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Abstract: Multiobjective optimization is the minimization or maximization of multiple con-

flicting objective functions. To make a distinction between multiple solutions to a multiob-

jective optimization problem, often a decision maker (DM), a domain expert, is needed to

provide their preferences. Navigation methods for multiobjective optimization generate and

visualize solutions in real-time, and allow a DM to control the solution process by chang-

ing their preferences during the process. In this thesis, a literature review was conducted to

establish an understanding of the state of the art in navigation methods for multiobjective

optimization problems. Based on the results of the review, a synthesis was formed to find

out what kind of navigation methods exist, what features they have, and what, if anything,

they have in common. The found navigation methods were analyzed and compared in terms

of the type of solutions (i.e., Pareto optimal or approximated solutions) the DM sees dur-

ing the solution process, whether and how they fulfill the desirable properties for navigation

methods, defined in the literature. Some common features related to the implementations

of the methods and their graphical user interfaces were found. Based on the synthesis, one

can learn about the methods, and the synthesis may aid the DM in choosing a method when

solving a multiobjective optimization problem. One may also develop a new optimization

method by combining the different features of the methods found in the synthesis.

Keywords: Multiobjective optimization, Navigation methods, Interactive methods, Decision-

making
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Suomenkielinen tiivistelmä: Monitavoiteoptimointi on useiden ristiriitaisten tavoitefunk-

tioiden minimointia tai maksimointia. Useiden monitavoiteoptimointiongelman ratkaisujen

vertailemiseen tarvitaan usein päätöksentekijä, joka on usein sovellusalan asiantuntija, anta-

maan mieltymystietoja. Monitavoiteoptimointiin tarkoitetut navigointimenetelmät tuottavat

ja visualisoivat ratkaisuja reaaliajassa sekä mahdollistavat päätöksentekijälle ratkaisupros-

essin kontrolloinnin muuttamalla mieltymystietojaan. Tässä tutkielmassa tehtiin kirjallisu-

uskatsaus, jonka tavoitteena oli selvittää navigointimenetelmien nykytilanne. Katsauksen

tulosten perusteella muodostettiin synteesi, jonka tavoitteena oli selvittää, minkälaisia nav-

igointimenetelmiä kirjallisuudesta löytyy, mitä ominaisuuksia niillä on, ja mitä yhteistä niillä

on. Löydettyjä menetelmiä analysoitiin ja vertailtiin sen suhteen, millaisia ratkaisuja (Pareto-

optimaalisia vai approksimoituja ratkaisuja) päätöksentekijä näkee ratkaisuprosessin aikana

ja täyttävätkö ne kirjallisuudessa määritellyt navigointimenetelmien toivotut ominaisuudet,

sekä miten ne täyttävät nämä ominaisuudet. Menetelmiltä löytyi yhdistäviä tekijöitä liit-

tyen menetelmien sekä niiden graafisten käyttöliittymien toteutuksiin. Synteesin perusteella

voi oppia olemassa olevista navigointimenetelmistä, ja synteesi voi auttaa päätöksentekijää

valitsemaan ratkaisumenetelmän monitavoiteoptimointiongelman ratkaisemiseksi. Yhdis-

telemällä menetelmien eri ominaisuuksia, jotka tunnistettiin synteesissä, voidaan kehittää

uusia navigointimenetelmiä.

Avainsanat: Monitavoiteoptimointi, Navigointimenetelmät, Interaktiiviset menetelmät, Päätök-

senteko
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1 Introduction

Many real-world problems have multiple, often conflicting, objective functions that are to be

optimized simultaneously. These are called multiobjective optimization problems. Because

the objective functions are conflicting, all of them cannot reach their optimal values at the

same time. Therefore, for multiobjective optimization problems, there often does not exist

one definite optimal solution. So, instead of just one optimal solution, a set of so-called

Pareto optimal solutions exists. Moving from one Pareto optimal solution to another means

that while at least one objective function’s value improves, at least some other objective

function value gets worse. Because of these trade-offs, a decision maker (DM) is needed to

make the distinction between the solutions. The DM is a domain expert who has knowledge

of the problem. The DM is able to give their preference information which is used to find

the most preferred solution among the Pareto optimal ones.

Many methods have been developed to solve multiobjective optimization problems (Mietti-

nen 1999). These methods can be classified according to the role of the DM in the solution

process (Miettinen 1999). If there is no DM providing preferences, a no-preference method

has to be used. In a posteriori methods, the DM provides their preferences after a represen-

tative set of Pareto optimal solutions is generated. A posteriori methods are especially useful

when the DM cannot provide or does not know their preferences beforehand. In a priori

methods, the DM provides their preferences before the solution process. A priori methods

are useful for when there is not much time for the solution process. In interactive methods,

the DM is actively involved in the solution process. During the solution process, the DM

may iteratively change their preferences, which in turn allows them to explore different so-

lutions to find the one that they prefer. The benefits of interactive methods include that the

DM is able to learn about the problem and the feasible solutions. The DM can change their

preferences according to what they learn about the solutions and the trade-offs between the

objective functions.

This thesis focuses on navigation methods, a subclass of interactive methods. Navigation

methods show the DM the changing objective function values in real-time, which allows

the DM to learn about the problem and find areas that they find interesting (Hartikainen,
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Miettinen, and Klamroth 2019). The benefit of navigation methods in comparison to other

interactive methods comes from the fact that the DM sees new solutions in real-time as they

explore a set of solutions, called a navigation set. The DM gives their preference informa-

tion which is then used to compute solutions in real-time for the DM to see. This preference

information could be, for example, values for the objective functions, that would be satisfac-

tory to the DM, called aspiration levels. The DM is shown how the objective function values

evolve during the navigation process, which helps the DM in learning about the problem and

the possible solutions they can find. If the DM wants to look for solutions elsewhere, they

can change their preferences based on what they have learned during the navigation process.

To be able to make the navigation process smooth and support the DM’s learning, naviga-

tion methods need a graphical user interface. The graphical user interface shows the DM

the changing objective function values and allows the DM to control the navigation. The

objective function values should be displayed in an understandable way so that the DM has

as low of a cognitive load as possible. To also lower the cognitive load set on the DM, the

interface should make comparing different solutions easier so that the DM does not have to

remember all the previously seen solutions.

Many different navigation methods for multiobjective optimization have been introduced in

the literature (for example, Korhonen and Wallenius (1988), Monz et al. (2008) and Saini

et al. (2022)). However, according to the best of our knowledge, this thesis presents the most

extensive literature review conducted on navigation methods to date. Navigation methods

are an interesting research subject because of their benefits compared to other interactive

methods, which include that the DM sees solutions in real-time during the decision-making

process. Therefore, the literature review aims to provide knowledge about the state of the

art in navigation methods. The results of the literature review were gained by conducting a

search in four different databases: Scopus, Web of Science Core Collection, ACM Digital

Library’s The ACM Guide to Computing Literature, and IEEE Xplore.

Based on the results of the literature review, a synthesis is formed. In the synthesis, the

existing navigation methods are compared to analyze their similarities, their differences, and

their features. Hartikainen, Miettinen, and Klamroth (2019) introduced a set of desirable

properties, that navigation methods should fulfill. The methods are analyzed and compared
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in terms of the type of a navigation set the navigation takes place in, whether the methods

fulfill the desirable properties, and how they fulfill the properties.

This thesis has two main contributions. Firstly, the literature review gives an idea of what

kind of navigation methods exist in the literature. Secondly, the synthesis formed based on

the results of the literature review gives more details on the existing methods and how they

compare to each other. Based on the synthesis, one can learn about the methods, and the

synthesis may aid in choosing a method to solve a problem. One may also develop a new

optimization method by combining the different features of the methods, that are identified

in the synthesis.

The structure of the thesis is as follows. In Chapter 2, some background concepts are in-

troduced and defined. The literature review process is described in detail in Chapter 3. The

synthesis is formed based on the results of the literature review in Chapter 4. Chapter 5

consists of a discussion about navigation methods and ideas for future research. Finally, in

Chapter 6, the thesis is concluded.

The contributions of this thesis may be used as a basis for future studies related to naviga-

tion methods. The literature review provides an overview of existing navigation methods

to be considered in future reviews and mapping studies. The synthesis could be used as a

foundation to prepare new syntheses with different perspectives.
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2 Background

The problems in multiobjective optimization may be defined as follows:

min { f1(xxx), f2(xxx), . . . , fk(xxx)}

subject to xxx ∈ S,
(2.1)

where f1, f2, . . . , fk are the objective functions that will henceforth be called objectives for

short, k is the number of objectives and the dimension of the objective space Rk, and

f (xxx) = ( f1(xxx), f2(xxx), . . . , fk(xxx)) is an objective vector that consists of objective values. An

n-dimensional decision vector xxx = (x1,x2, . . . ,xn) consists of decision variables x1,x2, . . . ,xn,

and S ⊂ Rn is a feasible set, which is defined by constraint functions. Constraint functions

set restrictions on the values of the decision variables in the decision space Rn.

For multiobjective optimization problems with continuous decision variables, there can be an

infinite number of feasible solutions to the problem, and because the objectives are usually

conflicting, it is impossible to find one optimal solution to the problem so that all of the

objectives reach their optimal value at the same time. Therefore, instead of just one optimal

solution, there exist multiple Pareto optimal solutions. Pareto optimal solutions are feasible

solutions where none of the objective values, corresponding to the solution, can be improved

without worsening the value of at least one other objective. Pareto optimal solutions can also

be defined as nondominated solutions. Assuming all the objectives are to be minimized, a

solution xxx1 ∈ S is said to dominate a solution xxx2 ∈ S, if fi(xxx1)≤ fi(xxx2) for all i = 1, . . . ,k and

f j(xxx1) < f j(xxx2) for at least one j ∈ {1, . . . ,k}. For any objective that is to be maximized,

the inequalities would be reversed. If there does not exist a solution xxx ∈ S that dominates xxx1,

then xxx1 is said to be Pareto optimal (PO). A Pareto optimal set is the set of all Pareto optimal

solutions and the image of the Pareto optimal set in the objective space is called a Pareto

optimal front or a Pareto front for short.

Two points that are often used in multiobjective optimization to describe the Pareto front are

the so-called ideal and nadir points. An ideal point is a point that has as its components

the best possible values each objective can have in the Pareto optimal set. A nadir point

is the exact opposite, it has as its components the worst possible values of each objective

4



in the Pareto optimal set. The ideal point can be computed by optimizing each objective

separately without the need to know the Pareto optimal set, whereas to find the exact nadir

point, the Pareto optimal set is needed. The nadir point is, in practice, more difficult to

compute because the Pareto optimal set is often not known. Therefore, the nadir point may

have to be estimated by, for example, using a payoff table (Miettinen 1999). The ideal and

nadir points are denoted as follows:

zideal =

(
min

xxx∈S is PO
f1(xxx), min

xxx∈S is PO
f2(xxx), . . . , min

xxx∈S is PO
fk(xxx)

)
and

znadir =

(
max

xxx∈S is PO
f1(xxx), max

xxx∈S is PO
f2(xxx), . . . , max

xxx∈S is PO
fk(xxx)

)
,

where all the objectives are assumed to be minimized. If an objective fi, where i∈ {1, . . . ,k},

was to be maximized, the corresponding component of the ideal point would be zideal
i =

max fi(xxx), where xxx ∈ S is Pareto optimal, and the corresponding nadir component would be

znadir
i = min fi(xxx), where xxx ∈ S is Pareto optimal.

Mathematically it is not possible to determine the "best" solution among the Pareto optimal

solutions, so to find that solution, a decision maker’s (DM) preference information is needed

because the "best" solution is subjective and depends on the DM’s preferences. The DM is

usually a domain expert who has knowledge of the problem and who can give preferences

between different solutions. The solution that is reached according to the DM’s preferences

is called the most preferred solution. To reach this solution, there are many ways the DM

can give their preference information. The DM may, for example, give aspiration levels to

the objective values i.e., some values the DM would like to reach (Miettinen 1999). The DM

may also give a classification of the objectives in which the DM chooses which objectives

they would like to see improve, which they allow to impair, and which should stay the same

(Miettinen 1999). Other types of preference information include choosing one among a set of

Pareto optimal solutions, and marginal rates of substitutions in which the DM chooses how

much they are willing to allow one objective value to impair in order to improve the value of

one other while the other objective values stay the same (Luque, Ruiz, and Miettinen 2011).

Based on the DM’s preference information, a preference model can be built (Figueira et

al. 2008). Forming and usage of the preference model is beneficial because as said by
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Figueira et al. (2008), "On one hand, the preference information provided by the DM con-

tributes to the construction of a preference model and, on the other hand, the use of the pref-

erence model shapes the DM’s preferences or, at least, makes the DM’s conviction evolve."

As mentioned in the introduction, methods for solving multiobjective optimization prob-

lems can be divided into four classes based on the DM’s role in the solution process (Mi-

ettinen 1999). There is assumed to be no preference information available from a DM in

no-preference methods, therefore some method is used to reach some solution which is then

shown to the DM who can either accept the solution or reject it. In a posteriori methods, a

representative set of Pareto optimal solutions is generated and shown to the DM who then

chooses among them the most preferred one. In a priori methods, the DM is asked to give

preference information before the solution process and then a solution is found based on the

information. Interactive methods have an iterative process to help the DM learn about the

problem, explore the solutions, and ultimately find the most preferred solution. One of the

benefits of interactive methods compared to others is the possibility of learning for the DM.

After each iteration, the DM is shown, for example, the ideal and nadir points and the ob-

jective values corresponding to the current solution(s) i.e., the objective values for the most

recent solution(s) computed, to help them learn about the problem. To find more satisfactory

solutions, the DM can then change their preferences for the next iteration which are then

used to produce more solutions. This allows the DM to learn about the problem and the

effects their preference information and changing it has on the solutions found.

As mentioned, one subclass of interactive methods is navigation methods. The idea of nav-

igation methods is to dynamically generate solutions and allow the DM to see the changing

objective values by visualizing them, which lets the DM see the effects of their preferences in

real-time so that they can modify them if necessary. In contrast to other interactive methods

where the DM gets to see new solutions after each iteration, in navigation methods the DM

sees new solutions continuously during the solution process i.e., each iteration. In interac-

tive solution processes, two phases can often be identified: a learning phase and a decision

phase (Miettinen, Ruiz, and Wierzbicki 2008). In the learning phase, the DM learns about

the problem, the trade-offs between the objectives and the feasible solutions to the problem,

and eventually identifies a region of interest. In the decision phase, the DM finds the most
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preferred solution based on what they learned in the learning phase, that is, by fine-tuning

the search in the region of interest. Navigation methods support especially the learning phase

(Ruiz et al. 2019).

Allmendinger et al. (2017) define navigation as “the interactive procedure of traversing

through a set of points (the navigation set) in the objective space guided by a decision maker

(DM). The ultimate goal of this procedure is to identify the single most preferred Pareto opti-

mal solution.” To reach this ultimate goal via navigation, many different navigation methods

have been developed. Though the concepts of navigation and navigation methods had not yet

been defined, navigation methods have existed since the work by Korhonen and Wallenius

(1988).

Hartikainen, Miettinen, and Klamroth (2019) defined a modular structure for navigation

methods. They named these modules as

• navigation set: the set in the objective space in which the navigation takes place, that

can either be the Pareto front, or a representation or an approximation of it,

• navigation control: the DM gets to control the navigation by changing the navigation

direction and speed to find better solutions, and

• projection: if the navigation set is an approximation of the Pareto front and the DM has

found an interesting solution, it can be projected to the closest Pareto optimal solution.

These modules were defined for navigation methods for computationally expensive problems

but as the authors note, excluding projection which is not needed when the navigation set is

the actual Pareto front, they are also valid in the case of navigation methods for computation-

ally inexpensive problems (Hartikainen, Miettinen, and Klamroth 2019). For computation-

ally expensive problems, the navigation set is an approximation of the Pareto front, generated

by using some a posteriori method. Therefore, to ensure that the final solution at the end of

the navigation is Pareto optimal, some achievement scalarizing function (Miettinen 1999)

may be used to project the approximated solution onto the Pareto front. If we have an ap-

proximated solution, it can be set as a reference point qqq = (q1,q2, . . . ,qk) ∈Rk, and it can be
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projected onto the Pareto front by solving the following achievement scalarizing problem

min
xxx

max
i=1,...,k

[
fi(xxx)−qi

znadir
i − zutopia

i

]
+ρ

k

∑
i=1

( fi(xxx)−qi)

subject to xxx ∈ S,

(2.2)

where zutopia
i = zideal

i − ε are components of a utopian point zutopian ∈ Rk, ε > 0 is a small

constant and ρ > 0 is a small augmentation coefficient. It can be proven, that when an

appropriate solver is used, the solution to problem (2.2) is Pareto optimal (Miettinen 1999;

Saini et al. 2022).

Hartikainen, Miettinen, and Klamroth (2019) also introduced a set of desirable properties

for navigation methods which will be used as a basis for the synthesis in Chapter 4. These

properties were divided into two categories, technical properties and properties related to

user experience. The technical properties are, in a sense, easier to measure since a method

either fulfills them or does not. The technical properties are as follows:

• Navigation is complete: Any feasible Pareto optimal solution is reachable for the DM

with some preference information from any current solution. If the navigation set is

an approximation of the Pareto front, the Pareto optimal solution is a projection of a

point in the navigation set.

• Navigation is computationally efficient: If the original problem is computationally

expensive, using an approximation of the Pareto front as the navigation set should

make the computation of solutions faster. The DM should get results in real-time.

• Construction of the navigation set is computationally efficient: Although this can be,

and mostly is, done offline before the involvement of the DM, it should not take long.

• Accuracy of the navigation set can be measured: In many cases, the navigation set

is an approximation of the Pareto front, so its accuracy should be measurable. This

accuracy information should tell when the navigation set is accurate enough for the

navigation process and can also be shown to the DM if needed.

• Accuracy of the navigation set can be improved: If the navigation set is not accurate

enough, the accuracy can be improved, for example, by adding more Pareto optimal

solutions to construct the approximation.
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The properties related to user experience, on the other hand, and whether a method fulfills

them or not is more difficult to measure and may depend on who you ask, and ultimately on

the user and the graphical user interface implemented for the method. These properties are

as follows:

• The DM can control the navigation: Can the DM reach some reachable values in the

navigation if they want, and if they want to restrict a certain area from being navigated

to, are they able to accomplish this?

• Low cognitive load is set on the DM: The idea is to set as little cognitive load on the

DM as possible. This means that controlling the navigation should be intuitive and the

process should be visualized in an understandable way.

• The DM is allowed to learn: The DM should be able to learn about the problem and

the feasible solutions and change their mind. They should also be able to take steps

backwards or go back to a solution that has already been passed in the navigation

process.

• The DM can get additional information of the navigation set: Additional information

here means that the DM should receive more information in addition to the found so-

lutions. This information could be, for example, the reachable ranges of the objective

values in the navigation set or the set of feasible navigation directions from the current

solution.

Navigation methods have been utilized in many different areas. One area in which many

different navigation methods and decision support systems have been developed is radiother-

apy treatment planning. There, the multiobjective optimization problem comes from trying

to control local tumors while minimizing the side effects in the surrounding normal tissue

and organs by determining the appropriate dosage of radiation (Thieke et al. 2007). Nav-

igation methods in radiotherapy treatment have also been developed by Ehrgott and Winz

(2008), Craft and Monz (2010), Fredriksson and Bokrantz (2013), Lin and Ehrgott (2018)

and Collicott et al. (2021).

Some other application areas are chemical process design (Bortz et al. 2014; Baldan et

al. 2023), lot sizing (Kania et al. 2021), water distribution system design (Moazeni and Khaz-

aei 2021) and, for example, stockpiling critical materials for a national emergency (Korhonen
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and Wallenius 1988). To further explore the existing navigation methods, a literature review

has been conducted, and the review process and results are described in the next chapter.
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3 Literature review

In this chapter, the steps of the literature review process are explained in detail. The aim of

the review is to find the navigation methods introduced in the literature. First, an overview of

the review process is given and then the different steps are explained in more detail. Finally,

the results of the review are briefly presented.

The review was conducted by compiling search queries and inserting them into four different

databases’ search engines. The databases used in the search, that are also listed in Table 1,

were Scopus, Web of Science Core Collection, ACM Digital Library’s The ACM Guide to

Computing Literature, and IEEE Xplore. These databases were chosen because of their cita-

tion indexing and the reproducibility of their search results. After performing the searches,

the search results were surveyed and each result was either included or excluded from the

review based on their title, abstract and, in some cases, introduction or conclusion chapters

using the inclusion and exclusion criteria that are introduced later in the chapter. Then, to

find more potentially relevant papers, the references of the included papers and also papers

citing them were analyzed utilizing the same inclusion and exclusion criteria.

The search process began by iteratively formulating a search query, that would result in as

many relevant results as possible, without having to go through too many irrelevant results.

From the beginning, it was clear that this was going to be difficult since navigation methods

do not have a common and universally used terminology. Therefore, trying to find a compre-

hensive set of keywords — that form the search query — was done iteratively by using one

search query to first find some relevant articles, and then going through the keywords used

in the articles and adding them to the query and doing the search again. The keywords used

in the search queries were exclusive, which probably caused some relevant papers to have

been left outside the search results. On the other hand, the exclusiveness of the keywords

also seemed to exclude the vast majority of the irrelevant papers from the search results,

which made analyzing the results much more efficient. Furthermore, many different combi-

nations of keywords were tried and the combination which resulted in the seemingly best and

most relevant results was chosen as the final one. The final search queries used in different

databases are listed in Table 1. The queries are equivalents and modified to match the format

11



required by each database.

Database Search query

Scopus multicriteria OR multiobjective OR "multiple criteria" OR "mul-

tiple objective" OR "vector optimization" AND "navigation

method" OR "navigation based method" OR navigator OR "pareto

race" AND optimization AND interactive OR decision OR pref-

erence*

Web of Science ((ALL=(multicriteria)) OR ALL=(multiobjective) OR

ALL=("multiple criteria") OR ALL=("multiple objective")

OR ALL=("vector optimization")) AND (ALL=("navigation

method") OR ALL=("navigation based method") OR

ALL=(navigator) OR ALL=("pareto race")) AND

(ALL=(interactive) OR ALL=(decision) OR ALL=(preference*))

AND ALL=(optimization)

ACM Digital Li-

brary

[[All: multiobjective] OR [All: multicriteria] OR [All: "multiple

criteria"] OR [All: "multiple objective"] OR [All: "vector opti-

mization"]] AND [[All: "navigation method"] OR [All: "navi-

gation based method"] OR [All: "navigator"] OR [All: "pareto

race"]] AND [All: "optimization"] AND [[All: interactive] OR

[All: "decision"] OR [All: "preference*"]]

IEEE Xplore ("All Metadata":multiobjective OR "All Metadata":multicriteria

OR "All Metadata":"multiple criteria" OR "All Meta-

data":"multiple objective" OR "All Metadata":"vector opti-

mization") AND ("All Metadata":"navigation method" OR

"All Metadata":"navigation based method" OR "All Meta-

data":navigator OR "ALL Metadata:"pareto race") AND ("All

Metadata":interactive OR "All Metadata":decision OR "All

Metadata":preference*) AND ("All Metadata":optimization)

Table 1. Databases used in the literature review and the corresponding search queries used

in the databases.
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Some inclusion and exclusion criteria were formulated to determine which papers were rel-

evant to the review and which were not. The purpose of the criteria was to rule out some of

the irrelevant search results that were still found with the final search queries. The criteria

were updated as different search queries were experimented with to make the criteria more

comprehensive and the final inclusion and exclusion of the found papers more efficient. The

inclusion and exclusion criteria were also formed in a way so that they would not contain any

unnecessary criteria that would exclude relevant papers. For a paper to be included, one of

the inclusion criteria had to be fulfilled. Also, for a paper to be excluded, one of the exclusion

criteria had to be fulfilled. The two exclusion criteria were that the paper was not written in

English and that a full-text version of the paper was not available, in spite of attempts to get

access. No papers that fulfilled either of the exclusion criteria were found.

The inclusion criteria were:

• The paper introduces a navigation method or an implementation or an application of

a navigation method in multiobjective optimization. This distinction was necessary

because some of the search results use such terms as "navigation" or "navigator" in a

different context to the definitions of navigation and navigation methods in Chapter 2.

• The paper gives insight into different types of preference information or graphical user

interface implementation ideas related to navigation methods.

After the search queries were finalized, the final searches were conducted and the results

from the four databases were gathered for further investigation. The final searches were

conducted on October 25, 2023. Then a preliminary qualification process was conducted

with the search results. In the preliminary qualification, it was checked whether the found

papers fulfilled the exclusion criteria. If a paper was not written in English, it would be

excluded from the review and put on a list with other excluded papers. All the papers that

were found were written in English, so this criterion did not exclude any otherwise possibly

relevant papers. If the full-text version of a paper was not available through the publisher, it

was added to a list with the other search results with markings that indicated that a full text

of the paper had not yet been attained.

After the preliminary qualification, the full-text versions that had not yet been attained were
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looked for. First, they were searched for via the Finna service to see whether the paper was

available in some university in Finland or The National Repository Library in a digital or

physical form. If the paper was still not found, then the authors were contacted for a copy

of the paper. All the full-texts of the papers to be included in the review were found through

this process so eventually no paper was left out of the review due to inaccessibility. The

rest of the papers found in the searches were all added to Microsoft Excel spreadsheets, with

each database having its own corresponding Excel file. Then, as a second qualification, the

inclusion criteria were used to determine which of the found papers were to be included in

the review and which to be excluded from it. After this qualification process, the included

papers were then added to another Excel file to be able to see all the relevant papers at once.

At this point, all the duplicates from different databases were also removed.

As mentioned before, forming a set of keywords to find relevant papers was not trivial.

Therefore, only some of the papers used in the review were actually found using the search

queries. The rest of the papers for the review were found by going through the already

included papers’ citations and the papers that had cited them. The same process that was

used on the search results was also used to find out which of these cited papers were relevant

and to be included in the review. Altogether from the four databases, 187 results were found

using the search queries, including some duplicates across the databases. Out of the papers

found, 11 were considered relevant according to the criteria. From the citations, 12 more

relevant papers were found, so in total 23 papers were included in the literature review.

Reading the papers was the next step in the review process. It could be started as soon as the

first papers to be included were determined. All the papers that were qualified for the review

were read, and while they were being read, notes were taken that could then be used in the

synthesis. In the next chapter, a synthesis is formed based on the results of the literature

review described in this chapter.
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4 Synthesis

In this chapter, a synthesis is formed of the navigation methods found in the literature re-

view described in Chapter 3. First, a classification of the methods, according to the type of

navigation set the DM navigates in, is introduced. Then the methods are compared in terms

of the desirable properties for navigation methods introduced by Hartikainen, Miettinen, and

Klamroth (2019), and listed in Chapter 2, and how the methods fulfill the properties.

4.1 Classification

In this section, a classification of different navigation methods found in the literature review

is introduced. The classification was done according to the type of navigation set the DM

navigates in. Different types of navigation sets here are named Pareto front, approximation

of the Pareto front, and NAUTILUS-type. In what follows, these three types are described

in more detail in the order they were listed. A graphical user interface implementation is

presented for each method. The interfaces are explained shortly, for more information about

them, the reader is referred to the references in each figure’s caption.

4.1.1 Pareto front

Navigating on the actual Pareto front in real-time is only possible when the multiobjec-

tive optimization problem is linear because solving many nonlinear and possibly nonconvex

problems would take too long. With linear problems, during the navigation process, each

successive Pareto optimal solution may be computed using parametric linear optimization

with no necessity for any approximations.

Pareto Race (Korhonen and Wallenius 1988): Pareto Race is applicable to linear multiob-

jective optimization problems. Pareto Race does not need any information on the solutions

to the problem before the navigation process. This is because no representation of the Pareto

front is computed beforehand, but each solution to be shown is rather calculated during the

navigation. Because the problems are linear, the Pareto optimal solutions can be computed

in real-time. This makes the navigation set used in Pareto Race the actual Pareto front.
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Pareto Race involves a graphical user interface to help the DM’s navigation process, which

is shown in Figure 1. The interface consists of bars representing each objective and their cur-

rent value. As the DM navigates the Pareto front, the lengths of the bars change according

to the changing objective values.

The navigation begins from a starting point that is a Pareto optimal solution. To compute the

starting point, the DM gives aspiration levels for the objectives and the corresponding refer-

ence point is used in an achievement scalarizing function (2.2). Optimizing the achievement

scalarizing function then gives the starting point. Similarly, during the navigation, Pareto

Race utilizes the achievement scalarizing function to find Pareto optimal solutions by using

the DM’s aspiration levels. The DM controls the navigation using keyboard keys that are

shown on the graphical user interface. With these controls, the DM may move in the current

direction at a constant speed, increase the speed forward or backward, reduce the speed, turn,

fix the aspiration level of an objective or relax the aspiration level of a fixed objective.

To turn, the DM chooses one objective to be further improved, which changes the reference

direction used to compute new solutions. When an aspiration level of an objective is fixed,

that objective becomes a constraint function. The objective’s current value is set as an ab-

solute lower or upper bound for the constraint function, depending on whether the objective

is to be maximized or minimized. When a fixed aspiration level is relaxed, the function

becomes an objective function again. The DM’s actions to update the configurations of the

navigation dynamically change the formulation of the problem being optimized. Therefore,

the DM sees the effects that their actions have on the solutions found in real-time as they see

the changing objective values in the graphical user interface.
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Figure 1. The graphical user interface used in Pareto Race. Taken from Korhonen and

Wallenius (1988).

4.1.2 Approximation of the Pareto front

For nonlinear problems, computing many new solutions during the navigation would take

too much time for the navigation to be real-time. Therefore, a representation of the Pareto

front is generated using some a posteriori method, for example, an evolutionary algorithm1,

to make the navigation smoother. Depending on the a posteriori method used to generate

the representation, the solutions that form the representation may be approximated Pareto

optimal solutions. For example, evolutionary algorithms cannot guarantee that the solutions

are globally nondominated i.e., Pareto optimal, which makes them approximated solutions.

The approximated solutions should still be close enough to the Pareto optimal solutions so

that the DM gets as good of an idea of the reachable Pareto optimal solutions as possible.

The representation is generated offline before the involvement of the DM so that the DM

does not have to wait. Also, as mentioned in Chapter 2 about the desirable properties for

1. Evolutionary algorithms are a posteriori methods that generate a set of solutions by using mechanisms

inspired by evolution, for example, reproduction, mutation and selection. A fitness function is used to determine

which solutions are the "strongest" among a set of solutions, a population. The strongest solutions are then used

in the next evolution which generates more solutions.
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navigation methods, if the approximation is not accurate enough, it should be possible to

improve the accuracy.

The methods in this category assume a representative set of precomputed Pareto optimal

solutions as a basis to generate the navigation set. The generated navigation set approximates

the Pareto front. Therefore, the most preferred solution chosen by the DM at the end of the

navigation process may not be Pareto optimal. If the most preferred solution is not Pareto

optimal, it can be projected onto the Pareto front. The projection can be done by solving

the achievement scalarizing problem (2.2) with the approximated solution as the reference

point. Many of the methods also assume that the multiobjective optimization problems that

are solved are convex, though some are also applicable to nonconvex problems.

Pareto navigation (Monz et al. 2008): The Pareto navigation method is applicable to convex

problems and was originally developed for radiotherapy treatment planning. Pareto naviga-

tion assumes a set of precomputed Pareto optimal solutions. The precomputed solutions and

all the convex combinations of these solutions form the navigation set. The accuracy with

which the set of precomputed solutions represents the set of Pareto optimal solutions affects

the quality and variety of the solutions found during the navigation. The MIRA navigator

software (Thieke et al. 2007) is used for user interaction. The graphical user interface for

MIRA navigator, which is designed for radiotherapy treatment planning, is shown in Figure

2. In the MIRA navigator, the DM can see the current objective values and the set of so-

lutions, which shows the reachable ranges of values for each objective. The objectives are

visualized as a radar chart on the left side of the graphical user interface with each objective

as an axis of the radar. On the right side, there is some more information about the current

solution related to radiotherapy treatment planning.

Pareto navigation has two navigation controls: selection and restriction. Selection means

finding a new solution by changing the value of some objective. In the MIRA navigator

(Figure 2), each axis of the radar chart has a selector at the current objective value that the

DM can slide to change the corresponding objective value. Then a new solution is com-

puted, by solving a linear problem, and the sliders presenting the objective values are moved

accordingly for the other objectives. Restriction means excluding some solutions from the

navigation by changing the obtainable range of values of an objective. Each axis of the
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radar chart has a restrictor with which some solutions can be excluded. Moving a restrictor

changes the shown obtainable ranges of values of the objectives so the DM sees the effects

of their actions.

Figure 2. The graphical user interface used in MIRA navigator. Taken from Thieke et

al. (2007).

Multiple Pareto surface navigation (Craft and Monz 2010): The method called multiple

Pareto surface navigation is applicable to convex problems and was developed for radiother-

apy treatment planning. Though the original problem may be nonconvex caused by defining

the beam angles2 as decision variables, the problem that is to be optimized with the method is

made convex by removing the beam angles as decision variables. Instead, the different beam

angle configurations3 are used to define and compute multiple Pareto fronts. The method

2. Beam angle optimization means determining how many beams are to be fired at the patient and from what

angle (Bertsimas et al. 2013).
3. Beam angle configuration is a choice of how many beams, and from what angle, are fired at the patient.
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assumes a set of precomputed Pareto optimal solutions and multiple Pareto fronts (and beam

angle configurations) that consist of the precomputed solutions and linear combinations of

them. The multiple Pareto fronts that form the navigation set are therefore approximations

of the Pareto fronts.

A graphical user interface has been developed to assist the DM in the navigation process,

which is shown in Figure 3. The interface and the visualization used are designed for ra-

diotherapy treatment planning and are not meant for a general problem. To navigate in a

single Pareto front, the DM adjusts the significance of the objectives by using a checkbox

and buttons related to each objective: lock, switch, up, and down. Each objective is visual-

ized as its own graph and next to each graph are the buttons corresponding to that objective.

By pressing up or down the DM increases or decreases the significance of the correspond-

ing objective, and the next solution is computed by solving a linear problem. Locking an

objective by checking a checkbox, means that the value of the corresponding objective will

not change. For navigation on multiple Pareto fronts, the DM can press one of the switch

buttons. This causes the navigated front to change. The next front to be navigated on will

be the closest front that has a chance to improve the value of the corresponding objective.

The DM has two options to handle the front switches: manual and automatic. When the DM

chooses to switch fronts manually, they have more control in the navigation process as the

front is switched only when the DM wants. If the DM chooses automatic switching, when

buttons up or down are pressed, optimization is done on all fronts and the front with the best

value for the corresponding objective becomes active.
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Figure 3. The graphical user interface used in multiple Pareto surface navigation. Taken

from Craft and Monz (2010).

Pareto Navigator (Eskelinen et al. 2010): The Pareto Navigator method is applicable to

convex problems. In the beginning, a small set of Pareto optimal solutions is assumed to have

been generated. This set of solutions is then used to generate a polyhedral approximation of

the Pareto front, which is used as the navigation set. A graphical user interface is shown in

Figure 4, which shows on the left the current objective values and aspiration levels, in the

middle panel a set of Pareto optimal solutions, and on the right the objective values seen

during the navigation as a continuous line. The DM may change the speed, in practice the

step size, by moving the slider at the bottom of the graphical user interface, and the direction

of the navigation, by changing the preference information, at any point. The DM may also

go back to any previous solution, by moving the red vertical line in Figure 4, and continue

the navigation from there. In this way, the DM is able to learn about the changes in solutions

that their choices of preferences cause.
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At the start of the navigation, the DM is asked to choose a starting point among the available

Pareto optimal solutions. The DM navigates in the approximated Pareto front by giving their

preference information, for example, as a reference point. The preference information and

the current solution, or the starting point at the beginning, are used to compute a navigation

direction. The DM is then shown new solutions, that are generated with small step sizes, in

that direction dynamically using the graphical user interface. New solutions are computed

by solving parametric linear optimization problems. The DM may ask for the approximation

to be regenerated based on some interesting area they have found to get a more accurate

approximation of that area. When the DM has found a preferable solution and that solution

has been projected onto the Pareto front, the DM may decide whether they would like to

continue the navigation. If the projected Pareto optimal solution is satisfactory, they can end

the navigation process. If, on the other hand, they would like to keep looking for an even

more desirable solution, they can continue the navigation.
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Figure 4. A graphical user interface for Pareto Navigator. Taken from Tarkkanen et

al. (2013).

Bortz et al.’s (2014) method: The method proposed by Bortz et al. is applicable to non-

convex problems and was originally developed for chemical process design optimization

problems. To generate an approximation of the Pareto front, some Pareto optimal solutions

are needed. The approximation is generated using a method that combines sandwiching4

and hyperboxing5 algorithms to be able to approximate nonconvex Pareto fronts. The DM

navigates on the generated approximation using a graphical user interface with sliders for

4. Sandwiching algorithm computes upper and lower approximations for a convex function to approximate

the Pareto front. Weighted sum scalarization is used to compute new Pareto optimal solutions to create the

approximations until the upper and lower approximations are close enough to each other (Bortz et al. 2014).
5. Hyperboxing algorithms divide the objective space into boxes with Pareto optimal points on some corners.

These boxes are then tested for convexity as described in Bortz et al. (2014). Hyperboxing algorithms are, in

this case, used to detect nonconvexities on the Pareto front.
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each corresponding objective. Figure 5 shows how the sliders work in two dimensions. To

navigate, the DM can move one slider at a time to change the value of that corresponding

objective. While the DM moves a slider, the method finds a new solution to match that ob-

jective value. The DM can then see the changes that are caused in the other objectives. The

DM may also set ranges for the objective values as lower and upper bounds.

Some variables are used as input variables in the process simulation and are constant during

the optimization. The rest of the variables are called free variables, and they define the

decision space. The user interface also has sliders for the free variables for the DM to be

able to compare solutions in the design space as well as the objective space. The sliders

for the free variables, however, cannot be moved by the DM, but are moved as the objective

and restriction sliders are moved. When the DM moves an objective slider, a linear problem

is solved to determine the other objective values and the other objective sliders are moved

accordingly. Because the navigation set is an approximation, when the DM finds a desirable

solution, it may not be Pareto optimal. Therefore, a final simulation run is conducted using

the Pascoletti-Serafini scalarization (Bortz et al. 2014; Pascoletti and Serafini 1984) with the

found solution as a reference point.

Figure 5. Illustration of the use of objective and restriction sliders in Bortz et al.’s (2014)

method. Taken from Bortz et al. (2014).

Lin and Ehrgott’s (2018) method: The method proposed by Lin and Ehrgott is applicable

to nonconvex problems. It was originally developed for radiotherapy treatment planning.

To generate a representation of the Pareto front for nonconvex problems, a set of Pareto

optimal solutions is computed with a procedure explained in Lin and Ehrgott (2018). This

representation then acts as the navigation set. To make the navigation process easier for the

DM, a graphical user interface has been developed and is shown in Figure 6. The graphical
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user interface has three main components for each objective: an objective slider, an aspiration

slider and a constraint check box. Each slider is limited by the highest and lowest values that

the objective has in the navigation set.

The DM gives their preference information as aspiration levels for the objectives which hap-

pens by moving an aspiration slider. When an aspiration slider is moved, a new solution is

computed by solving a linear problem based on the new aspiration levels and the objective

sliders are updated. The DM can also move the objective sliders which sets the new value

of the objective as a constraint to the linear problem and the problem is solved to get a new

solution and the other objective sliders are updated. When the DM activates a constraint

check box, a hard constraint is added to the linear problem based on an upper bound the DM

sets for the objective. The user interface also informs the DM whether an aspiration value

is satisfied by using background colors for the objective value text boxes. If the background

color is green, it means the aspiration level is reached. If, on the other hand, the background

color is red, the aspiration level has not been reached for that objective.
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Figure 6. The graphical user interface used in Lin and Ehrgott’s (2018) method. Taken from

Lin and Ehrgott (2018).

Nonconvex Pareto Navigator (Hartikainen, Miettinen, and Klamroth 2019): The Non-

convex Pareto Navigator method extends the Pareto Navigator method introduced above to

nonconvex multiobjective optimization problems. Like in Pareto Navigator, a set of Pareto

optimal solutions is needed to create the navigation set. The navigation set in Nonconvex

Pareto Navigator is an approximation of the Pareto front generated with the PAINT method

(Hartikainen, Miettinen, and Wiecek 2012) and so-called e-cones. The e-cones are meant to

join the disconnected parts of the PAINT approximation to make navigation possible since

the Pareto front of nonconvex problems can be disconnected.

The DM can see the solutions and control the navigation in a graphical user interface shown

in Figure 7. In the left panel, for each objective are, in order top to bottom, current objective
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value, aspiration level and upper bound (lower for objectives that are maximized), check-

boxes to disable the corresponding aspiration level and bound. The middle panel shows

the set of computed Pareto optimal solutions as continuous lines and bounds and aspiration

levels as green and blue dotted lines. The right panel shows the navigated solutions as a

continuous line and bounds and aspiration levels as in the middle panel. The red vertical line

represents the starting point and the slider in the bottom allows the DM to change the speed

(in practice the step size) of the navigation.

As in Pareto Navigator, the DM navigates in the approximation by giving their preference

information in the form of aspiration levels, that they can change at any point during the

navigation process. The DM may also set upper bounds for the objectives not to be ex-

ceeded. New solutions are computed by solving mixer integer linear optimization problems.

At any time, the DM can choose a previous solution and continue the navigation from there

by updating the preference information. Like in Pareto Navigator, if the final solution, that

is projected onto the Pareto front, is not satisfactory to the DM, the accuracy of the approxi-

mation can be improved if the DM chooses to continue the navigation.

27



Figure 7. The graphical user interface for Nonconvex Pareto Navigator. Taken from Har-

tikainen, Miettinen, and Klamroth (2019).

Patch navigation (Collicott et al. 2021): The patch navigation method is applicable to non-

convex problems with both continuous and binary variables. The number of binary variables

should be relatively low. The binary variables represent on/off type choices the DM may

have to make. Making a choice on all the binary variables forms a multiobjective opti-

mization problem with the continuous variables as decision variables, and the chosen binary

variable values as constants for the problem. The Pareto optimal solutions for such a prob-

lem form one Pareto front. The combination of different choices for binary variable values

results in multiple Pareto fronts. The idea of patch navigation is to use Pareto navigation,

that is introduced above, to navigate across multiple convex Pareto fronts that compose the

original nonconvex problem’s Pareto front. A patched Pareto front is a union of finitely many

individual convex Pareto fronts, that are called patches. The patches are required to be ap-

proximated by a finite set of Pareto optimal solutions. These approximated patches form the

navigation set.
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Patch navigation has a graphical user interface, which is shown in Figure 8. The graphical

user interface lets the DM see the changes in the reachable values of the objectives as they

include or exclude a patch. Patch solutions are the "best" solutions of each separate patch,

and the so-called global solution is the "best" solution among the patch solutions. A so-called

merit function, defined in Collicott et al. (2021), is used to determine which solutions are the

"best" in comparison. The graphical user interface displays the current global solution and

patch solutions. The method also shows the DM the distance of the current solution to the

closest solutions on the other patches. This lets the DM know whether their preferences are

met on some other patches, or if a solution like the current chosen solution can be found

on a different patch. The solutions on different patches are shown in different colors which

lets the DM compare solutions from different patches. The method has three actions the

DM may perform: selection, restriction and patch activation or deactivation. The selection

and restriction actions are similar to the ones mentioned above related to Pareto navigation.

In patch activation or deactivation, the DM may include or exclude a patch to be able to

navigate to the more interesting areas of the navigation set. When the DM performs any of

the actions, the method solves linear problems to update the objective values.

Figure 8. The graphical user interface used in patch navigation. Taken from Collicott et

al. (2021).

29



iSOM-Pareto Race (Yadav, Ramu, and Deb 2022): The iSOM-Pareto Race method aims

at expanding the Pareto Race method to be effectively applicable to both linear and non-

linear multiobjective optimization problems, though no assumption on the problems’ con-

vexity is mentioned. This is done by utilizing a reference direction-based evolutionary al-

gorithm, RD-NSGA-II by Deb and Kumar (2007) with an achievement scalarizing function

to compute each solution during the navigation process. Self-organizing maps (SOM) map

high-dimensional data, in multiobjective optimization the multiple objective vectors, to a 2-

dimensional representation. This is meant to help with reading high-dimensional data and,

in the context of navigation methods, to visualize the solutions to the DM in an understand-

able way. Interpretable self-organizing maps (iSOM) is a modified SOM which is said to be

inherently understandable (Thole and Ramu 2020).

The preference information given by the DM is the same as in Pareto Race: aspiration levels

as a reference direction to start the navigation and then using the Pareto Race controls to

move around in the navigation set. As in Pareto Race, an achievement scalarizing function is

used to find the next solution during the navigation. Figure 9 shows the iSOM visualization

used in the method. The method’s visualization has a graph for each objective (named f1, f2

and f3 in Figure 9) that uses a heat map to show where the optimal values for that objective

can be found. The U-Matrix, G and T graphs offer the DM some additional information

about the quality of the solutions in different regions as heat maps. More information about

the interpretation of the visualization can be found in Yadav, Ramu, and Deb (2022).

The graphs also use arrows to show the navigation steps that have been taken. Each solution

displayed—the pregenerated solutions and each navigated solution—is color-coded as in

Figure 10, which gives the DM more information about the solutions. In the beginning, RD-

NSGA-II is used to create a well-distributed set of solutions that approximate Pareto optimal

ones, that are then visualized. The DM then provides the preference information to start the

navigation that is controlled as in Pareto Race. New solutions are computed by repeatedly

solving an achievement scalarizing function, more information about the method in Yadav,

Ramu, and Deb (2022).
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Figure 9. The iSOM visualization used in iSOM-Pareto Race. Taken from Yadav, Ramu,

and Deb (2022).

Figure 10. The color codes used by the iSOM visualization. Taken from Yadav, Ramu, and

Deb (2022).

Real-time Interactive Navigation within a Data set (Baldan et al. 2023): The method

called Real-time Interactive Navigation within a Data set (RINADA) is applicable to convex

problems and was originally developed for chemical process engineering. The method is
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meant for data (solutions) obtained from a flowsheet simulation and assumes a discrete set

of solutions. Surrogate models are then used to approximate the original set of solutions

to shorten the distance between solutions during navigation. Based on the discrete set of

solutions, an approximated convex hull is generated as the navigation set. The method makes

no assumptions on the type of surrogate model used, but they are assumed to make the

approximation relatively accurate. RINADA has a graphical user interface which is shown

in Figure 11.

In RINADA, the DM controls the navigation by moving sliders to change the decision vari-

able and objective values, and by setting bounds to the decision variables and objectives.

Each decision variable and objective has its own slider. There are two types of navigation

here: input and output navigation. In input navigation, the DM can see how changing the

decision variable values effects the objective values. Input navigation happens when the DM

drags a decision variable’s slider. This makes the other decision variable sliders move, which

in turn causes the objective sliders to move. Figure 11 shows an example of input navigation.

In output navigation, the DM can see what changes in decision variable values are needed to

reach certain objective values. Output navigation happens when the DM drags an objective’s

slider. This makes the decision variable sliders move so that the changed objective value will

be achieved. The other objective sliders will then move according to the new decision vari-

able values. In both input and output navigation, a nonlinear problem is solved to navigate

to the next solution.
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Figure 11. An example of input navigation in RINADA. Taken from Baldan et al. (2023).

4.1.3 NAUTILUS methods

Anchoring happens when a DM’s thinking gets "stuck" on some possibly irrelevant infor-

mation (Miettinen 1999). This may occur when the DM chooses a starting point and has

difficulties changing their preferences to move away from the starting point as if they were

tied to an anchor. The starting point of an interactive method matters which can be explained

by anchoring (Miettinen and Ruiz 2016). If the starting point is not close to the most pre-

ferred solution, the DM may not be able to navigate to the most preferred solution. Because

of the trade-offs between the objectives involved with Pareto optimal solutions, not having

the necessity to "lose" in some objectives to "gain" in others may help the DM in reaching a

more satisfactory solution (Miettinen et al. 2010). According to the prospect theory by Kah-

neman and Tversky (1979), people react asymmetrically to losses and gains as the reactions

to losses have been observed to be stronger than gains.

NAUTILUS methods are interactive methods that aim to avoid anchoring by starting from the

nadir point or some other point from which there can be seen improvements in all of the ob-

jective values (Miettinen and Ruiz 2016). In NAUTILUS methods, the DM moves iteratively

towards the Pareto front, and at each iteration the DM sees improvement in all objective val-
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ues. The solutions the DM sees during the solution process are not Pareto optimal, as only

the final solution at the end is Pareto optimal. Not having to deal with trade-offs between

the objectives helps the DM in avoiding anchoring and finding their most preferred solution.

In what follows, two navigation methods, that follow the idea of NAUTILUS methods, are

introduced.

NAUTILUS Navigator (Ruiz et al. 2019): The NAUTILUS Navigator method is applicable

to any type of problem. The method assumes a precomputed set of approximated Pareto op-

timal solutions. NAUTILUS Navigator applies the idea of NAUTILUS methods by starting

the navigation process from an estimated nadir point. Instead of seeing approximated Pareto

optimal solutions during the navigation process, the DM sees the reachable ranges of the

objective values from the current solution. These reachable ranges are updated in real-time

during the navigation process and visualized in a graphical user interface, shown in Figure

12. The DM can also see the previous reachable ranges which helps the DM learn about the

problem and the changing objective values.

The DM controls the navigation, using the graphical user interface, by defining aspiration

levels for the objectives. The DM may provide the aspiration levels by typing them in the

corresponding text boxes on the left side of the reachable ranges in Figure 12. The DM can

also specify the speed, in practice the step size, in which the navigation process approaches

the approximated Pareto front. Each successive solution is computed with a simple formula

defined in Ruiz et al. (2019), and at each solution, the reachable ranges are computed by

solving ε-constraint problems (Ruiz et al. 2019). The DM can see the reachable ranges shrink

during the navigation process and can change their preference information at any point. The

DM can also go back to a previous solution by clicking on the corresponding spot on the

previous reachable ranges, and then continue the navigation from there by providing new

preference information. At the end of the navigation process, assuming an approximation of

the Pareto front is used, the final solution of the navigation is on the approximated Pareto

front. The final solution may then be projected onto the Pareto front using an achievement

scalarizing function.
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Figure 12. The graphical user interface of NAUTILUS Navigator. Taken from Ruiz et

al. (2019).

Optimistic NAUTILUS Navigator (Saini et al. 2022): The Optimistic NAUTILUS Navi-

gator (O-NAUTILUS) method is applicable to any type of problem and is especially meant to

be able to handle computationally expensive problems. The method assumes a precomputed

set of solutions, though no further assumptions are made of the set. O-NAUTILUS applies

the idea of NAUTILUS methods by starting the navigation process from an estimated nadir

point. The method utilizes surrogate models, that are used to replace and approximate the

original computationally expensive objective functions. O-NAUTILUS has two sets involved

in the navigation: a set of known solutions and an optimistic estimation of the Pareto front.

The set of known solutions is the same as in NAUTILUS Navigator, representing the ap-

proximated Pareto front. The optimistic estimation of the Pareto front is calculated using the

surrogate models.

The navigation view of O-NAUTILUS is shown in Figure 13. O-NAUTILUS shows the DM

some additional information, besides the reachable ranges, during the navigation process.

This additional information is the optimistic ranges that have solutions that are predicted to
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have good objective values but are not included in the reachable ranges. During the naviga-

tion, both the reachable and optimistic ranges are updated in real-time and the DM can see

the ranges evolve and shrink. As mentioned, the navigation starts from an estimated nadir

point. The DM gives their preference information as aspiration levels for the objective val-

ues. To compute each successive solution, a formula defined in Saini et al. (2022), is used.

At each solution, the reachable and optimistic ranges are computed, as explained in Saini

et al. (2022). The DM can also, at any time, go back to a previous solution and continue the

navigation from there by providing new preference information.

Figure 13. The navigation view of O-NAUTILUS. Taken from Saini et al. (2022).

4.2 Desirable properties

In this section, the methods introduced in Section 4.1 are analyzed according to the desirable

properties for navigation methods from Hartikainen, Miettinen, and Klamroth (2019) that are

listed in Chapter 2. The technical properties are covered first, followed by the properties re-

lated to user experience. As mentioned in Hartikainen, Miettinen, and Klamroth (2019), the

properties are introduced for navigation methods for computationally expensive problems.

The properties are relevant to all navigation methods, although properties concerning compu-
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tational efficiency are more relevant when it comes to computationally expensive problems.

The methods are analyzed based on whether they fulfill these desirable properties and how.

4.2.1 Technical properties

1. Navigation is complete. This property means that the DM can reach any feasible Pareto

optimal solution from any current solution by giving appropriate preference information

(Hartikainen, Miettinen, and Klamroth 2019). Table 2 lists the methods and how they fulfill

the property. The developers of Pareto navigation (Monz et al. 2008), Bortz et al.’s (2014)

method, Nonconvex Pareto Navigator (Hartikainen, Miettinen, and Klamroth 2019), and

NAUTILUS Navigator (Ruiz et al. 2019), have stated in their respective papers that their

methods fulfill the property. The DM can reach any feasible Pareto optimal solution by

controlling the navigation using the graphical user interfaces developed for the methods.

In Pareto navigation (Monz et al. 2008), any Pareto optimal solution can be found by per-

forming certain actions of restriction and selection, which is proven in (Monz 2006). Bortz et

al. (2014) state, that in their method, the entire Pareto front is navigable to the DM by moving

the sliders in the graphical user interface, which is said to be made possible by using linear

interpolation, though not specified how. Hartikainen, Miettinen, and Klamroth (2019) intro-

duce e-cones for Nonconvex Pareto Navigator that help make the navigation complete even

if there are disconnected parts in the approximation of the Pareto front. The completeness of

navigation when using Nonconvex Pareto Navigator is proven by utilizing the e-cones and

assuming the approximation is a closed set in Hartikainen, Miettinen, and Klamroth (2019).

As stated in Ruiz et al. (2019), any feasible Pareto optimal solution is reachable for the DM

by directing the navigation process using NAUTILUS Navigator.

Pareto Race (Korhonen and Wallenius 1988), Pareto Navigator (Eskelinen et al. 2010),

iSOM-Pareto Race (Yadav, Ramu, and Deb 2022), and RINADA (Baldan et al. 2023) can

also be seen to fulfill the property. In Pareto Race, the navigation set is the actual Pareto

front, which means that any feasible Pareto optimal solution is reachable during the naviga-

tion. This is possible as Pareto Race is only applicable to linear multiobjective optimization

problems. For iSOM-Pareto Race, Yadav, Ramu, and Deb (2022) state, that the idea is to
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use the original Pareto Race idea and navigate on the Pareto front. In Pareto Navigator and

RINADA, the navigation set is a convex hull approximation constructed based on a set of

precomputed Pareto optimal solutions. Any solution in a convex hull approximation may be

reached.

In methods for which it is not clear whether any feasible Pareto optimal solution may be

reached, the completeness of the navigation may depend on, for example, the accuracy and

representativeness of the approximation of the Pareto front. Regarding multiple Pareto sur-

face navigation (Craft and Monz 2010) and patch navigation (Collicott et al. 2021) it is not

specified whether any feasible Pareto optimal solution can be found through the navigation

process. Though, in these methods, navigation happens on convex fronts which could make

any feasible solution reachable during navigation. The DM navigates on multiple convex

fronts which could restrict some areas from being navigated to.

The methods considered in this thesis, that can be seen to not fulfill this property, are Lin and

Ehrgott’s (2018) method and O-NAUTILUS (Saini et al. 2022). In the method by Lin and

Ehrgott (2018), the DM navigates in a set of precomputed Pareto optimal solutions, which

means that any Pareto optimal solution that is not included in the set of precomputed solu-

tions is not reachable during the navigation process. O-NAUTILUS uses surrogate models to

make the method applicable to problems that may be too difficult for other methods to han-

dle. As mentioned in Saini et al. (2022), using surrogates may lead to some Pareto optimal

solutions not being reachable by the DM in some cases.
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Method How the navigation is made complete

Pareto Race (Korhonen and

Wallenius 1988)

Navigation happens on the Pareto front and the whole

Pareto front in navigable.

Pareto navigation (Monz et

al. 2008)

With an algorithm described and proven in Monz (2006).

Multiple Pareto surface navi-

gation (Craft and Monz 2010)

Not specified whether navigation is complete.

Pareto Navigator (Eskelinen

et al. 2010)

Navigation set is a convex hull approximation in which any

solution can be reached.

Bortz et al.’s (2014) method Linear interpolation is used which is said to make it possi-

ble to reach any Pareto optimal solution (Bortz et al. 2014),

though it is not specified how.

Lin and Ehrgott’s (2018)

method

Does not fulfill the property.

Nonconvex Pareto Navigator

(Hartikainen, Miettinen, and

Klamroth 2019)

Proof provided in Hartikainen, Miettinen, and Klamroth

(2019).

NAUTILUS Navigator (Ruiz

et al. 2019)

As the DM does not move on the approximation, any so-

lution is reachable with some preference information or by

moving backwards to have more options.

Patch navigation (Collicott et

al. 2021)

Not specified whether navigation is complete.

iSOM-Pareto Race (Yadav,

Ramu, and Deb 2022)

Navigation happens on the Pareto front by using an evolu-

tionary algorithm RD-NSGA-II by Deb and Kumar (2007)

with an achievement scalarizing function, which makes it

possible to reach any feasible Pareto optimal solution.

O-NAUTILUS (Saini et

al. 2022)

Does not fulfill the property.

RINADA (Baldan et al. 2023) Navigation set is a convex hull approximation in which any

solution can be reached.

Table 2. How the methods fulfill the "navigation is complete" property.
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2. Navigation is computationally efficient. This means that, if the original problem is

computationally expensive, using an approximation of the Pareto front as the navigation set

should make the computation of solutions computationally less expensive i.e., faster (Har-

tikainen, Miettinen, and Klamroth 2019). While making the navigation more efficient to

support real-time navigation, navigation in an approximated set makes the navigation less

accurate. Table 3 lists the methods and how they fulfill the property. All of the methods

fulfill the property, as shown in Table 3. However, for some methods, restrictions on the

number of objective functions and decision variables are mentioned.

As shown in Table 3, in many methods simple linear problems are solved to compute each

successive solution during the navigation process. This makes the navigation computa-

tionally more efficient than what solving the original multiobjective optimization problems

would be. In Pareto Race (Korhonen and Wallenius 1988), the problems that are being opti-

mized are linear themselves, so computing each solution is already computationally efficient.

In Pareto navigation, linear problems are solved for each action of selection and restriction

(Monz et al. 2008). Similarly to Pareto navigation, in patch navigation, linear problems are

also solved for each action (selection, restriction and patch (de)activation) the DM makes

(Collicott et al. 2021). Regarding patch navigation, it is mentioned, that for 15 or fewer

objectives and 50 or fewer patches (convex Pareto fronts), the navigation should be at least

close to real-time (Collicott et al. 2021). In multiple Pareto surface navigation, linear prob-

lems are solved to navigate on a single Pareto front and between multiple Pareto fronts (Craft

and Monz 2010). In the method by Bortz et al. (2014), a linear problem is solved to compute

each solution during the navigation.

In other methods, some other simpler problems are solved during the navigation to make the

navigation computationally more efficient. In Pareto Navigator, a parametric linear optimiza-

tion problem is solved to compute the next approximated solution (Eskelinen et al. 2010).

Similarly, in Lin and Ehrgott’s (2018) method, linear optimization problems are solved dur-

ing the navigation (Lin and Ehrgott 2018). In Nonconvex Pareto Navigator, the navigation

happens by solving mixed integer linear optimization problems to compute each successive

solution (Hartikainen, Miettinen, and Klamroth 2019). In RINADA (Baldan et al. 2023), a

nonlinear problem is solved to compute the next solution in both input and output naviga-
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tion. Baldan et al. (2023) state, that for RINADA, seven decision variables and five objective

functions are the highest numbers for the navigation to be real-time. Beyond those numbers,

the method would not be computationally efficient enough. NAUTILUS Navigator (Ruiz et

al. 2019) and O-NAUTILUS (Saini et al. 2022) do not use the original problem to compute

the next solution during the navigation process. Therefore, the computational efficiency of

the navigation is not affected by the complexity of the original problem.

Although for iSOM-Pareto Race (Yadav, Ramu, and Deb 2022), it is not clear how the

method supports real-time navigation, it is categorized here to fulfill the property. In iSOM-

Pareto Race, an evolutionary algorithm, RD-NSGA-II (Deb and Kumar 2007), is used with

an achievement scalarizing function to compute each successive solution (Yadav, Ramu, and

Deb 2022). Although it is not specified how the evolutionary algorithm makes the naviga-

tion real-time, it is stated in Deb and Kumar (2007) that RD-NSGA-II is computationally

efficient, though no computation times are provided.
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Method How the navigation is made computationally efficient

Pareto Race (Korhonen and

Wallenius 1988)

Applicable to linear problems only, so only linear

problems are solved during navigation.

Pareto navigation (Monz et

al. 2008)

Linear problems are solved for each action of selec-

tion and restriction.

Multiple Pareto surface navi-

gation (Craft and Monz 2010)

Linear problems are solved to navigate on a sin-

gle Pareto front, as well as between multiple Pareto

fronts.

Pareto Navigator (Eskelinen

et al. 2010)

A parametric linear optimization problem is solved to

compute each successive solution.

Bortz et al.’s (2014) method A linear problem is solved to compute each succes-

sive solution during the navigation.

Lin and Ehrgott’s (2018)

method

Linear optimization problems are solved during the

navigation.

Nonconvex Pareto Navigator

(Hartikainen, Miettinen, and

Klamroth 2019)

Mixed integer linear optimization problems are

solved to compute each successive solution.

NAUTILUS Navigator (Ruiz

et al. 2019)

A simple formula is solved to compute each succes-

sive solution.

Patch navigation (Collicott et

al. 2021)

A linear problem is solved for each action of selec-

tion, restriction and patch (de)activation.

iSOM-Pareto Race (Yadav,

Ramu, and Deb 2022)

RD-NSGA-II (Deb and Kumar 2007) is used with

an achievement scalarizing function to compute each

successive solution.

O-NAUTILUS (Saini et

al. 2022)

A simple formula is solved to compute each succes-

sive solution.

RINADA (Baldan et al. 2023) A nonlinear problem is solved to compute each suc-

cessive solution in both input and output navigation,

which makes the navigation happen in real-time with

up to seven decision variables.

Table 3. How the methods fulfill the "navigation is computationally efficient" property.
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3. Construction of the navigation set is computationally efficient. This means, that al-

though the construction of the navigation set can be, and often is, done offline before the

involvement of the DM, the construction should not take long (Hartikainen, Miettinen, and

Klamroth 2019). Table 4 lists the methods and how they fulfill the property. Some meth-

ods have similar features that have been implemented to fulfill the property. These similar

features have been numbered in Table 4 to emphasize the similarities and avoid repetition.

As shown in Table 4, almost all of the methods can fulfill this property. For some meth-

ods, the computational efficiency may depend on some a posteriori method used to generate

the approximation. There are two exceptions: Pareto Race (Korhonen and Wallenius 1988)

and iSOM-Pareto Race (Yadav, Ramu, and Deb 2022). As mentioned, in Pareto Race, the

navigation set is the actual Pareto front and each solution in the set is calculated during the

navigation. For iSOM-Pareto Race it is not clear what the actual navigation set is and how it

is generated.

As can be seen in Table 4, some methods assume an approximation of the Pareto front as the

navigation set, so the computational efficiency of constructing them depends on the method

used to generate the approximation. Choosing a method that makes the construction compu-

tationally more efficient means sacrificing the accuracy of the approximation. The navigation

set in Pareto navigation is a set of precomputed Pareto optimal solutions and their convex

combinations (Monz et al. 2008). Similar to Pareto navigation, in multiple Pareto surface

navigation, the navigation set consists of precomputed solutions and linear combinations of

them (Craft and Monz 2010). Computing the linear combinations should not take long so

the construction of the navigation sets is computationally efficient.

In Pareto Navigator, the navigation set is a polyhedral approximation of the Pareto front,

which is generated utilizing a small set of Pareto optimal solutions (Eskelinen et al. 2010).

Eskelinen et al. (2010) do not make a distinction on what method to use to generate the

approximation for Pareto Navigator, so the computational efficiency may vary according to

the method used. This is also the case in NAUTILUS Navigator (Ruiz et al. 2019): a set of

precomputed Pareto optimal solutions that approximate the Pareto front is assumed, so the

computational efficiency depends on the a posteriori method used to generate the approxima-

tion. O-NAUTILUS considers two sets during the navigation (Saini et al. 2022). The set of
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known solutions is the same as in NAUTILUS Navigator, and the computational efficiency

of constructing it depends on the method used. The other set, an optimistic estimation of the

Pareto front, is formed using trained surrogate models. The computational efficiency of the

construction of the optimistic estimation depends on the surrogate model technique and the

multiobjective optimization method used to compute it. But, by default, surrogate models

are assumed to be computationally less expensive than the original functions.

In patch navigation (Collicott et al. 2021) and RINADA (Baldan et al. 2023), the navigation

set is an approximated convex hull. In patch navigation, for each Pareto front, a convex hull

approximation is generated using some method, for example, a sandwiching algorithm (Col-

licott et al. 2021). The computational efficiency depends on the method used to approximate

the different Pareto fronts. In RINADA, the generation of the approximation has two steps

that are described in Baldan et al. (2023). In Baldan et al. (2023), there is a table, that shows

the time it takes to generate a convex hull in different dimensions. With up to seven decision

variables, the generation can still happen in seconds (Baldan et al. 2023).

In Bortz et al.’s (2014) method, to generate an approximation as the navigation set, a method

introduced in Bortz et al. (2014) is used. The method uses sandwiching and hyperboxing

algorithms to approximate the Pareto front, which is said to be efficient (Bortz et al. 2014),

though no computation times are provided. In Lin and Ehrgott’s (2018) method, the navi-

gation set is a discrete set of solutions constructed using column generation, as described in

Lin, Ehrgott, and Raith (2017). In Lin, Ehrgott, and Raith (2017), a test is conducted on the

method and some computation times are shown in a table. Using a discrete set (a database) of

solutions is also said to reduce computational expenses (Lin and Ehrgott 2018), though it is

not mentioned how. For Nonconvex Pareto Navigator, the navigation set is constructed using

the PAINT method and e-cones (Hartikainen, Miettinen, and Klamroth 2019). The compu-

tational cost comes from the construction of the approximation using the PAINT method,

which is shown to take a relatively short time in Hartikainen, Miettinen, and Wiecek (2012).
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Method How the construction of the navigation set is made com-

putationally efficient
Pareto Race (Korhonen and Walle-

nius 1988)

The property is not relevant for the method.

Pareto navigation (Monz et

al. 2008)
Feature 3.1: Construction consists of computing linear

combinations of the precomputed Pareto optimal solu-

tions.
Multiple Pareto surface navigation

(Craft and Monz 2010)

Feature 3.1.

Pareto Navigator (Eskelinen et

al. 2010)

Depends on the method used to generate the convex hull

approximation, but this should not take long.
Bortz et al.’s (2014) method A method that uses sandwiching and hyperboxing algo-

rithms is used.
Lin and Ehrgott’s (2018) method A discrete set of solutions is constructed using col-

umn generation, as explained in Lin, Ehrgott, and Raith

(2017).
Nonconvex Pareto Navigator (Har-

tikainen, Miettinen, and Klamroth

2019)

The computational cost comes from the construction of

the approximation using the PAINT method, which is

shown to take a relatively short time in Hartikainen, Mi-

ettinen, and Wiecek (2012).
NAUTILUS Navigator (Ruiz et

al. 2019)
Feature 3.2: Depends on the method used to generate the

approximation used as the navigation set.
Patch navigation (Collicott et

al. 2021)

Feature 3.2.

iSOM-Pareto Race (Yadav, Ramu,

and Deb 2022)

The property is not relevant for the method.

O-NAUTILUS (Saini et al. 2022) Feature 3.2.
RINADA (Baldan et al. 2023) A two-step method is used to generate the convex hull

approximation, that is described in Baldan et al. (2023)

Table 4. How the methods fulfill the "construction of the navigation set is computationally

efficient" property. Some similar features to fulfill the property can be identified in the meth-

ods. These features have been numbered to emphasize the similarities and avoid repetition.
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4. Accuracy of the navigation set can be measured. In many cases, the navigation set is an

approximation of the Pareto front so the accuracy of it should be measurable (Hartikainen,

Miettinen, and Klamroth 2019). This accuracy information can then be used to decide when

the navigation set is accurate enough for the navigation process and can also be shown to the

DM if needed. Table 5 lists the methods and how they fulfill the property. Some methods

have similar features that have been implemented to fulfill the property. These similar fea-

tures have been numbered in Table 5 to emphasize the similarities and avoid repetition. In

Pareto Navigator (Eskelinen et al. 2010), the DM may observe how accurate the navigation

set is when asking for an approximated solution to be projected onto the Pareto front.

The methods by Bortz et al. (2014) and Lin and Ehrgott (2018), Nonconvex Pareto Navigator

(Hartikainen, Miettinen, and Klamroth 2019), and RINADA (Baldan et al. 2023) have a

way of measuring the accuracy of the navigation set. In the method by Bortz et al. (2014),

the algorithm used to generate the approximation allows the DM to set a desired accuracy

for the approximation of the Pareto set. The accuracy of the approximation is therefore

checked while generating the approximation. The quality of the discrete navigation set used

in Lin and Ehrgott’s (2018) method can be measured, as described in Lin, Ehrgott, and Raith

(2017), for example, by calculating the distance of the representation to the Pareto front. The

navigation set in Nonconvex Pareto Navigator is a combination of a PAINT approximation

and e-cones. The accuracy of the PAINT approximation can be measured with an error vector

(Hartikainen, Miettinen, and Klamroth 2019). For RINADA, there is a test to be conducted

on the approximated convex hull, that is described in Baldan et al. (2023), which checks the

error of the approximation in comparison to the exact convex hull. Baldan et al. (2023) also

introduce a test to see whether the solutions navigated to are too far from the actual data set.

For some methods, whether or not the accuracy of the navigation set can be measured, de-

pends on the method used to construct the navigation set. This is the case for NAUTILUS

Navigator (Ruiz et al. 2019) and O-NAUTILUS (Saini et al. 2022). Whether or not the ap-

proximation is accurate enough may still be observed during the solution process as the final

solution in the navigation may be projected onto the Pareto front. From the DM’s perspec-

tive, if the projected Pareto optimal solution is far from the found approximated solution,

then the accuracy of the approximation should be improved.
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A way of measuring the accuracy of the navigation set either does not exist or it just is not

mentioned regarding Pareto navigation (Monz et al. 2008), multiple Pareto surface naviga-

tion (Craft and Monz 2010), patch navigation (Collicott et al. 2021), and iSOM-Pareto Race

(Yadav, Ramu, and Deb 2022). For Pareto navigation and multiple Pareto surface navigation,

no way of measuring the accuracy of the navigation set is presented. However, in both cases,

it is mentioned that the more accurately the precomputed Pareto optimal solutions approx-

imate the Pareto front, the more accurate and representative the navigation set will be. For

patch navigation, the accuracy of the navigation set and whether it can be measured depends

on the method used to generate the approximation. There is no mention of the possibility of

measuring the accuracy of the representation of the Pareto front in iSOM-Pareto Race.
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Method How the accuracy of the navigation set can be measured
Pareto Race (Korhonen and Walle-

nius 1988)

The property is not relevant for the method.

Pareto navigation (Monz et

al. 2008)

Does not fulfill the property.

Multiple Pareto surface navigation

(Craft and Monz 2010)

Does not fulfill the property.

Pareto Navigator (Eskelinen et

al. 2010)
Feature 4.1: The DM may observe how accurate the nav-

igation set is when asking for an approximated solution

to be projected onto the Pareto front.
Bortz et al.’s (2014) method The algorithm used to generate the approximation

checks the accuracy during the generation.
Lin and Ehrgott’s (2018) method The quality of the navigation set can be measured, as

described in Lin, Ehrgott, and Raith (2017), for example,

by calculating the distance of the representation to the

Pareto front.
Nonconvex Pareto Navigator (Har-

tikainen, Miettinen, and Klamroth

2019)

The accuracy of the PAINT approximation used in the

construction of the navigation set can be measured with

an error vector (Hartikainen, Miettinen, and Wiecek

2012).
NAUTILUS Navigator (Ruiz et

al. 2019)

Feature 4.1.

Patch navigation (Collicott et

al. 2021)

Does not fulfill the property

iSOM-Pareto Race (Yadav, Ramu,

and Deb 2022)

The property is not relevant for the method.

O-NAUTILUS (Saini et al. 2022) Feature 4.1.
RINADA (Baldan et al. 2023) A test that checks the error of the approximated convex

hull in comparison to the exact convex hull.

Table 5. How the methods fulfill the "accuracy of the navigation set can be measured"

property. Some similar features to fulfill the property can be identified in the methods. These

features have been numbered to emphasize the similarities and avoid repetition.
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5. Accuracy of the navigation set can be improved. This means that in the event that the

navigation set is not accurate enough, the accuracy can be improved (Hartikainen, Mietti-

nen, and Klamroth 2019). When the DM finds an interesting approximated solution and

wants to project it onto the Pareto front, and if that projected Pareto optimal solution is not

satisfactory as the final solution, that projected solution should be added to the navigation

set which improves the accuracy. Table 6 lists the methods and how they fulfill the prop-

erty. Some methods have similar features that have been implemented to fulfill the property.

These similar features have been numbered in Table 6 to emphasize the similarities and

avoid repetition. For patch navigation (Collicott et al. 2021), the accuracy of the navigation

set and whether it can be improved depends on the method used to generate the approxima-

tion. There is no mention of a possibility to improve the accuracy of the representation of

the Pareto front regarding iSOM-Pareto Race (Yadav, Ramu, and Deb 2022) and RINADA

(Baldan et al. 2023).

As can be seen in Table 6, in many methods, the accuracy of the navigation set may be

improved by generating more Pareto optimal solutions and using them to regenerate the ap-

proximation of the Pareto front. In Pareto navigation (Monz et al. 2008) and multiple Pareto

surface navigation (Craft and Monz 2010), a set of precomputed Pareto optimal solutions is

assumed, from which the navigation set is constructed. The accuracy of the navigation set

may be improved by generating more Pareto optimal solutions that better represent the Pareto

front. This is also the case in Pareto Navigator: the accuracy of the polyhedral approxima-

tion may be improved by adding more Pareto optimal solutions to generate the approximation

(Eskelinen et al. 2010). For Nonconvex Pareto Navigator, the accuracy of the navigation set

can be improved by adding more Pareto optimal solutions to generate the PAINT approxi-

mation (Hartikainen, Miettinen, and Klamroth 2019). Adding more Pareto optimal solutions

to improve the accuracy of the navigation set in Pareto Navigator and Nonconvex Pareto

Navigator means the approximations need to be regenerated.

In NAUTILUS Navigator (Ruiz et al. 2019), new Pareto optimal solutions may be generated,

and the accuracy of the approximation may be improved within the current reachable ranges

(Ruiz et al. 2019). To avoid regenerating the whole approximation, the Pareto fill module,

introduced in Ruiz et al. (2015), can be used to generate more solutions within the reachable
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ranges. In O-NAUTILUS (Saini et al. 2022), the DM can conduct exact function evaluations

in interesting regions (Saini et al. 2022). The results of the evaluations can then be added to

the set of known solutions. The surrogate models used to compute the optimistic ranges can

then be retrained which makes the optimistic ranges more accurate in that interesting region.

The methods by Bortz et al. (2014) and Lin and Ehrgott (2018) can improve the accuracy

of the navigation set without needing more Pareto optimal solutions to be computed. In

both methods, if the DM wants to improve the accuracy during the navigation process, the

navigation set has to be regenerated. In the method by Bortz et al. (2014), the accuracy

of the approximated navigation set is checked during the generation of the approximation.

The accuracy of the approximation can be improved while generating (or regenerating) the

approximation by setting a desired accuracy for the approximation, which can be set by the

DM. The quality of the discrete navigation set used in Lin and Ehrgott’s (2018) method

may also be improved by changing the parameters used to construct the navigation set, as

described in Lin, Ehrgott, and Raith (2017).
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Method How the accuracy of the navigation set can be improved

Pareto Race (Korhonen and Walle-

nius 1988)

The property is not relevant for the method.

Pareto navigation (Monz et

al. 2008)
Feature 5.1: Generating more Pareto optimal solutions to

add to the set of precomputed solutions from which the

navigation set is constructed.
Multiple Pareto surface navigation

(Craft and Monz 2010)

Feature 5.1.

Pareto Navigator (Eskelinen et

al. 2010)

Feature 5.1.

Bortz et al.’s (2014) method The DM can set a desired accuracy a priori.
Lin and Ehrgott’s (2018) method Changing the parameters used to construct the navigation

set.
Nonconvex Pareto Navigator (Har-

tikainen, Miettinen, and Klamroth

2019)

Feature 5.1.

NAUTILUS Navigator (Ruiz et

al. 2019)

The Pareto fill module, introduced in Ruiz et al. (2015),

can be used to generate more solutions within the reach-

able ranges.
Patch navigation (Collicott et

al. 2021)

Does not fulfill the property

iSOM-Pareto Race (Yadav, Ramu,

and Deb 2022)

The property is not relevant for the method.

O-NAUTILUS (Saini et al. 2022) The DM can conduct exact function evaluations in inter-

esting regions, and the surrogate models used to compute

the optimistic ranges can then be retrained.
RINADA (Baldan et al. 2023) Does not fulfill the property.

Table 6. How the methods fulfill the "accuracy of the navigation set can be improved" prop-

erty. Some similar features to fulfill the property can be identified in the methods. These

features have been numbered to emphasize the similarities and avoid repetition.
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4.2.2 Properties related to user experience

Hartikainen, Miettinen, and Klamroth (2019) mention, that the properties related to user

experience may be more difficult to measure, and whether a method fulfills them may depend

on the DM that uses the method. The analysis done in this subsection relies completely on

the information given in the respective papers as implementations are not readily available to

be tested from a DM’s perspective, and the functionality and usability of the user interfaces

play an important role in assessing the user experience.

6. The DM can control the navigation. This property means that the method should allow

the DM to control the navigation (Hartikainen, Miettinen, and Klamroth 2019). To see if

a method fulfills the property, it can be checked whether the DM can reach some specific

values by navigating or restrict some values they do not want to navigate to (Hartikainen,

Miettinen, and Klamroth 2019). The implementations for the methods that are introduced

in the considered papers all offer the DM ways to control the navigation. This property

is therefore fulfilled by the methods. Table 7 lists the methods and how they fulfill the

property. Some methods have similar features that have been implemented to fulfill the

property. These similar features have been numbered in Table 7 to emphasize the similarities

and avoid repetition.

In Pareto Race (Korhonen and Wallenius 1988) and iSOM-Pareto Race (Yadav, Ramu, and

Deb 2022), the DM controls the navigation by using the navigation controls mentioned in

Section 4.1 regarding Pareto Race. The DM can use the controls by pressing the correspond-

ing keyboard keys. If the DM has in mind some specific values, they can reach them by

moving around the Pareto front using the provided controls. The DM can also restrict certain

areas by fixing some objective values which adds those values as constraints to the problem

that is solved during the navigation. However, the DM can only set an aspiration level for

one objective function at a time.

In multiple Pareto surface navigation (Craft and Monz 2010), the DM navigates by pressing

buttons in the graphical user interface shown in Figure 3. The buttons are up, down, switch

and lock. The up and down buttons increase and decrease the value of the corresponding

objective, and the lock button locks the corresponding objective value so that it does not
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change while moving to other solutions. The DM can press the switch button to switch the

Pareto front, that is being navigated on, for a Pareto front that has a solution that improves the

corresponding objective value. There is no other way of restricting objective values besides

the restrictions coming from setting a locked objective value as a constraint and switching

between the Pareto fronts.

In Pareto Navigator (Eskelinen et al. 2010), Nonconvex Pareto Navigator (Hartikainen, Mi-

ettinen, and Klamroth 2019), NAUTILUS Navigator (Ruiz et al. 2019), and O-NAUTILUS

(Saini et al. 2022), the DM can control the navigation by giving preference information by

moving lines corresponding to their aspiration levels and bounds for the objectives or by

typing in the corresponding text boxes. The DM can therefore set the specific values they

want to reach as the aspiration levels and navigate to those values if they are feasible. These

methods have similar implementations in regard to providing and visualizing the preference

information. In all of these methods, the DM may provide their preference information by

typing them into the text boxes corresponding to the objectives. A graphical user interface for

Pareto Navigator was suggested by Tarkkanen et al. (2013) (Figure 4), in which the DM can

also give aspiration levels (or a reference point) for the objectives by clicking on the panel in

between two Pareto optimal solutions or vertical lines displayed. The example graphical user

interface for Nonconvex Pareto Navigator, and the graphical user interfaces for NAUTILUS

Navigator and O-NAUTILUS (Figures 7, 12 and 13), on the other hand, suggest changing

preference information by moving the horizontal lines representing the aspiration levels and

bounds.

The DM can control the navigation by moving sliders corresponding to the objective func-

tions in the graphical user interface in Pareto navigation (Monz et al. 2008), Bortz et al.’s

(2014) method, Lin and Ehrgott’s (2018) method, Patch navigation (Collicott et al. 2021),

and RINADA (Baldan et al. 2023). By moving sliders corresponding to the objectives, the

DM can set the aspiration level of one objective at a time. The graphical user interfaces (Fig-

ures 2, 5, 6, 8, and 11) for these methods also allow the DM to set bounds for the objectives.

Pareto navigation has two actions the DM can perform to control the navigation by moving

sliders in the graphical user interface. The first action is restriction which allows the DM to

set constraints to the objectives, the other is selection which allows the DM to set an aspi-
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ration level for one objective at a time. Patch navigation utilizes the two actions of Pareto

navigation while adding a third action called patch (de)activation. In patch (de)activation,

the DM includes or excludes a certain patch (part of the Pareto front) from being navigated

to. Restriction and selection can be done by moving the sliders while patch (de)activation

happens by checking and unchecking checkboxes. In RINADA, it is possible to control the

navigation by moving sliders corresponding to the decision variables (input navigation) or

the objectives (output navigation).
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Method How the DM can control the navigation

Pareto Race (Korhonen and

Wallenius 1988)
Feature 6.1: Navigation can be controlled by pressing

keyboard keys.

Pareto navigation (Monz et

al. 2008)
Feature 6.2: Moving sliders corresponding to the ob-

jectives and possibly decision variables.

Multiple Pareto surface navi-

gation (Craft and Monz 2010)

Pressing up, down, switch and lock buttons.

Pareto Navigator (Eskelinen

et al. 2010)
Feature 6.3: Moving lines corresponding to the aspi-

ration levels and bounds or by typing into the corre-

sponding text boxes.

Bortz et al.’s (2014) method Feature 6.2.

Lin and Ehrgott’s (2018)

method

Feature 6.2.

Nonconvex Pareto Navigator

(Hartikainen, Miettinen, and

Klamroth 2019)

Feature 6.3.

NAUTILUS Navigator (Ruiz

et al. 2019)

Feature 6.3.

Patch navigation (Collicott et

al. 2021)

Feature 6.2.

iSOM-Pareto Race (Yadav,

Ramu, and Deb 2022)

Feature 6.1.

O-NAUTILUS (Saini et

al. 2022)

Feature 6.3.

RINADA (Baldan et al. 2023) Feature 6.2.

Table 7. How the methods fulfill the "the DM can control the navigation" property. Some

similar features to fulfill the property can be identified in the methods. These features have

been numbered to emphasize the similarities and avoid repetition.
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7. Low cognitive load is set on the DM. This property means that using a method should set

as little cognitive load on the DM as possible (Hartikainen, Miettinen, and Klamroth 2019).

To achieve this, the navigation process should be made intuitive for the DM and the possible

visualization of the method should be understandable to the DM (Hartikainen, Miettinen,

and Klamroth 2019). Table 8 lists the methods and how they fulfill the property. Some meth-

ods have similar features that have been implemented to fulfill the property. These similar

features have been numbered in Table 8 to emphasize the similarities and avoid repetition.

There is no mention of the visualization technique regarding multiple objectives for Bortz et

al.’s (2014) method. However, the navigation itself happens by moving sliders which can be

seen to be intuitive.

Pareto Race (Korhonen and Wallenius 1988), patch navigation (Collicott et al. 2021) and

iSOM-Pareto Race (Yadav, Ramu, and Deb 2022) can be seen to not fulfill this property.

The graphical user interface used to visualize the navigation in Pareto Race consists of bars

representing the objective values, as seen in Figure 1. It is stated in Tarkkanen et al. (2013),

that having to remember previous solutions makes comparing the solutions a cognitively

demanding task. Therefore, even though the visualization that consists of bars is easy to

understand, it makes comparing solutions more burdensome for the DM. In patch navigation,

the graphical user interface (Figure 8) has a slider for each objective and navigation happens

by moving these sliders. It is mentioned, that there may be some sudden jumps in the sliders

during navigation, as the navigated patch changes, which could cause the DM to feel less in

control (Collicott et al. 2021). The visualization for iSOM-Pareto Race, as shown in Figure

9, has color-coded solutions to inform the DM about the different solutions. The color-coded

solutions, combined with a heat map displaying the values of the corresponding objective,

form the display for one objective. These displays are formed for all of the objectives along

with some other plots to give more information. This type of visualization may become more

useful when a DM gets more familiar with the concept but at first may be taxing.

In Pareto navigation (Monz et al. 2008), multiple Pareto surface navigation (Craft and Monz

2010) and Lin and Ehrgott’s (2018) method, the navigation itself can be seen to be intuitive

and the visualizations understandable. As mentioned, comparing each new solution found

during the navigation, while having to remember previous solutions, makes the task cogni-
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tively more demanding. These methods are seen to still fulfill the property as their graphical

user interfaces (Figures 2, 3 and 6) are understandable, and navigation using them is made in-

tuitive. Regarding multiple Pareto surface navigation, it is mentioned, that switching Pareto

fronts can cause sudden changes in objective values, which could cause the DM to feel less

in control (Craft and Monz 2010). Therefore, the DM is given the option to switch Pareto

fronts manually which lowers the cognitive load as the DM can decide if they want to switch

fronts.

Pareto Navigator (Eskelinen et al. 2010), Nonconvex Pareto Navigator (Hartikainen, Mietti-

nen, and Klamroth 2019), NAUTILUS Navigator (Ruiz et al. 2019), O-NAUTILUS (Saini et

al. 2022) and RINADA (Baldan et al. 2023) show the DM the solutions previously navigated

to. This helps the DM in comparing found solutions as they do not have to remember the

previous solutions which lowers the cognitive load set on the DM. In addition, in Nonconvex

Pareto Navigator, the DM may choose to let some objective values change freely during parts

of the navigation which can lower the cognitive load on the DM (Hakanen, Sahlstedt, and

Miettinen 2013). NAUTILUS Navigator and O-NAUTILUS show the DM all the previous

reachable ranges and the DM can see the ranges shrinking during the navigation process.

Showing the DM the previous reachable ranges as well is said to lower the cognitive load

for the DM (Ruiz et al. 2019). In addition to the reachable ranges of NAUTILUS Navi-

gator, O-NAUTILUS also displays the optimistic ranges to the DM which does add some

cognitive load for the DM. In RINADA, previous solutions navigated to are displayed as dif-

ferent colors to other solutions which makes it easier to compare already navigated solutions

which lowers the cognitive load set on the DM. However, in RINADA, all the solutions in

the navigation set are displayed at once, which makes it more difficult to compare them.
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Method How a low cognitive load is set on the DM

Pareto Race (Korhonen and

Wallenius 1988)

Does not fulfill the property.

Pareto navigation (Monz et

al. 2008)
Feature 7.1: Moving sliders to navigate can be seen as

intuitive, and the visualization is understandable.

Multiple Pareto surface navi-

gation (Craft and Monz 2010)

Pressing up, down, switch and lock buttons can be

seen as intuitive, and the visualization is understand-

able.

Pareto Navigator (Eskelinen

et al. 2010)
Feature 7.2: Displays solutions previously navigated

to, making comparing solutions a less demanding

task.

Bortz et al.’s (2014) method Does not fulfill the property

Lin and Ehrgott’s (2018)

method

Feature 7.1.

Nonconvex Pareto Navigator

(Hartikainen, Miettinen, and

Klamroth 2019)

Feature 7.2.

NAUTILUS Navigator (Ruiz

et al. 2019)

Feature 7.2.

Patch navigation (Collicott et

al. 2021)

Does not fulfill the property

iSOM-Pareto Race (Yadav,

Ramu, and Deb 2022)

Does not fulfill the property.

O-NAUTILUS (Saini et

al. 2022)

Feature 7.2.

RINADA (Baldan et al. 2023) Feature 7.2.

Table 8. How the methods fulfill the "low cognitive load is set on the DM" property. Some

similar features to fulfill the property can be identified in the methods. These features have

been numbered to emphasize the similarities and avoid repetition.
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8. The DM is allowed to learn. The methods should support the DM in learning about

the problem and the reachable solutions. The DM should also be able to change their mind

and take steps backwards or go to a solution that has already been passed in the navigation

process (Hartikainen, Miettinen, and Klamroth 2019). Table 9 lists the methods and how

they fulfill the property. Some methods have similar features that have been implemented to

fulfill the property. These similar features have been numbered in Table 9 to emphasize the

similarities and avoid repetition.

Pareto navigation (Monz et al. 2008), Bortz et al.’s (2014) method, Lin and Ehrgott’s (2018)

method, patch navigation (Collicott et al. 2021), and RINADA (Baldan et al. 2023) have

sliders that the DM uses to control the navigation. These methods, that feature sliders for

the DM to control the navigation, support the DM’s learning as the DM may always move

the sliders back to a previous position. Once they have taken the steps backwards, the DM

can then try moving some other slider to see if they can get different results, which allows

the DM to change their mind and learn about the problem. However, as mentioned regarding

patch navigation, there may be some sudden jumps in the sliders during navigation which

could make it more difficult for the DM to compare solutions and learn from them as they

may be far away from each other.

Pareto Race (Korhonen and Wallenius 1988), iSOM-Pareto Race (Yadav, Ramu, and Deb

2022) and multiple Pareto surface navigation (Craft and Monz 2010) feature controls to

support the DM’s learning. The DM can use the "gear" controls, featured in Pareto Race

and iSOM-Pareto Race, and change the movement direction from forwards to backwards

and vice versa. By using the gears, the DM can go back to a previously passed solution and

then use the "turn" control to change the movement direction. In multiple Pareto surface

navigation, the DM can learn about the problem and reachable solutions by pressing buttons

up and down, and reverse each action if they feel the solutions are getting less desirable. The

DM can also change their mind by switching the Pareto front that is being navigated on at

any point.

Pareto Navigator (Eskelinen et al. 2010), Nonconvex Pareto Navigator (Hartikainen, Miet-

tinen, and Klamroth 2019), NAUTILUS Navigator (Ruiz et al. 2019), and O-NAUTILUS

(Saini et al. 2022) show the DM the passed solutions and allow the DM to move backwards
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to any previously passed solution. As the DM is shown the solutions that have been navi-

gated to earlier, it is easier for the DM to see if the solutions are developing towards more

desirable values. If not, then the DM can always pause the navigation and go back to some

passed solution and then change their preferences to move in some other direction. This al-

lows the DM to learn and change their mind. The DM can go backwards to a passed solution

by clicking on the solution on the graphical user interface. The graphical user interfaces for

Pareto Navigator and Nonconvex Pareto Navigator, shown in Figures 4 and 7, also feature

different tabs for different directions, so the DM can also compare solutions found from

different areas.
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Method How the DM is allowed to learn

Pareto Race (Korhonen and

Wallenius 1988)
Feature 8.1: Controls that allow to take steps back-

wards and turn.

Pareto navigation (Monz et

al. 2008)
Feature 8.2: Sliders that control the navigation can be

moved back to a previous position.

Multiple Pareto surface navi-

gation (Craft and Monz 2010)

Pressing up, down, switch and lock buttons can be

reversed at any point to go back to a previous solution.

Pareto Navigator (Eskelinen

et al. 2010)
Feature 8.3: Shows the DM the passed solutions and

allows the DM to move backwards to a previously

passed solution.

Bortz et al.’s (2014) method Feature 8.2.

Lin and Ehrgott’s (2018)

method

Feature 8.2.

Nonconvex Pareto Navigator

(Hartikainen, Miettinen, and

Klamroth 2019)

Feature 8.3.

NAUTILUS Navigator (Ruiz

et al. 2019)

Feature 8.3.

Patch navigation (Collicott et

al. 2021)

Feature 8.2.

iSOM-Pareto Race (Yadav,

Ramu, and Deb 2022)

Feature 8.1.

O-NAUTILUS (Saini et

al. 2022)

Feature 8.3.

RINADA (Baldan et al. 2023) Feature 8.2.

Table 9. How the methods fulfill the "the DM is allowed to learn" property. Some similar

features to fulfill the property can be identified in the methods. These features have been

numbered to emphasize the similarities and avoid repetition.
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9. The DM can get additional information of the navigation set. This property means

that the DM should receive some additional information during the navigation process in

addition to each solution found (Hartikainen, Miettinen, and Klamroth 2019). The additional

information could be, for example, the reachable objective values in the navigation set from

the current solution. Table 10 lists the methods and how they fulfill the property. Some

methods have similar features that have been implemented to fulfill the property. These

similar features have been numbered in Table 10 to emphasize the similarities and avoid

repetition. There is no mention of additional information about the navigation set shown to

the DM regarding Pareto Race (Korhonen and Wallenius 1988) and multiple Pareto surface

navigation (Craft and Monz 2010).

The graphical user interfaces for Pareto navigation (Monz et al. 2008), Lin and Ehrgott’s

(2018) method, NAUTILUS Navigator (Ruiz et al. 2019), patch navigation (Collicott et

al. 2021), O-NAUTILUS (Saini et al. 2022), and RINADA (Baldan et al. 2023) show the

DM the current reachable objective values in the navigation set. Lin and Ehgott’s method

(Figure 6) also informs the DM whether a certain navigation step is feasible or not. Patch

navigation (Figure 8) also tells the DM which patch they are currently navigating on and

whether they are navigating on the Pareto front. NAUTILUS Navigator and O-NAUTILUS

(Figures 12 and 13) also show the reachable ranges from the already passed solutions. In

addition, O-NAUTILUS displays the optimistic reachable ranges for the objectives. In RI-

NADA, the visualization (Figure 11) shows the data set to the DM which could make it

harder to compare solutions as the whole set is shown at once.

Pareto Navigator (Eskelinen et al. 2010), Bortz et al.’s (Bortz et al. 2014) method, Noncon-

vex Pareto Navigator (Hartikainen, Miettinen, and Klamroth 2019), and iSOM-Pareto Race

(Yadav, Ramu, and Deb 2022) give some other additional information on the problem and its

solutions that may not be about the navigation set. Pareto Navigator and Nonconvex Pareto

Navigator, show the DM the set of precomputed Pareto optimal solutions at all times, which

the DM can then use to restart the navigation from at any time. In addition, the DM may ask

to project the current solution onto the Pareto front and see how the approximated solution

compares to the Pareto optimal one. Bortz et al.’s method has sliders for both the decision

variables and objectives that display the values, which may help the DM’s decision-making.
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The iSOM-Pareto Race visualization provides a lot of additional information for the DM,

for example, the color-coded solutions displayed show the DM whether a solution is near a

constraint.

In the next chapter, some of the features identified in this subsection are discussed. Some

other perspectives that can be taken into account when preparing syntheses in the future,

and other future research topics are suggested as well as other ways to facilitate conducting

literature reviews and preparing syntheses.

63



Method What additional information can the DM get of the nav-

igation set?

Pareto Race (Korhonen and Walle-

nius 1988)

Does not fulfill the property.

Pareto navigation (Monz et

al. 2008)
Feature 9.1: Shows the DM the current reachable values

for the objectives and possibly some additional informa-

tion.

Multiple Pareto surface navigation

(Craft and Monz 2010)

Does not fulfill the property.

Pareto Navigator (Eskelinen et

al. 2010)
Feature 9.2: Shows the set of precomputed Pareto opti-

mal solutions.

Bortz et al.’s (2014) method Shows both the current objective and decision variable

values.

Lin and Ehrgott’s (2018) method Feature 9.1.

Nonconvex Pareto Navigator (Har-

tikainen, Miettinen, and Klamroth

2019)

Feature 9.2.

NAUTILUS Navigator (Ruiz et

al. 2019)

Feature 9.1.

Patch navigation (Collicott et

al. 2021)

Feature 9.1.

iSOM-Pareto Race (Yadav, Ramu,

and Deb 2022)

A lot of additional information for the DM, for exam-

ple, the color-coded solutions displayed show the DM

whether a solution is near a constraint.

O-NAUTILUS (Saini et al. 2022) Feature 9.1.

RINADA (Baldan et al. 2023) Feature 9.1.

Table 10. How the methods fulfill the "the DM can get additional information of the nav-

igation set" property. Some similar features to fulfill the property can be identified in the

methods. These features have been numbered to emphasize the similarities and avoid repeti-

tion.
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5 Discussion

Some similarities in terms of the implementations of the methods were identified in the syn-

thesis. As can be seen in Table 3, in many methods, a simple linear optimization problem or

some other simple problem is solved to compute each successive solution during the naviga-

tion process. Therefore, some general solvers to compute the solutions can be implemented

and used in the implementation of multiple navigation methods. Also, as seen in Table 4,

multiple methods assume a precomputed approximation or representation of the Pareto front

as the navigation set or as a basis of creating the navigation set. Therefore, a general method

to construct the navigation set can be implemented and then utilized in the implementations

of different navigation methods.

Graphical user interfaces are crucial for navigation methods as they support the DM in

decision-making. Graphical user interfaces have been a crucial part of the implementations

of the methods since the first navigation method considered in this thesis, Pareto Race by

Korhonen and Wallenius (1988). They allow the DM to control the navigation and, learn

about the problem and the solutions that can be found by navigating. That is why it is impor-

tant to understand which features make a graphical user interface appropriate for a certain

DM. There is probably not one set of features that caters to every DM’s needs, which is why

it is important to conduct studies, as in the work by Tarkkanen et al. (2013), to learn about

different possibilities for the implementations.

In the synthesis, some common graphical user interface features could be identified, that

were utilized in different methods. Some of the similarities were related to how the DM

controls the navigation. The common features, that can also be seen in Table 7, that were

used in multiple methods’ implementations were movable sliders and lines corresponding to

the objective values and lower and upper bounds for the objectives, and also the option to

provide aspiration levels for the objectives by typing them into the corresponding text boxes.

One common feature that was used to lower the cognitive load set on the DM was displaying

all the solutions the DM had navigated to previously. To allow the DM to learn about the

problem and change their mind, some of the methods had an option for the DM to choose

one of the previous solutions and to continue the navigation from there.
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As mentioned in Chapter 3, the terminology used for navigation methods is not universal. For

example, the term "navigation method" or, as sometimes used, "navigation-based method"

is not always used when describing the methods. Not having universal terminology makes it

more difficult to do literature reviews and mapping studies for two reasons. First, construct-

ing search queries and conducting searches in databases are more tedious tasks when one

does not necessarily know a set of keywords to find all the relevant papers. Second, in the

literature, some terms may be used in different contexts, and they may have different mean-

ings. For example, the term "navigation" is not solely used regarding navigation methods but

also in regard to other interactive methods, which is why it would be beneficial to separate

navigation methods from other interactive methods by standardizing the terminology.

Another way to facilitate reviewing and mapping navigation methods, as well as other opti-

mization methods, would be to make implementations of the methods openly available for

testing and reviewing. If the methods have already been implemented as they are presented

in the papers, the implementation used to demonstrate the methods in the papers should be

available. Having the implementations available for testing would make conducting a syn-

thesis and comparing different methods in terms of, for example, the desirable properties by

Hartikainen, Miettinen, and Klamroth (2019) easier and more comprehensive. As the im-

plementations typically are not (openly) available, the tests conducted in the papers cannot

be repeated and reproducing results can become very challenging, if not impossible. Many

of the papers have used real-world problems to demonstrate the methods, which makes the

results more interesting, but the results of those tests, and the steps the DM has taken, can-

not be reproduced without the implementation used in the tests. Having implementations

available would help in repeating and reproducing results reported in the respective papers

to verify the methods’ usefulness, for example.

Many of the methods considered in this thesis assume that the problems that are being solved

are convex. Having to make an assumption about the types of solvable problems hinders the

broader applicability of such methods. Therefore, in the future, it would be beneficial to

develop navigation methods that can also handle nonconvex problems. Some newer navi-

gation methods, e.g., Nonconvex Pareto Navigator by Hartikainen, Miettinen, and Klamroth

(2019), and O-NAUTILUS by Saini et al. (2022), have been developed to be applicable to
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nonconvex problems as well. When choosing the method for solving a problem, it would be

beneficial to have methods that can handle all types of problems.

To cater to two of the phases of the solution process mentioned in Chapter 2, the learning

and decision phase, it is also possible to use both a navigation method and another interactive

method to find the most preferred solution (Eskelinen et al. 2010). A navigation method can

be used to learn about the problem and the trade-offs involved, and to find an interesting

area in the navigation set (learning phase). Some other interactive method can then be used

to find the most preferred solution in that area. For example, Heikkinen et al. (2023) first

used Nonconvex Pareto Navigator (Hartikainen, Miettinen, and Klamroth 2019) to find an

interesting region, and a solution that was then projected onto the Pareto front. The projected

solution was then used as a starting point for an interactive method, NIMBUS (Miettinen and

Mäkelä 2006). NIMBUS was then used to find the most preferred solution.

The way and the form in which the DM gives their preference information is an important as-

pect to consider when developing and implementing navigation methods. Giving preference

information should always be made as intuitive and seamless as possible for the DM. Differ-

ent ways for giving preference information that have been implemented in the graphical user

interfaces were discussed in Section 4.2. The methods considered in this thesis also have

different forms the DM can give their preference information in. One option is to give an

aspiration level for one objective while allowing the other objective values to change freely,

or aspiration levels to all objectives. In some methods, the DM may give a classification

that tells if the DM wants, for example, an objective value to improve or is willing to let an

objective value get worse in order to improve some others. The methods should, if possible,

offer the DM the option to choose in which form they would prefer to give their preference

information.
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6 Conclusions

A literature review was conducted on navigation methods for multiobjective optimization

problems, and the search process and the results of the review were described in this thesis.

The methods introduced in the papers found in the review were analyzed and compared to

form a synthesis. The analysis and comparison were done according to the type of navigation

set where the navigation takes place, and according to the desirable properties for navigation

methods introduced by Hartikainen, Miettinen, and Klamroth (2019). It was determined

whether each method can be seen to fulfill the properties or not, and if they were seen to

fulfill the properties, it was elaborated how.

The aim of the literature review was to establish an understanding of the state of the art in

navigation methods. 12 different methods that were considered navigation methods were

found and analyzed. The synthesis formed based on the literature review aimed to find out

what kind of navigation methods exist and what similarities they have. A set of features, that

were used in the methods, was identified. In the set of features, some similarities were found

between different methods. These similarities were considered in terms of implementing the

methods as well as implementing and designing graphical user interfaces for the methods.

Due to time constraints, the synthesis is not as diverse and comprehensive as it could have

been. Therefore, an interesting topic for future research could be to expand the synthesis

formed in this thesis by analyzing and comparing the methods from different perspectives.

Some of these different perspectives that could be further examined are discussed in Chapter

5. Also, the search queries could be improved which could lead to better results from the

literature review. Therefore, further research into finding a set of keywords to form the

search queries for the literature review could result in finding more methods that could be

considered in future literature reviews.

This thesis has provided an overview of what kind of navigation methods exist. The identified

features and similarities between the methods offer some insight into some of the compo-

nents that are used to implement the methods. These pieces can be used to develop new

methods in the future. The contributions of this thesis can be used to choose the appropriate
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navigation method to support the DM’s decision-making, and also as a foundation for future

literature reviews and syntheses on navigation methods.
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