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Abstract
We introduce an efficient first-order primal-dual method for the solution of nonsmooth
PDE-constrained optimization problems. We achieve this efficiency through not solv-
ing the PDE or its linearisation on each iteration of the optimization method. Instead,
we run themethod interwovenwith a simple conventional linear system solver (Jacobi,
Gauss–Seidel, conjugate gradients), always taking only one step of the linear system
solver for each step of the optimization method. The control parameter is updated on
each iteration as determined by the optimizationmethod.We prove linear convergence
under a second-order growth condition, and numerically demonstrate the performance
on a variety of PDEs related to inverse problems involving boundary measurements.

Keywords Primal-dual · nonsmooth · PDE-constrained · Splitting · Jacobi ·
Gauss–Seidel

1 Introduction

Our objective is to develop efficient first-order algorithms for the solution of PDE-
constrained optimization problems of the type

min
x,u

F(x) + Q(u) + G(Kx) subject to B(u, w; x) = Lw for all w,
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B. Jensen, T. Valkonen

where K is a linear operator and the functions F ,G, and Q are convex but the first two
possibly nonsmooth. The functionals B and L model a partial differential equation in
weak form, parametrised by x ; for example, B(u, w; x) = 〈∇u, x∇w〉.

Semismooth Newton methods [28, 30] are conventionally used for such problems
when a suitable reformulation exists [19–21, 34, 35]. Reformulations may not always
be available, or yield effective algorithms. The solution of large linear systems may
also pose scaling challenges. Therefore, first-order methods for PDE-constrained opti-
mization have been proposed [6–8, 27] based on the primal-dual proximal splitting
(PDPS) of [5]. The original version applies to convex problems of the form

min
x

F(x) + G(Kx). (1)

The primal-dual expansion permits efficient treatment of G ◦ K for nonsmooth G.
In [6–8, 27] K may be nonlinear, such as the solution operator of a nonlinear PDE.

However, first-order methods generally require a very large number of iterations to
exhibit convergence. If the iterations are cheap, they can, nevertheless, achieve good
performance. If the iterations are expensive, such as when a PDE needs to be solved
on each step, their performance can be poor. Therefore, especially in inverse problems
research, Gauss–Newton -type approaches are common for (1) with nonlinear K ; see,
e.g., [10, 22, 39]. They are easy: first linearise K , then apply a convex optimization
method or, in simplest cases, a linear system solver. Repeat. Even when a first-order
method is used for the subproblem, Gauss–Newtonmethods can be significantly faster
than full first-order methods [22] if they converge at all [36]. This stems from the
following and only practical difference between the PDPS for nonlinear K andGauss–
Newton applied to (1) with PDPS for the inner problems: the former re-linearizes
and factors K on each PDPS iteration, the latter only on each outer Gauss–Newton
iteration.

In thiswork,we avoid forming and factorizing thePDEsolution operators altogether
by running an iterative solver for the constantly adapting PDE simultaneously with the
optimization method. This may be compared to the approach to bilevel optimization
in [32]. We concentrate on the simple Jacobi and Gauss–Seidel splitting methods for
the PDE, while the optimization method is based on the PDPS, as we describe in
Sect. 2. We prove convergence in Sect. 3 using the testing approach introduced in [37]
and further elucidated in [9]. We explain how standard splittings and PDEs fit into the
framework in Sect. 4, and finish with numerical experiments in Sect. 5.

Pseudo-time-stepping one-shot methods have been introduced in [33] and further
studied, among others, in [2, 13–17, 24, 31]. A “one-shot” approach, as opposed to an
“all-at-once” approach, solves the PDE constraints on each step, instead of considering
thempart of a unified systemof optimality conditions. The aforementionedworks solve
these constraints inexactly through “pseudo-”time-stepping. This corresponds to the
trivial split Ax = (Ax − Id) + Id where Ax is such that 〈Axu, w〉 = B(u, w; x). We
will, instead, apply Jacobi, Gauss–Seidel or even (quasi-)conjugate gradient splitting
on Ax . In [2, 13] Jacobi andGauss–Seidel updates are used for the control variable, but
not for the PDEs. The authors of [17] come closest to introducing non-trivial splitting
of the PDEs via Hessian approximation. However, they and the other aforementioned
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works generally restrict themselves to smooth problems and employ gradient descent,
Newton-type methods, or sequential quadratic programming (SQP) for the control
variable x . Our focus is on nonsmooth problems involving, in particular, total variation
regularization G(Kx) = ‖∇x‖1.

Notation and basic results

Let X be a normed space. We write 〈 · | · 〉 for the dual product and, in a Hilbert space,
〈 · , · 〉 for the inner product. The order of the arguments in the dual product is not
important when the action is obvious from context. For X a Hilbert space, we denote
by InX : X ↪→ X∗ the canonical injection, 〈InX x |x̃〉 = 〈x, x̃〉 for all x, x̃ ∈ X .

We write L(X; Y ) for the space of bounded linear operators between X and Y . We
write IdX = Id ∈ L(X; X) for the identity operator on X . If M ∈ L(X; X∗) is non-
negative and self-adjoint, i.e., 〈Mx |y〉 = 〈x |My〉 and 〈x |Mx〉 ≥ 0 for all x, y ∈ X ,
we define ‖x‖M :=√〈x |Mx〉. Then the three-point identity holds:

〈M(x−y)|x−z〉 = 1

2
‖x−y‖2M−1

2
‖y−z‖2M+1

2
‖x−z‖2M for all x, y, z ∈ X . (2)

We extensively use the vector Young’s inequality

〈x |y〉 ≤ 1

2a
‖x‖2X + a

2
‖y‖2X∗ (x ∈ X , y ∈ X∗, a > 0). (3)

These expressions hold in Hilbert spaces also with the inner product in place of the
dual product. We write M� for the inner product adjoint of M , and M∗ for the dual
product adjoint.

We write dom F for the effective domain, and F∗ for the Fenchel conjugate of
F : X → R:=[−∞,∞]. We write F ′(x) ∈ X∗ for the Fréchet derivative at x when it
exists, and, if X is a Hilbert space, ∇F(x) ∈ X for its Riesz presentation. For convex
F on a Hilbert space X , we write ∂F(x) ⊂ X for the subdifferential at x ∈ X (or,
more precisely, the corresponding set of Riesz representations, but aside from a single
proof in Appendix A, we will not be needing subderivatives as elements of X∗). We
then define the proximal map

proxF (x):=(Id+∂F)−1(x) = argmin
x̃∈X

{
F(x̃) + 1

2
‖x̃ − x‖2X

}
, x ∈ X .

We denote the {0,∞}-valued indicator function of a set A by δA.
We occasionally apply operations on x ∈ X to all elements of sets A ⊂ X , writing

〈x + A|z〉:={〈x + a|z〉 | a ∈ A}. For B ⊂ R, we write B ≥ c if b ≥ c for all b ∈ B.
On a Lipschitz domain � ⊂ R

n , we write trace∂� ∈ L(H1(�); L2(∂�)) for the
trace operator on the boundary ∂�.

We list various symbols introduced and used throughout the manuscript in a table
in Appendix B.
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2 Problem and proposed algorithm

We start by introducing in detail the type of problem we are trying to solve. We then
rewrite in Sect. 2.1 its optimality conditions in a form suitable for developing our
proposed method in Sect. 2.3. Before this we recall the structure and derivation of the
basic PDPS in Sect. 2.2.

2.1 Problem description

Our objective is to solve

min
x

J (x):=F(x) + Q(S(x)) + G(Kx), (4)

where F : X → R, G : Y → R, and Q : U → R are convex, proper, and lower
semicontinuous on Hilbert spaces X , U , and Y with Q Fréchet differentiable. We
assume K ∈ L(X; Y ) while S : X � x �→ u ∈ U is a solution operator of the weak
PDE

B(u, w; x) = Lw for all w ∈ W . (5)

Here L ∈ U∗ and B : U × W × X → R is continuous, and affine-linear-affine in its
three arguments. The space W is Hilbert, possibly distinct from U to model nonho-
mogeneous boundary conditions. For this initial development, we will tacitly assume
unique S(x) and ∇S(x) to exist for all x ∈ dom F , but later on in the manuscript, do
not directly impose this restriction, or use S.

Example 2.1 (A linear PDE) On a Lipschitz domain � ⊂ R
n , consider the PDE

{∇ · ∇u = x, on �,

u = g, on ∂�.

For the weak form (5) we can take the spacesU = H1(�),W = H1
0 (�)×H1/2(∂�),

and X = L2(�). Writing w = (w�,w∂), we then set

B(u, w; x) = 〈∇u,∇w�〉L2(�) − 〈x, w�〉L2(�) + 〈trace∂� u, w∂ 〉L2(∂�)

and Lw:=〈g, w∂ 〉L2(∂�).

Example 2.2 (A nonlinear PDE) On a Lipschitz domain � ⊂ R
n , consider the PDE

{∇ · (x∇u) = 0, on �,

u = g, on ∂�.

For the weak form (5) we can take the spaces U ⊂ H1(�), W ⊂ H1
0 (�) ×

H1/2(∂�), and X ⊂ L2(�), such that at least one of these subspaces ensures the
corresponding x , ∇u, or∇w to be in the relevant L∞ space. This, in practise, requires
one of the subspaces to be finite-dimensional, or X to be Hk(�) for k > n/2, such
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that the boundedness of � and Sobolev’s inequalities provide the L∞ bound. The
latter is an option in infinite-dimensional theory, but in finite-dimensional realisations,
it is desirable to use a standard 2-norm in X , as proximal operators and gradient
steps with respect to Hk-norms (for k > 0) are computationally expensive. Writing
w = (w�,w∂), we then set

B(u, w; x) = 〈x∇u,∇w�〉L2(�) + 〈trace∂� u, w∂ 〉L2(∂�) and Lw:=〈g, w∂ 〉L2(∂�).

To ensure the coercivity of B( · , · ; x), and hence the existence of unique solutions to
(5), we will further need to restrict x through dom F .

We require the sum and chain rules for convex subdifferentials to hold on F+G◦K .
This is the case when

there exists an x ∈ dom(G ◦ K ) ∩ dom F with Kx ∈ int(domG). (6)

We refer to [9] for basic results and concepts of infinite-dimensional convex anal-
ysis. Then by the Fréchet differentiability of Q and the compatibility of limiting
(Mordukhovich) subdifferentials (denoted ∂M ) with Fréchet derivatives and convex
subdifferentials [9, 29],

∂M J (x) = ∂F(x) + ∇S(x)�∇Q(S(x)) + K �∂G(Kx).

Therefore, the Fermat principle for limiting subdifferentials and simple rearrange-
ments (see [6, 36] or [9, Chapter 15]) establish for (4) in terms of (ū, w̄, x̄, ȳ) ∈
U × W × X × Y the necessary first-order optimality condition

⎧⎪⎨
⎪⎩

ū = S(x̄),

−∇S(x̄)�∇Q(ū) − K � ȳ ∈ ∂F(x̄),

K x̄ ∈ ∂G∗(ȳ).
(7)

We recall that G∗ : Y → R is the Fenchel conjugate of G.
The term∇S(x̄)�∇Q(ū) involves the solution ū to the original PDE and the solution

w̄ to an adjoint PDE. We derive it from a primal-dual reformulation of (4). To do this,
we first observe that since B is affine in x , it can be decomposed as

B(u, w; x) = Bx (u, w; x) + Bconst(u, w), (8)

where, Bx : U × W × X → R is affine-linear-linear, and Bconst : U × W → R

is affine-linear. Indeed Bconst(u, w) = B(u, w; 0), and Bx (u, w; x) = B(u, w; x) −
B(u, w; 0). We then introduce the Riesz representation ∇̄x B(u, w) of Bx (u, w; · ) ∈
X∗. Thus

〈∇̄x B(u, w), x〉X = Bx (u, w; x) for all u ∈ U , w ∈ W , x ∈ X . (9)

We have ∇x B(u, w; x) ≡ ∇̄x B(u, w) ∈ X for all x ∈ X .
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Clearly, also, Bx is an abbreviation for (u, w; x) → Dx B(u, w, 0)(x), where, just
here, we write Dx for the Fréchet derivative with respect to x . Likewise we write
Bu to abbreviate (u, w; x) → DuB(0, w, x)(u), and Bxu to abbreviate (u, w; x) →
DuBx (0, w, x)(u). If B is linear in u, then Bu = B; and if B is linear in both u and x ,
then Bxu = B.

We may now write (4) as1

min
x,u

max
w

F(x) + Q(u) + B(u, w; x) − Lw + G(Kx) (10)

or

min
x,u

max
w,y

F(x) + Q(u) + B(u, w; x) − Lw + 〈Kx, y〉Y − G∗(y). (11)

In terms of (ū, w̄, x̄, ȳ) ∈ U × W × X × Y , subject to a qualification condition,
this problem has the necessary first-order optimality conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B(ū, w̃; x̄) = Lw̃ for all w̃ ∈ W ,

Bu(ũ, w̄; x̄) = −Q′(ū)ũ for all ũ ∈ U ,

−∇̄x B(ū, w̄) − K � ȳ ∈ ∂F(x̄),

K x̄ ∈ ∂G∗(ȳ).

(12)

This is our principal form of optimality conditions for (4).
It is easy to see that (12) are necessary for (ū, w̄, x̄, ȳ) to be a saddle point of

(11). The next theorem shows, subject to qualification conditions, that (12) are also
necessary for a solution to (11) (which may not be a saddle point in the non-convex-
concave setting). Note that w ∈ W is inconsequential in (11). If one choice forms a
part of a solution of the problem, so does any other (or else the problem has no solution
at all). However, w̄ solving (12) is more precisely determined.

Theorem 2.3 Suppose (ū, w, x̄, ȳ) ∈ U × W × X × Y solve (11). If, moreover,
int dom[F + G ◦ K ] �= ∅, and, for some c > 0,

sup
‖(hx ,hu)‖=1

Bx (ū, w; hx ) + Bu(hu, w; x̄) ≥ c‖w‖ for all w ∈ W and

(13a)

Bu(ũ, w; x̄) = 0 for all ũ �⇒ Bx (ū, w; x) = 0 for all x ∈ dom(F + G ◦ K ),

(13b)

then (12) holds for some w̄ ∈ W.

1 If the PDE (5) does not have a solution u for any x ∈ dom F ∩ dom(G ◦ K ), the inner “max” will be
infinite, not reached, and technically, therefore, a “sup”. In this case also (4) has no solution. If (4) has
a solution, there must exist some (x, u) for which (any) w reaches the “max”. Likewise, y reaching the
corresponding “max” exists for any x ∈ dom(G ◦ K ) by basic properties of Fenchel conjugates of convex,
proper, lower semicontinuous functions.
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After an affine shift and restriction of x to a subspace, the condition int dom[F+G◦
K ] �= ∅ can always be relaxed to the corresponding relative interior being non-empty.
Since the proof of Theorem 2.3 is long and depends on techniques not needed in our
main line of work, we relegate it to Appendix A.

Example 2.4 IfW = U , taking hu = w/‖w‖ and hx = 0, we see that the qualification
conditions (13) hold when Bu( · , · ; x̄) is coercive. Similarly, also when W �= U ,
if the weak coercivity conditions of the Babuška–Lax–Milgram theorem hold for
(w, hu) �→ Bu(hu, w; x̄), then so do (13).

The second line of (12) is the adjoint PDE, needed for ∇S(x̄)∗∇Q(ū) in (7):

Corollary 2.5 Suppose (13) hold for x̄ = x ∈ X, some w ∈ W, and ū = u a unique
solution to (5). Then the solution operator S of (5) satisfies for all z ∈ U that

∇S(x)�z = ∇̄x B(u, w) where u = S(x) and

{
w solves the weak adjoint PDE:
Bu(ũ, w; x) = −〈z, ũ〉 for all ũ ∈ U .

Proof Take F ≡ 0, K = Id, G ≡ δ{x}, and Q = 〈z, · 〉U . Then any solution
(ū, w, x̄, y) to (11) has x̄ = x . Since G∗(ỹ) = 〈x, ỹ〉, any choice of y and w solve
(11). Therefore, Theorem 2.3 applied to the problem we just constructed shows that

Bu(ũ, w; x) = −〈z, ũ〉U for all ũ ∈ U and − ∇̄x B(u, w) − y = 0.

On the other hand, (7) reduces to some y satisfying −∇S(x)�z − y = 0. Comparing
these two expressions, we obtain the claim. ��

2.2 Primal-dual proximal splitting: a recap

The primal-dual proximal splitting (PDPS) for (1) is based on the optimality conditions

{
−K � ȳ ∈ ∂F(x̄),

K x̄ ∈ ∂G∗(ȳ).
(14)

These are just the last two lines of (12) without ∇̄x B. As derived in [9, 18, 37], the basic
(unaccelerated) PDPS solves (14) by iteratively solving for each k ∈ N the system

{
0 ∈ τ∂F(xk+1) + τK �yk + xk+1 − xk

0 ∈ σ∂G∗(yk+1) − σK [xk+1 + ω(xk+1 − xk)] + yk+1 − yk,
(15)

where the primal and dual step length parameters τ, σ > 0 satisfy τσ‖K‖ < 1, and
the over-relaxation parameter ω = 1. We can write (15) in explicit form as

{
xk+1:= proxτ F

(
xk − τK �yk

)
,

yk+1:= proxσG∗
(
yk + σK [xk+1 + ω(xk+1 − xk)]).
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2.3 Algorithm derivation

The derivation of the PDPS and the optimality conditions (12) suggest to solve (12)
by iteratively solving

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B(uk+1, · ; xk) = L,

Bu( · , wk+1; xk) = −Q′(uk+1),

0 ∈ τk∂F(xk+1) + τk∇̄x B(uk+1, wk+1) + τK �yk + xk+1 − xk

0 ∈ σk+1∂G
∗(yk+1) − σk+1K [xk+1 + ωk(x

k+1 − xk)] + yk+1 − yk .
(16)

We have made the step length and over-relaxation parameters iteration-dependent
for acceleration purposes. The indexing τk and σk+1 is off-by-one to maintain the
symmetric update rules from [5].

The method in (16) still requires exact solution of the PDEs. For some splitting
operators 
k, ϒk : U × W × X → R, we therefore transform the first two lines into

B(uk+1, · ; xk) − 
k(u
k+1 − uk, · ; xk) = L and (17a)

Bu( · , wk+1; xk) − ϒk( · , wk+1 − wk; xk) = −Q′(uk+1). (17b)

Example 2.6 (Splitting) Let B(u, w; x) = 〈Axu, w〉 for symmetric Ax ∈ R
n×n on

U = W = R
n . Take 
k(u, w; x) = 〈[Ax − Nx ]u, w〉 and ϒk = 
k for easily

invertible Nx ∈ R
n×n . With L = 〈b, · 〉, b ∈ R

n and Mx :=Ax − Nx , (17) now reads

Nxk u
k+1 = b − Mxku

k and Nxkw
k+1 = −∇Q(uk+1) − Mxkw

k . (18)

For Jacobi splitting we take Nxk as the diagonal part of Axk , and for Gauss–Seidel
splitting as the lower triangle including the diagonal. We study these choices further
in Sect. 4.2.

Let us introduce the general notation v = (u, w, x, y) as well as the step length
operators Tk ∈ L(U∗ × W ∗ × X × Y ;U∗ × W ∗ × X × Y ),

Tk := diag
(
IdU∗ IdW ∗ τk IdX σk+1 IdY

)
, (19)

the set-valued operators Hk : U × W × X × Y ⇒ U∗ × W ∗ × X × Y ,

Hk(v):=

⎛
⎜⎜⎝

B(u, · ; xk) − 
k(u − uk, · ; xk) − L
Bu( · , w; xk) − ϒk( · , w − wk; xk) + Q′(u)

∂F(x) + ∇̄x B(u, w) + K �y
∂G∗(y) − Kx

⎞
⎟⎟⎠ , (20)

and the preconditioning operators Mk ∈ L(U × W × X × Y ;U∗ × W ∗ × X × Y ),

Mk := diag

(
0 0

(
IdX −τk K �

−ωkσk+1K IdY

))
. (21)
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Algorithm 2.1 Primal dual splitting with parallel adaptive PDE solves (PDPAP)
Require: F : X → R, G∗ : Y → R, Fréchet-differentiable Q : U → R; K ∈ L(X; Y ), L ∈ U∗;

and B : U × W × X → R, bilinear in the first two variables, affine in the third, all on Hilbert spaces
X , Y , U , and W . Riesz representation ∇̄x B(u, w) of Bx (u, w; · ); see (9). For all k ∈ N, splittings

k , ϒk : U × W × X → R and step length and over-relaxation parameters τk , σk+1, ωk > 0; see
Theorem 3.10 or 3.11.

1: Pick an initial iterate (u0, w0, x0, y0) ∈ U × W × X × Y .
2: for k ∈ N do
3: Solve uk+1 ∈ U from the split weak PDE

B(uk+1, w̃; xk ) − 
k (u
k+1 − uk , w̃; xk ) = Lw̃ for all w̃ ∈ W .

4: Solve wk+1 ∈ W from the split weak adjoint PDE

Bu(ũ, wk+1; xk ) − ϒk (ũ, wk+1 − wk ; xk ) = −Q′(uk+1)ũ for all ũ ∈ U .

5: xk+1:= proxτk F
(
xk − τk ∇̄x B(uk+1, wk+1) − τk K

�yk
)

6: x̄k+1:=xk+1 + ωk (x
k+1 − xk )

7: yk+1:= proxσk+1G∗
(
yk + σk+1K x̄k+1)

8: end for

The implicit form of our proposed algorithm for the solution of (4) is then

0 ∈ TkHk(v
k+1) + Mk(v

k+1 − vk). (22)

Writing out (22) in terms of explicit proximal maps, we obtain Algorithm 2.1.

3 Convergence

Wenow treat the convergence of Algorithm 2.1. Following [9, 37] we “test” its implicit
form (22) by applying on both sides the linear functional 〈Zk · |vk+1− v̄〉. Here Zk is a
convergence rate encoding “testing operator” (Sect. 3.2). A simple argument involving
the three-point identity (2) and a growth estimate for Hk then yields in Sect. 3.3 a Féjer-
type monotonicity estimate in terms of iteration-dependent norms. This establishes in
Sect. 3.4 global convergence subject to a growth condition. We start with assumptions.

3.1 Themain assumptions

We start with our main structural assumption. Further central conditions related to the
PDE constraint will follow in Assumption 3.3, and through its verification for specific
linear system solvers in Sect. 4.2.

Assumption 3.1 (Structure) On Hilbert spaces X , Y ,U , and W , we are given convex,
proper, and lower semicontinuous F : X → R, G∗ : Y → R, and Q : U → R with
Q Fréchet differentiable, as well as K ∈ L(X; Y ), L ∈ U∗, and B : U ×W × X → R

affine-linear-affine. We assume:
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(i) F and G are (strongly) convex with factors γF , γG∗ ≥ 0. With K they satisfy the
condition (6) for the subdifferential sum and chain rules to be exact.

(ii) For all x ∈ dom F , there exist solutions (u, w) ∈ U×W to the PDE B(u, · ; x) =
L and the adjoint PDE Bu( · , w; x) = −Q′(u).

We then fix a solution v̄ = (ū, w̄, x̄, ȳ) ∈ U × W × X × Y to (12) and assume that:

(iii) For some S(ū),S(w̄) ≥ 0, for all (u, w) ∈ U × W and x ∈ dom F , we have

Bxu(u, w̄; x − x̄) ≤ √S(w̄)‖u‖U‖x − x̄‖X and

Bx (ū, w; x − x̄) ≤ √S(ū)‖w‖W‖x − x̄‖X .

(iv) For some Cx ≥ 0, for all (u, w) ∈ U × W and x ∈ dom F we have the bound

Bxu(u, w; x − x̄) ≤ Cx‖u‖U‖w‖W .

Remark 3.2 Part (i) is easy to check. In general, (iv) requires dom F to be bounded
with respect to an ∞-norm with Bx (u, w, x) ≤ C‖u‖U‖w‖W‖x‖∞ for some C > 0.
Then Cx = supx∈dom F C‖x‖∞. If Bx is independent of u, i.e., for linear PDEs, both
Cx = 0 and S(w̄) = 0, while S(ū) is a constant independent of ū. We study (ii)–(iv)
further in Sect. 4.1.

The next assumption encodes our conditions on the PDE splittings.

Assumption 3.3 (Splitting) Let Assumption 3.1 hold. For k ∈ N, for which this
assumption is to hold, we are given splitting operators 
k, ϒk : U ×W × X → R and
vk = (uk, wk, xk, yk) ∈ U × W × X × Y such that:

(i) 
k is linear in the second argument, ϒk in the first.
(ii) There exist solutions uk+1 and wk+1 to the split equations (17).
(iii) For some γB > 0 and CQ, πu, πw ≥ 0, we have

‖uk − ū‖2U ≥ γB‖uk+1 − ū‖2U − πu‖xk − x̄‖2X and

‖wk − w̄‖2W ≥ γB‖wk+1 − w̄‖2W − CQ‖uk+1 − ū‖2U − πw‖xk − x̄‖2X .

We verify the assumption for standard splittings in Sect. 4.2. The verification will
introduce the assumption that Q′ be Lipschitz. The Lipschitz factor then appears in
CQ , justifying the Q-subscript notation. Generally πu and πw model the x-sensitivity
of B and Bu . For linear PDEs, such as Example 2.1, Bu does not depend on x . In that
case most iterative solvers for the adjoint PDE would also be independent of x and
have πw = 0. The factor γB relates to the contractivity of the iterative solver.

The next, final, assumption introduces testing parameters that encode convergence
rates and restrict the step length parameters in the standard primal-dual component of
our method. It has no difference to the treatment of the PDPS in [9, 37]. Dependent
on whether both, one, or none of γ̃F > 0 and γ̃G∗ > 0, the parameters can be chosen
to yield varying modes and rates of convergence.
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Assumption 3.4 (Primal-dual parameters) Let Assumption 3.1 hold. For all k ∈ N,
the testing parameters ϕk, ψk > 0, step length parameters τk, σk > 0, and the over-
relaxation parameter ωk ∈ (0, 1] satisfy for some γ̃F ∈ [0, γF ] and γ̃G∗ ∈ [0, γG∗ ],
and κ ∈ (0, 1) that

ϕk+1 = ϕk(1 + 2γ̃Fτk), ψk+1 = ψk(1 + 2γ̃G∗σk),

ηk :=ϕkτk = ψkσk, ωk = η−1
k+1ηk, and κ ≥ τkσk

1 + 2γ̃G∗σk
‖K‖2.

3.2 The testing operator

To complement the primal-dual testing parameters in Assumption 3.4, we introduce
testing parameters λk, θk > 0 corresponding to the PDE updates in our method;
the first two lines of (22). We combine all of them into the testing operator Zk ∈
L(U∗ × W ∗ × X × Y ;U∗ × W ∗ × X∗ × Y ∗) defined by

Zk := diag
(
λk Id θk Id ϕk InX ψk+1 InY

)
. (23)

Recalling Mk and Zk from (21) and (23), thanks to Assumption 3.4, we have

ZkMk = diag

(
0 0

(
ϕk InX −ηk InX K �

−ηk InY K ψk+1 InY

))
. (24)

Therefore,
Zk(Mk + �k) = Zk+1Mk+1 + Dk+1 (25)

for skew-symmetric

Dk+1:= diag

(
0 0

(
0 (ηk+1 + ηk) InX K �

−(ηk+1 + ηk) InY K 0

))

and �k ∈ L(U × W × X × Y ;U∗ × W ∗ × X∗ × Y ∗) satisfying

Zk�k = diag

(
0 0

(
2ηk γ̃F InX 2ηk InX K �

−2ηk+1 InY K 2ηk+1γ̃G∗ InY

))
. (26)

Assumption 3.4 ensures ZkMk to be positive semi-definite. The proof is exactly as
for the PDPS, see, e.g., [9], but we include it for completeness.

Lemma 3.5 Let k ∈ N and suppose Assumption 3.4 holds. Then

ZkMk ≥ diag (0, 0, ϕk(1 − κ) InX , ψk+1ε InY ) ≥ 0

for

ε:=1 − τkσk

κ(1 + 2γ̃G∗σk)
‖K‖2 > 0.
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Proof By Young’s inequality, for any v = (u, w, x, y),

〈ZkMkv|v〉 = ϕk‖x‖2X + ψk+1‖y‖2Y − 2ηk
〈
x, K �y

〉
X

≥ ϕk(1 − κ)‖x‖2X + ψk+1‖y‖2Y − κ−1ϕkτ
2
k ‖K �y‖2X .

Since ϕkτ
2
k = ηkτk = ψkσkτk = ψk+1σkτk/(1 + 2γ̃G∗σk), the claim follows. ��

3.3 Growth estimates andmonotonicity

We start by deriving a three-point monotonicity estimate for Hk . This demands the
somewhat strict bounds (27).

Lemma 3.6 Let k ∈ N. Suppose Assumptions 3.4, 3.1 and 3.3 hold and

γF ≥ γ̃F + εu + εw + λk+1πu + θk+1πw

ηk
, (27a)

γG∗ ≥ γ̃G∗ , (27b)

γB ≥ λk+1

λk
+ θk

λk
CQ + ηkS(w̄)

4εwλk
+ Cxμηk

2λk
, and (27c)

γB ≥ θk+1

θk
+ ηkS(ū)

4εuθk
+ Cxηk

2μθk
(27d)

for some εu, εw, μ > 0. Then Hk defined in (20) satisfies

〈ZkTk Hk(v
k+1)|vk+1 − v̄〉 ≥ 1

2
‖vk+1 − v̄‖2Zk�k

+(λk+1πu + θk+1πw)‖xk+1 − x̄‖2X − (λkπu + θkπw)‖xk − x̄‖2X
+λk+1‖uk+1 − ū‖2U − λk‖uk − ū‖2U + θk+1‖wk+1 − w̄‖2W − θk‖wk − w̄‖2W .

(28)

Proof For brevity we denote v = (u, w, x, y):=vk+1. Recall that v̄ = (ū, w̄, x̄, ȳ)
satisfies by Assumption 3.1 the optimality conditions (12). Since Algorithm 2.1 guar-
antees the first two lines of Hk to be zero through the choice of Mk in (21), introducing
qF := − ∇̄x B(ū, w̄) − K � ȳ ∈ ∂F(x̄) we expand

〈ZkTk Hk(v)|v − v̄〉 = ηk〈∂F(x) + ∇̄x B(u, w) + K �y, x − x̄〉X + ηk+1〈∂G∗(y) − Kx, y − ȳ〉Y
= ηk〈∂F(x) − qF , x − x̄〉X + ηk〈∇̄x B(u, w) − ∇̄x B(ū, w̄), x − x̄〉X

+ ηk+1〈∂G∗(y) − K x̄, y − ȳ〉Y + (ηk − ηk+1)〈K (x − x̄), y − ȳ〉Y .

Using (26) we also have

1

2
‖v − v̄‖2Zk�k

= ηk γ̃F‖x − x̄‖2X + (ηk − ηk+1) 〈K (x − x̄), y − ȳ〉Y
+ ηk+1γ̃G∗‖|y − ȳ‖2Y .
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We now use the (strong) monotonicity of F and G∗ with constants γF and γG∗ con-
tained Assumption 3.1 (i), as well as the splitting inequality Assumption 3.3 (iii).
Thus

〈ZkTk Hk(v)|v − v̄〉 ≥ 1

2
‖v − v̄‖2Zk�k

+ ηk(γF − γ̃F )‖x − x̄‖2X
− (λkπu + θkπw)‖xk − x̄‖2X
+ ηk+1(γG∗ − γ̃G∗)‖y − ȳ‖2Y
+ ηk〈∇̄x B(u, w) − ∇̄x B(ū, w̄), x − x̄〉X
+ (λkγB − θkCQ)‖u − ū‖2U − λk‖uk − ū‖2U
+ θkγB‖w − w̄‖2W − θk‖wk − w̄‖2W .

(29)

The Riesz equivalence (9), affine-linear-linear structure of Bx , Assumption 3.1 (iii)
and (iv), and Young’s inequality give

ηk〈∇̄x B(u, w) − ∇̄x B(ū, w̄), x − x̄〉X = ηk Bx (u, w, x − x̄) − ηk Bx (ū, w̄, x − x̄)

= ηk Bx (u, w, x − x̄) + ηk Bx (ū, w − w̄, x − x̄) − ηk Bx (ū, w, x − x̄)

= ηk Bxu(u − ū, w − w̄; x − x̄)

+ ηk Bx (ū, w − w̄; x − x̄) + ηk Bxu(u − ū, w̄; x − x̄)

≥ −ηk

(
S(ū)

4εu
+ Cxμ

2

)
‖w − w̄‖2W − ηk

(
S(w̄)

4εw

+ Cx

2μ

)
‖u − ū‖2U

− ηk(εu + εw)‖x − x̄‖2X
(30)

Combining (29) and (30), we obtain

〈ZkTk Hk(v)|v − v̄〉 ≥ 1

2
‖v − v̄‖2Zk�k

+ ηk+1(γG∗ − γ̃G∗ )‖y − ȳ‖2Y
+ ηk(γF − γ̃F − εu − εw)‖x − x̄‖2X − (λkπu + θkπw)‖xk − x̄‖2X
− λk‖uk − ū‖2U + λk

(
γB − θk

λk
CQ − ηkS(w̄)

4εwλk
− Cxμηk

2λk

)
‖u − ū‖2U

− θk‖wk − w̄‖2W + θk

(
γB − ηkS(ū)

4εuθk
− Cxηk

2μθk

)
‖w − w̄‖2W .

The claim now follows by applying (27). ��
We now simplify and interpret (27).

Lemma 3.7 Suppose γF > γ̃F > 0 as well as γG∗ ≥ γ̃G∗ ≥ 0 and that there exists
ω, t > 0 with ωηk+1 ≤ ηk for all k ∈ N, such that

γB ≥ ω−1+tCQ+ 2(1 + t−1)

ω(γF − γ̃F )2

(
S(ū)πw + tS(w̄)πu + 1

2

√
tπuπwCx (γF − γ̃F )

)
.

(31)
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Then there exist εu, εw, μ > 0 and, for all k ∈ N, λk, θk > 0 such that (27) holds.
Moreover

λkπu + θkπw = ηkω
γF − γ̃F

2
. (32)

Proof We take

λk :=t−1rπ−1
u ηk and θk :=rπ−1

w ηk for r := (γF − γ̃F )ω

2(t−1 + 1)
and ck :=ηk+1

ηk
.

(33)
These expressions readily give (32). We then take μ:=(tπu/πw)−1/2,

εu := S(ū)

S(ū) + tS(w̄)

γF − γ̃F

2
, and εw:= tS(w̄)

S(ū) + tS(w̄)

γF − γ̃F

2
.

Since both

λk+1πu + θk+1πw

ηk
= ckr(t

−1 + 1) = ckω
γF − γ̃F

2
≤ γF − γ̃F

2

and εu + εw = (γF − γ̃F )/2, (27a) is readily verified, while (27b) we have assumed.
Inserting λk, θk, ηk , and μ, we also rewrite (27c) and (27d) as

γB ≥ ck + tCQ + tS(w̄)πu

4εwr
+

√
tπuπwCx

2r
and γB ≥ ck + S(ū)πw

4εur
+

√
tπuπwCx

2r
.

After also inserting εu, εw, and r , and using ωck ≤ 1, these are readily verified by
(31). ��

Remark 3.8 Since ηk+1 ≥ ηk for convergent algorithms, i.e., ω−1 ≥ 1, letting ω = 1
and γ̃F = 0 in (31), we obtain at the solution (ū, w̄, x̄, ȳ) a fundamental “second order
growth” and splitting condition (via CQ , πu , and πw) that cannot be avoided by step
length parameter choices.

Our convergence proof is based based on the next Féjer-type monotonicity estimate
with respect to the iteration-dependent norms ‖ · ‖Zk M̃k

. Here M̃k ∈ L(U ×W × X ×
Y ;U∗ × W ∗ × X × Y ) modifies Mk defined in (21) as

M̃k :=Mk + diag
(
InU InW ϕ−1

k (λkπu + θkπw) IdX 0
)
. (34)

By (24) and Assumption 3.4, this satisfies

Zk M̃k = diag

(
λk InU θk InW

(
(ϕk + λkπu + θkπw) InX −ηk InX K �

−ηk InY K ψk+1 InY

))
. (35)
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Lemma 3.9 Suppose Assumptions 3.1 and 3.4 hold as does Assumption 3.3 and (27)
for k = 0, . . . , N. Given v0, let v1, . . . , vN−1 be produced by Algorithm 2.1. Then

1

2
‖vk+1 − v̄‖2

Zk+1 M̃k+1
+ 1

2
‖vk+1 − vk‖2ZkMk

≤ 1

2
‖vk − v̄‖2

Zk M̃k
(k = 0, . . . , N − 1)

(36)
where all the terms are non-negative.

Proof Lemma 3.6 gives the estimate

〈ZkTkHk(v
k+1)|vk+1 − v̄〉 ≥ 1

2
‖vk+1 − v̄‖2Zk�k

+(λk+1πu + θk+1πw)‖xk+1 − x̄‖2X − (λkπu + θkπw)‖xk − x̄‖2X
+λk+1‖uk+1 − ū‖2U − λk‖uk − ū‖2U + θk+1‖wk+1 − w̄‖2W − θk‖wk − w̄‖2W

= 1

2
‖vk+1 − v̄‖2

Zk+1(M̃k+1−Mk+1)+Zk�k
− 1

2
‖vk − v̄‖2

Zk (M̃k−Mk )
. (37)

By the implicit form (22) of Algorithm 2.1, −ZkMk(v
k+1 − vk) ∈ ZkTk Hk(v

k+1).
Thus (37) combined with the three-point identity (2) for the operator M = ZkMk

yields

1

2
‖vk − v̄‖2

Zk M̃k
≥ 1

2
‖vk+1 − v̄‖2

Zk+1(M̃k+1−Mk+1)+Zk(Mk+�k )
+ 1

2
‖vk+1 − vk‖2ZkMk

Therefore (36) follows by applying (25), i.e., Zk(Mk + �k) = Zk+1Mk+1 + Dk ,
where the skew symmetric term Dk does not contribute to the norms. Finally, we have
Zk M̃k ≥ ZkMk ≥ 0 by Lemma 3.5, proving the non-negativity of all the terms. ��

3.4 Main results

We can now state our main convergence theorems. In terms of assumptions, the only
fundamental difference between the accelerated O(1/N ) and the linear convergence
result is that the latter requires G∗ to be strongly convex and the former doesn’t. Both
require sufficient second order growth in terms of the respective technical conditions
(38b) or (41b). The step length parameters differ.

Theorem 3.10 (Accelerated convergence) SupposeAssumptions 3.1 and 3.3 hold with
γF > 0. Put γ̃G∗ = 0 and pick τ0, σ0, κ, t > 0 and 0 < γ̃F < γF satisfying

1 > κ ≥ τ0σ0‖K‖2 and (38a)

γB ≥ ω−1
0 + tCQ + 2(1 + t−1)

ω0(γF − γ̃F )2

(
S(ū)πw + tS(w̄)πu + 1

2

√
tπuπwCx (γF − γ̃F )

)
,

(38b)

where ω0 is defined as part of the update rules

τk+1:=τkωk, σk+1:=σk/ωk, and ωk :=1/
√
1 + 2γ̃Fτk (k ∈ N). (38c)
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Let {vk+1}k∈N be generated by Algorithm 2.1 for any v0 ∈ U ×W × X × Y . Then
xk → x̄ in X; uk → ū in U; and wk → w̄ in W, all strongly at the rate O(1/N ).

Proof Weuse Lemma 3.9, whose assumptionswe nowverify. Assumptions 3.1 and 3.3
we have assumed. As shown in [9, 37], Assumption 3.4 holds with ψk ≡ σ−1

0 τ0,ϕ0 =
1, and ϕk+1:=ϕk/ω

2
k . Moreover, {ϕk}k∈N grows at the rate �(k2). Hence

ηk+1 = ω−1
k ηk = √1 + 2γ̃Fτkηk ≤ ω−1

0 ηk for ω−1
0 = √1 + 2γ̃Fτ0.

Thus (38) verifies (31) so that Lemma3.7 verifies (27). Thuswemay apply Lemma3.9.
By summing its result over k = 0, . . . , N − 1, we get

1

2
‖vN − v̄‖2

ZN M̃N
≤ 1

2
‖v0 − v̄‖2

Z0 M̃0
. (39)

By (24), (35), and Lemma 3.5 we have

Zk M̃k ≥ ZkMk ≥ diag
(
λk InU θk InW ϕk(1 − κ) InX ψk+1ε InY

) ≥ 0. (40)

where ε:=1−τkσkκ
−1‖K‖2 = 1−τ0σ0κ

−1‖K‖2 > 0 by assumption. ByLemma 3.7,
{λk}k∈N and {θk}k∈N grow at the same �(k2) rate as {ϕk}k∈N. Therefore (39) and (40)
establish ‖xk − x̄‖2X → 0 as well as ‖uk − ū‖2U and ‖wk − w̄‖2W → 0, all at the rate
O(1/N 2). The claim follows by removing the squares. ��
Theorem 3.11 (Linear convergence) SupposeAssumptions 3.1 and 3.3 hold with both
γF > 0 and γG∗ > 0. Pick τ, κ, t > 0, 0 < γ̃F ≤ γF , 0 < γ̃G∗ ≤ γG∗ satisfying

1 > κ ≥ τ 2γ̃ −1
G∗ γ̃F‖K‖2 and (41a)

γB ≥ ω−1 + tCQ + 2(1 + t−1)

ω(γF − γ̃F )2

(
S(ū)πw + tS(w̄)πu + 1

2

√
tπuπwCx (γF − γ̃F )

)

(41b)

for

σ :=γ̃ −1
G∗ γ̃Fτ and ω:=1/(1 + 2γ̃Fτ) = 1/(1 + γ̃G∗σ).

Take τk ≡ τ , σk ≡ σ , and ωk ≡ ω. Let {vk+1}k∈N be generated by Algorithm 2.1
for any v0 ∈ U × W × X × Y . Then xk → x̄ in X; uk → ū in U; and wk → w̄ in
W, all strongly at a linear rate.

Proof As shown in [9, 37], Assumption 3.4 is satisfied for ϕ0 = 1, ψ0 = σ−1τ ,
ϕk+1:=ϕk/ωk , and ψk+1:=ψk/ωk . Moreover, both {ϕk}k∈N and {ψk}k∈N grow expo-
nentially and ηk+1 ≤ ω−1ηk . Thus (41) verifies (31) with c = ω−1 so that Lemma 3.7
verifies (27). The rest follows as in the proof of Theorem 3.10. ��

Theorems 3.10 and 3.11 show global convergence, but may require a very con-
stricted dom F through the constant Cx in Assumption 3.1 (iv). In the appendix of the
arXiv version of this manuscript we relax the constant by localizing the convergence.
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Remark 3.12 (Linear and sufficiently linear PDEs) For linear PDEs, i.e., when Bx

does not depend on u, we have Cx = 0 and S(w̄) = 0, as observed in Remark 3.2.
Moreover, for typical solvers for the adjoint PDE, we would have πw = 0, as Bu does
not then depend on x . In that case, by taking t→0, (38b) (and likewise (41b)) reduces
to γB > ω−1

0 . Practically this means that the convergence rate factor ω−1
0 has to be

bounded by the inverse contractivity factor γB of the linear system solver. If γB > 1,
as we should have, this condition can be satisfied by suitable choices of γ̃F ∈ (0, γF ]
and γ̃G∗ . By extension then, the conditions (38b) and (41b) are satisfiable for small t
when the PDE is “sufficiently linear”.

Remark 3.13 (Weak convergence) It is possible to prove weak convergence when ω ≡
1 and τ ≡ τ0, σ ≡ σ0 satisfy (38). The proof is based on an extension ofOpial’s lemma
to the quantitative Féjer monotonicity (36). We have not included the proof since it
is technical, and does not permit reducing assumptions from those of Theorems 3.10
and 3.11. We refer to [6] for the corresponding proof for the NL-PDPS.

4 Splittings and partial differential equations

We now prove Assumption 3.1 and derive explicit expressions for the operator ∇̄x B
from (9). We do this in Sect. 4.1 for some sample PDEs. Then in Sect. 4.2 we study
the satisfaction of Assumption 3.3 for Gauss–Seidel and Jacobi splitting, as well as
a simple infinite-dimensional example without splitting. We briefly discuss a quasi-
conjugate gradient splitting to illustrate the generality of our approach. We conclude
with a discussion of the convergence theory and discretisation in Sect. 4.3.

4.1 Partial differential equations and Riesz representations

Let Symd ⊂ R
d×d stand for the symmetric matrices. Recall that in Example 2.2, to

ensure the continuity of B, we needed in practise that at least one of the spacesU ,W ,
or X be finite-dimensional. The same will be the case here. Accordingly, with� ⊂ R

d

a Lipschitz domain, we take

x = (A, c) ∈ X :=X1 × X2 for subspaces X1 ⊂ L2(�;Symd) and X2 ⊂ L2(�),

(42a)
as well as U ⊂ H1(�) and W ⊂ H1

0 (�) × H1/2(∂�) such that

B(u, w; x):=Bx (u, w; x) + Bconst(u, w) for u ∈ U , w ∈ W , x ∈ X (42b)

is continuous, where, writing w = (w�,w∂),

Bx (u, w; x):=〈∇u, A∇w�〉L2(�) + 〈cu, w�〉L2(�) and (42c)

Bconst(u, w):=〈trace∂� u, w∂ 〉L2(∂�). (42d)

Thus Bconst models the nonhomogeneous Dirichlet boundary condition u = g on

∂� for some g ∈ H− 1
2 (∂�). Correspondingly we take for some L0 ∈ H−1(�) the
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right-hand-side

Lw:=L0w� + 〈g, w∂〉L2(∂�). (42e)

The next lemma verifies the PDE components of Assumption 3.1. Afterwards we
look at particular choices of X1 and X2. We could also take W = H1(�), w = w�,
L = L0, and Bconst = 0 to model Neumann boundary conditions, and the result would
still hold. In the range spaces of L p(�;Rd), W 1,p(�), and L p(�;Rd×d), we use the
Euclidean norm in Rd and the spectral norm ‖ · ‖2 in Rd×d .

Lemma 4.1 Assume (42) and that dom F ⊂ L∞(�;Rd×d) × L∞(�). Then:

(ii′) Assumption 3.1 (ii) holds if there exists λ ∈ (0, 1) such that

A(ξ) ≥ λ Id and |c(ξ)| ≥ λ for all ξ ∈ � and (A, c) ∈ (X1 × X2) ∩ dom F .

Suppose then that (12) is solved by v̄ = (ū, w̄, x̄, ȳ) with x̄ = ( Ā, c̄) ∈
dom F ⊂ (X1 × X2), ū ∈ H1(�), w̄ = (w̄�, w̄∂) ∈ H1

0 (�) × H1/2(∂�). If
‖ū‖W 1,∞(�), ‖w̄‖W 1,∞(�) < ∞, and ȳ ∈ Y for a Hilbert space Y , then also:

(iii′) Assumption 3.1 (iii) holds withS(ū) = ‖ū‖2
W 1,∞(�)

andS(w̄) = ‖w̄�‖2
W 1,∞(�)

.

(iv′) Assumption 3.1 (iv) holds with

Cx = sup
(A,c)∈dom F

‖A − Ā‖L∞(�;Rd×d ) + ‖c − c̄‖L∞(�).

Remark 4.2 On bounded � the condition ‖ū‖W 1,∞(�) < ∞ is stronger than ū ∈
H1(�). We include both to emphasise that the latter defines the Hilbert space structure
and topology that we generally work with, while the former is a technical restriction
that arises from our proofs. Under appropriate smoothness conditions on x̄ , the bound-
ary of �, as well as the boundary data, standard elliptic theory proves that ū ∈ H1(�)

is a classical solution, hence Lipschitz and W 1,∞(�) on the whole domain; see, e.g.,
[11].

Proof For (ii′), we identify g ∈ H−1/2(∂�)with ĝ ∈ H1/2(∂�) by the Rieszmapping
and fix û ∈ H1(�)with trace∂� û = ĝ. This is possible by the definition of H1/2(∂�).
By the Lax–Milgram lemma there is then a unique solution v ∈ H1

0 (�) to

〈∇v, A∇w�〉L2(�) + 〈cv,w�〉L2(�) = L0w� − Bx (û, w�; x) for all w� ∈ H1
0 (�),

Now u = v + û satisfies B(u, w; x) = Lw and is independent of the choice of û.
Analogously we prove the existence of a solution to the adjoint equation.

To prove (iv), pick arbitrary u ∈ H1(�), w = (w�,w∂) ∈ H1
0 (�) × H1/2(∂�),

and x = (A, c) ∈ (X1 × X2)∩ dom F . Hölder’s inequality and the symmetry of A(ξ)

give

〈∇u, A∇w�〉L2(�) ≤ ‖∇w�‖L2(�;Rd )

(∫
�

‖A(ξ)∇u(ξ)‖22 dξ

)1/2

≤ ‖∇w�‖L2(�;Rd )‖A‖L∞(�;Rd×d )‖∇u‖L2(�).
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Therefore, as claimed

Bx (u, w; x − x̄) ≤ ‖A − Ā‖L∞(�;Rd×d )‖∇u‖L2(�;Rd )‖∇w�‖L2(�;Rd )

+ ‖c − c̄‖L∞(�)‖u‖L2(�)‖w�‖L2(�)

≤ (‖A − Ā‖L∞(�;Rd×d ) + ‖c − c̄‖L∞(�)

)‖u‖H1(�)‖w�‖H1(�)

≤ Cx‖u‖H1(�)‖w�‖H1(�).

For (iii′), using Hölder’s twice inequality and the symmetry of A(ξ), we estimate

〈∇u, A∇w�〉L2(�) ≤ ‖∇w�‖L∞(�;Rd )

∫
�

‖A(ξ)∇u(ξ)‖2 dξ

≤ ‖∇w�‖L∞(�;Rd )‖A‖L2(�;Rd×d )‖∇u‖L2(�).

Hence

Bx (u, w̄; x) ≤ ‖A‖L2(�;Rd×d )‖∇u‖L2(�;Rd )‖∇w̄�‖L∞(�;Rd )

+ ‖c‖L2(�)‖u‖L2(�)‖w̄�‖L∞(�)

≤ (‖∇w̄�‖L∞(�;Rd ) + ‖w̄�‖L∞(�)

)‖u‖H1(�)

(‖A‖L2(�;Rd×d ) + ‖c‖L2
)

= ‖w̄�‖W 1,∞(�)‖u‖H1(�)‖x‖X .

Thus we may take as claimed S(w̄) = ‖w̄�‖2
W 1,∞ , and analogously S(ū) = ‖ū‖2

W 1,∞ .
��

To describe ∇̄x B we denote the double dot product and the outer product by

A : Ã =
∑
i j

Ai j Ãi j , and v ⊗ w = vwT for A, Ã ∈ R
d×d and v,w ∈ R

d

Observe the identity vT Aw = A : (v ⊗ w).

Example 4.3 (General case) In the fully general case, formally and without regard for
the solvability of the PDE (5), we equip X1 = L2(�;Rd×d) with the inner product
〈A1, A2〉X1 := ∫

�
A1(ξ) : A2(ξ) dξ and X2 = L2(�;R) with the standard inner

product in L2(�;R). Then for all u ∈ U , w ∈ W , and (d, h) ∈ X1 × X2, we have

Bx (u, w; (d, h)) = 〈∇u, d∇w〉L2(�) + 〈hu, w〉L2(�) = 〈∇u ⊗ ∇w, d〉X1 + 〈uw, h〉X2 .

Therefore the Riesz representation ∇̄x B has pointwise in � the expression

∇̄x B(u, w) =
(∇u ⊗ ∇w

uw

)
.

The constant Cx is as provided by Lemma 4.1.
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Example 4.4 (Scalar function diffusion coefficient) Let then X1:={ξ �→ a(ξ) Id |
a ∈ L2(�)}. X1 is isometrically isomorphic with L2(�) since the spectral norm
‖a(ξ) Id ‖2 = |a(ξ)|. We may therefore identify X1 and L2(�). We also observe that
the term 〈∇u, A∇w〉L2(�) = 〈a,∇u · ∇w〉X1 . Hence, pointwise in �,

∇̄x B(u, w) =
(∇u · ∇w

uw

)
.

According to Lemma 4.1, the constant

Cx = sup
(a,c)∈dom F

‖a − ā‖L∞(�) + ‖c − c̄‖L∞(�).

Example 4.5 (Spatially uniform coefficients) Let X1:={ξ �→ Ã | Ã ∈ Symd} ⊂
L2(�;Symd) and X2:={ξ �→ c̃ | c̃ ∈ R} ⊂ L2(�) consist of constant functions A :
ξ �→ Ã and c : ξ �→ c̃ on the bounded domain �. Then ‖x‖X1×X2 = |�|1/2(‖ Ã‖2 +
|c̃|) for all x = (A, c) ∈ X1 × X2. We may thus identify X1 and X2 with R

d×d and
R if we weigh the norms by |�|1/2. We have

〈∇u, A∇w〉L2(�) =
∫

�

Ã : ∇u ⊗ ∇w dξ = Ã :
∫

�

∇u ⊗ ∇w dξ.

Thus

∇̄x B(u, w) =
(∫

�
∇u ⊗ ∇w dξ∫

�
uw dξ

)
.

According to Lemma 4.1, the constant

Cx = sup
(A,c)∈dom F

‖ Ã − ˜̄A‖2 + |c̃ − ˜̄c|.

4.2 Splittings

We now discuss linear system splittings and Assumption 3.3. Throughout this subsec-
tion we assume that

B(u, w; x) = 〈Axu + fx |w〉 and Lw = 〈b|w〉 (43)

with Ax ∈ L(U ;W ∗) invertible for x ∈ X , and fx , b ∈ W ∗. Then for fixed x ∈ X the
weak PDE (5) and the adjoint Bu( · , w, x) = −Q′(u) reduce to the linear equations

Axu = b − fx and A∗
xw = −Q′(u),

where A∗
x ∈ L(W ;U∗) is the dual product adjoint of Ax restricted to W ↪→ W ∗∗.
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The basic splittings
The next lemma helps to prove Assumption 3.3 subject to a control on the rate of

dependence of A on x . In its setting, with Ax = Nx + Mx with Nx “easily” invertible,
Lines 3 and 4 of Algorithm 2.1 are given by (18).

Theorem 4.6 In the setting (43), suppose Assumption 3.1 holds and

‖Ax−Ax̃‖L(U ;W ∗) ≤ L A‖x−x̃‖X and ‖ fx− fx̃‖W ∗ ≤ L f ‖x−x̃‖X (x, x̃ ∈ dom F)

(44)
for some L A ≥ 0. Split Ax = Nx + Mx with Nx invertible, and assume there exist
α ∈ [0, 1) and γN > 0 such that all

‖N−1
x Mx‖L(U ;U ), ‖N−1,∗

x M∗
x ‖L(W ;W ) ≤ α and γN‖N−1

x ‖L(W ∗;U ) ≤ 1 (45)

for all x ∈ dom F. Also suppose ∇Q is LQ-Lipschitz. For any γB ∈ (1, 1/α2),
λ ∈ (0, 1), and β > 0, set

πw =
(
1 + β + α2γB

λ(1 − α2γB)

)
γB L

2
A‖w̄‖2W
γ 2
N

,

CQ =
(
1 + β

β
+ α2γB

(1 − λ)(1 − α2γB)

)
γB L

2
Q

γ 2
N

, and

πu =
(
1 + β + α2γB

λ(1 − α2γB)

)
γB L

2
A‖ū‖2U
γ 2
N

+
(
1 + β

β
+ α2γB

(1 − λ)(1 − α2γB)

)
γB L

2
f

γ 2
N

.

Let 
k(u, w, x) = 〈Mxu|w〉 and ϒk(u, w, x) = 〈u|M∗
xw〉. Then Assumption 3.3

holds for all k ∈ N with {vk+1}∞k=0 generated by Algorithm 2.1 for any v0 ∈ U ×
W × X × Y .

Proof Assumption 3.3 (i) holds by construction, and (ii) by the assumed invertibility
of Nx for x ∈ dom F . We only consider the second inequality of (iii) for ϒ , the proof
of the first inequality for 
 being analogous with −Q′(u) replaced by b− fx . We thus
need to prove

‖wk − w̄‖2W ≥ γB‖wk+1 − w̄‖2W − CQ‖uk+1 − ū‖2U − πB‖xk − x̄‖2X . (46)

Using (18) with A∗̄
x w̄ = −Q′(ū) and A∗

xk
w̄ = N∗

xk
w̄ + M∗

xk
w̄, we expand

wk+1 − w̄ = N−1,∗
xk

(−Q′(uk+1) − M∗
xkw

k) − w̄

= N−1,∗
xk

[Q′(ū) − Q′(uk+1)] + N−1,∗
xk

(A∗̄
x − A∗

xk )w̄ − N−1,∗
xk

M∗
xk (w

k − w̄).

123



B. Jensen, T. Valkonen

Expanding ‖wk+1−w̄‖2W and applying the triangle inequality, and Young’s inequality
thrice, yields

‖wk+1 − w̄‖2W ≤
(
1 + α2γB

λ(1 − α2γB)
+ β

)
‖N−1,∗

xk
(A∗̄

x − A∗
xk )w̄‖2W

+ 1

α2γB
‖N−1,∗

xk
M∗

xk (w
k − w̄)‖2W

+
(
1 + β

β
+ α2γB

(1 − λ)(1 − α2γB)

)
‖N−1,∗

xk
[Q′(uk+1) − Q′(ū)]‖2W .

Note that the first part of (44) and the second part (45) hold also for the adjoints A∗
x and

N∗
x in the corresponding spaces. Therefore, we establish ‖N−1,∗

xk
(A∗̄

x − A∗
xk

)w̄‖2W ≤
γ −2
N L2

A‖w̄‖2W‖x̄ − xk‖2X , ‖N−1,∗
xk

[Q′(uk+1) − Q′(ū)]‖2W ≤ γ −2
N L2

Q‖uk+1 − ū‖2X ,
and ‖N−1,∗

xk
M∗

xk
(wk − w̄)‖2W ≤ α2γB‖wk − w̄‖2W . Taking πw and CQ as stated, we

therefore obtain (46). ��
For our first, infinite-dimensional example of the satisfaction of the conditions of

Theorem 4.6, and hence of Assumption 3.3, note that we have in general

‖N−1
x ‖L(W ∗;U ) = sup

w∗
‖N−1

x w∗‖U
‖w∗‖W ∗

= sup
u

‖u‖U
‖Nxu‖W ∗

= sup
u

inf
w

‖u‖U‖w‖W
〈Nxu|w〉

and

‖Ax − Ax̃‖L(U ;W ∗) = sup
u

‖[Ax − Ax̃ ]u‖W ∗

‖u‖U = sup
u,w

〈[Ax − Ax̃ ]u|w〉
‖u‖U‖w‖W .

Example 4.7 (No splitting of a weighted Laplacian in H1) Let U = W = H1
0 (�),

X = R, and Nx = Ax = x∇∗∇ ∈ L(H1
0 (�); H−1(�)) be the Laplacian weighted

by x ∈ (0,∞). Then

‖N−1
x ‖L(W ∗;U ) = sup

u
inf
w

‖u‖H1(�)‖w‖H1(�)

x〈∇u,∇w〉L2(�)

≤ sup
u

‖u‖2
H1(�)

x‖∇u‖2
L2(�)

.

Therefore, assuming inf dom F > 0, we can in (45) take γN = infx∈dom F xλ for λ

the infimum of the spectrum of the Laplacian as a bounded self-adjoint operator in
H1
0 (�); see, e.g., [25, Theorem 9.2-1]. Clearly also α = 0 due to Mx = 0. For (44),

we get

‖Ax − Ax̃‖L(U ;W ∗) = sup
u,w

(x − x̃)
〈∇u,∇w〉L2(�)

‖u‖H1(�)‖w‖H1(�)

= sup
u

(x − x̃)
‖∇u‖2

L2(�)

‖u‖H1(�)

.

Thus we can take LA as the supremum of the spectrum of the Laplacian as a bounded
self-adjoint operator in H1

0 (�).
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In the following examples, we take U = W = R
n with the standard Euclidean

norm. Then (45) can be rewritten as the spectral radius bound and positivity condition

ρ(N−1
x Mx ), ρ(N−1,∗

x M∗
x ) ≤ α and N∗

x Nx ≥ γ 2
N .

The first example also works in general spaces, as seen in a special case in Exam-
ple 4.7, but γN and L A depend on the norms chosen. Theorem 4.6 now shows that
Assumption 3.3 holds.

Example 4.8 (No splitting) If Nx = Ax ∈ R
n×n , (45) holds with α = 0 and γN the

minimal eigenvalue of Ax , assumed symmetric positive definite. Theorem 4.6 now
shows that Assumption 3.3 holds, where for any γB > 1 and β > 0, we can take
πw = (1 + β)γBγ −2

N L2
A‖w̄‖2, CQ = (1 + β−1)γBγ −2

N L2
Q, and πu = γBγ −2

N [(1 +
β)L2

A‖ū‖2 + (1 + β−1)L2
f ].

Example 4.9 (Jacobi splitting) If Nx is the diagonal of Ax ∈ R
n×n , we obtain Jacobi

splitting. The first part of (45) reduces to strict diagonal dominance, see [12, §10.1].
The second part always holds and Nx is invertible when the diagonal of Ax has only
positive entries. Then γN is the minimum of the diagonal values. Theorem 4.6 now
shows that Assumption 3.3 holds.

Example 4.10 (Gauss–Seidel splitting) If Nx is the lower triangle and diagonal of
Ax ∈ R

n×n , we obtain Gauss–Seidel splitting. The first part of (45) holds for some
α ∈ [0, 1)when Ax is symmetric and positive definite; compare [12, proof of Theorem
10.1.2]. The second part holds for some γN when Nx is invertible. Theorem 4.6 now
shows that Assumption 3.3 holds.

Example 4.11 (Successive over-relaxation) Based on any one of Examples 4.8 to 4.10,
take Ñx = (1 + r)Nx and M̃x = Mx − r Nx for some r > 0. Then, for small enough
γB , all πu, πw,CQ→0 as r →∞.

Indeed, Ñ−1
x M̃x z = λ̃z if and only if Mxz = ((1 + r)λ̃ + r)Nx z, which gives the

eigenvalues λ̃ of Ñ−1
x M̃x as λ̃ = (λ − r)/(1 + r) for λ an eigenvalue of N−1

x Mx . So,
for large r , we can in (45) take α = (r + ρ)/(1 + r) and γÑ = γN (1 + r), where
ρ:=ρ(N−1

x Mx ) < 1. Now, for every large enough r > 0, for γB = (1+ α−2)/2 > 1,
we have

α2

γ 2
Ñx

(1 − α2γB)
= 2α2

γ 2
Ñx

(1 − α2)
= 2(1 + r)2α2

(1 + r)2γ 2
Nx

((1 + r)2 − (1 + r)2α2)

= 2(r + ρ)2

(1 + r)2γ 2
Nx

((1 + r)2 − (r + ρ)2)
= 2(r + ρ)2

(1 + r)2γ 2
Nx

(1 − ρ2 + 2(1 − ρ)r)
.

Since 0 ≤ ρ < 1, the right hand side tends to zero as r →∞. Since also 1/γ 2
N
→0,

and γB > 1, Theorem 4.6 now shows that Assumption 3.3 holds with πu, πw,CQ→0
as r →∞.

Quasi-conjugate gradients
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With fx = 0 for simplicity, motivated by the conjugate gradient method for solving
Axu = b, see, e.g., [12], we propose to perform on Line 3 of Algorithm 2.1, and
analogously Line 4 the quasi-conjugate gradient update

{ rk :=b − Axk u
k, zk+1:= − 〈pk, Axk r

k〉/‖pk‖2Axk
,

pk+1:=rk + zk+1 pk, tk+1:=〈pk+1, rk〉/‖pk+1‖2Axk
, uk+1:=uk + tk+1 pk+1.

(47)
For standard conjugate gradients Axk ≡ A permits a recursive residual update

optimization that we are unable to perform. We have 〈Axk p
k+1, pk〉 = 0 for all k,

although no “A-conjugacy” relationship necessarily exists between pk+1 and p j for
j < k.
The next lemma molds the updates (47) into our overall framework.

Lemma 4.12 The update (47) corresponds to Line 3 of Algorithm 2.1 with


k(u, · , x) =
[
Id−‖pk+1‖−2

Ax
Ax

(
pk+1 ⊗ pk+1

)]
(Axu

k − b) (u ∈ U ). (48)

for pk+1 = rkx + zk+1
x pk for zk+1

x = −〈pk, Axrkx 〉/‖pk‖2Ax
and rkx :=Axuk − b.

Proof Indeed, expanding tk+1, the u-update of (47) may be rewritten as

uk+1 − uk = ‖pk+1‖−2
Axk

(pk+1 ⊗ pk+1)rk .

Applying the invertible matrix Axk and expanding rk , this is

Axk (u
k+1 − uk) = −‖pk+1‖−2

Axk
Axk (p

k+1 ⊗ pk+1)(Axk u
k − b),

and, adding Axk u
k − b on both sides, further

Axk u
k+1 − b = [Id−‖pk+1‖−2

xk
Axk (p

k+1 ⊗ pk+1)](Axk u
k − b).

Since B(uk+1, · ; xk) = 〈Axk u
k+1, · 〉, and L( · ) = 〈b, · 〉, the claim follows. ��

Unless Ax is independent of x , a simple approach as in Theorem 4.6 can only
verify Assumption 3.3 with γB < 1. We hence leave the verification of convergence
of Algorithm 2.1 with quasi-conjugate gradient updates to future research.

4.3 Discussion

Before we embark on numerical experiments, it is time to make a few unifying obser-
vations about the disparate results above, with regard to the main conditions (38b) and
(41b) of the convergence Theorems 3.10 and 3.11, and their connection to the funda-
mentally discrete viewpoint of Examples 4.9 and 4.10. As we have already noted in
Remark 3.12,
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(i) The main conditions (38b) and (41b) are easily satisfied for linear PDEs, i.e.,
when Bx does not depend on u. In Sect. 4.2, this corresponds to Ax = A (while
fx may still depend on x). The only condition given in Remark 3.12 was that
πw = 0, which is satisfied in Examples 4.9 to 4.8 due to L A = 0.

For linear PDEs,S(w̄) = 0. Together with πw = 0, this causes alsoS(ū) and πu to
disappear from the convergence conditions. All of these quantities might depend on
the discretisation.

As we have seen in Sect. 4.1, S(ū) and S(w̄) require the use of ∞-norm bounds on
the solutions, even when the underlying space is Hk . Such bounds may not always
hold in infinite dimensions (however, see Remark 4.2), although they do always hold
in finite-dimensional subspaces. In our numerical experiments, we have, however, not
observed any grid dependency of S(ū) and S(w̄) (calculated a posteriori, after a very
large number of iterations).

On a more negative note, with U = W = R
n(h,d) equipped with the standard

Euclidean norm, consider Ax = −x�h for a scalar x with �h a finite differences
discretisation of the Laplacian on a d-dimensional square grid of cell width h and
n(h, d) nodes. Then, for both Jacobi and Gauss–Seidel splitting, as well as the trivial
splitting (gradient descent) Nx ∝ Id, the spectral radius ρ(N−1

x Mx )→1 as h→0; see,
e.g., [26, Chapter 4.2.1]. By simple numerical experiments, L2

A/γ 2
N nevertheless stays

roughly constant, so the result is that πu, πw →∞ as h→0. For “no splitting”, i.e.,
Nx = Ax , instead L2

A/γ 2
N →∞ due to the worsening condition number of �h . This

latter negative result is, however, dependent on taking U = W = R
n(h,d) with the

standard Euclidean norm: in Example 4.7 we showed that “no splitting” is applicable
to the same problem in H1. It is, therefore, an interesting question for future research,
whether a change of norms would remove the grid dependency of Jacobi and Gauss–
Seidel. Our guess is that it would not.

The above indicates that, for nonlinear PDEs, whether our methods even conver-
gence, can depend on the level of discretisation. Nevertheless, to help comes the
successive over-relaxation of Example 4.11, which shows that

(ii) By letting the over-relaxation parameter r →∞, we get πu, πw,CQ→0, and
therefore may be able to obtain convergence (with a comparable iteration count)
for any magnitude of S(ū), S(w̄).

With over-relaxation γB→1 as r →∞, so even then, to satisfy (38b) and (41b), it
is necessary to have very small Cx . However,

(iii) In Sects. 3 and 4.1, we have boundedCx through dom F , obtaining global conver-
gence when (38b) and (41b) hold. With a more refined analysis, it is possible to
make Cx arbitrary small by sufficiently good initialisation, i.e., by being content
with mere local convergence.

We include a sketch of this analysis in an appendix of the arXiv version of this
manuscript.

Finally, although convergence rates (O(1/N 2) or linear) are unaffected by the
discretisation level, constant factors of convergence depend on Zk M̃k through the
bound (39). This operator, written out in (35), depends on the constants πu and πw.
They inversely scale the magnitude of the testing parameters λk and θk as chosen in
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(33). By (32), the term ϕk + λkπu + θkπw in (35) is, however, independent of πu and
πw. Smaller πu and πw are, hence, better for the convergence of u andw (by weighing
down the x and y initialisation errors on the right hand side of (39)), and higher πu and
πw are better for the convergence of x and y (by weighing down u and w initialisation
errors). Even for linear PDEs, therefore

(iv) Convergence speed may depend on the level of discretisation through the x-
sensitivity factors πu and πw of the splitting method for the PDE.

This is to be expected: the linear system solvers that Sect. 4.2 is based on, are fun-
damentally discrete, and their convergence depends on the eigenvalues of N−1

x Mx and
Nx . In “standard” optimisation methods, the dimensionally-dependent linear system
solver is taken as a black box, and its computational cost is hidden from the estimates
for the optimisation method. The estimates for our method, by contrast, include the
solver.

5 Numerical results

We now illustrate the numerical performance of Algorithm 2.1. We first describe our
experimental setup, and then discuss the results.

5.1 Experimental setup

The PDEs in our numerical experiments take one of the forms of Sect. 4.1 on the
domain � = [0, 1]× [0, 1] with nonhomogeneous Dirichlet boundary conditions. We
discretize the domain as a regular grid and the PDEs by backward differences. We use
both a coarse and a fine grid.

The function G and the PDE vary by experiment, but in each one we take the
regularization term for the control parameter x and the data fitting term as

F(x):=α

2
‖x‖2L2(�;Rd×d )×L2(�)

+ δ[λ,λ−1](x) and Q(u):=β̂

m∑
i=1

‖ui − zi‖2L2(�)

(49)

for some α, β, λ > 0 as well as β̂:=β/(2‖z̄‖2
L2(�)

) where z̄ = 1
m

∑m
i=1 zi is the

average of the measurement data zi . The norms here are in function spaces, but in the
numerical experiments the variables are, of course, taken to be in a finite-dimensional
(finite element) subspace.

The variables ui correspond to multiple copies of the same PDE with differ-
ent boundary conditions ui = fi on ∂�, (i = 1, . . . ,m), for the same control x .
Parametrizing ∂� by ρ : (0, 1) → ∂�, we take as boundary data

f2 j−1(ρ(t)) = cos(2π j t) and f2 j (ρ(t)) = sin(2π j t), ( j = 1, . . . ,m/2).

(50)
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To produce the synthetic measurement zi , we solve for ûi the PDE corresponding
to the experiment with the ground truth control parameter x̂ = ( Â, ĉ) and boundary
data fi . To this we add Gaussian noise of standard deviation 0.01‖ûi‖L2(�) to get zi .

We next describe the PDEs for each of our experiments.

Experiment 1 (Scalar coefficient) In our first numerical experiment, we aim to deter-
mine the scalar coefficient c ∈ R for the PDEs

{
−�ui + cui = 0 in�,

ui = fi on ∂�,
(51)

where i = 1, . . . ,m. For this problem we choose G(Kx) = 0. Thus the objective is

min
u,c

J (x):=α

2
‖c1‖2L2(�)

+ δ[λ,λ−1](c) + β̂

m∑
i=1

‖ui − zi‖2L2(�)
subject to (51).

(52)

Our parameter choices can be found in Table 1.
With u = (u1, . . . , um) ∈ Um ⊂ H1(�)m and w = (w1,�, . . . , wm,�,w1,∂ , . . . ,

wm,∂ ) ∈ Wm ⊂ H1
0 (�)m × H1/2(∂�)m , for the weak formulation of (51) we take

B(u, w; c) =
m∑
i=1

(〈∇ui ,∇wi,�〉L2(�) + c〈ui , wi,�〉L2(�) + 〈trace∂� ui , wi,∂ 〉L2(∂�)

)

and

Lw =
m∑
i=1

〈 fi , wi,∂ 〉L2(∂�). (53)

Then ∇̄x B(u, w) =∑m
i=1〈ui , wi,�〉L2(�) following Example 4.5.

For data generation we take ĉ = 1.0. Since we are dealing with an ill-posed inverse
problem, an optimal control parameter c̄ for (52) does not in general equal ĉ. Therefore,
to compare algorithm progress, we take as surrogate for the unknown c̄ the iterate
c̃A:=c50,000 on the coarse grid and c̃B :=c500,000 on the fine grid, each computed using
Algorithm 2.1 without splitting.

The next theorem verifies the basic structural conditions of the convergence The-
orems 3.10 and 3.11. The splitting conditions contained Assumption 3.3 are ensured
through Example 4.9 (Jacobi), 4.10 (Gauss–Seidel), or 4.8 (no splitting).

Theorem 5.1 Let X = R; U a finite-dimensional subspace of H1(�); and W a finite-
dimensional subspace of H1

0 (�) × H1/2(∂�). Let F and Q be given by (49) along
with the PDE (51) and the boundary conditions fi defined as in (50). Take G = 0.
Then Assumption 3.1 holds.
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Proof The chosen F , Q and either G satisfy Assumption 3.1(i). The boundary con-
ditions fi ∈ H1/2(∂�) along with the constraint x ∈ [λ, λ−1] ensure the condition
Lemma 4.1(ii′). In the discretized setting, also (iii′) and (iv′) also hold. In conclusion,
Lemma 4.1 verifies Assumption 3.1. ��
Remark 5.2 It remains to verify (38) or (41), depending on the convergence theorem
used. The condition (38a) is readily verified by appropriate choice of the primal and
dual step length parameters τ0, σ0 > 0. We also take γ̃F = 0 (slightly violating the
assumptions), so that ωk ≡ 1, and τk ≡ τ0 and σk ≡ σ0. The condition (38b) (and
likewise (41b) for linear convergence) is very difficult to verify a priori for nonlinear
PDEs, as it depends on the knowledge of a solution to the optimisation problem through
S(ū) and S(w̄). This is akin to the difficulty of verifying (a priori) a positive Hessian
at a solution for standard nonconvex optimisation methods. Hence we do not attempt
to verify (38b).

Experiment 2 (Diffusion + scalar coefficient) In this experiment we aim to determine
the coefficient function a : � → R and scalar c ∈ R for the group of PDEs

{
−∇ · (a∇ui ) + cui = 0 in�,

ui = fi on ∂�,
(54)

where i = 1, . . . ,m. The optimization problem then is

min
x=(a,c)

J (x) = δ[λ,λ−1](x) + β̂

m∑
i=1

‖ui − zi‖2L2(�)
+ γ ‖∇a‖1 subject to (54).

(55)

Note that, although we take the total variation of a, which is natural in the space
of functions of bounded variation, we consider a to lie in (as per Example 2.2 a
finite-dimensional subspace of) L2(�). Thus the total variation term has value +∞
in L2(�)\BV(�). Nevertheless, the term is weakly lower semicontinuous even in
L2 due to Poincaré’s inequalities (for example, [1, Theorem 3.44]), so the problem is
well-defined. Subdifferentiation in L2(�) is a slightly more delicate issue, but not a
problem for optimality conditions of problems of the type (55), as discussed in [38,
Remark 4.7]. Moreover, as said, in practise we work in a finite-dimensional subspace
that corresponds to the backward differences discretisation of the gradient in the total
variation term. The convergence of discretisations is discussed in [4].

For the weak formulation of (54) with w = (w1,�, . . . , wm,�,w1,∂ , . . . , wm,∂ ) ∈
Wm ⊂ H1

0 (�)m × H1/2(∂�)m , u = (u1, . . . , um) ∈ Um ⊂ H1(�)m , and x =
(a, c) ∈ X ⊂ L2(�) × R, we take L as in (53) and

B(u, w; x) =
m∑
i=1

(〈∇ui , a∇wi,�〉L2(�) + c〈ui , wi,�〉L2(�)

+〈trace∂� ui , wi,∂ 〉L2(∂�)

)
.
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Fig. 1 Performance of various splittings in the coarse grid Experiment 1

Fig. 2 Performance of various splittings in fine grid Experiment 1

Then ∇̄x B(u, w) = (∇̄x B1(w, u), ∇̄x B2(w, u)) takes on a mixed form with
∇̄x B1(w, u) = ∑m

i=1 ∇ui · ∇wi,� from Example 4.4 and ∇̄x B2(w, u) = ∑m
i=1〈ui , wi,�〉L2(�) from Example 4.5.

For data generation we take ĉ = 1.0 and â as the phantom depicted in Fig. 3. Simi-
larly to Experiment 1we compare the progress towards ã:=a1,000,000 and c̃:=c1,000,000

computed using Algorithm 2.1 with full matrix inversion.
As above for Experiment 1, the next theorem verifies the basic structural condi-

tions of the convergence Theorems 3.10 and 3.11. The proofs is analogous to that
Theorem 5.1. Likewise, the splitting Assumption 3.3 is verified as before through
Example 4.9 (Jacobi), 4.10 (Gauss–Seidel), or 4.8 (no splitting), while Remark 5.2
applies for the remaining step length and growth conditions.

Theorem 5.3 Let X be a finite-dimensional subspace of L2(�) × R, U a finite-
dimensional subspace of H1(�) and W a finite-dimensional subspace of H1

0 (�) ×
H1/2(∂�). Let F and Q be given by (49) along with the PDE (54) with the boundary
conditions fi defined as in (50) and G be ‖ · ‖1. Then Assumption 3.1 holds.
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Fig. 3 Data generation phantom and splitting performance in the coarse grid Experiment 2

Fig. 4 Performance of various splittings in the fine grid Experiment 2

5.2 Algorithm parametrisation

We apply Algorithm 2.1 with no splitting (full inversion), and with Jacobi and Gauss–
Seidel splitting, and quasi conjugate gradients, as discussed in Sect. 4.2. We fix σ =
1.0, ω = 1.0, λ = 0.1, ε = 0.01, and β = 102 for all experiments. Other parameters,
including the grid size, α, γi , τ and m vary according to experiment with values listed
in Table 1.

For the initial iterate (x0, u0, w0, y0)wemake an experiment-specific choice of the
control parameter x0. Then we determine u0 by solving the PDE, and w0 by solving
the adjoint PDE. We set y0 = Kx0. For Experiment 1 we take the initial c0 = 4.0
and run the algorithm for 20,000 iterations on the coarse grid and 125,000 on the fine.
For Experiment 2 we take the initial a0 ≡ 1.0 a constant function, and c0 = 2.0. The
algorithm is run for 200,000 iterations on the coarse grid, and 500,000 on the fine.

We implemented the algorithm in Julia. The implementation is available on Zenodo
[23]. The experiments were run on a ThinkPad laptop with Intel Core i5-8265U CPU
at 1.60GHz ×4 and 15.3 GiB memory.
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Table 1 Parameter choices for all examples

Grid N Grid size α β γ τ σ ω m

Coarse 51 2601 1 × 10−5 1 × 102 0 2.5 × 10−2 1 1 6

Fine 101 10, 201 1 × 10−5 1 × 102 0 2.0 × 10−3 1 1 6

Coarse 51 2601 0 1 × 102 10−2 2.5 × 10−2 1 1 10

Fine 101 10, 201 0 1 × 102 10−2 1 × 10−2 1 1 10

5.3 Results

The results for Experiment 1 are in Figs. 1 (coarse grid) 2 (fine grid). Therewe illustrate
the evolution of the coefficient ck together with the relative errors of the coeffcient
and of the functional value.

The results for Experiment 2 are in Figs. 3 (coarse grid) and 4 (fine grid). They
show the evolution of the relative error of the coefficient and of the functional value.
We also illustrate in Fig. 3 the data generation phantom for Experiment 2 on the coarse
grid. The phantom on the fine grid has the same shapes and intensities.

The performance plots have time on the x-axis rather than the number of iterations,
as the main difference between the splittings is expected to be in the computational
effort for linear system solution, i.e., Lines 3 and 4 of Algorithm 2.1. For fairness, we
limited the number of threads used by Julia/OpenBLAS to one.

In all experiments the splittings outperform full matrix inversion: the best splittings
require roughly half of the computational effort for an iterate of the same quality. No
particular splitting completely dominates another, however, Jacobi appear to be more
prone to overstepping and oscillatory patterns. On the other hand, quasi-CG currently
has no convergence theory, and we have observed situations where it does not exhibit
convergence while Jacobi and Gauss–Seidel splittings do. Therefore, Gauss–Seidel is
our recommended option.

Appendix A: Optimality conditions

We prove here the necessity of (12) for solutions to (11).

Proof of Theorem 2.3 We let T (x, u):=B(u, · ; x), T : X ×U → W ∗. Setting

A := {(x, u) ∈ X ×U | B(u, w; x) = Lw for all w ∈ W } = T−1(L),

any solution (ū, w, x̄, ȳ) to (11) also solves

min
x,u

R(x, u):=[R0 + δA](x, u) where R0(x, u) = F(x) + Q(u) + G(Kx).

with G(K x̄) = 〈K x̄, ȳ〉Y − G∗(ȳ). By the Fenchel-Young theorem, the latter is
equivalent to the last line of (12). Clearly (x̄, ū) ∈ A, or else there is no solution.
Therefore also the first line of (12) holds.
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It follows from the linearity/affinity and continuity, hence continuous differentia-
bility of B that T is strictly differentiable. Since T ′(x̄, ū)(hx , hu) = Bx (ū, · ; hx ) +
Bu(hu, · ; x̄), so that

〈T ′(x̄, ū)∗w|(hx , hu)〉 = Bx (ū, w; hx ) + Bu(hu, w; x̄),

the qualification condition (13a) reads

sup
‖(hx ,hu)‖=1

‖T ′(x̄, ū)∗(hx , hu)‖ ≥ c‖w‖ for all w ∈ W .

Moreover, as a bounded linear operator, T ′(x̄, ū) is closed, i.e., has closed graph.
Therefore, by [3, Theorem 2.20], T ′(x̄, ū) is surjective. With this, [29, Theorem 1.17]
gives

∂MδA(x, u) = T ′(x̄, ū)∗N{L}(T (x̄, ū)),

= {(hx , hu) �→ 〈T ′(x̄, ū)(hx , hu)|w〉 | w ∈ W }
= {(hx , hu) �→ Bx (ū, w; hx ) + Bu(hu, w; x̄) | w ∈ W }.

Here we denote by ND(x) = ∂MδD(x) the limiting normal cone to a set D at x .
Since limiting subdifferentials agree with convex subdifferentials on convex func-

tions, and we have assumed that int dom R0 �= ∅, we can easily calculate ∂M R0.
We will then use the sum rule [29, Theorem 3.36] to estimate ∂M R, which requires
verifying that R0 is “sequentially normally epicompact” (SNEC), and that the “hori-
zon subdifferentials”, defined for V : X → R as ∂∞V (x):={x∗ ∈ X∗ | (x∗, 0) ∈
Nepi V (x, V (x))}, satisfy

∂∞δA(x̄, ū) ∩ (−∂∞R(x̄, ū)) = {0}. (A1)

Indeed, convex functions whose domains have a non-empty interior, such as R0, are
SNECby [29, Proposition 1.25 and discussion after Definition 1.116].Moreover, since
∂∞Q(ū) = {0}, (A1) reduces to

Bu( · , w; x̄) = 0 �⇒ Bx (ū, w; · ) ∩ (−∂∞[F + G ◦ K ](x)) = {0}

This is guaranteed by the qualification condition (13b). Now, by the Fermat principle
[29, Proposition 1.114] and the sum rule [29, Theorem 3.36], we have

0 ∈ ∂M R(x̄, ū) ⊂
(

∂F(x̄) + K ∗∂G(K x̄)
{Q′(ū)}

)
+ ∂MδA(x̄, ū).

After appropriate Riesz representations, this inclusion expands as the middle two lines
of (12). ��
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Appendix B: Table of symbols

J [Eq. (4)] Objective function
F,G, Q [Section 1] Convex functionals
K [Section 1] Linear operator
x Control variable, PDE coefficient
y Adjoint control variable
u State variable, PDE solution
w Adjoint state variable
x̄, ȳ, ū, w̄ Solution to the optimality conditions (12).
xk , yk , uk , wk Algorithm iterates, at iteration k
ũ, w̃ [Eq. (12)] Test functions
w�,w∂� [Example 2.1] Components of w for some example PDEs
v, (v̄, vk ) The quadruple v = (u, w, x, y) (with corresponding decorators)
B [Section 1] Abstract PDE, an affine-linear-affine functional
Bx [Eq. (8)] Affine-linear-linear part of B
Bconst [Eq. (8)] Remaining affine-linear B( · , · ; 0)
L PDE right hand side abstraction
� Spatial domain; subset of Rn

g Dirichlet boundary condition on ∂�

S(x) PDE solution operator as a function of the coefficients x
λ Ellipticity constant for PDE
Ax Linear operator related to B by 〈Axu, w〉 = B(u, w; x)
M Linear bounded operator
X , Y ,U ,W Normed spaces
X∗ Dual space of X
Id, IdX Identity operator, on subscripted space
In, InX Injection operator, on subscripted space
δA Indicator function of the set A.
F∗ Fenchel conjugate of F
M� Inner product adjoint of the linear operator M
M∗ Dual product adjoint of the linear operator M
F ′(x) Fréchet derivative of F at x
∇F(x) Riesz representation of F ′(x)
∂F(x), (∂M F(x)) (Mordukhovich) subdifferential of F at x
∇̄x B(u, w) Riesz representation of Bx (u, w; · )
τ, τk , (σ, σk+1) [Assumption 3.4] Primal (and dual) step lengths
ω,ωk [Assumption 3.4] Over-relaxation parameters
κ [Assumption 3.4] Step length slack variable
ϕk , ψk , λk , θk [Lemma 3.5] Testing parameters
ηk [Lemma 3.5] Testing and step length parameter coupling factor
γF , γG∗ [Assumption 3.1] Coefficients of (strong) convexity

k , (ϒk ) [Eq. (17)] Splitting operators for (adjoint) PDE
Zk [Section 3 and Eq. (23)] Testing operator
Hk [Eq. (20)] Set-valued operator encoding optimality conditions
Mk [Eq. (21)] Preconditioning operator
M̃k [Eq. (34)] Modified preconditioning operator Mk
�k [Eq. (25)] Factor of operator-strong monotonicity
S( · ) [Assumption 3.1] Bounding map for B
Cx [Assumption 3.1] Bounding constant for Blin, depends on x
γB ,CQ , πu , πw [Assumption 3.3] Constants for splitting inequality
εu , εw, μ, [Lemma 3.6] Growth condition balancing parameters
t [Lemma 3.7] Simplified growth condition balancing parameter
L A, LQ [Theorem 4.6] Lipschitz constants.
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