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Abstract

Ahopelto, Simeoni
Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a
Silicon Nanobeam
Master’s thesis
Department of Physics, University of Jyväskylä, 2024, 91 pages.

We investigated the geometric design of a photonic crystal silicon nanobeam working
as a quantum transducer between donor spins, phonons, and photons. The photonic
crystal nanobeam combines an optical cavity with a mechanical oscillator, so that
their resonance frequencies can be coupled via strain to a spin state of a donor atom in
a magnetic field. In order to maximize the coupling, we optimized the geometry of the
nanobeam using electromagnetic and mechanical FEM eigenfrequency simulations.
We simulated a width tapered nanobeam cavity which reached an optical Q-factor
of 106 and a maximum optomechanical coupling of g0/2π = 4 MHz within robust
fabrication limits. We optimized the nanobeam joints for strain confinement and
achieved a zero-point fluctuation strain εzpf > 10−9 corresponding to a 31P donor
spin-phonon coupling of λ0 ∼ 0.1 kHz in an ion implantable volume with requirements
on magnetic field B ≤ 1 T and mechanical eigenfrequency Ωm/2π ≤ 3 MHz. The
spin-phonon coupling was still an order of magnitude too small for single spin
measurements. The results help to chart the direction towards feasible spin-strain
coupled nanobeam transducers.

Keywords: Optomechanics, nanobeam, photonic crystal, high-Q cavity, spin coupling
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Tiivistelmä

Ahopelto, Simeoni
Piinanopalkin spin-fononi-fotoni kytkennän optimisaatio optomekaanisilla simulaa-
tioilla
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2024, 91 sivua

Työssä tutkittiin fotonikiteisen piinanopalkin mahdollisuuksia toimia kvanttimuunti-
mena atomin spinien, mekaanisten fononien ja optisten fotonien välillä. Fotonikiteinen
nanopalkki koostuu optisesta kaviteetista ja mekaanisesta värähtelijästä, joiden
resonanssitaajuudet voidaan kytkeä venymän avulla riippumaan donoriatomien
spin-tilasta magneettikentässä. Kytkennän maksimoimiseksi tutkimuksessa pyrittiin
optimoimaan nanopalkin geometria simuloimalla sen sähkömagneettisia ja mekaanisia
resonansseja elementtimenetelmällä. Optimoinnissa päädyttiin keskeltä ohennet-
tuun nanopalkin muotoiluun, jolla saavutettiin optinen laatutekijä Q ∼ 106 ja
optomekaanisen kytkennän maksimi g0/2π = 4 MHz. Nanopalkin liitoksiin lisättiin
venymää kohdentava geometria, joka maksimoi nollapiste-energialla normalisoidun
venymän εzpf > 10−9 ioni-implantaatiolle mahdollisella alueella. Venymä vastasi
31P donoriatomin spin-fononi kytkentävoimakkuutta λ0 ∼ 0.1 kHz kokeellisesti ra-
joitetussa magneettikentässä B ≤ 1 T ja fononien taajuudella Ωm/2π ≤ 3 MHz.
Kytkentävoimakkuus ei ollut vielä riittävä yksittäisen spin-tilan mittaamiseen. Tu-
lokset luovat pohjaa piinanopalkkien hyödyntämiselle kvanttiantureina.

Avainsanat: Optomekaniikka, nanopalkki, fotonikide, spinkytkentä
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Preface

I have always been interested in a wide range of topics in physics, never choosing
between theoretical and experimental work. Working with 3D simulations provided
me with a knowledge bridging experience with one foot in theory and another in the
framework experimental applications. Similarly, it allowed me the opportunity to
stretch my mind into the quantum world while keeping my feet grounded in everyday
engineering problems.

As is often the case in research, I spent more time learning and developing the
tools necessary to carry out the simulations than with the simulations themselves.
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problem felt like armwrestling a giant. Other times, I could get verifiable data from
a moments inspiration in no time. Regardless of the ups and downs, I learned to
appreciate the possibility autonomy and independence in simulations. To be able to
apply physics at any time anywhere.

Many thanks go to my research team, who suffered through the long evenings
with me: Cliona, Milla, Arvind and Antti for their experimental expertise, Charles
for battling against tedious simulation problems, Henri for his encouraging counsels
and an occasional dry anecdote, and of course my supervisor Juha for the opportunity
to work as part of his team. Lastly, I thank my friends and family, who have kept
me company in good spirit and revitalized the vision forward. I feel that working on
the thesis as part of a research group has opened the doors to the research world,
yet I know not what may spring out of it next.

Part of the journey is the end. But in an end lies a new beginning.

For your prosperity, dear reader.

Jyväskylä, May 29th, 2024

Simeoni Ahopelto
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1 Introduction

How do you create a device that is able to reliably detect a change in the spin
of a single electron? How is it possible to transfer the quantum information of a
spin state to a photon? These questions are of a particular interest to the research
fields of quantum metrology and sensing [1, 2], quantum information processing [3],
communication, and quantum simulation [4]. Especially, with the start of the NISQ
(Noisy, Intermediate-Scale Quantum) era in quantum computing [5], interest towards
the search possible quantum technologies has grown substantially.

Our research group investigates atomic spins for their potential in serving as the
basic building block of a quantum computers: the qubit. In short, a qubit can be
any two-level quantum system that can be encoded with binary information i.e. an
atom’s nuclear or electronic spin, or a superconducting circuit. As opposed to normal
classical bits, the state of a qubit is not well-defined as 1 or 0 before measurement.
Instead, the qubit can exist in a superposition state, and only attains a definite value
(0 or 1 with some probability distribution) when its state is measured and saved onto
a classical bit. Keeping multiple interdependent qubits in an indeterminate state
during computation allows quantum algorithms to consider multiple solution states
simultaneously, albeit while losing information on definitive solution.

A number of physical quantum system have been proposed to serve as qubit
platforms, including ion traps [6], nuclear magnetic resonance (NMR) [7], silicon
donors [8], quantum dots [9], linear optics [10] and superconducting quantum elec-
trodymamics (QED) [11]. The early commercial quantum computers mostly utilize
superconducting qubits due to their manufacturability and controllability [12]. How-
ever, the functionalities of nascent quantum computers are still severely limited, and
so it remains valuable to explore the limits of promising, alternative and integrable
technologies.

What makes the group V (31P, 75As, 121Sb, 127Sb, 209Bi) donor spins in silicon so
attractive qubit candidates, is their long decoherence times and utilization of existing
silicon fabrication technologies [13]. Decoherence measures the time a quantum
state remains unperturbed by outside interference, and is directly related to the
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performance of the qubit. Donor defect spins in silicon have been shown to possess
decoherence times as long as 30 s for nuclear and 0.5 s for electron spin [14] compared
to < 100 µs in superconducting qubits [15]. Thus, donor spins in silicon provide a
promising platform for the realization of qubits.

Notably, many of the applications envisioned for quantum technologies require
the transmission of quantum states via photons of light. Photons are the natural
medium for the transfer of quantum information, as they coherently preserve their
quantum state while traveling at the universal speed limit. Photons also posess
multiple degrees of freedom that can be utilized for encoding information [16]. Thus,
it would be highly beneficial to the nascent quantum infrastructure, that a robust
device, able to reliably transfer a quantum state from e.g. an electron spin to a
photon (a so-called quantum bus), is realized.

The challenge is to create a deterministic or a heralded spin-photon interface
at telecommunication frequencies [17] to be able to take advantage of the existing
optical fiber infrastructure to create entangled quantum networks. The interface
requires both transduction and storage of the quantum state [18]. Whereas the donor
spin system can provide the long coherence memory, optomechanical resonators are
recently investigated as an intermediary coupling device for their versatility in design
[19]. For spin-resonator systems, vacancy centers in diamond have been studied [20]
along with group V donor spins in silicon [3]. Alternative potential spin-photon
interfaces include InGaAs quantum dots [21, 22] and T centres in silicon [23].

The sliced silicon nanobeam considered in this thesis is an optomechanical device
that combines a mechanical beam resonator with a photonic crystal cavity [24]. A
periodic silicon-hole patterning (a photonic crystal) allows the creation of an optical
cavity that can be used to observe small displacements of the nanobeam through
changes in optical resonance frequency. The displacements are caused by mechanical
oscillations of the nanobeam. When the nanobeam is implanted with donor spins,
its oscillation frequency shifts depending on the donor spin direction in an external
magnetic field. If the shift in mechanical frequency is significant enough, it can
be measured from the changes in optical frequency.Figure 1 illustrates the working
principle of such device.

This thesis considers the performance optimization of a sliced silicon nanobeam,
that works as a spin-to-photon transducer via a mechanically resonating optical
cavity [25–27]. Chapter 2 starts with the description and preparation of a donor spin
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Figure 1. a) An illustration of the coupling between three different quantum
systems: an optical cavity, a mechanical oscillator, and atomic spins. The
optical cavity is driven with an external light source. The photons in the
cavity exert a radiation pressure on the unfixed mirror causing it to oscillate.
Displacement in the oscillating mirror causes the cavity resonance frequency to
shift. Additionally, the displacement in the oscillating mirror alters the internal
resonance frequencies of atomic spins through their strain or magnetic field
dependence. The coupling constants g0 and λ0 correspond to the frequency shifts
per unit of displacement. The frequencies ωc, Ωm, and ωq describe the optical,
mechanical, and spin resonances with their respective decay rates κ, Γm, and
1/τ . b) The sliced silicon nanobeam with its resonant electric field mode and
displacement xzpf at the beam center.
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qubit in silicon. Section 2.2 presents how the spin qubit can alter the mechanical
resonance frequency of a nanobeam. Sections 2.3 and 2.4 discuss the properties and
performance measures of optical photonic crystal cavities and the optomechanical
coupling. Chapter 3 dives into the finite elements method (FEM) simulations used
for the optimization. Finally, chapter 4 presents the simulated results and viable
designs of the nanobeam. For quick readers, the main results are collected in chapter
5.
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2 Theoretical background

2.1 Donor spin in silicon as a qubit

Group V donors in silicon (31P, 75As, 121Sb, 127Sb, 209Bi) have been shown to have
spin systems suitable to serve as a platform for qubits. The following chapter outlines
the simplest spin system of 31P donor, and how the the system needs to be prepared
for spin measurements. For more detailed description of spins as qubits, see [13, 28].

2.1.1 The donor spin system

In an environment with no magnetic fields, the spin states of a single electron or
nucleus are degenerate i.e. they cannot be distinguished energetically. In order to
separate the spin states, the donor atoms are placed in a external magnetic field. The
nuclear and electron spins align either along or against the magnetic field lines, and
split the spin states to lower and higher energy states respectively. The phenomena
is known as the Zeeman effect. The resulting energy separation for a single spin is

ωe,N = γe,NB0, (1)

where B0 is the external magnetic field, γe = gµB/h̄ is the gyromagnetic ratio (GMR)
for the electron with its g-factor and Bohr magneton µB. Similarly for nuclear spins,
γN = gNµN/h̄ with the nuclear g-factor gN and nuclear magneton µN . Additionally,
when we have a nucleus-electron system, such as that of a donor 31P atom in silicon,
we have to also take into account the hyperfine interaction AŜ · Î between the electron
Ŝ and nuclear Î spins, where A is the (isotropic) hyperfine interaction strength. The
Hamiltonian describing the energy of nucleus-electron system is

H = (γeŜz − γN Îz)B0 + AŜ · Î , (2)

where Ŝz and Îz are the spin projections along the magnetic field direction. Equation
(2) forms a linear system that can be a bit tedious to solve, especially for system
with higher spin numbers like 209Bi, as seen in [13, p.45]. However, a so-called
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Figure 2. a) Silicon crystal with a diamond cubic lattice and a 31P donor defect.
The electron wavefunction extends over multiple atoms in the lattice. b) The
energy splitting of 31P spin states with increasing magnetic field [13], and the
resulting nucleus-electron spin system with corresponding electron (blue) and
nuclear (red) spin transitions. The electron and nuclear spin states are noted
with |↑⟩ and |⇑⟩.

Table 1. Properties of group V spin system [13]
31P 75As 121Sb 123Sb 209Bi

Nuclear spin I 1/2 3/2 5/2 7/2 9/2
Electron GMR γe (GHz/T) 27.972 27.970 27.973 27.973 27.997
Nuclear GMR γN (MHz/T) 17.23 7.3 10.26 5.6 6.9
Hyperfine interaction A0 (MHz) 117.5 198.3 186.8 101.5 1475.2
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high-field approximation γe ≫ A > γN , accurate at high magnetic fields, can be used
to simplify and cancel the off-diagonal terms. The experimental values for nuclear
spins, gyromagnetic ratios, and hyperfine interaction strengths can be found in Table
1.

For the simplest spin system of 31P, the eigenenergies corresponding to equation
(2) are

E↓⇑ =
−
√

(γe + γN)2B0 − A/2
2 , (3)

E↓⇓ = −(γe − γN)B0 + A/2
2 , (4)

E↑⇓ =

√
(γe + γN)2B0 − A/2

2 , (5)

E↑⇑ = (γe − γN)B0 + A/2
2 (6)

where the notation |1⟩ ⊗ |0⟩ = |↑⟩ ⊗ |⇓⟩ = |↑⇓⟩ is used for the electron and nucleus
spin states corresponding to Figure 2 b). The transition frequencies with fixed
nuclear spin ωe and fixed electron spin ωN are then

ωe⇑ = E↑⇑ − E↓⇑ = γeB0 + A/2, (7)

ωe⇓ = E↑⇓ − E↓⇓ = γeB0 − A/2, (8)

ωN↑ = E↑⇓ − E↑⇓ = A/2 − γNB0, (9)

ωN↓ = E↑⇑ − E↓⇑ = A/2 + γNB0. (10)

From these frequencies we can choose one as our qubit resonance frequency ωq.

2.1.2 Dressing the qubit

To achieve a more tunable level splitting and longer coherence times, a "dressing"
protocol is can be used [29], where an additional oscillating magnetic field of amplitude
B1 is applied orthogonal to the static field B0. Treating the chosen ωq as a single
spin in magnetic field, the Hamiltonian of the system will now be

H/h̄ = ωqσ̂z + B1 cos(ω1t)σ̂x, (11)
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where ω1 is the magnetic field oscillation frequency, and σ̂x,σ̂z are Pauli matrices. A
time-independent solution for equation (11) can be derived by a change of basis from
stationary |Ψstat⟩ to rotating |Ψrot⟩ = eiω1t |Ψstat⟩ and solving for time dependent
Schrödinger equation. This is equivalent to a frame change from a fixed laboratory
frame to a rotating frame, traveling along the spin’s Lamor precession around its
own axis. A more detailed derivation can be found in [13, p.30]. As a result, the
Hamiltonian will change to

H/h = (ω1 − ωq)σ̂z + ΩRσ̂x, (12)

where (ω1 − ωq) is the detuning of the oscillating field from spin resonance and
ΩR = 1

2γB1 the system’s Rabi frequency. The Rabi frequency describes the system’s
alternating oscillations between its eigenstates. The corresponding eigenenergies of
the Hamiltonian (12) are

E± = ±
√

(ω1 − ωq)2 + Ω2
R. (13)

However, they are in a different basis defined by

|+⟩ = |↑⟩ + |↓⟩√
2

, (14)

|−⟩ = |↑⟩ − |↓⟩√
2

. (15)

Here, we can see that the energy splitting can be tuned with the strength of the
oscillating field B1. In section 2.2.2 we will see that the Rabi frequency ΩR needs to
be matched close to the frequency Ωm of our mechanical resonator to achieve higher
spin coupling. Interestingly, this creates a limiting factor for the mechanical frequency
of our nanobeam resonator. In a practical measurement setup, the driving supply
power Ps of the magnet is proportional to

√
Ps ∝ B1 ∝ ΩR for which the highest

attained Rabi frequency around 3.3 MHz [28, p.76]. Moreover, the supplied driving
power needs to be high enough for the Rabi frequency to exceed linewidth of the bare
electron spin resonance (ESR). The ESR linewidths are around ∆ωq ∼ 1 MHz in
natural silicon, but much lower in isotopicly purified silicon [28, p.32]. The linewidth
is caused by the decoherence effects to the bare spin qubit state, such as dephasing
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[28, p.26]. Thus, if we want the spin flipping to be detectable in our resonator, the
mechanical resonance frequency is constrained by

Ωm

2π
≤ 1– 3 MHz. (16)
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2.2 Nanobeam as a mechanical resonator

Mechanical beams are one of the most studied harmonic oscillators. Here we show
how a doubly-clamped silicon nanobeam (of length L ∼ 10 µm) can be coupled to a
donor spin. The derivations are based on previous works by Leijssen [25] and van
der Hel [27]. For reviews on nanomechanical resonators, see for example [30].

2.2.1 Properties of mechanical resonators

Firstly, the most important properties of mechanical oscillators are the mechanical
oscillation frequencies Ωm, mechanical damping rate Γm and effective mass meff . We
are interested in these properties of the fundamental breathing mode of the sliced
nanobeam in Figure 3, since it can be optically coupled by confining a high electric
field and radiation pressure at the nanobeam’s center.

As for the mechanical modes, the frequency of a mode n in a uniform rectangular
beam with double clamping can be modeled analytically using the deflection equation
in Euler-Bernoulli elasticity theory, for which the frequency solutions are of the form
[31]

Ωn

2π
= β2

n

2π

√
E

12ρ

w

L2 , (17)

where E ≈ 124 GPa is Young’s modulus for silicon, ρ ≈ 2329 kg/m3 is the density
of silicon, L is beam length, w is beam width (to oscillation direction), and βn

are constants. In this elasticity model the frequencies are unaffected by the beam
thickness i.e. thickness of the silicon layer. For the fundamental mode β1 ≈ 4.73 [25,
p.51], which gives the fundamental flexural mode frequency

Ωm ≡ Ω1 ∼ w

L2 · 7500 Hz m. (18)

This result combined with the restriction in equation 16 gives approximate constraints
to the nanobeam size.

Secondly, the frequency of a harmonic oscillator can also be expressed as

Ωm =
√

k

meff
, (19)

where k is structure dependent stiffness, and meff is the effective mass. Since we
would like to keep the resonator frequency in the range of equation 16, its dependence
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Figure 3. a) Mechanical in-plane eigenfrequency modes of a sliced nanobeam
resonator with a zipper-like design. The mechanical mode 2 (referred to as
the breathing mode) is the one we are interested in. The breathing mode
has the lowest frequency with the highest displacement amplitude, and it is
suitable to be optically driven with radiation pressure by creating an optical
cavity at the center of the nanobeam. b) The simulated strain distribution of
the breathing mode. The areas with the highest absolute strain are suitable
spin-strain coupling, whereas the areas with the highest displacement favor spin-
magnetic field coupling.
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on the effective mass has to also be taken into account in the design. The effective
mass is equal to the oscillating mass of a mechanical mode (see Figure 3 a) for the
displacement profiles) and is calculated by weighing each infinitesimal mass element
dm by its displacement [32, p.49]

meff = 1
x2

max

∫
U2(r)dm, (20)

where U(r) is the displacement profile for a particular mechanical mode, which is
usually normalized by the highest displacement amplitude xmax of the mode. For
uniform beams, the estimated estimated effective mass of the fundamental breathing
mode is meff ≃ 0.396 mtotal of the beam. FEM simulations show that the zipper-like
design is not far off of this estimation meff ≃ 0.398 mtotal.

Finally, the time-evolution of an externally driven nanobeam is classically de-
scribed by a damped harmonic oscillator with the equation of motion

meff ẍ + meffΓmẋ + meffΩ2
mx = Fext(t), (21)

where Fext is the driving force, and Γm is the damping rate. The damping rate can
be understood to correspond to the exponential decay of the oscillation amplitude
x(t) = e−Γmt cos(Ωmt). It also describes the linewidth Γm = ∆Ωm (full width at half
maximum) of a resonator’s frequency. For many resonators, keeping the damping
rate low is essential for device performance. Conventionally, a scale-invariant and
dimensionless measure called the quality factor (or Q-factor) is used in its stead

Qm = Ωm

Γm
. (22)

The Q-factor is proportional the number of oscillations in the cavity before its decay.
In order to distinguish the effect of donor spins on the resonance, it is necessary

for the spin-affected frequency change to be larger than the mechanical linewidth
δΩm > ∆Ωm. Otherwise, one cannot separate the frequency change from the initial
peak in a frequency measurement. In experimental conditions, the mechanical
linewidth of the nanobeam tends to be around ∆Ωm ∼ 200 Hz [25, p.118].
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2.2.2 Coupling spins to displacement

Considering the nanobeam as a harmonic oscillator, the energy-quantized Hamiltonian
can be written as

Hm/h̄ = Ωm

(1
2 + b̂†b̂

)
, (23)

where Ωm is the frequency of the oscillator, and n = b̂†b̂ the total number of phonons
with b̂† and b̂ being the phonon creation and annihilation operators. Combining the
spin system in equation (12) with the mechanical resonator in equation (23) results
in the Hamiltonian

H/h̄ = Ωmb̂†b̂ + ΩRσ̂x + (ω1 − ωq)σ̂z, (24)

where the zero-point energy Ωm/2 is neglected. If we assume that a displacement
of the nanobeam can change the qubit frequency, we can add a linear first-order
estimation of the change in spin frequency ∂ωq caused by a small displacement ∂x

of the nanobeam’s center by Taylor expansion

ωq ≈ ωq + x̂
∂ωq

∂x
+ O(x2), (25)

where O(x2) contains the remaining second-or-higher order error terms, which can
be discarded since the displacements are fairly tiny ∼ 10−13 in silicon nanobeams.
Here, the displacement operator x̂ is defined as

x̂ ≡ xzpf(b̂† + b̂), (26)

with the zero-point fluctuation xzpf of a mechanical oscillator

xzpf =
√

h̄

2meffΩm
, (27)

where meff is the effective mass of the oscillator. Continuing our derivation of the
Hamiltonian we plug the first-order approximation 25 into the system 24

H/h̄ = Ωmb̂†b̂ + ΩRσ̂x + (ω1 − ωq)σ̂z + xzpf
∂ωq

∂x
(b̂† + b̂)σ̂z. (28)

Next we assume that the oscillating magnetic field is on resonance with the spin
qubit ω1 − ωq = 0 and rotate the basis with a transformation e−iπσ̂y |Ψ⟩ changing
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σ̂x → σ̂z and σ̂z → −σ̂x. The Hamiltonian becomes

H/h̄ = Ωmb̂†b̂ + ΩRσ̂z − xzpf
∂ωq

∂x
(b̂† + b̂)σ̂x. (29)

Finally, to derive the coupling, we use σ̂x ≡ 1
2(σ̂+ + σ̂−) and omit the terms b̂†σ̂+

and b̂σ̂− that break energy conservation (interactions where both a spin state is
excited and a phonon created, or both are de-excited) to get

H/h̄ = Ωmb̂†b̂ + ΩRσ̂z − 1
2xzpf

∂ωq

∂x
(b̂†σ̂− + b̂σ̂+). (30)

Equation (30) corresponds to the Jaynes-Cummings model of the interaction between
an atom and a boson [33]. Here, we can see that the coupling between mechanical
phonons and spin is defined by the terms b̂†σ̂− and b̂σ̂+ where a phonon and a spin
excitation are exchanged. Now, we can define the coupling strength between the
mechanical resonator and the spin qubit as

λ0 ≡ xzpf
∂ωq

∂x
. (31)

The eigenenergies corresponding to equation (30) are easily solved by separating the
Hamiltonian into two commuting parts

H = H1 + H2, (32)

where the Hamiltonians are

H1/h̄ = Ωm

b̂†b̂ +
ˆ̂σz

2

 , (33)

H2/h̄ = (ΩR − Ωm) σ̂z

2 − λ0

2
(
b̂σ̂+ + b̂†σ̂−

)
. (34)

The resulting eigenenergies for equation (30) are then

E±/h̄ =
(

n + 1
2

)
Ωm ± 1

2

√
(ΩR − Ωm)2 − λ2

0(n + 1), (35)

where n = b̂†b̂ is the number of phonons. We want to estimate the coupling strength
λ0 and its effect on the mechanical frequency Ωm. We evaluate a differential equation
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∂Ωm

∂λ0
= ∂Ωm

∂E±

∂E±

∂λ0
= ± λ0√

(ΩR − Ωm)2 + λ2
0

, (36)

where the number of phonons n may be omitted. Thus, the measurable change to
the mechanical frequency of the resonator is

δΩm = ± λ2
0√

(ΩR − Ωm)2 + λ2
0

, (37)

where we notice that the effect of coupling is heavily dependent on the Rabi detuning
(ΩR − Ωm) between the Rabi and mechanical oscillations. When the detuning goes
to zero, the mechanical frequency changes is directly proportional to the coupling
strength δΩm ∼ λ0, whereas with high detuning the frequency shift is similar to
δΩm ∼ λ2

0
ΩR−Ωm

.
For experimental Rabi detunings, limited mainly by thermal noise to a range

of ∼ 1–100 kHz [29] and mechanical linewidths of 200 Hz [25, p.118], the required
coupling strength is around λ0 ≥ 0.5–5 kHz. A more realistic approximation of
λ0 ≥ 1 − 10 kHz can be derived using the time evolution of Lindblad master equation
[34], which takes into account the inherent uncertainties of the system, such as the
linewidth of the spin resonance.

Also, for the equation (31), there is no direct coupling between the spin resonance
ωq and the displacement ∂x of the beam’s center. From equations (7) – (10) we can
deduce that the spin resonance is affected by change in magnetic field or the hyperfine
strength. The hyperfine strength in a silicon lattice has been shown to change with
the mechanical straining of the lattice [35]. Thus, the spin resonance can be altered
at least in two ways: by displacement in a magnetic field with steep gradient, or by
the straining of silicon lattice caused by deformations in the nanobeam. Next, we
shall explore the effects of these two ways of coupling.
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2.2.3 Strain coupling

When a silicon lattice is mechanically strained, the band structure of silicon changes.
As strain displaces the lattice atoms, it modifies the donor electron wavefunction
and causes perturbations in the donor’s hyperfine strength A and electron g-factor
[35]. We want to estimate the effects of these perturbations on our spin coupling
strength λ0.

Expanding the differential part of our spin coupling strength in equation (31)
with unidimensional component εxx of volumetric strain ε = (εxx + εyy + εzz)/3 gives

∂ωq

∂x
= ∂ωq

∂εxx

∂εxx

∂x
≃ ∂ωq

∂εxx

εsim
xx

xsim , (38)

where the values for strain εsim
xx ∼ 10−9 and displacement xsim ∼ 10−13 remain

to be optimized with simulations. The strain coupling ∂ωq/∂εxx itself is somewhat
more cumbersome to model analytically. Fortunately, Mansir et al.[35] have provided
experimental data by straining a silicon in a magnetic field, and modeling its hyperfine
coupling and g-factor ansiotropy using valley repopulation model (VRM). Notably,
the hyperfine strength changes linearly with small strains. Additionally to the VRM
effects, shear strain also changes the g-factor. The resulting strain coupling is given
as

∂ωq

∂εxx

= ∂A

∂εxx

∂ωq

∂A
+
[

∂g

∂εxx

∣∣∣∣∣
VRM

+ ∂g

∂εxx

∣∣∣∣∣
shear

]
∂ωq

∂g
, (39)

with the strain coupling differentials equal to

∂A

∂εxx

= KA0, (40)

∂g

∂εxx

∣∣∣∣∣
VRM

= βVRM(3 cos2 θ − 1), (41)

∂g

∂εxx

∣∣∣∣∣
shear

= βshear(3 cos2 θ − 3), (42)

where θ is the angle silicon lattice and the magnetic field (B ⊥ [001] : θ = 0◦ and
B ⊥ [011] : θ = 90◦), and the constant βshear, βVRM, and K are given in Table 2.
Choosing the best case scenario, where ωq = ωe⇓ = gµB/h̄ − A/2 and θ = 90◦, where
the effect of electron g-factor maximises, the strain coupling can now be expressed as
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Table 2. Best values of experimental constants for donor strain coupling in
silicon from [35].

K βVRM · 10−3 βshear · 10−3

31P 79.2 206.51 173
75As 37.4 165.1 96
121Si 32.8 197.6 90.3
201Bi 19.1 - -

∂ωq

∂εxx

= −KA0

2 − (βVRM + 3βshear)
µBB0

h̄
(43)

and the mechanical coupling strength

λstrain = −xzpf

(
KA0

2 + (βVRM + 3βshear)
µBB0

h̄

)
εsim

xx

xsim . (44)

Notably, the effect of electron g-factor increases with the strength of the magnetic
field. Thus, for higher fields the strain coupling becomes more plausible. Plugging in
the experimental values for 13P from Tables 1 and 2, and assuming that the simulated
displacement can be normalized so that xsim = xzpf , the strain coupling reduces to

λstrain = (4.653 GHz + 63.512 GHz/T · B0) εzpf
xx , (45)

where εzpf
xx is the zero-point fluctuation strain. The experimentally achieved magnetic

fields are approximately B0 ∼ 1 T. To achieve the desired spin-phonon coupling of
λ0 ≥ 1 kHz for single spin implantation, the requirement for strain is approximately

εzpf
xx ≥ 1.5 · 10−8,

in a sufficiently large volume for a robust ion implantation.

2.2.4 Magnetic field coupling

Alternatively, the spin resonance can be altered by having a high magnetic field
gradient near the nanobeam. This can be achieved e.g. by adding a magnet close to
the displaced beam. Then the differential part of equation (31) becomes

∂ωq

∂x
= ∂ωq

∂B

∂B

∂x
= γe∇Bsim

x , (46)



28

where ∇Bsim
x is the magnetic gradient to the direction of the displacement near the

donor spin. The corresponding mechanical coupling strength

λmag = xzpf γe∇Bsim
x , (47)

and the requirement for a change of the magnetic field

∇Bsim
x xzpf ≥ 36 nT (48)

Next, we will see how the coupling strength scales with multiple donor spins.

2.2.5 Scaling the coupling with N donor spins

Due to the weakness of the spin-phonon coupling, the effect of a group V single spin
on mechanical resonance has not yet been observed with optical measurement. As an
intermediary step and proof-of-concept, the silicon can be doped with multiple donor
spins. Here we want to derive how the coupling strength λ0 scales with a system of
N spins. We will start by defining macroscopic spin operators

Sα =
N∑

i=1
σ̂(i)

α , with α = x,y,z , (49)

so that we can present the Hamiltonian (30) as a multiple spin system

HN/h̄ = Ωmb̂†b̂ + ΩRSz + 1
2λ0(b̂†S− + b̂S+), (50)

which is also known as the Dicke or Tavis-Cummings model [36–38]. Notably, adding
indistinguishable spins into the system creates a kond of "degeneracy" of energy
states in the system up to the total number of spins N . Importantly, the spin
ensemble will start to resemble a bosonic system in their excitation with increasing
N . Then, we can define the macrospin operators in terms of bosonic spin excitation
and de-excitation operators ŝ†, ŝ also known as the Holstein-Primakoff transformation
[39]

S+ = ŝ†(N − ŝ†ŝ)1/2, S− = (N − ŝ†ŝ)1/2ŝ and Sz = ŝ†ŝ − N

2 . (51)

Substituting equation (51) into (50), and neglecting the terms ŝ†ŝ/N compared to
unity will result in the Hamiltonian
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HN/h̄ ≃ Ωmb̂†b̂ + ΩR

(
ŝ†ŝ − N

2

)
+ 1

2λ0
√

N(b̂†ŝ + b̂ŝ†), (52)

from which we can see that the coupling strength scales by

λtotal ∝ λ0
√

N (53)

with N donor spins.
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2.3 Optomechanics

Here, we only introduce the necessary concepts of optical cavities to understand
cavity coupling. For cavity optomechanics, a good overview is a known review by
Aspelmeyer et al. [40]. For the optomechanical dynamics and measurements of the
nanobeam, see [24, 41].

2.3.1 Properties of optical cavities

Optical cavities are formed by confining light between reflective mirrors. The simplest
cavity formed by two opposing mirrors is often referred to as a Fabry-Pérot cavity.
As photon are prevented from escaping the confines of the mirrors, the cavity can be
driven by an external light source to create high electromagnetic (EM) fields.

Similar to the harmonic mechanical oscillator, optical cavities are identified and
compared most commonly by their resonance frequency ωc, and the decay rate κ.
Resonance in the cavity takes place when the light reflected between mirrors interferes
constructively with itself i.e. when the phase of the EM-waves aligns coherently. This
means that an integer n multiple of half-wavelengths λ/2 has to fit exactly into the
cavity length L

n
λ

2 = L. (54)

Thus, an optical cavity contains a series of resonant frequencies

ωn = n
πc

L
, (55)

where we used ω/2π = c/λ with the speed of light c. One can understand the optical
cavity resonance as a plane wave inside the cavity, with electric field component

E = E0e
i(k·x−ωct), (56)

where E0 is the electric field amplitude, k is the wavevector containing wavenumbers
with spatial distance x, time t, and cavity frequency ωc. However, no material
interface is a perfect reflector, so the EM-field in the cavity will decay with time.
One way to model the decay rate κ is with a complex frequency [32, p.131]

ωc = ω0 + iκ, (57)
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Figure 4. a) An optomechanical Fabry-Pérot cavity with its mechanical and
optical frequencies Ωm,ωc, loss rates Γm, κ and displacement xzpf . b) An op-
tomechanical nanobeam cavity with its equivalent properties. The amplitude
of the E-fields vertical component is shown as Ey. The mechanical oscillations
decay by escaping into the surrounding silicon. The optical pathways of decay
are separated into losses through the mirrors κmir, in-plane losses κin-plane and
out-of-plane losses κout. Optimizing the cavity consists of minimizing the mirror
and in-plane losses, while maximizing the out-of-plane detection ηκout, where η
is the detection efficiency.
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which corresponds to a wave function

E = E0e
−κtei(k·x−ω0t), (58)

where the wave amplitude E0 inside the cavity attenuates exponentially with time
e−κt similarly to the mechanical damping. As with the mechanical resonators, the
decay rate κ is meaningful only in the context of the resonance frequency. Therefore,
a similar scale-invariant measure called the optical quality factor

Q = ω0

κ
, (59)

is commonly used to compare the performance of cavities with different frequencies.
Consequently, a high quality factor is a trait of a well performing cavity. The optical
decay rate κ and quality factor Q are analogous to the damping rate Γm and quality
factor Qm of a mechanical resonator. In the case of multiple uncorrelated pathways
of decay, the total decay rate can be divided into a sum of its constituents

κ = κ0 + κ1 + ... , (60)

corresponding to the Q-factors

1
Q

= 1
Q0

+ 1
Q1

+ ... . (61)

These properties are of high utility when trying to identify the different sources that
might affect the cavity decay. Importantly, the total Q-factor can only be as large as
the lowest constituent Q, and is thus limited by the largest decay pathway.

Increasing the cavity Q-factor is one of the main steps in the optimization of the
nanobeam. We don’t necessarily need the Q-factor to be too high, as we want to be
able to detect light leaving the cavity. However, it is reasonable to first design for a
high-Q cavity, and only then try to control the direction of outgoing losses.
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2.3.2 Coupling light to displacement

An optomechanical cavity can be constructed from Fabry-Pérot cavity by simply
allowing one of the mirrors to move mechanically e.g. on a spring. In such a cavity,
the resonant frequency ωc can be altered by shifts in the suspended mirror. For an
optical cavity, the Hamiltonian is analogous to that of the mechanical resonator

Hc/h̄ = ωc

(1
2 + a†a

)
, (62)

where â†â = nc is now the total number of photons in the cavity, with the photon
creation â† and annihilation â operators. Combining equation (23) and (62) into an
optomechanical Hamiltonian, gives

H/h̄ = Ωmb̂†b̂ + ωcâ
†â, (63)

where we ignored the zero-point energy terms. As with the mechanical resonator, we
estimate the optical frequency shift induced by the displacement of the nanobeam
with first-order Taylor expansion

ωc(x) ≈ ω0 + x̂
∂ω

∂x
+ O(x2), (64)

where terms of the order of O(x2) or higher will again be neglected. The Hamiltonian
(63) then becomes

H/h̄ = Ωmb̂†b̂ + ω0â
†â + x̂

∂ωc

∂x
â†â (65)

Expressing the position operator in terms of zero-point fluctuations x̂ ≡ xzpf(b̂† + b̂)
results in

H/h̄ = Ωmb̂†b̂ + ω0â
†â + xzpf

∂ωc

∂x
â†â(b̂† + b̂) (66)

Now we can define the optomechanical coupling strength as

g0 ≡ xzpf
∂ωc

∂x
, (67)

which describes how much a displacement in the nanobeam affects the cavity fre-
quency. It turns out that we do not need to go further than this analytically. The
effect of a small displacement on the cavity frequency of the beam can be attained
directly by displacing the nanobeam in simulations e.g. by increasing the gap be-
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tween the nanobeam halves. We conclude that the optomechanical coupling can be
approximated with

g0 = xzpf
δωc

δx
, (68)

where δωc is the cavity frequency shift caused by a displacement δx of the nanobeam
half.
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2.4 High-Q photonic crystal cavities

High Q-factor photonic cavities are essential for optical measurements, as they enable
us to enhance effects at nanoscale with high EM-fields. In the following sections we
introduce photonic crystals and the requirements for creating a high-Q cavity. We
follow design ideas from [42–44]. For a good overview on photonic crystals, see [32].

2.4.1 Photonic crystals

How can we build reflective mirrors for an optical cavity at nanoscales? How can we
tune the cavity resonance for selected frequencies? These questions are answered by
photonic crystal cavity design.

Photonic crystals (PhC) are periodically patterned dielectric structures, that
enable the control of light. The dielectric patterning creates a photonic band
structure, similar to that of the electronic band structure in crystals (see Figure 5),
and allows the transmittance of resonant EM frequencies while attenuating others.
The transmitted and attenuated frequency modes are dependent on the geometry of
the crystal, as well as the dielectric constants ϵ and refractive indexes n ≃

√
ϵ of the

materials. Therefore, a photonic crystal structure can be geometrically designed to
trap light of selected frequencies.

The cavity of the nanobeam is built as a combination of two photonic crystal
structures: a silicon waveguide and a Bragg mirror. The silicon beam forms a
waveguide, which constrains light to move along its direction. The Bragg mirror
is periodical layering of two dielectric mediums. The dielectric mediums for our
nanobeam are silicon with nSi ≃ 3.47 and etched holes for air or vacuum with nair ≃ 1.
Figure 5 shows how the perforated Bragg mirror structure of the nanobeam creates
photonic bands in the first Brillouin zone (BZ) of an ideal infinite nanobeam.

It should be noted that the photonic bands corresponding to resonant EM-field
modes in the nanobeam are not typical vacuum modes with both electric and mag-
netic fields being transverse (TEM modes) to the direction of propagation. Instead,
the PhC nanobeam confines light in polarized transverse electric (TE) and transverse
magnetic (TM) modes, where the field lines of the transverse component form a
loop transverse to the direction of propagation. Importantly, we are interested in
the fundamental TE1 mode in Figure 5 as it creates high electric field and radiation
pressure between the nanobeam’s teeth. The idea is to create a PhC cavity by
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matching the TE1 band frequency at the BZ edge k = π/a with our laboratory
laser frequency and geometrically tune the bandgap in Figure 5 to create confinement.

2.4.2 Mirror strength and the photonic bandgap

In order to confine the light in the cavity, mirrors have to be designed at the ends of
the nanobeam. The mirrors can be constructed by shifting the TE1 mode frequency
away from the cavity frequency at the ends of the nanobeam. This is achieved by
changing the silicon-to-air ratio and hole geometry in the beam.

To maximize reflection, we would like to minimize the spatial distribution of
electric field outside the cavity, so that it does not leak to free space from the
nanobeam ends. The spatial attenuation profile of the EM-field can be approximated
similar to the temporal attenuation in equation (57) by an imaginary wavevector
component

k = k0 + iγ, (69)

which corresponds to a electric field profile

E = E0e
−γxei(kx−ωnt), (70)

where γ is the mirror strength describing the exponential decay of the field amplitude
e−γx within the mirrors. A higher γ is then better for light confinement. In order
to understand the relationship between the mirror strength γ and the photonic
band structure, we can approximate the effect of a small shift of δk = k − π/a on
the ν1 frequency at the BZ edge [32, p.52]. Due to the time reversal symmetry of
the photonic bands at the BZ edge k = π/a, we can ignore the asymmetric Taylor
expansion terms, which leaves

ν1 (δk) ≈ ν1

(
π

a

)
+

∂2ν1
(

π
a

)
∂k2 δk2 + O(δk4). (71)

We mark the curvature of the approximated band as −α = ∂2ν1
(

π
a

)
/∂k2 which

leads to a frequency shift
δν1 ≈ −αδk2 (72)
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Figure 5. a) The sliced photonic crystal nanobeam as a Bragg grated slot
waveguide with periodicity a to the wave propagation direction x. b) Photonic
band structure for wavevector kx in the first Brilluoin zone of the nanobeam.
The states above the lightline νair with the speed of light c0 are able to escape
to free space, whereas the bands of resonant mode below are confined in the
nanobeam. The bandgap ∆ν marks a region where no waves propagate in the
nanobeam. c) The EM-field energy densities for TE and TM modes. The
fundamental TE1 mode is the most optomechanically active mode due to a high
E-field concentrated between the nanobeam’s teeth.
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and the corresponding wavenumber shift

δk ≈
√

−δν1

α
. (73)

Here, we can notice that for frequency shifts δν1 < 0 towards the TE1 band, the
values for δk are real and correspond to the band frequencies. However, if we shift
the frequency into the bandgap δν1 > 0, the δk values are imaginary. The imaginary
shift in wavenumber k = k0 + δk corresponds to equation (69) and the mirrors
strength is revealed as

iγ = δk ∝ i
√

δν, (74)

which means that the exponential attenuation increases with
√

δν the further we go
into the bandgap. Importantly, the approximation (72) can be done for both fre-
quencies ν1 and ν2, which means that the mirror strength depends on the frequency
distance from both bands

γ ∝
(√

δν1 +
√

∆ν − δν1

)
, (75)

where the shift from TE2 frequency is δν2 = ∆ν − δν1 and ∆ν = ν2 − ν1 is bandgap
between ν1 and ν2. Therefore, the mirror strength reaches its maximum at the center
of the bandgap νmid (dotted line in Figure 5), where the frequency is furthest from
both photonic bands with real values of ν1,2. Moreover, with increasing size of the
bandgap ∆ν, the mirror strength also increases. For the mirrors a large bandgap
with center frequency matching the ν1 of the cavity is needed to optimize cavity
Q-factor.

2.4.3 Gaussian attenuation profile

When trying to increase the Q-factor of a photonic cavity, the out-of-plane scattering
(with Qout, κout) to free space is known to be a limiting factor [42]. The out-of-plane
scattering power Pout has been shown to be proportional to the Fourier components
of the EM-fields overlapping with vacuum states

Pout ∝
∫

<lightline dk(|F [Hz]|2 + |F [Ez]|2), (76)
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where F [Hz] and F [Ez] mark the spatial Fourier transformation. Figure 6 shows the
E-field distributions for nanobeams with tapered and constant mirrors. For mirrors
with constant mirror strength γ, the EM-field attenuates exponentially with e−γx

as seen in (70). Fourier transforming the exponential attenuation profile creates a
Lorentzian distribution for our resonant frequency at the first BZ edge

Fx

[
e−γ|x|

]
(k) =

√
2
π

γ

k2 + γ2 ∝ k−2, (77)

where part of the distribution that overlaps with the vacuum states above the lightline
are able to scatter. Ideally, the overlapping field would be minimized by tightly
localizing the Fourier distribution in k-space.

Fortunately, the classical Fourier uncertainty with the variance relation σ2
kσ2

x ≥ 1
4

is known to be minimized by a Gaussian distribution. Thus, we want to create a
Gaussian attenuation profile by linearly increasing the mirror strength with distance
from the cavity center γ → η|x|, so that e−γ|x| → e−ηx2 and max(η|x|) = γ. The
Fourier transform of a Gaussian attenuation profile is also a Gaussian distribution in
k-space

Fx

[
e−ηx2] (k) = 1√

2η
e−k2/4η ∝ e−k2

. (78)

Clearly, a distribution following e−k2 can offer more confinement than k−2. Prac-
tically, the Gaussian attenuation profile means that the mirror geometry has to
be tapered so that the mirror strength is linearly increasing away from the cavity.
This is achieved by changing the geometry at the nanobeam ends so that resonance
frequency ν1 decreases linearly away from the cavity.

2.4.4 Airgap: the distance to lightline

Additionally, the overlap Pout between the E-field distribution and free space states
in Figure 6 is affected by the distance of the lightline kair = 2πνair/c0 from the BZ
edge k = π/a for a resonant frequency. Therefore, scattering radiation is minimized
by a short periodicity a and a small kair. Since kair ∝ νair, the scattering is lesser
for lower frequencies. In Figure 5, this corresponds to the pushing down of the TE1

band frequency ν1. For simulations, the distance from lightline can be measured as
the airgap at the BZ edge
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a)

b)

Figure 6. a) Normalized E-fields of a TE1 mode in the nanobeam for constant
and linearly increasing mirror strengths with a Gaussian and exponential attenua-
tion profile. Illustrative nanobeams are shown above. b) Fourier transformations
of the field profiles depicting the intensity in k-space. The Gaussian distribution
has less overlap with the vacuum states for the frequency ν1, and thus has less
out-of-plane scattering.
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∆νair = νair

(
π

a

)
− ν1

(
π

a

)
, (79)

which we want to maximize to achieve highest confinement of light to the nanobeam.
Intuitively, the airgap is affected by the amounts of silicon in the nanobeam shifting
the resonant frequencies down and the minimum resonant wavelength in the periodic
structure.

2.4.5 Phase matching

In Figure 6 a), we can see that the that the normalized E-field follows an attenuating
sine function | sin(πx/a)|2 inside nanobeam, where the peaks are located in between
the teeths with periodicity a. Thus, the periodicity affects the phase of the resonant
mode. In order to match the phase of the EM-field mode in each periodic cell, the
periodicity should be kept constant between cells. Otherwise, the mode mismatch at
the interface between two periodic cells will increase scattering [42]. Correspondingly
in the reciprocal k-space, altering the periodicity a changes the location of the first
BZ edge kx = π/a, which leads to a less confined E-field distribution. Therefore, we
will refrain from using the periodicity a for the tapering of the nanobeam.

2.4.6 Mode volume

To compare the confinement of the EM-fields between PhC cavities of different
shapes and sizes, a quantity called modal volume V is used [32, p.150]. The modal
volume is described as the ratio between total E-field near the cavity volume and
the peak maximum of the E-field

V =
∫

dr3ϵ|E|2

max(ϵ|E|2) . (80)

For comparison, the modal volume is usually normalized with the smallest volume
a (half) wavelength λ/2 of light can be confined in a material i.e. silicon with a
refractive index nSi, given by

Vnorm = V

(λ/2nSi)3 . (81)

Increasing the spatial mode volume can sometimes allow for a more confined
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distribution of the Fourier transformed field in Figure 6 b) increasing the Q-factor
by sacrificing spatial localization of the EM-fields.

2.4.7 Double period modulation

In order to maximize the out-coupling of the light escaping our nanobeam cavity, we
need a way to control its scattering direction. A method known as the double period
modulation (DPM) [44] uses the symmetry of the first Brillouin zone to calibrate
the scattering direction from in-plane (x,y) to out-of-plane (z) direction, as shown in
Figure 7.

DPM applies a size modulation on every other periodic cell, so that the resulting
structure has double the periodicity. The change in hole size hinders the wave
propagation to x-direction of the resonant mode with the unmodulated periodicity
a. In the first BZ, this causes the intensity distribution at k = π/a to be mirrored
with respect to the BZ edge of the modulated periodicity at kx = π/2a to kx = 0.
At kx = 0 the mode does not propagate to x-direction, but instead scatter to y,z-
directions. In 2D materials the scattering can be better confined to only z-direction,
but in a 1D periodic nanobeam, the y-directional scattering cannot be controlled. In
our nanobeam waveguide, the y-directional scattering is restricted by the internal
reflection of the silicon.
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Figure 7. a) Illustration of double period modulation of holes in a nanobeam.
Changing the size of every other hole doubles the periodicity of the structure.
b) The corresponding E-field distributions. Initially, the E-field is confined to
kx = π/a for the ν1 resonant mode. As the size of every other hole is modulated,
the distribution is mirrored to kx = 0 as new BZ edge is formed at kx = π/2a.
The resulting wavevector will be of the form k = (0,ky,kz). If the modulation
is taken to extreme with only half of the holes present, the structure with does
not support the propagation of the original mode. In this case, almost all of the
E-field is scattered to y and z-directions.
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3 Numerical simulations

Our goals for the design of the nanobeam are the following:

1. To maxmimize the optomechanical g0 and spin-mechanical λ0 couplings

2. To create a high-Q cavity and control the output scattering direction.

We try to achieve these goals in the context of our research groups laboratory
equipment and fabrication possibilities. Our research group uses two subinfrared
lasers with frequency ranges 1460–1570 nm and 1510–1630 nm corresponding to a
total frequency range 183–205 THz. The frequency range is compatable with the fiber-
optic transmission window around 200 THz, which minimizes the fiber attenuation
in the current communication infrastructure. We will choose the center frequency
νc := 194 THz of our laser range as the sweet spot for the optical cavity frequency.

The real devices are fabricated onto a silicon-on-insulator (SOI) chip using electron-
beam litography and etching. For our group, the smallest robustly reproducible slit
hole width by etching is currently ≥ 80 nm, and the thinnest beam of silicon able to
support the nanobeam has been ≥ 120 nm. This provides limitations to the design
geometry. The fabrication procedure itself is described in more detail in [27, p.25]
and [25, p.70]. We also base our simulations on previous works [25, 26].

The design process utilizes the FEM eigenfrequency solver of COMSOL Mul-
tiphysics software to search for the resonant optical (Radio Frequency Module)
and mechanical (Structural Mechanics Module) frequencies of the nanobeam. The
eigenfrequency solver calculates the determinant of a linear system with the multiple
degrees of freedom of a finite mesh. The resonant frequencies of the mesh are then
returned as an ordered list from lowest to highest with their real and imaginary
components.

First, our aim is to optimize the band structure for the cavity and mirror using
computationally efficient periodic unit cell simulations. The unit cell simulations
depicted in Figure 8 take advantage of the symmetry and periodicity of the nanobeam
using mirror symmetry and periodic boundary conditions (PBC) in COMSOL.
Secondly, we create the nanobeam cavity simply by stacking the unit cells for mirrors
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Table 3. Nanobeam unit cell parameters with their descriptions and estimated
ranges for resonance frequencies around 200 THz. The parameters marked with
red are kept constant based on previous work [26].

a Periodic constant or unit cell length 400–800 nm
w Nanobeam width 400–1500 nm
d Hole length at the gap side of the beam, %a
f Hole length at the far side of the beam, %a

support Thinnest silicon width supporting the nanobeam 120 nm,
gap Smallest gap between the nanobeam halves 80 nm,

thickness Thickness of silicon layer to z-direction 220 nm

and cavity with an additional tapering region between them, as shown in Figure 9.
The numbers of mirror and cavity cells in the nanobeam is then adjusted to match the
highest Q-factor with full nanobeam simulations. Finally, we add a strain confining
design outside the nanobeam cavity, shown in Figure 10. The optical simulations
were done first, as the cavity structure limits for the size of the nanobeam resonator.
The mechanical strain geometry is then adjusted outside the optical cavity.

3.1 Periodic unit cell

We begin the design of our nanobeam by geometrical parameterization. The
nanobeam is constructed by stacking unit cells of varying dimensions as shown
in Figure 8. A trapezoidal hole structure is used to gain more control over the design,
while conserving fabrication simplicity. The parameters are described in table 3.

To simulate the PhC band structure of the nanobeam, we calculated the eigen-
modes of the electromagnetic field in the nanobeam unit cell using PBC. This is
equivalent to having an infinite nanobeam repeating the single unit cell geometry.
We placed our unit cell in an 3D airbox to include the effects of the surrounding air.
The size of the airbox was chosen as a × 1.5 µm × 1.5 µm to minimize computation
time while preserving the accuracy of resulting eigenfrequencies, as shown in [26,
p.12]. A tetrahedral FEM mesh was used with sizes ∼ 10 nm in the gap region and
∼ 100 nm in the surrounding air and silicon.

At the airbox sides perpendicular to the nanobeam, we set a periodic boundary
condition for our fields E⃗ (x + a) = eikxaE⃗ (x), where kx is the wavevector number,
resulting in Floquet-Bloch periodic wave solutions. The airbox facet at z = 0
was set as a perfect magnetic conductor to pick out only the TE-mode solutions.
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Figure 8. Parameterization of the nanobeam. The nanobeam is built by
stacking unit cells with different varying parameters. The unit cell parameters
can be optimized by performing eigenfrequency simulations in an 3D airbox with
periodic boundary conditions in x-direction and mirror symmetry in y-direction.
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Correspondingly, the TM-modes are found by setting the facet at z = 0 as a perfect
electric conductor. The remaining sides were left as perfect electric conductors.

The photonic band diagram for the unit cell’s first Brillouin zone can be calcu-
lated by sweeping for values of kx = 0 → π

a
, as seen in Figure 5. The COMSOL

eigenfrequency solver returns an ordered list of resonant frequencies from lowest to
highest. The frequencies below the lightline νair = c0kx/2π, where c0 is the speed of
light in vacuum, are meaningful as they are confined to the nanobeam, whereas the
frequencies above the lightline are resonant in the surrounding airbox. The distance
from the lightline ∆νair = νair − ν1 describes the confinement of the TE1 mode to
the nanobeam.

The optomechanical coupling can be estimated by increasing the gap half by a
small displacement δx = 1 nm, and calculating the shift in the resonant frequency
δν1. We define a proxy for the optomechanical coupling as

G := δν1

δx
.

We also estimate the expected zero-point fluctuations x̃zpf with a nanobeam of
fixed length L = 20 µm and breathing mode frequency Ωm = 3 MHz at the upper
limit. The number of unit cells in the nanobeam can then be calculated as Ntot = L/a,
which leads to an effective mass of meff = 0.398mtotal = 0.398Ntotalmcell where mcell

is the unit cell mass. With x̃zpf =
√

h̄/2meffΩm the optomechanical coupling can be
estimated as

g0 = xzpf
∂ν1

∂x
∝ x̃zpfG.

For the optimization procedure itself, we utilized COMSOL’s parametric sweep
method to plot the figures of merit ν1, ν2, ∆ν, ∆νair, G, x̃zpf to identify the optimal
unit cell geometries connected by a tapering line for linearly increasing mirror
strength.



49

3.2 Nanobeam cavity

After choosing optimized geometries for the cavity and mirror unit cells, we built the
full nanobeam cavity by stacking a number of cavity Ncav and mirror Nmir unit cells
with an additional tapering region of Ntap tapered cells for the Gaussian attenuation
profile. We created the tapering profile using a scaling factor bp : b ∈ [0,1] between
the cavity cell width wcav and mirror cell width wmir

wtap = wcav + bp|wmir − wcav|, (82)

where wtap is the list of tapered widths corresponding to scaling factors bp. The
scaling power p mandates the tapering profile e.g. linear with p = 1 and quadratic
with p = 2. Generally, the scaling in equation (82) can implemented on any parameter,
except for periodicity a. For periodicity tapering, the locations for the unit cells
have to be separately calculated, since they spacing is nonlinear. Since the mirror
strength γ ∝

√
δν1 +

√
∆ν − δν1, the highest Q-factor is expected with quadratic

tapering, when δν1 increases linearly.
However, creating a custom tapered array of unit cells was possible in COMSOL

only via tedious scripting. Thus, instead we used Python utilizing Nazca Design
[45] and Klayout [46] packages for photonic integrated circuit (PIC) masks. This
allowed the creation of 2D fabrication design using the same Python script. Using
Nazca, a 2D model of the nanobeam could be exported as a .gds file. We then
used Klayout to convert the .gds file to a .dxf file to be compatable with COMSOL.
Finally, we imported the 2D .dxf model and extruded it into 3D with the silicon
layer thickness in COMSOL. To avoid having to manually import and simulate each
nanobeam geometry, we used a Python MPh [47] package to access the COMSOL
Java application programming interface (API). This allowed us to simulate multiple
geometries in one sweep, similar to the parametric sweeps available in COMSOL.

For the full nanobeam cavity simulations we added a cylindrical airtube around
the nanobeam with spherical ends and extending support layer of silicon, as shown
in Figure 9. For the mesh we kept the size similar to the unit cell airbox. We added
an additional perfectly matched layer (PML) with a sweeped rectangular mesh at
the airtube edge to better absorb the unwanted eigenfrequencies in the tube. To
further reduce the computation time and unwanted eigenfrequencies, we reduced
simulations to 1/8th of the airtube, and added perfect magnetic conductors to the
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Figure 9. 3D models of the full nanobeam cavity. The full nanobeam cavity
could be simulated in 1/8th of the airtube using symmetries. The reduction in
computation time is twofold. First, the time solving a single eigenfrequency from
the mesh is reduced. Second, the total number of unwanted resonances is smaller
in 1/8th of the airtube. The air hole in the silicon layer next to the nanobeam is
used to reduce fabrication induced stresses in the nanobeam [26]. The elliptical
NA at the center of the nanobeam airtube is used to calculate the average ratio
ηavg.
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boundaries at x = 0 and z = 0 to find the proper resonant modes. For the estimation
of optomechanical coupling, we simply extended the boundary at y = 0 by 1 nm and
calculated the shift in the resonance frequencies.

For parametric sweeping, we solved the problem of mode selection i.e. finding and
tracking correct optical modes in the nanobeam by constraining the eigenfrequency
range and using the highest Q-factor of the fundamental TE1 mode centered at the
cavity. Fortunately, the resonant mode frequencies and their order did not change,
although lengthening the cavity introduced more resonances of the TE1 mode. Thus,
we could identify them at by their frequency and Q-factors.

3.2.1 Far-field

Far-field calculations at a surrounding surface boundary estimate the direction and
intensity of scattering EM-waves. COMSOL calculates electric far-fields using the
3D Stratton-Chu [48] formula

Efar = ik

4π
r0 ×

∫ (
(n × E) −

√
µ0

ϵ0
r0 × (n × B)

)
exp (jkr · r0) dS, (83)

over a surface S, where µ0 and ϵ0 are the vacuum permeability and permittivity, n
is the normal vector and r (r0) is the radius (unit) vector pointing from the origin
(center of the nanobeam) to a field point on the surface. In the case where the
surface is a sphere at origin, r is the unit normal to the surface. We selected the
surface below our airtube PML to estimate the far-fields at a distance of 2 µm from
the nanobeam. Since COMSOL returns a Mercator projection of the 2D far-field
surface in polar (spherical) coordinates, we addionally rotated the nanobeam 90◦ to
face x-direction to avoid distortions.

We partitioned an ellipsoidal numerical aperture (NA) from the surface centered
at x-direction with polar angle range of θ = 20◦ and azimuth angle range ϕ = 80◦

(see the elliptical cone inside the airtube in Figure 9). This was based on the high
far-field region formed with higher double period modulations. We used the ratio
between the total average far-field Ēfar and the average far-field inside the NA ĒNA

far

to estimate an average field ratio

ηavg = ĒNA
far

Ēfar
(84)
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Figure 10. Meshed 3D model of the mechanically simulated nanobeam. The
geometry of the cavity cell is used for the center cavity. The two supporting
pillars are fixed from their ends. A higher resolution mesh is used at the areas
of high strain. A strain confining design with uniform extension and a separate
joint part is added to the nanobeam.

3.3 Mechanical nanobeam

The mechanical eigenfrequency simulations were done with a simplified version of
the cavity, where the unit cell geometry was kept constant matching the cavity cell.
This was enough for the relative comparison of the strains in the nanobeam, as the
results with tapered nanobeam differed only slightly. With the simplified cavity,
parametric sweeps for geometries could be done directly in COMSOL without the
extra python scripting.

We constructed the 3D nanobeam from anisotropic silicon with additional sup-
porting pillars fixed at the ends. We used the default orientation anisotropic silicon
in COMSOL, where the x-direction along the nanobeam corresponds to the [110]
direction of the crystal lattice in Miller’s index notation [49]. A concave fillet of
40 nm radius was added to the sharp corners with high strain of the nanobeam joints
to better resemble fabricated corners. We used a mesh size of ∼ 10 nm for areas with
high strain and ∼ 100 nm for the rest of the nanobeam.

Similarly to the optical optimization, parametric sweeps were used to map out
mechanical properties with the nanobeam dimensions. However, we searched for the
more complex design of the nanobeam joint manually, as the COMSOL’s optimization
package was unavailable.

We observed that the nanobeam’s geometry changed the order between the
mechanical modes for the resonances in x,y, and z-directions, as well as between
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their parallel and anti-parallel versions. We managed to select the fundamental
y-directional breathing mode by setting a prescribed displacement of x,z = 0 on a
point at the nanobeam’s center. Furthermore, the problem of tracking parallel and
anti-parallel mode could be evaded by simulating only one nanobeam half.

Importantly, the eigenfrequency solutions returned by COMSOL had an arbitrary
unit of displacement and strain. Thus, we normalized the solutions using the ratio
ECOMSOL/Ezpf of the maximum potential energy in the displaced nanobeam ECOMSOL

and the zero-point energy of a harmonic oscillator Ezpf = 1
2 h̄Ωm. In order to keep the

results consistent, we used the normalization Ezpf for results of a single nanobeam half
and 2Ezpf for results with both nanobeam halves, since the displacement potential
energy doubled with the addition of the second nanobeam half. We used the
normalization to deduce the zero-point properties relative to energy εxx, xzpf ∝

√
E.
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4 Results

4.1 Mirror and cavity unit cells

For the mirror and cavity unit cells, priorities are to

• Cavity: Match ν1 ≈ 194 THz and maximize coupling G,

• Mirror: Match νmid ≈ 194 THz and maximize the first bandgap ∆ν,

while maximizing the displacement x̃zpf and the distance to lightline ∆νair for both.
We can use parametric sweeps to explore the behaviour of the lowest photonic bands
ν1, ν2 and the optical coupling G. We start by exploring these figures of merit using
parametric sweeps in Figures 11 to 15.

Figure 11 starts with single parameter sweeps for each unit cell parameter, where
we plotted changes in TE band structure and coupling. Notably, the behavior of
support and gap widths verifies that they should be kept fixed at minimum size.
Keeping the support width small is essential to the bandgap, and the coupling is
highest at small gap widths. We can also see that the hole length f affects the
bandgap more than d. Increasing periodicity a or beam width w drags down ν1 but
with the cost of lowering coupling.

Figure 12 depicts the general behavior of the figures of merit as a function of
both a and w with holes and teeth of equal length. The coupling is highest at small
a and w, whereas the bandgap maximizes with higher w. Most importantly, the
bandgap ∆ν and coupling G cannot be simultaneously optimized. Since maximizing
the coupling G in the cavity is of high priority, the periodicity should be chosen
around a = (550 ± 50)nm. This choice allows a to be kept constant as the tapering
can be done directly upwards by increasing w from the cavity line to the mirror line
in Figure 12.

In Figure 13, we can see the behavior of figures of merit as a function of hole
lengths d and f . The hole size increases the first band frequency ν1 slightly,but has
much more impact on the the bandgap ∆ν. We can also see the much larger effect
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Figure 11. Optical eigenfrequency sweeps (blue dots with solid line) for each
nanobeam parameter with lightline νair (turquoise), first bandgap ∆ν (grey) and
coupling G (red dots with dashed line). The lines correspond to cubic spline
interpolation. The coupling G increases most with small gap widths and is thus
kept at the minimum fabrication resolution. The support width is kept at a
minumum as well, since it significantly affects the bandgap. The bandgap is
further affected by the hole lengths, for which the coupling is highest in the
center.
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Figure 12. Parametric sweep for a,w with a rectangular hole d = f = a/2.
The frequency lines for cavity ν1 = 194 THz (solid) and mirror νmid = 194 THz
(dashed) are marked with contour lines. ν1 and ν2 are brought down by increasing
amounts of silicon. We can see that the coupling G is maximized by minimizing
both a and w, whereas the bandgap is maximized with larger w. The lightline
frequency νair is inversely proportional to a. The estimated decrease in displace-
ment x̃zpf are comparatively small with increasing mass. The upper limit for the
optomechanical coupling can be estimated as g0 ≈ 50 MHz on the cavity line.
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Figure 13. Parametric sweep for trapezoidal hole lengths d,f to find the optimal
hole geometry. We can see that both the maximum coupling and bandgap can
be achieved with d = (0.6 ± 0.1)a. However, the coupling is highest at f = 0.2a
whereas the bandgap maximizes at f = 0.8a.
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of f on ∆ν maximizing around f = 0.8a. The coupling is instead maximized at
f = 0.2a.

Most importantly in Figure 13, both the bandgap and coupling seem to maximize
with the same values of d = (0.6 ± 0.1)a. This is of great significance to the
optimization procedure, as it allows to simplify our search space. We can fix
a = 500 nm and d = 0.6a, and let the tapering of our cavity be entirely done with w

and f .
The effect of hole lengths can also be seen in Figure 14, where we compared the

bandgap and coupling between different trapezoidal hole shapes. We see that the
increase in bandgap by f shifts the ν1, νmid further apart. Thus, f has the most
effect on the difference between cavity and mirror geometries, and can be used to
tune them.

Figure 15 shows a parametric sweep for w,f to identify the most viable tapering
path. We noticed that the easiest tapering path should be towards a linear gradient
lowering the ν1 frequency. This keeps the geometry transformations simple and
smooth. Alternative paths require more customized and hand-picked points from
the tapering line to create a linear increase in mirror strength. Furthermore, the
behavior of the bands ν1 and ν2 can be dissimilar as in Figure 15, which makes mirror
strength estimations more difficult as seen in Appendix A. Since we cannot increase
∆ν and ν2 linearly at the same time by changing f , we choose to fix f = 0.4a as a
compromise, and do the tapering only using the beam width w.

In Figure 16 we can see the resulting band structure of a linear width tapering
along the line in Figure 15. In order to make the tapered bands more linear, we
further adjusted the hole length to d = 0.5a. Comparison for Figure 16 can be found
in Appendix A, where the tapering has been done by changing f .

4.2 Width tapered high-Q cavity

In previous works [24, 26], the mirror tapering for the nanobeam was done by a
gradient search for the optimal mirror geometry, followed by a linear gradient-based
decreasing of the ν1 frequency to the desired cavity frequency. The gradient search
was done on a fitness function defined as the multiplication of the figures of merit.
Due to the weak gradient and negative effects of the nanobeam width w on coupling
strength, the width tapering was discarded altogether. Instead, the tapering was
mainly done with the periodicity a.
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Figure 14. Comparison of coupling and bandgap with regards to different
trapezoidal hole shapes. The frequency lines for cavity (solid white) and mirror
(dashed white) are drawn for these geometries. Notice how the triangular teeth
shape increases coupling, whereas its inversion increases bandgap. The inverted
triangular teeth also shift the mirror line away from the cavity line.
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Figure 15. Parametric sweep for w,f with tapering line (dotted) between optimal
cavity ν1 = 194 THz (solid) and mirror νmid = 194 THz (dashed) frequency lines.
The dots at the ends of the tapering line at f = 0.4a correspond to the estimated
cavity wcav ≈ 800 nm and mirror wcav ≈ 1200 nm widths. Tapering is done using
only w in order to keep the change in ν1, ν2 smooth and linear as seen in Figure
16.
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Figure 16. Band structures of cavity wc = 750 nm and mirror wm = 1100 nm
periodic unit cells with d = 0.5a and f = 0.4a. The effect of linear tapering
on the BZ edge frequencies is shown in between them. The bandgap center in
the mirrors is approximately matched with the cavity frequency νc. The cavity
frequency νc in the cavity is estimated to be slightly lower than the cavity cell
frequency ν1, as seen in the frequency difference between tapered an untapered
cavity in Figure 17.
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Here, we took a different approach for two reasons. Firstly, matching the phase
velocities of the unit cells by keeping a constant is one of the fundamental requirements
for a high-Q cavity [42]. Secondly, the periodic constant was kept constant for mirror
and cavity. Furthermore, we have prioritized coupling in the cavity cell and bandgap
in the mirror cell to optimize both cells separately. This allows the coupling to be
higher in regions of highest displacement.

We constructed the full cavity and identify the optimal number Ncav,Ntap,Nmir of
each unit cell to maximize Q-factor of the optical cavity. We first wanted to identify
the number of mirror cells needed to minimize scattering along the nanobeam. We
picked a number of tapered cells Ntap = 9 based on previous work [26, p.33] to reach
a high-Q cavity and simulated the Q-factor with additional mirror cells, as shown in
Figure 17. The scattering along the nanobeam waveguide is shown to be minimized
with 6-7 mirror cells reaching Q ∼ 106. The change in resonance frequency ν1, mode
volume V , as well as Q/V -ratio are shown.

Figure 17 shows also the Q-factor as function of constant cavity and tapered cavity
is simulated in for increasing Ncav and Ntap separately. The maximum Q-factors
reached are an order of magnitude lower. The mode volume for the constant cavity
is also higher as the cavity holds more nodes of the resonant mode. The tapered
cavity shifts the frequency down slightly as compared to the constant cavity.

In Figure 18 we verified the quadratic tapering as the optimal tapering profile by
sweeping the scaling power p = 1 → 3. The cavity Q-factors are highest at p = 2.2
keeping above Q > 106 between p ∈ [1.9, 2.5]. This result also estimates of the
resilience of width tapering to fabrication errors.

Figure 19 shows the resonance in the nanobeam around 200 THz of the width
tapered nanobeam with the corresponding frequencies ν and Q-factors. Notably, in a
tapered cavity structure the fundamental cavity resonance ν = 191 THz (with E-field
peak at the center) is supplanted by a resonance ν = 179 THz inside the tapered
mirrors as the lowest frequency resonance. The tapered mirrors have a lower TE1

mode resonance that can still be confined in the structure with sufficiently high Q.
However, its optomechanical coupling is lower than the fundamental mode at least
in width tapered beams. This is significant distinction to typical cavities, where the
fundamental cavity mode is expected to have the lowest frequency. The two modes
can be experimentally distinguished by the optomechanical coupling strength and
frequency. Using the geometry of the high-Q cavity, a maximum optomechanical
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NcavNtapNmir

Figure 17. Behavior of ν1, Q and Vnorm as function of mirror and quadratically
tapered cells in the nanobeam cavity using 1/8th airtube simulations. Q ∼ 106

is reached with Ntap = 9 and Nmir = 7. The tapered cavity can reach an order of
magnitude higher Q-factors than a non-tapered cavity. The tapering shifts the
resonance frequency down slightly compared to the untapered constant cavity.
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p = 1

p = 3

Figure 18. Behavior of ν1, Q and Vnorm as function of scaling power p in
nanobeam with Ntap = 9 and Nmir = 7 using 1/8th airtube simulations. The
cavity quality is verified to be highest with a quadratic tapering. The Q-factor
might be slightly increased by a higher mode volume at higher scaling powers.



66

ν = 172 THz, Q = 600

ν = 179 THz, Q = 7·10

ν = 191 THz, Q = 3·10

ν = 212 THz, Q = 700

5

4
g0/2π = 1 MHz

g0/2π = 4 MHz

Figure 19. Resonances around 200 THz in a nanobeam cavity with Nmir =
7, Ntap = 9 using full airtube simulations. The fundamental mode ν = 191 THz
at the center of the cavity is not the lowest frequency mode. The lowest frequency
resonance ν = 179 THz is formed within the tapered mirrors (two E-field peaks),
where TE1 mode is still confined to the cavity. The maximum optomechanical
couplings g0 are calculated using xzpf = 10−13. The simulation was done with
full airtube.

coupling of 4 MHz is reached.

4.3 Effect of imperfections on Q-factor

As the the fabrication process is never perfect in realizing optimized designs, we
also simulated the effect of possible noise in the design in Figure 20. We added a
random noise of uniform distribution at different scales δnoise = 0.1–100 nm to all of
the (x,y) corner point coordinates of the trapezoidal holes. With this type of noise,
the Q-factor of the fundamental cavity mode was observed to scale approximately

Q = Qmax

(δnoise/αnoise)2 + 1 ,
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Figure 20. Effect of hole imperfections on the Q-factor using 1/8th airtube
simulations. A uniformly random noise δnoise is applied on the point defining
the trapezoidal holes. The Q-factors decrease according to Qmax

(δnoise/αnoise)2+1 where
α2

noise ≈ 0.5 nm describes the limit for significant losses in the quality of the
cavity with Qmax ∼ 106.
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where Qmax is the Q-factor without noise, and αnoise ≈ 0.7 nm is a limit noise derived
from a fit in Figure 20. This implies that a cavity with lower Q-factor can be
more tolerant to small fabrication errors. Consequently, the Q-factor limit from
imperfections can affect the choice of cavity size, as a lesser number of unit cells is
required for lesser Q-factors. The amount of error in fabrication sets a limit to the
achievable Q-factor of the cavity.

4.4 Double period modulation and far-fields

We estimated the effect of DPM on a cavity with Nmir = 7, Ntap = 9. Figure 21 shows
the coupling G, Q-factor, and collection ratio ηavg as a function of the modulation
percentage δmod for hole lengths h ∈ {d,f}. We used a DPM method following
heven

odd = (1 ± δmod)h for odd and even holes starting from the cavity center. We used
1/8th airtube for the simulations.

The modulation did not affect the mode frequency ν1. However, the Q-factor
drops similarly to the uniform noise added on trapezoid points. We derived a similar
fit function for the reduction of

Q = Qmax

(δmod/αmod)2 + 1 ,

with the limit for significant losses αmod ≈ 2.2 nm. We further estimated the
optomechanical coupling by increasing the gap width by 2 nm. The coupling remained
fairly constant fluctuating around 0.6 THz/nm. As for the far-fields and focus of
scattering, the average far-field inside our elliptical NA was highest at δmod = 7%
reaching an order of magnitude higher than the average scattering field regardless
of direction. This may be attributed to the increase in overall scattering at higher
modulation percentages.

Figure 22 depicts the spherical far-field scattering profiles with Mercator pro-
jection, where the areas are exaggerated towards the poles θ = 0◦, 180◦. Here, we
used full airtube simulations. We can see that the DPM is effective at focusing the
scattering to the center perpendicular to the nanobeam with angle range ∆θ = 20◦

and ∆ϕ = 80◦ of our NA.



69

Figure 21. Optomechanical coupling G, Q-factor and collection ratio ηavg as a
function of double period modulation percentage δmod on hole dimensions d,f .
The limit for significant reduction in Q is determined as αmod ≈ 0.87%. The
optomechanical coupling fluctuates around G = 0.6 THz/nm. The averaged
efficiency reaches its maximum at δmod = 7%, where the average far-field inside
the NA is an order of magnitude higher than the total average field. The
simulation was done with 1/8th airtube.
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Figure 22. Mercator projected far-field profiles for modulated nanobeam cavity
facing x-axis with nanobeam ends at z-axis poles θ = 0◦, 180◦. At azimuth
angles ϕ = ±90◦ the scattering is in-plane with the nanobeam. The dashed
ellipse corresponds approximately to the NA used for ηavg. The far-fields are
normalized so that the average field inside the NA is ĒNA

far ≈ 1 at δmod = 20%.
At δmod = 20%, we can verify that ηavg ≈ 5. The simulation was done with full
airtube.
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4.5 Strain and displacement behavior

Next, we move on to the mechanical eigenfrequency simulations. We want to design
the rest of the nanobeam to maximize the spin coupling to a donor atom. The
optimization goals for the nanobeam’s breathing mode are

• Maximize the strain εzpf
xx ≥ 10−8 at a sufficiently large volume for a robust ion

implementation for strain coupling, or

• Maximize displacement xzpf at the nanobeam center for the magnetic gradient
coupling.

Figure 23 compares the Ωm, max(εxx), and xzpf behavior of a single uniform and
a zipper structured nanobeam consisting solely of cavity unit cells. The uniform
nanobeams follow the equation (18) almost exactly. The frequency of the zipper
structure with 120 nm support follows closely the behavior of a 120 nm wide uniform
nanobeam, with slightly lesser displacement and higher strain. Importantly, a
maximum strain of 10−8 is reached only at L ≤ 5 µm with eigenfrequencies 2 orders
of magnitude higher than our limitation of 3 MHz.

The displacement of the uniform nanobeam is found to scale as x2
zpf ∝ 1

meffΩm
,

where the mass scales as meff ∝ L and Ωm ∝ w
L2 . Clearly, xzpf can be increased

simply by maximizing the thin portion of the nanobeam and its length. Based on
Figure 23 we can estimate the average zero-point fluctuations to be xzpf ∼ 0.1 pm
with a maximum of 1 pm for nanobeams with L < 100 µm. For spin-magnetic field
coupling of λmag ≥ 1 kHz, this results in a required field gradient of 36–360 nT/pm.

For the zipper structure, the width of the teeth has a lesser effect on the frequency,
since the increase in stiffness is significantly reduced. The strain remains unaffected
by the tooth width, whereas both frequency and displacements are slightly reduced.

In Figure 24, we added a uniform extension to the nanobeam cavity with a slit
at the joint. We searched for an optimal proportional length of the extension an
cavity to maximize bending and strain at the joint. However, the strain increased
only together with the eigenfrequency Ωm reaching a peak at Lzip/L = 0.5. To
minimize the increase in effective mass, we increased the width of the extension at
a slightly lower proportion of the extension Lzip/L = 2/3. The increase in strain
was small and reached a plateau at w ≈ 1 µm when maximum stiffness was achieved.
However, extending a nanobeam cavity of fixed length could be used to tune down
the mechanical eigenfrequency.
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Figure 23. The behavior of Ωm, εxx, and xzpf as a function of nanobeam
length and width. The properties of zipper structure with a 120 nm support are
compared to uniform nanobeams. The lines for uniform nanobeams are drawn
using the relations Ωm ∝ εxx ∝ w

L2 and x2
zpf ∝ L or xzpf ∝ w. A strain of 10−8 is

reached at L ≤ 5 µm with eigenfrequencies 2 orders of magnitude higher than
our limitation of 3 MHz. The width of the zipper teeth affect the strain and
displacement only slightly.
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Figure 24. Maximum strain behavior of a nanobeam with uniform extension
length and width. Extending the portion of the uniform part increases strain
and frequency. The dashed line corresponds to Lzip/L = 0.66, where the effect of
extension width is simulated. The width of the extensions increases strain and
frequency until the maximum stiffness is reached at 1 µm.
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4.6 Strain confinement at the joint

The design of the nanobeam joint itself was done by manual searching. To compare
the strains between different design, we used a nanobeam cavity with Ncav = 10
to keep the cavity dimensions constant for COMSOL sweeps and the number of
unit cells at the limit for Q ∼ 105. The uniform extension of the same width was
then used to tune the mechanical frequency to the limit of Ωm/2π = 3 MHz. All
joints were restricted by the minimum hole resolution of 80 nm and minimum silicon
support of 120 nm.

Both unified (Y) and separate joints for the nanobeam halves were explored. The
most viable designs are depicted in Figure 25, as well as the strain of the original
zipper structure. The tuning down of the frequencies is shown in Figure 26. Last
but not least, the most interesting strain distributions are shown in Figures 27, 28,
and 29.

In Figure 25 the largest maximum strain was found in an asymmetric design,
where the gap was shifted to one side of the nanobeam and a narrow vertical slit was
added at the joint. We reached a maximum strain of εxx = 4.3 · 10−9 at the narrow
slit. Both volumetric ε and unidirectional εxx strains were above 10−9 in an ion
implantable area of 100 × 30 nm near the slit edge, as seen in Figure 27. The strain
remained fairly constant throughout the silicon layer thickness of 220 nm. However,
the mechanical frequencies of the wider and narrower nanobeam halves differed by
about 2 MHz, which adds difficulty to the of measuring displacement in the thicker
beam half. With these strains the maximum spin-strain coupling reaches a maximum
of λ0 = 0.3 kHz with average coupling λ = 0.1 kHz.

The strains at the similar symmetric slit were slightly lesser with εxx = 3.6 · 10−9.
In Figure 28 we see that the volumetric strain stays above 10−9 only at the inner
edge of the slit. The area for εxx > 10−9 was also a lesser 70 × 20 nm. The zero-point
displacement xzpf remained higher at 0.1 pm.

Interestingly, in Figure 26 all the higher maximum strains started to decline at
higher frequencies. This can be attributed to the higher proportion of the nanobeam
being uniform. The strain in the original zipper structure increased almost linearly
with frequency. Surprisingly, the Y-notch design had the highest maximum volumetric
strain. However, the strain was confined strictly to the center of the joint edge inside
the gap in Figure 29.
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xzpf = 1.0e-14
εxx= 3.0e-9

Strain |εxx| 1010 -9-10

Original

Y-notch Y-joint Y-hole

Symmetric slit Asymmetric slit

Figure 25. Strain distributions and maximum strains for different nanobeam
joint designs at frequency limit Ωm/2π = 3 MHz. We used a cavity with Ncav = 10,
which we set as a limit case for a good quality cavity length with Q > 105. The
frequencies were tuned down with a uniform extension, except for the original
upper left structure, where the cavity was extended. The upper right design
offered the highest maximum strain with εxx = 4.3 · 10−9. However, the design
for the nanobeam is asymmetric, which means that the two nanobeam halves
will have different frequencies.
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Figure 26. Tuning down the eigenfrequencies for a nanobeam cavity with
Ncav = 10 by lengthening the uniform extension. As the extension length
is increased to approximately 6–7 µm, the eigenfrequency is tuned down to
Ωm/2π = 3 MHz. The asymmetric slit has the highest maximum εxx, whereas
the original structure has the highest xzpf . With increasing frequency, the strains
drop toward the original zipper structure. Although the higher strain comes at a
cost of lowering xzpf , they remain relatively constant at 0.1 pm.
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x

Figure 27. Strain distributions in x,y and z-directions for the asymmetric slit
design. The unidirectional strain reaches εxx > 10−9 in a volume of 200x40x200nm
at the outer edge and 100 × 30 × 200 nm around the slit. In the z-direction the
stain is relatively constant. The maximum strain of εxx = 4.3 · 10−9 is located at
the very end of the slit. Both the inner and outer edge at the slit provide a good
location for donor spins.
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Figure 28. Strain distributions in x,y and z-directions for the symmetric slit
design. The strains are slightly lesser than its asymmetric counterpart. The
unidirectional strain still reaches εxx > 10−9 in a volume of 100 × 10 × 200 nm at
the outer edge and 70 × 20 × 200 nm around the slit.
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Figure 29. Strain distributions in x,y and z-directions for the Y-notch design.
The maximum volumetric strain seen in Figure 26 is very tightly located at the
end of the gap. At the center of the joint, the strain barely reaches εxx = 10−9.
Thus, the inner edge of the joint might be the most suitable location for donor
spins.
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5 Conclusions

This thesis considered the design of a width tapered photonic nanobeam cavity with
simulated quality factors reaching Q ∼ 106 with normalized mode volumes of Vnorm ≈
0.03 and a maximum optomechanical coupling of g0/2π = 4 MHz. We estimated
imperfections to start affecting the cavity Q-factor at the size of αnoise ≈ 0.7 nm. We
also applied a double period modulation on hole length to achieve an average field
ratio of ηavg ≈ 10 at δmod = 7% modulation within an elliptical aperture of ∆θ = 20◦

and ∆ϕ = 80◦.
We simulated the zero-point fluctuation diplacements of the nanobeam to range

xzpf = 0.1–1 pm. For a spin-magnetic field coupling to reach a required λmag ≥ 1 kHz
for single 31P donor spin measurements, we detemined a corresponding requirement
of ∇Bx = 36–360 nT/pm for the field gradient of an external magnet.

Additionally, we added a strain confinement design to the nanobeam joints.
We reached a maximum unidirectional strain of εxx = 4.3 · 10−9 and a volume of
200x40x200nm for strains εxx > 10−9. This resulted in an average spin-mechanical
coupling of λ0 = 0.1 kHz with a maximum of λ0 = 0.3 kHz. For the coupling we used
the experimental limitations for the application of qubit dressing with mechanical
frequency of Ωm ≤ 3 MHz and magnetic fields B ≤ 1 T. Unfortunately, we did not
achieve the strain εxx ≥ 10−8 required for spin-phonon coupling of λ0 ≥ 1 kHz for
single spin measurements, as the optimized strains were still an order of magnitude
too low. Nevertheless, the simulated device is still feasible for bulk spin measurements
with the scaling of spin coupling

√
Nλ0 with N spins.

The strain was mainly affected by the fluctuation energy determined by the
mechanical eigenfrequency and confinement of bending to the narrow joint of the
nanobeam. However, higher bending at joint was at odds with the zero-point
displacement xzpf since it was caused by increased the mass and stiffness of the
nanobeam. Thus, the increase in spin-strain coupling was only possible at the cost
of optomechanical coupling.

As noted in previous works, the optomechanical coupling is most affected and
restricted by the gap width separating the two nanobeam halves [25, 26]. Thus,
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increasing the fabrication resolution towards thinner slits is of utmost importance.
The relative sizes of the nanobeam width, gap and xzpf as the major influences for g0

suggests that the width tapering might not be the optimal approach. Indeed, as the
Q-factors did not increase past 106, a periodicity tapering might be more optimal
for higher optomechanical coupling.

Notably, we learned that the phase matching did not yield any extra benefit
compared to tapering with periodicity a in previous theses [25, 26]. However, unlike
noted in the theses, a width tapered sliced nanobeam proved to be feasible. The cavity
quality was still limited to Q ∼ 106. This was largely due to the fact that a simple
continuous geometry transformation was not possible between PhC geometries for
maximal mirror strength γ, ∆ν and maximal optomechanical coupling G. Especially
the different direction of gradient for lowering ν1 and lifting ν2 prevented the tapering
between a high coupling and large bandgap geometries in Figure 15, as γ would not
be constantly increasing.

For further improvements on the design, utilizing external nanomagnets seemed
to be way to go. Reaching an order of magnitude higher strain distribution would
be tedious even for thinner silicon structures. The feasibility of nanobeams with
nanomagnets are studied in [50]. An alternative route for spin-strain coupling would
be to increase the mechanical frequency to GHz. However, since the qubit dressing
protocol is limited by the magnetic fields, the inability to utilize it would lead to a
significant loss in decoherence for the spin qubits.
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A Discarded unit cell geometries

Figure 30. Discarded unit cell geometries with a = 500 nm, d = 0.6a and
tapering between cavity with f = 0.3a,w = 1.6a and mirror with f = 0.45a, w =
2.7a parameters. The unit cell geometries resulted in higher coupling for cavity
cells and higher bandgap for mirror cells. However, overall maximum quality
factor was lower at Q ∼ 105 regardless of the chosen scaling power p. We
attributed this to the dissimilar behavior of the lowest photonic bands when
tapering.
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