
Analyzing protein-nanocluster
interactions with graph-based
machine learning for molecular
dynamics

Master’s Thesis, 17.5.2024

Author:

Anssi Sikoniemi

Supervisor:

Antti Pihlajamäki
Hannu Häkkinen

2

© 2024 Anssi Sikoniemi
This publication is copyrighted. You may download, display and print it for Your
own personal use. Commercial use is prohibited. Julkaisu on
tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista
käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.

3

Abstract

Sikoniemi, Anssi
Master’s thesis
Department of Physics, University of Jyväskylä, 2024, 52 pages.

In this work a custom graph convolutional network was succesfully constructed and
trained to predict interaction energies in molecular dynamics simulations between
Au25(SR)18 nanoclusters and BSA proteins based on their physical and chemical
features. Data from molecular dynamics simulations was used as target data in super-
vised learning. The performance of this model was compared to a feed forward neural
network with Weisfeiler-Lehman updates on graph form data. The energy terms
predicted were the non-bonded Lennard-Jones and Coulombic terms for the force field
used in the simulations. The models were created using the Keras Tensorflow package.

Both neural network architectures showed valid performance and the graph convolu-
tional network based on localised spectral filters on graphs was at least as effective
as the feed forward neural network with Weisfeiler-Lehman updates. The results
show that these machine learning methods could be used in the future to improve
molecular dynamics simulations by creating a better initialization for the simulations.
To get more reliable results and generalise the models a larger data set would be
required.

Keywords: nanoscience, machine learning, neural network, molecular dynamics,
nanocluster, protein, force field, biophysics, graph convolutional network

4

5

Tiivistelmä

Sikoniemi, Anssi
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2024, 52 sivua

Tässä tutkielmassa tutkittiin vuorovaikutusenergioiden ennustamista Au25(SR)18

nanoklusterien ja BSA-proteiinien välillä kahdella eri neuroverkkoarkkitehtuurilla.
Mallien kouluttaminen toteutettiin nanoklusterien ja proteiinien graafimuotoista
esitystä hyödyntäen. Ennustetut vuorovaikutusenergiatermit olivat Lennard-Jones ja
Coulombinen vuorovaikutusenergia simulaatioissa käytetylle voimakentälle. Ensim-
mäinen käytetty neuroverkkoarkkitehtuuri oli yksinkertainen eteenpäinsyöttävä malli,
jossa datan esikäsittelyssä käytettiin Weisfeiler-Lehman -päivityksiä graafiesityksen
parantamiseksi. Toinen käytetty koneoppimismalli oli graafikonvoluutioverkko, joka
perustui graafien lokalisoituihin spektraalifilttereihin. Verkot rakennettiin hyödyntä-
mällä Keras Tensorflow -pakettia.

Molempien mallien ennustuksien ja validaatiodatan välinen suhde oli hyvin lineaari-
nen. Molemmat mallit toimivat siis hyvin vuorovaikutusenergioiden ennustamiseen.
Näiden tulosten pohjalta työssä käytettyä graafineuroverkkoa ja eteenpäinsyöttävää
neuroverkkoa voisi hyödyntää molekyylidynamiikkasimulaatioiden alustamisen paran-
tamiseen tulevaisuudessa. Suurin rajoittava tekijä tutkimuksessa oli käytetyn datan
määrä. Luotettavampien tulosten saamiseksi ja mallien yleistämiseksi vaadittaisiin
suurempi määrä dataa. Datamäärän lisääminen auttaisi luotettavampien johtopää-
tösten muodostamiseen myös siitä, kumpi neuroverkkoarkkitehtuuri on luotettavampi
ja tehokkaampi vuorovaikutusenergioiden ennustamisessa.

Avainsanat: nanotiede, molekyylidynamiikkasimulaatiot, koneoppiminen, neuroverkko,
nanoklusterit, proteiinit, voimakentät, biofysiikka, graafikonvoluutioverkko

6

7

Preface

First I would like to thank my main supervisor Antti Pihlajanmäki for his guidance
and insightful ideas and comments especially when the course of the project needed
adjustment. I also express my gratitude to Hannu Häkkinen for sending the email
promoting the idea for this thesis and introducing me to this field. The work was
done partly on the local computer cluster Oberon in Jyväskylä, so I also acknowledge
the grants of computer capacity from the Finnish Grid and Cloud Infrastructure
(persistent identifier urn:nbn:fi:research-infras-2016072533). A huge thank you also
to all the friends that have been with me during these studies. And last but not
least to my partner Eeva, I am grateful to you for always believing in me and for all
the support you have given me during this project.

Jyväskylä May 17th 2024

Anssi Sikoniemi

8

9

Contents

Abstract 3

Tiivistelmä 5

Preface 7

1 Introduction 11

2 Theoretical background 15
2.1 Molecular dynamics and force fields 15
2.2 Graph theory . 19
2.3 Deep learning . 20

2.3.1 Neural network concepts and the feed forward neural network 21
2.3.2 Graph convolutional networks 24

3 Data and neural network configuration 27
3.1 Data and preprocessing . 27
3.2 Neural network details and training 29

4 Results and model performance 33
4.1 The FNN model with Weisfeiler-Lehman updates 33
4.2 The custom GCN model . 37
4.3 Comparison of the models . 41

5 Conclusions and outlook 43

References 45

10

11

1 Introduction

The role of machine learning (ML) methods in a variety of different fields has grown
rapidly in recent times, especially when dealing with large scale data. Problems such
as the modelling of protein-protein or protein-nanocluster interactions are usually
studied with computational methods based on statistical physics such as molecular
dynamics (MD) simulations. These methods lend themselves well for inclusion of
machine learning methods. One reason for this is that even millisecond long MD
simulations, which is a long timescale in the context of MD simulations, can generate
terabytes of data [1]. There are several aspects of traditionally used computational
methods that can be improved or replaced by ML methods. As an example one
limitation of atomistic MD methods in the study of macromolecule interactions is
that the interaction time between proteins can be in the order of minutes or even
hours [2] while the MD methods are limited to a short time scale usually in the
range of hunders of nanoseconds [3]. The idea of combining ML and MD methods
has been around for decades now [4], but the recent interest in ML on the whole
has naturally led to an increase in the use of these methods for the purposes of
molecular simulations. In this work, I have employed and compared different machine
learning architectures to predict the strength of interactions between proteins and
nanoclusters based on data from MD simulations perfomed with GROMACS [5].

Many novel techniques for the analysis of protein-protein interactions have been
developed in recent times [6–8], but protein-nanocluster interactions have not been
studied to the same extent. The reason why protein-protein interactions have been
modeled extensively compared to protein-nanocluster interactions is the fact that
large amounts of experimental data for protein-protein complexes is widely available
in the form of the protein data bank (PDB) [9]. To overcome the limited X-ray
diffraction data for nanocluster-protein complexes there have been attempts to find
unifying structural descriptors for the biological and bioinspired nanoscale complexes
[10]. Understanding these nanoscale interactions is important in the formation
of biomolecular complexes, a process which can be studied by molecular docking

12

methods where the problem is framed with the lock-and-key principle [11]. This
method aims to predict the preferred orientation of molecules when they form a
stable complex. The ligand molecule is thought as an key, which aims to open the
lock, which is the binding domain of the other molecule, to form a stable complex.
Molecular docking problems play an important role in drug design and in under-
standing biological processes. Molecular docking has multiple approaches, some of
which have been combined with graph theoretical concepts [12] also used in this
thesis. One of the problems in simulating these processes by solving the trajectories
of the molecules from physical principles is that energy landscape is large and the
total energy of the system has to be calculated after each move in phase space which
leads to extended computation times. This is a problem that could be solved adding
machine learning methods as a part of the molecular docking process. One of the
goals of this thesis is to explore this possibility.

Machine learning methods can be used in the prediction of interaction parame-
ters from the features of individual molecules or atoms which is also a goal of this
thesis. Examples of this include the prediction of protein druggability [13] and the
prediction of binding energies between hydrogen and nanoparticle catalysts which
is essential in hydrogen production [14]. The data used in this thesis is from MD
simulations of bovine serum albumin (BSA) proteins [15] and monolayer-protected
gold nanoclusters (Au MPCs). BSA is an serum albumin protein derived from cows
which often used as a model protein for other serum albumin proteins including the
human one [16]. Monolayer-protected nanoclusters are a atomically precise metal
nanoparticles which consist of an metallic core protected by an organic ligand layer
with an interface structure between these two [17]. The clusters studied in this work
are the thiolate protected Au25pMBA18 and Au25pMBSA18 clusters which are variants
of the general thiolate protected Au25(SR)18 clusters. Au25(SR)18 nanoclusters have
become the subject of wide interest because of their unique properties, stability,
precise tunability and varius possible applications [18]. A detailed description of
the nanoclusters studied in this work by Zhang et al. can be found in [19]. The
Au25pMBA18 on the surface of the BSA protein is visualised in figure 1a. The
chemical composition of the pMBA and pMBSA ligands are also depicted in figure
1b and 1c. The proteins and MPCs can be described by their physical and chemical
features. One of the key points of this thesis is to use a graph representation with

13

Figure 1. (a) Visualisation of the BSA protein (in grey) and the Au25pMBA18
nanocluster. Golden atoms represent gold, yellow ones represent sulphur, the blue
parts are carbon-carbon bonds, white atoms represent hydrogen and red atoms
are oxygen. (b) Chemical composition of the pMBSA ligand. (c) Chemical
composition of the pMBA ligand.

embedded molecular features. There are many options for the graph representation of
the proteins [20] but in this thesis the graph representation is formulated by using the
alpha carbons of the residues as nodes. Each node contains features that represent
the characteristics of the residue in question. The alpha carbons are then connected
by an edge if they are within a cut-off distance from each other. This formulation
has been used, for example, in the identification of backbone structures [21]. For
the monolayer-protected gold nanoclusters, the nodes represent the functional head
groups of the ligand molecules. When forming the paired representation for the
protein-nanocluster complex, if the ligand binds to the residue an edge is formed
from the ligand nodes to the residue node.

The machine learning methods used in this thesis are different neural network
architectures. Neural networks have become the most common methods in ML in
the last decade. Several architectures exist for the construction of neural networks

14

from which I have used on the most common one, the feed forward neural network
(FNN) and a custom network designed to operate on graph-based data called graph
convolution network (GCN) based on localized spectral filters on graphs [22]. The
FNN offers an excellent comparison point to the GCN architecture because of its
simplicity. In the FNN architecture graph form data is also used in the pre-processing
of the data in the form of the Weisfeiler-Lehman scheme (WL) [23]. The WL-scheme
is used propagate information from neighbouring nodes for a meaningful feature
representation. Details of the WL-scheme are described section 2.2. The GCN
on the other hand takes graph data straight as input and graph convolutions are
used to extract useful representations of the graphs which is convenient when using
the graph representation for the molecules. Graph-based machine learning has al-
ready been used to predict patterns in protein-protein interfaces [7], which inspired
the development of the GCN model constructed in this thesis. Furthermore, the
backbone of the custom GCN model was inspired by the work of Sai, Fu and Zhao
on predicting binding energies and electronic properties of boron nitride fullerenes [24].

With all this in mind, the goal of this thesis is to see how different neural network ar-
chitectures utilising graph data could be used to reliably estimate protein-nanocluster
interactions based on MD data. The main use would be to create a better initialisa-
tion for the MD simulations to reduce computational cost. With a large and diverse
enough dataset the models could also be used to predict binding affinities between
proteins and nanocluster in general. I also provide a comparison between an FNN
model with WL updates on the data and a GCN model with graph convolutions
on the proteins graphs to see what is the optimal neural network architecture for
this task. This comparison is also interesting from a computer science perspective as
there has been discussion on the relationship of convolutions and the WL-scheme in
graph processing [25].

15

2 Theoretical background

In this section I present the main theoretical concepts needed for understanding the
work conducted in this thesis. First, a brief introduction to molecular dynamics
simulations and force fields utilised in them is presented. This is vital as one of
the goals is to see if the presented ML methods can be reliably used to predict
interactions energies in MD simulations. Furthermore, an introduction to graph
theory is provided which offers a base for understanding graph convolutions and the
graph representation used for the proteins and nanoclusters. Lastly, an overview of
the theory behind neural networks and the network architectures used in this work
is presented.

2.1 Molecular dynamics and force fields

A molecular dynamic simulation consist of solving the classical equation of motion

mi
d2ri

dt2 = F i = − ∂

∂ri

U(r1, r2, ...rN), (1)

for a system of N particles with potential energy U(r1, r2, ...rN) dependent on the
coordinates of the particles. mi is the mass of an individual particle and Fi represents
the total force acting on the particle. This system of N number of second order non-
linear differential equations has to be solved numerically using a suitable integration
algorithm. To do this you need a set of initial conditions and an expression for the
interatomic potential. The initial conditions consist of the positions and velocities of
the particles. For crystal structures the positions are known from crystallographic
data and for disordered systems the positions can be set randomly or they can be
set by melting an ordered configuration. The velocities can be initialised based on,
for example, the Maxwell-Boltzmann distribution at a set temperature according
to statistical mechanics. If a thermostat [26] is used to simulate a coupling of the
system to an external heat bath initial velocities can also be set to zero. In the use of
this method the system needs to be thermalised before doing the actual simulations

16

and making measurements. This means letting the simulations evolve for a certain
amount of steps while the thermostat adjusts the velocities of the particles to reach
a desired average temperature.

One aspect to also consider is the thermodynamical ensemble. Ideally the integration
of equation (1) with these conditions will provide a trajectory for the particles in the
system in a microcanonical ensemble. This means that the volume of the simulation
cell V , the number of particles N and the total energy of the system E is kept
constant. For this reason the microcanonical ensemble is sometimes referred to
as the NV E ensemble. However errors introduced by the integration algorithm
and distance cut-offs imposed on the forces can cause a slow drift in the systems
total energy. Ultimately one also wants to compare the results from molecular
dynamics to experimental results performed at a certain temperature or pressure. In
the microcanonical ensemble the temperature of the system is not precisely known
and thus it is better to work in a canonical ensemble. There are different ways of
achieving this using thermostats [26], some with better physical justification than
others. A common method is to use the Langevin thermostat [27]. The Langevin
thermostat modifies the equation of motion by adding a frictional force term and
a stochastic random force term according to the Langevin equation. This means
that essentially the simulated particles can be considered to be moving in a sea of
smaller particles with interactions between them. Another method which simulates
a weak coupling of the system to a external heat bath is the Berendsen thermo-
stat [28]. In the infinitely weak coupling limit this method returns the NVE ensemble.

Ideally the interatomic forces are derived from first principles by solving the elec-
tronic structure of the system using for example density functional (DFT) methods.
However for large systems or for systems that have events that are outside of the
timescale of these methods, including the protein-nanocluster interactions studied in
this thesis, a more high level approximation called force fields are used. Force fields
are mathematical expressions with an analytical form for the interatomic potential
energy and a set of parameters entering into this form. These expressions are of
course approximations of the true quantum mechanical potentials. Despite of this,
an ideal force field offers a way to model the system in a way that is fast to compute
and is sufficiently detailed to reproduce the properties of the studied system. Several

17

different force fields have been developed varying in complexity and specialised with
different systems in mind. From these the GROMACS package includes CHARMM
[29], AMBER [30], GROMOS [31] and OPLS [32] based force fields. A common
expression for a force field used in molecular level simulations is in the form of

U =
∑

bonds

1
2kb(r − r0)2 +

∑
angles

1
2ka(θ − θ0)2 +

∑
torsions

1
2Vn[1 + cos nϕ − δ]

+
∑

improper

Uimp +
∑

non−bonded
i ̸=j

(4ϵij((
σij

rij

)12 − (σij

rij

)6) + qiqj

rij

),
(2)

where the first four terms describe the intramolecular contributions to the potential
energy (bond stretching, bending and dihedral and improper torsions) and the last
term describes the intermolecular contributions. The intramolecular interactions
are called the bonded interactions while the intermolecular interactions are called
non-bonded interactions. In equation (2) kb and ka are force constant related to
bond stretching and bending respectfully. Stretching and bending are modeled using
harmonic functions where a larger force constant implies a more rigid bond. Vn

is a force constant describing the energy barrier height associated with rotations
around dihedral angles in a molecule. r0 represents the equilibrium bond length i.e.
the minimum of the potential energy curve with respect to the bond length for the
harmonic oscillator representing the bond. θ0 is the equilibrium value for the valence
angle between atoms and θ is the non-equilibrium value. Relating to torsions, n is the
dihedral multiplicity, ϕ is the dihedral angle, δ is the dihedral angle phase and Uimp

is an correction term for torsions to take into account out-of-plane motions. All of
these parameters have to be fitted to experimental data based on the specific system.
The important fact to note from this is that force fields are empirical methods
and their validation should be done by comparison to experimental data. Thus
there is no one correct form for a force field but the functional form is chosen to get
the most accurate result while keeping computational complexity at a reasonable level.

The first part of the intermolecular term known as the Lennard-Jones (LJ) equation
models the Van der Waals interactions with attractive dispersion and repulsive Pauli
exclusion terms. The qiqj

rij
term is the Coulomb interaction for atoms with assigned

charges qi and qj. The 12-6 LJ potential is often used to represent the interatomic
interactions with rij being the distance between two atoms, σij being the distance at

18

which the LJ energy is at its minimum and the parameter ϵij is the well depth. The LJ
potential has a rich history in computational physics and chemistry. It has retained
its position at the top of interatomic potentials despite its flaws ever since Fritz
London argued that the dispersion energy decreases with r−6 under certain conditions
based on the Schrödinger equation and Lennard-Jones adopted this finding to model
interactions between molecules [33]. While the exponent -6 in the LJ potential has
physical justification from quantum mechanics, the exponent -12 on the other hand
is mainly used because it approximates the Pauli repulsion fairly well and is compu-
tationally efficient. This and the fact that the LJ potential is a pair potential, thus
not taking into account many-body interactions, are the main disadvantages in its use.

The force field described here is also an additive force field. The meaning of
this is that that the electrostatic energy of the system is the sum of all individual
pair-wise Coulombic interactions due to the static partial atomic charges. This means
that an mean-field approximation is performed and that the particles of interest
are surrounded by an constant dielectric medium. In reality the electron density
of an atom or a molecule is not static and this has to be taken into account in the
development of new force fields [34]. Force fields that take this into account are
called polarizable force fields. With the addition of additional terms or particles
representing the electronic degrees of freedom, polarisable fields include electrostatic
interactions with multi-body contributions. This allows the electronic structure of a
molecule to change with respect to the local electric field.

In this work the part representing the non-bonded interactions in equation (2)
is of importance as the aim is to predict the LJ and Coulombic contributions to the
binding energy between the nanoclusters and the proteins with machine learning.
The non-bonded interactions are the most computationally heavy part of solving
the trajectories in MD simulations which offers motivation to improve the initial
conditions for the simulations by ML methods so that less steps have to be calculated.

19

2.2 Graph theory

Graph theory is an active field of mathematics which has applications in a wide
range of different fields from physics, computer science and economics to biology
and social network analysis. In all of these fields, graph theory offers an easy to
understand representation for complex networks. A graph, or more precisely an
undirected graph, is a pair G = (V, E), where V is a set of elements called nodes

and E is an set of node pairs {v1, v2} that are called edges. If the edges of the graph
point only to one direction then the graph is called a directed graph but for the
purposes of this thesis we will be working with undirected graphs.

There exists multiple ways of representing a graph. Usually for visualisation pur-
poses graphs are represented as dots or circles connected by lines. Another way of
representing graphs is the adjacency matrix. From the adjacency matrix we can tell
which nodes are connected by edges. Formally for an undirected graph G with a
node set V = {v1, ..., vn} and edges E the adjacency matrix A is a square n × n

matrix whose Aij element is defined as

Aij =


1, if {vi,vj} ∈ E

0, otherwise.
(3)

For simple graphs the diagonal elements are zeros because self-connections are not
allowed, but for the spectral graph convolutions discussed later in this thesis we will
add self-connections to our graph representations.

Another important concept in graph theory is the degree matrix. The degree
matrix tells us the degree deg(vi) of each node, that is the number of edges that
terminate at each node. Thus as same as in the case of the adjacency matrix for a
undirected graph G the degree matrix D is defined as

Dij =


deg(vi), if i = j

0, otherwise.
(4)

In the context of this thesis the degree matrix tells us the number of connections for
a certain residue α-carbon or ligand head. The degree matrix can also calculated

20

from the adjacency matrix as every row in the adjacency matrix corresponds to
connections to a certain node. Thus Dii = ∑

j Aij . The adjacency matrix and degree
matrix are needed for graph convolution described later.

In the context of the interactions between the thiolate protected nanoclusters and
the BSA proteins the relevant interactions for forming a stable complex can be
considered to be "local". Thus it makes sense to use a graph representation with
information propagated from neighbouring nodes to the nodes associated with the
relevant interactions. Machine learning methods also benefit from only using the
most relevant information in the training data. One approach for data propagation
in graphs is graph convolution introduced later in this work. Another approach is to
use the continuous form of the Weisfeiler-Lehman scheme [23]. The original form of
the Weisfeiler-Lehman scheme was intended as a test for graph isomorphism. For a
graph G with continuous attributes for each vertex v ∈ G and the initial attributes
for each node denoted as a0(v) the WL-scheme is defined recursively as

ai+1(v) = 1
2

ai(v) + 1
deg(v)

∑
u∈N (v)

w(v, u)ai(u)
 , (5)

where deg(v) is the degree of the node and N (v) represents the neighbouring nodes
to node v. The edge weight are set to unity when not known w(u, v) = 1. The
current WL iteration is denoted with i. This iterative process allows the propagation
of information inside a graph by averaging over the neighbourhood of a node.

2.3 Deep learning

The subsection of machine learning called deep learning studies methods that utilize
neural networks. Originally the study of neural networks was inspired by attempts
to mathematically formalize the operation of neurons in the brain [35]. In the last
decade, neural networks have become one of the most popular research topics in
machine learning both in terms of their foundations and applications. This section
aims to present the relevant concepts and neural network architectures relevant to
this thesis. First I will discuss the most simple neural network architecture, the feed
forward neural network, while discussing other important concepts in the area. Then
I move on to the graph convolutional network that serves as a base for the custom

21

GCN model built for this thesis.

2.3.1 Neural network concepts and the feed forward neural network

The basic idea of a neural network is to approximate a function, which in an ideal
case, maps input data x perfectly to some given output y, i.e. there exists a function
f such that y = f(x). This is achieved by stacking layers which consist of units
called neurons. A neural network model always consist of at least an input layer,
one hidden layer and an output layer. The dimension of the layer is defined by the
number of neurons. Each layer in the model is connected by weighted transitions
by which meaningful input values can be emphasized. In the context of graphs a
neural network can be though of as an directed graph where the neurons act as
nodes that has a set of input nodes on a set of output nodes with hidden layers of
nodes in between. Nodes from the previous layer are then always connected to nodes
of the next layer. The weighted transition between nodes are described by matrix
multiplication. Along with this, a node specific bias is added to the result. With
Nin number of input vectors Hi consisting of F number of features we can form an
input matrix H l ∈ RNin×F . Using this, the linear propagation rule from one layer
to the next is of the form

H l+1 = W lH l + bl, (6)

where H l+1 ∈ RN×f is the output matrix with f features in the output vectors
(dependent on the output size of the layer), W l ∈ Rf×F is a trainable weight matrix
and bl is a bias vector. The superscript l denotes that the matrices are layer specific.
The problem with our model so far is that the output is always an linear combination
of the inputs. This limits the output the propagation can produce. To perform more
complex tasks than linear regression, we introduce a non-linear activation function.
Denoting the activation function as σ(·), our layer-wise propagation rule in matrix
form is expressed as

H l+1 = σ(W lH l + bl) (7)

Common activation functions used are the rectified linear unit (ReLU), the sigmoid
function and the hyperbolic tangent (tanh) which are plotted in figure 2. The
activation function should be chosen based on the nature of the task at hand (e.g.
is it a classification or regression task or a regression task) and accordance to your
dataset. Commonly sigmoid and tanh are used for classification tasks and ReLU

22

for regression tasks. Many other activation functions are available, some of which
are altered version of the three mentioned here. All the activation functions have
their own benefits and challenges. For example the sigmoid and tanh function are
prone to the vanishing gradient problem while ReLU is non-differentiable and has
problems with limited non-linearity. [36]

The next question is that how to set the values for weights and biases. This

Figure 2. Plot of common activation functions ReLU, tanh and sigmoid.

is where we need to train the network. In this thesis training is done using supervised
learning, meaning that for each feature set in the original input matrix X we have
a corresponding set of target labels Y . The purpose of supervised learning is to
approximate some function f that maps the input features to the labels f(X) = Y .
We can now compare the output of the network the actual label. This is done by
defining a cost function C which quantifies the difference between the output of
the network and the actual labels. A multitude of different cost function exist, but
common loss function for regression tasks is the mean absolute error (MAE) function,

23

which is defined as
C(W, b) = 1

N

∑
|yi − y|, (8)

where yi is the predicted value for the i-th sample and y is the target value. This
means that MAE calculates the average absolute distance between the predictions
and the target values. As the output of our network is dependent on the weights W

and biases b, the cost function is also dependent on these variables. In training the
network, the aim is to find the weights and biases which make the cost function as
small as possible. We can see that when the cost function is as small as possible the
predictions are close to the target values. The adjustment of weights and biases to
achieve this is done using a iterative gradient based algorithm. Usually this method
is based on the backpropagation algorithm made famous by the 1986 paper by David
Rumelhart, Geoffrey Hinton and Ronald Williams [37]. Backpropagation is based on
the idea of defining an error δl

j for each neuron j in layer l to that neuron as

δl
j = ∂C

∂H l
j

, (9)

where H l
j is the input to that neuron. From this, using the chain rule, the equations

that provide the gradient of the loss function with respect to the weights of the
network can be derived. Then an optimizer, most commonly some form of the
gradient descent algorithm, is used to adjust the weights based on the gradients.
How much the weights are adjusted in each iteration is determined by the learning
rate which is a tunable hyperparameter in the neural network. Multiple optimizers
have been developed to address the problems related to gradient descent.

The optimisation of hyperparameters such as the learning rate is also a crucial
part of the evaluation and construction of a machine learning model. Other than
the learning rate hyperparameters usually consist atleast of the amount of layers
in the model, the amount of neurons per layer, the batch size and the amount of
epochs. The training data for the model is divided into different subsets to speed
up training. The batch size tells the amount of data points which are processed
before the model is updated. The number of epochs implies the amount of cycles
that the training data passes trough the model completely. The number of epochs is
an important hyperparameter in preventing over- or underfitting. Overfitting means
that the model is trained too much on the training set and learns patterns specific

24

to that set. This prevents generalisation when the model is presented with unseen
data. Underfitting means that the model is too simple and not trained enough so
it can’t make accurate predictions. To prevent underfitting and overfitting early
stopping can be utilised. In early stopping the data is split in to test and training
sets. After training with the training set predictions are made with the test set. The
error related to the target values from the training set predictions and the test set
predictions are then monitored. When the error from the test set stops decreasing
training is stopped. If the validation error would be let to increase after this point,
it would lead to overfitting.

The model that acts as a comparison to the graph convolutional network intro-
duced in the next section the feed forward neural network (FNN). The FNN is the
simplest and most common neural network architecture. It is formed by stacking
layers which have a layer-wise propagation rule in the form of equation (7). In this
thesis a fully connected feed forward network is used, meaning that every neuron
in the previous layer is connected to every neuron in the next layer. The minimum
amount of layers in a FNN is thus the input layer, one hidden layer and an output
layer. It is important to note that in a FNN information flows only forwards i.e.
only from the input layer towards the output layer.

2.3.2 Graph convolutional networks

Graph convolutional networks are a type of neural network that operates straight on
graph form data and utilise convolutional operations on graphs. The word convolution
may be familiar from image processing tasks where filters are applied to convolve
the data. The principle in graph convolutions is the same but there are some major
differences. One difference is that in traditional image convolutions, the convolution
operation is defined by the windows size while graph convolution is defined solely
by the edges of the graph. This means that the convolution operation is in practice
defined by the properties of the graph itself. The mathematics of graph convolution
become more involved than for image convolutions. The graph convolution network
developed in this thesis is based on a network motivated by localized spectral filters

25

on graphs with a layer wise propagation rule

H l+1 = σ(D̃− 1
2 ÃD̃− 1

2 H lW l), (10)

where Ã is the adjacency matrix of the graph with added self-connections, D̃ii =∑
j Ãij, W l is the layer specific trainable weight matrix and σ(·) being the chosen

activation function [22]. H l ∈ RN×f is the output matrix with f features in the
output vectors. This operation has the computational complexity of O(|E|Nf),
where |E| is the amount of edges in the graph. Thus large graphs can cause issues
related to computational complexity. Spectral graph convolutions are described by
the graph Fourier transform which can be considered to be an analogue of the regular
Fourier transform. With graph convolution information can be propagated trough
the graph-based on the structure of the graph. This takes in to account local and
global features to form a meaningful representation for graph form data. Such as
in the case of the FNN a GCN is also formed by stacking layers, but now with a
propagation rule in the form of equation (10), and training the parameters based on
a cost function.

26

27

3 Data and neural network configuration

The used dataset, the data loading process and the preprocessing steps performed
on the data are described in the first part of this section. In the second part, the
construction of the neural networks is described in detail. These details are important
for understanding the practical differences between the model and the evaluation of
the results presented later.

3.1 Data and preprocessing

The used dataset consisted of feature matrices for the protein residues and nanoclus-
ter ligands, graph structure information for the proteins in the case of the GCN
model and data extracted from GROMACS MD simulations with values for the
Lennard-Jones and Coulombic terms in the interaction energy from three simulations
with 501 steps each. Each step is considered a datapoint when forming the arrays
used as input to the neural networks with 1503 data points in total. There were 583
nodes representing the α-carbons in the protein residues and 18 nodes representing
the ligand heads in the clusters. 39 protein features for each amino acid residue and
8 ligand features are included in total for each data point for the GCN model. The
features for the residues include descriptors for its chemical composition (number of
different atoms, molar mass, hydrophobicity etc.), the type of the residue and de-
scriptors for the accessibility of the residue. The accessibility describes how open the
residue is for interactions with other molecules. The features also include descriptors
for the secondary structure of the protein. The secondary structure describes the
local spatial conformation of the residue. It tells for example, how tightly the residue
is bound to its local neighbourhood. The ligand features include the accessibility
of the ligand and descriptors for the interactions with neighbouring ligands. For
example the phenyl rings in the ligands can have pi-pi stacking. The protein features
for the GCN model were not processed in any way but for the FNN model different
amounts of WL-updates described by equation 5 were applied to the protein graphs
to get the representation.

28

From the GROMACS MD data for the non-bonded energy terms for each sim-
ulation step were loaded in to act as validation data and target labels in supervised
learning. In the case of the graph convolutional network adjacency matrices for
the protein graphs were formed according to equation (3). The GROMACS data
also contained information of how many pairs were formed in each step between
the residues and the ligand heads. This was used to pre-process the data to remove
steps that had no relevant interactions for training the network. Thus steps with no
pairs were removed for both model architectures. Based on the pairing information
"inter-adjacency" matrices were formed which represent the connections between the
residues and the ligands. In graph formulation, if there was a pair between the ligand
head and a residue then an edge was drawn between them and the inter-adjacency
matrix was formed according to equation 3. For the FNN architecture the pairing
information was used to form a paired representation of the ligand and residue
features. This means that after the steps with no pairs were removed the feature
arrays for the ligands and proteins were concatenated.

From the inter-adjacency matrix pair formation matrices for feature pairing were
formed using the maximum number of pairs Npairs across all simulation steps. They
were formed separately for the ligands and proteins. Each row in the pair formation
matrix corresponds to a pair in the simulations. Each element in the row corresponds
to a ligand node in the ligand pair formation matrix and a residue node in the protein
pair formation matrix. If there is a connection to a certain node in a pair, then
the value for that element is one. Otherwise the elements are zeros. Thus the pair
formation matrices are quite similar to the adjacency matrix. The motivation for
the pair-formation matrices is better described in the next section where the GCN
model is introduced in detail.

Because neural network training is based on a gradient descent algorithm the data
also needs to be scaled to ensure that the gradient changes uniformly. If the data is
not scaled then the different scales of the feature values would cause biases in training.
Data scaling also makes the model usually converge faster. Min-max normalization
[38] was used to scale the data. For the features data was scaled to the range of [0,1]
and for the interaction energies to the range of [−1,1]. Thus the maximum value for

29

each feature was scaled to be 1 and the minimum value to be 0 and the rest of the
values were scaled accordingly inbetween them. The scaling coefficients were saved
to rescale the predictions back to the original scale.

3.2 Neural network details and training

The neural networks were constructed using the Keras API for Tensorflow [39]. Keras
has built in fully connected dense layers that make the construction of an simple
FNN model convenient. The model with FNN architecture and Weisfeiler-Lehman
updates was constructed by stacking these dense layers. Four dense layers were used
with layer sizes (i.e. the amount of neurons per layer) 256, 128, 64 and 2. The
first layer takes as input the paired features described in the earlier section. The
interaction energies are used as target data. The output must be two dimensional
because two energy terms are predicted and the output is summed along all pairs
to get interaction energies for each step in the data. The FNN model takes in as a
parameter the cut-off distance for the ligand head and residue interactions which
was set to 10 Å. The amount of WL-updates on the data is a hyperparameter for
the FNN model and several amount of them were tried as presented in the results.

A schematic of the GCN model workflow is depicted in figure 3. It can be thought to
consist of two parts. The first part in figure 3a is the graph convolutional part of the
network that performs the graph convolutions using the adjacency and feature matrix
provided as input. In the dimensions of the arrays N represents the amount of nodes
in the protein graphs, nin represents the original residue feature dimensionality and
n is the feature dimension after convolutions. The convolution operations described
by equation (10) were implemented using Tensoflows matrix multiplication for the
convolution operation (D̃− 1

2 ÃD̃− 1
2 H l part shown in equation (10)). A dense layer

was added after this operation to apply weights and non-linearity to the convoluted
graph. After this in the second part of the network as depicted in figure 3b the residue
representation from the convolutional part is paired with the ligand features using
pair-formation matrices. In the dimensions of the arrays M is the amount of residue
nodes, m is the amount of ligand features and Npairs is the maximum number of pairs
in the simulations. The first reason for the use of the pair-formation matrices is that
the features need to be fed into the dense layers in paired form. The motivation in
the construction of the pair formation matrices is to make sure the dimensionality of

30

the paired features is correct. The lines between the different feature matrices and
the pairing matrices in figure 3b represent matrix multiplications. After this feature
matrices with the dimensions (Npairs, m) and (Npairs, n) are concatenated along the
last dimension to form a paired representation of the features. The paired features
are then fed into an fully connected dense layers. To make the comparison between
the FNN and GCN models systematic the fully connected part at the end of the
GCN model was kept the same size as the FNN network used with Weisfeiler-Lehman
updates.

The activation function used for both models was ReLU and it was used for every layer
except the output layer of the network because for regression tasks the constrainment
induced by the activation function may limit the results. The cost function used
in both cases was MAE described by equation (8) which is a common choice for
regression tasks. For training and validation the dataset was split into a training set
and a validation set. 5-fold cross validation was used in training the model. This
means that the training data was split into five sets. Then each model was trained
by using four of the sets as training data and one set as a test set. This resulted in
five models trained on slightly different portions of the data. 106 data points were
left aside as a validation set before forming the five sets for cross validation. Each
of the models were evaluated using this validation set. Early stopping was utilised
by plotting the mean validation errors from the cross validation sets and adjusting
the amount of epochs to prevent under- or overfitting. The optimizer used for both
models was Adam [40] and the learning rate used was 0.001.

31

Protein graphs

Activation
(ReLU)

Graph convolution

Residue features (N x nin)

Adjacency matrix (N x N)

...


1 0 1 ... 1
1 1 0 ... 1
0 1 0 ... 0
...
1 1 0 ... 0



Activation
(ReLU)

Graph convolution

...

Residue representation


x11 x12 x13 ... x1n

x21 x22 x23 ... x2n

x31 x32 x33 ... x3n

.. x...
xN1 xN2 xN3 ... xNnin

 
z11 z12 z13 ... z1n

z21 z22 z23 ... z2n

z31 z32 z33 ... z3n

..
zN1 zN2 zN3 ... zNn



(N x n)

(a)

Residue representation (Npairs x n)

Ligand features (Npairs x m)

Paired features

..

.
... ..

ELJ

EC

Predicted energies

(Npairs + (m+n))

.

Fully connected dense layers

Ligand pairing (Npairs x N)

Residue pairing (Npairs x N)

Ligand features (M x m)

Residue representation (N x n)


1 0 1 ... 1
1 1 0 ... 1
0 1 0 ... 0
... 1
1 1 0 ... 0




z11 z12 z13 ... z1n

z21 z22 z23 ... z2n

z31 z32 z33 ... z3n

..
zN1 zN2 zN3 ... zNn




1 1 1 ... 1
1 1 1 ... 1
1 0 0 ... 0
...
1 1 0 ... 0




y11 y12 y13 ... y1m

y21 y22 y23 ... y2m

y31 y32 y33 ... y3m

..
yM1 yM2 yM3 ... yMm




y11 y12 y13 ... y1m

y21 y22 y23 ... y2m

y31 y32 y33 ... y3m

..
yNp1 yNp2 yNp3 ... yNpm




x11 x12 x13 ... x1n

x21 x22 x23 ... x2n

x31 x32 x33 ... x3n

..
xNp1 xNp2 xNp3 ... xNpn




f11 f12 f13 ... f1(m+n)
f21 f22 f23 ... f2(m+n)
f31 f32 f33 ... f3(m+n)
..

fNp1 fNp2 fNp3 ... fN(m+n)



(b)

Figure 3. a) Schematic depiction of graph convolutional layers in the custom
GCN network. Adjacency matrices and feature matrices from each simulation
step are taken as input and a new residue representation is acquired as output.
b) Schematic depiction of feature pairing and FNN part of the custom GCN
network. The residue representation from graph convolutional layers is paired
with the ligand features and the paired features are fed into fully connected

dense layers. Output consists of the non-bonded interaction energy terms EC

and ELJ .

32

33

4 Results and model performance

In this section the results for the FNN model and the custom GCN model are first
evaluated separately. In the case of the FNN, results are provided for models with
different amounts of WL-updates applied on the data. For the GCN, results are
provided for models with different amounts of convolutional layers and different
sizes for them. Model performance and possible sources of errors are also discussed.
At the end of the section, a comparison between the FNN and the GCN model is
provided.

4.1 The FNN model with Weisfeiler-Lehman updates

Five models with the same feed forward neural network architecture were trained with
each having a different amount of WL-updates on the data. The root-mean-square
errors (RMSE) and Pearson coefficients (r) calculated between the energy values
predicted by the model and the validation values from GROMACS simulations are
presented in table 1. The values provided are the mean of the five predictions from
training the model with different folds in cross-validation. The results are provided
for the Lennard-Jones and Coulombic interaction energy term separately (EC and
ELJ) as well as for the total energy (Etot), which is the sum of the two terms. RMSE
measures how much the predictions deviate from the validation values. The Pearson
coefficient measures the linear correlation between the predictions and GROMACS
values and for an ideal model that perfectly predicts the values the Pearson coefficient
would be 1. The most accurate model is obtained with two WL-updates on the data
as seen from the bolded values in table 1. The reason for this could be that additional
WL-updates lead to a overly detailed description by capturing graph structures of
properties specific to the training set and thus making it harder for the model to
generalise. All of the models performed quite well, even though the Coulombic term
especially has some variance in the RMSE, considering that the Pearson coefficient
doesn’t vary significantly between the models. The Coulombic term being harder
to predict is an expected result based on the fact that the Coulombic interaction

34

Table 1. RMSE and Pearson coefficients for the mean FNN predictions

Number of
WL updates

RMSE EC

(kJ/mol)
RMSE ELJ

(kJ/mol)
RMSE Etot

(kJ/mol)
Pearson

rC

Pearson
rLJ

Pearson
rtot

1 88.59 20.65 83.76 0.84 0.93 0.84
2 66.82 19.27 67.15 0.86 0.93 0.85
3 73.44 20.51 72.37 0.83 0.93 0.83
4 75.33 22.52 73.53 0.83 0.93 0.82
5 73.29 19.82 72.20 0.84 0.93 0.84

is harder to calculate accurately as described earlier when discussing force fields in
section 2. The Lennard-Jones term is primarily dependent on atomic distances and
it is more straightforward to calculate making it also easier to predict for the model.
Proportionally the RMSE for the total energy, which is calculated by summing the
Coulombic and Lennard-Jones terms, has a smaller error when compared to the terms
separately. This could be because the model is not separately trained to predict the
LJ and Coulombic terms, but the training for both is done at the same time.

The limitation when assessing the model performance using only the values provided
in table 1 is that they do not measure the variance between the cross-validation
models well. In figure 4 the predictions by the best performing model based on data
from table 1 with two WL-updates on the data are plotted against the values from
the GROMACS simulations. These predictions are made with the validation set left
aside from cross validation. The data points are the mean values from the five cross
validation models and the error limits are taken as the minimum and maximum
values from the cross-validation predictions. The grey line in the plot indicates a
perfect linear fit and points on the line correspond to exact precitions by the model.
Based on these figures we can again see that the Lennard-Jones term is easier to
predict for the model than the Coulombic term. Outliers are also clearly harder to
predict which is generally expected for a machine learning model. In addition to the
larger RMSE for the Coulombic term, the variation between the predictions based
on the error limits in figure 4 varies proportionally more than for the Lennard-Jones
term. Of course here the scale of the values has to be noted because the Coulombic
term has values ranging from close to −600 kJ/mol to 0 kJ/mol, while the LJ term
has a much smaller range of values.

35

Table 2. Averaged standard deviation from the predictions by the FNN model

Number of
WL updates

Standard deviation
σC (kJ/mol)

Standard deviation
σLJ (kJ/mol)

Standard deviation
σtot (kJ/mol)

1 34.04 11.63 29.18
2 33.87 13.12 42.61
3 34.46 7.73 35.83
4 30.70 10.36 31.38
5 44.75 14.46 47.63

To quantify this variance in the predictions from cross-validation the standard
deviations for each of the energy terms and the total energy is presented in table 2.
The standard deviations provided are calculated by calculating the standard devia-
tion for each data point individually over predictions for all cross validation models
and then averaging over these values. The average standard deviation between the
predictions when training the model with different sets from cross-validation tells
about the models ability to reliably generalise on unseen data. Based on the data
from table 2 the model that was best based on data from table 1 has the second
highest average standard deviation. However, the differences in the values between
the models presented in 2 is not drastic considering the energy scales and the limited
amount of data in training. The standard deviation on its own also doesn’t quantify
whether the predictions are right or wrong. The model could predict incorrect values
with high confidence thus making for a small average standard deviation but subpar
model performance. Thus it the model with two WL-updates, with bolded values
also in table 2, on the data can still be considered to perform the best.

36

(a) (b)

(c)

Figure 4. Predicted values by the FNN model with two WL-updates on the data
plotted against the GROMACS values used as validation. Datapoints are the
mean from the five cross-validation models and error limits are taken from the
minimum and maximum values from cross-validation. Points on the reference line
(grey) correspond to exactly correct predictions. a) Results for the Coulombic
interaction energy term. b) Results for the Lennard-Jones interaction energy
term. c) Results for the total energy.

37

4.2 The custom GCN model

To study how the architecture of the custom GCN model affects the results multiple
layer sizes and number of convolutions were tried for optimisation of the network.
The results are depicted in Table 3 in the same fashion as for the FNN model. The
layer sizes in the table depict the amount of neurons in the convolutional layers. One
strategy in the layer architecture optimisation process was the keep the number of
neurons the same, in this case 1280, while changing the amount of convolutions. In
this process the features are transformed in to a higher-dimensional space from their
original representation which can be helpful to capture more complex patterns in
the data. The models trained based on this strategy all had 1280 neurons in total.
Based on this process the model with three convolutions and convolutional layer
sizes 512, 512 and 256 performed the best both in regards of RMSE and the Pearson
coefficients. The values for this model are bolded in table 3.

Another optimisation strategy was to keep the output dimensions of the con-
volutional part the same as the input dimensions. As the part of the model consisting
of convolutional layers operates straight on the protein graphs where each node has
39 features, the output dimensionality in this strategy was set to 39 while keeping
the amount of neurons in the layers constant and changing the amount of convolu-
tions. By keeping the dimensionality of the feature space the same as in the original
representation makes to model simpler which could lead to more stable performance.
For our model the performance is worse when matching the output and input dimen-
sions than when the features space is transformed in to a higher dimension. This
optimisation strategy was not optimal, as the poorest performing model from all
the ones in table 3 is the one with every layer having an output dimension of 39.
One reason for this could be that the model size doesn’t allow for suitable learning
capability. Another reason could be the fact that the model is built from two parts,
the convolutions and the densely connected layer as presented in figure 3, and the
amount of neurons in the first FNN layer at the end is 256. This means that by
making the output from the convolutions smaller in dimension than the first FNN
layer the layer size is truncated in the middle of the model. This may cause an
information bottleneck because some information is lost and compressed between the
two parts of the model. The exception to this is the model with layer sizes 1024 and

38

Table 3. RMSE and Pearson coefficients for the mean GCN predictions

Number of
convolutions Layer sizes RMSE EC

(kJ/mol)
RMSE ELJ

(kJ/mol)
RMSE Etot

(kJ/mol)
Pearson

rC

Pearson
rLJ

Pearson
rtot

2 1024, 256 85.18 20.24 88.56 0.83 0.93 0.83
2 1024, 39 73.54 19.65 73.07 0.82 0.93 0.82
2 256, 256 77.71 21.23 80.36 0.82 0.93 0.82
3 512, 512, 256 72.69 19.22 71.61 0.83 0.94 0.84
3 512, 512, 39 82.05 19.65 81.39 0.81 0.93 0.82
3 256, 256, 256 77.38 20.68 78.68 0.82 0.93 0.83
3 39, 39, 39 80.47 22.10 80.97 0.78 0.92 0.79
4 512, 256, 256, 256 72.49 20.20 73.61 0.84 0.94 0.84
4 256, 256, 256, 256 76.78 23.88 82.71 0.83 0.93 0.83
4 512, 256, 256, 39 78.44 19.75 81.49 0.83 0.93 0.82

39 which may be due to the reduced complexity of the model when having fewer layers.

In table 4 the average standard deviations for the predictions from different cross-
validation folds are presented in the same way as for the results for the FNN model
with WL-updates presented earlier. The standard deviation is proportionally smaller
for the total energy which makes sense as the same was the case for the RMSE and
Pearson coefficient values. The reason for this again is probably the fact that the
two non-bonded interaction terms are trained for and predicted at the same time.
Considering the limited dataset size with the complexity of the custom GCN model
in mind the standard deviations are within reasonable limits. Here there isn’t a
clear relationship between the average standard deviation for the predictions and
the network size or the amount of convolutional layers. Thus it can still be said that
the best performing model was the one with three convolutional layers with their
respective sized being 512, 256 and 256 with bolded values in table 4. The results
for this model are plotted in figure 5 with the predictions for the Coulombic term in
figure 5a and for the Lennard-Jones term in 5c. The data points are again the mean
values from the five predictions gotten from cross-validation and the error limits are
taken as the minimum and maximum values from the cross-validation predictions.
The grey line in the plot indicates a perfect linear fit. As expected the LJ-term has
lower error limits and is easier to predict.

All in all from table 3 and table 4 it can be deduced that the best option is to

39

Table 4. Averaged standard deviation from the predictions by the GCN model

Number of
convolutions Layer sizes Standard deviation

σC (kJ/mol)
Standard deviation

σLJ (kJ/mol)
Standard deviation

σtot (kJ/mol)
2 1024, 256 43.57 12.96 54.63
2 1024, 39 30.46 11.17 34.95
2 256, 256 57.93 9.93 57.03
3 512, 512, 256 33.42 7.87 28.87
3 512, 512, 39 38.54 8.25 43.51
3 256, 256, 256 44.58 10.29 38.21
3 39, 39, 39 32.77 12.66 33.97
4 512, 256, 256, 256 48.90 12.24 49.86
4 256, 256, 256, 256 33.28 10.85 28.24
4 512, 256, 256, 39 36.96 5.78 37.64

keep the dimension of the residue representations higher than the size of the first
dense layer in the FNN part of the model. Considering this I also employed and
optimisation strategy where each layer is the size of 256 and the number of convo-
lutions is altered. The motivation behind this was to keep the model as simple as
possible while keeping the output dimension of the GCN part above the dimension
of the first FNN layer. This did not yield better results than the first approach, thus
implying increasing model complexity by adding neurons is favourable until a certain
threshold. The models with three layers also generally have the best performance, if
not the outlier of the model with the layer dimensions 1024 and 39, implicating that
adding too many convolutions makes to model complexity too high for the data used.
Overall the custom GCN model performed quite well with high linearity between
the predictions and the validation values.

40

(a) (b)

(c)

Figure 5. Predicted values by the GCN model with three convolutional layers
with sizes 512, 512 and 256 plotted against the GROMACS values used as
validation. Datapoints are the mean from the five cross-validation models and
error limits are taken from the minimum and maximum values from cross-
validation. Points on the reference line (grey) correspond to exactly correct
predictions. a) Results for the Coulombic interaction energy term. b) Results
for the Lennard-Jones interaction energy term. c) Results for the total energy.

41

4.3 Comparison of the models

Based on the results from tables 1 and 3 both model architectures show valid perfor-
mance with a highly linear relationship between the predictions and target values.
The most robust FNN model with two WL updates had slightly more accurate
predictions than the GCN model with the best performance when comparing the
Pearson coefficients and the RMSE values. This implies that the lower complexity
and the focus on local information propagation in the graphs in the FNN combined
with the WL-scheme is advantageous for this dataset. The limited size of the dataset
may be a factor in this. The difference between the models is larger for the Coulombic
term than for the LJ term. Being harder to predict, the Coulombic term can be
expected to be the determining factor between the performance of the models.

As for the averaged standard deviations provided in table 2 and table 4 it can
be seen that the values are quite similar for both architectures. From the standard
deviations and the error limits in figure 4b and figure 5c it can be seen that the
variance in predictions with the GCN model is lower for the Lennard-Jones term
and the total energy than for the FNN model. For the Coulombic term such a
general trend is not found. The most optimal GCN model from table 3 has lower
variance in cross validation basen on the standard deviations than the most robust
FNN model. The difference is noticeable especially for the total energy. This could
imply that the complexity and expressiveness of graph convolutions leads to better
generalisation on unseen data. Of course, it has to be noted that in terms of the
RMSE and Pearson correlation the FNN model performed sligtly better. For both
model architectures, the computational complexity didn’t cause issues. This implies
that the graph representation for the molecules is viable for these machine learning
methods.

42

43

5 Conclusions and outlook

In this work a feed forward neural network combined with Weisfeiler-Lehman updates
on graph form data and a custom graph convolutional network were successfully
trained and used to predict non-bonded interactions energies between Au25(SR)18 nan-
oclusters and BSA proteins based on their features and data from molecular dynamics
simulations. A graph representation for the proteins and the nanocluster-protein
complexes was utilised for both models. The difference in the utilisation of graphs
was that the GCN model operates straight on graph form data, while in the FNN
model the graph representation is used in pre-processing to create a representation
for the paired features. These paired features served as input to the FNN network.
The dataset used was limited in size but still both models showed valid performance
with linear relationship between the values predicted by the neural networks and
the values provided from simulations. This shows that graph-based machine learn-
ing methods could be used to improve molecular dynamics simulations by creating
a better initialization based on the interaction energies predicted by a neural network.

The focus of this thesis was on predicting the non-bonded interactions in the force
fields used in MD simulations based on featurisation. The neural networks trained in
this work worked well for predicting the non-bonded interaction energies between the
nanocluster ligands and protein residues. These energies included the Lennard-Jones
and Coulombic terms. The Coulombic term was harder to predict for both neural
network architectures which is to be expected due to it’s computational complexity
and larger range of values. The RMSE for the Coulombic terms were proportionally
larger in both cases and the linear correlation weaker based on Pearson correlation
coefficients. The RMSE is also proportionally smaller than the errors for individual
energy terms for both architectures. This is likely due to the fact that the models
are trained for both terms simultaneously. One thing to keep in mind is also that
the data used for training is from GROMACS simulations based on an empirical
force fields. This means that while the results from work presented here can be used
to improve the molecular dynamics simulations, generalisation of any quantitative

44

interactions parameters should be done with caution.

From the results alone it is hard to draw conclusions on which neural network
architecture is better suited for the task. The best performance based on table 1 and
table 3 was achieved with the FNN model using two WL-updates on the data but the
difference was not drastic when compared to the best performing graph convolutional
model. One thing to note from table 2 and 4 is that the most accurate custom GCN
architecture has a smaller average standard deviation in cross-validation. Based on
this the GCN model could generalise better on unseen data than the FNN model
especially if optimised correctly. A significant advantage in the use of the GCN
model is the fact that data in graph form can be used straight as input for the model
thus requiring less pre-processing. The complexity of the GCN model is higher than
that of the FNN model, which can be considered an asset or a disadvantage based
on the application and the dataset used. In this work the dataset was limited in size
thus favouring a more simple model. More work would have to be conducted with a
larger dataset to draw better conclusions between the performance of the two models.
In this work the computational complexity of the models didn’t cause issues but if
working with data where the graphs have a very large amount of edges, the GCN
model may have issues with computational complexity. As mentioned earlier, the
comparison between the two architectures is also interesting from a computer science
perspective as there has previously been work on comparing graph convolutions
to other graph propagation methods such as the Weisfeiler-Lehman scheme [25].
Graph convolutions have been proven to be at most as effective as the WL-scheme
in labeling tasks and that result seems to apply also to the regression task in this work.

In this work early-stopping has been used to optimise the amount of epochs in
the models and for the graph convolutional network the optimal architecture was
searched for by adjusting layer sizes and the amount of convolutions. The learning
rate was also adjusted for optimisation. More work would be needed to optimise the
neural networks constructed in this work which would be better suited to be done
when working on a larger dataset. More extensive hyperparameter tuning should be
conducted if the neural networks architectures from this work would be turned in
to reliable tools for molecular dynamics simulations. Different activation functions
could also be tried even though ReLU seems to work well in the regression task

45

of predicting binding energies. For the feed forward neural network the amount of
neurons and the amount of layers was not optimised because the emphasis of this
work was on the graph convolutional part. The optimisation of the FNN model
should be done before further work.

All in all, the results here have proven that the prediction of interaction ener-
gies between nanocluster and proteins is feasible using graph-based machine learning.
Both neural network architectures showed valid perfomance in this task even though
both of them have their distinct advantages and disadvantages. The implementation
of these methods, with all of its practical considerations, to improve the initialization
of molecular dynamics simulations is a possibility for future work. This could have
implications, for example, in biomedical applications such as drug design.

46

47

References

[1] S. Kaptan and I. Vattulainen. “Machine learning in the analysis of biomolecular
simulations”. In: Advances in Physics: X 7.1 (2022), p. 2006080. doi: 10.1080/

23746149.2021.2006080. eprint: https://doi.org/10.1080/23746149.

2021.2006080. url: https://doi.org/10.1080/23746149.2021.2006080.

[2] I. Moscetti, S. Cannistraro, and A. R. Bizzarri. “Surface Plasmon Resonance
Sensing of Biorecognition Interactions within the Tumor Suppressor p53 Net-
work”. In: Sensors 17.11 (2017). issn: 1424-8220. doi: 10.3390/s17112680.
url: https://www.mdpi.com/1424-8220/17/11/2680.

[3] S. Y. Krisnakumar M. Ravikumar Wei Huang. “Coarse-Grained Simulations of
Protein-Protein Association: An Energy Landscape Perspective”. In: Biophysi-
cal 103.4 (2012), pp. 837–845. doi: https://doi.org/10.1016/j.bpj.2012.

07.013.

[4] M. E. Karpen, D. J. Tobias, and C. L. Brooks III. “Statistical clustering
techniques for the analysis of long molecular dynamics trajectories: analysis of
2.2-ns trajectories of YPGDV”. In: Biochemistry 32.2 (1993), pp. 412–420.

[5] M. Abraham et al. “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers”. In: SoftwareX
1 (July 2015). doi: 10.1016/j.softx.2015.06.001.

[6] M. Goldsmith et al. “Link Prediction with Continuous-Time Classical and
Quantum Walks”. In: Entropy 25.5 (2023). issn: 1099-4300. doi: 10.3390/

e25050730. url: https://www.mdpi.com/1099-4300/25/5/730.

[7] M. Réau et al. “DeepRank-GNN: a graph neural network framework to
learn patterns in protein–protein interfaces”. In: Bioinformatics 39.1 (Nov.
2022), btac759. issn: 1367-4811. doi: 10.1093/bioinformatics/btac759.
eprint: https://academic.oup.com/bioinformatics/article-pdf/39/

1/btac759/48448994/btac759.pdf. url: https://doi.org/10.1093/

bioinformatics/btac759.

https://doi.org/10.1080/23746149.2021.2006080
https://doi.org/10.1080/23746149.2021.2006080
https://doi.org/10.1080/23746149.2021.2006080
https://doi.org/10.1080/23746149.2021.2006080
https://doi.org/10.1080/23746149.2021.2006080
https://doi.org/10.3390/s17112680
https://www.mdpi.com/1424-8220/17/11/2680
https://doi.org/https://doi.org/10.1016/j.bpj.2012.07.013
https://doi.org/https://doi.org/10.1016/j.bpj.2012.07.013
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.3390/e25050730
https://doi.org/10.3390/e25050730
https://www.mdpi.com/1099-4300/25/5/730
https://doi.org/10.1093/bioinformatics/btac759
https://academic.oup.com/bioinformatics/article-pdf/39/1/btac759/48448994/btac759.pdf
https://academic.oup.com/bioinformatics/article-pdf/39/1/btac759/48448994/btac759.pdf
https://doi.org/10.1093/bioinformatics/btac759
https://doi.org/10.1093/bioinformatics/btac759

48

[8] L. F. Krapp et al. “PeSTo: parameter-free geometric deep learning for accurate
prediction of protein interacting interfaces”. In: Nature Communications 14
(2023). doi: doi.org/10.1038/s41467-023-37701-8.

[9] H. M. Berman et al. “The Protein Data Bank”. In: Nucleic Acids Research
28.1 (Jan. 2000), pp. 235–242. issn: 0305-1048. doi: 10.1093/nar/28.1.235.
eprint: https://academic.oup.com/nar/article-pdf/28/1/235/9895144/

280235.pdf. url: https://doi.org/10.1093/nar/28.1.235.

[10] M. Cha et al. “Unifying structural descriptors for biological and bioinspired
nanoscale complexes”. In: Nature Computational Science 2 (2022), pp. 243–252.
doi: https://doi.org/10.1038/s43588-022-00229-w.

[11] T. Lengauer and M. Rarey. “Computational methods for biomolecular dock-
ing”. In: Current Opinion in Structural Biology 6.3 (1996), pp. 402–406.
issn: 0959-440X. doi: https : / / doi . org / 10 . 1016 / S0959 - 440X(96)

80061-3. url: https://www.sciencedirect.com/science/article/pii/

S0959440X96800613.

[12] J. L. Morrison et al. “A lock-and-key model for protein–protein interactions”.
In: Bioinformatics 22.16 (June 2006), pp. 2012–2019. issn: 1367-4803. doi:
10.1093/bioinformatics/btl338. eprint: https://academic.oup.com/

bioinformatics/article-pdf/22/16/2012/48838808/bioinformatics\

_22_16_2012.pdf. url: https://doi.org/10.1093/bioinformatics/

btl338.

[13] A. Volkamer et al. “Combining Global and Local Measures for Structure-Based
Druggability Predictions”. In: Journal of Chemical Information and Modeling
52.2 (2012). PMID: 22148551, pp. 360–372. doi: 10.1021/ci200454v. eprint:
https://doi.org/10.1021/ci200454v. url: https://doi.org/10.1021/

ci200454v.

[14] A. Pihlajamäki et al. “Graphs and Kernelized Learning Applied to Interactions
of Hydrogen with Doped Gold Nanoparticle Electrocatalysts”. In: The Journal
of Physical Chemistry C 127.29 (2023), pp. 14211–14221. doi: 10.1021/acs.

jpcc.3c02539. eprint: https://doi.org/10.1021/acs.jpcc.3c02539. url:
https://doi.org/10.1021/acs.jpcc.3c02539.

https://doi.org/doi.org/10.1038/s41467-023-37701-8
https://doi.org/10.1093/nar/28.1.235
https://academic.oup.com/nar/article-pdf/28/1/235/9895144/280235.pdf
https://academic.oup.com/nar/article-pdf/28/1/235/9895144/280235.pdf
https://doi.org/10.1093/nar/28.1.235
https://doi.org/https://doi.org/10.1038/s43588-022-00229-w
https://doi.org/https://doi.org/10.1016/S0959-440X(96)80061-3
https://doi.org/https://doi.org/10.1016/S0959-440X(96)80061-3
https://www.sciencedirect.com/science/article/pii/S0959440X96800613
https://www.sciencedirect.com/science/article/pii/S0959440X96800613
https://doi.org/10.1093/bioinformatics/btl338
https://academic.oup.com/bioinformatics/article-pdf/22/16/2012/48838808/bioinformatics_22_16_2012.pdf
https://academic.oup.com/bioinformatics/article-pdf/22/16/2012/48838808/bioinformatics_22_16_2012.pdf
https://academic.oup.com/bioinformatics/article-pdf/22/16/2012/48838808/bioinformatics_22_16_2012.pdf
https://doi.org/10.1093/bioinformatics/btl338
https://doi.org/10.1093/bioinformatics/btl338
https://doi.org/10.1021/ci200454v
https://doi.org/10.1021/ci200454v
https://doi.org/10.1021/ci200454v
https://doi.org/10.1021/ci200454v
https://doi.org/10.1021/acs.jpcc.3c02539
https://doi.org/10.1021/acs.jpcc.3c02539
https://doi.org/10.1021/acs.jpcc.3c02539
https://doi.org/10.1021/acs.jpcc.3c02539

49

[15] A. Bujacz. “Structures of bovine, equine and leporine serum albumin”. In: Acta
Crystallographica Section D 68.10 (Oct. 2012), pp. 1278–1289. doi: 10.1107/

S0907444912027047. url: https://doi.org/10.1107/S0907444912027047.

[16] P. J. Theodore. All About Albumin: Biochemistry, Genetics, and Medical Ap-
plications. 1st ed. Academic Press, 1995. isbn: 0125521103,9780125521109. url:
http://gen.lib.rus.ec/book/index.php?md5=cae4164b784d8e99f7dc66ee1803d693.

[17] H. Häkkinen and T. Tsukuda. Protected metal clusters : from fundamentals to
applications. 1st ed. Frontiers of Nanoscience Volume 9. Elsevier, 2015. isbn:
0081000863,978-0-08-100086-1,9780444635020,0444635025. url: http://gen.

lib.rus.ec/book/index.php?md5=3274143f75509fc212014ad2d8a30804.

[18] X. Kang, H. Chong, and M. Zhu. “Au25(SR)18: the captain of the great
nanocluster ship”. In: Nanoscale 10 (23 2018), pp. 10758–10834. doi: 10.1039/

C8NR02973C. url: http://dx.doi.org/10.1039/C8NR02973C.

[19] B. Zhang et al. “Ultrastable Hydrophilic Gold Nanoclusters Protected by
Sulfonic Thiolate Ligands”. In: The Journal of Physical Chemistry C 125.1
(2021), pp. 489–497. doi: 10.1021/acs.jpcc.0c08929. eprint: https://doi.

org/10.1021/acs.jpcc.0c08929. url: https://doi.org/10.1021/acs.

jpcc.0c08929.

[20] B. Chakrabarty and N. Parekh. “NAPS: Network Analysis of Protein Struc-
tures”. In: Nucleic Acids Research 44.W1 (May 2016), W375–W382. issn:
0305-1048. doi: 10 . 1093 / nar / gkw383. eprint: https : / / academic . oup .

com/nar/article-pdf/44/W1/W375/7634036/gkw383.pdf. url: https:

//doi.org/10.1093/nar/gkw383.

[21] S. Patra and S. Vishveshwara. “Backbone cluster identification in proteins
by a graph theoretical method”. In: Biophysical chemistry 84 (Mar. 2000),
pp. 13–25. doi: 10.1016/S0301-4622(99)00134-9.

[22] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convo-
lutional Networks. 2017. arXiv: 1609.02907 [cs.LG].

[23] N. Shervashidze et al. “Weisfeiler-Lehman Graph Kernels”. In: Journal of
Machine Learning Research 12.77 (2011), pp. 2539–2561. url: http://jmlr.

org/papers/v12/shervashidze11a.html.

https://doi.org/10.1107/S0907444912027047
https://doi.org/10.1107/S0907444912027047
https://doi.org/10.1107/S0907444912027047
http://gen.lib.rus.ec/book/index.php?md5=cae4164b784d8e99f7dc66ee1803d693
http://gen.lib.rus.ec/book/index.php?md5=3274143f75509fc212014ad2d8a30804
http://gen.lib.rus.ec/book/index.php?md5=3274143f75509fc212014ad2d8a30804
https://doi.org/10.1039/C8NR02973C
https://doi.org/10.1039/C8NR02973C
http://dx.doi.org/10.1039/C8NR02973C
https://doi.org/10.1021/acs.jpcc.0c08929
https://doi.org/10.1021/acs.jpcc.0c08929
https://doi.org/10.1021/acs.jpcc.0c08929
https://doi.org/10.1021/acs.jpcc.0c08929
https://doi.org/10.1021/acs.jpcc.0c08929
https://doi.org/10.1093/nar/gkw383
https://academic.oup.com/nar/article-pdf/44/W1/W375/7634036/gkw383.pdf
https://academic.oup.com/nar/article-pdf/44/W1/W375/7634036/gkw383.pdf
https://doi.org/10.1093/nar/gkw383
https://doi.org/10.1093/nar/gkw383
https://doi.org/10.1016/S0301-4622(99)00134-9
https://arxiv.org/abs/1609.02907
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html

50

[24] L. Sai, L. Fu, and J. Zhao. “Predicting Binding Energies and Electronic
Properties of Boron Nitride Fullerenes Using a Graph Convolutional Net-
work”. In: Journal of Chemical Information and Modeling 64.7 (2024). PMID:
38117935, pp. 2645–2653. doi: 10.1021/acs.jcim.3c01708. eprint: https:

//doi.org/10.1021/acs.jcim.3c01708. url: https://doi.org/10.1021/

acs.jcim.3c01708.

[25] K. Xu et al. How Powerful are Graph Neural Networks? 2019. arXiv: 1810.

00826 [cs.LG].

[26] P. H. Hünenberger. “Thermostat Algorithms for Molecular Dynamics Sim-
ulations”. In: Advanced Computer Simulation: Approaches for Soft Matter
Sciences I. Ed. by C. Dr. Holm and K. Prof. Dr. Kremer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 105–149. isbn: 978-3-540-31558-2. doi:
10.1007/b99427. url: https://doi.org/10.1007/b99427.

[27] M. P. Allen. Computer simulation of liquids. Ed. by D. J. Tildesley. Oxford
science publications. Oxford : New York: Clarendon ; Oxford University Press,
1987. url: https://jyu.finna.fi/Record/jykdok.320039.

[28] H. J. C. Berendsen et al. “Molecular dynamics with coupling to an external
bath”. In: The Journal of Chemical Physics 81.8 (Oct. 1984), pp. 3684–3690.
issn: 0021-9606. doi: 10.1063/1.448118. eprint: https://pubs.aip.org/

aip/jcp/article-pdf/81/8/3684/18950084/3684_1_online.pdf. url:
https://doi.org/10.1063/1.448118.

[29] B. Brooks, C. Brooks III, and A. M. J. et al. “CHARMM: The Biomolecular
Simulation Program”. In: J. Comput. Chem. 30 (2009). PMC2810661, 1545–
1614.

[30] D. A. Case et al. “The Amber biomolecular simulation programs”. In: Journal
of Computational Chemistry 26.16 (2005), pp. 1668–1688. doi: https://doi.

org/10.1002/jcc.20290. eprint: https://onlinelibrary.wiley.com/doi/

pdf/10.1002/jcc.20290. url: https://onlinelibrary.wiley.com/doi/

abs/10.1002/jcc.20290.

[31] M. Christen et al. “The GROMOS software for biomolecular simulation: GRO-
MOS05”. In: Journal of Computational Chemistry 26.16 (2005), pp. 1719–
1751. doi: https : / / doi . org / 10 . 1002 / jcc . 20303. eprint: https : / /

https://doi.org/10.1021/acs.jcim.3c01708
https://doi.org/10.1021/acs.jcim.3c01708
https://doi.org/10.1021/acs.jcim.3c01708
https://doi.org/10.1021/acs.jcim.3c01708
https://doi.org/10.1021/acs.jcim.3c01708
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://doi.org/10.1007/b99427
https://doi.org/10.1007/b99427
https://jyu.finna.fi/Record/jykdok.320039
https://doi.org/10.1063/1.448118
https://pubs.aip.org/aip/jcp/article-pdf/81/8/3684/18950084/3684_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/81/8/3684/18950084/3684_1_online.pdf
https://doi.org/10.1063/1.448118
https://doi.org/https://doi.org/10.1002/jcc.20290
https://doi.org/https://doi.org/10.1002/jcc.20290
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20290
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20290
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20290
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20290
https://doi.org/https://doi.org/10.1002/jcc.20303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20303

51

onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20303. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20303.

[32] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. “Development and
Testing of the OPLS All-Atom Force Field on Conformational Energetics and
Properties of Organic Liquids”. In: Journal of the American Chemical Society
118.45 (1996), pp. 11225–11236. doi: 10.1021/ja9621760. eprint: https://

doi.org/10.1021/ja9621760. url: https://doi.org/10.1021/ja9621760.

[33] J. Lenhard, S. Stephan, and H. Hasse. “A Child of Prediction. On the History,
Ontology, and Computation of the Lennard-Jonesium”. In: Studies in History
and Philosophy of Science Part A 103.C (2024), pp. 105–113. doi: 10.1016/j.

shpsa.2023.11.007.

[34] K. Vanommeslaeghe and A. MacKerell. “CHARMM additive and polarizable
force fields for biophysics and computer-aided drug design”. In: Biochimica et
Biophysica Acta (BBA) - General Subjects 1850.5 (2015). Recent developments
of molecular dynamics, pp. 861–871. issn: 0304-4165. doi: https://doi.org/

10.1016/j.bbagen.2014.08.004. url: https://www.sciencedirect.com/

science/article/pii/S0304416514002736.

[35] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in
nervous activity.” In: Bulletin of Mathematical Biophysics 5 (1943), pp. 115–
133. doi: https://doi.org/10.1007/BF02478259.

[36] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri. “Activation functions in deep
learning: A comprehensive survey and benchmark”. In: Neurocomputing 503
(2022), pp. 92–108. issn: 0925-2312. doi: https://doi.org/10.1016/j.

neucom.2022.06.111. url: https://www.sciencedirect.com/science/

article/pii/S0925231222008426.

[37] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations
by back-propagating errors”. In: Nature 323 (1986), pp. 533–536. url: https:

//api.semanticscholar.org/CorpusID:205001834.

[38] J. Han and M. Kamber. Data Transformation and Data Discretization. Elsevier,
2011. isbn: 9780123814807.

[39] F. Chollet et al. Keras. https://keras.io. 2015.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20303
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20303
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20303
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20303
https://doi.org/10.1021/ja9621760
https://doi.org/10.1021/ja9621760
https://doi.org/10.1021/ja9621760
https://doi.org/10.1021/ja9621760
https://doi.org/10.1016/j.shpsa.2023.11.007
https://doi.org/10.1016/j.shpsa.2023.11.007
https://doi.org/https://doi.org/10.1016/j.bbagen.2014.08.004
https://doi.org/https://doi.org/10.1016/j.bbagen.2014.08.004
https://www.sciencedirect.com/science/article/pii/S0304416514002736
https://www.sciencedirect.com/science/article/pii/S0304416514002736
https://doi.org/https://doi.org/10.1007/BF02478259
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/https://doi.org/10.1016/j.neucom.2022.06.111
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://keras.io

52

[40] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”.
In: CoRR abs/1412.6980 (2014). url: https://api.semanticscholar.org/

CorpusID:6628106.

https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106

	Analyzing protein-nanoclusterinteractions with graph-basedmachine learning for moleculardynamics
	Master’s Thesis, 17.5.2024
	Anssi Sikoniemi
	Antti PihlajamäkiHannu Häkkinen
	Abstract
	Tiivistelmä
	Preface
	Contents
	1Introduction
	2Theoretical background
	2.1Molecular dynamics and force fields
	2.2Graph theory
	2.3Deep learning
	3Data and neural network configuration
	3.1Data and preprocessing
	3.2Neural network details and training
	4Results and model performance
	4.1The FNN model with Weisfeiler-Lehman updates
	4.2The custom GCN model
	4.3Comparison of the models
	5Conclusions and outlook
	References

