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Abstract
We consider multiobjective optimization problems with at least one computationally expen-
sive constraint function and propose a novel surrogate-assisted evolutionary algorithm that
can incorporate preference information given a priori. We employ Kriging models to approx-
imate expensive objective and constraint functions, enabling us to introduce a new selection
strategy that emphasizes the generation of feasible solutions throughout the optimization
process. In our innovative model management, we perform expensive function evaluations to
identify feasible solutions that best reflect the decision maker’s preferences provided before
the process. To assess the performance of our proposed algorithm, we utilize two distinct
parameterless performance indicators and compare them against existing algorithms from
the literature using various real-world engineering and benchmark problems. Furthermore,
we assemble new algorithms to analyze the effects of the selection strategy and the model
management on the performance of the proposed algorithm. The results show that in most
cases, our algorithm has a better performance than the assembled algorithms, especially when
there is a restricted budget for expensive function evaluations.

Keywords Multiple objectives · Model management · A priori algorithms · Constraint
handling · Surrogate-assisted optimization · Constrained problems · Computationally
expensive problems

1 Introduction

Many real-world problems involve multiple conflicting objective functions to be optimized
simultaneously, subject to constraints, see, e.g., [1–3]. Such problems are known as con-
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strained multiobjective optimization problems (CMOPs). Because of the conflict between
the objective functions, many so-called Pareto optimal solutions usually exist, representing
different trade-offs. In the absence of additional information, all Pareto optimal solutions are
mathematically incomparable. Typically, a domain expert called a decision maker (DM) pro-
vides preference information to find the most preferred Pareto optimal solution for practical
implementation.

There are three significant challenges in solving real-world CMOPs. First, the evaluation
of one (or more) objective or constraint functions can be time-consuming. For instance,
many engineering problems rely on simulations, where function evaluation can take minutes
or hours [4–10]. Such problems are referred to as computationally expensive ones. We can
find computationally expensive problems in various fields such as ergonomic well-being
[1], manufacturing design [2], shape and design optimization [4–7] and the configuration of
energy sources [11].

In this paper, we focus on CMOPs that have at least one computationally expensive
constraint function. For simplicity, we refer to them as computationally expensive CMOPs.

The second challenge is to handle the constraints so that we can generate feasible Pareto
optimal solutions. In computationally expensiveCMOPs,we typically have a limited function
evaluation budget that should not be exceeded. Moreover, sometimes, function evaluations
for infeasible solutions may take longer than feasible ones [9]. Therefore, evaluating too
many infeasible solutions should be avoided. Moreover, generating solutions that the DM is
not interested in is a waste of resources.

In addition, comparing many solutions to find the most preferred one can increase the
cognitive load set on the DM. Therefore, it is important to generate solutions that reflect the
DM’s preferences. This is the third challenge. In this way, she/he only needs to compare a
handful of solutions that are of interest.

There have been separate studies in the literature that address each of the three challenges
mentioned in the previous paragraphs [12, 13]. However, there is currently no algorithm that
addresses all three challenges simultaneously. This paper aims to fill this gap by introducing
a novel algorithm for CMOPs that can handle all three challenges effectively.

Multiobjective evolutionary algorithms (MOEAs) are well-known algorithms to solve
CMOPs [14]. They are population-based algorithms that find an approximation of the set
of Pareto optimal solutions (also known as a Pareto front) and have certain advantages that
have made them popular over the years. For example, they can handle different kinds of
decision variables and deal with objective or constraint functions that are discontinuous or
nondifferentiable [14, 15]. In the literature, many different MOEAs have been proposed, see,
e.g. [16] and references therein. Among them, decomposition-based MOEAs have become
prevalent [17] in recent years.

Decomposition-basedMOEAs can scale better than otherMOEAs as the number of objec-
tive functions increases [17, 18].Moreover, decomposition-based algorithms can bemodified
to easily take the DM’s preferences into account by focusing on a specific subspace of the
objective space that represents the preferences [18]. On the other hand, all MOEAs need
many function evaluations to converge toward Pareto optimality [19], and this makes them
impractical for computationally expensive CMOPs. For example, according to [20], MOEAs
require quite many function evaluations for some test problems.

To speed up computations, one can train computationally inexpensive surrogate models
to mimic the behavior of the computationally expensive functions as closely as possible [19].
One then evaluates the expensive functions at new samples iteratively to update the accuracy
of the surrogate models and we refer to this as model management (also known as active
learning [21]). Kriging models (also known as Gaussian process regression) [22] are widely
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used surrogate models [12, 19], because they provide uncertainty information of a predicted
solution along with the predicted value. This information can be helpful to MOEAs and can
be utilized in different ways for model management (see, e.g., [11, 23, 24]). In this paper, we
focus on using Kriging in a decomposition-based MOEA.

There have been many studies on solving CMOPs when the constraints are computa-
tionally inexpensive, see, e.g., the survey [25] and recent studies [26–28]. Furthermore, as
mentioned, e.g., in [29], most constraint handling techniques developed for single-objective
optimization can be utilized in multiobjective optimization. However, in a recent survey [30],
it is mentioned that this is not always straightforward. Moreover, some studies assume that
the objective functions are computationally expensive, but the constraints are still considered
to be computationally inexpensive [24, 31].

Although many engineering CMOPs can have computationally expensive objective and
constraint functions (see e.g. [1, 2, 32]), there are only a handful of surrogate-assistedMOEAs
that can handle them [32–38]. Many take a Bayesian approach for model management (we
refer to it as Bayesian model management) based on an acquisition function that is used to
select a solution for updating the surrogate models [36]. For example, in [39], an acquisition
function is created based on expected hypervolume improvement [40] and the probability of
feasibility (POF) of the solutions.

So far, we have discussed the first two challenges in solving CMOPs. The third challenge
is to incorporate a DM’s preferences. Few studies have incorporated a DM’s preferences
in the acquisition function [41–45]. In most surrogate-assisted MOEAs for computationally
expensive CMOPs, the DM is assumed to select the most preferred solution after a repre-
sentative set of Pareto optimal solutions has been generated (these are called a posteriori
algorithms [46]). However, as mentioned earlier, we typically can only afford a limited num-
ber of function evaluationswhen solving computationally expensive CMOPs, and a posteriori
algorithms tend to waste resources and also find solutions that the DM is not interested in.
One can address this by asking for the DM’s preferences before the optimization process (
they are called a priori algorithms [46]). Here, by considering the DM’s preferences, we need
to find feasible and Pareto optimal solutions that satisfy the DM.

In this paper, we develop a novel Kriging-assisted a priori MOEA for computationally
expensive CMOPs, called KAEA-C. To the best of our knowledge, KAEA-C is the first
algorithm to incorporate the DM’s preferences in problems with at least one computationally
expensive constraint. We assume that the preference information is provided as a reference
point consisting of desirable values for each objective function. We call the components of
the reference point as aspiration levels.

The contributions of this paper are as follows: First, we propose a novel selection strategy
for choosing a new population in each generation of the proposed algorithm, employing two
distinct criteria for feasible and infeasible solutions. This strategy utilizes either surrogate
models or original functions (if they are computationally inexpensive), enabling the genera-
tion of more feasible solutions that align with the DM’s preferences while converging toward
the Pareto optimal solutions.

Second, we devise a unique model management strategy that seeks two types of solutions:
those that significantly improve the accuracy of surrogate models, and feasible solutions that
closely adhere to the DM’s preferences. Our selection strategy increases the likelihood of
obtaining feasible solutions, making it more likely to find desired solutions during the model
management phase, where we must evaluate expensive functions within a limited budget.

The remainder of the paper is organized as follows. Section2 presents background mate-
rial, concepts, and notations. In Sect. 3, we introduce the proposed algorithm KAEA-C.
Section4 is dedicated to numerical experiments, evaluating KAEA-C’s performance against
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state-of-the-art algorithms and analyzing the effects of KAEA-C’s selection strategy and
model management on its performance. Finally, Sect. 5 offers concluding remarks and dis-
cusses future research directions.

2 Background: basic concepts and notation

In this section, we cover some basic concepts, notation, and relevant terminology in multiob-
jective optimization that we need. Then, we provide background information about different
ways to incorporate DM’s preferences and Kriging-assisted MOEAs for CMOPs.

2.1 Multiobjective optimization

We consider problems of this form:

minimize f (x) = ( f1(x), . . . , fk(x))

subject to gi (x) ≥ 0, i = 1, . . . ,m

xli ≤ xi ≤ xui i = 1, . . . , n,

(1)

where f (x) denotes an objective vector which consists of the values of k conflicting objective
functions at x = (x1, . . . , xn)T , an n-dimensional decision variable vector (for short, decision
vector). In this paper, we refer to objective vectors as solutions. We call a decision vector x ,
and the corresponding solution f (x) feasible, if x satisfies all the constraints. The set of all
feasible decision vectors is called a feasible region F. On the other hand, a decision vector
and the corresponding solution are infeasible if x violates at least one of the constraints.

For them inequality constraint functions, the individual constraint violation value cvi (x),
with i = 1, . . . ,m of the decision vector x can be defined as follows:

cvi (x) =
{
0, if gi (x) ≥ 0

|gi (x)| otherwise.
(2)

We perform a min-max normalization [47] within the box constraints of problem (1),
because the constraint functions can have different scales, and the normalization scales the
magnitude of violations. In real-world problems, where we do not know the upper and lower
bounds for the constraint violations, we can use the current population violations and update
it iteratively. Then, we can calculate the sum of all individual constraint violations so that
all constraints have an equal effect on the overall constraint violation value. The sum of all
individual constraint violations provides the overall constraint violation for a given decision
vector:

CV (x) =
m∑
i=1

cvi (x). (3)

We will use both Eqs. (2) and (3) in Sect. 3.
A feasible decision vector x� ∈ F and the corresponding f (x�) are called Pareto optimal,

if there does not exist another decision vector x ∈ F such that fi (x) ≤ fi (x�) for all
i = 1, . . . , k, and f j (x) < f j (x�) for at least one index j . A feasible decision vector x� ∈ F

and the corresponding f (x�) are called weakly Pareto optimal if there does not exist another
feasible decision vector x ∈ F such that fi (x) < fi (x�) for all i = 1, . . . , k.
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Table 1 The concepts (and their descriptions) used in this paper

Concept Description

Iteration A fixed number of generations. The model management takes
place between iterations

Original functions All the objective and constraint functions in the original CMOP

Expensive functions Computationally expensive (objective or constraint) functions
that we need to train surrogate models for

Expensive evaluation Evaluating expensive functions at a decision vector

Expensive solution A solution whose corresponding decision vector has been used
for evaluating an expensive function

Surrogate evaluation Evaluating surrogate functions at a decision vector

Surrogate solution A solution whose corresponding decision vector has been used
only for evaluating surrogate functions

Unconstraint ideal point
z� = (z�1, . . . , z

�
k)

This point is obtained by minimizing each of the objectives
individually subject to the box constraints only

Utopian point zu = (zu1 , . . . , zuk ) The components of this point are formed by z�i − ε for
epsilon > 1 [48]

Nadir point znad = (znad1 , . . . , znadk ) This point is constructed by all the worst objective values on the
Pareto front

Dystopian point

zdy = (zdy1 , . . . , zdyk )

The components of this point are formed by znadi + ε for
epsilon > 1

Assume that the set X = {x1, . . . , x p} is an arbitrary subset of feasible decision vectors,
and F(X) = { f (x1), . . . , f (x p)} is the set of corresponding solutions in the objective space.
A solution f (xi ), with i = 1, . . . , p, that satisfies the definition of Pareto optimality within
the set F(X), is called a nondominated solution [14]. Sometimes, nondominated solutions
and Pareto optimal solutions are regarded as synonyms in the literature, but we distinguish the
terms sinceMOEAs can only guarantee nondominance within a set considered but not Pareto
optimality. A Pareto optimal solution is always nondominated, but the reverse situation is
not necessarily true.

In this paper, we utilize several concepts and notations. We summarize them in Tables 1
and 2, respectively.

Moreover, we use an achievement scalarizing function (ASF) [49] to sort nondominated
solutions based on a given reference point ẑ ∈ R

k . There are different ways to formulate an
ASF. Here, we use the following formulation to be minimized:

max
i=1,...,k

[wi ( fi (x) − ẑi )] + ρ

k∑
i=1

wi ( fi (x) − ẑi ), (4)

where wi = 1
zui −znadi

, and ρ
∑k

i=1 wi ( fi (x) − ẑi ) with ρ > 0 is an augmentation term to

avoid finding weakly Pareto optimal solutions [46, 49]. We use an ASF to order solutions in
a set. The lower the ASF value for a given x , the ”closer“ it is to the DM’s reference point
[46, 49]. We refer to this as how well the solution reflects the DM’s preferences.

2.2 Preference incorporation

Multiobjective optimization algorithms can be classified based on the timing a DM provides
preferences [46, 50]: after optimization (a posteriori algorithms), iteratively during the opti-
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Table 2 Notation (and their descriptions) used in this paper

Notation Description

cvi (x) Constraint violation of the i-th constraint at the decision vector x

CV(x) Sum of constraint violations at the decision vector x

ẑ Reference point provided by the DM

V Set of reference vectors used to decompose the objective space

θi Angle between the i-th solution vector and the reference point

γi, j Angel between the i-th solution and the j-th reference vector

Pr Randomly generated population

Pc Population generated by optimizing individual constraint violations

Pf Feasible population in Pc

P0 Initial population

tmax Maximum number of generations for each iteration

FEmax Maximum number of expensive evaluations

FE Expensive evaluation counter

Nu Maximum number of expensive function evaluations per update

NS Maximum number of expensive solutions that the DM wants to see

A Archive for storing expensive solutions and corresponding decision vectors

Aθ Archive for storing the angles between feasible surrogate solutions and reference point

Ad Archive for storing the distance between feasible surrogate solutions and unconstrained ideal point

t Generation counter

Qt Offspring at generation t

Pt Population at generation t

Y Set of subpopulations created by V and P

NV Number of violated constraints for a given surrogate solution

NT NV + NCV

Û j Individual uncertainty information for a solution

Anew Archive for storing unique surrogate solutions to be used for expensive evaluations

mization (interactive algorithms), or before optimization (a priori algorithms). In a posteriori
algorithms, the DM selects the most preferred solution after seeing a set of solutions repre-
senting the Pareto front. The DM actively interacts with the algorithm in the second class
of algorithms and provides preferences during an iterative solution process. In a priori algo-
rithms, the DM expresses one’s preferences before the solution process. Then, at the end of
the optimization process, the DM gets a set of solutions that best reflect the preferences.

A posteriori algorithms need a lot of computing resources since they try to represent
the whole range of different Pareto optimal solutions. Therefore, the computation resources
can go to waste by generating solutions that do not interest the DM. These algorithms are
suitable when the DM wants to see a wide range of trade-offs. On the other hand, the DM
is actively involved in the optimization process in interactive algorithms, which needs time
and involvement. The advantages of interactive algorithms are that the DM can learn about
the reachable solutions and adjust her/his preferences iteratively. In a priori algorithms, the
DM gets to express her/his preferences before the optimization begins and, thereby, limits
the region of interest and chooses the most preferred solution at the end. The drawback of
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a priori algorithms is that the DM may provide unrealistic preferences and be disappointed
in the solutions obtained. A priori algorithms are suitable when the DM cannot interactively
provide preferences but has knowledge of what kind of solutions are desirable.

In a priori algorithms, computation resources are saved compared to a posteriori algo-
rithms. Besides, the cognitive load set on the DM is not as extensive since she/he needs
to consider only a set of Pareto optimal solutions in her/his region of interest. To the best
of our knowledge, there are no a priori or interactive surrogate-assisted MOEAs designed
for CMOPs with computationally expensive constraints. In this paper, we focus on a priori
algorithms. In this way, we avoid shortcomings of a posteriori algorithms and avoid making
assumptions on the DM having much time to participate in an interactive solution process.

2.2.1 A priori decomposition-based MOEAs

The current decomposition-based MOEAs can easily be adapted to handle a priori prefer-
ences. With minor adjustments, most of them can utilize a DM’s preferences to decompose
the objective space into several subspaces [13]. For example, the weights in MOEA/D [51],
the reference vectors in RVEA [52], the reference points in NSGA-III [53], and many more
MOEAs (see [54] for more details) can be adjusted to incorporate the DM’s preferences.

We can modify any of the above-mentioned algorithms to incorporate a DM’s reference
point. In this paper, we use the reference vectors (used by RVEA) as an example. Besides, in
two recent studies [13, 18], it has been explicitly mentioned that among decomposition-based
MOEAs, RVEA has a straightforward way for incorporating a DM’s preferences. DMs can
express preferences in different ways [55].We use reference points as preference information
because they have been proven to be something that is understandable to the DM [56, 57]
(they are in the objective space like objective vectors that a priori MOEAs generate and show
to the DM).

2.2.2 Reference vectors

Next, we describe how reference vectors are used in RVEA since we use them in the proposed
algorithm KAEA-C. RVEA uses uniformly distributed reference vectors (using the simplex-
lattice design algorithm [58]) to divide the objective space into subspaces. Then, solutions are
assigned to the closest reference vectors in each generation. Each set of solutions assigned
to a reference vector is called a subpopulation. Next, a scalarization function is used to form
a single-objective optimization problem. Here, we refer to the scalarization function as a
fitness function. Finally, the best solution is selected for the next generation by solving the
single-objective optimization problems in each subpopulation.

Moreover, RVEA has an a priori extension (we refer to it as AP-RVEA) that incorporates
a reference point ẑ [52]. AP-RVEA positions the reference vectors vi (i = 1, . . . , p) based
on a normalized reference vector vc = {vc1, . . . , vcj } (for j = {1, . . . , k}) according to the
following equation:

vi = r · vi + (1 − r) · vc

||r · vi + (1 − r) · vc|| , (5)

where vcj = ẑ j
||ẑ|| , and ||ẑ|| ≥ 0 is the Euclidean norm of the reference point. If ||ẑ|| = 0, then

we set vc to be the unit vector. The parameter r ∈ (0, 1) controls how the reference vectors
are adjusted towards the reference point. If r is close to 1, then the reference point has less
effect on the reference vectors, and if it is close to 0, they will get closer to the reference point.
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Fig. 1 Example of how reference vectors are distributed a uniformly and b when we incorporate a reference
point ẑ (red cross)

Moreover, the cosine value of the angle γ of a solution y and a reference vector v can be
used to measure the angle-based distance between them. We calculate this by the following
equation:

cos γ = y · v

||y|| · ||v|| . (6)

Assume V = {v1, . . . , v5} is a set of reference vectors. Figure1a demonstrates how V is
uniformly distributed in the objective space. Here, we can observe that y should be assigned
to either v2 or v3. First, we calculate the angles (γ2 and γ3) between y and these two vectors.
Then, we assign y to the reference vector with the smallest angle, which is v3.

In Fig. 1b, we observe how the reference vectors are distributed if a reference point ẑ is
provided. Here θ is the angle between y and ẑ. We will use θ later in Sect. 3 for the selection
strategy in KAEA-C. It is worth mentioning that the reference point only provides a search
direction and does not matter if it is attainable or unattainable

2.3 Kriging-assistedMOEAs

As mentioned in Sect. 1, we can use surrogate models which are computationally inexpen-
sive to evaluate to replace expensive functions. Naturally, we only fit surrogate models to
computationally expensive functions.

Moreover,we useKrigingmodels as surrogates because of the uncertainty information that
they provide [12, 33]. One of the essential functionalities of uncertainty information is that it
helps in managing the Kriging models. There are different types of model management in the
literature [13]. For example, in [23], the surrogate solutions that have the highest uncertainty
are selected to update the Kriging models because the global accuracy of the Kriging models
is important in that work. On the other hand, in [11], the surrogate solutions with the lowest
uncertainty are chosen because the DM’s preferences are involved, and it is important to
make sure some expensive solutions follow the preferences.

Another type of model management in Kriging-assisted MOEAs is the Bayesian model
management. In Sect. 4, we compare our proposed model management to a Bayesian
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Fig. 2 A diagram of Bayesian evolutionary optimization

Table 3 A list of surrogate-assisted MOEAs and weather they can handle expensive constraints, DM’s pref-
erences and if they have been applied to real-world problems

Paper Handling expensive constraints Handling preferences Real-world problems

[32, 35, 38] ✓ ✗ ✓

[34, 37, 39, 40] ✓ ✗ ✗

[41, 43] ✗ ✓ ✗

[42, 44, 45, 60] ✗ ✓ ✓

For each row, the sign ✓indicates that the corresponding header has been considered in the paper, and the sign
✗ indicates it has not

approach. Because of this reason, we outline the basics of Bayesian evolutionary optimiza-
tion [59] in this subsection. In Bayesian evolutionary optimization, surrogate models are
trained for objective and constraint functions and optimized using an evolutionary algorithm.
Then, an acquisition function is created [13]. Next, the acquisition function value for each
decision vector in the offspring population is calculated. Finally, the decision vectors with
the maximum acquisition function values are chosen to update the surrogate models.

An acquisition function can incorporate different criteria. For example, the expected hyper-
volume improvement for unconstrained problems or the combination of the POFand expected
hypervolume improvement for constrained problems can be utilized in an acquisition func-
tion. Figure2 provides a diagram of the main steps of Bayesian evolutionary optimization.

Table 3 summarizes surrogate-assisted MOEAs in the literature that handle constraints or
incorporateDM’s preferences.None of them is able to handle both computationally expensive
constraints and incorporate preferences.

3 KAEA-C

In this section, we introduce a novel Kriging-assisted a priori multiobjective evolutionary
algorithmwith the ability to handle computationally expensive objective and constraint func-
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Fig. 3 Flowchart of KAEA-C

tions, called KAEA-C. Moreover, we assume the following: the DM provides the maximum
number of expensive solutions, NS , that she/he wants to see at the end of the optimization
process, we have at least one computationally expensive constraint and a limited budget for
expensive function evaluations.

The main idea of KAEA-C is to find feasible expensive solutions reflecting the DM’s
reference point. Here, we have three main phases: initialization, selection strategy, andmodel
management. The novelty of KAEA-C lies in the latter two phases. In the selection strategy
phase, we use Kriging models and focus on generating feasible surrogate solutions. On
the other hand, in the model management phase, our goal is to generate feasible expensive
solutions that improve the Kriging model’s accuracy or nondominated feasible expensive
solutions that follow the DM’s reference point. Figure3 provides a flowchart of the main
steps of KAEA-C.

In the initialization phase, we train surrogate models for the expensive functions. Addi-
tionally, it is important to start the optimization processwith some feasible surrogate solutions
in the initial population [31]. To find some feasible surrogate solutions, we simultaneously
minimize the individual constraint violation for each constraint (equation (2)).

We introduce a novel selection strategy by using two fitness functions and prioritizing
the feasible surrogate solutions. In the selection strategy, we calculate the angle between
surrogate solutions and the reference point (θ in Fig. 1b) as the first fitness function in each
subpopulation and the distance between surrogate solutions to the unconstrained ideal point
as the second fitness function. Then, we select two types of surrogate solutions to update the
Krigingmodels inmodel management. Firstly, we select surrogate solutions that can improve
the accuracy of the Kriging models the most (they have a high uncertainty). Secondly, we
select some feasible surrogate solutions that follow the DM’s reference point the best (by
using (4)) and have a low uncertainty to update the Kriging models. We repeat these three
phases iteratively until the budget of expensive evaluations runs out.
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3.1 Description of the KAEA-C algorithm

Algorithm 1 shows the main steps of KAEA-C. The input of Algorithm 1 are as follows: tmax

is the maximum number of generations in each iteration, FEmax is the budget of expensive
evaluations, Nu is the maximum number of surrogate solutions that we choose to update the
Kriging models, and |Pr | is the size of a randomly generated population. In addition, we ask
the DM to provide the reference point ẑ and NS , which is the maximum number of expensive
solutions that she/he wants to see. Note that we ask the DM for the upper bound NS based
on her/his cognitive capacity.

As mentioned earlier, in the initialization phase, we minimize individual constraint vio-
lations of each constraint that was defined in (2) to find feasible surrogate solutions and add
their corresponding decision vectors to a randomly generated population Pr . Moreover, we
have an archive A to store all expensive solutions and their corresponding decision vectors.
Next, we train Kriging models for each expensive function. We continue optimization with
the Kriging models and original functions that are computationally inexpensive. Then, in
each generation t , we generate an offspring population Qt using evolutionary operations
crossover and mutation. To select the population Pt+1 for the next generation, we propose
a novel selection strategy which is described in Algorithm 2, where we demonstrate how to
push the algorithm to generate more feasible surrogate solutions.

In the model management, we select two types of surrogate solutions to evaluate the
expensive functions at them: The surrogate solutions that can improve the accuracy of the
Kriging models the most, and feasible expensive solutions that reflect the DM’s reference
point the best. Then, we store these expensive solutions in the archive A and update the
Kriging models.

Lastly, after we have used the whole budget of expensive evaluations (when FE =
FEmax ), we must select at most NS expensive solutions from the archive A to show to
the DM. The selected expensive solutions must be feasible, nondominated, and they should
follow the DM’s reference point. As we mentioned in Sect. 2, we use the ASF (equation (4))
to determine how well a solution reflects the DM’s reference point. Therefore, we calculate
the ASF values for feasible nondominated expensive solutions in the archive A. Then, we
select up to NS expensive solutions with the lowest ASF values to show to the DM.

3.2 Initialization

In KAEA-C, the optimization process is performed on the Kriging models and the computa-
tionally inexpensive functions. It is important to start the optimization process with an initial
population with some feasible surrogate solutions [31].

First, we generate the random population Pr (e.g., by using Latin hypercube sampling
[61]). The size of Pr is denoted as |Pr |. Then, we evaluate the expensive functions at the
decision vectors in Pr and store their original function values in the archive A (along with
the corresponding decision vectors). Next, we use the archive A to train Kriging models for
expensive functions.

To increase the likelihood that we have some feasible decision vectors in the initial pop-
ulation P0, we first formulate the following multiobjective optimization problem:

minimize {cv1(x), . . . , cvm(x)}
subject to xli ≤ xi ≤ xui , i = 1, . . . , n,

(7)
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where we simultaneously minimize the individual constraint violations in problem (1), and x
is a decision vector with the same box constraints as in problem (1). Note that the individual
constraint violations in problem (7) are calculated with regard to the Kriging models or
original functions that are computationally inexpensive. In step 5 of Algorithm 1, we solve
problem (7) by an MOEA, which is appropriate for this problem. After solving problem (7),
we have the final population Pc and we select feasible decision vectors Pf satisfying Kriging
models of the constraints from Pc and combine the decision vectors in Pf and Pr to create
P0. Finally, we remove the duplicate decision vectors from P0.

Moreover, to save computation resources, we do not evaluate expensive functions at Pf .
Therefore, we have two types of decision vectors in P0, those used for expensive evaluations
(they could be feasible or infeasible) and those that satisfy the surrogate constraints. In
addition, we assume that we can solve problem (7) and generate some feasible surrogate
solutions.Discussing the casewherewe cannot find any feasible surrogate solutions is beyond
the scope of this paper.

Algorithm 1: KAEA-C
Input: tmax = maximum number of generations for each iteration, FEmax =

maximum number of expensive evaluations, Nu = maximum number of
expensive function evaluations per update, |Pr | = size of random population,
NS = maximum number of expensive

1 solutions that the DM wants to see, ẑ = reference point provided by the DM Result: Up
to NS feasible expensive solutions reflecting a given reference point

/* Initialization */
2 Initialize expensive evaluation counter FE = 0, generation counter t = 0, an archive

A = ∅, Pr = a randomly generated population of size |Pr |;
3 Evaluate expensive functions at Pr ;
4 Store Pr and corresponding expensive solutions in the archive A;
5 Train Kriging models for expensive functions using archive A;
6 Solve problem (7) by using an MOEA and store the final decision vectors in Pc;
7 Select the feasible decision vectors (w.r.t. surrogate values) in Pc and store them in Pf ;
8 Combine the decision vectors in Pf and Pr and store them in P0;
9 Remove duplicate decision vectors from P0;

10 while FE < FEmax do
11 while t ≤ tmax do
12 Qt = offspring-creation(Pt );
13 Pt = Pt

⋃
Qt ;

/* Selection strategy */
14 Use Algorithm 2 to generate Pt+1;
15 t = t +1
16 end

/* Model management */
17 Use Algorithm 3 to update the Kriging models, archive A, and FE ;
18 t = 0;
19 end
20 Select maximum NS feasible expensive solutions from the archive A that follow ẑ the

best based on (4), and show them to the DM.
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3.3 Selection strategy

In the selection strategy of KAEA-C, we generate the next populationwhile using theKriging
models instead of the expensive functions. Typically, in decomposition-based MOEAs, we
select one decision vector per subproblem based on a fitness function [17, 18]. This selection
strategy can bring up some issues when incorporating DM’s reference point in computa-
tionally expensive problems. For instance, if very few subproblems generate the majority of
feasible surrogate solutions, we do not have enough feasible surrogate solutions to select in
the model management for updating the Kriging models. In addition, this can lead to not
having enough feasible expensive solutions to show to the DM. In the proposed KAEA-C,
we increase the number of feasible surrogate solutions generated by appointing two fitness
functions and selecting a set of nondominated solutions based on the two fitness functions in
each subproblem.

We take two steps to maximize our selection strategy’s likelihood of generating enough
feasible surrogate solutions to show to the DM. First, we separate infeasible and feasible
surrogate solutions. Second, we provide a unique selection algorithm for generating Pt+1.

In each subproblem, our priority is to select feasible surrogate solutions. Here, we create
a bi-objective subproblem with two fitness functions for feasible surrogate solutions, and we
select a set of nondominated surrogate solutions based on the two fitness functions. However,
if all the surrogate solutions are infeasible, we use a ranking system that considers the overall
constraint violation and the number of violated constraints. Algorithm 2 shows themain steps
of our selection strategy.

3.3.1 Dealing with feasible surrogate solutions

If feasible surrogate solutions exist for any subpopulation, we only consider them in the
selection strategy. We are interested in generating feasible surrogate solutions, and one way
to focus on that is to increase the number of feasible surrogate solutions when the next
population Pt+1 is being generated. Then, crossover and mutation have a higher chance of
generating feasible surrogate solutions. Therefore, we aim to select only feasible surrogate
solutions if possible.

We use two fitness functions. The first is the distance d of the surrogate solutions to the
unconstrained ideal point z�, and the second fitness function is the angle θ between feasible
surrogate solutions and the reference point ẑ (see Fig. 1b). We can calculate θ by replacing v

with ẑ in (6). Therefore, d and θ are the two fitness functions we use in our novel selection
strategy, where we select nondominated surrogate solutions based on them.

Figure 4 illustrates how our selection strategy works for feasible surrogate solutions in a
bi-objective case. In Fig. 4a, {y1, . . . , y5} are feasible surrogate solutions of a subpopulation
(black dots), ẑ is the reference point (red cross), and z� is the unconstrained ideal point (blue
square). After calculating the fitness function values d and θ for all feasible surrogate solu-
tions, we can identify the nondominated solutions based on these two fitness functions (see
Fig. 4b). In this example, based on Fig. 4b, it is clear that y2, y3, and y4 are the nondominated
surrogate solutions for the next generation.

Sincewe select a set of solutions for each subproblem, the computation time for optimizing
the surrogate models would increase compared to typical decomposition-based MOEAs.
However, thanks to the low computation time of surrogate evaluations, we can afford to
generate more surrogate solutions during the selection strategy. In return, we will have more
candidate solutions to choose from in the model management, and therefore, more likely find
feasible expensive solutions that reflect the DM’s preferences.
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Fig. 4 An example of the selection strategy for feasible surrogate solutions described in Algorithm 2

Table 4 An example of how an
infeasible surrogate solution is
selected

g1 g2 g3 CV NV NCV NT R

y1 0 0.9 0 0.9 0 2 2 1

y2 0.5 0.2 0 0.7 1 0 1 0

y3 0.25 0 0.8 1.05 1 3 4 2

y4 0.2 0.4 0.4 1 3 1 4 2

3.3.2 Dealing with infeasible surrogate solutions

In case all the surrogate solutions in a subpopulation are infeasible, we focus on moving
toward the feasible region to generate feasible surrogate solutions in the next generation.
Here, we create a ranking system by considering two factors, the overall constraint violation,
which is calculated by equation (3), and the number of constraints that are violated. In each
subpopulation, we pick the infeasible surrogate solution with the lowest rank for the next
generation. If two infeasible surrogate solutions have the same rank, we select one of them
randomly.

Assume the surrogate solutions in {y1, . . . , yq} are infeasible. To select the best surrogate
solution for the next generation, we define:

NT (y j ) = NV (y j ) + NCV (y j ), (8)

where j = 1, . . . , q , NV (y j ) is the number of surrogate solutions that violate fewer con-
straints than y j , NCV (y j ) is the number of surrogate solutions that have a lower overall
constraint violation value than y j , and their sum is denoted by NT . We rank all infeasible
surrogate solutions based on NT (y j ) and refer to their rank as R(y j ). Note that the rank 0
represents the best infeasible solution.

Table 4 shows an example of how the ranking system works for four infeasible solutions
{y1, . . . , y4}. Here, y2 is the best surrogate solution because there is only one surrogate
solution that violates fewer constraints (NV (y2) = 1), and none of the infeasible surrogate
solutions have a lower overall constraint violation (NCV (y2) = 0). Therefore, y2 has the
lowest rank (R(y2) = 0), and it is selected for the next generation.
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Algorithm 2: Selection strategy

Input: The current population Pt , h = number of reference vectors, unconstrained
ideal point, and reference point ẑ

Output: The next population Pt+1;
1 Initialize Pt+1 = ∅, Aθ = ∅ to store the angles between feasible surrogate solutions

and ẑ, and Ad = ∅ to store the distance between feasible surrogate solutions and the
unconstrained ideal point;

2 Generate reference vectors V = {v1, . . . , vh} using (5);
3 Generate subpopulations Y = {Y1, . . . , Yh}, using V and Pt ;
4 for i ← 1 to h do
5 if all surrogate solutions in Yi are infeasible then
6 Use (8) to calculate the rank of all infeasible surrogate solutions in Yi ;
7 select the surrogate solution with the lowest rank and add it to Pt+1;
8 else
9 if number of feasible surrogate solutions == 1 then

10 Select the only feasible surrogate solution for vi and add it to Pt+1;
11 else
12 Calculate the angle between feasible surrogate solutions and ẑ and store the

values in Aθ ;
13 Calculate the distance between feasible surrogate solutions and the

unconstrained ideal point and store the values in Ad ;
14 Select the nondominated surrogate solutions based on Ad and Aθ for Yi and

add them to Pt+1;
15 end
16 end
17 end
18 Return Pt+1;

In Algorithm 2we use the current population (Pt ), the number of reference vectors (h), the
unconstrained ideal point, and ẑ as the input. If an unconstrained ideal point is not available,
it can be estimated at every generation from the current population. Next, we generate the
reference vectors by using (5). In step 3 of Algorithm 2, we generate the set of subpopulations
Y by assigning each surrogate solution to the closest reference vector. Then, we look for
feasible surrogate solutions in each subpopulation. For a subpopulation Yi , if there is no
feasible surrogate solution, we use (8) to select the best infeasible surrogate solution for this
subpopulation.

On the other hand,when feasible surrogate solutions exist inYi , then two cases can happen.
If there is only one feasible surrogate solution, it is selected as the best one for the current
subpopulation. The second case is when more than one feasible surrogate solutions exist in
a subpopulation. Here, we calculate the distance Ad of feasible surrogate solutions to the
unconstrained ideal point and the angle Aθ between feasible surrogate solutions and ẑ. Then,
based on Aθ and ẑ we select nondominated feasible surrogate solutions and store them in
Pt+1.

3.4 Model management

After each iteration, we update the Kriging models. Typically, in Kriging-assisted optimiza-
tion algorithms, the surrogate solutionswith the highest uncertainty (standard deviation of the
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predicted value) are chosen to update the Kriging models since they can potentially improve
the most with these surrogate solutions [23]. It is essential to evaluate expensive functions
at some decision vectors with a high uncertainty (regardless of whether they are feasible or
infeasible). As mentioned in [13], assume a decision vector x ′ is infeasible regarding the
Kriging models of the constraints. If x ′ has a high uncertainty, then its corresponding expen-
sive solution may be feasible. Therefore, if we do not evaluate the expensive functions at
such decision vectors, the algorithm may not identify the feasible region correctly, and the
search direction may be misleading.

In addition, we are interested in finding feasible expensive solutions reflecting the DM’s
preferences. As mentioned earlier, the most common approach is to use a Bayesian evolu-
tionary optimization algorithm that uses an acquisition function that considers some criteria
to select some surrogate solutions to update the surrogate models. However, in our case,
creating an acquisition function that can consider selecting surrogate solutions with a high
uncertainty and feasible surrogate solutions with a low uncertainty that follow the DM’s
preferences could be complicated. Therefore, we select surrogate solutions that have a high
uncertainty and ignore whether they violate constraints or not. We select some of the feasi-
ble surrogate solutions reflecting the DM’s reference point and having a low uncertainty to
increase the likelihood of finding such expensive solutions separately. The main steps of the
model management are shown in Algorithm 3.

In case some of the functions are inexpensive, we do not train any Kriging models for
them. Therefore, the uncertainty for these objectives is zero. Here, for a surrogate solution
y, we define the uncertainty information Uy as:

Uy =
m̄∏
j

u j − u jmin

u jmax − u jmin

≤ 1, (9)

where, m̄ is the number of expensive functions, u j is the uncertainty information from the
j-th Kriging model for y, and u jmin and u jmax are the minimum and maximum uncertainties
of the j th corresponding Kriging function, respectively. Note that, the values of u jmin and
u jmax are updated after each iteration.

As input, Algorithm 3 needs FE and FEmax from Algorithm 1, the current population,
Nu , and the archive A from Algorithm 1. In steps 1–3, we check how many expensive
evaluations are left. In this paper, improving the Kriging models’ accuracy is as important as
finding feasible expensive solutions that follow the DM’s preferences. Therefore, we spend
half of Nu on expensive evaluations that can improve the Kriging models, and the other half
on expensive evaluations that can lead to finding feasible expensive solutions reflecting the
DM’s reference point.

To update the Kriging models, we select Nu/2 surrogate solutions with the highest uncer-
tainty to improve the Kriging models in areas with the most potential of improving their
accuracy and store them in Au . Then, we select Nu feasible surrogate solutions with the
lowest ASF values and store them in Aas f . Next, we select Nu/2 surrogate solutions with
the lowest uncertainty values from Aas f and store them in Au . After that, we evaluate the
expensive functions at the corresponding decision vectors of Au that are not in the archive
A. Finally, we add all new expensive solutions to the archive A, update FE , and train the
Kriging models again with the archive A. Note that, in case NU is an odd number, use NU −1
as the maximum number of expensive evaluations per update.

As we mentioned earlier, in the selection strategy, we select a set of nondominated surro-
gate solutions based on their distance to the unconstrained ideal point and their angles with
the reference point. Moreover, the proposed selection strategy complements the proposed

123



Journal of Global Optimization

Algorithm 3:Model management
Input: FE , FEmax , current population Ptmax , maximum number of expensive function evaluations

per update Nu , and updated archive A from Algorithm 1
Output: updated Kriging models for expensive functions, status of stopping criterion u, and the

archive A;
1 Initialize archives Au = ∅ to store candidate surrogate solutions for updating the Kriging models,

Aas f = ∅ to store surrogate solutions with lowest ASF values, and Anew = ∅ to store new expensive
solutions;

2 if Nu + FE ≥ FEmax then
3 Nu = FEmax − FE ;
4 end
5 Select Nu/2 surrogate solutions with the highest uncertainty from Ptmax , and store them in Au ;
6 Select Nu feasible surrogate solutions from {Ptmax − Au} with the lowest ASF values and store them in

Aas f ;
7 Select Nu/2 surrogate solutions from Aas f with the lowest uncertainty value, and store them in Au ;
8 Use the surrogate solutions in Au that do not belong to A to evaluate expensive functions and store

them in Anew . ;
9 Add the expensive solutions in Anew to the archive A;

10 Use the archive A to train all Kriging models for all expensive functions;
11 Update FE = FE + |Anew |;
12 Return Kriging models, FE , and the archive A

model management by enabling us to spend the available limited budget for expensive evalu-
ations wisely in two main ways. First, sometimes one subproblem can lead to a set of feasible
surrogate solutions that follow the DM’s reference point better than other subproblems. In a
typical decomposition-based MOEA’s selection strategy, only one of these solutions makes
it to the next generation, and this can lead to a lack of surrogate solutions for expensive
evaluations in the model management phase. On the other hand, in our proposed selection
strategy, we keep all the surrogate solutions that follow theDM’s preferences better than other
surrogate solutions, and this helps the model management select the best surrogate solution
available for expensive evaluations. The second way that the selection strategy complements
the model management is when most of the surrogate solutions are assigned to one reference
vector. Here, if we choose only one solution to pass on to the next generation, it is possible
not to have enough surrogate solutions for the model management phase to use for expensive
evaluations. However, by selecting a set of nondominated solutions, we increase the number
of solutions we can choose from in the model management phase.

4 Numerical experiments

In this section, we demonstrate the performance of the proposed KAEA-C algorithm.We first
compare it with some existing algorithms. Moreover, we analyze the effect of Algorithms 2
and 3 on the performance of KAEA-C. In the evaluation, we use 12 problems and two
performance indicators.

4.1 Algorithms compared with

Asmentioned in Sect. 1, KAEA-C is the first algorithm for the purpose considered. However,
we can adjust some existing algorithms in the literature for comparison. First, we use a random
search approach as our baseline algorithm. Next, we chose two algorithms from the RVEA
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family, which had competitive results with many MOEAs on different benchmark problems
[52] as examples. Here, we selected AP-RVEA and interactive K-RVEA (IK-RVEA) [11]
for comparison. They both use (5) to decompose the objective space and employ a fitness
function called angle penalized distance [52] to select the best solution for each sub-space.
In the following, we adapt these algorithms to handle computationally expensive constrained
problems.

To modify AP-RVEA (which was not originally proposed for expensive problems), we
train Kriging models for expensive functions and, in the end, randomly select some of the
surrogate solutions generated by AP-RVEA for expensive evaluations. For IK-RVEA, we use
the same reference point for every iteration to treat it as an a priori algorithm. Additionally,
we need to implement a constraint handling technique for IK-RVEA. In this case, we apply
AP-RVEA’s constraint handling technique. Thus, the key difference between IK-RVEA and
AP-RVEA lies in IK-RVEA’s model management. To highlight the importance of proper
model management, we do not modify these two algorithms in this aspect. AP-RVEA does
not havemodelmanagement, andwe do not create one for it. Conversely, IK-RVEApossesses
model management that considers the DM’s preferences, but it has not been designed for
computationally expensive constraints. We follow the suggestions in the original papers to
set their parameters for the problems.

4.2 Using different components

The majority of KAEA-C’s novelty lies within the selection strategy (Algorithm 2) and the
model management (Algorithm 3). These two components have a modular structure, which
means that we can combine different model management and selection strategies to assemble
new algorithms.

For the selection strategies, we choose the RVEA’s selection strategy (referred to as
RVEASS) since it has a competitive performance compared to other algorithms according
to [52], and it is straightforward to reflect the DM’s preferences [13]. Additionally, we also
choose the R-NSGA-III [62] selection strategy (R-NSGA-IIISS) to be able to assemble more
algorithms.

For model management, we need an algorithm that is suitable for problems with expen-
sive objectives and constraints. Model managements used in Bayesian optimization usually
have this property [13]. In this paper, we use the model management used in an algorithm
called BMOO [63], which uses the POF and expected hypervolume improvement to create
an acquisition function. Then, in each iteration, the solution with the highest acquisition
function value is selected to update the surrogate models. We refer to this model manage-
ment as BMOOMM . We choose BMOOMM because it efficiently performed on multiple
benchmark problems in [33, 63]. Finally, we combine the model management used in [41]
with POF to create a new model management that can handle DM’s preferences along with
computationally expensive constraints.

Surrogate-assisted evolutionary algorithms typically feature a modular design, dividing
functionalities betweenmodelmanagement and selection strategy. Thismodularity facilitates
the theoretical assembly of novel algorithms through the integration of diverse selection
strategies and model management modules from various evolutionary algorithms. In this
work, we leverage this flexibility to assemble eight distinct algorithms, succinctly denoted as
assembled algorithms (AAs), AA1 through AA8. They are formed by combining the selection
strategy from KAEA-C (Algorithm 2) and the model management from Algorithm 3 with
external modules such as the AP-RVEA selection strategy and BMOO model management.
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Table 5 Assembled algorithms by using different selection and model management strategies

KAEA-C AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8

Selection strategy

Algorithm 2 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

RVEASS [52] ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

R-NSGA-IIISS [62] ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Model management

Algorithm 3 ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

BMOOMM [63] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗

TEHVI [41]+POF ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

The sign✓indicates the selection andmodelmanagement strategy that is used for the corresponding assembled
algorithm

The specific configurations of these assembled algorithms are detailed in Table 5, providing
a clear depiction of the module combinations in use. It is imperative to emphasize that the
primary objective of this endeavor is not the creation of new algorithmic entities, but rather a
comprehensive assessment of the performance characteristics ofAlgorithms 2 and 3, ensuring
a robust evaluation of their capabilities in diverse situations.

Note that there are many different selection strategies and model managements in the
literature that we can use to assemble new algorithms (e.g., see [13]). However, in this
research, our goal is to show a gap in the literature for algorithms like KAEA-C. Analyzing
all the algorithms that can be assembled is outside of the scope of this research.

4.3 Problems considered

There are not many constrained benchmark problems with more than two objective functions
in the literature [64]. Constrained versions of well-known benchmark problems DTLZ [65]
(referred to as CDTLZ) are introduced in [66]. We begin with a relatively simple problem,
C2DTLZ2, to examine whether all the algorithms can successfully solve it. Furthermore, we
choose C3DTLZ4, which according to [67], is one of the few problems in the CDTLZ family
that genuinely requires a constraint-handling technique. For this reason, we select C3DTLZ4
from the CDTLZ family. In addition to the CDTLZ family, we also utilize some test problems
introduced in [68]. Here, the problems named “MW4”, “MW8”, and “MW14” are CMOPs
(single constraint) with a scalable number of objectives [68].

We use a total of 14 problems to evaluate the performance of KAEA-C. In Table 6, we
display their dimensions and references. The superscript in the problem name refers to the
number of objectives. In the C3DTLZ4 problem, the objective functions are the same as
in DTLZ4, but the constraints make DTLZ4’s Pareto front infeasible. We use C3DTLZ4
with three objectives (C3

3DT LZ4) and seven objectives (C7
3DT LZ4) and assume that all

functions are computationally expensive. In addition to the benchmark problems, we also
employ four real-world problems, which include conceptual marine design (CMD) [69], the
car-side impact (CSI) problem [66], the water resource (WR) problem [70], and the multiple-
disk clutch brake design (MDCBD) problem [71]. In the first two problems, we assume
that all functions are computationally expensive. However, for the MDCBD problem, we
consider the last three objectives inexpensive since they are individual decision variables.
The formulations of all these problems can be found in the supplementary materials.
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Table 6 The number of
objectives (k), constraints (m),
and decision variables (n) in the
problems considered with
references

k m n

C3
2DT LZ2 [66] 3 3 7

C7
2DT LZ2 [66] 7 7 11

C3
3DT LZ4 [66] 3 3 7

C7
3DT LZ4 [66] 7 7 11

M3W4 [68] 3 1 7

M7W4 [68] 7 1 11

M3W8 [68] 3 1 7

M7W8 [68] 7 1 11

M3W14 [68] 3 1 7

M7W14 [68] 7 1 11

CMD [72] 4 9 6

CSI [66] 3 10 5

WR [70] 5 7 3

MDCBD [71] 5 8 5

4.4 Parameter settings

For the experiments, we need to set the values of five parameters. Based on [73, 74], we set
the size of the randomly generated population Pr as

|Pr | = 11n − 1, (10)

where n is the number of decision variables. The DMmust provide the maximum number of
expensive solutions that she/he wants to see (NS), and it can be different for each problem.
However, we use here the same number for all problems for simplicity, and we set NS = 5.
The next parameter is the maximum number of expensive evaluations at each iteration (Nu).
In Algorithm 3 we use Nu/2 expensive evaluations for finding feasible expensive solutions
that follow the DM’s reference point. Therefore, in a worst-case scenario, we should have
Nu = 2NS so that if we have only one iteration, we attempt to find NS new expensive
solutions to show to the DM at least once. Hence, we set Nu = 10.

Moreover, the maximum number of expensive evaluations (FEmax ) determines the num-
ber of iterations that we can have. There is no exact way of allocating the correct value for
FEmax [75]. In practice, we can set FEmax according to the amount of time that the DM has.
However, in this paper, we assume that we have the function evaluation budget of 100 after
we have generated P0, and therefore, FEmax = Pr + 100. The last parameter is the maxi-
mum number of generations (tmax ) at each iteration, where we use the surrogate evaluations.
Since this part of the optimization process is computationally inexpensive, we use 40000
surrogate evaluations. We set Nu = 10, and NS = 5. In the ASF function (equation (4)), we
set ρ = 0.0001.

4.5 Performance indicators

Typically, in a posteriori MOEAs, we aim at the convergence of solutions toward the Pareto
front and the diversity of solutions to evaluate the performance of an algorithm [76]. However,
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when dealing with a priori algorithms, where the DM’s preferences are incorporated in the
solution process, the performance should be evaluated regarding the region in which the DM
is most interested in. This region is also known as a region of interest. Different performance
indicators in the literature can incorporate DM’s preferences (expressed as a reference point)
(see, e.g., [11, 77–81]). In most of the performance indicators that we mentioned, the DM
must provide additional information such as the size of the region of interest to evaluate the
performance of an algorithm. To reduce the cognitive load and simplicity, we choose two
parameterless indicators. For the first performance indicator, we use the ASF, which does
not need any new information from the DM, and has been used to evaluate the performance
of different algorithms [11, 82]. The second parameterless indicator we use is the expanding
hypercube-metric (EH-metric) in [81]. In [81], the EH-metric is compared to the well-known
performance indicator R-metric [77], and there are some examples where the EH-metric and
the R-metric disagree on which algorithm is better, and after visualizing the solutions, it is
evident that the EH-metric was able to identify the best performance. Based on [81], the
EH-metric is more consistent to find the better algorithm than the R-metric.

4.6 Experimental results

As previously mentioned, we compared 12 algorithms, focusing on their performance for
feasible, computationally expensive solutions. We generated 15 random reference points for
each problem as preference information. Each algorithm was independently run 31 times for
every reference point and problem, after which we calculated the median ASF and EH-metric
values of the final five (NS = 5) expensive solutions. All 12 algorithms were able to find at
least five feasible expensive solutions.

We employed a pairwise Wilcoxon significance test [83] to compare the 12 algorithms,
using a significance level of α = 0.05. Subsequently, we implemented a scoring system to
rank the algorithms. For each test, a score of 0 was assigned to a pair if the performance
difference between the algorithms was insignificant, +1 to an algorithm if it significantly
outperformed the other algorithm and -1 to the algorithm that performed significantly worse.
We then ranked all 12 algorithms in an descending order based on the sum of these scores,
with rank 1 indicating the best performance and rank 12 representing the worst performance.

Figure 5 presents the heatmaps for the rankings of ASF and EH-metric scores across the
12 problems and their 15 reference points. A paired colormap (employing Viridis color code)
was utilized to generate the heatmaps, with darker colors indicating better ranks (dark blue
for rank 1 and yellow for rank 12). As illustrated in Fig. 5, KAEA-C outperformed the other
five algorithms for the majority of the problems based on both performance indicators.

Upon analyzing the results with a budget of 100 function evaluations, IK-RVEA, AP-
RVEA, and RS demonstrated inferior performance. Furthermore, AA1, AA6, AA7, and
AA8 consistently exhibited darker colors compared to AA3, AA4, and AA5. KAEA-C’s
performance displayed darker colors than all other algorithms for both ASF and EH results,
signifying its superior performance for most problems.

These observations indicate that other algorithms struggle to effectively reflect the DM’s
reference point in computationally expensive constrained problems. The poor performance
stems from their reliance on constraints solely within their selection strategies and the fact
that their model management is not specifically designed to handle constraints. It is also
noteworthy that IK-RVEA, which incorporates model management, generally outperformed
AP-RVEA, which lacks model management, further underscoring the significance of model
management.
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Fig. 5 Heatmaps of the rankings of a ASF and b EH-metric scores for 12 problems and their 15 reference
points for KAEA-C, AA1-AA8, IK-RVEA, AP-RVEA and RS, respectively

Fig. 6 Boxplot of frequency for each rank forKAEA-C,AA1-AA8, IK-RVEA,AP-RVEAandRS, respectively

Building on our previous analysis, we further examine the results of the two performance
indicators by presenting the frequency of appearance for each rank across all problems as
boxplots in Fig. 6. As demonstrated, both indicators exhibit similar outcomes in identifying
KAEA-C as the superior performing algorithm compared to the other algorithms. Addition-
ally, the other assembled algorithms display somewhat comparable performances. However,
it is worth noting that AA1 and AA6 appear to have better median values than the other
algorithms, indicating that they may be more consistent in their performance across the
problems.

We report additional experiments with increased numbers of function evaluations (200
and 300) in the supplementary materials. As the number of function evaluations increases,
the performance of all algorithms improves, reaching a point where, with 300 function eval-
uations, most performances become competitive. However, the results obtained with 100
expensive evaluations indicate that KAEA-C’s performance outshines that of AP-RVEA,
IK-RVEA, and the assembled algorithm. This observation has practical relevance since real-
world problems often involve working with a limited number of function evaluations.
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The EH-metric results reveal that solutions generated by KAEA-C exhibit better diversity
and convergence around the reference point for the majority of the tests conducted. Further-
more, the ASF results suggest that our proposed algorithm can more effectively generate
solutions that align with the DM’s preferences compared to the other algorithms examined
in this paper.

In real-world problems, we cannot assume to have access to such information. We can the
utilize the current population at the end of each iteration to update the estimates, ensuring
that our algorithm remains applicable in practice.

5 Conclusions

In this paper, we introduced KAEA-C, a novel Kriging-assisted a priori multiobjective evo-
lutionary algorithm designed for computationally expensive problems with at least one
expensive constraint. To the best of our knowledge, no other algorithm in the literature
simultaneously incorporates DM’s preferences and handles computationally expensive con-
straints. As the name suggests, KAEA-C employs Kriging models as surrogates to replace
computationally expensive functions.

KAEA-C decomposes the objective space into subspaces and employs a novel selection
strategy, wherein each subspace solves a bi-objective subproblem, and the nondominated
solutions form the offspring population. In this selection strategy, surrogate evaluations
generate the offspring population, allowing for numerous function evaluations. KAEA-C
leverages this opportunity by selecting a set of nondominated solutions based on two fitness
functions rather than selecting one solution per subproblem. Subsequently, we designed a
model management strategy that capitalizes on our selection approach. Here, we evaluate
the expensive functions for some decision vectors generated during the optimization process.
Our selection strategy provides numerous options to choose from, increasing our probability
of finding feasible expensive solutions aligned with the DM’s preferences.

We compared KAEA-C with 11 other algorithms and observed that its performance
consistently outperformed the others, even under a limited function evaluation budget of
100 function evaluations. When we increased the budget, the performance of other meth-
ods improved, but KAEA-C still remained competitive. This result highlights the ability of
KAEA-C to perform well under restricted function evaluation budgets, which is often the
case in real-world applications.

We examined various combinations of selection and model management strategies, with
results indicating that the proposed ones perform best when used together. Furthermore,
we observed that altering any of KAEA-C’s two components led to a worse performance
appearing more frequently, signifying that the assembled algorithms’ performance was not
as strong as KAEA-C’s.

For future research,we plan to develop an interactive algorithmbased onKAEA-C that can
adapt to potentially significant changes in the DM’s preference information. Additionally,
we have assumed that the latencies of the expensive functions are relatively uniform. In
future work, we aim to address problems with nonuniform latencies and explore strategies
for effectively utilizing computing time.
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