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ABSTRACT:

Wildfires present severe threats to various aspects of ecosystems, human settlements, and the environment. Early detection plays a
critical role in minimizing the destructive consequences of wildfires. This study introduces an innovative approach for smoke-based
wildfire detection in Boreal forests by combining the YOLO V5 algorithm and transfer learning. YOLO V5 is renowned for its real-time
performance and accuracy in object detection. Given the scarcity of labelled smoke images specific to wildfire scenes, transfer learning
techniques are employed to address this limitation. Initially, the generalisability of smoke as an object is examined by utilising wildfire
data collected from diverse environments for fine-tuning and testing purposes in Boreal forest scenarios. Subsequently, Boreal forest
fire data is employed for training and fine-tuning to achieve high detection accuracy and explore benchmarks for effective local training
data. This approach minimises extensive manual labelling efforts while enhancing the accuracy of smoke-based wildfire detection in
Boreal forest environments. Experimental results validate the efficacy of the proposed approach. The combined YOLO V5 and transfer
learning framework demonstrates a high detection accuracy, making it a promising solution for automated wildfire detection systems.
Implementing this methodology can potentially enhance early detection and response to wildfires in Boreal forest regions, thereby
contributing to improved disaster management and mitigation strategies.

1. INTRODUCTION

Forests are critically important to our planet. They act as carbon
sinks, maintain biodiversity and provide habitats for animal and
plant species. Alongside these, forests greatly impact the econ-
omy in the form of income, employment and various materials
for industry.

Forest fires are devastating, both in terms of human lives, prop-
erty and the public economy. One of the key factors in reducing
forest fires is monitoring-based early detection. An early warning
can reduce reaction time and thus reduce fire damage (Xian and
Nugroho, 2022). Since the nature of a forest fire is unpredictable
(Xue et al., 2022), automated wildfire surveillance methods are
raising research interest. Several methods and frameworks have
been developed for satellites, area surveillance cameras, wireless
sensor networks and unmanned aerial vehicles (UAVs).

Surveillance and detection systems can be combinations of envi-
ronmental sensors (air temperature, humidity etc.), or be based
on image features using object detection and recognition meth-
ods (Xue et al., 2022). As mentioned, satellites and other tech-
nologies can provide solutions, but UAVs especially allow us to
approach real-time solutions. According to (Alexandrov et al.,
2019), the development of surveillance and detection methods
has been widespread for about 20 years, but the practical use of
UAVs has become more common near the 2020s. Similarly, re-
cent studies (Khan et al., 2022, Gaur et al., 2020) note that UAVs
are traditionally used as data collectors, but with new platform
technology and carefully selected deep-learning methods, we can
create systems that collect and analyse data during flights (Xue et
al., 2022).

∗Corresponding author

1.1 State-of-the-art and challenges of smoke detection

Wildfires can be detected using approaches from environmental
parameters to image analysis. However, the first fire signal is
typically visual; a small or massive column of smoke appears be-
fore visible flames or noticeable changes in distant air tempera-
ture (Mukhiddinov et al., 2022). Compared to smoke sensors, be-
sides an alarm, an image can provide visual information about the
situation to firefighters (Xue et al., 2022). From a methodologi-
cal point of view, machine-learning methods and especially deep
learning (Convolutional Neural Network based approached (e.g.
Faster-CNN) and You Only Look Once (YOLO)) have reached
the current state-of-the-art in wildfire detection (Gaur et al., 2020,
Alexandrov et al., 2019, Mukhiddinov et al., 2022, Xian and Nu-
groho, 2022).

A known challenge related to developing deep-learning-based smo-
ke-detection methods is the availability of suitable training data
(Gaur et al., 2020). Since the data availability is limited, it is
interesting to study how a generalisable object is smoke and do
different environmental features affect the model’s capability to
adapt to different types of nature.

1.2 Smoke-related known challenges

Physically smoke is a combination of gases and airborne solid
and liquid particles. Visually, smoke is a wispy object to de-
tect. Smoke appears in different shades of colour, tends to move,
change shape, and be transparent or thick; allowing environmen-
tal structures to partially or completely hide behind it. Against
the sky, smoke may be confused with clouds and, depending on
the environment, a surface of a lake can mirror clouds or smoke
and cause more confusion.

Compared to traditional objects and detection methods, a house is
most likely to be detected as a house, regardless of the surround-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023 | © Author(s) 2023. CC BY 4.0 License.

 
1771



ing visual environment (a desert or Boreal forest). Instead, trans-
parent smoke in the desert can look completely different than in
Boreal forests. Since wildfires are a global issue, it is important to
study methods that can be generalised to different environments.

1.3 YOLO V5

YOLO V5 is an object detection method which is able to per-
form fast and accurately in real-time applications. YOLO V5 is
an evolution of YOLO V1 to YOLO V3, incorporating iterative
enhancements, being relatively close to YOLO V4, which were
released close to each other (Jocher et al., 2020, Bochkovskiy
et al., 2020, Xu et al., 2021). YOLO V5’s improvements have
resulted in performance achievements on well-known object de-
tection dataset such as Microsoft COCO (common objects in con-
text) (Lin et al., 2014), but unlike YOLO V4, version releases and
evaluations are not published in scientific journals.

As mentioned, the challenges of smoke detection methods relate
to data availability and the appearance of the smoke. However,
according to the Ultralytics documentation for YOLO (Jocher,
2023) training a YOLO V5 model from scratch requires a mini-
mum of 1500 images and 10 000 instances per class to be accu-
rately labelled and 10% of background images. Ultralytics offers
five YOLO V5 models (sizes N,S,M, L and X), where the main
difference is the model’s size, speed and expected accuracy. The
smallest is the fastest, but the achieved accuracy (Mean average
precision mAP) is reported to be higher with larger models.

We approached the data-availability challenge by selecting pre-
trained YOLO V5 (version 6.0) models in sizes S,M and L which
were pre-trained with COCO dataset (Jocher, 2023). These mod-
els are trained and tested to recognise 80 object types in their
common environments. The COCO data excludes smoke and
wildfire scenes.

In this study, we will concentrate on smoke in different environ-
ments and see how a YOLO V5 algorithm detects smoke using
a transfer learning approach and data sets captured in visually
differentiating environments. The aim is to minimise the size of
the models and create an approach that could later on easily be
deployed in different fire scenes.

1.4 Hypothesis, research questions and expected results

Our hypothesis is that an image-based, pre-trained object detec-
tion method for wildfire smoke will need locally collected and
annotated data for training in order to generalise regardless of
changing environmental features. As a known need exists for
training data, we will perform several exams to answer the fol-
lowing questions; ”A. How general object is a wildfire smoke in
a visually strongly changing environment?” and ”B. When we
are using a pre-trained model, how much do we need locally col-
lected data to generalise the wildfire model for fire detection in
Boreal forests?”

This study is the first opening of our three-year studies of wildfire
surveillance and detection methods, reaching for real-time solu-
tions that can be applied to UAVs. The aim is to develop a smoke-
detection-based lightweight model based on YOLO V5 and trans-
fer learning. As outcomes of the first article, we will propose an
architecture and methods for locally adaptable Wildfire detection
YOLO V5 models and set the baselines for the data acquisition
and annotation needs for fine-training the models to adapt to the
new environments. We will perform the tests with novel RGB
data collected with UAV flights in the summer of 2022 in Finland
from five forest restoration burnings. This new Boreal forest fire
data and its annotations will be released later.

The paper is organised as follows. After the introduction, section
2. introduces the methods and data. The results and discussion
are in Sections 3. and 4. and the paper is finalised in the conclu-
sions in Section 5.

2. MATERIAL AND METHODS

At first, the YOLO V5 transfer learning framework is introduced.
In the following subsections, we will seek experiments A and B
with methodological and data-related details.

2.1 YOLO V5 architecture

YOLO architecture is often described as a structure containing
backbone, neck and head. Figure 1 is a heavily simplified illus-
tration of the structure and its main features, explained as follows.
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Figure 1: The YOLO v5 transfer learning architecture. A YOLO
model can be divided into backbone, neck and head structures.
Our approach uses the weights of a pre-trained model by freezing
the backbone and fine-training the model starting from the neck.

The YOLO V5 architecture incorporates Cross Stage Partial Net-
work (CSPNet) Darknet (CSPDarknet53) as its backbone, which
effectively addresses the issue of repetitive gradient information
in large backbones (Nepal and Eslamiat, 2022). By integrating
gradient changes into the feature map, it achieves benefits such
as improved inference speed, increased accuracy, and reduced
model size. The architecture structure has bottlenecks and skip
connections, ensuring the efficiency (Xu et al., 2021, Nepal and
Eslamiat, 2022).

To enhance information flow, YOLO V5 utilises a path aggre-
gation network (PANet) as its neck. PANet includes a feature
pyramid network (FPN) with both bottom-up and top-down lay-
ers. This FPN improves the propagation of low-level features and
enhances object localisation accuracy in lower layers (Nepal and
Eslamiat, 2022, Jocher et al., 2020).

Spatial pyramid pooling fast (SPPF) eliminates the fixed size con-
straint of the network, being part of the backbone (Figure 1 and
Table 1). Upsample (Table 1) is employed for upsampling the
previous layer fusion using nearest neighbour interpolation, while
Concat (Figure 1) is a slicing layer used to segment the previous
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layer. The last three Conv layers serve as detection modules lo-
cated in the network’s head.

Similar to its predecessors Yolov4 and Yolov3, Yolov5’s head
generates three sets of feature maps for multi-scale predictions.
This enables the efficient detection of objects of varying sizes
(Nepal and Eslamiat, 2022, Jocher et al., 2020, Xu et al., 2021).

Table 1 reveals the details of layers and parameters used in exper-
iments A and B. Conv represents a convolution layer and module
C3 consists of three cascaded convolution layers with different
bottlenecks. Anchors are pre-defined bounding boxes with spe-
cific heights and widths. These capture the scale and aspect ratio
characteristics of distinct classes of objects that are observable
in images. The Anchors in Table 1 are anchors for the COCO
dataset, being re-evaluated for the smoke images automatically
within the YOLO V5 implementation (Jocher, 2023).

Architecture and parameters, pre-trained models

Parameters Model S Model
M Model L

Classes 80 80 80
Model depth multiple 0.33 0.67 1.0
Layer channel multiple 0.50 0.75 1.0

Anchors
P3/8 [10,13, 16,30, 33,23]
P4/16 [30,61, 62,45, 59,119]
P5/32 [116,90, 156,198, 373,326]

YOLOv5 v6.0 backbone
Layers [from, number, module, args]
0-P1/2 [-1, 1, Conv, [64, 6, 2, 2]]
1-P2/4 [-1, 1, Conv, [128, 3, 2]]

[-1, 3, C3, [128]]
3-P3/8 [-1, 1, Conv, [256, 3, 2]]

[-1, 6, C3, [256]]
5-P4/16 [-1, 1, Conv, [512, 3, 2]]

[-1, 9, C3, [512]]
7-P5/32 [-1, 1, Conv, [1024, 3, 2]]

[-1, 3, C3, [1024]]
9 [-1, 1, SPPF, [1024, 5]]

YOLOv5 v6.0 head
Layers [from, number, module, args]
0-P1/2 [-1, 1, Conv, [64, 6, 2, 2]]

[-1, 1, Conv, [512, 1, 1]]
[-1, 1, nn.Upsample, [None, 2, ’nearest’]]

Cat backbone P4 [[-1, 6], 1, Concat, [1]]
[-1, 3, C3, [512, False]]
[-1, 1, Conv, [256, 1, 1]]
[-1, 1, nn.Upsample, [None, 2, ’nearest’]]

Cat backbone P3 [[-1, 4], 1, Concat, [1]]
17 (P3/8-small) [-1, 3, C3, [256, False]]

[-1, 1, Conv, [256, 3, 2]]
Cat head P4 [[-1, 14], 1, Concat, [1]]
20 (P4/16-medium) [-1, 3, C3, [512, False]]

[-1, 1, Conv, [512, 3, 2]]
Cat head P5 [[-1, 10], 1, Concat, [1]]
23 (P5/32-large) [-1, 3, C3, [1024, False]]
Detect(P3, P4, P5) [[17, 20, 23], 1, Detect, [nc, anchors]]

Table 1: The architecture, layers and parameters of the pre-
trained Ultralytics YOLO V5 version 6.0 S-M models. Upper
part describes the parameters of the S,M and L models and COCO
dataset’s anchors. The lower part describes the network architec-
ture as it is described in the Ultralytics implementation.

To be short, the image undergoes feature extraction using CSP-
Darknet53, followed by feature fusion using PANet. The final
results are presented as 3D feature tensor, produced by the head
layer.

2.2 YOLO V5 transfer learning approach

As mentioned, YOLO models require a high amount of images.
Those need to be annotated frame-by-frame, which is time-taking
and expensive. There are several tools to work with, some of
those are automated, but since the partly transparent smoke is a
difficult object to border with confusion possibilities to clouds
etc., the annotation process may need to be supervised frame by
frame by a human. Therefore, we are using pre-trained mod-
els and a transfer learning technique to decrease the amount of
training and validation data and related frame-by-frame annota-
tion work.

YOLO V5 architecture allows layers to be frozen, which means
that the weights of the frozen layers are not changed during the
fine-training phase. In our experiments, we froze the backbone,
denoted as layers 0-9, and used the wildfire and Boreal forest fire
data for generalising the models to detect smoke.

A red dotted line in Figure 1 visualises the frozen line between the
backbone and neck layers, enabling the YOLO V5 models to be
trained using considerably less training data than a model trained
from scratch. Table 2 shows the data specs in experiments A
and B, which are used in the neck and head layers in our transfer
learning approach.

2.2.1 Parameters, optimisation and workflow The models
used hyperparameters which were optimized for YOLO V5 COCO
training (details can be obtained from the repository: (Jocher,
2023)). The loss function (Equation (1)) of a YOLO V5 model is
a combination of multiple components:

Loss = λ1Lcls + λ2Lobj + λ3Lloc (1)

Objectness loss (Lobj) evaluates the confidence of the predicted
bounding boxes containing objects. It employs binary cross-entropy
loss to measure the agreement between the predicted objectness
score and the ground truth label. Classification loss (Lcls) per-
forms multi-class object detection, calculating the cross-entropy
loss between the predicted class probabilities and the true class
labels. The third component, localisation loss (Lloc) measures
the discrepancy between the predicted bounding box coordinates
and the ground truth box coordinates.

According to (Jocher, 2023), notation λ in Equation (1) repre-
sents the balance between the three prediction layers P3 (small
objects),P4 (medium objects) and P5 (large objects). Objectness,
classification and localisation losses mentioned in Equation (1)
are balanced as shown for object loss in Equation (2), using pre-
defined weights [4.0,1.0,0.4].

Lobj = 4.0Lsmall
obj + 1.0Lmedium

obj + 0.4Llarge
obj (2)

The tests for experiments A and B were repeated several times
using an early stopping method to obtain the optimal amount of
epochs and batch size, which were eventually set to 120 and 12,
respectively.

2.2.2 Data details and visualisations The wildfire smoke da-
taset was released in 2022 (Dwyer, 2022). The data is annotated
for YOLO V5, containing images mainly from desert-like envi-
ronments and wildfire smoke. All available wildfire smoke data
was used in this study; the data was divided into training and
validation portions. Figure 2 visualises the different scenes of
wildfire smoke data and Boreal forest fire data.
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The Boreal forest fire data was captured during four forest restora-
tion burnings in the summer 2022. The restoration burnings took
place in Finnish towns Evo (E25.18555556, N61.22805556), Hei-
nola (E26.44250000, N61.30083333), Karkkila (E23.97805556,
N60.64222222) and Ruokolahti (E28.92222222, N61.35055556).
The weather conditions and locations differed, and the captured
data contains both, close-range and long-range videos. The data
was collected using unmanned aerial vehicles (drones), and phan-
tom p4 action camera’s RBG sensor (4096 x 2160 resolution).

(a)

(b)

Figure 2: Data samples: a) typical scenes in wildfire smoke data
and b) typical scenes in Boreal forest fire data. The environmen-
tal difference is noticeable between these smoke object detection
data sets.

Experiment A
Classes ”smoke”, ”big smoke”
Models S | M | L
Model size 14 MB | 41 MB | 81 MB
Layers 157 | 212 | 267
Parameters 7 012 822 | 20 852 934 | 46 108 278
Training data wildfire flame
Training data class ”smoke”
Background images 10 %
Training size 590
Validation size 147
Test data Ruokolahti
Test data classes ”big smoke” | ”smoke”
Test data size 101 | 101
Experiment B
Classes ”smoke”, ”big smoke”
Trials 1 | 2 | 3 | 4 | 5|
Models S | S | S | S | S |
Training data Boreal forest fire
Training data classes ”big smoke” | ”smoke”
Background images 10 %
Training size 390 | 700 | 1010 | 1320 | 1630
Validation size 159 | 159 | 159 | 159 | 159
Test data name Ruokolahti
Test data classes ”big smoke” | ”smoke”
Test data size 101

Table 2: Experiments A and B data and model details. The tests
were run separately for ”big smoke” and ”smoke” annotations.

In experiment A, the models S, M and L were fine-trained using

wildfire smoke data and the models were tested using newly col-
lected Finnish Boreal forest fire data. The aim was to examine
how generalisable object is smoke in different environments and
compare the performance of S, M and L models.

Experiment B utilised different amounts of Boreal forest fire data
for training S models. The training data was collected from three
different flight campaigns and the test data was the same as in
experiment A (Ruokolahti). Experimental details are in Table 2.

2.2.3 The data pre-processing The RGB images were con-
verted from mp4 format to .JPG images using a Python script.
The script converted every 48th frame (approximately one frame
per two seconds) from the videos. Images were manually checked.
Any image containing artificial effects, General Data Protection
Regulation (GDPR) related elements (identifiable humans, car
register plates or homes, etc.) were removed. The remaining
data were manually annotated for two classes ”big smoke” and
”smoke” using makesense.ai web tool (makesense, 2023). Big
smoke surrounded the whole smoke cloud, smoke was a collec-
tion of smaller smoke elements, containing no visible background
elements. Since the smoke is the first sign of a fire, the flames
were left unannotated.

Ruokolahti data was excluded from the training and validation.
The test data for all experiments of A and B were selected ran-
domly. The amount of test data was 101 images and it contained
10% images with no smoke (”background” in Table 2).

Training sets of experiment B were randomly selected from Evo,
Heinola and Karkkila images. The amount of data in different
models is denoted in Table 2. Training data contained 10% back-
ground frames.

Figure 3: Boreal forest fire data annotation example. Yellow
bounding box: ”big smoke”, red boxes: ”smoke”.

An annotation example is shown in Figure 3. The yellow bound-
ing box represents annotations with ”big smoke” labels, one in-
stance per image, and the red boxes are ”smoke” annotation in-
stances. The wildfire data in experiment A was annotated sim-
ilarly to our ”big smoke”. The tests were performed twice for
each experiment A model; the results were obtained using ”big
smoke” and ”smoke” annotations for all S, M and L size models.
Experiment B performed using both classes. The five models of
the five trials were eventually two-class classifiers for ”smoke”
and ”big smoke”.

3. RESULTS

The results are introduced experiment-wisely. We obtained the
results using Python programming language, pre-trained Ultra-
lytics PyTorch version of YOLO v5 (6.0) (Jocher et al., 2020).
The results were computed using 28 core Linux server for non-
parallel computing, x86 64.
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3.1 Experiment A

Based on the results of experiment A, the proposed transfer learn-
ing approach seemed to work. Figure 5 shows an example of the
training and validation losses. Subfigure Figure 4a and Table 3
confirm that all of the S, M and L models were capable of gener-
alising over the wildfire smoke validation data.

(a)

(b)

(c)

(d)

Figure 4: Examples of experiment A predictions: a) M model,
trained with wildfire smoke data, prediction dta: wildfire smoke
(validation result). b) S model, trained with wildfire smoke data,
tested with Ruokolahti and ”smoke” annotations. c) M model,
trained with wildfire smoke data, tested with Ruokolahti and ”big
smoke” annotations. d) L model, trained with wildfire smoke
data, tested with Ruokolahti and ”big smoke” annotations.

However, as expected the models were not able to generalise well
with Boreal forest fire data. Figures 4b and 4c visualise examples
of the test data prediction bounding boxes. All models struggled
with ”smoke” annotations, performing better with ”big smoke”
annotations. The size of the model did not have a meaningful
impact on the results, resulting to perform experiment B using
the S model, which was the fastest to train (Table 4) and achieved
the best results with Ruokolahti data and ”big smoke” annotations
(Table 3).

Figure 5: Experiment A, training and validation losses of the S
model. Results confirm that the model was able to generalise
for the wildfire validation data. Models S, M and L loss curves
behaved similarly.

Validation results
Wildfire, 147 images, 147 ”smoke” instances

Precision Recall mAP95 mAP50-95
Model S 0.90 0.88 0.92 0.49
Model M 0.94 0.93 0.93 0.51
Model L 0.93 0.92 0.93 0.51
Test results
Ruokolahti, 101 images, 794 small ”smoke” instances

Precision Recall mAP95 mAP50-95
Model S 0.05 0.06 0.03 0.008
Model M 0.041 0.035 0.022 0.0055
Model L 0.027 0.14 0.017 0.0044
Test results
Ruokolahti, 101 images, 101 ”big smoke” instances

Precision Recall mAP95 mAP50-95
Model S 0.25 0.15 0.094 0.019
Model M 0.0072 0.05 0.0042 0.0009
Model L 0.031 0.020 0.017 0.0035

Table 3: Wildfire training data data: 590 images, validation data:
147 images, 147 ”smoke” instances. Ruokolahti test data: 101
images, with 101 ”big smoke” instances 794 ”smoke instances”.

Training time
Model S 1.39 h
Model M 4.51 h
Model L 5.72 h

Table 4: The training times of experiment A models. Model S
was trained faster than the larger models, using a similar amount
of training and validation data.

3.2 Experiment B

This experiment was performed fine-training the S model five
times (trials 1-5), using different amounts of Boreal forest fire
training data (details in Table 2). The results were obtained for
both annotations. Similarly, as in experiment A, the backbone
was frozen. The training and validation losses had similar trend
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than the models of the experiment A, confirming that the models
were not noticeably overfitting.

Test results
Boreal forest fire, 794 ”smoke” instances

Precision Recall mAP95 mAP50-95
Trial 1 0.15 0.083 0.048 0.012
Trial 2 0.17 0.096 0.061 0.016
Trial 3 0.29 0.10 0.088 0.021
Trial 4 0.33 0.091 0.085 0.021
Trial 5 0.24 0.11 0.074 0.019
Test results
Boreal forest fire, 101 ”big smoke” instances

Precision Recall mAP95 mAP50-95
Trial 1 0.83 0.76 0.77 0.43
Trial 2 0.91 0.80 0.81 0.44
Trial 3 0.90 0.78 0.80 0.48
Trial 4 0.92 0.76 0.78 0.50
Trial 5 0.94 0.78 0.80 0.50

Table 5: All five trials were performed using frozen backbone and
Boreal forest fire data. During the trials, the amount of training
data was increased by 310 images from 390 (Trial 1) to 1630 im-
ages (Trial 5). The results were obtained using the same Ruoko-
lahti test data as in experiment A

Figure 6: A visualisation of experiment A, Trial 5 results. The
relation between F1-score and confidence. F1 score can be in-
terpreted as the balance between precision and recall. Red lines
show the optimal confidence threshold levels; the highest F1 re-
sults can be achieved using a 0.3-0.4 confidence level, while a
threshold close to 0.6 may be an optimal choice, being not too
strict. Being over 0.6, the F1 score will decrease. The most in-
teresting curve is visualised with light blue, representing the ”big
smoke annotations.”

As we see from the results, Trial 5 achieved the highest scores.
Figure 6 visualises Trial 5 F1-Confidence results. The light blue
curve visualises the ”big smoke” class results, the orange ”smoke”
class results and the dark blue line both classes. Numerical re-
sults in Table 5 and orange curve in Figure 6 confirms that the
”smoke” annotation is not suitable for smoke detection. Annota-
tions that covered the entire smoke area could be detected remark-
able better than the partial smoke annotations. The model’s per-
formance evaluation in F1-Confidence curve visualisation show

that the level of confidence reached the best results between 0.3
and 0.4, but the level could be set up to 0.6. An example of a
test image with drawn prediction bounding boxes and confidence
levels is in Appendix A.

4. DISCUSSION

4.1 Annotations

Since YOLO annotations are lines in a text file (class info and
bounding box coordinates), it is easy to use a Python script to
extract the wanted annotation type for each test. Therefore, a
single image can be annotated several ways, and the annotation
style can be selected and the results separately evaluated during
the implementation.

We tested two approaches, ”smoke” and ”big smoke”. ”Smoke”
annotation was partial (shown in Figure 3). The idea was to in-
clude only samples smoke into the smaller bounding boxes. Each
image contained several instances of ”smoke”. ”Big smoke”,
which performed noticeable better, was a large rectangle, which
contained the whole smoke cloud and some parts of the surround-
ings. Annotations of the Boreal Forest fire images were per-
formed hand-drawn. As a full time job, it took approximately
one week for 900 images to be annotated when the annotation
goal was set to 25 images per hour. This annotation was for two
classes (approx 9-10 bounding boxes per one image), indicating
that simple one class ”big smoke” annotation could be reasonable
faster task to perform.

4.2 Numerical results

All models in both experiments were trained using the proposed
transfer-learning approach. Figure 5 is an example of training
and validation losses. The visualisation is from experiment A (S
model), but all the rest training and validation processes followed
similar trend, without alerting signs of overfitting. The validation
results of experiment A (test and validation data: Wildfire smoke)
are high. The model seemed to learn detect smoke objects. How-
ever, the tests with Ruokolahti data returned low results. As main
outcome, the model S was selected to be used in the experiment
B, since it performed relatively well agains the larger models and
it was the fastest to train. Another result indicated the annotation
style differences; the ”big smoke” results outperformed ”smoke”
ones.

Experiment B used the transfer-learning method and Boreal for-
est fire data. Five S-models were trained using different amounts
of training data. The increment between models was 310 images.
”Smoke” conditions were very difficult to detect, even though the
model was trained to identify two smoke classes. Trials 4 and 5
were the most successful, but the accuracy metrics were very low.

The results for ”big smoke” were promising. High accuracy and
recall scores were achieved in all trials, and mAP scores were
good. In the first trial, the model trained with 390 images achieved
a precision score of 0.83 and a recall score of 0.76. In the best-
performing trial 5, the model trained with 1630 images achieved
a precision score of 0.94 and a recall score of 0.78.

As expected, the results improved as the amount of data increased.
The need for more than 10 000 images for good results does not
apply in our transfer-learning approach. As an example, good re-
sults can be obtained using over 350 annotated images, which can
be annotated by hand approximately in 7 hours, and faster when
using AI-reinforced annotation tool (makesense, 2023). Results
over 0.91 precision required 700 ”big smoke” annotated images.
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Figure 6 visualises the relation between F1-score and confidence.
F1 score can be interpreted as the balance between the preci-
sion and recall. The confidence threshold has the opposite af-
fect on recall and precision; a confidence threshold increment
will cause decreasing recall curve while the precision curve raises
up. Therefore, it is useful to evaluate F1 score and evaluate the
models’ optimal confidence level against it. We can see from
the F1-Confidence curve that the optimal confidence threshold
value for providing us the maximum F1 score is between 0.3 and
0.4. However, since this threshold might be too strict, the optimal
confidence level could be set close to 0.6, which still provides a
reasonable F1 score. When exceeding the 0.6 threshold value, the
results will decrease fast-pace.

4.3 How general object is a smoke in a visually strongly
changing environment?

As expected, smoke seemed to be an object that is difficult to
detect in a changing environment. An example in Appendix A
(Figure A.1) show that a trained model can detect smoke in it’s
different colours and densities, but at the same time we can see,
that those smaller smoke bounding boxes have low confidence
levels.
A ”big smoke” instances are easier to detect, and those contains
usually smoke and no-smoke features since the smoke does not
fill in the whole bounding box. Therefore the model might have
been learning the environmental features around the smoke and
fine features that can be seen under the transparent smoke. This
might partly explain why the models trained with wildfire data
did not generalise to Boreal forest environment; visually the desert
images differ strongly from the green Boreal forests.

4.4 When we are using a pre-trained model, how much do
we need locally collected data to generalise the wildfire
model for fire detection in Boreal forests?

In our transfer-learning approach, even the first trial’s model was
able to generalise well, using only 390 annotated images. How-
ever, YOLO models are utilising deep neural networks, which
benefits from large amount of data. Based on this experiment,
a process where a wildfire detection model is to be trained in a
new environment, requires minimum of hundreds to a few thou-
sand locally collected and annotated images, but reasonable less
images than a model trained from the scratch. The images of the
training data should be captured from different distances, angles,
and include some non-smoke background frames.

4.5 In practice

When a applying a YOLO V5 model into a real-time scene, based
on these results, it is possible to train a customised model rel-
atively fast. It takes minimum of one UAV flight over the fire
scene, a python script to extract jpg images and some annotation
work. If the annotation approach is one ”big smoke” instance
per image, the annotations can be manually performed relatively
fast; approximately 50 images per hour. An automated process
may decrease the annotation time remarkably. After annotations,
it takes one to three hours to train and the model is ready to be
implemented into the platform and it’s pipeline.

4.6 In future

A forest fire may need days, weeks or even years of attention
after the forest fire has been extinguished since the peat may still
be invisibly burning under the moss, and the fire may intensify
again.

One option for after-surveillance might be the use of UAVs and
YOLO models. In an ideal situation, there could be a model that
is light enough to be implemented in a platform that can be at-
tached to a drone. This model could be quickly trained using
local fire data, captured during the active burning phases.

While developing real-time systems, there are payload, energy
and computational capacity limitations to exceed, which need to
be solved. The next steps of this study could be model optimisa-
tion and a choice of a suitable platform, such as Tiny ML shield.
After the components are selected and an optimised model is
ready, the system needs to be implemented into a good frame-
work with a pipeline which delivers the results to the end users.
All of the mentioned steps require further research.

As earlier mentioned, this is an opening study of a three year
project. Besides the upcoming engineering and model optimisa-
tion studies, we will later release the annotated Boreal forest fire
data to ease the known lack of remotely sensed, annotated forest
and wildfire data.

In Finland, Aerial forest fire surveillance has been organised at
the request of the authorities by flying clubs and entrepreneurs.
The country is covered by 22 flight routes. As the population
ages, the number of pilots may decrease from the current level,
making autonomous solutions necessary. Large, autonomous fixed-
wing UAVs could be one solution to carry out these firefighting
flights (Finnish Regional State Administrative Agency, 2023).

4.7 Science and YOLO V5

The equations, architecture description and algorithms of YOLO
V5 are not published in a peer-reviewed academic channels. The
author of Yolo V5 has developed documentation and explanations
in the repository, however, the approach of the repository is more
engineering than scientific.

As a disclaimer, the technical and mathematical details of this
article relies on the YOLO v5 documentation and scientific ar-
ticles written by others than the original authors (Jocher et al.,
2020) and to the releases of the earlier YOLO versions, which
are more accurately presented and reviewed. This lack of peer
reviewed theories might leave some space for theoretical misin-
terpretations, but on the other hand, it does not change on the
results and conclusions of this study.

5. CONCLUSIONS

A smoke is a difficult object to detect in a changing environ-
ment. A transfer-learning approach, utilising pre-trained YOLO
V5 model, can be re-trained using only a few hundreds to a few
thousand images to detect smoke, but the images should be col-
lected in a similar environment than the detection environment to
be.

In the future, YOLO V5 -based light-weight and fast object detec-
tion approaches could serve in UAV-based wildfire surveillance
tasks. The system could be relatively fast applied into a new en-
vironment or fire scene.
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APPENDIX (A)

Big smoke
0.79

Smoke 
0.25

Smoke 
0.26

Smoke 
0.25

Smoke 
0.52

Smoke 
0.44

Smoke 
0.39

Figure A.1: Experiment B: An example of Trial 5 model’s predictions. Red bounding box visualises the ”big smoke” and blue boxes
”smoke” class predictions. A white label in the boxes represents the confidence levels.
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