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Abstract: In this master’s thesis, we investigate the integration of large language models into

autonomous driving systems, with a particular emphasis on their potential to enhance inter-

pretability, decision-making, and planning capabilities. We implement both data-driven and

knowledge-driven models within the CARLA simulator across diverse scenarios, focusing

specifically on the TransFuser and LMDrive frameworks. This study provides a comparative

analysis of these models utilizing a range of metrics. The results indicate that while LM-

Drive exhibits certain limitations in motion planning, it demonstrates significant competence

in interpretability, particularly in recognizing traffic light signals and detecting bumpy road

conditions.
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Suomenkielinen tiivistelmä: Tässä pro gradu -tutkielmassa tutkimme suurten kielimallien

integrointia autonomisiin ajoneuvojärjestelmiin, erityisesti niiden potentiaalia parantaa tulkit-

tavuutta, päätöksentekoa ja suunnittelukyvykkyyttä. Toteutamme sekä datalähtöisiä että ti-

etämyslähtöisiä malleja CARLA-simulaattorissa erilaisissa skenaarioissa keskittyen erityis-

esti TransFuser- ja LMDrive-kehyksiin. Tämä tutkimus tarjoaa vertailevan analyysin näistä

malleista käyttäen useita mittareita. Tulokset osoittavat, että vaikka LMDrive osoittaa tiet-

i



tyjä rajoituksia liikkeen suunnittelussa, se osoittaa merkittävää osaamista tulkittavuudessa,

erityisesti liikennevalojen tunnistamisessa ja epätasaisen tien havaitsemisessa.

Avainsanat: Autonominen ajaminen, suuret kielimallit, tulkittavuus, syväoppiminen
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1 Introduction

The market trend in electric vehicles (EVs) is increasing rapidly and is predicted to reach 145

million sales by the year 2030 (Patil 2020). In the meantime, autonomous driving(AD) tech-

nology could enhance the convenience and efficiency of EVs even further. Such technology

has seen significant progress, mainly driven by ongoing improvements in sensor technology

such as millimeter-wave radar, light detection and ranging(LiDAR), cameras, etc. (Li and

Ibanez-Guzman 2020; Xiang et al. 2023), and its integration of artificial intelligence (AI)

(Chen, Li, et al. 2023).

Despite significant progress of AI in autonomous driving, ongoing challenges persist. A

heavy dependence on data-driven methods leaves systems vulnerable to data bias, often lead-

ing to overfitting training data (Cao et al. 2023; Huang et al. 2023). This challenge hinders

the capability of current autonomous driving systems to effectively tackle long-tail and cross-

domain issues (Xiang et al. 2023; J. Wang et al. 2022), which restricts their adaptability in

unfamiliar environments. Additionally, these systems suffer from a lack of interpretabil-

ity (Zablocki et al. 2022; Zhang et al. 2023). Overall, data-driven methods rely on large

datasets to train models for pattern recognition and prediction but can suffer from overfitting,

lack generalization, and limited interpretability, while knowledge-driven methods integrate

knowledge, common sense, and reasoning of human to enhance handling complex scenarios,

improve interpretability, and enable more adaptive decision-making (Wang, Yang, and Wu

2023).

Notably, the term explainability is frequently associated with the concept of interpretabil-

ity(Zablocki et al. 2022). Interpretability refers to the extent to which a human can com-

prehend the rationale behind a decision made by an AI system, with an emphasis on the

clarity of the explanation (Miller 2018), while explainability includes interpretability and

completeness, ensuring the explanation is both understandable and thoroughly covers all

relevant aspects of the decision-making process. In this study, we concentrate on the inter-

pretability.
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Therefore, the need to explain the behaviors of autonomous driving is multifaceted (Zablocki

et al. 2022). For example, 1. Debugging: Explanations can aid engineers and researchers in

enhancing future iterations by offering insights into edge cases, pitfalls, and possible failure

points (Y. Tian et al. 2018; Hecker et al. 2020). 2. Trusting: Explanations become essen-

tial for building user trust and facilitating the implementation of the technology when the

system’s performance matches human performance (Lee and Moray 1992; Choi and Ji July

2015; Shen et al. 2022; Zhang, Yang, and Robert 2020). 3. Improving: If autonomous

driving models significantly surpass human abilities in the future, explanations could help

educate humans on improved driving techniques and better decision-making through ma-

chine teaching (Aodha et al. 2018).

Recent works, LM-Nav (Shah et al. 2022) and CLIP-MC (Jain et al. 2022) harness large-

scale vision language pre-training to acquire linguistic knowledge from textual instructions

and visual features from images by leveraging CLIP (Radford et al. 2021). These studies

demonstrate the efficacy of this pre-trained model, presenting a compelling framework for

addressing intricate navigation challenges using multimodal models (Chen, Wu, et al. 2023).

Although large language models (LLMs) like GPT-3 (Brown et al. 2020) show the ability to

handle complex linguistic instructions, the integration of LLMs and the field of autonomous

driving remains unclear (Chen, Wu, et al. 2023).

While the majority of studies prioritize enhancing trajectory planning ability and develop-

ing new models, there is less emphasis on evaluating existing models and their potential to

improve interpretability. Without thorough evaluation, the field may continue to advance

technologically without addressing these crucial aspects. This could result in the develop-

ment of autonomous systems that are less transparent, harder to trust, and potentially more

error-prone. Moreover, the opportunity to refine and perfect existing technologies might

be lost, leading to continual reinvention rather than focused improvement and optimization.

Therefore, we propose four research questions to address this research gap:

1. What existing approaches and large language models are available for developing

knowledge-driven autonomous driving systems?

This question aims to survey and review existing resources and techniques in the field

2



of autonomous driving. We focus on those that leverage large language model ap-

proaches. Understanding the current landscape of methodologies, datasets, and lan-

guage models will provide a foundational understanding necessary for advancing re-

search or application development in this area.

2. How can a large language model be implemented in practice for motion planning

in a simulation environment?

This question seeks to explore the practical implementation of large language models

for motion planning, and driving interpretation, particularly within a simulated setting.

The goal is to determine the feasibility, requirements, techniques, and potential barriers

or efficiencies in integrating language models into autonomous driving systems.

3. How does the performance of knowledge-driven models compare to data-driven

models?

The objective is to assess and compare the effectiveness and efficiency of knowledge-

driven models with more traditional data-driven models. This comparison could reveal

insights into the advantages and disadvantages of knowledge-driven models.

4. What is the effectiveness of the interpretability provided by knowledge-driven

models?

This question addresses the need to assess how well knowledge-driven models can

explain their decisions and actions. It is a crucial aspect for regulatory approval, user

trust, and debugging purposes in autonomous systems. Understanding the level of

interpretability can help improve model design and interface for better human-machine

interaction.

The thesis structure is organized as follows: Chapter 2 introduces autonomous driving tech-

nology and its associated research, particularly in the context of deep learning models. Chap-

ter 3 provides an overview of deep learning, establishing the foundation for the subsequent

discussion of the TransFuser and LMDrive models, which are elaborated in Chapter 4. Chap-

ter 5 justifies the simulation methodology employed. In Chapters 6 and 7, the experimental

setup and findings are presented. Lastly, Chapter 8 offers conclusions and outlines potential

future work.
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2 Autonomous Driving

An Autonomous Driving Vehicle also referred to as a self-driving vehicle (Taeihagh and

Lim July 2018; Thrun April 2010), is a vehicle capable of functioning with minimal or no

human input (S. Xie et al. 2022). These vehicles are accountable for all driving tasks, includ-

ing environmental perception, system monitoring, and vehicle control, which encompasses

navigation from the point of origin to the intended destination (S. Xie et al. 2023).

A recent technical report by the National Highway Traffic Safety Administration (NHTSA)

attributes 94% of road accidents to human error (Singh 2015). In light of this, Autonomous

Driving vehicles are being developed with the potential to prevent accidents, reduce emis-

sions, provide mobility for those with impairments, and alleviate driving-related stress (Cray-

ton and Meier 2017).

Autonomous Driving (AD) has five to six levels, from manual to fully automatic, accord-

ing to the definitions from the SAE (S.O.-R.A.V.S. Committee 2021), NHTSA (Blanco et

al. August 2015), and German BASt (Tom M. Gasser August 2012). Level 0 (No Driving

Automation): The human driver is responsible for performing all driving tasks without any

assistance from the vehicle’s automated systems. Level 1 (Driver Assistance): At this level,

the vehicle is equipped with single or multiple systems that can assist the driver with either

steering, acceleration, or braking. Level 2 (Partial Driving Automation): The vehicle can

control both steering and acceleration/deceleration, but the human driver must continuously

monitor the driving environment and be prepared to take control at any moment. Level 3

(Conditional Driving Automation): Vehicles at this level are capable of managing all driving

tasks under certain conditions, but the human driver must be ready to intervene when the

system requests. Level 4 (High Driving Automation): The vehicle can handle all driving

tasks and monitor the driving environment in specific scenarios without the need for driver

attention, though human intervention may still be required in other situations. Level 5 (Full

Driving Automation): Vehicles operating at this level are fully autonomous and can perform

all driving tasks in all conditions without any human intervention. Given technical con-

straints that delay the realization of fully autonomous driving to a distant future, our research

is primarily focused on Level 3.
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2.1 Rule-based Methods to Data-driven Models

Initially, path planning in autonomous driving often relied on Rule-based algorithms in-

cluding A* search (Dolgov et al. 2008), which are based on a set of predefined, explicit

instructions or rules that control the behavior of the vehicle. This method was particularly

effective for problems with well-defined state spaces and deterministic environments.

As the field progressed, the complexity of autonomous driving tasks and environments led to

a shift toward reinforcement learning(RL), and deep reinforcement learning (Udugama 2023;

Tammewar et al. 2023). The agent’s learning and decision-making process in Data-driven

systems is driven by the goal of maximizing the cumulative reward, which is dynamically

computed based on the agent’s actions and the state of the environment. Most recently in

2021, a pivotal advancement was made in autonomous driving technology. With the avail-

ability of various sensor configurations that fit within a reasonable computational budget,

the focus shifted towards integrating more modalities and sophisticated architectures such as

Transformer (Vaswani et al. 2023). This approach aimed to enhance the global context and

feature representation capabilities, as seen in TransFuser (Prakash, Chitta, and Geiger 2021;

Chitta et al. 2022).

At the same time, the interpretability of autonomous driving systems has emerged as a key

area of research interest (Hu et al. 2023). While earlier, small-scale language models such

as initial versions of BERT (Devlin et al. 2019a) and GPT (Brown et al. 2020) have been

utilized to process extensive driving data, their generalization abilities often fall short of op-

timal performance. More recently, advanced large language models (Agarwal et al. March

2023; Touvron, Martin, et al. 2023) have shown exceptional capabilities in context compre-

hension, response generation, and complex task management. These models are increasingly

being combined with multi-modal systems (Brohan et al. 2023; Liu, Li, Wu, et al. 2023), fa-

cilitating a unified representation across different data types such as text, images, videos,

and point clouds. This integration considerably boosts the system’s ability to generalize

and adapt swiftly to new situations, either without prior specific training (zero-shot) or with

minimal training (few-shot).

5



2.2 Knowledge-driven Models

Differing from rule-based or data-driven approaches, knowledge-driven systems incorporate

structured symbolic reasoning, enabling them to handle complex decision-making tasks that

require abstract and logical reasoning (Wang, Yang, and Wu 2023). Knowledge-driven meth-

ods seek to incorporate information about driving scenarios into a knowledge-augmented

representation space and infer it into a generalized driving semantic space (Wang, Yang, and

Wu 2023). For example, knowledge-driven autonomous driving not only provides the ve-

hicle with an understanding and reasoning of the real world but also enables it to navigate

numerous challenging driving situations and adapt to dynamic environments. Therefore,

the development of an interpretable knowledge-driven system and efficient end-to-end au-

tonomous driving system has emerged as a focal point of research interest (Chen, Wu, et

al. 2023).

Within this field, the related research can be classified into two primary categories based

on the tuning of the large language model(Z. Yang et al. 2023): prompt engineering and

fine-tuning pre-trained models.

2.2.1 Prompt Engineering

The advent of ChatGPT (OpenAI 2023) has spurred interest in LLMs through prompt engi-

neering to enhance autonomous driving systems.

“A Safety Perspective”(Y. Wang et al. 2024) investigates how LLMs can be utilized as

intelligent decision-makers in autonomous driving (AD), particularly in behavioral plan-

ning. They introduce two approaches: 1. Adaptive LLM-Conditioned Model Predictive

Control (MPC): LLMs are integrated into the AD system to formulate constraints for a low-

level MPC that handles trajectory planning. 2. Interactive Behavior Planning Scheme: The

scheme uses a state machine where LLMs act as behavior planners and interactively manage

behavioral states and transitions. They use GPT-4 as their LLM and are tested on High-

wayEnv(Leurent 2018). The results show that their approach improves safety and efficiency

while reducing latency compared to recent advanced methods like Drive Like A Human

(Fu et al. 2023).
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“ChatGPT as Your Vehicle Co-Pilot”(S. Wang et al. 2023) manages human-vehicle inter-

action, organizing information via a memory mechanism. They proposed Expert Oriented

Black-Box tuning approach for optimization without retraining the LLMs(GPT-3.5-turbo).

The Co-Pilot is tested through a joint simulation of Simulink(Documentation 2020) and Car-

Sim(Johansson et al. 2004). The results show the Co-Pilot provides plausible maneuvers that

meet human demands, such as safety, stability, or urgency.

Talk2Drive(Cui et al. 2024) presents a framework that translates verbal commands into con-

trol sequences for autonomous vehicles while personalizing driving experiences through a

memory module. Their approach uses LLMs (GPT-4) to interpret spoken commands and

execute driving decisions. A memory module archives past commands, actions, and feed-

back to refine preferences over time. Then Real-world tests are conducted in three key driv-

ing environments: highways, intersections, and parking lots. The result of the Talk2Drive

framework shows that reducing driver takeovers by up to 78.8% while maintaining high-

performance scores.

“Receive, Reason, and React” (Cui et al. 2023) proposes a novel framework to utilize

LLMs in autonomous vehicles to enhance decision-making, provide transparent reasoning,

and offer personalized driving experiences. The approach applies Chain-of-Thought Prompt-

ing(Wei et al. 2022) to LLMs. and the LLMs receive verbal commands, query relevant tools

for context, and produce actionable driving instructions. A memory module also stores his-

torical actions and preferences. Experiments are conducted using the HighwayEnv(Leurent

2018) simulator to assess how well LLMs like GPT-4 can interpret verbal commands and

make informed decisions. The research demonstrates that integrating LLMs into autonomous

vehicles improves their ability to reason, personalize responses, and make safe driving deci-

sions.

Talk2BEV (Choudhary et al. 2023) introduces a framework that enhances Bird’s Eye View

(BEV) maps with vision-language features, enabling comprehensive scene understanding

and reasoning for autonomous driving tasks. Their approach starts with Generating BEV

maps from vehicle sensors, Creating language-enhanced maps by using large vision lan-

guage models(LVLMs) such as BLIP-2(J. Li et al. 2023), MiniGPT-4(Zhu et al. 2023), and

InstructBLIP-2(Dai et al. 2023) to describe objects and align them with image-language fea-
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tures, and Answering user queries with LVLMs using context from these language-enhanced

maps. The qualitative results demonstrate robust performance in predicting potential risky

driving maneuvers through interactive dialogue.

SurrealDriver(Jin et al. 2023) seeks to tackle the challenges of simulating realistic human-

like driving behaviors in urban environments such as CARLA(Dosovitskiy et al. 2017) and

employs GPT-4. Their approach includes a DriverAgent responsible for perception, decision-

making, and control, and a CoachAgent to provide driving guidelines based on driver inter-

views. The results indicate that implementing the framework with safety criteria reduced

the collision rate by 57.46%, incorporating short-term memory lowered collision rates by

82.96%, and overall safety criteria, short-term memory, and long-term guidelines reduced

collisions by 81.04% and improved human-likeness by 50%.

"Drive a Like Human"(Fu et al. 2023) explores the potential of using GPT-3.5 in a closed-

loop driving system, and compares it to a traditional approach such as reinforcement learn-

ing. They measure the three key abilities (Reasoning, Interpretation, and Memorization) of a

large language model. The results from the HighwayEnv simulation show that GPT-3.5 can

use common sense to think and drive like humans.

LanguageMPC(Sha et al. 2023) uses ChatGPT as the center console (brain) for autonomous

driving to analyze and reason about various scenarios. They implement Reinforcement

Learning-based planning (RL), Model Predictive Control (MPC), and MPC with large lan-

guage models and evaluate the approaches using the IdSim(Fitzgibbons et al. 2004).

DriveVLM (X. Tian et al. 2024) uses Qwen-VL(Bai et al. 2023) as the backbone of the large

vision language model and integrates it with prompts into DriveVLM which takes sequences

of images as Vision Language Model input and outputs the results of Chain-of-Thought,

prompt engineering that comprises scene description, analysis, and hierarchical planning.

They test the model with nuScenes(Caesar et al. 2020) dataset and the Scene Understanding

for Planning(SUP-AD) dataset created by authors to evaluate scene description/analysis and

a predefined set of decision-making options.

DiLu(Wen et al. 2024) explores how to empower the capabilities of large language mod-

els into autonomous driving systems. They evaluated their results on HighwayEnv with 20
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experiences obtained from the lane-4-density-2 environment, and conducted experiments in

the lane-5-density-3 setting, testing the closed-loop performance of 3-shot and 5-shot respec-

tively. Also, they use CitySim to test the ability to use real-world datasets. The limitation

they mention is 5-10 seconds of latency in the process of decision-making.

Name LVM Evaluation Simulator

“A Safety Perspective”(Y. Wang et al. 2024) GPT-4 1 scenario HighwayEnv

“ChatGPT as Your Vehicle Co-Pilot”(S. Wang et al. 2023) GPT-3.5 2 tasks Simulink, CarSim

Talk2Drive(Cui et al. 2024) GPT-4 3 scenarios Real-world test

“Receive, Reason, and React”(Cui et al. 2023) GPT-4 2 scenarios HighwayEnv

Talk2BEV(Choudhary et al. 2023) BLIP-2, MiniGPT-4 Talk2BEV-Bench -

SurrealDriver(Jin et al. 2023) GPT-4 Town10 CARLA

"Drive a Like Human"(Fu et al. 2023) GPT3.5 2 scenarios HighwayEnv

LanguageMPC(Sha et al. 2023) GPT3.5 25 scenarios IdSim

DriveVLM(X. Tian et al. 2024) Qwen-VL SUP-AD,nuScenes -

DiLu(Wen et al. 2024) GPT3.5 3 lane settings HighwayEnv,CitySim

Table 1: Prompt Engineering Approaches

2.2.2 Fine-tuning Pre-trained Models

Compared to prompt engineering, a fine-tuning technique performs better in specific domains

with targeted training data. The implementation of fine-tuning requires more computational

resources than prompting.

DriveMLM(W. Wang et al. 2023) employs a multi-modal LLM like LLaMA-7B(Touvron,

Lavril, et al. 2023) integrated with a Vision Transformer (ViT)(Dosovitskiy et al. 2021)

from EVA-CLIP(Fang et al. 2022) for visual processing and a Sparse Pyramid Transformer

(SPT)(H. Yang et al. 2023) for LiDAR data. They use CARLA to evaluate the model in dif-

ferent driving scenarios with varying weather, lighting, and environments. The result shows

that DriveMLM achieves an overall decision prediction accuracy of 75.23%, significantly

outperforming other models like LLaVA 1.5(Liu, Li, Li, et al. 2023) (22.92%) and Instruct-

BLIP (17.92%) in Open-Loop Evaluation. The model obtains a Driving Score (DS) of 76.1

on the CARLA Town05 Long benchmark, surpassing the Apollo baseline by 4.7 points in
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Closed-Loop Driving.

GPT-Driver (Mao, Qian, et al. 2023) introduces an approach to motion planning for au-

tonomous vehicles using the OpenAI’s GPT-3.5 model which reinterprets motion planning

as a language modeling task by translating the inputs and outputs of the planner into linguis-

tic tokens. It allows for describing trajectory coordinates and its reasoning process in natural

language. The approach is evaluated on the nuScenes dataset. The approach has its limi-

tations, for example, the model size and inference time, which could hinder its application

in real-time autonomous driving situations. They suggest exploring the techniques of the

smaller large language model. The other limitation is concerned with their evaluation, which

addresses open-loop motion planning and does not fully account for error accumulation dur-

ing the driving process. The closed-loop motion planning is mentioned for evaluating the

performance of motion planners.

"Driving with LLMs" (Chen, Sinavski, et al. 2023) proposes an Object-Level Multimodal

LLM framework, which aligns quantitative vector modalities with static large language

model representations using vector captioning language data. They present a new dataset

containing 160k question-answer (QA) pairs produced by GPT-3.5 derived from 10k driving

scenarios collected by a reinforcement learning agent. GPT Grading and human grading are

used for analyzing the performance of the model.

DriveGPT4 (Xu et al. 2024) is built upon the LLaMA architecture, and trained using a mix-

finetuning strategy, which pre-training and fintuning with visual instruction tuning dataset

created by the author’s team. The dataset contains 56K video-text instruction-following

samples and comprises 16K BDD-X(Kim et al. 2018) question-answering pairs and 40K

QAs generated by ChatGPT. Their evaluation is focused on speed and turning angle, utilizing

various metrics from the NLP community, such as CIDEr(Vedantam, Zitnick, and Parikh

2015), BLEU4(Papineni et al. 2002), and ROUGE-L(Lin July 2004).

Moreover, LMDrive (Shao et al. 2023) deals with the limitations of current autonomous

driving systems when encountering long-tail unforeseen events. They introduce a dataset

with about 64K data in 2 to 20-second clips which include navigation and notice instructions,

multi-view sensor data from multiple modalities, and control signals. Their evaluation uses
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closed-loop experiments, which demonstrate LMDrive’s effectiveness.

Agent-Driver (Mao, Ye, et al. 2023) uses GPT-3.5 as the primary LLM. The method utilizes

chain-of-thought reasoning, including the identification of key objects and events, the for-

mulation of high-level task plans, the generation of motion trajectories, and the performance

of collision checks for self-assessment. Agent-Driver was evaluated using the large-scale

nuScenes benchmark dataset. The results show strong few-shot learning by achieving su-

perior performance with only a fraction of the training data, showing rapid adaptability. It

also offers a transparent and understandable decision-making process by providing textual

justifications.

DriveLM (Sima et al. 2023) fine-tuned BLIP-2 (J. Li et al. 2023) using the DriveLM-

nuScene dataset, which is derived from nuScenes. The DriveLM-CARLA dataset was gath-

ered utilizing CARLA version 0.9.14 as part of the Leaderboard 2.0 framework. They eval-

uated their model, DriveLM-Agent, on DriveLM-Data, which comprises DriveLM-nuScene

and DriveLM-CARLA, using custom metrics: DriveLM-Metric. This is a standard metric

from the nuScenes and Waymo(Sun et al. 2020) benchmarks

MTD-GPT(Liu, Hang, et al. 2023) uses GPT-2 architecture for multi-task decision-making.

The model is trained in a custom-built simulation to forecast the next action by utilizing his-

torical state-action-reward sequences and future rewards. The MTD-GPT model is tested in

simulation scenarios on various tasks at unsignalized intersections and achieves comparable

or superior performance compared to single-task RL models.
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Name LVM Evaluation Simulator

DriveMLM(W. Wang et al. 2023) LLaMA-7B nuScenes -

GPT-Driver(Mao, Qian, et al. 2023) GPT3.5 nuScenes -

"Driving with LLMs"(Chen, Sinavski, et al. 2023) LLaMA-7b DataQA Custom

DriveGPT4(Xu et al. 2024) LLaMA-2 BDD-X -

LMDrive(Shao et al. 2023) LLaMa-2 LangAuto Benchmark CARLA

Agent-Driver(Mao, Ye, et al. 2023) GPT-3.5 nuScenes -

DriveLM(Sima et al. 2023) BLIP-2 DriveLM-Data -

MTD-GPT(Liu, Hang, et al. 2023) GPT-2 3 cases Custom

Table 2: Fine-tuning Pre-trained Models

2.3 Summary

We conduct a review on the development and evolution of autonomous driving technologies,

particularly focusing on how LLMs and data-driven approaches are improving the perfor-

mance and reliability of these systems.

Overview of Autonomous Vehicles: Autonomous vehicles (AVs) are designed to navigate

with minimal human intervention. According to the National Highway Traffic Safety Ad-

ministration’s findings, human error causes 94% of road accidents. Autonomous vehicles are

expected to reduce accidents, improve accessibility, and decrease emissions. AVs operate

across six levels of automation, from Level 0 (manual driving) to Level 5 (fully automated).

Data-Driven Approaches: Early rule-based path planning has evolved into data-driven

models like reinforcement learning. Newer architectures integrate sensor data and use deep

learning to optimize decision-making.

Knowledge-Driven Models: The integration of LLMs into autonomous driving models is

a recent development. These models analyze data, predict vehicle actions, and generate ex-

planations for decision-making processes. Recent research leverages LLMs to align vision-

language models with driving scenarios, such as GPT-Driver, DriveGPT4, and LMDrive.
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3 Deep Learning

Before we begin to implement any models, it is essential to establish a solid foundational

knowledge of deep learning. Deep learning enables computational models, which consist

of several processing layers, to acquire data representations across various levels of abstrac-

tion(LeCun, Bengio, and Hinton 2015). Understanding these fundamental concepts, such as

traditional neural networks, is essential before advancing to its complex applications.

3.1 Traditional Neural Network Architectures

3.1.1 Fully Connected Layer

A fully connected layer (FC), also known as a dense layer, is a fundamental type of neural

network layer in which each neuron is linked to all neurons in the preceding layer as shown

in Figure 1. This setup ensures that the input features are combined in every possible way

to pass information through the network. Its application, such as CNN architecture (Raito-

harju 2022), contains one or several fully connected layers, depending on the depth of the

architecture (Basha et al. 2020).
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Figure 1: Fully Connected Layer

The mathematical operations performed by such a layer can be described as follows:

FC(x;W) = σ(Wx+b) (3.1)

Where Wx represents the matrix multiplication between the weights W and the input vector

x. Moreover, Wx+b adds the bias b to the result of Wx. It represents the input layer to the

fully connected layer(also called the hidden layer). Finally, the activate function σ is applied

element-wise to the result of Wx+b and is responsible for introducing non-linearity into the

model, which allows the network to learn and model more complex functions.

3.1.2 Multilayer Perceptron

A multilayer perceptron (MLP) is a type of artificial neural network that is widely used in

machine learning for a variety of tasks, such as classification, regression, and feature learn-

ing. Most researchers preferred MLP as their neural network topology (Bose 2007). Such

a network usually includes fully connected layers and is equipped with nonlinear activation

functions. It is structured into at least three layers (input layer, hidden layer, and output
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layer).
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Figure 2: Multilayer Perceptron with 2 fully connected layers

However, if the MLP has only 1 fully connected layer, it is equivalent to a single fully

connected layer:

MLP(1)(x;W) = FC(x;W) (3.2)

If the MLP has 2 fully connected layers, as shown in Figure 2, the equations should be

changed to:

h(1)(x;W (1)) = σ
(1)(W(1)x+b(1))

h(2)(h(1);W (2)) = σ
(2)(W(2)h(1)+b(2))

MLP(2)(x;W) = h(2)(h(1)(x;W (1));W (2))

Where h(1) is the output of the first fully connected layer, with σ (1) as its activation function,

same as h(2) but with h(1) as input. W(1) is the weight matrices of first layers, while W(2)

is the matrices of second layers. Similarly b(1) and b(2) is the bias vectors of the first and

second layers.

Note that the notation MLP(n)(x;W) generally refers to an MLP with n layers, where n

indicates the number of fully connected layers in the network.

15



3.1.3 The GRU Network

Efforts in the simplification of Long Short-Term Memory(LSTM)(Hochreiter and Schmid-

huber December 1997a) networks have given rise to the Gated Recurrent Unit (GRU)(Cho

et al. 2014) as shown in Figure 3, a model predicated on two multiplicative gates.

Figure 3: The Architecture of GRU(N. Li et al. May 2021)

Although this model features a reduced gating mechanism, empirical studies suggest that

GRUs exhibit performance on par with LSTMs across various machine-learning applications

such as GRNN(Chung et al. 2014). The standard GRU Network Equations is defined as

(Ravanelli et al. April 2018):

zt = σ(Wzxt +Uzht−1 +bz), (3.3a)

rt = σ(Wrxt +Urht−1 +br), (3.3b)

h̃t = tanh(Whxt +Uh(ht−1 ⊙ rt)+bh), (3.3c)

ht = zt ⊙ht−1 +(1− zt)⊙ h̃t . (3.3d)

In these expressions, zt is the update gates, and rt signifies the reset gates. ht denotes the state

vector at time t. The operator ⊙ indicates element-wise multiplication. The gates are acti-

vated by logistic sigmoid functions σ , limiting update gates and reset gates values between

0 and 1. The candidate state h̃t undergoes transformation via a hyperbolic tangent function.
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The network inputs are represented by the vector xt , such as speech feature vectors, and the

parameters encompass feed-forward matrices Wz, Wr, Wh, alongside recurrent matrices Uz,

Ur, Uh. Additionally, bz, br, and bh are bias vectors, integrated before the application of

non-linear functions.

As delineated in Eq. 3.3d, ht is computed as a linear blend of the prior activation ht−1 and

the candidate state h̃t , with proportions determined by the update gate zt . This mechanism is

crucial for encoding long-term dependencies within the network. A high value of zt main-

tains the previous state substantially unchanged, facilitating the preservation of information

over prolonged periods. Conversely, a lower value of zt allows for greater influence from the

candidate state h̃t , reflecting more immediate inputs and recent hidden states. The influence

of the reset gate rt is also notable, enabling the model to potentially discard past information

by forgetting earlier computed states. Noteworthily, both the TransFuser (Chitta et al. 2022)

and LMDrive (Shao et al. 2023) models employ GRU neural networks to predict waypoints.

3.2 Transformer

The Transformer (Vaswani et al. 2023) is a deep learning model. It has become the foun-

dation for many advanced models in natural language processing (NLP). For example, a

language model based on the Transformer architecture BERT, known as Bidirectional En-

coder Representations from Transformers (Devlin et al. 2019b), has achieved remarkable

performance in NLP. Unlike the recurrent neural network (RNN) suffers from the vanish-

ing or exploding gradient problem(Pascanu, Mikolov, and Bengio 2013), where gradients

diminish or grow exponentially over time during training. This limitation led to the develop-

ment of more advanced architectures like gated recurrent neural networks (GRNNs)(Chung

et al. 2014), Long Short-Term Memory (LSTM)(Hochreiter and Schmidhuber November

1997b) which have solidified their status as leading methodologies in sequence modeling

and transduction tasks, notably in language modeling and machine translation (Bahdanau,

Cho, and Bengio 2016; Cho et al. 2014).

However, GRNNs and LSTM still have their own shortcomings, such as complexity and

computational cost, difficulty in capturing global dependencies, and sequential processing.
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Transformer resolved many of these issues by relying on attention mechanisms, bypassing

the need for recurrence entirely in the architecture. The key innovation in Transformer is

the self-attention mechanism (The architecture on the right in Figure 4), which enables the

model to assess the significance of different words within the input data, regardless of their

order. This breakthrough enabled more efficient training by leveraging parallel computing,

thereby drastically reducing training times and improving performance on tasks requiring an

understanding of long-range dependencies in text.

Figure 4: Transformer(Vaswani et al. 2023)

3.2.1 Self-Attention Mechanism

As we mentioned before the self-attention mechanism (also Scaled Dot-Product Attention)

is the core of the Transformer architecture. In this section, we try to simplify the mechanism

with mathematical equations. The self-attention mechanism takes 3 vectors as input Query

(Q), Key(K), and Value(V ), which extracted for each word. It outputs a weighted sum of the

value vectors, where the weights assigned to each value depend on the compatibility of the
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query with the corresponding keys.

For example, we have a sentence: "She sells seashells on the seashore.". The query represents

the current word or token Qi = sells in which we are interested. In our sentence, the Key(K)

could be "She" "seashells" "on" and "seashore". The value is the information that we want

to associate with each key. It provides additional context or meaning to the query. In our

sentence, the Value(V ) could be the parts of speech, syntactic role, or any other relevant

information corresponding to each key. The self-attention can be defined as the following

equation:

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V (3.4)

Where dk is a dimension of each Query (Q), Key(K), and Value(V ) with a dimension of

dv. Firstly, We calculate the dot products of each query with all keys, aiming to measure

the similarity between the query’s context and the key’s corresponding value. This similarity

measure is used to determine how much attention or weight should be given to corresponding

values. Secondly, we scale these products down by dividing by
√

dk, which is an important

step for stabilizing the training of the model.

However, the reason to use the square root in the denominator (
√

dk) is to counteract the

linear growth of the variance without overly diminishing the magnitude of the dot products.

By scaling with
√

dk, the variance of the resulting scaled dot products is normalized to a

constant (not growing with dk). This keeps the values fed into the softmax function in a

range that prevents numerical issues like underflow or overflow. It is a common method

used when dealing with very small or large exponents in the softmax. And lastly, we use an

activation function(softmax) to determine the weights assigned to the values.

3.2.2 Multi-Head Attention

A single attention mechanism computes attention weights based on the similarity between a

query and all keys in the input sequence. However, in multi-head attention, this process is

repeated multiple times, each with its own set of learned parameters.
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MultiHead = Concat(head1, ...headh)∗W O (3.5)

Where headi = Attention(QW Q
i ,KW K

i ,VWV
i ) (3.6)

3.2.3 Transformer Encoder and Decoder

In the Transformer model, the term feedforward neural network(FNN) is used to describe a

specific component of the architecture that operates at each position identically and indepen-

dently. This component consists of two linear (fully connected layers 3.1) transformations

separated by a nonlinear activation function, typically ReLU or GELU (Sharma, Sharma, and

Athaiya 2017). This closely resembles the architecture of an MLP Eq.3.2, where the FNN

effectively is an MLP applied independently to each position. The "Add & Norm" structure

with a feed-forward network resembles a two-layer MLP with skip connections and layer

normalization.

y = LayerNorm(MultiHead(Q,K,V )+x) (3.7a)

FNN(x) = max(0,xW1 +b1)W2 +b2 (3.7b)

TE(x) = LayerNorm(FNN(y)+y) (3.7c)

Similar to Transformer encoder (TE), Transformer decoder (TD) has one extra Masked

Multi-Head Attention written as:

AttentionM(Q,K,V ) = softmax
(

QKT
√

dk
+M

)
V

MultiHeadM = Concat(head1, ...headh)∗W O

headi = AttentionM(QW Q
i ,KW K

i ,VWV
i )

where M is the mask matrix, ensuring that the softmax function zeros out any inappropriate.

here are the equations of TD.

yM = LayerNorm(MultiHeadM(Qdec,Kdec,Vdec)+x) (3.8a)

y = LayerNorm(MultiHead(QyM
,Kenc,Venc)+yM) (3.8b)

FNN(x) = max(0,xW1 +b1)W2 +b2 (3.8c)

TD(x) = LayerNorm(FNN(y)+y) (3.8d)
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3.3 Vision Transformer

Vision Transformer (ViT)(Dosovitskiy et al. 2021) applies the Transformer (Vaswani et

al. 2023) architecture to the field of computer vision, where convolutional architectures main-

tain their dominance (He et al. 2015). Motivated by the achievements in natural language

processing (NLP), some studies try to integrate convolutional neural network (CNN)-based

architectures with self-attention mechanisms (X. Wang et al. 2018; Carion et al. 2020). Some

try to remove convolutional neural networks completely (H. Wang et al. 2020). But They

didn’t outperform the residual neural network(ResNet) in large-scale image recognition (Q.

Xie et al. 2020; Kolesnikov et al. 2020).

Figure 5: ViT(Dosovitskiy et al. 2021)

Unlike traditional CNNs that process images in parts, ViTs treat images as sequences of

patches and apply self-attention mechanisms across these patches, offering an alternative

that can achieve competitive results in image classification tasks.

3.3.1 Input Embedding

Given an input image I of size H ×W ×C (height, width, and channels), ViT first divides

the image into a grid of fixed-size patches. Let P denote the number of patches, and P =

HW
patch_size2 . Each patch is then linearly projected into a lower-dimensional embedding space
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dpatch using a learnable weight matrix Wpatch:

Patchi j = flatten(I[pos(i, j)]) ·Wpatch,

where pos(i, j) retrieves the spatial coordinates of the patch at position (i, j), and flatten(·)

flattens the patch into a 1D vector.

3.3.2 Positional Encoding

Since Transformer don’t inherently capture spatial information, positional encodings are

added to the patch embeddings to provide information about their positions. The positional

encoding PE is typically calculated as a combination of sine and cosine functions of different

frequencies:

PE(p,2i) = sin(p/100002i/dpatch),

PE(p,2i+1) = cos(p/100002i/dpatch),

where p is the position and i is the dimension.

3.3.3 Transformer Encoder

The patch embeddings with positional encodings are then fed into a Transformer encoder.

The encoder consists of multiple layers, each composed of a multi-head self-attention mecha-

nism followed by a feedforward neural network (FNN). The output of each layer is computed

as follows:

y = LayerNorm1(MultiHead(LayerNorm2(Patch+PE)))

LayerNorm3(FNN(LayerNorm4(y)))+Patch,

where LayerNorm denotes layer normalization, and y is the first layer.
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3.3.4 Classification Head

Finally, the representation of the special ‘[CLS]‘ token, typically from the last layer of the

encoder, is extracted and passed through a linear layer followed by a softmax activation

function to predict the class probabilities:

softmax(Linear(CLS))

3.4 Summary

We provide a comprehensive analysis of deep learning models and their practical uses, offer-

ing foundational insights into architectures like Transformer and Vision Transformer. And

also we explore key concepts and foundational models in deep learning.

Fully Connected Layer means every neuron is connected to each neuron in the previous

layer, combining all input features and passing information through the network. This al-

lows complex functions to be learned via matrix multiplication, bias addition, and activation

functions. Multilayer Perceptron (MLP) extends the fully connected layer concept with

multiple layers, each adding complexity by incorporating activation functions. GRU Net-

work is a simplified alternative to LSTM networks, utilizing multiplicative gates (update and

reset gates) to facilitate long-term dependencies and discard outdated information

Transformer introduces an attention mechanism that allows processing sequences without

recurrence, overcoming the limitations of previous architectures. The self-attention mecha-

nism compares word similarity to generate weighted sums, scaling outputs for stability.

Vision Transformer adapts the transformer architecture for computer vision by treating im-

ages as patches instead of sequences, enabling competitive performance in image classifica-

tion tasks.
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4 Deep Learning Models in Autonomous Driving

Deep learning plays a significant role in the current autonomous driving revolution both

in academia and industry (Grigorescu et al. 2020). As we mentioned, many models that

integrate deep learning approaches with autonomous driving in Chapter 2, we elaborate on

the selected models TransFuser and LMDrive in more detail. Both models are designed for

motion planning tasks.

4.1 TransFuser

TransFuser (Chitta et al. 2022) is an advanced architecture designed for autonomous driving,

utilizing a novel approach that integrates multiple sensor modalities, specifically images, and

LiDAR, using Transformer technology. This integration enables the model to effectively nav-

igate complex environments by fusing rich, contextual information from both sensor types.

Overall, the TransFuser architecture shown in Figure 6 can be represented simply as equation

Figure 6: Architecture of TransFuser(Chitta et al. 2022)

4.3.

wt = TransFuser(I,L;W) (4.1)

Where wt is the predicted waypoint containing a sequence of 2D coordinators {xt ,yt }. The

(I,L) are RGB camera images and LiDAR cloud points, respectively. W is the weight of

the model. The TransFuser architecture comprises two primary components Multi-Modal

Fusion Transformer and Auto-Regressive waypoint Prediction Network.
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4.1.1 Multi-Modal Fusion Transformer

Similar to Vision Transformer(in Section 3.3), the Multi-Modal Fusion Transformer(MMFT)

uses Transformer (Vaswani et al. 2023) to extract features from the image and LiDAR data

streams. It processes these features at multiple scales within the network, ensuring that the

fusion captures both high-level and low-level details relevant to driving decisions.

Ft = ResNet(X)

Q,K,V = FtMq,FtMk,FtMv

At = MultiHead(Q,K,V )

Ft+1 = MLP(At)+Ft

Where Ft ∈RN×D f is the input sequence and here N denotes the total number of tokens within

the sequence, with each token being characterized by a feature vector of dimensionality

D f . In this context, X will be image data or LiDAR data and apply the ResNet (He et

al. 2015) operation. The Query (Q), Key(K), and Value(V ) apply linear projections to Ft

and weight matrices (Mq ∈ RD f×Dq , Mk ∈ RD f×Dk and Mv ∈ RD f×Dv ). Then, we get the

output features Ft+1 by using Multi-Head Attention Eq.3.5 and Multilayer Perception Eq.3.2.

Finally, we model the MMFT by applying fully connected layer Eq.3.1 and average pooling

layer(AvgPool).

MMFT(X) = FC(AvgPool(Ft+1) (4.2)

4.1.2 Auto-Regressive Waypoint Prediction Network

As depicted in Figure 6, the 512-dimensional feature vector undergoes dimensionality re-

duction to 64 via a Multilayer Perceptron (MLP) with two hidden layers of 256 and 128

units each, aimed at enhancing computational efficiency. Subsequently, the transformed vec-

tor is fed into the auto-regressive waypoint network, which is realized using GRUs (Cho

et al. 2014). Lastly, we complete the TransFuser model as Eq.4.3.

TransFuser(I,L) = GRU(MLP(MMFT(I)+MMFT(L)) (4.3)
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4.2 LMDrive

LMDrive(Shao et al. 2023) is a pioneering framework designed to interpret and execute

high-level driving instructions using LLM. This innovative model consists of two primary

components which are integrated to process sensory data and linguistic commands for vehi-

cle control.

Figure 7: Architecture of LMDrive(Shao et al. 2023)

similar to TransFuser, LMDrive takes RGB images(I), LiDAR (L) and natural language

navigation instructions(S) as inputs, and outputs waypoints(wt) as control signals for driving

actions in real-time.

wt = LMDrive(I,L,S;W ) (4.4)

4.2.1 Vision Encoder

Similar to the Multi-Modal Fusion Transformer of TransFuser, LMDrive uses the vision

encoder for processing the visual and spatial data obtained from RGB image cameras and

LiDAR.

Vision Encoder(VE) takes RGB images(I) and LiDAR (L) as inputs and outputs visual
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tokens (Vtokens) which include BEV tokens, waypoint tokens, and traffic light tokens. VE can

be defined as:

VE(I,L) =Vtokens (4.5)

Where the image date I ∈ R3×H×W are applied CNN backbone ResNet(He et al. 2016), and

it produces a feature map f ∈ Rd×H×W with lower-resolution. For the LiDAR input L, the

3D backbone PointPillars(Lang et al. 2019) are used to process the raw point cloud data into

ego-centered LiDAR features, where each pillar contains points within a 0.25m × 0.25m

area. PointNet(Qi et al. 2018) is then employed to aggregate these features and downsample

the feature map to dimensions C×H ×W , which are then utilized as BEV queries.

Q = PointNet(PointPillars(L))

V,K = TE(Flatten(ResNet(I)))

Vtokens = TD(Q,K,V )

4.2.2 Large Language Model

After processing the visual data, LMDrive utilizes a sophisticated large language model

(LLM) to understand and execute driving instructions provided in natural language. This

integration allows the system to interpret instructions contextually and make informed driv-

ing decisions.

Large Language model (LLM) takes language instructions sentence (S) and vision tokens

Vtokens as inputs, and outputs waypoints((wt)) as control signals for driving actions in real-

time. LLM in LMDrive can be defined as:

Ttokens = Tokenizer(S)

V
′

tokens = MLP(2)(QFormer(Vtokens))

LLM(S,Vtokens) = Ttokens +V
′

tokens (4.6)

Finally the LMDrive:

LMDrive(I,L,S) = MLP(2)(LLM(S,VE(I,L))) (4.7)
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4.3 Summary

We provide an overview of two models used in autonomous driving, TransFuser and LM-

Drive. These two models offer different but complementary ways to enhance motion plan-

ning for autonomous vehicles TransFuser integrates images and LiDAR data through a

Transformer architecture for accurate navigation. It consists of two main components: the

Multi-Modal Fusion Transformer (MMFT) and the Auto-Regressive Waypoint Prediction

Network. LMDrive is a framework that combines sensory data and natural language in-

structions for driving control. the inputs include RGB images, LiDAR data, and high-level

language instructions. It has a vision encoder that processes RGB and LiDAR data to gen-

erate tokens for use in decision-making. Also, It employs a large language model (LLM)

to interpret navigation instructions and integrates it with sensory data to generate control

signals in real time
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5 Methodology

We use the core methodology of simulation (Paul and Balmer 1993) to address our research

questions 2, 3, and 4. The main goal of simulation modeling is to assist the final decision-

maker in resolving an issue (Shannon 1998). For example, we use CARLA (Dosovitskiy

et al. 2017) to help us solve evaluation problems that are too perilous for conducting real-

world experiments. Consequently, the method has gained recognition as an effective tool for

problem-solving within the research community, with widespread agreement on its adop-

tion for modeling purposes (Eldabi, Irani, and Paul February 2002). A typical process of

simulation is illustrated in Figure 8.

1. Formulate problem and plan study

2. Collect data and define model

3. Valid?

4. Construct a program and define model

5. Make a pilot run

6. Valid?

7. Design experiments, 8 Make production run

9. Analyze Output data, 10. present results

yes

yes

no

no

Figure 8: A typical simulation process(Law and Kelton 1991)
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Importantly, a methodology should not dominate the research process under any circum-

stances confirmed by Quinn, Mintzberg, and James 1988. Therefore, we categorize the

simulation process into 3 steps. 1. formulate problems. 2. implement the selected model and

simulate the program as elaborated in Chapter 6. 3. evaluate the results in Chapter 7.

The first step of the simulation process (Law and Kelton 1991) is to formulate the problems

by establishing our objectives and identifying the particular matters that warrant considera-

tion.

Research Question 1: Let A be the set of all approaches, M the set of large language models

applicable to autonomous driving, and S the simulation environments. We define a function

f : A×M×S →R that measures the suitability of each combination of approaches, models,

and simulators for autonomous driving tasks. The objective is to find:

max
a∈A,m∈M,s∈S

f (a,m,s) (5.1)

So far we have conducted a systematic literature review on Chapter 2. We explored dif-

ferent approaches(A) and open source simulators(S) and custom simulators with language

models(M).

First of all, we decided CARLA should be our simulator(s=Carla) for 3 compelling reasons.

1. CARLA offers 3D maps and dynamic weather systems that are more realistic than the

other simulators. 2. CARLA includes a wide range of sensor types, such as LIDAR, radar,

cameras, and GPS, which accurately replicate the inputs an autonomous vehicle would use.

3. CARLA has strong community support and frequent updates.

Secondly, we have strong justifications for taking LMDrive as our focusing approach(a =

LMDrive). We run experiments with a prompting approach from GPT-driver(Mao, Qian,

et al. 2023) (see in Appendix8) on the Carla simulator, which fails steps 5 and 6( see in

Figure8). The hindrance of prompting approaches run on the Carla simulator due to the

reason that they are designed to 2 dimension simulators such as HighEnv(Leurent 2018),

and the prompts need to describe very specific details about the environment. Moreover,

there is a notable lack of a comprehensive benchmark consisting of substantial linguistic
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prompts(Chen, Wu, et al. 2023). Ultimately, the LMDrive(Shao et al. 2023) model was cho-

sen for further evaluation due to its open-source nature, allowing a thorough understanding of

its architecture. It also has credible explanations in their experiments that LLaVA-v1.5(Liu,

Li, Li, et al. 2023) outperforms the other LLM models. Therefore m = LLaVA1.5.

Research Question 2: Given a simulation environment (s=Carla), approach(a=LMDrive),

and large language model (m = LLaVA1.5). Let g : X → T be a development function within

s,a,m to its performance on T where T is a set of motion planning tasks and X is necessary

sensor data such as RBG image and LiDAR cloud points. Our gold can be formulated as:

g(X ;s,a,m) (5.2)

The full implementation of our goal function is described in Section 6.2.

Research Question 3: Let a=LMDrive and b=TransFuser represent the knowledge-driven

and data-driven model respectively. Define p(x;θ) as a performance output that evaluates a

set of metrics( θ defined in Section 6.3). The objective is to evaluate:

Compare({p(k;θ)},{p(b;θ)}) (5.3)

This formulation aims to quantify and compare the effectiveness and efficiency across model

types. The detailed comparison is shown in Section 7.1.

Research Question 4: For a set of predefined routes (R shown in Section 6.1.1) where

decisions are made by a large language model m = LLaVA1.5 from the knowledge-driven

approaches a = LMDrive, define the interpretability function E : a×R → {0,1}, where the

output represents whether the interpretability successed(1) or fail(0) to describe a scenario.

The objective is to asses:

Assess(E) (5.4)

The analysis of the interpretability results is shown in Section 7.2.
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6 Experiments

In the chapter, we answer the research question 2, formulated in Eq.(5.2). We elaborate on

the simulator and scenarios we used for the experiments and then demonstrate the implemen-

tation of deep learning models integrated into the CARLA simulation environment. Lastly,

we define our metric to evaluate the models.

6.1 CARLA Simulation

For the experiments, we utilize version 0.9.10.1 of the open-source CARLA simulator (Doso-

vitskiy et al. 2017). It is famous for its realistic driving environments and flexible testing

capabilities. CARLA provides a rich set of built-in maps, such as the 3D model of Town01,

derived from an OpenDRIVE file (ASAM e.V. 2023). This map provides road layouts, lanes,

and junctions, etc., which are ideal for complex simulation scenarios.

The core component of CARLA is to manage basic vehicle dynamics, sensor simulation, and

environmental conditions such as weather. But it is not enough, we need extra 2 components

1. Carla Leaderboard (Leaderboard 2024) and 2. ScenarioRunner (ScenarioRunner 2024).

The first component is a platform designed to benchmark the performance of autonomous

driving systems in a simulated environment. It utilizes the scenarios created and managed

by the ScenarioRunner to conduct standardized tests. It automates the process of running

autonomous agents through various scenarios to evaluate their performance based on spec-

ified metrics. The second component is a tool used within the CARLA simulator to define,

execute, and manage different traffic scenarios.

Inspired by the Longest6 Benchmark (Chitta et al. 2022), we have simplified this benchmark

to suit our specific research interests, such as the time-consuming of the models. This adjust-

ment allows for a more focused evaluation of critical aspects of autonomous driving relevant

to our study without the redundant time complexity for the test environments.
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6.1.1 Scenarios

The main evaluation focuses on navigating a vehicle on predefined routes in the Town01

environment, with 3 scenarios(or routes) designed to test the ability of each model to handle

different driving situations. These scenarios include navigating through traffic jams, making

left and right turns, responding to vehicles running red lights, and obstacle avoidance. The

routes, marked by sparse GPS coordinates provided by a global planner, challenge the agents

to adhere to traffic laws while managing interactions with numerous dynamic agents within

a set timeframe.

Each route starts from a specific position (marked in yellow) and follows a designated path

(white line) to a goal location (orange point), as exemplified in Figure 9. This setup not only

tests the navigational accuracy and decision-making capabilities of models but also their

ability to integrate sensor inputs with dynamic traffic elements in a realistic virtual setting.

Each route varies in the number of traffic lights and turns. These elements are critical in

testing how well the model handles decision-making at intersections and during lane changes

or turns.

Route01 Fig.(9a): With 6 traffic lights and 8 turns over a distance of 1130.24 meters, this

route is designed to test the capability of the model to handle a moderate number of decision

points (traffic lights and turns) over a longer distance.

Route02 Fig.(9b): This route has 9 traffic lights but the same number of turns as Route 01

packed into a slightly shorter distance (1014.57 meters). The increased number of traffic

lights could test the response of the model to frequent stop-and-go scenarios and prioritiza-

tion at intersections.

Route03 Fig.(9c): The shortest route at 731.50 meters with 5 traffic lights and only 5 turns.

This setup is intended to evaluate the model’s efficiency and decision-making in a less com-

plex but more streamlined path, focusing on the efficiency of navigation with fewer interrup-

tions.
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(a) Route 1 (b) Route 2 (c) Route 3

Figure 9: Ego-vehicle start at yellow point, end at orange point follow pre-designed routes

along with white line

6.1.2 Conflict Scenarios

In addition to testing the performance of autonomous driving agents in conflict scenarios,

we exploit the weather system that the simulator provided. Gold et al. June 2017 proposes

a Classification for level-3 conflict scenarios based on a scale of 1 to 3 of 4 factors such as

Urgency, Predictability, Criticality, and Driver response. However, we are interested in the

conflicts that are shown in the table 3.

No. Name Urgency Predictability Criticality Driver Response

2 Sensor failure 3 1 2-3 1-2

9 Danger zone/obstacle

ahead(detected by on-

board sensors)

3 1 1-3 1-3

10 Loss of reference signals (e.g.

lane markings missing)

3 1 2-3 1

Table 3: Classification of different testing scenarios (Gold et al. June 2017)

In order to test the performances of the models in such conflicts, we use the weather system

indirectly to represent the conflicts. For example, our extreme condition is shown in Figure

10c failed to see the landmark of the speed limit compared to other conditions. The Town01

has already included the Danger zone such as a bumpy route condition. The configuration
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also contains heavy rain, which leads to the LiDAR sensor’s fail rate being relatively high

compared to clear weather(Dreissig et al. 2023).

(a) Default Weather (b) Medium Weather (c) Extreme Weather

Figure 10: The view of 3 conditions of weather

As Table 4 shows the configuration of different weather corresponding to Figure 10, which

compares different weather conditions in the same place.
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Conflicts Config Description

default cloudiness=0 no cloud

precipitation=0 no rain

precipitation deposits=0 no puddles on the road

sun altitude angle=0 dawn

fog density=0 no fog

wetness=0 no humidity

medium cloudiness=50 medium level overcast by cloud

precipitation=50 medium rain

precipitation deposits=50 some puddles on the road

sun altitude angle=-45 evening

fog density=50 medium concentration of the fog

wetness=50 medium humidity percentages of the road

extreme cloudiness=100 complete overcast

precipitation=100 heavy rain

precipitation deposits=100 roads completely capped by rain

sun altitude angle=-90 midnight

fog density=100 extreme thickness of the fog

wetness=100 extreme humidity percentages of the road

Table 4: Configurations of Conflict Scenarios

6.2 Autonomous Agents

Autonomous agent in the CARLA simulator are essentially software entities that repre-

sent self-driving cars. It is a blueprint from which all the customized agents should in-

herit. An autonomous agent instance is loaded into a scenario created by the ScenarioRun-

ner(ScenarioRunner 2024).

TransFuser Agent: W e use an pre-train TransFuser (Chitta et al. 2022) as data-driven

model. The pre-train weight can be defined as W T . The training dataset (210GB) includes
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3500 training routes in CARLA from Town 01 to 07 and 10HD. The TransFuser model is

defined as:

TransFuser(x;W T )

LMDrive Agent: In this research, we employ the open-source LLM LLaVA1.5(Liu 2023).

The training dataset consists of several distinct components: First, 558,000 image-text pairs

that have been curated from the LAION (Schuhmann et al. 2022), SBU datasets (Ordonez,

Kulkarni, and Berg 2011), and Creative Commons (CC)(Commons 2022) with annotations

provided by the BLIP(Techie and Designer 2022) captioning system. Additionally, the model

utilizes 158,000 pieces of multimodal data, specifically generated through GPT (Developer

and Researcher 2023) to simulate instruction-following tasks. The dataset also integrates

450,000 entries derived from a specialized set of visual question-answering (VQA) tasks

designed for academic purposes (Scientist and Analyst 2017), alongside 40,000 instances

from the ShareGPT dataset (Innovator and Thinker 2024).

Our methodology incorporates the use of the pre-trained model LMDrive-1.0 (OpenDILab

Community 2023), specifically developed for dynamic driving environments. This model

was trained on a dataset comprising 64,000 data clips, each meticulously collected within the

CARLA simulation environment. The dataset for LMDrive-1.0 is richly featured, with each

clip containing a single primary navigation instruction supplemented by a dozen ancillary

notice instructions. Additionally, the clips encompass a comprehensive sequence of multi-

view sensor data from multiple modalities, alongside the requisite vehicle control signals.

The temporal scope of these clips varies, ranging from a brief 2 seconds to a more extended

period of 20 seconds. For formal definition within the scope of this study, the pre-trained

weights of the model are denoted as W L, and the LMDrive model is defined as:

LMDrive(x;W L,m)

As Table 5 shows, LMDrive requires more advanced hardware, such as an NVIDIA RTX

V100 GPU with 32GB VRAM in our setup. This is because it integrates an LLM with 7B

parameters, which need at least 16GB VRAM. This comparison highlights the varying com-

putational demands of each model, which directly influence their complex implementation

and deployment scalability.
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Models Components Require

TransFuser GPU NVIDIA GeForce RTX 3070 ti laptop with 8 GB

image branch ResNet34(He et al. 2016)

BEV branch ResNet18(He et al. 2016)

LMDrive GPU NVIDIA V100 with 32 GB

image branch ResNet-50(He et al. 2016)

BEV branch PollarPoint(Lang et al. 2019),PointNet(Qi et al. 2018)

LLM llava-v1.5-7b(Liu, Li, Li, et al. 2023)

Table 5: Configurations of TransFuser and LMDrive

6.3 Metrics

Many state-of-the-art models use default metrics from the Carla benchmark (Leaderboard

2024). However, we use route completion from it and evaluate other metrics that we are

interested in, such as the number of collisions and the inference time of the model. We

define our metrics θ as

θ = {RC,NOC,ST,GT, IT} (6.1)

Where Route Completion (RC), measures the average percentage of the route distance, Ri,

that an agent completes across 3 routes. "If an agent strays from the designated lanes for any

segment of the route, the RC is reduced by a 1% multiplier based on the distance off route.

Number of Collisions (NOC), measures the number of times that collisions occur to the ego

vehicle. System Time (ST), measures the time in seconds of a completed scenario that the

ego vehicle takes in the real world. Game Time (GT), measures the time in the seconds of

the completed scenario that the ego vehicle takes in the simulator world. Inference Time

(IT), The ST and GT are indirect methods to evaluate the time that the model takes, which

implies how effective the model is.

IT =
GT
ST
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7 Results

This chapter presents the findings from all the evaluation tasks conducted. First of all, we

compare the performance of a data-driven model to a knowledge-driven model. Secondly,

we evaluate the efficacy of interpretability of a knowledge-driven model.

7.1 Comparison of TransFuser and LMDrive

The research question 3 will be answered in this section by comparing the performance

of two autonomous driving models TransFuser (Chitta et al. 2022) and LMDrive (Shao et

al. 2023). This is across several metrics defined in Eq.6.1.

7.1.1 No Conflicts Scenarios

We conducted three experiments using both the TransFuser and LMDrive models across the

three routes defined in Section 6.1.1 under default configuration conditions. The results indi-

cate that TransFuser outperforms LMDrive across all metrics. Table 6 shows that TransFuser

requires an average of 61.01 minutes in system time and demonstrates remarkable perfor-

mance in both RC and NOC. However, compared to the rule-based agent, the model still

faces limitations in inference time.
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Routes Eval RC NOC ST GT IT

1 1 100 1 4022.02 735.85 0.182

2 100 0 4232.86 746.0 0.176

3 100 1 3833.23 699.8 0.182

avg. 100 0.66 4029.37 727.21 0.180

2 1 100 2 3986.6 739.45 0.185

2 95.79 0 4664.34 860.05 0.184

3 100 0 3364.07 614.7 0.182

avg. 98.59 0.66 4005 738.06 0.184

3 1 87 0 3612.63 623.06 0.172

2 100 0 2547.37 437.85 0.171

3 100 1 2686.65 473.75 0.176

avg. 95.66 0.33 2948.88 511.55 0.173

Table 6: Results of TransFuser on 3 routes with 3 times evaluation

Conversely, the results for LMDrive are presented in Table 7. LMDrive exhibits a signifi-

cantly lower completion rate, averaging 16.59%, while TransFuser achieved nearly a 100%

completion rate across multiple evaluations (Table 6). Due to the low route completion rate,

LMDrive required 43.57 minutes less time than TransFuser. This difference in performance

is reflected in their respective inference times(IT). For instance, TransFuser averaged 0.18,

indicating efficient processing relative to simulation time, compared to 0.068 of LMDrive,

which points to lower runtime efficiency.
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Routes Eval RC NOC ST GT IT

1 1 38 2 2290.53 154.95 0.067

2 5.05 1 377.49 39.85 0.105

3 16.75 2 5230.78 371.1 0.070

avg. 19.933 1.66 2632.93 188.63 0.071

2 1 27.27 1 2044.3 135.85 0.066

2 3.2 1 705.75 44.9 0.063

3 4.78 3 3448.73 213.35 0.0618

avg. 11.75 1.66 2066.26 131.36 0.0635

3 1 19.46 1 3356.01 232 0.0691

2 15.64 0 1839.4 116.05 0.0630

3 19.2 1 4238.54 292.85 0.0690

avg. 18.1 0.66 3144.65 213.63 0.0679

Table 7: Results of LMDrive on 3 routes with 3 times evaluation

Finally, we conducted the same experiment using a rule-based model as a baseline to assess

how deep learning models impact inference time, as shown in Table 8. The efficiency of the

rule-based agent in inference time is attributed to its use of fewer computational resources

than deep learning models.

In comparison, the TransFuser model not only demonstrates faster processing times but also

greater consistency across various testing scenarios compared to LMDrive. The longer in-

ference times of LMDrive suggest potential inefficiencies in its architecture, possibly due to

the complex decision-making processes involving large language models (LLMs) or the less

optimized Vision Transformer (ViT). Manual observations revealed that LMDrive frequently

repeated errors, such as collisions with non-player characters (NPCs) across different lanes.

This behavior indicates that the model is overfitting, being too trained to specific scenarios

and thus failing to generalize across diverse situations.
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Models RC NOC ST GT IT

Rule-based Agent 53.33 1.33 604.53 309.86 0.512

TransFuser 98.08 0.55 3661.08 658.94 0.179

LMDrive 16.59 1.32 2614.61 177.87 0.068

Table 8: Results of different models in default weather

7.1.2 Conflict Scenarios

Furthermore, we conducted experiments involving conflict scenarios (as defined in Section

6.1.2) for each model. Table 9 presents the average values of the metrics. The results indicate

that although TransFuser experienced an increased number of collisions, it still maintained

high-performance levels. In contrast, LMDrive maintained a consistent NOC due to its low

route completion rate. The rule-based agent remained unaffected by conflicts because it

relies solely on simulator back-end information, without using sensory inputs like cameras

or LiDAR. These conflict scenarios demonstrate that extreme conditions significantly impact

the sensor data received.

The comprehensive analysis reveals that TransFuser not only outperforms LMDrive across

metrics but also shows stability in varied and challenging environments. These findings sug-

gest that the Multi-Modal Fusion Transformer in TransFuser provides substantial advantages

in efficiency and adaptability, which are critical for real-time applications in autonomous

driving. Additionally, the inefficiencies in LMDrive are due to its poor architecture of Vision

Encoder and integration of LLM.
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Models Conflicts RC NOC ST GT

Rule-based Agent medium 91.58 0 895.57 623.05

extreme 97.03 1 916.27 623.05

TransFuser medium 100 6 2949.83 576.35

extreme 98.84 12 3103.19 623.0

LMDrive medium 19.04 1 3992.65 287.35

extreme 15.31 0 1428.86 98.8

Table 9: Results of different models in conflict scenarios

7.2 Interpretability of LMDrive

In this section, we answer the research question 4, formulated in Eq.5.4. We focus on a

deeper analysis of its interpretation abilities and the specific functional aspects where the

model shows failure, and how these insights could inform improvements in autonomous driv-

ing technology. Although we collect data by screenshots of every change of the instructions

and notifications, we choose the most representative cases to elaborate on the interpretability

of LMDrive.

7.2.1 Failure of Instructions

The LMDrive model has shown some shortcomings in its ability to follow instructions that

are correctly aligned with the planned route, leading to critical errors such as collisions

with obstacles and mis-navigation. These errors can be attributed to differences between the

model’s interpretation and the route planning modules(as shown in Figures 13).

We identify three types of failure: (1) The instruction is correct, but the agent fails to execute

the action; (2) The instruction is incorrect, but the agent does not follow it; and (3) The

instruction is incorrect, and the agent follows it. These instructions were observed in the

simulation, as illustrated in Figure 10. Failures of type 1 commonly occur when the agent

completes a turn. The system categorizes type 2 failures with a [Misleading] label. Type 3

represents a critical error, but it occurs infrequently Fig.13.
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Failure Type Instructions

1 Continue driving straight on this particular road

Do not derive from this road

Keep on rolling straight till you get to the next junction

2 [Misleading] Please adjust your course to the left-most lane

In another 16 meters, you’ll be turning left at the T- junction, alright?

[Misleading] Just keep on rolling down the highway

3 keep going on this road, you’re doing great

Table 10: Samples of failure of instructions

Type 1: failure occurred when the agent could not turn right at the first T-intersection, stray-

ing from the planned route despite having received accurate instructions. Figure 11 illustrates

this scenario, which was tested on Route 2(see in Fig. 9b) in extreme weather conditions.

However, under normal conditions, the agent successfully follows the instructions. This sug-

gests that the model is impacted by conflicts No.2 and No.10 (see in Table 3) because road

landmarks are obscured and sensors are unable to receive data due to weather interference.
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Figure 11: The T-intersection is ahead of the agent and the system instructs to turn right

Type 2: The system provided incorrect instructions, even though the route to proceed straight

was evident. This case, illustrated in Figure 12, was tested on Route 1(see in Fig.9a) under

normal weather conditions. The [Misleading] label is derived from the visual feature buffer

and the remaining misleading frames, suggesting that the model is capable of detecting sys-

tem errors.
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Figure 12: The system instructs the agent to change course to the other lane

Type 3: The agent clearly followed incorrect instructions, resulting in a collision with a rock

on the sidewalk. This case, presented in Figure 13, was tested on Route 1(see in Fig.9a)

and failed at the third turn. This indicates a lack of coherence between the system’s motion

planning and vehicle control. The failure likely stems from the model’s inability to accu-

rately interpret spatial instructions within the context of the vehicle’s current trajectory and

environmental conditions.
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Figure 13: The system instructs the agent to drive straight

7.2.2 Traffic Lights Notifications

Despite its limitations in route adherence, the LMDrive model demonstrates a notable com-

petence in traffic light recognition and notification. The model effectively identifies and

communicates the status of traffic lights (green, yellow, and red), which indicates a well-

functioning component within its broader architecture. This functionality is essential for

ensuring compliance with traffic regulations and enhancing road safety.

The notification samples presented in Table 11 successfully provide accurate information

regarding traffic light statuses. Each route features different scenarios. For instance, Route 1

begins with a red light, transitions to a green light, and does not encounter a yellow light in

a single traversal. Route 2 starts with a green light, turns right, and encounters three traffic

lights. Route 3 initially faces a red light at the back of traffic, followed by another red light

after leaving the lane. Similarly, it passes through a green light but only encounters a single

yellow light.

We use Figure 14 as a representative example because immediately after the yellow light,

the notification detects a bumpy road ahead, as shown in Figure 15. This indicates that the
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Traffic Light Route Notification

Red 1 Just a heads up, there’s a red light ahead

2 Please be alert of the red traffic signal ahead

3 Watch for the red light front

3 Just a heads up, there’s a red light ahead

Green 1 Just a heads up, there’s a green light ahead

2 Please be alert of the green traffic signal ahead

3 Attention is required the green light ahead.

3 Just a heads up, there’s a green light ahead

Yellow 1 -

2 Watch for the yellow light front

3 -

3 Just a heads up, there’s a yellow light ahead.

Table 11: Notifications collected from 3 routes both on default and extreme conflict.

interpretability of LMDrive integrates well with the sensor system.
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Figure 14: The system gives a notification about the yellow light ahead

Figure 15: The system asks for attention to the rugged road ahead
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7.2.3 Bumpy Road Detection

We collected samples of the notifications triggered when the agent encountered a bumpy

road, as shown in Figure 12. One example, presented in Figure 16, was selected to illustrate

the No.9 testing scenarios. The results of this study indicate that the knowledge-driven model

is capable of detecting bumpy roads during driving.

Notification for Bumpy Road

Attention is required for the rugged road surface head

Bumpy Road Head

Just a heads up, the road’s a bit bumpy ahead

Please be alert of the uneven road surface in the vicinity ahead

Table 12: Samples of Notification for Bumpy Road

In spite of lacking lights in extreme conditions, the vehicle is able to detect a bumpy road.

As Figure 16 shows the vehicle is driving in an extreme weather condition in route 1.

Figure 16: Notice: Attention is required for the rugged road surface head
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7.3 Summary

The results present the evaluation of two autonomous driving models, TransFuser and LM-

Drive. It compares their performance across various metrics, such as route completion (RC),

number of collisions (NOC), system time (ST), game time (GT) and inference time(IT). Here

are the key findings:

Performance Comparison: TransFuser significantly outperforms LMDrive, achieving an

almost 100% completion rate, while LMDrive averages 16.59% across multiple routes. Trans-

Fuser takes longer system time due to its higher completion rate. LMDrive has higher in-

ference times and also struggles with collisions and navigation errors. TransFuser shows

consistent performance, with fewer collisions and greater accuracy in diverse scenarios. In

conflict scenarios, TransFuser maintains high performance despite an increase in collisions,

while LMDrive’s completion rate drops even further. The rule-based agent remains stable

due to its reliance on simulator back-end information.

Interpretability: The model sometimes fails to follow instructions correctly, leading to col-

lisions or mis-navigation. Errors occur due to misalignment between model interpretation

and the planned route. But in Traffic Lights and Road Detection, LMDrive excels at rec-

ognizing and notifying about traffic lights and road conditions, accurately detecting bumpy

roads and changes in traffic signals.
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8 Conclusions

We provided a comprehensive analysis of how integrating large language models (LLMs)

into self-driving systems enhances interpretability and planning. We explored the imple-

mentation of both data-driven and knowledge-driven models within CARLA simulator, us-

ing frameworks such as TransFuser and LMDrive. The comparative evaluation, focusing

on metrics such as route completion and collision count, highlighted the dual potential and

limitations inherent in these approaches.

Through comparative analysis of different models, we discussed the strengths and weak-

nesses of data-driven and knowledge-driven approaches. TransFuser efficiently integrates

images and LiDAR data, while LMDrive uses a blend of sensory data and language models

to offer improved perception and contextual understanding.

The results revealed that while LMDrive shows limitations in motion planning, it excels in

interpretability, especially in scenarios involving traffic light notifications and bumpy road

detection. This suggests that LLMs can be effectively used to enhance the safety and re-

liability of autonomous driving systems by enhancing their ability to interpret and react to

complex driving environments.

However, our study has several limitations. We focus on specific models like TransFuser and

LMDrive. While these models are advanced, they may not fully represent the diversity of au-

tonomous driving technologies available. The results might vary with different architectures

or in different simulation environments. The scope of interpretability is still limited. For ex-

ample, comprehensive real-world applicability requires a broader spectrum of interpretative

capabilities, including more nuanced traffic interactions and rare emergency scenarios.

Our research emphasizes evaluating model interpretability and suggests that future studies

should examine a wider range of LLMs and autonomous driving frameworks. This approach

would aid in identifying the most efficient models for diverse driving conditions and sce-

narios. Finally, we will refine the framework for assessing interpretability, allowing for a

more rigorous and standardized understanding of how large language models contribute to

transparent and interpretable decision-making in self-driving systems.
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Appendices

Following the guidelines provided by GPTDriver(Mao, Qian, et al. 2023), an experiment

was conducted using the CARLA Simulator(Dosovitskiy et al. 2017). The results reveal

that GPT-3.5 was unable to generate appropriate waypoints, whereas GPT-4 demonstrated

improved performance. However, due to the lack of detailed map data, GPT-4 was unable to

effectively control the agent within the simulation environment.

System Message:

**Autonomous Driving Planner**

Role: You are the brain of an autonomous vehicle. Plan a safe 3-second driving trajectory.

Avoid collisions with other objects.

Context

- Map:

- Coordinates: X-axis is alone with west to east, and Y-axis is alone with north to south. unit

in meters.

- Objective: Create a 3-second route using 6 waypoints, one every 0.5 seconds.

Inputs

1. Perception & Prediction: Info about surrounding objects

2. Historical Trajectory: Your past 2-second route, given by 4 waypoints.

3. Ego-States: Your current state including velocity, heading angular velocity(yaw),acceleration

and steering.

4. Destination Location.

Task

- Thought Process: Note down critical objects and potential effects from your perceptions

and predictions.

- Action Plan: Detail your meta-actions based on your analysis.

- Trajectory Planning: Develop a safe and feasible 3-second route using 6 new waypoints.

Output

- Thoughts:

- Notable Objects
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Potential Effects

- Meta Action

Please output the trajectory in the following format (MOST IMPORTANT):

- [(x1,y1), (x2,y2), (x3,y3),(x4,y4),(x5,y5),(x6,y6)]

User Message:

Perception and Prediction: - obstacle at () Historical Trajectory (last 2 seconds): - [[’(-

16.00,140.00)’, ’(-16.00,140.00)’]] Ego-States: - Velocity (vx,vy): ((0.00,0.00)) - Head-

ing Angular Velocity (yaw): ((0.00)) - Acceleration (ax,ay): ((0.00,0.00)) - Steering:(0.00)

Destination:Location(x=-41.496914, y=110.004211, z=0.000000)

GPT3.5 Response:

Thoughts:

- Notable Objects:

- Obstacle at (-16.00,140.00)

- Potential Effects: Possible collision if trajectory not adjusted

Meta Action:

- Slow down or change trajectory to avoid collision with obstacle

Trajectory:- [(-16.00,140.00), (-16.00,140.00), (-16.00,140.00), (-16.00,140.00), (-16.00,140.00),

(-16.00,140.00)]

GPT4 Response:

Thoughts

- Notable Objects: There’s an obstacle at an unnamed location.

- Potential Effects: The obstacle could interfere with the path to the destination, potentially

causing a collision.

Meta Action:

1. We must avoid the obstacle by altering the trajectory course while maintaining a high

level of comfort for the occupants of the vehicle. That might mean decreasing the speed and

slightly adjusting the steering angle to safely alter the trajectory around the obstruction and
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then gradually align the ego vehicle back to the destination’s direction.

Trajectory Planning:

The current position is (-16.00, 140.00) and the destination is (-41.496914, 110.004211).

Given our current speed, trajectory and the available information, we might plan the fol-

lowing waypoints:- (-17.00, 135.00)- (-18.50, 130.00)- (-22.00, 125.00)- (-28.00, 120.00)-

(-34.00, 115.00)- (-40.00, 110.00), Each point represents the vehicle’s position every 0.5 sec-

onds for the next 3 seconds. These values might vary depending on the size and position of

the obstacle detected, the vehicle’s speed and acceleration, and the overall road conditions.
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