+18|<2,
Bi<1

We may embed the rest of the terms to R},;. This implies (4.29) for [ = 2.

To obtain the claim (4.29) for [ > 2 we differentiate (4.22) (I — 1)-times. Since the argument is similar
to the case [ = 2, we only highlight the most subtle steps. To identify the error terms we recall that by
Lemma 4.2 we have for 1 <[ —1

Div= ¥ as)VDfue- VD
[B|<i—1

[Dév Vslv = Z aﬁ(l/)VDtBlU K vai+1U’
1B1<i—1

and by Remark 4.3

D Aslo= Y aap(B)VH DM 0k x VHD iy 4 YDy,

lal<1
1B|<i-1

In order to treat the capacitary terms we first observe that
Dfl(DtVU, VU) = (DZVU VU) + Z DiVU » DiVU
i+5<l
i,j<i—1
and then use Lemma 4.6 to deduce
DI=YD,VU - VU) = (VOU - VU) + (V2UVU - D)

+ Z o gy (V)DP 0 x- kDI K VIO & VT2 9021

|l +[B]+]v[<l,
|B1<1=2, vi<I-1

This implies (4.29).
We proceed by calculating and by using (4.21)

As(Dy ' v) = (AsDy ') v+ 2B : V(D 'v) + (Agv) - (D} o)
= (AsDI ') - v 4 2B : V(D) — |B2(DS v - v) + (V. H - D).
Moreover, we recall that VU = 9,Uv and that (4.24) implies (V2Uv - v) = HO,U. Therefore we have
(V2UVU, DY) = (V2Uv,v) 0,U (D v - v) + (V2UVU, (D))
IvupP

= H|VU*(D: v -v) + (V. 5 - D).
By combining the previous identities with (4.29) implies
Dip = —As(Dy " v -v) = Q) 8,U (9,0,U)
|VU |2

— (1B = Q@) HIVUP)(D; v -v) + (Vo (H = Q(t)——) - Dy 'v) + R}

P

Hence, the claim follows from (4.19). O
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5. Estimation of the Error Terms
In the previous section we introduced four error terms Rfﬁv, Rfmlk, Rb and Ré, which will appear later
in the proof of the Main Theorem. These are nonlinear and characterized by their order [ > 0 and their
precise forms can be found in (4.13), (4.14) (4.18) and (4.26) respectively. The first two terms RY;, and
Rfmlk are defined in the fluid domain and appear already in the case when the shape of the drop does
not change. The term Rb is due to the nonlinearity of the capacitary term. The term Rf, is due to the
nonlinear behavior of the pressure on the moving boundary and it is by far the most difficult to treat.
In this section our goal is to estimate these error terms by the energy quantity of order [ € N which
we define as

l
— I+1-k 12 2 l 2
) = 31D 0l g1 )+ Wl gy + DM o 1 (51)

The most difficult is to estimate the lowest order terms R}m, ..., i.e., the case [ = 1, and we treat it
separately. The difficulty of the case [ = 1 makes the arguments in this section long and cumbersome.

As we explained in the introduction, the proof of the Main Theorem is by induction argument, where
we assume that we have the bound E;_;(¢) < C and then use this to bound E;(t). We begin this section
by proving that the bound E;_1(t) < C for [ > 2 implies

1Bl 3101 5, < M(O)

This will guarantee that every step improves the regularity of the flow. Perhaps the most challenging

part is to start the argument and we show in Sect. 6 that the a priori bounds (1.7) imply the following
estimate on the pressure

1Pl 2 @) <C
for all ¢ < T. We will show that this implies the following curvature bound

HB”H%(ZQ S 07

which in particular implies the bound || B[ 4(x,) < C.

We notice that the above curvature bounds ensure that ¥, satisfies the condition (H,,) for m = \_%l] +1
when [ > 2 and m = 2 for [ = 1. This means that the results from Sect. 2 such as Proposition 2.1,
Proposition 2.7, Corollary 2.9, Proposition 2.10, Proposition 2.11 and Proposition 2.12 hold for all £ < m.
We take this for granted in the calculations throughout this section without further mention in order to
make the presentation less heavy.

We begin by estimating the capacitary potential U by the pressure via the identity (4.19). We note
that in the next lemma the a priori C'**-bound for the boundary %; = 9, is crucial.

Lemma 5.1. Let | > 1 and assume that 3 is uniformly CYH%(T)-reqular and satisfies the condition
|BllLas,) < M whenl =1 and ”B”H%’”(E ) < M whenl > 2. Let U be the capacitary potential defined

n (1.2). There exists a constant C, depending on M,l and on the CY“-norm of the heightfunction, such
that

IV 40Ny 5, < COH Ipllanmy) — on B

; 3 1
for all integers k < 51+ 5.
Proof. Let us note that the assumptions on the curvature imply that 3, satisfies the condition (H,,) for
m = L%lJ + 1. In particular, the condition k < %l + % implies k£ < m.

Let us prove the claim by induction over k and consider first the case k = 0. This follows immediately
from Theorem 3.9 and from || B||pa(x,) < C as

VUl 4 5, < €O+ 1Bllza) < C.
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Let us then fix £ and assume that the claim holds for k& — 1. Since U is constant on Y;, Theorem 3.9
implies

IV, CA+[Bllaxs.))-

H2(Z
By Proposition 2.12 we have
1Bllze s,y < CA+ [Hlmrs,y) < CA+llplaesy + IIVUPaxs,)
Proposition 2.10 yields
IVUP s, < ClIVU L) IVU s,

Since ; is uniformly C**-regular we have by Schauder estimates [|U||¢1.0(s,) < C. By combining the
previous inequalities we obtain

VYR S C+ ek, + IVUl ares,)) (5.2)

H2(E

We claim next that under the assumptions of the lemma, it holds for every smooth function u : 3y — R
and for all k <m

IVl e s,y < Cllullpzes,) + IV | 22(s,))- (5.3)

Indeed, for k = 1 we have ||[Vullgis,) < ||ullrzes,) + [[V?ullp2(s,), while for k& = 2 the assumption
IB|lz+ < C and the Sobolev embedding imply

IVull g2z, < lullzzs + 1VPull2s + 1B * Vil 2,
< lullzzcz,) + IVl 2w + 1Bl IVullLags,)
< Clull2emy + IVl L2(s,))-

The case k > 3 follows from the same argument. We will take (5.3) for granted from now on.
We obtain by (5.2) and (5.3) that

||v1+kU|| < C(l + HpHH"(Zt) + Hvl-i-kUHL?(Et)).

Jig (3¢)
We deduce by Lemma 3.3, by interpolation and by the induction assumption (that the claim holds for
kE—1)

IV U2 () < CA+ VU ) S ellVMU g ) + Co(+ IV U L2(s,)

< e VUL, ) T Ce(+ Pl ae-1(,))-

H3(S,)

Thus by choosing € small enough we obtain the claim. O

From Lemma 5.1 we deduce that an estimate on the pressure implies bound on the curvature. The
statement follows from the proof of Lemma 5.1 and we leave the proof for the reader.

Lemma 5.2. Let | > 1 and assume that ¥y is uniformly C**(T')-regular and for 1 = 1 it holds ||p|| gr1(q,) <
M and forl > 2 it holds E;—1(t) < M. In the case | = 1 we have

1Bl 35, <€

and ||B||pas,) < C. In the case | > 2 we have
||B‘|H%l*1(2t) S C.
Moreover for 1 > 1 we have
I1Bllax sy < MO+ [Iplass,))
1

for integers k < %l 5. The constants depend on M,l and on the CY“-norm of the heightfunction.
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From now on we will assume that, in addition to (1.7), we have for [ = 1 the estimate ||p||g1(q,) < C
and for [ > 2 E;_1(t) < C. By Lemma 5.2 these imply curvature bounds that we mentioned at the
beginning of the section.

We begin to estimate the error terms and we begin with R, defined in (4.13).

Lemma 5.3. Consider Ry, defined in (4.13). Assume that (1.7) holds and ||p|| z1(,) < M. Then we have

| deZ b @) <C(+ ”pHH"’(Qt))El(t)
for C = C(M).
Let 1 > 2 and assume also that E;_1(t) < M. Then there exists C = C(M,1), such that
2
IRl g g, < CECD) (5.4)
and for integers 1 < k <1 and every € > 0 it holds
” div H2 3k~—1(Qt) <eE(t)+Ce (5.5)

for some C. = C.(M,1,¢).
Proof. For | =1 we have by the definition of R}, (4.13) that
R, = a(Vv) x VD,
where a is smooth. Note that in this case Ey(t), defined in (5.1), reads as

Eq(t) = HDtQUH%%Qt) + HDtUHiIg(Qt) + ||UH12LI3(Qt) + | Dyv - V||§{1(zt) + 1.

Since ||B||ps+ < C, we may extend Vv and VD,v to R3, denote the extensions F, and G,, respectively,
such that the extensions satisfy

||l 3y < Cl[VVl|lLoe (@) [ Fo || 2 (rey < Cl|Voll2(0,)
and

1Gollz2@s) < ClIVDwllz2a,), G| < ClDeoll 5

H3 (R3)
Moreover, since §); is bounded we may assume that F,, G,, € C5°(Bgr).
We use the Kato-Ponce inequality (2.15) in R?® with p; = 2,¢; = 00, py = 1—52 and g2 = 12 to deduce

1B3l 3 1) < CIVDw*a(VO)l 4 ) < ClGu, *al

ik < Fo)ll g3 sy

< OHGUtHH%(Re,)”F’UHLOO(R*; + OHGmHL%(Rg)HFvHW%,m(Rg,)-
Since || Fy||p= < C we have
1
1Guull 3 g | Follzcesy < ClIDwl3 ) < CE0)E.
We have by using the Sobolev embedding |[ul|zr(pr) < Cllullr:(5r) = Cllullws2(5y), for p = 55 and

= %, and by the general Gagliardo-Nirenberg inequality (2.13) that

& < OlGuly3 gy < CUCIE g o 1G] ey

”f” L (®3) Hi(R3) =

By (2.13) we also have
1 1 1 1
IF < CF ooy IFol ey < CIFul gy 1ol
Therefore by [|Fy||pemsy < C, [|Fyllp2@s) < C||Vullpz,) < Cllv|lgsq,) and
|G, llz2®s) < ClIVDl[L2(0,) = Cllplla2(0))

Wiz (R3)

we have

1 1 1
Gl 3 gVl 33 gy < ol 1P g WP ey < Cllolaca B (02
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This implies the first inequality.
Let [ > 2. In order to estimate the product (4.13) we use Proposition 2.10 to deduce

l
1Ryl 0 < D2 19Dl 0 TTIVD vl
|B<t 1=2

where we use the convention that 81 > (35 > --- > ;. By Recalling the definition of E;_;(t) in (5.1), by
the assumption F;_;(t) < C and by Sobolev embedding it holds for 5; <1 —2

-1
IVD 0ll2 g,y < CID 0320 < Y ||Di7kv||2gkmt) SCE () <C.
k=0

For future purpose we also note that by the same argument we have
IV D)0 e ) < CE1-1(t) for a+3<1—2. (5.6)
Moreover, by the same argument it holds
1—
IVD} 0l ) < CELD).
We also have

—1,.112 I—1,12
IVDE 0l g ) S CIDE 0l g < CEa(t) €.

Recall that by the definition of Rﬁhv above, the norm of the index is |3] < . Therefore since [ > 2 it holds
Bi <l—1fori>2andf; <Il—2fori> 3. Thus we conclude by the above estimates that

_ _ 1
1Byl 0y < COF VDIl g o+ IVDE 0l g o [1DE 0l ) < CELD),
which implies (5.4).

The proof of (5.5) follows from similar argument and we merely sketch it. For k = [ the statement is

trivial. For 1 < k <[ — 1 we recall that
RLF = Z ag(Vo)VD vk - x VDI,
|B|<l—Fk
First, if £ = 1 then by applying the previous estimate for [ — 1 we obtain
1RSI ) ) < CO+ Il Erea(h).
But now the condition F;_;(t) < C yields
121 %2 (00 < IPevll3n(a,) < CEia(t) < C.
This implies the inequality for k& = 1.
Assume 2 < k <[ — 1. We apply Proposition 2.10 to bound

< S0 VDl - IVD T 0| e s VD)0

l—k
HRdiv ||H%k*1(2t) —
|BI<i—k

3 .
kafl(zt)

Since k > 2 then 3; <1 — 2 for all i. Therefore by (5.6) we have HthBiUHLw(Qt) < C for all i. Moreover
since 3; <[ — k it holds by the Trace Theorem and by interpolation

Bi, 112 Bi, 112
vat ’U”H%k—l(zt) < CHDt ’UHH%’“'H(QJ

Bi 2
§041 () + C.|| Dy U”H%k(ﬂt)

< EEl(lf) + CEElfl(t) < EEl(t) + C..
Hence, we have (5.5). 0

< e[ Dol
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We proceed to bound the L?-norm of R}, , which is defined in (4.14), in the fluid domain ;. Formally
Rfmlk is of order 1/2 higher than Réiv, and therefore this bound is of the same order than the previous
lemma.

Lemma 5.4. Consider R}, defined in (4.14). Assume that (1.7) holds and ||p|| 1o,y < M. There emists
C = C(M) such that
I Ryur 7200 < CQU A+ [Ipll72(0,)) Er (1)
Let 1 > 2 and assume also that E;_1(t) < M. There exists C = C(M,1) such that
1Rbuikll72(,) < CEi(t)
and for integers 1 < k <1 —1 and for e > 0 it holds

l—k
HRbulkHiI%(k—l)(Qt) < EEl(t) +C.

for some constant C. = C.(M,1,¢).
Proof. By (4.14) and the uniform bound on Vv given by (1.7) we have a pointwise estimate
[Rhusl <€ > VD 0] [VD o] [V D> )
la|<1,|8I<1

Let us first consider the case I = 1. Then we have by the above inequality, by Dyv = —Vp and by ignoring
the terms of the form |Vv|, as they are uniformly bounded, and obtain a pointwise bound

| Rpur] < C (14 [D}v| + [VDy||Vp]) -
Therefore we have by Holder’s inequality and by the Sobolev embedding
HR;ulkH%?(Qt) < C(HDtQUH%Q(Qt) + ”vP”%S(Qt)||VDtv||%3(Qt)>
<C(1+ ||p||§{2(gt))(1 + ||Dt2UH%2(Qt) + HDt’UH%[?’/?(Qt))
< C(L+ [lpliFr(,) (L + Ex(1)).

This implies the claim for [ = 1.

Let us then treat the case [ > 2. Let us assume that the first [ indexes are ordered as 31 > B2 > --- > 3.
As before we ignore all the terms in above which are uniformly bounded by the a priori assumption and
by the assumption F;_;(t) < C. Recall first that by (5.6) it holds

VD v||p <C when ;<12
Recall that it holds || < I. Therefore, if ;41 > 1—1then f; <1 and 8; =0 for i > 2. When ;41 =1—2
then the only possible other none-zero indexes are when 3; = 2 or when 1 = o = 1. Finally when [ > 3
and (41 <1 — 3 then VMD} 21y, s itself uniformly bounded and the only nontrivial terms are given

by the indexes 67 =1 — 1 and §; = 1. Hence, we have a pointwise bound which we write by relabeling
the indexes as

|Rbl <C Y VDRt +C Y VD ||V Dyt |
laf<1 la|<1,8;<1-1
+C Z (IVD2v| + |[VDw|?) |V D2 H=2y| 4 C(IVDLw| + VDL 10| |[VDw|) | VD)
[a]<1

Then by Holder’s inequality we deduce
1 yaz+l 1Ty
IRbulZ2 g < C Y IVIDEHoffa +C Y IVD 0|3V DR 0| 1

jal<1 ol <13 <1-1
+C Y (IVD7oll3s + IVDso]|76) [V D220 76 (5.7)
jal<1

+C(IVD|[Zs + VD, 0l LIV Deol|Z6) | Devl| -
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We bound the first term on RHS of (5.7) for a1 +as <1
IV D 0|72 0,y < 1D 01720, + 1Dt Hs 20,y < Ei():

We claim that the next term with the L3-norm, |VD/'v| .5, is bounded. Indeed, we use the Sobolev
embedding, the induction assumption and the fact that 8; <1 — 1 and have

l
B1,.112 B1,112 I—k, 112
IV D 0]|75(0,) < HD;UHH%W < kz_o | D! ””H%k(m <E_4(t)<C.

We bound the coupling term with a3 +as <1 and 53 <1 —1 by

l
IV D 0|0,y < CIDE 0] 300 q,) < C D IDF R0l 2y,
k=0

< CE(t
@y S OB

We proceed to the next row in (5.7) and for oy + @y < 1 we have
9D 200, < D 2031 g, < OZ D442 g1, < CEra(t) < C.
t

We also have
IVDFoll7s(,) < IDFvlHs/2(0,) < CE2(t) < CE(t)

since [ > 2. Moreover, by interpolation it holds

NG

1 1
IVDwlls < CIVD| 3 VD3 < CE2(8)TEv(t)t < CE(1)F,

when [ > 2. Hence, the second row in (5.7) is bounded by E;(t).
We are left with the last row in (5.7). We bound the first term by

IVDkeltscay < IVDMIR ) < WDk o < Et)

and the last by HDt”Hm(Qt) < ||Dtv||H1(Q )y < CEq(t) < C. Finally we treat the two remaining terms by
the same argument. Indeed for 3 <[ — 1 we have by interpolation as before

ENE

1 1
IVDIv o) < CIVD) 0] 22 o) VDIV 2,y < CEI() Eia ()i < CE(t)5.
Hence, we have

HRéulkH%Z(Qt) < CE(1).

We are left with the last inequality. For £ = 1 the claim follows by applying the previous inequality
with I — 1. Let us then assume [ > 3 and 2 < k < | — 1. By definition of R} in (4.14) it holds
|B] <1—k <1—2. Therefore (5.6) implies

IVD) || (o) < 1D/ 0]l 3,y < C

for all 7. Therefore by Proposition 2.10 and by relabeling the indexes we have

l—k § +
HRbulk”H%(k*U(Qt) < C ||V0‘1D?2 BZUHH%(kfl)(Qt)
|B]<I—k
la|<1
+ HVDtBlU”H%(kfl)(Qt) ||Va1Dta2+ﬁ2/U”L°°(Qt)'

Since (2 < — k, we may estimate the first term on RHS as

VDI 202 4 ) S ZIIDZ 2. g < CEaH) < C.
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We estimate the second similarly by using 81 <1 —k

19D 012 g1y, < 1PV, 31, < CEa(8) <.

%k(Qt) -
Finally we bound the last term by the Sobolev embedding, by #s < [—k, a1 +a2 < 1 and by interpolation
IV D20 g,y < CIDE* 0] 240

<EIDEP s v, + CellDE P 0l

<ecE(t)+ CEEl_l(t) < EEl(t) + C..
Thus we have

I—k |2
HRb“lk”H%(’“*U(Qt) < 5El(t) +C..

O

The two previous error bounds in Lemma 5.3 and Lemma 5.4 are similar in the sense that they only
involve the material derivatives of the velocity field. We proceed to the error terms which involve the
time derivatives of the capacity potential. Note that OFU for all k is a harmonic function in ¢ but not
constant on ;. We will use again Theorem 3.9 together with Lemma 4.6 which gives the formula for
OFU on the boundary ;.

We first prove a generic bound which will be useful when we bound the pressure.

Lemma 5.5. Let | > 2 and assume that (1.7) and the condition Ej_1(t) < M hold. Let a,3 > 0 be
integers. When o+ 3 <1, it holds

Ivea/u?, < cEi(t) + C, (5.8)

EARIEN
for C. = C.(M,l,e). On the other hand, when a+ <1+ 1 and § <1 then
1+agB77)12
IVOLUIR,y < CE) (59
for C = C.(M,1).
Proof. Instead of (5.8) we prove in fact a slightly stronger result, namely

”vHaatﬁU”iI%*% . <eEi(t)+ C. when ais even and

( (5.10)

||V1+a5tﬁU||§{%+1(z ) < CE(t) when « is odd.
t

The inequality (5.8) then follows from (5.10) by interpolation.
We prove (5.10) by induction over § and consider first the case 3 = 0. Note that then o < [. Let us
first consider the case when « is even. Then by Lemma 5.1 and by interpolation we have

19U g 5, S COF Pl e s, ) < 2Pl ges

Z(Et ) +C€||p||L2(Et)
+ C..

(Z¢

< ellpll 301 5,
We use Lemma 3.7, —Vp = D;v, a < [ and the definition of F;(t) to estimate

< 2 <
an SCATIPOI2 g ) < CE(1).

This implies (5.10) when « is even. When « is odd we have again by Lemma 5.1, Lemma 3.7 and by the
definition of E; that

||V1+QU||Z%+1(Et) <C(1+ ||P||237a+%

”p”i{%(wr%(zt) < C||pHiI%a+l

2
o) SCO+ P2 g, ) < CELD).
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Let us assume that (5.10) holds for < k—1 for 2 < k <. In particular, this implies that (5.8) holds
for B < k — 1. Let us consider only the case when « is even, since the argument for a odd is similar. We
first observe that since « <1 — k <[ — 1 then by the Trace Theorem

91, 5. ) < COA+ VR 3, o ) < OO+ D0, J<CEa( <O (511)

%(l—l)(ﬂt)

We have then by Theorem 3.9, Lemma 5.2 and by (5.11) that
14+a gk

| e gku| <O+l 30,

<C(l+ ||3tkUHH%<1+a)(Et))~

+ |6 U ||

@ 3 3
HS V3 () Hf(’*f(zt))

We use the expression of 9FU from Lemma 4.6 and Proposition 2.10 to estimate the last term in above
as follows

k—
||an||H%<1+a>(Zt) SHVUHH%HQ)(&)HDt I,UHLOC(Et)

+ VUl oz [DF 0 + IR,

H%(Ura)(zt) %(1+0<)(Zt)'

To estimate the first term on RHS let us first assume that k£ <[ — 1. Then by (5.6) ||’Df_l7_}||Loo(Zt) <C
and since a <1 — 1 we have by (5.8) for 5 = 0 that

VUi, <eE(t) + C..

F0te(m,) =

On the other hand, when k& = [ then « = 0. Thus again by (5.8) it holds
2

||VU||H%(Et) < CE(t) <CE_41(t) < C.

By the Sobolev embedding, by interpolation, by the Trace Theorem and by a + k < [ we have

k—1, 112 k=12
Dy UHLoo(zt)SCHDt U”H%(Ha)(zt)

< el| D ol%, + Cel Dy 012w,

3
2ot3(3,)

< CﬁHDf_lUH;g(Mg)(Qt) + CaEl—l(t) < C5El(t) + C.

Hence, we need yet to prove

||R5_2Hi{%(l+a)(2t) < 5El(t) +C, (5.12)

where k <.
By the definition in (4.18) and by the Kato-Ponce inequality (Proposition 2.10) we may estimate

k— Br_
IRE 2l g0em, <€ 22 (IDP 0l - IDP 0] [ V70720, 4

(1+a) »
|+ <k—1 =
|B|<h—2 (5.13)
B
D0l g g,y o 10 2”\|L°°HVH“C’WUHLM(E»)'

Since |8] < k—2 < 1—2, (5.6) implies || D v|[z~ < C for all i. Note that o+ k < [ and By < k — 2
implies « + #; <1 — 2. Therefore we have by the Trace Theorem and by the definition of F;_1(t)
1D ]2 5 < CIDl, <CE () <C.

(+a) (s, %(a+2>(9t)

We bound the both capacitary terms by the Sobolev embedding and by the induction assumption, which
states that (5.8) holds for § < k—1. Indeed we have by v1 +a < |y|+a <k—1+a<l—-land vy <k-1

that

1+v1 972 2 1+v1 972 2
IV 0 Ul s,y < CIV 0PV g 11

S OO+ VHORF ORI 4 g, (5.14)

< é‘El(t) + Cg.
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Hence, we have (5.12) when « is even.

Let us then prove (5.9). We notice that Theorem 3.9 and (5.8) imply (5.9) when 2 < a < I. On the
other Lemma 5.1 implies (5.9) when a = [ + 1. (Note that the assumption a < 21 is satisfied for all
a <141 since I > 2.) We need thus to consider the case & = 1 and 8 = [. For this the argument is
similar than before and we only sketch it.

By Theorem 3.9 and by (5.11) we have

19200135, < CO+ lpllzn sy + 104U
<C+|oU]|

H%(Zt))
s

We use the expression of 9'U from Lemma 4.6 and Proposition 2.10 to estimate the last term in above
as follows

1oVl

a3, S ||VU||Hg(Et)||folv||Loo(zt)
+ VUl @nlID 0l 5 )+ IR 5 s,

By Lemma 5.1 and Lemma 3.7 we have
2 2 2
IVUIR, g ) < OO+ Iplfiags,) < CA+ 901y )< CBi) < C.
Recall also that |[VU]|p~ < C. Sobolev embedding and Trace Theorem yield
IDE 0l 2 s,y < CIDY 0llp2s,) < CIDY  0lla(q,) < CED).
: 1—2
Therefore we need yet to estimate || R;; ||H%(Et).
Arguing as in (5.13) we obtain
1B sy < 30 (IDP0llom - IDf =0l [V 70770
[y[+]BI<I-1

|B|<i—2

Bi_
1D 0l 5, D20l [V 07U 1 ).

H? ()

Arguing as before we deduce || D v

| < C for all ¢ and

D21, 5 ) < D2l < Eia®) < C.

Finally we use the fact that (5.9) holds for 6 <1 —1 and 3 + 72 <! —1 to conclude

1+ Y 2 1+ 2 2
IV 02U,y < CIVH 0N g

1+(24+71) 27712
< OO+ [V EPUR, ) < CR).
This concludes the proof. (I

We need also the following bound on the capacitary potential and for the error term R}, defined
in (4.18), associated with it. In the first statement of the following lemma we need to relax the usual
assumption on the quantity (1.5) being bounded to assume that the set Q; is uniformly C1%(T')-regular
and that the velocity satisfies ||v|y1.4(s,) < C. The point is that we need the following estimate when
we do not have the Lipschitz bound on v. This does not complicate the proof and will be useful later.

Lemma 5.6. Consider Rt defined in (4.18). Assume that 3y is uniformly C1*(T)-regular and satisfies

Il 1) + vllwras,) < M.
There exists C such that

IVO7UIZ (s, + 1RO NZ2 (s, < CA+ IpllE20,) B () (5.15)
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Let 1 > 2 and assume that E;_1(t) < M. Then it holds
||V6§+1U||i2(zt) +|Ryl72(s,) < CEi(t). (5.16)
The constants depend on M,l and on the CY®-norm of the heightfunction.

Proof. This time we only prove (5.15) since (5.16) follows from similar argument. Note also that the C'1:-
bound on ¥; implies C**-bound on U. Recall also that ||p[| 1 (q,) < C implies || B| 14,y < || B]|

1 <
C by Lemma 5.2. We begin by noticing that, since 92U is harmonic, it holds by Lemma 3.3 e
IVO;U | L2(s,) < COL+ 10U | 11(x,))-
Then by Lemma 4.6 we have
102U || 150y < C(L+10,U (D0 - )| (syy + 1RY 2 s,))s
where

RY = Z ae (V) V192U,

laf<1
Since ||VU|| L (x,) < C, we may estimate by Proposition 2.10, || B|[+ < C and by the Sobolev embedding
102U | 11152
< C+ClIDw - vlmi(sy + CUIVUllLamy + 1Bllra) D - vilpas, + 1R sy (5:17)
< C+ O+ VUl )P - vl sy + 1Rl (s,)-
We have by the Sobolev embedding and by Lemma 5.1
IV2Ullzacsy < IV2U g2,y < CA+ llplmis,)- (5.18)
Since || Dyv - ||} s,y < E1(t), we need yet to show that || R[5 (5, < CE1(1).
Since ||v]| o (x,) < Cllv[lwr.a¢s,) < C we have by the Sobolev embedding
||R(()J||H1(Et) <(C Z HUHLOO||V1+oz16to‘2U||H1(Et) +C Z ||’UHW1,4||V1+a18$‘2U||L4(Et)
laf<1 laf<1
< CL+ VUl + IVOU o (s,)-
Lemma 5.1 and Lemma 3.7 yield
||V3U||2%(Et) < C(1+ [pllFr2(s,) < CO+ HvP”il%(m)) < CEq(t). (5.19)
We bound ||V2(9,5U||H%(E )
it holds 0, = —VU - v on ;. We use Theorem 3.9, Lemma 5.2, Proposition 2.10 and (5.19) to deduce
IV, ) < CO+ bl + V0 0l )

with a similar argument and thus we only sketch it. First, we recall that

HZ (51)
<COA+lplins,) + IIVgUllf{%(Zt) +lvliEs @) (5.20)
< CE;(t).
We thus deduce by (5.17), (5.18), (5.19) and (5.20) that
IVO7UIZ(s,) < CL+ llplEr2 o)) E1 (D). (5.21)
We are left with
IRy |[72(s,) < CQ A+ lIplEe(,) Er (). (5.22)
To this aim we recall the definition of R}, in (4.18)
Ry= Y aasDlvxVorU.
la+8<2, <1
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We use Holder’s inequality as

1RG22 < C( Y IV 872Ul 2,y + [Pevllacmy D IV 072U s, )-

| <2 o<1

We have by (5.19), (5.20) and (5.21)

DIV T,y < CU A+ [IpllFeo,) Er (D).
o] <2
By the Sobolev embedding and —Vp = D,v it holds
1Devl|pacsy) < 1Dl < Cllpllaz(a,)-
Moreover (5.19) and (5.20) imply for ag +ay <1
IV 072U s s, < HV“”)”@'MUII2 sy < CEL(D).

Hence we have (5.22). O

Finally we need to bound the error term Ri,, defined in (4.26), which is associated with the pressure.
This term is the most difficult to treat and it turns out that the lower order case [ = 1 is the most
challenging to deal with. Therefore we state it as an own lemma.

Lemma 5.7. Let Rl be as defined in (4.26). Assume that (1.7) holds and ||p|| g1 (q,) < M. Then it holds

1B, 5 ) < O+ pln ) Ea(h).

for some constant C = C(M).
Proof. Let us begin by recalling that by the definition of Rzl, in (4.26), (4.27) (4.28) we may write
R, =—|V.p|> = (IB]* = Q(t)H|VU|*) d,p + a1 (v, Vo) x B + az(v, Vv) * Vv

Y @)V U« V02T (5.23)
laf+]v]1<2,v: <1

We first recall it holds [|U|¢1.a(s,) < C. We may bound the curvature by Sobolev embedding and
interpolation as

1Bllcez) < €A+ lpllows,)) < CA+ VPl 4 ) < CO+ 1Pl 32 s, 1Pl (s, ))s

for 6 < 5. Recall that ||p|| g1 (q,) < C implies ||p[|ra¢s,), [|Bllzs < C. By the Sobolev embedding and by
Lemma 3.7 we have

Ipll72(5,) < ClIVPIH (s, < CIIVp||2 %) < CE\(t). (5.24)
Therefore we obtain
4
IBl[Za s, < CEL(H)?  for 6 < 5 (5.25)
We may also bound the curvature simply as
1Bl (s < [I1Bllea(s,) < CA+ pllee(s,)) < CA+ lIpllaza,))- (5.26)

Let us bound the first term in (5.23) which is of the highest order. We observe that by interpolation
it holds

1 1
I9pllzss0) < CIVBI 5 1Pl s, -
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By using this, the Sobolev embedding and (2.17) we have
V=Pl < CHIVPPIL 3 5, + CllelwrswolIVPP s s,
< ClIVpPllar @) + ClBllLsma Vol Zs(s,)

< CVpllsnIV?pllLa @ + ClIVDI Lo IVPl a0

< Cllpll o0 198l 3

< O A [lplla (o)) Er(t)

This gives bound for the first term.

In order to bound the next term in (5.23) we let # and B be the harmonic extensions of the normal v
and of the second fundamental form B to ;. By maximum principle ||BHLO€(Qt) < ||B|l L (x,), while by
standard results from harmonic analysis [16] it holds

)
1
2 .

IBllwis@, < ClBllwises,)
and by (3.12) ||7[lw14q,) < C. Then we have
IVp - ollgr e, < Cllpllaz@,) + Cllzllwra@)lpllwra@,) < Cllpllaza,)- (5.27)
We have by (5.25), (5.27) and by the Sobolev embedding
1B 8upll3:/2(5,) < CA+ V(B (Vo 2)720,)
<C@+ HB||%<>c(2t)||Vp : ’7\\%{1(90 + ”BH%OO(Et)||VB||%3(Q,5)”vPHiﬁ(Qt))
< C(1+ [Pz, Er () + Er ()’ 1Blfy1.5(s,) P12 0,)):
for 0 < %. By interpolation in Proposition 2.8, by Lemma 5.2 and (5.24) we have
5 4 5 1.5
||BHW1’3(Et) < C||B“?[2(zt)|‘B||z4(zt) < C(l + Hpnzﬂ(zt)) < CE(1)7. (5'28)
Therefore, since 0 < 37 we may bound the second term as
1B 0upliFr2gss,y < CA+ [lplFr () Er(?)-
By the same argument we also have
IHIVUPOupl31 /205,y < C+ Ipll20,) B (1) (5.29)
Indeed, the same calculations as above lead to

IHIVU P30l 725,y < CQL+ Il (,) B (t)

4
9

(Bl s, + VU s s,)-
Recall that (5.28) yields || Bl[31sx,, < CE1(t)5. By Lemma 5.1 we deduce
VU Pl 250y < CIVU L VU125,

1
< CU+ VU, ) < CO Iplies)) < CE(0)E.
Hence, by interpolation

2 2 i 2 2 1.1
VU P Iwas sy < CUVUR ) VU s,y < CE ()

and (5.29) follows.
The term a; (v, Vv)*B is easy to bound and leave the details for the reader. Also the term as (v, Vo) Vv
is not difficult and we merely point out that by interpolation

1/2 1/2 1/2
1920l 3@y < Cllollao, IVOIE2 0, < Clollig,-
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Thus we have by (5.26)
a1 (v, Vv) VQUHH%(&) < a1 (v, Vo) V*0 11(ay)
< CIIV30| s,y + ClIV0l 34,y + ClIBllcas) V0l L2,
<O+ Ipllaz @)l a3y -

Before we treat the last term in (5.23) we need to show that the coefficients a, -, are bounded. To
this aim we need to show that Q) = Q'(¢),Q® = Q" (t), where Q(t) is defined in (2.1), are bounded
since aq,,@ depend smoothly on them. It is clear that it is enough to show that the first and second
derivative of Cap(€);) are bounded. It is easy to see, and in fact we already calculated, that

d 1 s s
7 Cap(Q) = 2/& VU |20, dH?.

This is clearly bounded. We calculate further and obtain

2

1
ﬁCap(Qt) =3 Hy, |VU [*v,,dH? —/ (VO,U - VU, + |VU|?0r(vy,) dH. (5.30)

o 2

The first term on RHS is clearly bounded. For the second term on RHS in (5.30) we note that since U is
constant on X; we have VU = —|VU|v. Therefore

Vo,U -VUvdH?| = | | |VUw,VOU - vdH?| < |[VUv,||

VoU - v
. 5 VoU v

whsy) “E(my’

We note that we may use the Kato Ponce inequality (Proposition 2.10) and Lemma 5.1 to deduce

IVUvall g3 5,y S IVUN g3 g 100l +lonll 3 5 IVU Lm0 < C.

DN H?2 (%) H2 (%)

Next we let U; the harmonic extension of 9;U in €, and note that for any ¢ € H 3 (3¢) it holds
[ ovau-vare = | di(ev0,) ds < [Vl IVOT 100,
PN Q
<1003 5 190 3 -
This and ;U = —VU - v imply

“i(s, HE (%) =

Let us estimate the last term in (5.30). We note that
Ot(vy,) = Dyv - v + a(Vv) * By,
By (4.11) it holds div Dyv = —Tr((Vv)?). Therefore we estimate

| [ |VUPPOw,dH?| < C+ | |VUPDyw - vdH?
I P

< O+ |[div Dl L2(q,) + VU] JIDevl2,) < C.

H3 (5,
Thus we have |Q?)(¢)] < C and the coefficients a, .o are bounded.

Let us treat the last term in (5.23). We may assume that a; + 1 > ag + 72 and assume first that
a1 +v1 = 2 (in which case ag = 79 = 0). This means that either o = 2,73 = 0or ay = 1,77 = L.
Therefore we have by (5.19) and (5.20)

”VHQI@?IUHZ%QQ < CEL(t). (5.31)
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We extend v to the complement Q¢ such that it remains Lipschitz. Recall that U (and 9;U) is har-
monic in ©f. Since Q; is bounded we may choose a large ball such that Q; C Br/, and [|U]|

VU 2(Br\@:)- Then by (5.18), (5.31) and by the Sobolev embedding it holds
o (0)VIHEOU VU s = < Cllaa )V 107 U % VU || i1 B\

S O+ VP07 Ul (g0 + ||V1+a1371U||L4 B IV2UllLsBro)
<SCOA+|IVUl 1. A+ (VU s

HY(2)

H2 (3¢)
< (I [Ipllarsy) Ealt ).
We are left with the last term (5.23) in the case when «; + y; < 1 for i = 1,2. We estimate this by the
Kato-Ponce inequality (Proposition 2.10) and the Sobolev embedding as
S an VO U T U
ai+yi<l,i=1,2

<C Y VU ey Y IV,

sz)

Hz(Z)

H2 (3¢)
a+~<1 a+~v<1
<O X T, Y IO
a+v<1 a+v<1

We bound the first term in the last row by (5.31)
IV S CR),

We bound the last term in the last row when @ = 1 and v = 0 by (5.18) as before ||V2UHH2 - <
C(1+ |lpll1(s,))- We need yet to prove
”vatUH (1 + ||p||H1(Zt ) (532)

H (S, ) =
to conclude the proof. We use the fact that 0;U is harmonic and 0;U = 9,U v,, and therefore by Theorem
3.9 we deduce

VO3 5, < COF 10U sz
We recall that || B[ p(x,) < C and || B||g1(s,) < C(1+|plla1(x,))- Therefore we deduce by by Proposition
2.10, the a priori bound ||v, || g2(s,) < C in (1.7) and by (5.18) that

10U vallmsracmy < Cllonll 35, F 1902 5, + 1700 s5,)

H3(s,) HE ()
< c< Flonllracen + 197014 )+ 1Bllss)
CL+ pll e (=))-
Hence, we have (5.32) and the claim follows. O

We conclude this section with the higher order version of Lemma 5.7.

Lemma 5.8. Let | > 2 and consider R, defined in (4.26). Assume that (1.7) holds and Ej_1(t) < M.
There exists C = C(M,1) such that

1B,12 b,y = CE) (5.33)
and for integers 1 < k <1 —1 and ¢ > 0 it holds
||R;_k\\i{gkfl(zt) <eE(t) + C. (5.34)

for some constant C. = C(M, le).
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Proof. Let us first prove (5.33). We begin by showing
112
1 < .
1B,y ) < CELD), (5.35)

where

Ry = —(|B]> + Q(t) H |VU*)(Dw - v) + (V.p, Djv),
here Q(t) is defined in (2.1). Let us first recall that Fy(t) < C implies || B||g2(s,) < C and ||p[|g2(s,) < C.
By Lemma 5.1 this implies ||V3U||H 350 < C. In particular, ||B||r~ < C and |[V2U| = < C. Therefore
we may bound by Sobolev embedding and by Proposition 2.10

I(1B* + Q) H [VUI*) (Do - v)II2 4 by SIIBE+QMO) H IVUP)(Dio - v)lI (s,

<C(+ IIBHW1,4<zt)IIDiv V| Zagm, + 1Dt vl s,)

< O+ Bl )P - vl s,
< CE(t).

In order bound ||V,p- Dtv||H2 5, e observe that by the curvature bound ||B||p~ < C, by —Vp = Dyv

and by the Sobolev embeddmgs llullzs o,y < Cllull and [[ul|ze(q,) < Cllullg1(q,) we have

H2(Q) t

IV-p - Dyol| < C|Dww - Dyl ey

EION)
<C(1+[|VDw - Dzl:'UHL2(Qt) + | Dyv - VD}&“HH(QQ)
< C(1+ VDl o)l Divl| Loy + [ Pevl| Lo @0 VD0l 23 00

< OO+ Dl 5 g D80l 0 + [P0l DSy )
By definition of Ej(t) it holds
Pl g o) SFO S B SC and DRy < B
Therefore we have ||V,p - D v||2 ) < CEy(t) and (5.35) follows.
t
Let us next show
2 < CE(1), 5.36

IRyl ) o, < OB (5:6)

where
=:Rq,(v)
Ry = Z G0,(B) VI Dty w - x Ve DIy

|l <1, |B]<i-1

We first observe that we may ignore the coefficients ao g(B). Indeed, we may extend B to €2, call the
extension B, such that || B||z2(q,) < C. Then by the above notation

< ORI 00 < O+ Y IV(Vaas(B) * Ra,s(v))l 220
o8

<C(1+ ) VB *Rap(0)llz2(0,) + IVRas0)| 220
.8

C(1+ ) _IVBIizs@)lRas @)l zsqn) + IVRas(©)lz2) (5.37)

l
1Bl

a,f3
<C(1+ Y IVRas()] 20
a,f3

S C(l + Z ||V1+alpflv*._.*VlJral*l'DtﬂlJrlU”LQ(Qt)).
la|<2,|B|<i-1
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By the assumption E;_1(t) < C and by (5.6) we deduce ||V Dliy||pe < C for a; + 3 < 1 — 2.
We note also that by |o| < 2 and |8] <1 —1 it follows that |«| + |3 <1+ 1. We ignore all the terms in
the last row of (5.37) which indexes satisfy «; + 3; <1 — 2 as these are uniformly bounded. For the rest

of the terms we use Holder’s inequality and relabel the indexes (note that below we assume a < 2 and
B<i-1)

E ||Cl+a1DtBlU*“'* ClJmlﬂptﬁ“rlv||L2(Q )
t
la|<2,|BI<I-1

<C Y VDl S VDR S VDR 5 a8
a<2,8<l-1 a+p=l a+p=1
Y IRl S IVTDule YD VD .
atf=l—1 a+pB=2 a+p<l—1

To bound the first term on the RHS of (5.38) we simply note that for 5 <1 —1 and o < 2 it holds
IV D12 q,) < CIDY 35 q,) < CEI(b).

For the second and the third terms we have first for « + 5 < ! and 8 < [ — 1 (which include the case
a+ [ =2asl>2) that

o I+1—(l4+1+
IV D vls,) < CID 0l 2,y < CID P02 4 ) < CEID).

For o + 8 <1 —1 (which includes the case a + = 1) we deduce

IV DPolEaqe,) < CIDLYIR gy g, < CEa(B) <. (5.39)

For the last term we interpolate in the fluid domain Q; C R? for a + 5 <1 —1 as
IV Do, < IV Dol e, IV D vl g,y < CE0) IV D] 75"
By (5.39) we have ||[V1t*D/ ||z < C and thus
IV oDl ol|3e < CEi(2).
By combing the previous estimates with (5.37) and (5.38) we obtain
IR 15120,y € CL+ VR |Z2(q,) < CEI(1),

and (5.36) follows.
We are left to prove

o2
”RI””H%(E,,) < CE(t), (5.40)
where
RZIII = Z aaﬁ,%Q(U)thﬁlv*...*'Dfl—lv*v1+a16;¥1U*v1+a18;Y2U
lee|+[B]+|vI<i+1
[BI<i=1,7: <l

and the coefficients aq g,y,0 depend on the time derivatives of Q(t) up to order [ 4+ 1. Recall that Q(¢) is
defined in (2.1)
dl+l

This time we will not give the argument which proves the boundedness of Q(t)(*+1) = ST Q(t) as it
simpler than the rest of the proof and is similar to the argument in (5.30).

Recall that by (5.6) it holds || D ||~ < C for B; < I — 2. On the other hand for o+ < 1 — 1 we
have by Lemma 5.5

IV GV oy < CIVHOUIR < CU+ VU, )< CEL( C (541)

Similarly we have

”DtﬁvHH%(zt) <C for <I—1 and ||V1+a(“)t7UHH%( ) S C fora+vy<I. (5.42)

3t
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Therefore we may ignore all the terms with indexes which satisfy 8; <1 —2 and a; +v; <[ — 1. Recall
that we assume 8y > --+ > (3;_1. Therefore we may estimate by Proposition 2.10, (5.41) and by (5.42)

l
1Rl s,

< Y C(ID; s, V07U
a+y<l
+C Z HvHaagUHH%(Zt)
a+y<l+1,y<l

§C(||Dfl“HLw(zt)+ Z VO U || oo (5, + Z ”VHQ@?UHH%(&))'

a+y<l a+y<I+1
y<i

D 0l g IV Ul e )

HE (S, H%(zt)|

We estimate the first term in the last row by Sobolev embedding
ID; " 0l o0 s,y < CIDE ol s,y < CEW().
For the second we use Sobolev embedding and Lemma 5.5 and obtain for a4+ v <[

V0 U e s, < CA+ V0]V ) < CEi(D).

The same argument also implies
1+agv7712
IV U2, < OR)
for « ++v <141 and v <. Hence we obtain (5.40) and this concludes the proof of (5.33).

Let us then prove (5.34). Let us first treat the first term in the definition of Ré_k and bound
||Ri,_kHH%k_1(E ) We first observe that the case k = 1 follows from (5.33). Let us then assume k > 2. By
the Sobolev embedding it holds ||u||zee(s) < Clul|
in Proposition 2.10 to deduce that

HRlI_kHH%kfl

Li-1(smy” We use this and the Kato-Ponce inequality

()

I—k
SCA+BI 0oy, HIVUIR 50y + 1D 02 VPRI 50

3
H2P ()

).

(3¢) (3¢)
Let us show that all the terms on RHS are bounded.
To this aim we first recall that the bound E;_;(t) < C implies ||BHH

deduce ”B”H%k’l(z ) < C. Lemma 5.1 implies ||VUHZ
and the Trace Theorem also yields

-k, 12
1D Fol?,

(Z¢)

$i-1.3,) < (C.Since k <Il—1 we
: < CE;—1(t) < C. The condition k <1—1

3
Fr-1(x,

< C"Diik“”fnf%kmt < CEi_1(t) < C.

BE-l(zy) = )

Similarly we deduce by —Vp = D;v that ||Vp||H%k,1( < C'. Hence, we have

3¢)

1B ygscs ) < C

Let us then bound ||Rll}k||H%k,1 X As before, Proposition 2.10 and the Sobolev embedding yield

(e

B ey 5 O (1 laan B g + 197 DR, )

a<1,8<l—k—1 ¢

for ¢ > 1. Recall that HB”H%’“”(&) < Cand k > 2. Therefore || B||p~ < C and thus ||aq,z(B)||
C'. On the other hand by « <1, 8 <[ — (k+ 1) and by Lemma 3.7 we deduce

<
H%k—l(zt) >

-1
IV D g5,y S CIPV G g ) S O NPT 0 g, ) SCBa® SO (543)
) i=0 )

t
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I~k
Hence, we have ||R}; ”H%’“*l(zt) <C.

Let us finally treat R',F. We note that it holds ||UH§J§’“—1(2 : < CE;_1(t) < C and therefore we may
2 t
ignore the coefficients aq g.4,0(v). Then by Proposition 2.10 and by the Sobolev embedding we have

l—k
IR s s,

B, 119 1+a1 97 14az 97
<C|1+ Z HDt’UHH%k—l(Zt) o Z IV 1at1U||H%k71(2t)Hv 28t2U||H%"*1(2t)
B<l—(k+1) [a]+]v]|<I—k+1,
[y|<l—k
(5.44)

for ¢ > 1. By (5.43) we have HDEU”H%’“_l(E | < Cforall 8 <l—(k+1). To bound the last term we may
t

assume that ay +7v; > oy + 1. If a1 + '71' =1 — k + 1 then necessarily as + 72 < [ — k. Therefore by
Lemma 5.5

||V1+“18;’1U\\2%k_1(2 =C (1 4 || Vitlatk=Dgng )2, ) < eE(t) + C;
t t

" TR (m)
and

1+a2 9Y2 2 14+ (a2+k—1) 972 2
IV PRy, <O (1+ |iHeztE-D g U||Hk,51+%(2t)> <CE Lt <C.

Therefore we deduce by (5.44) that

||Rl1;?||2%k,l(zt) < eB(t) + C-.

This concludes the proof of (5.34). O

6. First Regularity Estimates

In this section we prove our first regularity estimates for the solution of (1.3). We assume that the solution
satisfies the a priori estimates (1.7), i.e., Ay < co and or > 0, where Ap and o7 are defined in (1.5) and
(1.4). We recall that

Ap:= sup ([[h(-,t)crosy + VO )@ + lon (D)l a2(s,)) -
te(0,7)

In particular, bound on A7 does not imply curvature bounds, and thus we need to be careful as we may
not use e.g. the interpolation results from Proposition 2.8. Our goal in this section is to show that the a
priori estimates (1.7) imply the following bounds for the pressure

T
supllplliay <C  and / P12yt < C.
t<T 0

The first bound above is important as it implies || Bs||14(x,) < C, which is crucial e.g. for the interpolation
inequality in Proposition 2.8 to hold. The second estimate is important for the first order energy estimate
which we prove in the next section in Proposition 7.1.

Let us begin by stating regularity estimates that we have by the a priori estimate. First, recall once
again that by the uniform C1®(I")-bound we have for the capacitary potential U that 1Ullcre(as) < C.
Let us prove the following estimates for the second fundamental form and for the capcacitary potential.

Lemma 6.1. Assume that (1.7) holds for T > 0. Then for allt < T we have
1Bl 125, < ellplngs,) + Ce
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for C =C(M,e) and
1Bl 192V lp3 4, < OO+ Il )
for C=C(M).
Proof. We denote the height-function by h = h(-,¢). Then by standard calculations (see e.g. [22,43]) we
may write the second fundamental form on X as B = a(h, Vh)V? h. Therefore we may bound
1Bl 715,y < CA+IV2hlary) and  [[V2h[72my < C(L+[[VB|[72gs,) + V2Rl La(r)-
We use interpolation on I as
IV2hllzacry < CIVPRI G2y IBllE e ry < CIVP A2
for § < 1/2. This implies by Young’s inequality ||V? h||L4(F) < g||V3 hHLz(F) + C.. Thus by choosing ¢
small we obtain

V2R 22y <

C(L+|VB|li2(s,))
and
1Bl sz, < ellVAlTar) + Ce.
By the Simon’s identity (2.11) we deduce
||VB||L2 ) < HVH||L2(E,) + CHB||L4(E )
Therefore we have
1B||24(s,) < el Hll3n s, + C- (6.1)
and
I1Bllars,) < COA+ [[H||g(s,))- (6.2)
Let us consider the capacitary potential U. Let us show that even though we may not use Proposition
2.8, the C1(T")-regularity still implies the following weak interpolation inequality

19Ul 50) < EIV2Ul 3 g+ ColVU L2,y < eIV2UIL 4, + C (63)

In order to prove (6.3) we first observe that the C*(T")-regularity of 3; implies the following inequalities
for p € (1,2) and u,v € C*° (%)

[ull 2z, < ellul +CclullLes,y and  (IVrolliees,y < Ollvllar s, + Csllvllza -

HE (20
We apply these for v = V2U and v = VU and have
VUl < elVRUIl, g, + ClVPUllLr(n,)  and
IVeVU|| e (s,) < 0IVUlmr(s,) + CslIVU || L2 (s,
Since d,,U is harmonic and ¥; is C1%(T)-regular we have by [19] that
VUl < CUIV-VU (s, + VUl 22(0,))-

Therefore by first choosing e small and then ¢ even smaller we obtain (6.3).
Byp=H - %”WUF, where Q(t) is defined in (2.1), we may estimate

[H 2z, < CUPlar 0 + IVU 1 (2)))-
Then by (6.3) we have
1 s < Ce(U ol ) + £lIVUL g
We use Theorem 3.9 and (6.2) and have

VU3 5,y < CO+ Bl ) < CO+[Hms,)):
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Therefore we deduce from the two above inequalities that

[H |z < CA A+ [Pl (z0)-
The claim follows from this together with (6.1) and (6.2). O

Let us proceed to the following regularity estimate.

Lemma 6.2. Assume that the a priori estimates (1.7) hold for T > 0. Then
T
sup [l + [ 19l s, de < O+ ),
t€[0,T] 0

for C=C(M).

Proof. The idea is to consider the following function
U(t) := / p(Vov) v+ ep® dH?,
5y

where the choice of € will be clear later. First, we observe that under the a priori estimates (1.7) v is
uniformly Lipschitz and therefore ¥ is bounded from below by

3
U(t) = =Clip( )|z + el Dl Zacm,) = =Ce + 50 OlT2 (5., (6.4)

where the last inequality follows from the Young’s inequality, i.e., [|p(-,1)|[z1(5,) < %Hp(-,t)H%z(Et) + C:
and C. is a large constant that depends on . By differentiating and using the a priori estimates (1.7) we
obtain

d

y Etp(Vvu)-ud’l-ﬂ

Dip (Vov) - vdH?* + / pD:((Vov) -v)dH? (6.5)

= / p(Vov)-vdiv, vdH? +
Py Xy

¢

<C.+e | |Dip*dH? +/ pD((Vov) -v)dH>.
3¢ ¢

We estimate the second last term in (6.5) by (4.25) and (1.7) and have

g Dipl? dH? < C(1 + HpH%Il(Et) + ||B||%4(zt) + ||V3tU||2L2(zt))-
t

Lemma 6.1 yields \|B||‘i4(2t) <C(1+ ||p\|§{1(2t)). On the other hand, by Lemma 3.3 it holds |V, U3, <
CH@tUH?{l(Et). Since ;U = —VU - v, we may estimate by Theorem 3.9 and by Lemma 6.1

VU L2(sy < CAL+ VOU|72(x,) < CAL+[V(VU - 0)[T2(s,) < CL+[IV?U|72(5,))
< CA+ VU 1r20s,y) < CA+ Pl (s,)-
Therefore we may bound

/E Dol dH? < C(1+ pl3ps s (6.6)

Let us treat the last in term in (6.5). First, we have by (4.1), (4.4) and (1.7) that

/ pD((Vov) -v)dH?* < / p((VDwv) -v)dH? + EHpHQLz(Et) + C:
I p

_ / D(T0) ) B elplags, + O
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We use (4.11) to estimate |Ap| < C||Vv||2. < C and recall that by (3.4) it holds (V?pv)-v = Ap —
Asp— HO,p to deduce

—/ p(Vgpu)-udHQSC—i—/ pAspdH? + Hpd,pdH>
2y

pIP 3¢
<C [ WP+ [ Elonf + o H) are,
pIP 3¢

where in the last inequality we have used p = H — %WUF, where Q(t) is defined in (2.1). Lemma 3.3
yields |0,p||r2(s,) < C(1+ ||lp|l g1 (s,)) while Lemma 6.1 implies [|H|[7, < (5||p||%{1(2t) + Cjs. Therefore by
first choosing ¢ small and then § even smaller, we obtain

- / P(V2pv) - v dH? < —|Vp|2acs,) + bl s, + C--

By direct calculation and by using (6.6) we have

d 2 192 2

G L P < OO+ Iplngs,)
Combining the two above inequalities with (6.5) and (6.6) we conclude

d 1=
SU() < 51 Vpl s, + lpllEace,) + Ce (67)

when ¢ is small. Finally we use Lemma 6.1 to estimate
D725,y < CA+H|Z2(5,) < I1BlLacs,) +C <elplfs,) + C-
This yields ||p||%. (z) < 2||VPHL2(Zt) + C. when ¢ is small. Thus we may estimate (6.7)

d 1= 1o
S < [Vl + O
when ¢ is small. The conclusion follows by integrating the above over [0, 7] and using (6.4). O

We proceed to higher order regularity estimate which is uniform in time.
Proposition 6.3. Assume that the a priori estimates (1.7) hold for T > 0. Then
sup ||VP||L2 Q) =€ a1 + HVPHLZ(QO))
te(0,T]
for C=C(M).
Proof. We differentiate

=0
d1 9 e
%3 |V | dx— |Vp| div(v) dx + ) (D:Vp - Vp) dx

:/ (VDtp-Vp)dx+/ ([Ds, V]p - Vp) dx.
Q

Q
By (4.1) and ||Vv||r~ < C we have a pointwise estimate |[Dy, V]p| < C|Vv||Vp| < C|Vp]|. Therefore we
deduce

G5 | 1voPds < [ (VDp-Vn)de s CIVIR,
Q

= / div(Dsp Vp) dx — Dip Apdx + C'||Vp||2Lz(Qt)
Q Qs (6.8)

~ [ Pwdpds~ [ Dipapds+CITplE,

I Q

< 1Dl + 10upllZas,) — /{ Dop Apdz + C|[Vp|2: 0
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We have by (6.6) that ||Dtp||L2 my SO+ ||p||Hl 5;,)) and by Lemma 3.3

1021172 (s,) < CUPIE (s, + 18PI1Z2(0,) < CA+ 1Pl (s,)-

We are left with the second last term in (6.8).
To that aim let v : Q; — R be the solution of

—Au=Ap in
u=0 on Y.

Then it holds

— Dip Apdx = Dip Audr = ADipudx + Dyp OpudH?.
Q0 Q Q0 =,

Since [Au| = [Ap| < C and v = 0 on X; it holds |u|g1(o,) < C and by Lemma 3.3 we deduce
[Vul|L2(s,) < C. We may bound the last term on the RHS by (6.6)

. Dip dyudH?® < | Dipl|Za(s,) + 100ulliz(z,) < CO+lplEns,):
t

We are thus left with the second last term.
We have by (3.2), by Lemma 6.1, by Sobolev embedding and by interpolation that

IV2ulF2q,) < C +/2 |Hs, ||Vul? dH? < C + Cc||Hs, [[75(s,) + el Vull s (s,

< Co(1+[Ipll72s,y) + el VullFasy IVl L2 (s,
< Ce(+IplZas,) + Cel VPullZaq,)-
Therefore it holds
lullrz 0, < CA+ llplFs,)-
By Remark 4.5 we have
ADyp = divdiv(v ® Vp) + div(Rp,)-
Therefore by integrating by parts

ADypudx :/
Q
< C+ bl s, + 1VPIZ2(@,))-

We deduce by (6.8) and by the above estimates that

(v® Vp) : Viudr + / RY . * Vudx — / (Vp-v)(Vu-v)dH?
Q

Qy Xt

S IVPIR 2 < CO+ Il s, + IVPI2 )

This implies
d
T log(1+ IVplZ20,)) < CO+ Pl (s,)
and the claim follows from Lemma 6.2. O

An important consequence of Proposition 6.3 is that by Lemma 5.2 we have the following bound for
the curvature

IBlluscsy + 1Bl 5, < C (6.9)

This means that from now on we may use the general interpolation inequality from Proposition 2.8.
At the end of this section we improve Lemma 6.2. We recall the definition of the energy quantity F;(t)
from (5.1)

Eq(t) = Do)l (g, + IIVPIE 5

a3 @, + HU”%{S(Q,,) + HauP”%Il(Zf,) + 1.
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In particular, E;(0) denotes the above quantity at time ¢ = 0. It is clear that
Pl 0,y < Er(?).

Lemma 6.4. Assume that the a priori estimates (1.7) hold for T > 0. Then

T
| 1ol e <
where the constant C' depends on M, T and on F1(0).

Proof. The proof is similar to Lemma 6.2. This time we differentiate
d(t) == — / pAs, vy, dH?.
PP

Note that by the a priori estimates (1.7) and by Proposition 6.3, ® is uniformly bounded on [0, T]. Note
also that by Proposition 6.3 it holds

sup [|p[|3 o,y < C
t<T

where the constant depends on T, Ar and on F4(0).
We calculate as in (6.5) by using (6.6) and [|v,, | g2(xs,) < C that

d

GO <CH P, — [ pDids,) it

t

<CO+ bl ) = [ p(Dis,n) e,

t

To bound the last term we recall that by (4.3) it holds
(D:As,vn) = Ax, (Drvy,) + Vzvn * Vv —V,v, - Asg, v+ B * VoV v,.
Therefore by Vo1~ + loallsr2(s,) < C, by [Vs0nllzacs,) < lonllars,) and by (6.9) it holds

—/ p(DiAs,v,) dH? < —/ pAzt(Dtvn)dH2—|—/ PV, - Ag,vdH?
3¢ 3¢ ¢

+C(L+ [Ipllz2csn I Bllza) [ Vonllzacs,)) (6.10)

< —/ pAs, (D -v)dH? — / pAs, (D -v) dH? — / (Vo (pViv,) - Vev)dH? + C.
bR N 2,

We may write the first term on RHS in (6.10) by the formula (3.2), D;v = —Vp and by the estimate
(6.9)

f/ pAgt(Dth/)de:/ As,pd,pdH?
I PN

1
<=5 [ (v = 18pPyds s C [ 1BIVHE ar?
Q =
1 2,12 2
< =5 [y, VPl dr 4 O CellBllus +ellVall 5
1
< —= | IV?pPde+C.+e| VD)2

- 2 /g, L3 ()
By the Sobolev embedding it holds ||V;D|\2L§(2 : < C’||VpH?LI1/2(E ) < C(1+ ||V2p||%2(g )). Therefore by
3 + t t

choosing € > 0 small we deduce

1
—/ pAs, (D -v)dH? < —= |V2p|? dx + C..
S 3 Ja,
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We bound the third term on RHS in (6.10) simply by [|Vv|re + [[vn|la2(s,) < C as
- . Vo(pVrvy,) - VovdH? < C(1+ Hp”%{l(zt))-
t

For the remaining term in (6.10) we recall (4.5) which states D;v = —V,v,, + Bv,. Therefore we obtain
by Lemma 6.1 and by [[Vv||Le + [|vn]|g2(s,) < C that

—/ pAs, (D -v)dH? = / (Vp, V(D - v)) dH?
POy’

=,
< CA+Ipll s, + 1Bl s, + 1Bl Ls(s,)

<CO+ Pl s,))-

Hence, we have

d 1 2 12 2
52 < 3/, (Vop|*dz + C(1+ |Ipll(s,))
and the claim follows from Lemma 6.2. O

7. Energy Estimates

As we mentioned before, the fundamental property of the solution of (1.3) is the conservation of the
energy (1.1). In this section we define high order energy functions and show that their derivatives are
controlled by the quantity (5.1) of the same order. This will be the first step in proving that the high
order energy quantities remain bounded along the flow.

We define the energy of order [ > 1 as

1

1
&(t):f/ |D§+1v|2dx+—/ |V (Dl - v)|* dH?
2 Jg, 2 Js,

——Qét)/ V@ U) P de+ | [VEREEDIG2 da,
Qf Q

where [$(31+1)] is the integer part of (3] + 1), w is the curl of v defined as

w = curlv = Vo — Vol

and Q(t) is defined in (2.1).
In this section we calculate %El and estimate it in terms of the Ej(t), which we recall is defined in
(5.1) as

l
_ I+1-Fk, .12 2 l 2
Bi0) = 3D IDE 0l g+ P80 Moy 1

In particular, it holds & (t) < CEj(t). We state the main results of this section below and prove them
later.

Proposition 7.1. Assume that the a priori estimates (1.7) hold for T > 0. Then for all t < T it holds

d
&) <00+ plFr2 () ) B2 (B),

where the constant depends on M, T and E1(0), i.e., E1(t) at time t = 0.
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Proposition 7.2. Let | > 2 and assume that (1.7) and E;_1(t) < M hold for allt € [0,T). Then allt <T
it holds

d

—&(t) < CE(t

51t < CE()
where the constant depends on M,1,T and on sup, ., E;—1(t).

The proof of the both above energy estimates is based on the calculations of the differential of & (t),
which we state first for all [ > 1. In the proof of Proposition 7.1 and Proposition 7.2 we then need to
estimate the remainder terms by the quantity E;(t).

We begin by differentiating the first term of &(¢) in (7.1) and obtain by dive = 0, by (4.15) and by
the definition of E;(t) that

d1
—= / D)2 de = / (D2 - Do) da
dt 2 Q4 o

—~ [ (VDL Ditoyda — | (DL Vip Do) de
Q Q

< —/ (VD 'p- Do) do + IIDi“vllizm + \I[D?l,V]pII%z(Qt) (7.2)
Q

- _ / div(D*p D) de + [ DI p div(DH ) dx + Ey(t) + ||R§,ulk||i2(ﬂt)
Qy Q¢

=— [ DI'p(Ditv-v) dH? + Ei(t) + || Rpuirll72 0 +/ Dy div(D ) da.
o Qy

Next we differentiate the second term in the energy and obtain by ||Vv||p~ < C and (4.2)
11/ |V, (Dlv - v)|* dH?
3t
= /2 (DiV(Dlv-v) -V, (Dlv-v))dH? + % g |V, (Dl - v)|*(div, v) dH?
< [ (VDI v)- VDl ) a1+ CDo- vl s,
_ /Z (A, (Dlv - 1)) (D) (Dlv - v)) dH? + CEN(t) (7.3)
. /Z (A, (Dlv - 1)) (DY - 1) dH?
+ /E (V.(Dlv-v)-V.(Dlv-Dw))) dH? + CE(t)
< —/E (As, (Do - v)) (D v - v) dH? + CE(t) + [|Djv - Dov| (s, -

We differentiate the third term, use the fact that 9} U is harmonic and Lemma 4.6 and have (recall
that it holds [V, ™ U||z2(as) < CIVO, T U || 12(s,))

4 _ %/ VOrHUPR do — —Q(t)/ (VOI2U, VO U da
!
+—Q(t) VO U, dH? — Q—(t)/ VO U da
2 Js, 2 Jog

< Q) g 02U (0,0,7'U) dH? + C|IVO T U2 x,)
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— _Q(t)/E (0, U(D{ v v) + Ry) (0,0,7'U) dH? + C| VO U2 s,

< _Q(t)/z (0,U 0,007 U)(Di v - v) dH? + HRIUH%%&) + C||Va§+1UH%2(zt)7 (7.4)

where R}, in the remainder term defined in (4.18) and Q'(t) = £Q(t), where Q(t) is defined in (2.1).

Recall that in the proof of Lemma 5.7 we proved that Q'(t) and Q" (t) are bounded, see (5.30).
Finally, we differentiate the fourth term involving the curl. To that aim we denote A, := |1(31+1)].
We have by Lemma 4.4 and by (2.16)

d
7 |VAw|? da :/ Vv*VAlw*V)‘lwderC’HV/\ZwHQLg(Qt)
Qs Q4
+ Z HVHO”U*VHQ"’UHiz(Qt)
o] <A (7.5)
< CIVMw[Eaq,) + ClIVYI IVoll7
= L2() L (Q4) HA(Q4)
A2 2
< C”V ZWHLQ(Qt) + CH’UHHL%UH)J(Qt) < OEl(t)'

Let us next show that the highest order terms in (7.2), (7.3) and (7.4) cancel out. Indeed, this follows
from Lemma 4.7 which states that

Di*'p=—As,(Div-v) = Q1) ,U (0,0,7U) + R,
where R!, denotes the error term defined in (4.26) and Q(t) is defined in (2.1). Note that we may estimate
L imyl+L, 2 1|2 41,2
[ RO e IR 1Dl
By divergence theorem and by Lemma 4.4 we have

1D - V”ir%(zt) < OID 0l[72(q,) + IR 72(0,) < CE() + | R lI72 (00 -

Therefore we have by (7.2), (7.3), (7.4) and (7.5) that

d
58(0) < CE(t) + 1Rl Z2 0 + IR I 2(s,) + | Rasvlli2q,) + IIRLHZ%@)

(7.6)
+ CIVOT U2 (n, + 1D - Devl i x,) +/Q DIty div(DH ) da.

We need thus to bound the remainder terms in (7.6). As we mentioned before, we prove the energy
bounds by induction such that we bound F;(t) when we know that E;_;(¢) is already bounded. The
difficulty is to bound the first order quantity E;(t) and we do this separately in Proposition 7.1.

Proof of Proposition 7.1. First we recall that Proposition 6.3 implies

sup [|VplZ2(0,) < e“T(1+[|Vpll72(0,)) < C,
te(0,7)

where the constant C' on the RHS depends on T, A7 defined in (1.7) and on E;(0), which is the energy
quantity E4(t) at time ¢ = 0. Then we have the bound (6.9) which we recall is

1Bllzs (s + 1Bl 3 s, <€
forallt<T.

We recall the estimate (7.6) for [ = 1 and use Lemma 5.3, Lemma 5.4, estimate (5.15) from Lemma
5.6 and Lemma 5.7 to deduce

d .
611 < CA+ Pl 0,) Er(8) + [P - Dol s, Jr/2 Di/p div(Djv) da.
N
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Hence, we need to bound the two last terms. The second last term is easy to treat and we merely claim

that it holds
D - Devll 3 s,y < C(1+ pll7r2(0)) E1 (2)-

Indeed, this follows from Dyv = —Vp, Dy = —(V,v)Tv from (4.4) and from Proposition 2.10. We leave

the details for the reader. The last term is challenging and we will prove that

Q4

(7.7)

The argument is similar than in the proof of Proposition 6.3. The idea is to use the fact that the term
div(D?v) is lower order due to the fact that dive = 0. Indeed, we have by Lemma 4.4 that div(D?v) =
R}, where R}, is defined in (4.13) and is lower order than D?v. To this aim let u be a solution of

—Au = div(D?v), in
u=20 on Y.

We have by integration by parts

D2p div(D2v)de = — [ DipAudr=— | ADXpudx — DZpd,udH?.

Qt Qt Qt Zt
We use Remark 4.5 and write

—AD?p = divdiv(v ® Dv) + div(Ri . )-
By integration by parts we deduce

— AD?pudx :/

(v @ D?v) : Viudx + / R} * Vuda
Q¢ Q4 Q¢

— / (Dv - v)(Vu -v) dH?.
PP

(7.8)

We use divergence theorem, the definition of Ey(t), div(Dfv) = R}, and Lemma 5.3 for the last term

f/ (D2v - v)(Vu -v) dH? = f/ div ((Vu - v)Djv)
pop

Q¢
< CE(t) + [[ullF (0, + CllRai 720,
< CA+ [Pl ) B (®) + iz o)
Since —Au = div(D?v), we may use the inequality (3.19) and Lemma 5.3 to obtain
[ullFr2 00 < ClRGw 17200, < CA A+ [IpllFr2(0,) Er (D)
Therefore we have by (7.8), by the definition of E4(t) and by Lemma 5.4 that

Dp div(D}v) dz < C(1 + [|pll32 (o)) Er(t) — | Dipd,udH?.
Qy pa

We proceed by using Lemma 4.7 to write
Dip=—As,(Dyw-v) — Q(t)VU - VO;U + R},
where Q(¢) is defined in (2.1). We integrate by parts on ¥, the term
— | Asx,(Dw-v)o,udH? = / (V(Dw - v),VO,u) dH?
I P
and deduce

/s DipdyudH?® <||Dev - vllip s,y + 100l s,

+ VUL s, + ClR 12 (s,)-
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Lemma 5.7 and (5.21) imply

IVORU sy + IR,y o, < OO+ IplFz ) B
We use Proposition 3.8, Lemma 4.4 and Lemma 5.3 to deduce
|0,ulls sy < CliDEIE, g () < CllRaly

< C(L A+ lplFo,) B (D).
Therefore since | Dyv - v||2 (s, < E1(t) we obtain by combining the previous estimates

g Dipd,udH® < C(1+ [|plliz(q,)) Br (t)-

Hence, (7.8) implies (7.7) which concludes the proof. O

By a similar argument we prove the higher order case. We begin again with (7.6) and we need to
bound the remainder terms.

Proof of Proposition 7.2. The assumption E;_1(t) < C and Lemma 5.2 imply the curvature bound
IIB || 103, < C. Thus we may use the estimate (7.6), Lemma 5.3, Lemma 5.4, estimate (5.16) from

Lemma 5. 6 and Lemma 5.7 to deduce

d
%&(t) < CE(t) + ||Dlv - Dw”%{l(zt) +/ DIy div(D o) d.
Qy

Hence, we need to bound the two last terms. Again the second last term is easy to treat and we merely
sketch it. We have by (4.4) Dyv = —(V,v)Tv and have by Proposition 2.10

1D - Divllin s,y < CIPw| oo 2 1Pl F1 (5, + ClIPw 3105, I Di0l|Tas,y < CEI(E).

We treat the last term similarly as in the previous proof and claim that it holds
/ DI p div(D o) de < CE(t). (7.10)
Q

Since the argument is almost the same as with (7.7) we only sketch it. We let u be the solution of

—Au = div(Dw)  in Q,
u=0 on Y.

Again by integration by parts and by using Remark 4.5, Lemma 5.3 and Lemma 5.4 we obtain the higher
order version of (7.9) which reads as

/ DIy div(DH ) de < CE(t) — / DI pd,udH?.
Q4 pM
Lemma 4.7 yields
Di"'p = —Ax, (Dlv-v) — Q)VU - VO, "'U + RY,

where Q(¢) is defined in (2.1). By integration by parts on ¥; we have

~ [ Do, <Dl vl s, + 10wl s,

+ OV U T2, + ClIR, 25,

Note that | Dlv - v||%, ) < Ei(t). By Lemma 5.6 and Lemma 5.8 we have

Hvai“UllfH ,t IR, 5 . < CE(t).

H2(3,) —

T Birkhauser
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Finally by Proposition 3.8, by the curvature bound ||B||g2(s,) < HB||H%,,1 | < C, by Lemma 4.4 and

(Z¢
by Lemma 5.3 we have

2 < (Pl < L2 <
|03,y < Clliv DIy < CIRGIE ) < CEL®)

[
H2(Qy

This proves (7.10) and concludes the proof. O

8. Higher Regularity Estimates

Let us recall the definition of the energies E;(t) and &/(¢) for I > 1 in (5.1) and (7.1) respectively. In
the previous section we proved energy estimates where we control the derivative of &£(t) by E;(t). In this
section we complete the estimate and prove that the energy & (t) in fact controls Fj(t). This, together
with the results in the previous section, will give us control for &(¢) and implies the regularity of the
flow.
Note that the energy & (t) is defined in (7.1) as
1

&(t):f/ |D§+1u|2dx+1/ V(Do - v)|> dH?
2 Q, 2 s,

t
- @/ V(O P de+ | [VECED]curl v)? da,
Qf Q

where Q(¢) is defined in (2.1). Since Q¢ > 0, the energy has one negative term and we define its positive
part as
1, 1
5l+(t) =1 + §||Dt+1’UH%2(Qt) + HCUI‘I’U”ZL%H_%J(Qt) + §||Div . Z/H%p(zt). (81)
Then it holds

Q)

c&H (1) &)+

/ VOO dx + 1,
Qf

for ¢ > 0.

The first main result of this section states that the energy &;(t) controls E;(¢). For later purpose we
need this bound when the boundary ¥; is C*®-regular but the velocity field is only bounded in W14,
This makes the statement slightly heavy.

Proposition 8.1. Assume that 3 is uniformly C1:%(T)-reqular and the pressure and the velocity satisfies
Ipll s + Iollwsgs,) + lollwrscan < M.
Then there are constants C' and Cy such that
E(t) < C(Co+ &1 ().
The constants depend on oy defined in (1.4), the CY“-norm of the heightfunction and on M.

Before the proof we remark that if the a priori estimates (1.7) hold for 7' > 0, then the above
assumptions hold for constants C, Cyy, which depend on T, A7, or and E;(0). Indeed, then by Proposition
6.3 it holds

1Pl 10 < C.
Proof. We first recall that by Lemma 5.2 we have
1Bllzsmoy + 1Bl 3 5,y < Cllplla @ < C.

The claim follows once we prove that for any € > 0 it holds

EF(t) < &) +eEBi(t) + C. (8.2)
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and
Ey(t) < CEF(1). (8.3)
Let us first prove (8.2). Since 92U is harmonic in Qf it holds

/|V¥UF@xumWUW
HE(2)

We use interpolation (Corollary 2.9) to deduce

2 277113 2773
107Ul < ClO7U fa oy 107U I 72

HS(2,) (3e)

y (5.21) it holds
1
107Ul 25y < COL+ lIpllra (s Br(2)=. (8.5)
In order to estimate ||07U||12(s,) we use Lemma 4.6 and ||[VU||z~, [[v][z=~ < C and have
107U L2 (s < ClDwlrasy +C Y V082U 125,
lal<1
< Cllplla s + CA+ VU L2z, + IVOU | L2(s,)-
We have by (5.18) [|[V2U | 12(s;,) < C(1+ ||p|l a2 (s,))- We use Lemma 3.3 and 8,U = —VU - v to deduce
IO lliasn) < O+ 9500 |12s,y) < Cllollie 92U 2,y + CIVU L ol s,
< CA+||VPUllr2s,) < CA+plla(s))-
Therefore by (8.4), (8.5), [[pllz+(s,) < Plla1(0,) < C and by interpolation we obtain

IGEUI2, 3 ) < €+ Clpllin sy Ea(t)?

< O+ Ollpl ey Pl ags B (1)
< elllplzr (s, + Br(t) + Ce.
Lemma 3.7 yields [|p[|32(5,) < C||Vp||2%(gt) < CE;(t) and (8.2) follows.
Let us then prove (8.3). Recall that it holds

By (t) < 2657 (1) + [0l s o, + ||Dtu||2 3 (8.6)

2’

By (4.11) we have —Ap = Tr((Vv)?). We use the third inequality in Lemma 3.7 and ||V8Vp||L2(Z <
2&;F(t) and have by interpolation
1Dl 0 = V9125 ) < CUBMIE ) + WPl + 18810,
< C(10upllFr sy + 12172000 + V2011740 VOl F 40,y + 1) (8.7)
< CEF (1) +eloll s q,)-
We proceed estimating [|v|| g3 (q,). By the first inequality in Lemma 3.7, by |||z q,) < [[v|lw1a0,) <
C and by Lemma 5.2 we have
HU”%IS(Qt) < C(HAEtvnHZ%(Et) +(1+ HHEtH%P(Et))HUH%OO + HCUﬂUH?{l(m))
< (I8l g o+ Iliscs, + EF)
By the fourth inequality in Lemma 3.7 and by (8.7) we have
Ipl7r2 s,y < ClplZes,) + HVPHZ%@)) < CEF (1) + vl ay)-
Therefore by choosing € small enough we deduce
[l < ClAs. vl +CEF @) (59
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In order to control ||A2t7)n||H%( we use (4.25) which states

)
Dip = —As, v, — Q(t)VU - VOU + RY, (8.9)
where Q(¢) is defined in (2.1) and
Q'(t
RO = (B - Q) HIVU ), + (Vp-v) — L w0,

Therefore we have

185, 0all 13 5, < IP0N 3 )+ 190 9Oy o+ IRy

HY (S,
We estimate the first term on RHS as
||Dtp||2%(2t) <C(1+ HVDtPH%Z(Q,,))

< C(1+DiVplZ2(0,) + I[Pe VIplE2(0,))
< C(L+ IDfoll7e (0, + VU Zi () I VPILs0,) < CET (1)
By an already familiar argument we get

||VU-V8tU||; +IRN 1 . <eEi(t) + C-.

3(20) HE (%)
We leave the details for the reader. Combing the previous three inequalities yield

||AztvnHiI%(2t) < CLEF(t) + eBy(t).

By combining (8.6), (8.7), (8.8) with the above inequality and by choosing ¢ small enough imply
Ey(t) < CEF(1)
and the claim (8.3) follows. O

Proposition 8.1 implies that the bound on curlv and D?v in the fluid domain and on D;v on the
boundary imply the bound on v and D;v in the domain. In the next lemma we show the converse for the
initial set ¢t = 0, i.e., the bound on v in the domain and on the mean curvature Hy, imply that F;(0) is
bounded.

Lemma 8.2. Assume that Qg is a smooth set such that ||hol| L5y < 1. Then it holds
El (0) S CO?
for a constant Cy which depends on oo =1 — [|hol|L~ (), V]300 On [Hs,llm52(50) and on ||hollcrae.

Proof. The bound ||Hx, | #2(s,) < C and Proposition 2.12 imply || Bs,[|g2(s,) < C. Then we obtain by
Theorem 3.9 that | V3U||

3 (50) < C'. Hence, we have
[Pl 2(s0) < C- (8.10)
Let us show that
10upl 150y < C. (8.11)

Let © be the harmonic extension of the normal field. Note that since
HB”CO‘(EO) < C”BEOHHQ(EO) < C’
then by standard elliptic regularity theory [25] we deduce that ||[V7|/ca(s,) < C. Then (4.11), VAp =
V20 x Vo and ||v gs(q,) < C imply that
1A(Tp- ) 2(a) < CIV?0 % Vol 2 + ClIV?p* Vi)
< O+ [Iplla2(90))-
Lemma 3.5 together with interpolation yields

Ipll22(20) < C(1 4 1|0,pll ) < ellduplla (s, + Ce-

HZ (3)

) Birkhauser



JMFM A Priori Estimates for the Motion Page 75 of 83 48

Therefore by combing the two estimates with Lemma 3.3 we obtain
10vpll e (50) = VP - Pl (20) < Cc(L+[100(VD - D)l 22(20)) + €llOupll 12 (50)-
Choosing ¢ small yields
[0vpllE (o) < CAH+ 00 (VP - )|l L2(54))-
Note that by [|V7||ca(s,) < C, Lemma 3.3 and by (8.10) we have
10,V Dl 2cs0) < CUTpr - Dl 2250) + ClIVPIL2(50)

< OI(V2pv - v)|L2(se) + C(L+ [Pl mi(s0))

<CA+(V?pr-)ll2(sy))-
Therefore since

Asyp=Ap— (V?pv-v) — Hy,0yp

we obtain by (8.10) and by [|0,pl[z2(x,) < C(1+ ||plla1(s,)) < C that

I(V2pv - v)lLa(sy) < COA+ lIplles,) < C-
Thus we have (8.11) by the three inequalities above.
We estimate ||Vp||H%(Q ) similarly. We use (8.11) and Lemma 3.7 to estimate
0
VPl 43 ) S CUBLPI I 50) + IPll22(000) + 12PN 1 (000)) = C- (8.12)
In order to show that | Dfvl|2(q,) is bounded we first observe that by (4.1) and by (8.12) we have
D70l L200) < IVPipllL2(0) + V0 * VDl L200) < IIVPipllL2(00) + C-

Recall that we define the H2 (¥0)-norm using harmonic extension. Then it holds

INDepllrz(00) < CUDPI 3 () + 1Pe2l200) + [1ADP] 22 (0))-

Note that it holds || Dsp||r2(q,) < C||Dspl| By Remark 4.5 and Lemma 4.4 we have

H3 (o)’
[ADp|2(0) < Cll Ry |L2(20) + CllRpuine |l (20)
< O+ Ipllaz(00) + vl H2(00)) < C.
We proceed by using (4.22) to write
Q'(0)
2
We only bound the first term on RHS as the others are lower order. By the Cl*®-regularity of v we
immediately estimate

Dip = —Ag,v-v—2B: Vv —Q0)(DVU - VU) — VU2

1Asv- vl 3 5 ) S ClAzl 43 ) S Clivllazo)-

This concludes the proof. (I
Let us next prove the higher order version of Proposition 8.1.

Proposition 8.3. Let | > 2 and assume that (1.7) and E;_1(t) < M hold for allt € [0,T). Then there are
constants C' and Cy such that

El(t) < C(C() + El(t)),
where the constants C and Cy depend on M,l and T.
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Proof. We recall that by the definition of Ej(t) in (5.1), &(¢) in (7.1) and of & (¢) it holds

&) <&E®) + @/| V(O U) [P de 41

for ¢ > 0, Q(t) defined in (2.1), and

Ei(t) <2857(t) + Z D kaing(Q , Tl ull? 30 (g, (8.13)
The claim follows once we prove that for any € > 0 it holds
EF(t) < &(t) +eEi(t) + C (8.14)
and
Ei(t) < CEF(1). (8.15)

In order to prove (8.14) we use the fact that 9'*1U is harmonic in Qf, interpolation (Corollary 2.9)
and Lemma 5.6 and have

[ IVOUR da < ClOE Uy < CIOE Vs |F Ulacs,
< CE(O* 07Ul < e1Ba(t) + Ce, 10Ul e s,

We use Lemma 4.6, | VU]~ < C, Lemma 5.6 and the assumption E;_;(t) < C to deduce

107 Ul (s S IVU - Dpvllzacs,) + 1By 2, < ClIDl2es,) + C
By the Trace Theorem, by interpolation (Corollary 2.9) and by the definition of E;(t) it holds

112 L2 Lol Lyl
HDtU”L?(Et) < C”DtU”Hl(Qt) < CHDt’UHj{%(Qt)HIDtUHLQ(Qt)
< CE(t)3E_1(t)5 < esEi(t) + C.,.

By choosing first €1 and then 9 small implies (8.14).

Let us then prove (8.15). By (8.13) we have to bound ||Di+1_kv|\H%k( for all k = 1,...,1 and

Q)

||v||HL%(Z+1)J(Qt). We claim first that it holds
1112 +
||Dtv||H%(Qt) < C&ET(1). (8.16)
Indeed, by Theorem 3.1, Lemma 4.4 and Lemma 5.3 it holds
2
Dbl
! 2 1112 2 1112
< C(IDkv - )l o,y + DIy + 1 div Dol o+ flewrl Dol )
I
< OO+ Ba®) + IRG Iy )
< CEH) + Eima(t) < CEF (1)
and (8.16) follows.
Next we claim that for 2 < k <[ it holds
DL 02 g ) < CIDEF0l2 g, o+ eEi(t) + C. (317
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This inequality means that two derivatives in time implies regularity for three derivatives in space. We
first use Proposition 3.2, Lemma 4.4 and Lemma 5.3 to deduce

I+1—k, |2
DL 02
< C(IASD o) gy )+ IDF 0l
F VDT g0 g, F lewl (D0 50 ) (8.18)
< C(”AZ(D}:+17]€U . V)”z 31@75(2 ) + Elfl( ) + ||Rd1v ”2 3k71(9t))
< C|As(D o v)|1? gy, TEETCe
We proceed by using Lemma 4.7 to write
Dy p = —Ax(D; M v) = Q(1)(VU - VO FU) + Ry (8.19)
Lemma 5.8 yields
I+1—k|2 I—(k—1)
HRp || 3k—§(2 ) ||Rp ( ||H2(k 1)— 1(2 Yy~ EEl( ) C . (820)
Next we claim that
(VU - Vaé“%U”'i{%*%@) < eEy(t) + C.. (8.21)

If k = 2 then we use the fact that by the assumption ||B|| g2(s,) < || B < C and by Theorem

311
H2'"Y(%y)
3.9 the function U is uniformly C?-regular. Therefore we have by Lemma 5.5

i 2 l 2
(VU VO U,y o) S CIVOUIE, < B +Ce

If £k > 3 then 2 < %k — g < L%lJ — 2. We have by Proposition 2.10, by the Sobolev embedding, by Lemma
5.1 and by Lemma 5.5 that
o alt2—krry (2
(V0 VO O g,y <

2
+ ||VU||Hgkfg(Et)

+2—k 2
< CIVU R IV U g,y

||V5i+2_kUH%oo(z )

<CA+|IVUIP 4. Vo2 U 4
H?2 ) 2 2

o
< CA+pl, 50 2z, (EELE) + Ce).
Hence, (8.21) follows from the Trace Theorem as

< OO+ VPR g,

(Z¢)

Ipll )< CE;_1(t) < C.

H3U=2(z,) )
We deduce by (8.18), (8.19), (8.20), (8.21), Lemma 3.7 and (4.15) that

1D Fo g,
F(0)

< C|Dpit kaZ%k*%(E,) +eEy(t) + C.

< O\|VD§+2—kp||2%k,3mt) +eEy(t) + C.

< C| D2 r vl

H%k73(§2 ) + C||[Dé+27k,V]p”2 Sk— 3( ) +€El( ) CE

< CHDiH’kU”? o2, T C||REHL=F)2 Yooyt eEi(t) + Ce.
Lemma 5.3 implies
I+1—Fk |2 (k—1))2
| Ryt HH%k 3 = HRbulk HHz““ D-1(0,) <eE(t) +C.

and the estimate (8.17) follows.
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Let us then prove

< C|Div|?

HUHHL 11,y =

2 +
H30-(q,) + C||Dtv||H%,(Qt) +eEi(t) + C.E(1). (8.22)

We denote \; = [3(I + 1)] — 1 and use the second inequality in Proposition 3.2 and have

< O(1 + || Ax, a1 HIBIR g0+ lewrd vl ).

2
||U||HL%(Z+1)J(Q H*z**( H2Y(S,)

By the definition of & (¢) in (8.1) it holds [[curlv|%,,, @) < & (t). Lemma 5.2 and Trace Theorem yield

2
1B, 35, < © (14 101, )

<0 (141991 g1 ) = €O+ D0l g, ).
We treat the term ||A2tvn||HAr%(g ) by using (8.9) and have
1200l a3 5,y < Ol -3 5, + CIVU - VOUN i+ 1B g0 -

By Lemma 5.5 we have

HvatUHiI%l 1 ) < EEl + C
and
IVUI s, < CFr1(t) < €,

Therefore we have by Proposition 2.10 and by the Sobolev embedding

2 2 2
VU GOV Ly ) < CIVUIR gy g VO Ly < <+ Ce

Similarly we obtain

H O||2H§l (s <ebE +C..

We leave the details for the reader. Therefore we have by arguing as before

o]l < C|Dwp +eB 4+ CE (1)

g3 (0,) = a3 (s

< OIVDpl3ni-2(,) + B+ CE1 (1)

< CIDT D220y + D0 VIl 2y, + B+ CoE (1)

< CID20l2n, 20 + V0% VI, e, + €Eu + CEF (1)
Note that Ay —2 < 3(1 —1) and A\; — 1 < [31]. Thus by the definition of E;_;(t) it holds

198135120y + 1900020y < I gy + 012 <CEL()<C.

HL‘3 1] ()
Proposition 2.10, the assumption ||[Vv||z~(q,) < C, and the Sobolev embedding then imply
1905 Vpl3n, 20y < CER (1) < C

and the inequality (8.22) follows.
We deduce by (8.16), (8.22) and by using (8.17) an iterative way that

!
I+1-k, 12
;IIDt ol gk g, + I

Thus we obtain (8.15) by using the above inequality and (8.13). O

HL (l+1)J(Q ) < C€£l+(t) + EEZ (t)
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9. Proof of the Main Theorem

In this short section we collect the results from Sects. 6, 7 and 8 and prove the Main Theorem. The proof
is fairly straightforward, and the only delicate part is to show that the a priori estimates (1.7) hold for a
short time.

Proof of the Main Theorem. Let us assume that the quantities Ar and op, which are defined in (1.5)
and (1.4) respectively, satisfy Ap < M and op > ﬁ for T' > 0. We show that this implies the bound

El(t) < Ol for all ¢ < T (91)

for every positive integer [, where the constant C; depends on I, T, M and on E;(0). Here the dependence
on T means that if 7' < 1, then the constant C; may be chosen to be independent of T'. The estimate (9.1)
is crucial as it quantifies the smoothness of the flow under the assumption that the a priori estimates are
bounded.

We obtain first by Lemma 6.4 that

T
| ol de < €. 02)
where C' depends on T, M and on E;(0). Proposition 7.1 and Proposition 8.1 in turn imply

d
&) =C+ P12 () ) E1 (B)
< C+[Ipllr2(0,) (Co + E1(1))

for all t < T'. In particular, the quantity Co + &;(t) is positive. Therefore we obtain by integrating over
(0,T) and using (9.2) that

(9.3)

Co + &1(t) < C(Co + £1(0))
for all ¢ < T'. By using Proposition 8.1 again we have
Ei(t) < C(Co+&1(t) < CC(Cy + £1(0)) < C4,

where the constant C; depends on M, T and E;(0).
We may then use Proposition 7.2 and Proposition 8.3 in an inductive way and deduce that if E;_;(t) <
Cy—1 for t < T then it holds

%gm < CE(t) < C(Co + &(1)):

By integrating we deduce
Co + &(t) < (Co + £(0))eCT
and using Proposition 8.3 again we have
Ey(t) < C(Cy+ £(0)eCT < ¢, (9.4)

where the constant C; depends on I, T, M and on E;(0). Note that we obtain (9.4) under the assumption
E;_1(t) < Cj_1 for t < T and thus an induction argument implies that (9.4) holds for all [ for a constant
which depends on 7,1, M and on E;(0). Therefore we have (9.1).

Let us then prove the last claim, i.e., that the a priori estimates (1.7) hold for M for a short time

TO Z Co (95)

for a positive constant co which depends on ||Hs, || z2(x), [|v]|#3(q,) and on og.
To this aim we define the quantity

A = Vpll72i0, + 1Bl 1o, + 1Vollzas,) + 1VUllzaq,) + 1,
where p is the pressure and v the velocity field. Let us also denote by
5(t) = dH(Qt, Qo)
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the Hausdorff distance between the sets €2; and €y. The point is that if we would know that it holds
At < 2X0 and §(t) < gg, where g is the value at time ¢ = 0 and ¢ is a small number, then we have by
the curvature bound and by standard argument from regularity theory (e.g. by Allard regularity theory)
that ¥, is uniformly C1®(T')-regular. We choose the number &g such that it depends also on o so that
d(t) < go implies oy > %2. Moreover, by Proposition 8.1 we deduce that there are constants C' and Cy
such that

Ey(t) < C(Co + &n(t)). (9.6)
Let us then define Ty € (0,7 to be the largest number such that

sup Ay <2Xo, supd(t) <eg and sup & (t) < Cp+ &1(0),
t<To t<To t<Top

where (Y is the constant in (9.6). We note that the last condition together with (9.6) implies that
Ei(t) < C(Co + &(1) < C(2Co + £1(0)) < CE1(0), (9.7)

for t < Tp. It is also easy to see that for Ay defined in (1.5) it holds A2, < C'sup,; Fy(t). This means
that (9.7) ensures that the a priori estimates (1.7) hold for the time interval [0, Ty]. Therefore it is enough
to show that Ty > ¢yo. We may assume that Ty < min{T, 1} since otherwise the claim is trivially true.

If Ty < min{7,1} then at least in one of the three conditions in the definition of Ty we have an
equality. Assume that Az, = 2X\g. Note that by (9.7) it holds FE;(t) < CE;(0) for all t < T,. We remark
that it holds

1Bl () + IV0llL0 o) < CEL(1).
Moreover, by using the formula (4.10) in Lemma 4.2 we obtain
ID:Vpllrz2, + PeBllL2z,) + 1PVl 25,y < CEL(D).

We leave the details for the reader. Therefore by a straightforward calculation we deduce that for some
q > 1 it holds
d

%)\t < CEL(t)? < CE1(0)1

where the last inequality follows from (9.7). By integrating the above over (0,7) and using Ay, = 2Xo
we obtain

Xo < CEy(0)7Tp.

Since \gp > 1 we have Tp > cp, for a constant that depends on E;(0) and oy.
We argue similarly if we have an equality in the third condition in the definition of Ty, i.e., & (Tp) =
Co + £1(0). Indeed, then by the definition of E;(t) we have that

1pllF2(0,) < Er(t)-
Therefore we obtain by (9.3) and (9.7) that

%51(75) < C(1+ |pllFr2 (o)) Er(t) < O,
where the constant C' depends on E4(0) and on op. We integrate the above over (0,Tp) and obtain
Co = &1(Th) — &1(0) < CTo.

Thus we have again Ty > cg.
Finally assume that it holds §(Ty) = €¢. By definition the flow gives a diffeomorphism &7, : X9 — X, .
We note that the velocity is uniformly bounded by the Sobolev embedding and by (9.7)

0] 7 0,y < CEL(t) < CEL(0),
Therefore we have by the fundamental Theorem of Calculus that for every x € ¥ it holds

To
®r, (z) — ] < / lollp~ di < CTh.
0
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Since sup, ¢y, [P, (x) — x| > 0(Tp) > €0, we again have Ty > co.

We have thus obtained (9.5) for a constant ¢y which depends on oy and E;(0). By Lemma 8.2 we
deduce that cq in fact depends on oo, ||[v]|g3(ay), [[Hs,|la2(s,) and on ||hgllcr.ery. This concludes the
proof of the second claim. (I
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