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Abstract

Piipponen, Mika
Application of novel relaxation time approximation for the Boltzmann equation in
relativistic fluid dynamics
Master’s thesis
Department of Physics, University of Jyväskylä, 2024, 77 pages.

Ultrarelativistic heavy-ion collisions are modelled with relativistic fluid dynamics.
Since quark-gluon plasma formed in collider experiments cannot be directly measured,
the investigation of the substance is heavily based on comparing experimental data
to predictions of theoretical models. In this thesis we review a novel relaxation time
approximation for the relativistic Boltzmann equation, which is fully compatible with
the macroscopic conservation laws. We calculate approximations for the temperature
dependence of bulk viscosity, particle diffusion coefficient and shear viscosity of a
fluid employing this model. The calculation is carried out by matching the fluid
dynamical quantities with the underlying microscopic theory, where the single particle
momentum distribution function is expressed using first order Chapman–Enskog
expansion. In this way, even with energy-dependent relaxation times, we achieve
consistent approximations for the fluid dynamical transport coefficients that are in
full agreement with the second law of thermodynamics. The novel relaxation time
approximation can be utilized to construct effective kinetic descriptions for matter
in heavy-ion collisions.

Keywords: relaxation time, relativistic, Boltzmann equation, kinetic theory, hydro-
dynamics, fluid dynamics, Navier–Stokes, viscosity, relativity
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Tiivistelmä

Piipponen, Mika
Boltzmannin yhtälön uuden relaksaatioaika-approksimaation sovellus relativistisessa
virtausmekaniikassa
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2024, 77 sivua

Ultrarelativististen raskasionitörmäysten mallintamisessa hyödynnetään relativistista
virtausmekaniikkaa. Törmäyskokeissa syntyvän kvarkkigluoniplasman viskositeettia
ei voida suoraan mitata, joten tämän tutkimus painottuu kokeellisen datan ver-
taamiseen teoriamallin ennustukseen. Tässä tutkielmassa tutustaan uudenlaiseen
relaksaatioaika-approksimaatioon relativistiselle Boltzmannin yhtälölle, joka on
yhteensopiva makroskooppisten säilymislakien kanssa. Tämän avulla lasketaan
teoreettiset arviot fluidin puristusviskositeetin, diffuusiovakion ja leikkausviskosi-
teetin lämpötilariippuvuudelle. Lasku toteutetaan sovittamalla virtausmekaniikan
suureet taustalla olevaan mikroskooppiseen teoriaan, jossa yksihiukkastiheysfunk-
tio esitetään ensimmäisen kertaluokan Chapman–Enskog -ekspansion avulla. Näin
saadaan energiariippuvilla relaksaatioajoilla tuotettua virtausmekaniikan kuljetusker-
toimille johdonmukaisia arvioita, jotka ovat yhteensopivia termodynamiikan toisen
lain kanssa. Uuden relaksaatioaika-approksimaation avulla on mahdollista luoda
efektiivisiä kineettisiä malleja kuvaamaan materiaa raskasionitörmäyksissä.

Avainsanat: relaksaatioaika, relativistinen, Boltzmannin yhtälö, kineettinen teoria,
hydrodynamiikka, virtausmekaniikka, Navier–Stokes, viskositeetti, suhteellisuusteo-
ria
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1 Introduction

The strong force is the fundamental interaction between quarks and gluons described
by quantum chromodynamics (QCD). The interaction is so strong that as the
separation between two quarks becomes large enough, new quark-antiquark pairs are
formed, which leads to the quarks confining into color neutral hadrons. This means
that no free quarks can be detected. However, lattice QCD calculations predict a
phase change at a temperature of the order of 158 MeV [1]. At temperatures higher
than this, matter is expected to exist in a form where color charges are free, called
quark-gluon plasma (QGP).

The primordial universe and possibly even the cores of neutron stars are be-
lieved to be so hot or dense that matter could exist as QGP. In order to strobe
light on the moments just after Big Bang, astrophysical research and to test
our understanding of the strong interaction, ultrarelativistic heavy-ion collisions

Figure 1. As two length contracted
nuclei (1) collide, the constituent
hadrons in the overlap area (2) break
into a mix of quarks and gluons (3).
Then the QGP expands and confines
into hadrons (4).

are carried out at the Brookhaven National Lab-
oratory’s Relativistic Heavy Ion Collider (RHIC)
and Large Hadron Collider (LHC) at CERN.

Heavy-ion collision are conducted by stripping
large atoms, usually lead (Pb) or gold (Au), of
their electrons, accelerating the bare nuclei near
lightspeed and colliding them head on (see Fig. 1).
In the effective collision area, a large number
of particle-antiparticle pairs are produced [2, 3],
drastically increasing particle density. The rem-
nants of the collided nuclei outside the overlap
area continue on their paths, leaving a strongly
interacting droplet of QGP between each other.
Due to the shape of the colliding nuclei, the ef-
fective collision area is oval shaped, causing an
anisotropic pressure gradient that forces the QGP
to flow in to the transverse direction from the
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beam axis. Once the QGP has expanded and cooled enough, the quarks will once
again confine into hadrons that eventually reach the detectors.

For a good understanding of this extreme state of matter, the experimental results
should be somehow linked to theory. Ideally we would have a theoretical understand-
ing that would reproduce the collision exactly. It is practically impossible to know
the initial stage of each collision exactly, the matter undergoes a phase transition
during the event and the state of matter we are interested in cannot even be directly
detected. Therefore the theoretical model used to describe these events is quite

Figure 2. Time evolution of quark
gluon plasma created in a heavy-ion
collision simulated using transient
relativistic fluid dynamics. (Harri
Niemi)

complex, consisting of several stages, each using
an effective theory describing the dynamics of
the matter in the best possible way.

One way to construct such a model is to re-
cover the initial stage energy distributions of the
colliding nuclei from a perturbative QCD model
[4]. The evolution of the formed QGP is simu-
lated by Israel–Stewart-type relativistic dissipa-
tive fluid dynamics [5, 6, 7] (see Fig. 2). This
way the complicated microscopic degrees of free-
dom have been integrated out of the calculations
and replaced by evolution of macroscopic ther-
modynamical quantities. The fluid dynamical
simulation is carried out from the formation of
the QGP all the way until the matter has cooled
into a hadron gas phase. It is straightforward
to model the QCD phase transition with fluid
dynamics as the properties of both states of mat-
ter are embedded into an equation of state and
transport coefficients of the fluid. The fluid dy-
namical evolution is ended e.g. at a constant
temperature spacetime hypersurface, where the
fluid dynamical quantities are converted into a
particle distribution by a Cooper–Frye integral
procedure [8]. Under these considerations, rel-
ativistic fluid dynamics is an essential tool in
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understanding the properties of QCD matter in high energy collisions.

Experimentally the formation and properties of QGP can be studied by examining
the Fourier decomposition of the final state particle azimuthal distribution

dN

dϕ
= N

2π

(
1 +

∞∑
n=1

2vncos
(
n∆ϕ

))
. (1.1)

The Fourier coefficients vn represent the flow harmonics present in the spectrum, the
second of which represents elliptic flow. The fact that the final particle distribution
shows signs of elliptic flow and is consistent with fluid dynamical predictions is a
strong indication that QGP is infact formed in heavy-ion collisions. Even though
stretching the boundaries of applicability of fluid dynamics, surprisingly even proton-
proton collisions have shown collective behavior as a fluid [9].

This thesis will revolve around relativistic fluid dynamics and kinetic theory. We
will review a novel relaxation time approximation [10] for the relativistic Boltzmann
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Figure 3. Dimensionless bulk vis-
cosity for a Boltzmann gas as a func-
tion of mβ in the AW relaxation time
approximation.
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Figure 4. Dimensionless particle
diffusion coefficient for a Boltzmann
gas as a function of mβ in the AW
relaxation time approximation.

equation by Rocha, Denicol and Noronha. Phe-
nomenological models like relaxation time ap-
proximations are of interest, because they offer
a way to give effective kinetic descriptions of
matter without necessarily knowing the exact
microscopic dynamics in question. The revised
collision model by Rocha et. al. will be used
to calculate the transport coefficients appearing
in relativistic fluid dynamics. Transport coef-
ficients are usually obtained by matching the
fluid dynamical variables to kinetic theory. Cal-
culations incorporating the full collision integral
become increasingly difficult [11] and the ones
for a massless gas with constant scattering cross
sections [7, 12] do not necessarily have much to
do with the evolution of QGP. The commonly
used relaxation time approximation [13] for the
Boltzmann equation by Anderson and Witting
yields inappropriate values for the bulk viscosity
and particle diffusion coefficient, and is inconsis-
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tent with basic thermodynamics. For example relaxation time τ ∝
√
Ep, that is

argued to give effective descriptions of QCD matter [14, 15], suggests negative values
for the bulk viscosity and τ ∝ Ep vanishing particle diffusion (see Figs. 3 and 4).
Also the macroscopic conservation laws are not intrinsic in the Anderson–Witting
approximation, which is an essential feature of the Boltzmann equation. The Novel
relaxation time approximation eliminates these problems by taking into account these
homogeneous solutions of the Boltzmann equation. This method yields updated
values for the bulk viscosity and particle diffusion coefficient, while the shear viscosity
remains unchanged.

In section 2 of this text, we will familiarize with the relativistic kinetic theory
and define the needed machinery and variables. First we define the net particle 4-
current, energy-momentum tensor, introduce the relativistic version of the Boltzmann
transport equation and the concept of the relaxation time approximation. The effect
of modifying the microscopic dynamics in the Boltzmann equation can be tested
by observing how it affects the macroscopic dynamics of matter and its material
properties. Naturally in this case we want to see how altering the underlying kinetic
theory affects the fluid dynamical description.

In section 3 we dive into relativistic fluid dynamics and derive the equations of
motion for relativistic fluids keeping careful track of the microscopic definitions of
our variables. Specifically we are interested in the expression for the bulk pressure,
particle diffusion current and the shear stress tensor.

Finally in sections 4 and 5 we calculate the bulk viscosity, particle diffusion coef-
ficient and shear viscosity by identifying them from the above mentioned quantities.
This is done by employing the first order Chapman–Enskog expansion and solving
the resulting integral expressions numerically to obtain the temperature dependence
of the transport coefficients.
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2 Relativistic kinetic theory

Microscopically matter consists of countless number of particles. Kinetic theory of
gases models the properties of a gas as a consequence of the motion of the constituent
particles. This way kinetic theory gives the quantities of a macroscopic state a
microscopic definition. For example the temperature of a gas is the mean kinetic
energy of the particles and pressure the overall force from the particles colliding to
the surface of a volume element. Since a gas consists of almost innumerable number
of particles, using the molecular dynamics, that are often of quantum nature, for
individual particles is practically impossible and the framework of statistical physics
is needed.

Kinetic theory concerns the statistical properties of a local ensemble of particles
using a single particle momentum distribution function f(x,p), where x and p are
the particle’s position and momentum, respectively (see Fig. 5). f(x,p) can be
interpreted as a probability density, which tells one the number of particles within
the infinitesimal interval x ∈ [x,x+dx] with momentum p ∈ [p,p+dp]. [16, 17, 18]

Figure 5. The function f(x, p) describes the propability of finding a particle of
momentum p at the position x.
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In this section we will see how the macroscopic state variables can be expressed in
terms of the first two moments of the distribution function f(x,p) and heuristically
derive a transport equation, which f(x,p) satisfies. In most cases the form of f(x,p)
is a priori unknown but in principle it can be solved from the transport equation.
Finally we will consider an approximation valid for a gas sufficiently close to the
state of thermodynamic equilibrium and introduce relaxation time approximations
on phenomenological arguments.

2.1 Conventions

Throughout the thesis we will be using natural units c = ℏ = kB = 1 and the plus
sign metric

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (2.1)

customary in particle physics. Here c is the speed of light, ℏ the reduced Planck’s
constant and kB the Boltzmann constant. We are using Einstein summation conven-
tion with indices labeled by greek letters running from 0 to 3 and latin letters from 1
to 3, unless stated otherwise. Bold letters generally refer to 3-component vectors.
Position in spacetime is represented by a contravariant coordinate 4-vector

xµ = (t,x) . (2.2)

4-velocity of an object is defined as the proper time derivative of it’s coordinate
vector

uµ = dxµ(τ)
dτ

= γ(1,v) , (2.3)

where v is the 3-velocity and the Lorentz gamma factor is γ = [1 − v2]−1/2. We will
be decomposing 4-vectors into irreducible time-like and space-like components with
respect to the 4-velocity frequently through this text. Time-like components (parallel
to uµ) of variables can be recovered by contracting them with uµ and space-like
components (orthogonal to uµ) by contracting with the 3-space projector

∆µν = gµν − uµuν . (2.4)
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The 4-momentum is defined as

pµ = γ(E,p) = Euµ + p⟨µ⟩ , (2.5)

where we introduced a decomposition into components parallel and orthogonal to uµ

with the notation p⟨µ⟩ = ∆µ
νp

ν .
Furthermore we will for the most part adopt a more suppressed notation where

the 4-gradient operator is denoted as

∂

∂xµ
=
(
∂

∂t
,∇
)

≡ ∂µ = uµ
d

dτ
+ ∇µ , (2.6)

and the momentum dependence of a function as

f(p) ≡ fp . (2.7)

In (2.6) ∇ is the usual gradient operator and ∇µ = ∆ν
µ∂ν the 3-gradient, the spatial

part of 4-gradient operator, equivalent to ∇ in the local rest frame.
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2.2 Particle 4-current Nµ

In terms of the single particle distribution function, the total particle number of a
system can be expressed as an integral of fp over all space and momenta

N =
∫
d3x

d3p

(2π)3 fp . (2.8)

Quantities of the macroscopic state used in fluid dynamics, such as particle and
energy density, can be linked to the single particle distribution function as well
[16, 18]. The particle density can by equation (2.8) be represented as

N0 =
∫ d3p

(2π)3 fp . (2.9)

Particle flux to direction i depends on the particle density and the spatial velocity
vi = pi/p0 of the particles

N i =
∫ d3p

(2π)3p0 p
ifp . (2.10)

Equations (2.9) and (2.10) can be combined as a single 4-vector

Nµ =
∫ d3p

(2π)3p0 p
µfp , (2.11)

which is the particle 4-current. The particle current Nµ can be seen as the first
moment of fp, similarly as in the non-relativistic case.

Particle density in the fluids rest frame, where uµ = (1,0), can be identified as

uµN
µ =

∫ d3p

(2π)3p0 uµp
µfp = n . (2.12)
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2.3 Energy-momentum tensor T µν

Energy density can be written as

T 00 =
∫ d3p

(2π)3 p
0fp . (2.13)

Momentum density and energy flux into direction i

T 0i = T i0 =
∫ d3p

(2π)3 p
ifp , (2.14)

and i-component of momentum flux into direction j

T ij =
∫ d3p

(2π)3p0 p
ipjfp . (2.15)

These quantities can be combined in a 2nd rank tensor

T µν =
∫ d3p

(2π)3p0 p
µpνfp , (2.16)

which is the second moment of fp and is called the energy-momentum tensor.
Furthermore, the energy density in the fluids rest frame and isotropic pressure

can be identified as

uµuνT
µν =

∫ d3p

(2π)3p0 uµp
µuνp

νfp = ε , (2.17)

−1
3∆µνT

µν = 1
3

∫ d3p

(2π)3p0 (E2
p −m2)fp = 1

3

∫ d3p

(2π)3p0 |p|2fp = P . (2.18)

It is to be noted that (2.12), (2.17) and (2.18) describe the quantities in the local
rest frame of the fluid in an arbitrary state, that are not necessarily the same as the
respective equilibrium quantities.

From now on it is convenient to denote the Lorentz invariant integration measure
as

d3p

(2π)3p0 ≡ dP . (2.19)
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2.4 Conservation laws

Using Nµ and T µν , let’s consider the net flow of particles, energy and momentum
through a arbitrary spacetime volume V4, which is enclosed by a 3-dimensional
surface S (see Fig. 6). If particle number is conserved, the particle flux through S
must be zero ∫

S
dS nµN

µ = 0 , (2.20)

Energy and momentum fluxes through S must also vanish
∫

S
dS nµT

µν = 0 . (2.21)

By the divergence theorem (2.20) and (2.21) become
∫

V4
d4x ∂µN

µ = 0 , (2.22)

∫
V4
d4x ∂µT

µν = 0 . (2.23)

Since the conservation must hold for all space, the divergences of Nµ and T µν must
vanish

∂µN
µ = 0 , (2.24)

∂µT
µν = 0 . (2.25)

Equations (2.24) and (2.25) are the macroscopic conservation laws that must hold
for any system in order to behave physically. They will yield the fluid dynamical
equations of motion and play a crucial role in the following sections.

𝑥3

𝑡

𝒏𝜇

𝑉4

𝑺

Figure 6. The net particle, energy and momentum flow through the volume V4 must
be conserved.
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2.5 Boltzmann transport equation

In this subsection we will familiarize to the microscopic transport of particles and
derive the simplest kinetic transport equation that the distribution function fp

satisfies in the case of sufficiently rarefied gases.
Following references [16, 17, 19], let us again consider a 4-dimensional spacetime

volume V4 enclosed by a 3-dimensional surface S. We assume V4 is big enough
to consider the statistical properties of the ensemble of particles inside it, but at
the same time small enough for fp not to vary significantly over its region. The
microscopic transport of particles and instantaneous values of fp will depend on free
streaming and scattering particles entering and exiting the phase space volume.

The flow of particles through S near the momentum state p can be expressed as

∆Np =
∫

S
dS nµN

µ
p =

∫
S
dS nµ

∫
∆p
dP pµfp = 0 , (2.26)

and by using the divergence theorem
∫

V4
d4x ∂µ

∫
∆p
dP pµfp = 0 . (2.27)

Since V4 and ∆p are arbitrary and pµ does not have any position dependence, particle
conservation can be represented as

pµ∂µfp = 0 . (2.28)

However, this only applies to very sparse set of free streaming particles where the
mean free path is larger than the size of V4 and no contribution of interparticle
collisions is taken into account.

In reality particles scatter around chaotically and a gas is driven towards thermo-
dynamic equilibrium by the interparticle collisions. Particles can scatter in or out
of the momentum state p, or the Minkowski space volume V4. This is accounted
by introducing a collision term that describes the loss and gain of particles in the
phase space volume V4 · ∆p due to the scattering events. Assuming the the gas is
dilute enough, such that the mean free time between collisions is much greater that
the actual collision events and that the microscopic dynamics is dominated by 2
to 2 processes, it suffices to account only for elastic binary particle collisions with
incoming momenta p and p′ and outgoing momenta k and k′ (see Fig. 7). With the
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further assumption that the particle momenta are uncorrelated, the collision term
can be written as

Cf = 1
2

∫
dP ′ dK dK ′ Wpp′↔kk′

(
fkfk′ f̄pf̄p′ − fpfp′ f̄kf̄k′

)
. (2.29)

The factor 1
2 prevents from double counting identical particles, Wpp′↔kk′ is the

transition rate between the momentum states that contains the information of the
individual scattering processes and the term f̄p = 1 − afp accounts for quantum
statistics, where the parameter a can get values -1, 1 or 0 for bosons, fermions
and classical particles, respectively. The form (2.29) assumes detailed balance, or
microscopic time reversibility of the transition rate (Wpp′↔kk′ = Wkk′↔pp′).

Figure 7. The Boltzmann equation accounts for elastic binary particle collisions of
momenta p + p′ → k + k′.

Introducing the collision term changes equation (2.28) into the primary statement
of kinetic theory, the relativistic Boltzmann transport equation

pµ∂µfp = 1
2

∫
dP ′ dK dK ′ Wpp′↔kk′

(
fkfk′ f̄pf̄p′ − fpfp′ f̄kf̄k′

)
, (2.30)

which describes the balance between free streaming particles and collisions that drive
the gas towards thermodynamic equilibrium. The Boltzmann equation is a 9-fold
integro-differential equation of the single particle momentum distribution function
fp, and the transition rate contains momentum dependent scattering amplitudes of
quantum nature, which generally make it very hard to solve. For this reason there
are many simplified models, which allow the efficient use of the Boltzmann equation
in its applications.



23

2.5.1 Equilibrium distribution

In thermodynamic equilibrium the initial and final state particles have the same
momentum distribution function and the collision term vanishes, Cf = 0, which has
a solution of the form

f0p = 1
eβuµpµ−α + a

, (2.31)

which corresponds to the Maxwell–Jüttner, Fermi–Dirac or Bose–Einstein distribu-
tions for the different values of a. Here uµp

µ = Ep is the energy of the particle in
the fluids rest frame and

α = µ

T
, (2.32)

β = 1
T
, (2.33)

are the thermal potential (chemical potential/temperature) and inverse temperature,
respectively. The covariant formulation differs from its classical counterparts as
it prevents the particles from exceeding the speed of light and thus their velocity
distribution now has also an upper limit.

2.5.2 Collision invariants

Lets consider the following contraction of the collision term with a function ψp

∫
dP ψpCf = 1

2

∫
dP dP ′ dK dK ′ ψpWpp′↔kk′

(
fkfk′ f̄pf̄p′ − fpfp′ f̄kf̄k′︸ ︷︷ ︸

p↔k & p′↔k′

)

= 1
2

∫
dP dP ′ dK dK ′

(
ψp − ψk

)
Wpp′↔kk′fkfk′ f̄pf̄p′︸ ︷︷ ︸

p↔p′ & k↔k′

= 1
2

∫
dP dP ′ dK dK ′

(
ψp′ − ψk′

)
Wpp′↔kk′fkfk′ f̄pf̄p′ ,

(2.34)

where we interchanged the integration variables in the latter integral on the first line
and took advantage of the microscopic time reversal symmetry of the transition rate.
Now summing the last two lines together and dividing by two we get

∫
dP ψpCf = 1

4

∫
dP dP ′ dK dK ′

(
ψp + ψp′ − ψk − ψk′

)
Wpp′↔kk′fkfk′ f̄pf̄p′ .

(2.35)
From here we see that in the case that ψp ∝ 1 or ψp ∝ pµ and using the 4-momentum
conservation, the contraction (2.35) gives zero. This means the collision term has
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five zero eigenvalue eigenfunctions, or so called collision invariants, namely 1 and pµ

[16, 17]. Now contracting the Boltzmann equation with 1 and pν gives

∂µ

∫
dP pµfp︸ ︷︷ ︸

=Nµ

=
∫
dP 1 Cf︸ ︷︷ ︸

=0,(2.35)

, (2.36)

∂µ

∫
dP pµpνfp︸ ︷︷ ︸

=T µν

=
∫
dP pνCf︸ ︷︷ ︸
=0,(2.35)

, (2.37)

which reproduces the conservation laws (2.24) and (2.25) exactly. To conclude, the
collision invariants ensure the local conservation of the particle number, energy and
momentum, and by that, this kinetic description of a gas by the Boltzmann equation
is in perfect agreement with the macroscopic laws.

2.5.3 Linearized Boltzmann equation

If the system can be considered to be sufficiently close to equilibrium it is possible
to approximate the collision term to linear order. The single particle momentum
distribution in an arbitrary state can be expressed as

fp = f0p + δf ≡ f0p(1 + ϕp) , (2.38)

where ϕp is an auxiliary correction term characterizing the deviation from equilibrium.
Expanding fp this way introduces 4-velocity, chemical potential and temperature into
the Boltzmann equation. For a system close to equilibrium (ϕp ≪ 1), it is possible
to linearize the Boltzmann equation in the deviations from equilibrium by using
(2.38) and dropping off all the second order terms in ϕp and other first order small
quantities. Linearizing the right hand side of the Boltzmann equation (of classical
gas for simplicity) gives the linearized collision term

Cf =
∫
dP ′dK dK ′ Wpp′↔kk′

[
f0k(1 + ϕk)f0k′(1 + ϕk′) − f0p(1 + ϕp)f0p′(1 + ϕp′)

]
=
∫
dP ′dK dK ′ Wpp′↔kk′

[
f0kf0k′(1 + ϕk + ϕk′ + ϕkϕk′)

− f0pf0p′(1 + ϕp + ϕp′ + ϕpϕp′)
]

≈
∫
dP ′dK dK ′ Wpp′↔kk′f0pf0p′

(
ϕk + ϕk′ − ϕp − ϕp′

)
≡ L̂ϕp ,

(2.39)
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where we used the 4-momentum conservation in the last line in order to see f0kf0k′ =
f0pf0p′ and defined the linearized collision operator L̂.

From (2.39) we notice the linearized collision operator L̂ satisfies the properties

L̂1 = 0 , (2.40)

L̂pµ = 0 , (2.41)

and, due to similar considerations as for (2.35), is self-adjoint
∫
dP ψp L̂ϕp =

∫
dP ϕp L̂ψp , (2.42)

and as such satisfies also ∫
dP 1 L̂ϕp = 0 , (2.43)∫
dP pµL̂ϕp = 0 . (2.44)

2.5.4 Relaxation time approximation

A further simplification, the relaxation time approximation, was originally proposed
Bhatnagar, Gross and Krook [20] and has seen wide use in numerical lattice sim-
ulations. A relativistic version was proposed by Marle, [21] and later refined by
Anderson and Witting [13], with the advantage of acquiring fluid dynamical trans-
port coefficients more easily. The idea of relaxation time approximation is that the
momentum distribution function fp relaxes towards the equilibrium distribution f0p

on a characteristic time scale τ

L̂RTAϕp = Ep

τ

(
f0p − fp

)
= −Ep

τ
δf . (2.45)

This is a phenomenological approach in representing the collision term, where the
microscopic dynamics are parametrized by the relaxation time. Increasing τ leads to
slower relaxation into equilibrium which is the same as saying the mean free time
between collisions is longer and viscosity of the fluid greater, and vice versa.

The Anderson–Witting formulation (2.45) is a drastic simplification over the
original integral term, but as such it is flawed. Formally the Anderson–Witting



26

approximation is a linear operator

L̂RTA|Pm⟩ ∼ −1|Pm⟩ ≠ 0 , (2.46)

that gives only non-zero values. A similar consideration as in (2.36) and (2.37), using
the kinetic definitions for Nµ and T µν in equations (2.11) and (2.16) the Boltzmann
equation now gives

∂µN
µ = −

∫
dP

Ep

τ
δf , (2.47)

∂µT
µν = −

∫
dP

Ep

τ
pνδf , (2.48)

which is a clear violation of the macroscopic conservation laws unless one assumes
momentum independent relaxation time and chooses to use the Landau matching
conditions ∫

dP Epδf = 0 , (2.49)∫
dP Epp

µδf = 0 . (2.50)

This is a problem since the conservation laws should be an intrinsic part of the
theory and not require any further assumptions, and as the simple relaxation time
approximation does not contain any zero eigenvalue eigenfunctions, it fails to account
for the homogenous solutions of the Boltzmann equation. One also should expect
some energy dependence for the relaxation time because it is directly related to the
mean free time between collisions that should change for different momenta. For this
reason some of the transport coefficients recovered from this approximation yield
improper values. Despite of violating the basic properties of the Boltzmann equation,
the Anderson–Witting approximation has been used in order to obtain expressions
for transport coefficients in fluid dynamics.
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2.5.5 Novel relaxation time approximation

In a recent publication Rocha, Denicol and Noronha [10] proposed a novel relax-
ation time approximation (NRTA) for the collision term. The NRTA preserves the
properties of the linearized collision operator by adding counterterms in its five
orthonormal zero eigenvalue eigenfunctions. This forces the collision operator to
give zero when contracted with any of the orthonormal eigenfunctions. This can be
formally represented as

L̂NRTA|Pm⟩ ∼
(

−1 +
5∑

n=1
|Pn⟩⟨Pn|

)
|Pm⟩ = −|Pm⟩ + |Pn⟩δnm = 0 . (2.51)

Following Rocha et al. [10], we manage to construct L̂NRTA by expressing the
eigenfunctions 1 and pµ, or equivalently 1, p⟨µ⟩ and Ep, in an orthogonal basis
demanding the vectors are orthogonal in the inner product

∫
dP

Ep

τ
PnPmf0p ∝ δnm . (2.52)

It is enough to orthogonalize 1 with Ep, which is possible using the Gram–Schmidt
orthogonalization method (see appendix A). With the help of (A.11) one gets the
orthogonal basis

P
(0)
0 = 1 , P

(0)
1 = 1 − ⟨Ep/τ⟩0

⟨E2
p/τ⟩0

Ep , p⟨µ⟩ = ∆µ
νp

ν , (2.53)

where we introduced a further suppressed notation for brevity
∫
dP · · · f0p ≡ ⟨· · ·⟩0 . (2.54)

With the basis described in (2.53), a general form for the equation (2.51) can be
written as

L̂NRTAϕp = −Ep

τ
f0p

(
ϕp − AP

(0)
0 −BP

(0)
1 − Cµp

⟨µ⟩
)
, (2.55)

where A,B and Cµ are some momentum independent coefficients. Using the orthog-
onality of the basis elements

〈
(Ep/τ)P (0)

0 P
(0)
1

〉
0

=
〈
(Ep/τ)P (0)

0 p⟨µ⟩
〉

0
=
〈
(Ep/τ)P (0)

1 p⟨µ⟩
〉

0
= 0 , (2.56)
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the coefficients A,B and Cµ can be found (see Appendix B)

A =

〈
(Ep/τ)P (0)

0 ϕp

〉
0〈

(Ep/τ)P (0)
0 P

(0)
0

〉
0

, (2.57)

B =

〈
(Ep/τ)P (0)

1 ϕp

〉
0〈

(Ep/τ)P (0)
1 P

(0)
1

〉
0

, (2.58)

Cµ = 3

〈
(Ep/τ)p⟨µ⟩ϕp

〉
0〈

(Ep/τ)p⟨ν⟩p⟨ν⟩
〉

0

. (2.59)

Here we made use of the fact that integrals of projected tensors of momenta satisfy
∫
dP Fp p

⟨µ1 · · ·pµm⟩p⟨µ1 · · ·pµn⟩ = m!δmn

(2m+ 1)!!∆
µ1···µm
µ1···µm

∫
dP Fp

(
∆αβp

αpβ
)m

, (2.60)

where Fp is an arbitrary function of energy [16].
This leads to

L̂NRTAϕp = −Ep

τ
f0p

ϕp −

〈
Ep

τ
ϕp

〉
0〈

Ep

τ

〉
0

−

〈
Ep

τ
P

(0)
1 ϕp

〉
0〈

Ep

τ
P

(0)
1 P

(0)
1

〉
0

P
(0)
1 − 3

〈
Ep

τ
p⟨µ⟩ϕp

〉
0〈

Ep

τ
p⟨ν⟩p⟨ν⟩

〉
0

p⟨µ⟩

 .

(2.61)
This is the novel relaxation time approximation, constructed in such a way that it
gives zero when contracted with any of the collision invariants, thus accounting for
the homogeneous solutions of the Boltzmann equation. Furthermore, the NRTA
preserves the properties (2.40)-(2.42). With this form of the collision term, the
transport coefficients of the fluid can be consistently approximated without solving
the full collision integral [10, 22, 23].

Up to this point, we have seen how the microscopic dynamics of a gas can be cast
into a dynamical equation of the distribution function fp, and how it describes the
balance between free streaming particles and interparticle collisions. The collision
term was then simplified to its final form by the phenomenological argument that
the collisions drive the gas towards equilibrium, while explicitly restoring the five
collision invariants of the full theory. In the following section we will concentrate on
the macroscopic dynamics of the fluid, where we will see the emergence of transport
coefficients and how the information of the microscopic dynamics is embedded into
their definitions.
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3 Relativistic fluid dynamics

Fluid dynamics is a very practical approach in studying flow of matter in wide
range of situations from aerodynamics to weather forecasts or fluid flow in industrial
applications. In contrast to the kinetic theory of gases, fluid dynamics gives a
macroscopic description of flowing matter using spatially averaged field quantities
such as flow velocity, density, pressure and temperature. This however imposes
limitations on the applicability of fluid dynamics because all of the above are
statistical properties of an ensemble of particles. In order for them to be well defined,
the system in question must generally show separation between the microscopic and
macroscopic scales, usually referred to by the Knudsen number Kn = lmfp/L, where
lmfp is the mean free path and L the characteristic macroscopic length of the system.

The separation between length scales in the system is clear at small Knudsen
numbers and the matter can be considered as a continuum of small fluid elements.
This guarantees each fluid element has enough particles to be described by statistical
averaged quantities, governed by differential relations manifesting the conservation
of mass, momentum and energy. These are namely the Navier–Stokes equations

∂ρ

∂t
+ ∇ · (ρu) = 0 , (3.1)

ρ

(
∂u

∂t
+
(
u · ∇

)
u

)
= −∇P + ∇ · T + ρg , (3.2)

ρ

(
∂ε

∂t
+ ∇ · (εu)

)
= −P

(
∇ · u

)
+ κ∇2T + ∇ ·

(
T · u

)
, (3.3)

where the components of the viscous stress tensor T are

T ij = η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
(
∇ · u

)
δij

)
+ ζ

(
∇ · u

)
δij . (3.4)

Equations (3.1)-(3.3) really only apply to relatively small flow velocities. If one
were to use fluid dynamics in an application where the system is likely to exhibit
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relativistic velocities, the classical theory is not applicable anymore and relativistic
fluid dynamics is needed. This kind of systems are common in cosmology, astrophysics
and particle physics. As already mentioned, the main motivation concerning this
thesis is modeling the quark-gluon-plasma created in ultrarelativistic heavy-ion
collisions as a droplet of fluid.

In relativity the mass-energy equivalence renders the mass continuity equation
(3.1) spurious. Mass is not necessarily conserved in a relativistic system where energy
and momentum are. However, in a relativistic theory, it is possible to formulate a
continuity equation for a conserved particle number, as Eckart [24] proposed. The net
particle number is not conserved in heavy-ion collisions, but the net baryon number
can be taken as a conserved quantity, for which we use the equation (2.24). The
conserved quantities in relativistic fluid dynamics are thus baryon number, energy
and momentum, that were already discussed in the previous section.

The spacetime evolution of a relativistic fluid can be completely described by the
energy-momentum tensor T µν , baryon 4-current Nµ

B (the subscript will be omitted
in the following discussion) together with information of the material properties
encoded in the equation of state and transport coefficients. In this section we will
derive the equations of motion considering fluids with and without viscosity, and
see the emergence of transport coefficients in the case where the fluid is no longer
considered to be in local thermodynamic equilibrium.
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3.1 Ideal relativistic fluid dynamics

Considering an ideal fluid where thermodynamic limit could be reached in the fluid
elements, every fluid element could be considered to be in a local thermodynamic
equilibrium. This assumption greatly simplifies the equations of motion of the fluid
and assigns a well defined temperature for each fluid element. In fact the dynamics
of an ideal fluid can be closed in just 5 equations, but it turns out that such fluids
do not have any viscosity, the material property of fluid encoding its resistance to
flow which we are particularly interested in the case of QGP.

Generally the thermodynamics of out of equilibrium processes are not very well
known and the theories of viscous fluids will be expanded within relatively small
deviations from thermal equilibrium, so ideal fluid dynamics will form a solid ground
for relativistic fluid dynamics.

3.1.1 Tensorial form of Nµ and T µν

For an ideal fluid, the assumption of local thermal equilibrium guarantees, that the
single particle distribution function fp in the definitions (2.11) and (2.16) can be
represented as the corresponding equilibrium distribution

fp = f0p = 1
eβpµuµ−α + a

. (3.5)

Since now fp only depends only pµ, uµ and scalar quantities and the integration
in (2.11) and (2.16) is done over momenta, Nµ and T µν can only depend on uµ (and
the metric gµν). This means that the tensorial form of Nµ and T µν must be

Nµ = nuµ , (3.6)

T µν = εuµuν − P∆µν =
(
ε+ P

)
uµuν − Pgµν , (3.7)

where we identify n, ε and P as the particle density, energy density and isotropic
pressure in the fluids rest frame, respectively.
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3.1.2 Equations of motion

The five conservation laws (2.24) and (2.25) and the expressions for particle 4-current
(3.6) and the energy-momentum tensor (3.7) produce the equations of motion for
an ideal relativistic fluid. The energy and momentum equations can be extracted
from the energy-momentum conservation (2.25) considering the components parallel
and orthogonal to uµ. This is done by contracting the conservation law with the
4-velocity and the 3-space projector, respectively. The continuity equation for the
particle number can be recovered directly from (2.24), the energy equation from

uν∂µT
µν = 0 , (3.8)

and momentum equations from

∆µ
β∂αT

αβ = 0 , (3.9)

with the help of (3.6) and (3.7).
For an ideal fluid the equations of motion read

ṅ+ nθ = 0 , (3.10)

(
ε+ P

)
u̇µ = ∇µP , (3.11)

ε̇+
(
ε+ P

)
θ = 0 , (3.12)

where the divergence of 4-velocity, or the fluid element expansion rate, was denoted
θ ≡ ∂µu

µ and the upper dot for proper time derivative, ṅ ≡ dn
dτ

= uµ∂µn. These are
the relativistic generalization of Euler’s equations.

The conservation laws yield 5 equations and there are 6 independent variables,
uµ, n, ε and P . However, in equilibrium, pressure can be related to the other other
thermodynamic variables through an equation of state, P = P (n, ε), which closes
the set of equations governing non-viscous fluid flow.



33

3.1.3 Entropy conservation

The first law of thermodynamics can be written in covariant form [5, 6, 25, 26], which
allows to write differential changes to an entropy 4-current Sµ as

dSµ = βuνdT
µν − αdNµ . (3.13)

It is to be noted that covariant thermodynamics do not contain any additional
information as projecting to the subspace parallel to uµ returns traditional thermo-
dynamical relations and contracting with ∆α

µ gives trivially zero. Equation (3.13)
suggests that the divergence of Sµ is

∂µS
µ = βuν∂µT

µν − α∂µN
µ . (3.14)

Now the conservation laws (2.24) and (2.25) lead to entropy conservation in ideal
fluids

∂µS
µ = 0 . (3.15)
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3.2 Viscous relativistic fluid dynamics

In the case of heavy-ion collisions the total number of constituent particles makes
the assumption of thermal equilibrium at least questionable and as discussed in the
previous section, we are interested specifically in the viscosity of QGP, we need a
theory where viscosity and dissipative processes occur. A viscous fluid has friction
between the fluid layers which leads to dissipative processes and heat production. It
means that the fluid will no longer be in local thermodynamic equilibrium in contrast
to the ideal fluid. Concerning the mathematical theory this leads to a more complex
system which can not be described by only 5 equations, but altogether 14 equations
are needed to describe the dynamics of a viscous relativistic fluid.

3.2.1 Off-equilibrium corrections to Nµ and T µν

To formulate a relativistic theory of a viscous fluid, the fluid is assumed to be
sufficiently close to equilibrium. This allows to define a fictitious equilibrium state
in which the equilibrium thermodynamic relations are assumed to still be valid. The
off-equilibrium state introduces small deviations from this fictitious equilibrium state
in the particle 4-current and energy-momentum tensor

Nµ =
∫
dP pµ

(
f0p + δf

)
= n0u

µ + jµ , (3.16)

T µν =
∫
dP pµpν

(
f0p + δf

)
= ε0u

µuν − P0∆µν + τµν . (3.17)

The off-equilibrium parts jµ and τµν can be identified as a particle diffusion current
and viscous stress tensor, respectively. The 4-vector jµ can be split into projections
parallel and orthogonal to uµ

jµ =
(
uνj

ν
)

︸ ︷︷ ︸
≡δn

uµ + ∆µ
νj

ν︸ ︷︷ ︸
≡nµ

= δnuµ + nµ , (3.18)

where δn is the off-equilibrium particle density correction and nµ the particle diffusion
current orthogonal to uµ.
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As T µν is symmetric, τµν can be decomposed into a part parallel to uµ, a symmetric
traceless part and a separate term containing the trace

τµν =
(
uαuβτ

αβ
)

︸ ︷︷ ︸
≡δe

uµuν +
(1

3∆αβτ
αβ
)

︸ ︷︷ ︸
≡−Π

∆µν +
(
uβ∆µ

ατ
αβ
)

︸ ︷︷ ︸
≡hµ

uν

+
(
uβ∆ν

ατ
αβ
)

︸ ︷︷ ︸
≡hν

uµ +
(1

2
(
∆µ

α∆ν
β + ∆µ

β∆ν
α

)
− 1

3∆αβ∆µν
)
ταβ︸ ︷︷ ︸

≡πµν

= δεuµuν − Π∆µν + hµuν + hνuµ + πµν ,

(3.19)

where δε,Π, hµ and πµν are off-equilibrium energy density correction, bulk pressure,
energy diffusion current orthogonal to uµ and shear-stress tensor, respectively. In
the last term, we defined shear-stress tensor as

πµν = ∆µν
αβτ

αβ , (3.20)

where
∆µν

αβ = 1
2
(
∆µ

α∆ν
β + ∆µ

β∆ν
α

)
− 1

3∆αβ∆µν , (3.21)

is the doubly symmetric traceless projection operator orthogonal to uµ.

By choosing the fictitious equilibrium state (denoted by subscript 0) such that
the fluid particle and energy densities are still defined as

n0(α, β) = uµN
µ , (3.22)

ε0(α, β) = uµuνT
µν , (3.23)

one gets rid of the off-equilibrium corrections to the particle and energy density, i.e

δn =
∫
dP Epδf = 0 ,

δε =
∫
dP E2

pδf = 0 .
(3.24)

These are the Landau matching conditions [25] that already appeared in (2.49) and
(2.50), which can now be seen as an arbitrary definition of the equilibrium state that
fixes the chemical potential and temperature of the fluid. Using these off-equilibrium
terms and leaving the subscript 0 under the equilibrium quantities implicit, the
general form of the particle 4-current and energy-momentum tensor for a viscous
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fluid are
Nµ = nuµ + nµ , (3.25)

T µν = εuµuν −
(
P + Π

)
∆µν + hµuν + hνuµ + πµν , (3.26)

where the dissipative currents are defined as

Π = −1
3∆αβ

∫
dP pαpβδf , (3.27)

nµ = ∆µ
α

∫
dP pαδf , (3.28)

hµ = uα∆µ
β

∫
dP pαpβδf , (3.29)

πµν = ∆µν
αβ

∫
dP pαpβδf . (3.30)

3.2.2 Choice of frame

At this point uµ, n, nµ, ε,Π, hµ and πµν together contain 17 independent components
while Nµ and symmetric T µν contain only contain 14 independent components so
some additional constraints are needed.

In ideal fluid dynamics the fluid 4-velocity was a uniquely defined quantity, but
in the case of a viscous fluid, uµ has yet been an arbitrary normalized time-like
4-vector. There are two clever choices for the frame which fix uµ such that the form
of the particle 4-current and energy-momentum tensor simplify conveniently. First
of these, called Eckart frame, was proposed by Eckart [24] in which the 4-velocity is
intuitively defined to be parallel to the total particle current

uµ ≡ Nµ

√
NνNν

, (3.31)

and the latter, Landau frame, proposed by Landau and Lifshitz [25], where the
4-velocity is parallel to the total energy current

uµ ≡ 1
ε
uνT

µν . (3.32)

These definitions for uµ are useful, because in Eckart’s particle frame, the particle
diffusion current nµ by definition vanishes because it is accounted in the 4-velocity
and in Landau’s energy frame the energy diffusion current hµ in T µν vanishes. With
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either of these choices, one of the dissipative currents is interlinked with the 4-velocity,
thus reducing the number of degrees of freedom to 14.

However, the Eckart frame definition for uµ is ill-defined when particle density
vanishes. For example, in a region with equal number of particles and antiparticles
the net baryon number vanishes, which could leave the regions of the fluid without a
well defined velocity. In particle collisions this kind of situations are not uncommon
and thus one should avoid Eckart’s definition in these cases. From now on we shall
use the Landau frame in the calculations which leaves the energy-momentum tensor
as

T µν = εuµuν −
(
P + Π

)
∆µν + πµν . (3.33)

3.2.3 Equations of motion

From the conservation of net particle number (2.24) and the form of net particle
4-current we get the continuity equation

ṅ+ nθ + ∂µn
µ = 0 . (3.34)

By projecting energy-momentum conservation law (3.9) onto the subspace orthogonal
to uµ one obtains the momentum equation

(
ε+ P + Π

)
u̇µ − ∇µ

(
P + Π

)
+ ∆µ

β∂απ
αβ = 0 . (3.35)

Finally the energy equation is recovered by by projection of the energy-momentum
conservation law to the subspace parallel to uµ

ε̇+
(
ε+ P + Π

)
θ + uν∂µπ

µν = 0 . (3.36)

This form of the energy equation can be further refined. Due to πµν being orthogonal
to 4-velocity, the last term in (3.36) can be recast as

uν∂µπ
µν = −πµν∂µuν . (3.37)
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The velocity gradient ∂µuν can be decomposed into terms depicting different physical
deformations

∂µuν = uµu̇ν + ∇µuν = uµu̇ν + ωµν + σµν + Vµν , (3.38)

where we defined the tensors σµν , ωµν and V µν representing shear deformations,
rotation and expansion of the fluid element, respectively (see Fig. 8).

σµν = 1
2
(
∇µuν + ∇νuµ

)
− 1

3∆µνθ , (3.39)

ωµν = 1
2
(
∇µuν − ∇νuµ

)
, (3.40)

V µν = 1
3∆µνθ . (3.41)

Product between the symmetric πµν and both the antisymmetric ωµν and V µν parallel
to 4-velocity is zero, which means (3.36) can be represented as

ε̇+
(
ε+ P + Π

)
θ − πµνσµν = 0 . (3.42)

Figure 8. A tensor decomposition of the gradient of 4-velocity reveals components
depicting deformations due to shear stress, rotation and expansion of the fluid element.

Equations (3.34), (3.35) and (3.42) are the general equations of motion for
relativistic viscous fluid dynamics in Landau frame. As already discussed, dissipative
fluid dynamics has 14 degrees of freedom but the conservation laws provide only 5
equations. The additional 9 equations are recovered by finding expressions for the
dissipative currents Π, nµ and πµν .
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3.3 Relativistic generalization of Navier–Stokes

The general fluid dynamical equations of motion (3.34), (3.35) and (3.42) do not yet
make any reference to what the bulk pressure Π, particle diffusion current nµ or the
shear stress tensor πµν should be and do not form a closed system of equations. For a
direct relativistic generalization of the Navier–Stokes theory, the dissipative quantities
are related to the fluid dynamical gradients by taking advantage of the second law of
thermodynamics. This will give rise to fluid dynamical transport coefficients, which
are the proportionality factors between the corresponding dissipative currents and
fluid dynamical gradients.

3.3.1 Entropy production

Because the fictitious state is assumed to be close to equilibrium, equation (3.14) for
the equilibrium parts of Nµ and T µν (denoted by subscript 0) is still valid

∂µS
µ
0 = βuν∂µT

µν
0 − α∂µN

µ
0 . (3.43)

Now the divergence of the equilibrium parts can be expressed as

∂µN
µ
0 = ∂µN

µ − ∂µn
µ , (3.44)

∂µT
µν
0 = ∂µT

µν − ∂µ

(
− Π∆µν + πµν

)
. (3.45)

The first terms on the right hand side of (3.44) and (3.45) vanish due to the
conservation laws and (3.43) can be recast as

∂µS
µ
0 = βuν∂µ

(
Π∆µν − πµν

)
+ α∂µn

µ

= β
(

− Πθ + πµνσµν

)
+ ∂µ

(
αnµ

)
− nµ∂µα .

(3.46)

Following Landau and Lifshitz [25], by assuming the particle diffusion current to
be the main contribution to off-equilibrium entropy 4-current, we can nominate the
entropy 4-current as

Sµ ≡ Sµ
0 − αnµ , (3.47)
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which leads to
∂µS

µ = ∂µ

(
Sµ

0 − αnµ
)

= β
(

− Πθ + πµνσµν

)
− nµ∂µα ≥ 0 ,

(3.48)

where we required the divergence of Sµ to be non-negative by the second law of
thermodynamics. This is guaranteed by demanding each of the terms to be non-
negative separately such that they satisfy the constitutive relations

Π = −ζθ , (3.49)

nµ = κ∇µα , (3.50)

πµν = 2ησµν , (3.51)

where the positive transport coefficients ζ, κ and η are the bulk viscosity, particle
diffusion coefficient and shear viscosity, respectively. These are the only transport
coefficients emerging in the relativistic Navier–Stokes theory.

From (3.49)-(3.51) we can see that the resistance to flow of a viscous fluid is
manifested via two different parameters, η and ζ (see Fig. 9). Shear viscosity is the
fluids resistance to shear stresses and essentially resists velocity gradients between
parallel fluid layers. Microscopically, collisions of the particles in the fluid and
spreading of their momentum either slows down or speeds up adjacent layers of fluid.
Bulk viscosity is the resistance to compression or expansion of the fluid. This stems
from energy dissipation between translational and microscopic degrees of freedom
while the system is off-equilibrium [25, 27].

Figure 9. Shear and bulk viscosities, η and ζ, are the fluids resistance to shear rate
and compression/expansion.
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3.3.2 Relativistic Navier–Stokes equations

Now the relativistic Navier-Stokes equations can be derived from (3.34), (3.35), (3.42)
and (3.49)-(3.51)

ṅ+ nθ = −∂µ

(
κ∇µα

)
, (3.52)(

ε+ P − ζθ
)
u̇µ = ∇µ

(
P − ζθ

)
− 2η∆µ

β∂ασ
αβ , (3.53)

ε̇+
(
ε+ P − ζθ

)
θ = 2ησµνσµν . (3.54)

These equations show a clear resemblance of the classical equations (3.1)-(3.3),
although they have some corrections due to relativity and different definition of
flow velocity. However, these equations have a fundamental flaw, they are parabolic.
The terms involving the dissipative quantities are of first order in time derivatives
and of second order in spatial derivatives. This leads to problems when considering
boosted frames of reference, because in a relativistic theory space and time should
be treated equally. The parabolic nature of the equations leads to instantaneous
signal propagation of the dissipative quantities and allow entropy to grow even in
equilibrium. It has been shown that perturbations to the fluids equilibrium state
causes growing Fourier modes within extremely small timescales, thus labeling the
direct relativistic generalization of Navier-Stokes acausal and unstable [28].

In the Navier–Stokes theory the dissipative currents satisfy linear relations (3.49)-
(3.51) to the fluid dynamical gradients, but this is not necessarily the case. Restoring
terms of second order in the dissipative currents into the entropy 4-current (3.47) [5],
or a more rigorous approach [6, 7] based on manipulating the Boltzmann equation
in kinetic theory leads to dynamical equations for Π, nµ and πµν . This kind of
theories lead to causal behavior with the cost of introducing a plethora of transport
coefficients and coupled terms. Further discussion of these so called second order, or
Israel–Stewart type theories, will however be omitted here.

In the following we will be finding expressions for the transport coefficients
appearing in the relativistic Navier–Stokes equations, by employing the relaxation
time approximations introduced in section 2.
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4 Transport coefficients in the RTA

A widely used technique to obtain the fluid dynamical transport coefficients ζ, κ and
η is done by matching the macroscopic fluid dynamics to the underlying microscopic
theory and extract them using the Boltzmann equation. As we know the microscopic
expressions for the dissipative currents Π, nµ and πµν , it is possible to recover them
once δf , the off-equilibrium correction to the single particle momentum distribution
function, is known. Approximate solutions are usually recovered by using the so
called Grad moment method [18] or Chapman–Enskog expansion [29]. In this chapter
we will obtain the first order Chapman-Enskog expansion, where the single particle
momentum distribution function can be related to the fluid dynamical gradients
θ,∇µα and σµν . Then we calculate the transport coefficients of the relativistic Navier–
Stokes theory using the traditional Anderson–Witting relaxation time approximation.
The novel relaxation time approximation will be considered in section 5.

4.1 Chapman–Enskog expansion

Macroscopic dynamics of the fluid is expected to arise at small Knudsen numbers.
When a fluid close to equilibrium, this means that the microscopical kinematics is
dominated by the interparticle collisions which drive the fluid towards equilibrium
and is the same as writing the Boltzmann equation as

Kn pµ∂µfp = Cf , (4.1)

where the streaming term is now suppressed by the factor Kn, the Knudsen num-
ber. Chapman–Enskog theory is a gradient expansion in where the single particle
momentum distribution function is expanded as a perturbative series in Knudsen
number

fp = f (0)
p + Knf (1)

p + Kn2f (2)
p + ... . (4.2)

This also means the Chapman-Enskog method is only valid near the fluid dynamical
regime.
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Substituting (4.2) into (4.1) gives the Chapman–Enskog expansion to desired
order in Knudsen number

Kn pµ∂µ

(
f (0)

p + Knf (1)
p + O(Kn2)

)
=

1
2

∫
dP ′ dK dK ′ Wpp′⇒kk′

(
f (0)

p + Knf (1)
p + O(Kn2)

) (
f

(0)
p′ + Knf (1)

p′ + O(Kn2)
)

−1
2

∫
dP ′ dK dK ′ Wpp′⇒kk′

(
f

(0)
k + Knf (1)

k + O(Kn2)
) (
f

(0)
k′ + Knf (1)

k′ + O(Kn2)
)
.

(4.3)
Truncating this expansion to zeroth order leads to 0 = Cf (0) , which yields the
equilibrium function f0p itself. The first order approximation is nontrivial and is
obtained from

Kn pµ∂µf0p = Cf0p︸︷︷︸
=0

+Kn L̂ϕ(1)
p + O(Kn2) , (4.4)

where the collision term with equilibrium distribution is identically zero and the first
order contribution to fp was expressed as previously defined in (2.38)

f (1) = f0pϕ
(1)
p . (4.5)

For clarity, the index will also be omitted since we are only discussing the first order
expansion and leaving out all the O(Kn2) terms here.

After dividing (4.4) by the Knudsen number, the left hand side can be opened as

pµ∂µf0p = pµf0p

(
− Ep∂µβ − βuν∂µp

ν − βpν∂µuν + ∂µα
)
. (4.6)

The 4-momentum vector has no coordinate dependence so its gradient vanishes.
Furthermore, the 4-gradients can be decomposed to their timelike and spacelike
components

f0p

(
− E2

p β̇ − Epp
µ∇µβ − βEpp

ν u̇ν − βpµpν∇µuν + Epα̇ + pµ∇µα
)
. (4.7)

Using the equations of motion recovered from the macroscopic conservation laws
allows one to express the time derivatives with respect to spacelike gradients, since
the particle density, energy density and pressure are functions of temperature (β)
and chemical potential (α).
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Derivatives of n, ε and P in (3.34), (3.35) and (3.42) can thus be expressed with
partial derivatives with respect to α and β

ṅ = ∂n

∂α
α̇ + ∂n

∂β
β̇ , (4.8)

ε̇ = ∂ε

∂α
α̇ + ∂ε

∂β
β̇ , (4.9)

∇µP = ∂P

∂α
∇µα + ∂P

∂β
∇µβ . (4.10)

For the partial derivatives we will use the kinetic definitions (2.12), (2.17) and (2.18).
It is useful to define auxiliary thermodynamic integrals

Inq = 1
(2q + 1)!!

∫
dP En−2q

p

(
E2

p −m2
)q
f0p , (4.11)

Jnq = ∂Inq

∂α
, (4.12)

so that n = I10, ε = I20 and P = I21. Now the partial derivatives can be calculated

∂n

∂α
=
∫
dP Ep

∂f0p

∂α
=
∫
dP Ep

∂

∂α

(
eβEp−α + a

)−1
= J10 ,

∂n

∂β
=
∫
dP Ep

∂f0p

∂β
= −J20 ,

∂ε

∂α
=
∫
dP E2

p

∂f0p

∂α
= J20 ,

∂ε

∂β
=
∫
dP E2

p

∂f0p

∂β
= −J30 ,

∂P

∂α
= 1

3

∫
dP

(
E2

p −m2
)∂f0p

∂α
= J21 = I10

β
,

∂P

∂β
= 1

3

∫
dP

(
E2

p −m2
)∂f0p

∂β
= −J31 = −I20 + I21

β
,

(4.13)

where in the last two lines the relations between Jnq and Inq integrals were derived
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in appendix C. Now inserting (4.13) into (4.8)-(4.10) gives two expressions for α̇ and
β̇, and ∇µP with respect to the gradients of α and β

α̇ = ṅ+ J20β̇

J10
= ε̇+ J30β̇

J20
, (4.14)

β̇ = J10α̇− ṅ

J20
= J20α̇− ε̇

J30
, (4.15)

∇µP = I10

β
∇µα− I20 + I21

β
∇µβ . (4.16)

Using (4.14)-(4.15) α̇ and β̇ can be solved in terms of the thermodynamic integrals
and fluid dynamical variables from (3.34) and (3.42) as

α̇ = 1
J2

20 − J30J10

(
− J20 [(ε+ P + Π)θ − πµνσµν ] + J30 [nθ + ∂µn

µ]
)
, (4.17)

β̇ = 1
J2

20 − J30J10

(
− J10 [(ε+ P + Π)θ − πµνσµν ] + J20 [nθ + ∂µn

µ]
)
. (4.18)

With (4.16) equation (3.35) can be recast as

u̇µ = 1
ε+ P

(
I10

β
∇µα− I20 + I21

β
∇µβ + ∇µΠ − Πu̇µ − ∆µ

β∂απ
αβ

)
. (4.19)

Now (4.17)-(4.19) can be inserted into (4.7). Since both the fluid dynamical
gradients and dissipative currents are O(1) small quantities, their products are of
O(2) and thus can be neglected in a linearized theory [16, 30]. Finally the equation
(4.7) becomes

f0p

(
− E2

p

J10(I20 + I21) − J20I10

I30I10 − I2
20

θ − Epp
µ∇µβ − βEpp

ν

[
I10

β(I20 + I21)
∇να− 1

β
∇νβ

]

− βpµpν
[
σµν + ωµν + 1

3∆µνθ
]

+ Ep
J20(I20 + I21) − J30I10

I30I10 − I2
20

θ + pµ∇µα

)

≡ f0p

(
Apθ +Bpp

µ∇µα− βpµpνσµν

)
,

(4.20)
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where we defined the momentum dependent coefficients

Ap = J20(I20 + I21) − J30I10

I30I10 − I2
20

Ep − J10(I20 + I21) − J20I10

I30I10 − I2
20

E2
p − β

3
(
m2 − E2

p

)
, (4.21)

Bp = 1 − I10

(I20 + I21)
Ep . (4.22)

The first order Chapman–Enskog expansion (4.4) can now be written as

(
Apθ +Bpp

µ∇µα− βpµpνσµν

)
f0p = L̂ϕp . (4.23)

With the help of (4.23) it is now possible to identify expressions for the fluid dynamical
transport coefficients in order to solve their energy dependence using the kinetic
definitions of Π, nµ and πµν derived in the last section.

4.2 Calculation of ζ, κ and η

We have now expressed the Boltzmann equation in terms of the fluid dynamical
gradients, which allows one to link them to the non-equilibrium part of the single
particle momentum distribution function. Recalling the microscopic expressions for
the dissipative currents in the Landau frame

Π = −1
3∆µν

∫
dP pµpνδf , (4.24)

nµ = ∆µ
ν

∫
dP pνδf , (4.25)

πµν = ∆µν
αβ

∫
dP pαpβδf . (4.26)

In the traditional Anderson–Witting relaxation time approximation (L̂ → L̂RTA) it
is straightforward to solve δf directly from the Boltzmann equation

(
Apθ +Bpp

µ∇µα− βpµpνσµν

)
f0p = −Ep

τ
δf . (4.27)
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In the Navier–Stokes theory bulk viscosity, particle diffusion coefficient and shear
viscosity can then be exactly identified from equations (3.49)-(3.51) as

ζ = −1
3

∫
dP

Apτ

Ep

∆µνp
µpνf0p , (4.28)

κ = 1
3

∫
dP

Bpτ

Ep

∆µνp
µpνf0p , (4.29)

η = 1
15

∫
dP

βτ

Ep

(
∆µνp

µpν
)2
f0p . (4.30)

The relaxation time τ itself will be parametrized as

τ = tR(βEp)γ , (4.31)

where tR sets the relaxation timescale and the value of γ sets its energy dependence.
Once the parametrization for the energy dependence is chosen, the only free parameter
left will be tR, which is a common factor in the integrals and can be thus normalized
out. The transport coefficients are exponentially suppressed thermodynamic functions
getting high values when the argument mβ is small and they quickly tend to zero as
mβ increases. For illustrative purposes they shall be plotted in a dimensionless form
independent of the chosen relaxation timescale tR. The transport coefficients are
calculated using three different relaxation schemes, namely a constant momentum
independent relaxation time τ = tR (γ = 0), a QCD inspired relaxation time
τ ∝

√
Ep (γ = 0.5) and a linear ansatz τ ∝ Ep (γ = 1) [14, 15].

The results are shown in Fig. 10. We can immediately notice negative values for
the bulk viscosity and vanishing particle diffusion coefficient with γ = 1, which are in
direct contradiction with the arguments based on the second law of thermodynamics
that were presented in section 3.3.1. This is precisely the reason why we are motivated
to introduce the novel relaxation time approximation.
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Figure 10. Dimensionless bulk viscosity, particle diffusion and shear viscosity coeffi-
cients of a Boltzmann gas as a function of mβ in the AW relaxation time approximation.
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5 Transport coefficients in the NRTA

Inverting the Boltzmann equation in the novel relaxation time approximation (L̂ →
L̂NRTA),

(
Apθ +Bpp

µ∇µα− βpµpνσµν

)
f0p =

−Ep

τ
f0p

ϕp −

〈
Ep

τ
ϕp

〉
0〈

Ep

τ

〉
0

− P
(0)
1

〈
Ep

τ
P

(0)
1 ϕp

〉
0〈

Ep

τ
P

(0)
1 P

(0)
1

〉
0

− p⟨µ⟩

〈
Ep

τ
p⟨µ⟩ϕp

〉
0〈

Ep

τ
p⟨ν⟩p⟨ν⟩

〉
0

 ,
(5.1)

is more involved than in the previous section since ϕp appears now also inside the
integral coefficients, and we are yet one step away from being able to write down
expressions for the transport coefficients.

5.1 Gradient expansion for ϕp

From (5.1) we can see that the first order Chapman–Enskog expansion of the
Boltzmann equation has three linearly independent components, namely the fluid
dynamical gradients θ, pµ∇µα and pµpνσµν . Since also the novel relaxation time
approximation is linear in its argument, the solution for ϕp can be written as a linear
combination of these independent components with some momentum dependent
coefficients. The general form of ϕp can thus be written as

ϕp = S(0)
p θ + S(1)

p pµ∇µα− S(2)
p pµpνσµν . (5.2)

The momentum dependence of each of the coefficients S(l)
p will be expressed as a

formal power series in energy. Here we expand them in a complete basis of orthogonal
polynomial functions as

S(l)
p =

∞∑
n=0

s(l)
n P

(l)
n , (5.3)
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where the coefficients s(l)
n are momentum independent. The momentum dependence

is captured in the polynomial functions

P (l)
n =

n∑
r=0

a(l)
nrE

n
p . (5.4)

They are similar to the associated Laguerre polynomials, now constructed to be
orthogonal in the inner product

∫
dP

Ep

τ

W (l)

(2l + 1)!!
(
∆µνp

µpν
)l
P (l)

n P (l)
m f0p = δnm , (5.5)

such that the orthogonality can be used conveniently to extract the exact values
of the coefficients s(l)

n . Hence the problem of inverting the Boltzmann equation
has been converted into a task of finding the coefficients s(l)

n and a(l)
nr. In order to

find coefficients a(l)
nr for the calculations of the transport coefficients, the polynomial

functions have to be separately constructed to satisfy (5.5) up to the desired order
(see Appendix A).

The coefficients s(l)
n can be extracted by inverting the Boltzmann equation (see

Appendix D)

s(0)
n = −

〈
ApP

(0)
n

〉
0〈

(Ep/τ)P (0)
n P

(0)
n

〉
0

, n ≥ 2 (5.6)

s(1)
n = −

〈
Bp∆µνp

µpνP (1)
n

〉
0〈

(Ep/τ)∆µνpµpνP
(1)
n P

(1)
n

〉
0

, n ≥ 1 (5.7)

s(2)
n =

〈
β
(
∆µνp

µpν
)2
P (2)

n

〉
0〈

(Ep/τ)
(
∆µνpµpν

)2
P

(2)
n P

(2)
n

〉
0

. (5.8)

In the Anderson–Witting approximation these would be valid for all n, but in the
NRTA extracting s(0)

0 , s
(0)
1 and s

(1)
0 is not possible by this procedure but only after

employing matching conditions, since they incorporate the homogeneous solutions
of the Boltzmann equation. On a further note the coefficients s(2)

n , related to shear
deformations, are the same in both the Anderson–Witting RTA and in the NRTA.
This means that the NRTA will not affect the coefficient of shear viscosity, however
calculating it this way will grant us some information about the validity of the
method used here. Strictly speaking the traditional RTA satisfies the conservation
laws only using momentum independent relaxation times and the NRTA should
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validate also the momentum dependent ones.
For obtaining the missing coefficients s(0)

0 , s
(0)
1 and s(1)

0 , consider general matching
conditions as described in [10]

∫
dP gpϕpf0p = 0 , (5.9)

∫
dP hpϕpf0p = 0 , (5.10)∫

dP qpp
⟨µ⟩ϕpf0p = 0 , (5.11)

where gp and hp are two linearly independent functions of energy and qp is an arbitrary
function of energy. Landau matching conditions (2.49) and (2.50) can be identified to
correspond to setting gp = qp = Ep and hp = E2

p . Using the orthogonality condition
(2.60) one gets

s
(0)
0 ⟨gp⟩0 + s

(0)
1

〈
gpP

(0)
1

〉
0

= −
∞∑

n=2
s(0)

n

〈
gpP

(0)
n

〉
0
, (5.12)

s
(0)
0 ⟨hp⟩0 + s

(0)
1

〈
hpP

(0)
1

〉
0

= −
∞∑

n=2
s(0)

n

〈
hpP

(0)
n

〉
0
, (5.13)

s
(1)
0

〈
qp∆µνp

µpν
〉

0
= −

∞∑
n=1

s(1)
n

〈
qp∆µνp

µpνP (1)
n

〉
0
. (5.14)

Solving s(0)
0 , s

(0)
1 and s

(1)
0 from these constraints gives

s
(0)
0 =

∑∞
n=2 s

(0)
n (

〈
hpP

(0)
1

〉
0

〈
gpP

(0)
n

〉
0

−
〈
gpP

(0)
1

〉
0

〈
hpP

(0)
n

〉
0
)

⟨hp⟩0
〈
gpP

(0)
1

〉
0

− ⟨gp⟩0
〈
hpP

(0)
1

〉
0

, (5.15)

s
(0)
1 =

∑∞
n=2 s

(0)
n (⟨gp⟩0

〈
hpP

(0)
n

〉
0

− ⟨hp⟩0
〈
gpP

(0)
n

〉
0
)

⟨hp⟩0
〈
gpP

(0)
1

〉
0

− ⟨gp⟩0
〈
hpP

(0)
1

〉
0

, (5.16)

s
(1)
0 = −

∑∞
n=1 s

(1)
n

〈
qp∆µνp

µpνP (1)
n

〉
0

⟨qp∆µνpµpν⟩0
. (5.17)

Now equations (5.6)-(5.8) together with (5.15)-(5.17) give the full prescription of
ϕp within terms of the polynomial functions P (l)

n .
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5.2 Calculation of ζ, κ and η

So far we have obtained an expression for the Boltzmann equation in the fluid dy-
namical regime using the Chapman-Enskog method and presented the off-equilibrium
contribution to the single particle distribution function expanding it in fluid dynam-
ical gradients with coefficients in a basis of orthogonal polynomials. Finally it is
possible to identify expressions for the fluid dynamical transport coefficients in order
to solve their energy dependence using the expansion coefficients derived in the last
subsection.

Bulk viscosity, particle diffusion coefficient and shear viscosity can now be exactly
identified from equations (3.49)-(3.51) as

ζ = 1
3

∫
dP ∆µνp

µpνS(0)
p f0p , (5.18)

κ = 1
3

∫
dP ∆µνp

µpνS(1)
p f0p , (5.19)

η = 1
15

∫
dP

(
∆µνp

µpν
)2
S(2)

p f0p . (5.20)

The functions S(l)
p express the solutions as an infinite series in the orthogonal

polynomials of energy but in practice the series has to be truncated. As seen above,
in the bulk viscosity and particle diffusion coefficient, one must take into account
the homogenous solution of the Boltzmann equation and thus the lowest order
approximations read

ζ = 1
3

∫
dP ∆µνp

µpν
(
s

(0)
0 + s

(0)
1 P

(0)
1 + s

(0)
2 P

(0)
2

)
f0p , (5.21)

κ = 1
3

∫
dP ∆µνp

µpν
(
s

(1)
0 + s

(1)
1 P

(1)
1

)
f0p , (5.22)

η = 1
15

∫
dP

(
∆µνp

µpν
)2
s

(2)
0 f0p . (5.23)

The truncation of the polynomial series also affects the homogeneous solutions
incorporated in (5.15)-(5.17) since they are written using all the polynomials. Higher
order estimates can be achieved by accounting for more polynomials in the S(l)

p

functions and observing whether the solution converges. It is not self-evident, at
least to the writer, that this should always converge with the basis truncated only to
the first few polynomials.
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Nevertheless, in order to obtain at least next to lowest order approximations,
here we truncate the polynomial series after the fourth polynomial such that

ζ = 1
3

∫
dP ∆µνp

µpν
(
s

(0)
0 + s

(0)
1 P

(0)
1 + s

(0)
2 P

(0)
2 + s

(0)
3 P

(0)
3

)
f0p , (5.24)

κ = 1
3

∫
dP ∆µνp

µpν
(
s

(1)
0 + s

(1)
1 P

(1)
1 + s

(1)
2 P

(1)
2 + s

(1)
3 P

(1)
3

)
f0p , (5.25)

η = 1
15

∫
dP

(
∆µνp

µpν
)2 (

s
(2)
0 + s

(2)
1 P

(2)
1 + s

(2)
2 P

(2)
2 + s

(2)
3 P

(2)
3

)
f0p , (5.26)

where
P

(l)
1 = a

(l)
10 + a

(l)
11Ep , (5.27)

P
(l)
2 = a

(l)
20 + a

(l)
21Ep + a

(l)
22E

2
p , (5.28)

P
(l)
3 = a

(l)
30 + a

(l)
31Ep + a

(l)
32E

2
p + a

(l)
33E

3
p . (5.29)

All of the coefficients s(l)
n and a(l)

nr are complicated thermodynamic functions as
derived in appendices A and D.

In principle the integrals (5.24)-(5.26) could be integrated numerically by changing
integration variable to energy. For numerical convenience, here we convert the
momentum integrals to a dimensionless form by extracting the physical variables out
by substituting x ≡ βEp

∫
dP En

p f0p = 1
2π2

∫ ∞

m
dEp E

n
p

√
E2

p −m2 1
eβEp−α + a

= 1
2π2

(
1
β

)n+2 ∫ ∞

mβ
dx xn

√
x2 − (mβ)2 1

ex−α + a
.

(5.30)

In the case of a Boltzmann gas (a = 0), it has been customary to express such
integrals in terms of the integral representations of modified Bessel functions of the
second kind [6, 13, 19]

Kn(z) = 2nn!
(2n)!z

−n
∫ ∞

z
dx

(
x2 − z2

)n− 1
2 e−x

= 2n−1(n− 1)!
(2n− 2)! z−n

∫ ∞

z
dx x

(
x2 − z2

)n− 3
2 e−x .

(5.31)
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Now thermodynamic integrals used in the calculation can be written as

n = I10 = eα

2π2
m2

β
K2(mβ) , (5.32)

ε = I20 = eα

2π2

(
3m2

β2 K2(mβ) + m3

β
K1(mβ)

)
, (5.33)

P = I21 = eα

2π2
m2

β2 K2(mβ) , (5.34)

I30 = eα

2π2

(
3m3

β2 K3(mβ) + m4

β
K2(mβ)

)
. (5.35)

As a sidenote, from (5.32) and (5.34) one can also see that the thermodynamic
equation of state for relativistic classical particles is P = nT , just as in the non-
relativistic case. Using (5.31), equations (5.24)-(5.26) in terms of the Bessel Kn

-functions are

ζ = − eα

2π2
m2

β2

C(0)
1 K2(mβ) + C

(0)
2 K3(mβ) + 5m2

β
s

(0)
3 a

(0)
33 K4(mβ)

 , (5.36)

κ = − eα

2π2
m2

β2

C(1)
1 K2(mβ) + C

(1)
2 K3(mβ) + 5m2

β
s

(1)
3 a

(1)
33 K4(mβ)

 , (5.37)

η = eα

2π2
m3

β3

C(2)
1 K3(mβ) + C

(2)
3 K4(mβ) + 7m2

β
s

(2)
3 a

(2)
33 K5(mβ)

 , (5.38)

where
C

(l)
1 = s

(l)
0 + s

(l)
1 a

(l)
10 + s

(l)
2

(
a

(l)
20 + a

(l)
22m

2
)

+ s
(l)
3

(
a

(l)
30 + a

(l)
32m

2
)
, (5.39)

C
(l)
2 = m

(
s

(l)
1 a

(l)
11 + s

(l)
2 a

(l)
21 + s

(l)
3

[
a

(l)
31 + a

(l)
33m

2
])

+ 5m
β

(
s

(l)
2 a

(l)
22 + s

(l)
3 a

(l)
32

)
, (5.40)

C
(l)
3 = m

(
s

(l)
1 a

(l)
11 + s

(l)
2 a

(l)
21 + s

(l)
3

[
a

(l)
31 + a

(l)
33m

2
])

+ 7m
β

(
s

(l)
2 a

(l)
22 + s

(l)
3 a

(l)
32

)
. (5.41)

The relaxation time is parametrized similarly as in (4.31), which now affects all the
coefficients s(l)

n and a(l)
nr.
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Finally using (5.32)-(5.41) we get

ζ

tR(ε+ P ) = −
C

(0)
1 K2(mβ) + C

(0)
2 K3(mβ) + 5m2

β
s

(0)
3 a

(0)
33 K4(mβ)

4K2(mβ) +mβK1(mβ) , (5.42)

κ

ntR
= −

C
(1)
1 K2(mβ) + C

(1)
2 K3(mβ) + 5m2

β
s

(1)
3 a

(1)
33 K4(mβ)

βK2(mβ) , (5.43)

η

tR(ε+ P ) =
m
(
C

(2)
1 K3(mβ) + C

(2)
3 K4(mβ)

)
+ 7m3

β
s

(2)
3 a

(2)
33 K5(mβ)

4βK2(mβ) +mβ2K1(mβ) . (5.44)

The integrals inside the coefficients s(l)
n and a(l)

nr are calculated numerically using
SciPy’s general purpose quadrature method, while the Bessel functions are handled
by pre-defined special functions.

The dimensionless bulk viscosity, particle diffusion coefficient and shear viscosity
obtained this way are shown in Fig. 11. Here we truncated the polynomial expansion
for the S(l)

p coefficients to the fourth order. Convergence of the transport coefficients
using all the available polynomial functions is in turn shown in Fig. 12, where the
dashed line corresponds to the respective plots from Fig. 11 and the solid lines are
approximations of lower order. The results of this calculation are compared to the
original results of Rocha et. al. in Fig. 13. Further discussion of Figs. 11-13 is
located in the following conclusions.
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Figure 11. Dimensionless bulk viscosity, particle diffusion and shear viscosity coeffi-
cients of a Boltzmann gas as a function of mβ in the novel relaxation time approxima-
tion.
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Figure 12. The behavior of transport coefficients with a QCD inspired relaxation
time τ ∝
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Ep with basis polynomials up to order n.
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Figure 13. Comparison between the results of the original paper by Rocha et al. [10]
and this work.
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6 Conclusions

In this thesis we have now thoroughly gone through the basic principles of obtaining
fluid dynamical transport coefficients using the novel relaxation time approximation
for the Boltzmann equation. The main motivation was that while the Anderson-
–Witting approximation delivers appropriate estimates for the shear viscosity, its
fundamental properties disagree with the linearized Boltzmann equation and as
such it fails to deliver suitable estimates for the bulk viscosity and particle diffusion
coefficient.

The results from the novel relaxation time approximation seem to give consistent
approximations for both, the bulk viscosity and particle diffusion coefficient that
are in good agreement with the second law of thermodynamics. Considering high
energy physics such as heavy-ion collision, we are particularly interested in the
behavior of these transport coefficients in the ultrarelativistic limit, mβ ≪ 1. When
inspecting the behavior of the obtained transport coefficients in Fig. 11, bulk viscosity
seems to vanish in the ultrarelativistic limit while dimensionless particle diffusion
coefficient and shear viscosity tend to a constant. As discussed before, in theory
the expressions for the transport coefficients are valid for only an infinite series
of the basis polynomials, but their behavior seems to converge quickly. Already
the lowest order approximation seems to capture the temperature behavior well,
although accounting more polynomial functions changes the value of particle diffusion
coefficient and shear viscosity at the ultrarelativistic limit, as seen in Fig. 12.

Comparing the results obtained in this work show a small discrepancy between
the original work of Rocha et al. [10], which is visualized in Fig. 13. The results
seem to differ mostly in the constant relaxation time plots. This however could be
just due to different orders of approximation, since here we did the calculations with
a basis of just four polynomial functions. Accounting more polynomial functions in
the calculation seems to change the ultrarelativistic behavior of the coefficients more
with relaxation times that have weaker energy dependency.

It is especially interesting to compare the results for the coefficient of shear
viscosity obtained from inverting δf directly from the Boltzmann equation to the
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ones obtained by expanding it in fluid dynamical gradients with coefficients expressed
as power series in energy. This shows how powerful tool the method of expanding
functions in a complete basis of orthogonal polynomials here is, since already the
lowest order approximation seems to pick the true behavior well.

Here all the calculations are carried out assuming a gas of classical particles,
which is per se not the case in heavy-ion collisions, where the overall size of the
system already indicates the occurrence of quantum dynamics. In the future the
calculation could be extended accounting for boson and fermion statistics. This
would lead to more involved integral expressions which would be represented by
series of Bessel functions. These calculations are also just an illustration how the
novel relaxation time can be used to capture the underlying microscopic dynamics in
a consistent way to derive plausible results for the macroscopic quantities. Obtaining
realistic transport coefficients for heavy-ion collisions should incorporate information
of the multicomponent quantum nature of the QGP and hadronic gas phases.

The true power of the novel relaxation time approximation could be utilized
in constructing effective descriptions of matter in the future. The relaxation time
approximation, now consistent with the basic properties of the Boltzmann equation,
could be used to capture the prominent behavior of matter without necessarily
knowing the details of individual interactions. In heavy-ion collisions the properties
of matter change considerably on the course of the events as the QGP slowly confines
into hadron gas, which means the nature of the particle interactions also change. In
the kinetic theory this leads to changes the transition rate and scattering cross sections.
Calculations considering varying momentum dependent scattering cross sections inside
the collision integrals quickly become cumbersome and computationally heavy. In
practise the transport coefficients customarily enter the simulations in a parametric
form, which are tried to be fitted in the experimental results. The transport
coefficients matched to the experimental data should contain real information of the
material properties. Relaxation times, sufficiently molded to recreate these transport
coefficients, could give decent effective kinetic descriptions of bulk QCD and hadronic
matter present in high energy collisions.
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A Orthogonal polynomials P (l)
n

An explicit calculation of the first few energy polynomials is presented in this section.
We construct the orthogonal polynomials to satisfy the relation

∫
dP

Ep

τ

W (l)

(2l + 1)!!
(
∆µνp

µpν
)l
P (l)

n P (l)
m f0p = δnm . (A.1)

The normalization factor W (l) is recovered from the condition
∫
dP

Ep

τ

W (l)

(2l + 1)!!
(
∆µνp

µpν
)l
P

(l)
0 P

(l)
0 f0p = 1 . (A.2)

All the polynomials of order 0 can be set to 1 without loss of generality

P
(l)
0 = a

(l)
00 ≡ 1 , (A.3)

which means the normalization factor can be written as

W (l) = 1
⟨1⟩(l) , (A.4)

where we defined generalized integrals in a similar manner as in the main text

⟨· · ·⟩(l) =
∫
dP

Ep

τ

(· · ·)
(2l + 1)!!

(
∆µνp

µpν
)l
f0p . (A.5)

The first order polynomial function is

P
(l)
1 = a

(l)
10 + a

(l)
11Ep . (A.6)

The coefficients a(l)
10 and a

(l)
11 can be solved from the constraints

〈
P

(l)
0 P

(l)
1

〉(l)
= 0 , (A.7)

〈
P

(l)
1 P

(l)
1

〉(l)
= 1 . (A.8)
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Simplifying equations (A.7) and (A.8) gives

a
(l)
11 = − ⟨1⟩(l)

⟨Ep⟩(l)a
(l)
10 , (A.9)

a
(l)
10 =


[
⟨Ep⟩(l)

]2
⟨E2

p⟩(l)⟨1⟩(l) − [⟨Ep⟩(l)]2


1
2

, (A.10)

which allows P (l)
1 to be expressed as

P
(l)
1 =


[
⟨Ep⟩(l)

]2
⟨E2

p⟩(l)⟨1⟩(l) − [⟨Ep⟩(l)]2


1
2 (

1 − ⟨1⟩(l)

⟨Ep⟩(l)Ep

)
. (A.11)

This polynomial function is used in the novel relaxation time formula, since it is
first order in energy and orthogonal to both 1 and p⟨µ⟩ in the inner product under
consideration.

The polynomial function of second order is

P
(l)
2 = a

(l)
20 + a

(l)
21Ep + a

(l)
22E

2
p , (A.12)

and the coefficients are constrained by

〈
P

(l)
0 P

(l)
2

〉(l)
= 0 , (A.13)

〈
P

(l)
1 P

(l)
2

〉(l)
= 0 , (A.14)

〈
P

(l)
2 P

(l)
2

〉(l)
= 1 . (A.15)

After some manipulation the coefficients are found

a
(l)
22 = −⟨1⟩(l)a

(l)
20 + ⟨Ep⟩(l)a

(l)
21

⟨E2
p⟩(l) , (A.16)

a
(l)
21 = −A(l)

B(l)a
(l)
20 , (A.17)
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a
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(A.18)

where we defined the following coefficients

A(l) = ⟨Ep⟩(l)⟨E2
p⟩(l) − ⟨1⟩(l)⟨E3

p⟩(l) , (A.19)

B(l) =
(
⟨E2

p⟩(l)
)2

− ⟨Ep⟩(l)⟨E3
p⟩(l) . (A.20)

The polynomial function of third order is
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33E
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and the coefficients are constrained by
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Using (A.22)-(A.25) we find

a
(l)
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where we further defined
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(
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)2

− ⟨1⟩(l)⟨E6
p⟩(l) . (A.34)

The calculation of the transport coefficients in section 5.2 are carried out with the
polynomial functions characterized by equations (A.3), (A.9)-(A.11), (A.16)-(A.20)
and (A.26)-(A.34).
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B Constructing NRTA

In order to find the full expression for the collision term in the novel relaxation time
approximation, we consider the Boltzmann equation with the ansatz (2.55)

pµ∂µfp = −Ep

τ
f0p

(
ϕp − AP

(0)
0 −BP

(0)
1 − Cµp

⟨µ⟩
)
. (B.1)

The goal is to construct the coefficients A,B and Cµ in such a way that the NRTA
reproduces the macroscopic conservation laws ∂µN

µ = 0 and ∂µT
µν = 0 when

contracted with the collision invariants 1 and pµ.

To find the coefficient A, we contract (B.1) with P (0)
0 and integrate over momenta

∫
dP P

(0)
0 pµ∂µfp = −

∫
dP

Ep

τ
f0p

(
P

(0)
0 ϕp − AP

(0)
0 P

(0)
0 −BP

(0)
0 P

(0)
1︸ ︷︷ ︸

=0,(2.56)

−CµP
(0)
0 p⟨µ⟩︸ ︷︷ ︸

=0,(2.56)

)
,

(B.2)
where the last two terms in the right hand side can be eliminated using the orthogo-
nality of the basis elements. As the zeroth order polynomial function P (0)

0 was set to
1, the left hand side of (B.2) is just the divergence of particle 4-current

∂µN
µ︸ ︷︷ ︸

≡0

= −
∫
dP

Ep

τ
f0p

(
P

(0)
0 ϕp − AP

(0)
0 P

(0)
0

)
, (B.3)

which we now explicitly force to zero for the NRTA to fulfill the macroscopic laws.
From here it is straightforward to solve for the coefficient A

A =
∫
dP (Ep/τ)P (0)

0 ϕpf0p∫
dP (Ep/τ)P (0)

0 P
(0)
0 f0p

. (B.4)

The coefficient B can be found similarly, now contracting (B.1) with P
(0)
1 and
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integrating over momenta
∫
dP P

(0)
1 pµ∂µfp = −

∫
dP

Ep

τ
f0p

(
P

(0)
1 ϕp − AP

(0)
0 P

(0)
1︸ ︷︷ ︸

=0,(2.56)

−BP (0)
1 P

(0)
1 − CµP

(0)
1 p⟨µ⟩︸ ︷︷ ︸

=0,(2.56)

)
.

(B.5)
Recalling (2.53) for the first order polynomial function P

(0)
1 and we get

∂µN
µ︸ ︷︷ ︸

≡0

−⟨Ep/τ⟩0

⟨E2
p/τ⟩0

uν ∂µT
µν︸ ︷︷ ︸

≡0

= −
∫
dP

Ep

τ
f0p

(
P

(0)
1 ϕp −BP

(0)
1 P

(0)
1

)
, (B.6)

where we now explicitly set also the divergence of the energy-momentum tensor to
zero. This leads to the following expression for the coefficient B

B =
∫
dP (Ep/τ)P (0)

1 ϕpf0p∫
dP (Ep/τ)P (0)

1 P
(0)
1 f0p

. (B.7)

Finally the coefficient Cµ is recovered by contracting (B.1) with p⟨ν⟩ and integrat-
ing over momenta
∫
dP p⟨ν⟩p

µ∂µfp = −
∫
dP

Ep

τ
f0p

(
p⟨ν⟩ϕp − AP

(0)
0 p⟨ν⟩︸ ︷︷ ︸

=0,(2.56)

−BP
(0)
1 p⟨ν⟩︸ ︷︷ ︸

=0,(2.56)

−Cµp⟨ν⟩p
⟨µ⟩
)
.

(B.8)
Making use of the properties of projected tensors we get

∂µT
µ
ν︸ ︷︷ ︸

≡0

−uνuα ∂µT
µα︸ ︷︷ ︸

≡0

= −
∫
dP

Ep

τ
p⟨ν⟩ϕpf0p + 1

3∆µ
νCµ

∫
dP

Ep

τ
∆αβp

αpβf0p , (B.9)

which leads to the coefficient Cµ as

Cµ =
∫
dP (Ep/τ)p⟨µ⟩ϕpf0p

(1/3)
∫
dP (Ep/τ)p⟨ν⟩p⟨ν⟩f0p

. (B.10)
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C Thermodynamic integrals

In order to obtain the first Chapman-Enskog approximation in section 4.1, we would
like to represent the partial derivatives in terms of the integrals Inq. The auxiliary
thermodynamic integrals are defined as

Inq = 1
(2q + 1)!!

∫
dP

(
uµp

µ
)n−2q(

− ∆µνpµpν

)q
f0p , (C.1)

Jnq = ∂Inq

∂α
. (C.2)

From this relation one can show that Jnq can be expressed solely in terms of the Inq

integrals. Since the integral is written in a Lorentz invariant way, the calculation
(C.2) can be carried out in LRF

Jnq = 1
(2q + 1)!!

∫ d3p

(2π)3Ep

En−2q
p

(
E2

p −m2
)q ∂f0p

∂α
. (C.3)

Expressing the momentum integrals in polar coordinates and changing integration
variables from momentum to energy gives

Jnq = 1
(2q + 1)!!

∫
dΩ

∫ ∞

0

dp

(2π)3 |p̄|2En−2q−1
p

(
E2

p −m2
)q eβEp−α

(eβEp−α + a)2

= 1
(2q + 1)!!

∫
dΩ

∫ ∞

m

dEp

(2π)3 E
n−2q
p

(
E2

p −m2
)q+ 1

2 eβEp−α

(eβEp−α + a)2 .

Next partially integrating the last line

Jnq = 1
(2q + 1)!!

∫
dΩ

/∞

m

1
(2π)3 E

n−2q
p

(
E2

p −m2
)q+ 1

2

(
− 1
β

1
eβEp−α + a

)
︸ ︷︷ ︸

=0

− 1
(2q + 1)!!

∫
dΩ

∫ ∞

m

dEp

(2π)3 (n− 2q)En−2q−1
p

(
E2

p −m2
)q+ 1

2

(
− 1
β

1
eβEp−α + a

)

− 1
(2q + 1)!!

∫
dΩ

∫ ∞

m

dEp

(2π)3 (2q + 1)En−2q+1
p

(
E2

p −m2
)q− 1

2

(
− 1
β

1
eβEp−α + a

)
.
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Then converting back to 3-dimensional momentum integrals

Jnq = n− 2q
β

1
(2q + 1)!!

∫ d3p

(2π)3Ep

E(n−1)−2q
p

(
E2

p −m2
)q
f0p

+ 2q + 1
β(2q + 1)

1
(2 [q − 1] + 1)!!

∫ d3p

(2π)3Ep

E(n−1)−2(q−1)
p

(
E2

p −m2
)q−1

f0p ,

(C.4)
where the integrals can be identified as In−1,q and In−1,q−1

Jnq = n− 2q
β

In−1,q + 1
β
In−1,q−1 . (C.5)

Equation (C.5) shows that the partial derivatives of pressure appearing in (4.13)
can be expressed as

J21 = I10

β
, (C.6)

J31 = I20 + I21

β
, (C.7)

solely in terms of I10, I20 and I21, which were identified to represent particle density,
energy density and pressure, respectively.
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D Expansion coefficients s(l)
n

In the first order Chapman–Enskog expansion and using the novel relaxation time
approximation, the Boltzmann equation is

− Ep

τ

ϕp −

〈
Ep

τ
ϕp

〉
0〈

Ep

τ

〉
0

− P
(0)
1

〈
Ep

τ
P

(0)
1 ϕp

〉
0〈

Ep

τ
P

(0)
1 P

(0)
1

〉
0

− p⟨µ⟩

〈
Ep

τ
p⟨µ⟩ϕp

〉
0〈

Ep

τ
p⟨ν⟩p⟨ν⟩

〉
0

 f0p

=
(
Apθ +Bpp

µ∇µα− βpµpνσµν

)
f0p ,

(D.1)

where ϕp is expressed as (5.2) with energy dependent coefficients expanded in
orthogonal polynomials. Extracting the coefficients s(l)

n can be done by abusing the
orthogonality relations (5.5) and (2.60) by conveniently contracting (D.1) with the
corresponding polynomial P (l)

n and integrating over momenta.

The scalar coefficients s(0)
n for n ≥ 2 can be thus recovered from

−
∫
dP

Ep

τ
P (0)

n

 ϕp −

〈
Ep

τ
ϕp

〉
0〈

Ep

τ

〉
0︸ ︷︷ ︸

⇒0,(5.5)

−P
(0)
1

〈
Ep

τ
P

(0)
1 ϕp

〉
0〈

Ep

τ
P

(0)
1 P

(0)
1

〉
0︸ ︷︷ ︸

⇒0,(5.5)

− p⟨µ⟩

〈
Ep

τ
p⟨µ⟩ϕp

〉
0〈

Ep

τ
p⟨ν⟩p⟨ν⟩

〉
0︸ ︷︷ ︸

⇒0,(2.60)



=
∫
dP P (0)

n

(
Apθ +Bpp

µ∇µα︸ ︷︷ ︸
⇒0,(2.60)

− βpµpνσµν︸ ︷︷ ︸
⇒0,(2.60)

)
f0p .

(D.2)
For coefficients where n ≥ 2 the last 3 terms on the left hand side vanish due to the
orthogonality relations. Note that in the Anderson–Witting model this would be
valid for all n. In the NRTA, the coefficients s(0)

0 and s(0)
1 cannot be recovered by by

inverting the Boltzmann equation, because in this case the left hand side is no longer
invertible for ϕp. On the right hand the last two terms are space like and vanish
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when contracted with the energy polynomials inside the integral. This leads to

−
∫
dP

Ep

τ
P (0)

n

[ ∞∑
m=0

s(0)
m P (0)

m

]
θ + S(1)

m pµ∇µα︸ ︷︷ ︸
⇒0,(2.60)

+S(2)
m pµpνσµν︸ ︷︷ ︸
⇒0,(2.60)

f0p

=
∫
dP P (0)

n Apθf0p .

(D.3)

On the left hand side orthogonality picks only the term with P (0)
n such that

−
∫
dP

Ep

τ
s(0)

n P (0)
n P (0)

n θf0p =
∫
dP ApP

(0)
n θf0p . (D.4)

Now the momentum independent coefficient s(0)
n can be removed from the integral

and solved
s(0)

n = −
∫
dP ApP

(0)
n f0p∫

dP (Ep/τ)P (0)
n P

(0)
n f0p

. (D.5)

The vector coefficients s(1)
n for n ≥ 1 are recovered from

−
∫
dP

Ep

τ
P (1)

n p⟨σ⟩

 ϕp −

〈
Ep

τ
ϕp

〉
0〈

Ep

τ

〉
0︸ ︷︷ ︸

⇒0,(2.60)

−P
(0)
1

〈
Ep

τ
P

(0)
1 ϕp

〉
0〈

Ep

τ
P

(0)
1 P

(0)
1

〉
0︸ ︷︷ ︸

⇒0,(2.60)

− p⟨µ⟩

〈
Ep

τ
p⟨µ⟩ϕp

〉
0〈

Ep

τ
p⟨ν⟩p⟨ν⟩

〉
0︸ ︷︷ ︸

⇒0,(5.5)

 f0p

=
∫
dP P (1)

n p⟨σ⟩
(

Apθ︸︷︷︸
⇒0,(2.60)

+Bpp
µ∇µα− βpµpνσµν︸ ︷︷ ︸

⇒0,(2.60)

)
f0p .

(D.6)

=⇒ −
∫
dP

Ep

τ
P (1)

n p⟨σ⟩

 S(0)
p θ︸ ︷︷ ︸

⇒0,(2.60)

+
[ ∞∑

m=0
s(1)

m P (1)
m

]
pµ∇µα + S(2)

p pµpνσµν︸ ︷︷ ︸
⇒0,(2.60)

f0p

=
∫
dP P (1)

n p⟨σ⟩Bpp
µ∇µαf0p .

(D.7)

From the left hand side orthogonality picks only the term with P (1)
n . Including

tensors like p⟨µ⟩p⟨ν⟩ the integrals can be further manipulated with (2.60) into

− 1
3∆µ

σ

∫
dP

Ep

τ
∆αβp

αpβs(1)
n P (1)

n P (1)
n ∇µαf0p

= 1
3∆µ

σ

∫
dP ∆αβp

αpβBpP
(1)
n ∇µαf0p .

(D.8)

By contracting with gµσ and isolating the momentum independent terms outside the
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integral the vector coefficients for n ≥ 1 become

s(1)
n = −

∫
dP ∆αβp

αpβBpP
(1)
n f0p∫

dP (Ep/τ)∆αβpαpβP
(1)
n P

(1)
n f0p

. (D.9)

Finally the tensor coefficients s(2)
n

−
∫
dP

Ep

τ
p⟨ρpσ⟩P

(2)
n

 ϕp −

〈
Ep

τ
ϕp

〉
0〈

Ep

τ

〉
0︸ ︷︷ ︸

⇒0,(2.60)

−P
(0)
1

〈
Ep

τ
P

(0)
1 ϕp

〉
0〈

Ep

τ
P

(0)
1 P

(0)
1

〉
0︸ ︷︷ ︸

⇒0,(2.60)

− p⟨µ⟩

〈
Ep

τ
p⟨µ⟩ϕp

〉
0〈

Ep

τ
p⟨ν⟩p⟨ν⟩

〉
0︸ ︷︷ ︸

⇒0,(2.60)

 f0p

=
∫
dP p⟨ρpσ⟩P

(2)
n

(
Apθ︸︷︷︸

⇒0,(2.60)

+Bpp
µ∇µα︸ ︷︷ ︸

⇒0,(2.60)

−βpµpνσµν

)
f0p .

(D.10)

=⇒ −
∫
dP

Ep

τ
p⟨ρpσ⟩P

(2)
n

 S(0)
p θ︸ ︷︷ ︸

⇒0,(2.60)

+S(1)
p pµ∇µα︸ ︷︷ ︸
⇒0,(2.60)

+
∞∑

m=0
s(2)

m P (2)
m pµpνσµν

f0p

= −
∫
dP p⟨ρpσ⟩P

(2)
n βpµpνσµνf0p .

(D.11)

=⇒ 2
15∆µν

ρσ

∫
dP

Ep

τ

(
∆αβp

αpβ
)2
s(2)

n P (2)
n P (2)

n σµνf0p

= 2
15∆µν

ρσ

∫
dP

(
∆αβp

αpβ
)2
βP (2)

n σµνf0p .
(D.12)

This leads to

s(2)
n =

∫
dP β

(
∆αβp

αpβ
)2
P (2)

n f0p∫
dP (Ep/τ)

(
∆αβpαpβ

)2
P

(2)
n P

(2)
n f0p

. (D.13)
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