
Juho Kettunen

Maintainability in cloud-native architecture

Master’s Thesis in Information Technology

May 9, 2024

University of Jyväskylä

Faculty of Information Technology

Author: Juho Kettunen

Contact information: juho.kettunen@student.jyu.fi

Supervisor: Oleksiy Khriyenko

Title: Maintainability in cloud-native architecture

Työn nimi: Ylläpidettävyys pilvinatiiveissa arkkitehtuureissa

Project: Master’s Thesis

Study line: Software and Telecommunication Technology

Page count: 69+6

Abstract: Goal of the thesis is to investigate how maintainability is addressed during the

architectural design phase of cloud-native software development lifecycle. To this end, I

conducted a survey among cloud architects at my current employer Nordcloud. Based on the

survey, I found that maintainability is prioritized higher than scalability and performance,

but lower than security and reliability. I categorized the advice given by the respondents,

and saw that in order to increase maintainability, they prefer using established technologies,

infrastructure-as-code, managed services, and CI/CD pipelines. To the same end, archi-

tectural considerations include loose coupling, microservices architecture, modularity, and

architectural simplicity. Facilitating easy updates in the future is also seen valuable, and of-

ten even individual suggestions were relevant. Even if the comparison to literature is based

on examples, the results generally appear to align with advice found in existing literature.

Keywords: maintenance, maintainability, public cloud, cloud-native, cloud architect, archi-

tecture, software architecture, Master’s Theses

Suomenkielinen tiivistelmä: Tutkielman tavoitteena on selvittää kuinka ylläpidettävyys

huomioidaan pilvinatiivien sovellusten arkkitehtuurisuunnitteluvaiheessa. Tämän saavut-

tamiseksi toteutin kyselyn nykyisen työnantajani Nordcloudin pilviarkkitehtien keskuudessa.

Kyselyn perusteella havaitsin, että ylläpidettävyys priorisoidaan korkeammalle kuin skaalau-

tuvuus ja suorituskyky, mutta alemmaksi kuin turvallisuus ja luotettavuus. Kategorisoin vas-

i

taajien antamat neuvot, jonka ansiosta näin että ylläpidettävyyden parantamiseksi he valitse-

vat vakiintuneita teknologioita, infrastructure-as-code -työkaluja, hallinnoituja palveluita, ja

CD/CD-putkia. Yleisimmät arkkitehtuuriin liittyvät suositukset liittyivät löyhään kytken-

tään, mikropalveluarkkitehtuuriin, modulaarisuuteen, ja arkkitehtuuriseen yksinkertaisuu-

teen. Tulevaisuuden päivitysten helpottaminen nähtiin myös arvokkaaksi, ja usein yksit-

täisetkin ehdotukset olivat oleellisia. Vaikka vertailu kirjallisuuteen perustuu esimerkkeihin,

niin tulokset vaikuttavat yleisesti ottaen noudattavan olemassaolevan kirjallisuuden ohjeis-

tuksia.

Avainsanat: ylläpito, ylläpidettävyys julkinen pilvi, pilvinatiivi, pilviarkkitehti, arkkitehtu-

uri, ohjelmistoarkkitehtuuri, pro gradu -tutkielmat

ii

Glossary

AD Architectural Definition

BaaS Backend-as-a-Service

CI/CD Continuous Integration, Continuous Delivery/Deployment

CNA Cloud-Native Application

CSP Cloud Service Provider

FaaS Functions-as-a-Service

IaC Infrastructure as Code

MSA Microservices Architecture

SBS Service-Based System

µSBS Microservice-Based-System

VM Virtual Machine

iii

List of Tables
Table 1. Respondent experience in cloud-native architecture, n = 15 . 42
Table 2. Respondent experience in software architecture in general, n = 15 42
Table 3. Respondent experience in information technology in general, n = 15 42
Table 4. Priority options and their integer values . 43
Table 5. Quality attributes, their average priorities, and other metrics, n = 15 43
Table 6. Experience range options and their integer values . 44
Table 7. Correlations between experience in a given domain, and prioritization of

maintainability. 44
Table 8. Suggestions about platform- and technology choices, n = 14 . 46
Table 9. Suggestions about application architecture, n = 14 . 46
Table 10. Other suggestions to improve maintainability, n = 14 . 47
Table 11. Respondents’ years of experience in the relevant domains. 64
Table 12. How respondents prioritize the selected quality attributes when designing

cloud-native architecture. 65
Table 13. How respondents address maintainability with platform- and technology choices.66
Table 14. How respondents address maintainability with application architecture. 68

iv

Contents
1 INTRODUCTION . 1

2 BACKGROUND . 3
2.1 Architecture in software development. 3

2.1.1 Software architecture . 3
2.1.2 Software development life cycle . 7
2.1.3 General advice for achieving a good architecture . 10

2.2 Maintainability . 11
2.2.1 Quality Attributes . 11
2.2.2 What is maintainability, and why is it important . 14
2.2.3 How to measure maintainability . 15
2.2.4 How to improve maintainability . 19

2.3 Cloud-nativity . 21
2.3.1 What is cloud-nativity . 21
2.3.2 Microservices . 24
2.3.3 Serverless . 28
2.3.4 Cloud architecture . 30

2.4 Maintainability in cloud-native architecture . 32

3 METHOD . 38
3.1 Research questions and choice of method . 38
3.2 Survey. 38
3.3 Analysis . 41

4 RESULTS . 42
4.1 Demographics (Q1-Q3) . 42
4.2 Prioritization of maintainability (Q4) . 43
4.3 Ways to improve maintainability (Q5 & Q6) . 44

5 DISCUSSION. 48
5.1 Research question RQ1 . 48
5.2 Research question RQ2 . 49
5.3 Research question RQ3 . 52
5.4 Internal and external validity . 56

6 CONCLUSIONS. 58

BIBLIOGRAPHY . 60

APPENDICES . 64
A Survey responses: Q1-Q3 . 64
B Survey responses: Q4 . 65
C Survey responses: Q5 . 66
D Survey responses: Q6 . 68

v

1 Introduction

Goal of the thesis is to investigate how maintainability should be addressed during the archi-

tectural design of a cloud-native application. Maintainability is a quality attribute, which de-

scribes how easy it is to maintain and modify a given system. Software architecture, created

by the software architect, formalizes the structural and behavioral foundation upon which

the rest of the software will be built. Software development life cycle can be described with

different life cycle models that prescribe a way to arrange and order the different activites of

software development. Cloud-nativity means using the technologies and methods best suited

for the cloud computing paradigm. I will expand upon the relevant terminology in chapter 2.

I aim to answer three research questions:

RQ1 How much importance do cloud architects place on maintainability during the archi-

tectural design phase?

RQ2 How to address maintainability concerns when architecting cloud-native applications?

RQ3 Do the recommendations from literature match the views of architects working in the

field?

The main contribution of this thesis are the results of a survey I conducted in order to answer

the two first research question. The survey was directed at cloud architects working at my

workplace Nordcloud, an IBM company 1. When analysing results of the survey, I will first

ascertain the perceived importance of maintainability and contrast this to the respondents’

years of experience in the target domain. Then I will categorize the suggested approaches

for addressing maintainability. Finally, I will compare the survey results to approaches sug-

gested in literature.

I chose this topic for three reasons. First, the maintenance phase of software development

life cycle is prevalent. It takes up the majority of the system’s total lifetime and costs. (Bass,

Clements, and Kazman 1998). Second, choices made during the architectural design phase

cascade into development and maintenance phases. Mistakes and oversights are slower and

more expensive to correct later. (Bass, Clements, and Kazman 1998; Mumtaz, Singh, and

1. https://www.nordcloud.com

1

https://www.nordcloud.com

Blincoe 2021). Lastly, the cloud-native approach is highly relevant in today’s technology

landscape. It helps reduce time-to-market and move costs from capital expenditure to oper-

ational expenditure. Utilizing a public cloud platform also allows the company to leverage

a highly scalable, reliable and secure infrastructure and a wide variety of easily integratable

services. (Vettor, Pine, Jain, et al. 2022).

The thesis is structured as follows. In chapter 2 I dive into related research literature and other

contemporary sources to define the necessary terminology. At the same time, I keep an eye

out for best practices and other suggestions how to most effectively leverage the information

in practice. Then in chapter 3 I describe how my own research is conducted in regards to the

survey and analysis thereof. The results will be presented in chapter 4, and further discussed

in chapter 5. I will close with conclusions in chapter 6.

2

2 Background

In this chapter I will review the literary findings around the thesis topic. My main database

for researching existing literature was the JYKDOK search engine for international articles

(“JYKDOK international articles search” 2023). I decided to search keywords in abstracts,

instead of full-text or only in title. In my opinion the full-text search was too lax, and title-

only too strict. I used the following search criteria:

• (Abstract:”cloud native” AND Abstract:maintainability)

• (Abstract:”cloud native” AND Abstract:architecture)

• (Abstract:”cloud native” AND Abstract:maintenance)

• (Abstract:architecture AND Abstract:maintainability AND Abstract:cloud)

• (Abstract:serverless AND Abstract:maintainability)

• (Abstract:serverless AND Abstract:operations)

• (Abstract:”cloud-native” AND Abstract:quality AND Abstract:attribute)

• (Abstract:software AND Abstract:”quality attribute” AND Abstract:maintainability)

With these criteria I received between 4 to 473 results per search, which was sufficient. In the

end I did not find it necessary to branch out to other search engines, because I additionally

employed an ad-hoc snowballing from bibliographies of promising sources. I was unable

to find full-text of some articles with promising abstracts. In case of one specific article I

emailed the authors 1, and they kindly sent me a PDF of it.

2.1 Architecture in software development

2.1.1 Software architecture

In this section I will discuss the definition of software architecture and introduce related

terminology. Every software system has an architecture. Bass, Clements, and Kazman (1998,

23) state that the architecture exists even if no one present knows any details about it. They

provide us a definition as follows:

1. Bogner et al. (2018)

3

The software architecture of a program or computing system is the structure

or structures of the system, which comprise software elements, the externally

visible properties of those elements, and the relationships among them.

Next I will define the different parts of this definition, and adjacent terminology. A software

system is a collection of software components organized to accomplish a specific function

or set of functions (ISO/IEC/IEEE 42010:2007 2007, 3). These components — or elements

— can be entities of varying size: objects, processes, libraries, databases, commercial soft-

ware, and so on. In its most trivial case, we can consider the entire system to be a single

component. This is indeed an architecture, but practically useless due to lack of necessary

details (Bass, Clements, and Kazman 1998, 24). Koskimies and Mikkonen (2005, 53) define

a component as an individual software unit that offers its services through well-defined in-

terfaces. Implementation details of each component are not considered part of architecture,

but their interactions are. Without describing the interactions we end up with a ”bubbles

and lines” diagram which is not sufficient to describe an architecture (Bass, Clements, and

Kazman 1998, 24).

A software architect is a person, team, or organization responsible for systems architec-

ture (ISO/IEC/IEEE 42010:2007 2007, 3). A system can include more than one structure

(Bass, Clements, and Kazman 1998, 23). Because ”structure” is an abstract concept, it can

change depending on perspective. An architectural view models some aspect of the sys-

tem (Koskimies and Mikkonen 2005). It is a representation of the whole system from the

perspective of a related set of concerns, such as a specific stakeholder’s specific concern

(ISO/IEC/IEEE 42010:2007 2007, 3). A stakeholder is an individual, team or organization

with interests in, or concerns relative to, a system. Examples of stakeholders include clients,

users, the architect, developers, reviewers, and so on. (ISO/IEC/IEEE 42010:2007 2007,

3). Examples of architectural views include a scenario view, logical view, process view, de-

velopment view, physical view, and modification view. They are partly overlapping: when

a specific part of a system is changed, we often need to apply changes in multiple views.

(Koskimies and Mikkonen 2005).

Architecture represents the first design decisions of a system (Bass, Clements, and Kazman

1998). It is difficult to get it right the first time, and can be laborious to alter down the road.

4

In worst case, there is a need for an architectural change, which might result in changes

across the entire system and changes to interaction between components. If we instead can

limit the change to a group of components or only a single one, the change will be easier

to carry out. Out of most design artifacts, architecture has most far-reaching consequences

(Bass, Clements, and Kazman 1998, 31). It will place constraints on implementation and

maintenance: will the system support the required functions; how easy is it to test, main-

tain, change and extend; how large data masses can it process, and so on (Koskimies and

Mikkonen 2005).

The architecture might even have effect on the development organization by nudging towards

a specific way to divide tasks to teams by structure of its components (Bass, Clements, and

Kazman 1998, 31). This is somewhat contrary to Conway’s law 2 which states that the

technical structure of a system will reflect the social boundaries across the organizations

that produced it. I suppose that in an agile organization the social structure is malleable

enough to be impacted by a new system, when new teams need to be formed to facilitate the

development.

According to Koskimies and Mikkonen (2005), architecture lies on a higher abstraction level

than implementation. The lower abstraction level of a system manifests as source code (Bass,

Clements, and Kazman 1998, 24). This might be named as ”the implementation”, or ”de-

sign” as named in ISO/IEC/IEEE 12207:2017(E) (2017). Also the standard ISO/IEC/IEEE

42010:2007 (2007, 4) states that architecture is conceptual instead of concrete. This goes

hand in hand with the used vocabulary. With architecture, we are using the vocabulary of

the solution, and are further away from the problem domain than during implementation

(Koskimies and Mikkonen 2005).

As we’ve read, architecture is of utmost importance for the implementation and future of the

system. Because of this, it seems common sense to document it somehow. Bass, Clements,

and Kazman (1998, 24) define an Architectural Description (AD) as a collection of products

to document an architecture. They outscope the documentation of guiding processes from

actual architecture, which means that an architecture can live independently of its description

or specification. In contrast, ISO/IEC/IEEE 42010:2007 (2007, 3) mentions ”... and prin-

2. https://en.wikipedia.org/wiki/Conway%27s_law

5

ciples guiding its design and evolution” when defining ”architecture”. The standard states

that chosen architectural concepts, as well as considered alternatives, must be justified in the

description. According to the standard, the description can be utilized at multiple different

levels of abstraction, at each level emphasizing the details necessary for that level. If an AD

is not available, it can be reverse-engineered from an existing system. This might be needed

if, for example, it was originally developed without a description, or if the original architect

is no longer available for consultation. (ISO/IEC/IEEE 42010:2007 2007, 7, 67).

A software architecture doesn’t spawn out of nothing. The architecture is based on, among

other things, the requirements placed on it (Bass, Clements, and Kazman 1998). Require-

ments codify the collective wishes and needs that various stakeholders want from the system.

If requirements were the only input to software development, then an identical set of require-

ments would result in two pieces of identical architectures, even from two entirely unrelated

organizations. (Bass, Clements, and Kazman 1998, 5–9).

As we can see, the organization, architect or architects, and the technical environment greatly

influence how software systems are built (Bass, Clements, and Kazman 1998). The organi-

zation might have other existing products, architectures or assets that can be utilized. The

organization has some individual structure, goals and long-term investments, and personnel

with specific skills and availability. Especially the architects’ background and experience

is pivotal in deciding the course for the architecture. The architect might lean towards a

familiar architectural style that they have had success with in the past, and vice versa with

an unhappy experience. Their professional community can infuse into the new system a set

of standard industry practices and software engineering techniques. (Bass, Clements, and

Kazman 1998, 5–9).

The architecture cause feedback to its background factors, such as the organization, cus-

tomers, architects and the software engineering culture in general (Bass, Clements, and Kaz-

man 1998). Because an architecture dictates the structure of a software system, it influences

the structure of the development project with respect to team formation, schedules, and bud-

gets. If the architecture is seen as successful, it might be used in future projects, and then the

team structure might become a permanent part of the organization. The software might also

offer a foothold in a certain market area, and this way the organization could update its goals

6

to take advantage of this new possibility. Customers will likely grow fond of a good software

product, which lowers the threshold for reusing a battle-tested architecture, because this is

more economical than building a new one from scratch. The architects themselves gain more

experience from this specific system, which means that the system’s success or failure will

affect architectural choices made in future projects. When looking through a wider lens, an

especially novel and successful architecture might influence the software engineering culture

as a whole, outside of the organization from which it originated from. Imagine, for exam-

ple, the tides created by the first relational databases, spreadsheets, windowing systems, or

WWW itself. (Bass, Clements, and Kazman 1998, 10–11).

2.1.2 Software development life cycle

In addition to every software system having an architecture, every software system also has

a life cycle (ISO/IEC/IEEE 12207:2017(E) 2017, 17). A life cycle model is a framework

that contains the processes, activities and tasks used during the life of the system, from ini-

tial requirements gathering to the termination of its use (ISO/IEC/IEEE 42010:2007 2007,

3). The specific life cycle stages depend on the chosen life cycle model, of which there are

many to choose from: incremental, spiral, iterative, evolutionary, and so on. Usually there is

an initial planning stage, where the need for a new software system arises. After the need is

verified, requirements are gathered. Next there might be a prototyping phase where multiple

architectures are rapidly mocked and evaluated. Once a rough architectural direction is cho-

sen, an initial architectural definition is formed. After it is validated, there often follows an

iterative cycle where analysis, design, implementation, verification, validation and delivery

are repeated and intertwined. (ISO/IEC/IEEE 12207:2017(E) 2017, 18).

Koskimies and Mikkonen (2005) suggest an architecture-oriented software development pro-

cess. It highlights architectural design and evaluation as a crucial life cycle stage before

moving onto detailed design and implementation. Architecture should be devised incremen-

tally and iteratively from the requirements most relevant to architecture. Usually it is good to

start from functional requirements, after which the non-functional qualities must be pursued.

(Koskimies and Mikkonen 2005).

7

In this thesis I don’t cling to any particular software lifecycle model. Instead I rely on the

general notion that the initial architecture definition and architectural design happens early

on in the life cycle of a software system. If using an iterative life cycle model, the require-

ments, architecture or detailed design might naturally need refinement also later on during

operations and maintenance (ISO/IEC/IEEE 12207:2017(E) 2017). I will focus on the early

choices and design decisions that influence the activities for the rest of the software life-

cycle. We can call these architectural activities as ”architecting”, which includes defining,

documenting, maintaining, and improving an architecture, and certifying its proper imple-

mentation (ISO/IEC/IEEE 42010:2007 2007, 3). In addition to these architecting activities,

Bass, Clements, and Kazman (1998, 12) mention initially creating a business case for the

system, before any architecture is created.

The standard ISO/IEC/IEEE 12207:2017(E) (2017) defines processes related to architecture

and design. Next I will make a distinction between two related but separate processes: the

Architectural Definition process, and the Design Definition process. The purpose of the

Architectural Definition process, as outlined in ISO/IEC/IEEE 12207:2017(E) (2017, 66), is

threefold. First, the architect should create alternatives for a system’s architecture. Then, we

should choose one or multiple alternatives that properly frame the stakeholders’ needs and

fulfill the requirements placed on the system. Lastly, all of this should be described with a

set of uniform architectural views.

At a lower abstraction level, the Design Definition process (ISO/IEC/IEEE 12207:2017(E)

2017, 71) is expected to provide enough detailed data and information about the system and

its components for implementation to be in line with the architectural entities. It involves

preparing for software system design definition by e.g. prioritizing design principles and

characteristics, identifying and planning for necessary enabling systems and services, and

obtaining access to those enabling systems and services. Then we should establish designs

related to each software element. This goes deep in the technical details, such as database

structures, provisions for memory and storage, software processes, and external interfaces.

(ISO/IEC/IEEE 12207:2017(E) 2017, 72).

As I mentioned above, according to ISO/IEC/IEEE 12207:2017(E) (2017, 71–72) selecting

the technologies for implementation and considering compatibility with technologies also

8

falls under the Design Definition process. In my experience with public cloud providers

such as Amazon Web Services, Microsoft Azure, and Google cloud, the infrastructure tech-

nologies are decided by architects instead of software developers. The architect wants to

know which cloud platform is preferred by the customer, in order to reduce the technol-

ogy space to a reasonable set of alternatives provided by the platform. The architect can then

work with the available services to compose an architecture that best serves the stakeholders’

needs. The finer details, such as the choice of programming language or code-level design

patterns, can be left to software developers, as also implied by the ISO/IEC standards.

Maintenance stage is a phase in software life cycle that is often considered less glamorous

than working on greenfield projects and building the next software hit. Despite this, it is gen-

erally accepted that a substantial portion of the total cost of software is spent on maintenance.

Bass, Clements, and Kazman (1998, 32) propose that this figure is close to 80%. Obviously

the actual numbers might be slightly different these days 25 years after their estimate, but

the implication holds: considering maintenance efforts as early as possible in the software

life cycle can pay off. Mumtaz, Singh, and Blincoe (2021, 1) echo that architectural issues

should be tackled in a timely manner, because the cost of fixing those kinds of problems later

can be exceptionally high.

The standard ISO/IEC/IEEE 12207:2017(E) (2017) outlines the maintenance process, which

takes place later in the software life cycle, after Architectural Definition and Design Defi-

nition processes. Its purpose is to sustain the capability of the system to provide a service.

This can be achieved by monitoring the system’s capability to deliver services; recording

incidents for analysis; taking corrective, adaptive, perfective and preventive actions; and

confirming restored capability. In practice, preparing for maintenance should begin already

during architecting. It is necessary to consider constraints placed on the architecture by

maintenance-related requirements. This can be done, for example, by emphasizing encap-

sulation, modularity, and scalability. Documenting the architecture and system reduces the

efforts required to reverse-engineer the system and components when a fix is needed. The

decisions made during architecting can also affect the need and possibilities for e.g. re-

mote diagnostics and maintenance, roll back, backup, and recovering data. (ISO/IEC/IEEE

12207:2017(E) 2017, 95–96).

9

Tasks performed during maintenance activities vary between systems and organizations.

There is a need to review stakeholder requirements, complaints, events, incident and problem

reports in order to identify the type of maintenance effort needed (ISO/IEC/IEEE 12207:2017(E)

2017). If the organization has adopted an iterative software life cycle model, software

requirements might change during maintenance. This change in requirements can be a

source for adaptive and perfective maintenance activities. In that case there will be a need

to make corrections, improvements or other changes to software that is already deployed

(ISO/IEC/IEEE 12207:2017(E) 2017, 97). As Bass, Clements, and Kazman (1998, 32)

points out, having a good grasp of the architecture will help manage changes and reason

about them.

2.1.3 General advice for achieving a good architecture

Because every system has an architecture, you can create an architecture through the simple

method of trial and error. Unfortunately, an architecture built this way is unlikely to fulfill the

requirements and goals placed on it (Bass, Clements, and Kazman 1998, 24). They outline

some helpful advice for creating an architecture from the correct principles. These rules of

thumb are divided into two categories: process-related and structure-related advice.

First we will delve into the process-related topics. As a general rule, there should be a

single architect or a team of architects with a designated leader (Bass, Clements, and Kaz-

man 1998, 15). Functional requirements and a prioritized list of quality attributes should be

provided, so that the architecture can be steered towards achieving them. The architecture

should be formally evaluated for quality attributes, and analyzed for applicable quantitative

measures, such as maximum throughput. Having an architecture support iterative implemen-

tation makes integration and testing easier: a ”skeleton system” can prove that component

communication works, even with otherwise minimal functionality. The architect is also re-

sponsible for defining, distributing, maintaining, and enforcing resource constraints to the

responsible implementation teams. For example, there might be limits to network traffic or

hardware performance that the teams must heed. A good documentation is also a must, with

at least one static view and one dynamic view, written in a notation that all stakeholders can

understand with minimal effort. Speaking of stakeholders, they should be actively partici-

10

pating in evaluating the architecture, to ensure their needs are being met. (Bass, Clements,

and Kazman 1998, 15).

Next in line are the structure-related pieces of wisdom. Bass, Clements, and Kazman (1998,

16) state that modules should be well defined, with a clear separation of concerns and fol-

lowing the principles of information hiding. Their interfaces should also be well defined,

and encapsulate any details that might change during implementation, such as choice of data

structures. To improve modifiability, the modules that produce data should be kept separate

from those that consume data. Between the modules, there should be only a small set of

different ways of interaction, which is to say, the system should perform similar tasks in

a similar fashion all around. This helps improve understandability, reliability, and modifi-

ability, with the added benefit of shorter development time and conceptual integrity of the

architecture. Each quality attribute should be strived towards with well known architectural

tactics that suit it. The architecture should not depend on any specific version of a commer-

cial product or tool, or if it does, changing the product or tool should be both straightforward

and cheap. If working close to hardware, changing the processor allocated for each task or

process should be easy even at runtime. In case of parallel-processing systems, special care

should be given to processes or tasks that touch multiple modules. (Bass, Clements, and

Kazman 1998, 16).

2.2 Maintainability

2.2.1 Quality Attributes

We of course expect that the software system fulfills all its requirements, gives us correct

and accurate results, and that it interacts with other systems in the expected manner (Bass,

Clements, and Kazman 1998, 76). Additionally, there usually is an implicit or even explicit

goal of creating software of high quality. According to Gorla and Lin (2010, 602), this qual-

ity can be influenced by factors that are organizational, technological, or end user-related.

Organizational factors can include the IT budget, number of people in system development

in that organization, and quality of documentation. Level of user involvement and user train-

ings for the systems are end user-related factors. In contrast, technological factors include

11

experience and skill level of the development staff, and type and suitability of development

method, programming language or database model (Gorla and Lin 2010, 602). Few fac-

tors outside the technological category are relevant in this thesis, which is why I mostly –

although not exclusively – focus on factors that can be influenced by the software architect.

Quality attributes are used to describe specific aspects of quality as it relates to software.

Bass, Clements, and Kazman (1998, 76) suggest that there are two categories of quality

attributes that can be measured on architectural level: attributes that can be observed by

running the system, and those that cannot. The first category tells us how well the system

fills its behavioral requirements during runtime. Quality attributes that indicate this include

(Bass, Clements, and Kazman 1998, 79–81; Li et al. 2021, 13; Arvanitou et al. 2017, 60):

• performance

• security

• availability

• functionality

• usability

• monitorability

• reliability

• safety

• fault prediction

• defect proneness

The second category of quality attributes — those that cannot be observed by running the

system — tell us how easy the system is to test, integrate and modify (Bass, Clements, and

Kazman 1998, 81). They are more related to technical implementation than the system’s

behavior. It contains, among others, these attributes:

• modifiability

• portability

• reusability

• integrability

• testability

12

Other authors use related terms ”functional” and ”non-functional requirements”. Bass, Clements,

and Kazman (1998, 76) consider this dichotomy useless. They argue it suggests that all at-

tributes can be divided strictly into those that model the system’s ability to perform the

actions it is expected to, and ”everything else”. The latter non-functional category acts as a

bucket. This too easily leads to a situation where some qualities are given less consideration,

leading to a diminished quality of the system as a whole. In fact, many quality attributes are

intertwined to behavior of the system. For example, it might be impossible to reach lightning

fast performance with a feature that processes very large images. On a higher level, though,

Bass and others consider functionality to be orthogonal to quality attributes. If this wasn’t

the case, implementing a certain functionality would always dictate the system’s security,

usability, or other attributes. The program might function perfectly, but it might also be

difficult to modify or costly to build. (Bass, Clements, and Kazman 1998, 77).

Instead, architectural choices made by the architect decide the level of quality possible for the

system (Bass, Clements, and Kazman 2003, 72). Quality must be considered at every stage

of design, implementation and deployment. Different quality attributes represent themself

differently at different stages. For example, some usability decisions, such as details of a

UI, are not architectural at all. Modifiability, on the other hand, is primarily architectural.

Modifiability relates to how a system is split into components, and a system is modifiable

if changes do not require touching multiple components. Performance depends on both

architectural and non-architectural considerations. Architect can influence how functionality

is divided between each component, and how they communicate. But the finer details are

left to developers, who are usually responsible or detailed design. An example of this is

the choice of an algorithm and turning it into source code. Another thing to consider is

that quality attributes do not exists in a vacuum, but instead influence each other in good or

bad (Bass, Clements, and Kazman 1998, 78). For example, improved monitorability likely

enables improved testability, which in turn leads to an increase in security (Li et al. 2021,

18). The architect must prioritize the quality attributes and decide which ones to emphasize

(Bass, Clements, and Kazman 1998, 129).

13

2.2.2 What is maintainability, and why is it important

The quality attribute maintainability describes the efforts needed to fix errors or to make

enhancements to the system (Gorla and Lin 2010, 603). Based on their mapping study on

design-time quality attributes and metrics, Arvanitou et al. (2017) found that maintainability

is the most often researched quality attribute in most stages of the software development life

cycle; it receives interest in design, architecture, implementation, and maintenance stages.

In other stages such as project management, requirements, and testing, maintainability has

not been subject of much research. (Arvanitou et al. 2017, 61–62).

Like many other quality attributes, maintainability can be further subdivided into more spe-

cific quality attributes, some of which we have discussed before. The standard ISO/IEC

5055:2021(E) (2021, 233) lists modularity, reusability, analyzability, changeability, modifi-

cation stability, testability, and compliance as components of maintainability. Many of these

are also echoed by Arvanitou et al. (2017, 61). Some other categories, such as understand-

ability, are sometimes related to maintainability. Arvanitou et al. (2017) consider it a sep-

arate quality attribute for two reasons. First, some other quality models make a distinction

between maintainability and understandability. Second, a unique research community has

already gathered around understandability as a standalone concept. (Arvanitou et al. 2017,

61).

There is no single metric ”maintainability of the software system”, because different compo-

nents of the system likely have different purposes and implementations (Broy, Deissenboeck,

and Pizka 2006, 26; Bass, Clements, and Kazman 1998, 192). As such, a phrase like ”the

system is highly maintainable” doesn’t tell anything practical about the system, because

quality attributes receive their meaning from surrounding context. For example, the software

might be highly modifiable in relation to specific classes of changes. (Bass, Clements, and

Kazman 1998, 192).

Focusing on maintainability can pay back the cost invested into it. It influences how much

money and time needs to be spent on maintenance tasks, so if maintainability is not con-

sidered, cost of change can be unnecessarily inflated (Broy, Deissenboeck, and Pizka 2006,

21)[2]Vale2022. Personnel requirements have to also be taken into account, because some-

14

one needs to perform the necessary updates and fixes. Wiggins (2011) warns that if mainte-

nance work is left to the one single team of software developers, the time is often deducted

from development of new features.

If a system is not maintainable, it will be more difficult to address other problems, such

as those related to performance or reliability (Bouwers and Deursen 2010, 46). If different

services are highly coupled, one of them cannot be altered without changing others that are

depending on it (Vale et al. 2022, 2). At the business level, maintainability of an important

system defines the organization’s ability to adapt their business processes to changing market

circumstances, and to implement innovative products and services (Broy, Deissenboeck, and

Pizka 2006, 21).

Even if the software itself stays unchanged for years, it can break if and when its environment

changes. This phenomenon is called software rot 3. In other words, software rot happens

when a system’s assumptions go out of date. A good example of this is the infamous ”Y2K”

event which resulted in uncountable bugs when two-digit year counters underwent wrap-

around at the start of the new millennium. Even outside such one-off situations, software can

touch the underlying operating system and network infrastructure in many places: library

versions, directory paths, IP addresses and hostnames, and so on (Wiggins 2011). The Jargon

File 4 entry about software rot advises to employ robust design to deflect such problems.

Even if the Jargon File is not a scientific source of wisdom, based on what we’ve discussed

in this chapter, I consider taking care of maintainability part of robust design.

2.2.3 How to measure maintainability

As discussed before, problems discovered early in the software development life cycle are

easier to address (Bass, Clements, and Kazman 1998). At that point you still have a chance to

adjust requirements, specification or design with relatively low cost. Software quality cannot

be ”appended” to the project afterwards, but must instead be baked in deliberately. Qualities

of a system can be anticipated by evaluating the architecture. This means we should evaluate

3. http://www.catb.org/jargon/html/S/software-rot.html.
4. The Jargon File is a ”comprehensive compendium of hacker slang illuminating many aspects of hackish

tradition, folklore, and humor.” http://www.catb.org/jargon/html/online-preface.html

15

http://www.catb.org/jargon/html/S/software-rot.html
http://www.catb.org/jargon/html/online-preface.html

the architecture as soon as feasible. To evaluate a certain quality attribute, we must make

sure we have the necessary architectural descriptions at hand. For example when evaluating

modifiability — a subcategory of maintainability — we need at least a decomposition that

shows us the different modules and how tasks are distributed between them. (Bass, Clements,

and Kazman 1998, 32, 190–191).

It is necessary to decouple quality attributes from effort estimations in our daily work. Moses

(2009) points out that maintainability of a software module is intended to signify possible

challenges posed by code for maintenance tasks. Maintainability cannot give you an estimate

of how difficult a certain maintenance change will be or how long it will take. Unless the

same change has been performed in exactly the same circumstances before, duration and

possibility of success of a code change are only subjective estimates. Moses suggests two

methods for estimating practical maintenance tasks. It can be given on an ordinal scale

of e.g. 1-5 instead of an absolute time estimate. If a concrete estimate is necessary, two

experts should voice their opinions, from which we can calculate an expected duration with

confidence limits. (Moses 2009, 204).

Vice versa, a prediction system for maintenance effort is not a prediction system for the qual-

ity attribute maintainability (Moses 2009, 206). Each maintenance effort includes factors

that influence the duration of the activity. These factors include availability of documen-

tation, amount of testing after the change, and skills of the maintenance team. Because it

is obviously impossible to carry out and measure all possible maintenance activities for a

system, the effort can only be measured from a subset of all possible maintenance activities.

This means that, even in the best scenario, a system’s maintainability can be estimated only

for activities that are similar to ones that have already been performed before to this sys-

tem. In the worst case, the measured effort can be misleading, if measured activities do not

represent actions that are carried out in practice. (Moses 2009, 206).

Broy, Deissenboeck, and Pizka (2006) state that an evaluation criteria must be well-founded

and checkable. Evaluating a whole software system is quite involved, and requires multi-

ple kinds of evaluation methods. Source code can be automatically checked for syntactical

properties. Other methods are semi-automatic, requiring some human actions. The rest of

the methods are thoroughly manual, such as reviewing documentation, or evaluating whether

16

the system employs correct data structures (Broy, Deissenboeck, and Pizka 2006, 22). Our

focal point of interest, maintainability, is a high-level quality attribute, because it cannot be

directly calculated from metrics (Arvanitou et al. 2017, 60).

In their study about designing microservice systems using patterns, also Vale et al. (2022, 9)

found that the participants do not measure quality attributes directly. Instead, the participants

measured quality attributes as a sum of lower-level attributes or processes related to the

quality attributes in question. Such lower-level attributes include measuring code coverage,

time taken to resolve issues, and analysis of architectural debt, which all are indirect metrics

for maintainability. Vale and others reason that this might be because lower level attributes

are easier to measure and check directly than maintainability, which is in line with Arvanitou

et al. (2017). They also postulate that subjective understanding of quality attributes is very

much personal and often vague. This makes it difficult to mutually agree on a definition

inside an organization. Instead, participants preferred to think of techniques and tools they

used to tackle the related problems. (Vale et al. 2022, 7–10).

Automatic methods for assessing maintainability of a system usually limit themselves to

source code level. Such methods cannot be used to to evaluate an architecture before im-

plementation has taken place. Despite this, they are useful after the fact, for example when

following an iterative life cycle model. The standard ISO/IEC 5055:2021(E) (2021, 1–2)

points out that faults in architectural or design practice can also be detected by statically

analysing design specifications. This requires that the specification is written in a design lan-

guage with a formal syntax and semantics. The standard presents a long list of ”Automated

Source Code Quality Measures” (ASCQM) that provide strong indicators for the quality of

a software system in each area. In my opinion, the following maintainability weaknesses are

related to architecture (ISO/IEC 5055:2021(E) 2021, 38–47):

• invocation of a control element at an unnecessarily deep horizontal layer (layer-skipping

call)

• invokable control element with excessive file or data access operations

• invokable control element with large number of outward calls (excessive coupling or

fan-out)

• modules with circular dependencies

17

The standard also provides multiple detection patterns (ISO/IEC 5055:2021(E) 2021, 2).

They help detect structural weaknesses from code. One pattern can be used to detect mul-

tiple weaknesses. I would list the following maintainability detection patterns as related to

architecture (ISO/IEC 5055:2021(E) 2021, 48–54):

• limit number of data access

• limit number of outward calls

• ban circular dependencies between modules

Arvanitou et al. (2017, 63) note that there are two categories of metrics for quantifying qual-

ity attributes: those that can be evaluated through a single metric, and those evaluated with

multiple. Arvanitou et al. (2017, 66) list the following metrics relating to the architectural

stage:

• cyclomatic complexity

• coupling factor

• coupling between objects

• number of modules

• information flow (fan-out)

• non-functional coverage

• absolute adaptability of a service

• relative adaptability of a service

• mean of absolute adaptability of a service

• mean of relative adaptability of a service

• level of system adaptability

Most of the tools to calculate these metrics are unnamed, likely created in academia by re-

search teams, and not available for public use. Maintainability is often connected to metrics,

but is not always quantified as their function. Evaluating a quality attribute with a single

function is non-trivial, which is why few research have suggested such a function for high-

level attributes like maintainability. (Arvanitou et al. 2017, 67).

18

2.2.4 How to improve maintainability

In this section I write about ways to improve maintainability for a software system. For ex-

ample, there will be less need to reverse-engineer systems and elements during maintenance

work if we documenting the system is an explicit requirement during design (ISO/IEC/IEEE

12207:2017(E) 2017, 96). Utilizing the available standards and system development method-

ologies helps create systems that are easily understandable. This results in systems that re-

quire less effort to maintain. (Gorla and Lin 2010, 608).

Broy, Deissenboeck, and Pizka (2006) remind us to separate ”facts” from ”acts”. An activity,

or act, is something that we try to do. In context of software maintenance, example acts

can include concept location, impact analysis, coding, and modification. A fact is some

circumstance surrounding the system, such as readability of documentation, processes used

in the organization, or availability of debugging tools. Maintainability also depends on things

outside of the product itself. For example organizational facts are not part of the product,

and often overlooked when assessing maintainability of a system. Skill of the maintainers

plays a key role in maintainability. A high turnover rate can make a system more difficult

to maintain, if the company loses a large share of its developers to a competitor. Well-

defined processes, such as a configuration management process, can help create a quality

product. Trustworthy tools like debuggers, and visualization and refactoring tools are critical

for performing effective maintenance. (Broy, Deissenboeck, and Pizka 2006, 25–26).

Bass, Clements, and Kazman (1998) collate that the most important thing in improving non-

runtime attributes like modifiability and testability is to enable and facilitate making changes

to the system. The system likely suffers from poor modifiability if it relies on a shared

memory solution with global variables accessible to all components, where a change to data

format could require changes to all components (Bass, Clements, and Kazman 1998, 89).

A change should only affect a small number of components. ISO/IEC/IEEE 12207:2017(E)

(2017, 96) concurs that systems which highlight encapsulation, modularity, and scalability

can be simpler to maintain. Achieving this requires foresight into what kinds of modifications

will be necessary in the future. The foresight can be achieved by an experienced architect

with available change histories for this and related systems. (Bass, Clements, and Kazman

1998, 118).

19

To improve maintainability, Vale et al. (2022, 7) suggest tracking bug reports with Slack and

Jira. Static code analysis tools such as SonarQube and Codacy help on the source code level.

Code reviews, automated pipelines, and domain-driven design are also beneficial. According

to their research, there are design patterns one can use to gain an edge with maintainability.

Strangler, Ambassador, External Configuration Store, Gateway Offloading, Backends for

Frontends, Pipes and Filters, and Static Content Hosting patterns were reported by at least

one interviewee to have improved maintainability of a system they have worked with. (Vale

et al. 2022, 4–6). Design patterns create a common language between designers, to share an

understanding of solutions that have been found to work well.

Related to design patterns, Bass, Clements, and Kazman (1998) talk about ”Unit Opera-

tions”, which are general design operations or techniques that allow the architect to achieve

quality attributes. Unit operations have their roots in the engineering world, and are at a

higher level of abstraction than design patterns. Examples of unit operations are Separation,

Uniform Decomposition, Replication, Abstraction, Compression, and Resources Sharing.

The unit operations Separation and Resource Sharing can have a positive effect on main-

tainability by improving modifiability. In Separation, functionality is detached as its own

component with a well-defined interface to its surroundings. This has numerous advantages:

it enables distribution, which in turn enables parallelism; it’s easier to divide development

work to development teams; and it improves modifiability and portability. Resource Sharing

means that data or services are encapsulated and then shared between multiple indepen-

dent consumers. Examples of this are databases, blackboards, and servers in a client-server-

architecture. This unit operation decreases coupling between components, which leads to

improved integrability, portability and modifiability. (Bass, Clements, and Kazman 1998,

123–126).

The Heroku cloud application platform (Wiggins 2011) utilized ”Explicit Contracts” to main-

tain a strong separation between the platform and the applications running on it. This results

in what they call ”erosion-resistance”, which is synologous to improved maintainability. An

example of an explicit contract is that in a Ruby application, the developer must use a Gem

Bundler and a Gemfile to declare dependencies of ther application. In a Node.js applica-

tion this is achieved via package.json file instead. Other contracts dictate how environment

20

variables should be used, how to implement logging, and how to tell the platform how you

want your application to be launched. Adhering to these explicit contracts allows Heroku to

change the infrastructure and platform without breaking applications running on it. (Wiggins

2011).

Different quality control activities should be performed at different intervals (Broy, Deis-

senboeck, and Pizka 2006, 25). To avoid redundancy, copy-pasted sections of new code

should be checked up to daily. Then again, it is enough to review documentation at certain

points of the development process, and not even weekly. This is mainly because manual

quality checks are laborious, and thus costly. Whenever feasible, manual review should be

supported or replaced with automated tools to as high a degree as possible. This makes good

quality check tooling valuable, because we can receive high-quality assessments more often.

(Broy, Deissenboeck, and Pizka 2006, 25).

A system might be labeled as a ”legacy system” due to factors that do not negatively affect

usage or functioning of the software (Broy, Deissenboeck, and Pizka 2006, 22). Such factors

can be the coding style, or the implementation language. A label of ”legacy” hints at unmain-

tainability, and the will to replace the system with something else. Broy, Deissenboeck, and

Pizka (2006, 22) argue that a legacy system should not be replaced unless the new system

increases business value or maintainability. Li et al. (2021, 18) concurs: a new architecture

could mitigate some problems of the legacy system, but implementing it properly will cost

time and effort.

2.3 Cloud-nativity

2.3.1 What is cloud-nativity

The cloud is a distributed architecture of individual cloud-native services, providing re-

sources as services in a tiered fashion to construct a full technology stack from hardware

to middleware platforms to applications (Pahl, Jamshidi, and Zimmermann 2018, 1). Birth

of the public cloud can be dated back to 2006, when Amazon Web Services launched their

Simple Storage Service (S3) and Elastic Compute Cloud (EC2) (Kratzke and Quint 2017,

1). The so-called first wave of cloud computation meant that companies replaced their own

21

data centers with virtual machines (VMs) running on data centers owned by cloud platform

providers (Gannon, Barga, and Sundaresan 2017, 17). While revolutionary, it was still diffi-

cult to support both scalability and security at the same time, and there was no cloud-based

tooling for data, event or error correction to be used in debugging. (Gannon, Barga, and

Sundaresan 2017, 18).

”Cloud-native” is a term often used, but rarely elaborated beyond ”we used the cloud in-

stead of our own data center” (Gannon, Barga, and Sundaresan 2017, 17). Terminology

and related technology have gone through many steps to get where we are now, touching

Service Oriented Architecture (SOA), VMs, cloud computing, containers, and microservices

(Kratzke and Quint 2017, 3). Cloud-nativity is an approach that only makes sense on top of

cloud infrastructure, which means that the physical environments have been virtualized, and

infrastructure is disposable. When using disposable infrastructure, units of infrastructure are

created, scaled, and destroyed quickly with help of automation. There is a fitting metaphor

of ”cattle vs. pets”, where disposable infrastructure is the cattle: all instances are identical,

and if one of them requires an update or repairs, it will be replaced instead of fixed. (Vettor,

Pine, Jain, et al. 2022).

Kratzke and Quint (2017, 8) searched ”cloud-native” from Google Trends for an overview

of its usage. The term was widely used around 2007, around the first wave of cloud compu-

tation. Usage tapered after that, but around 2015 the term enjoyed newfound interest. The

researchers admit that Google Trends is not the most reliable of metrics due to its sensitivity

to industry buzzwords. These results, however, correspond to the results of their research.

”Cloud-native” was first mentioned in academic literature in 2012 5 6. (Kratzke and Quint

2017, 8).

Vettor, Pine, Jain, et al. (2022) offer a definition for ”cloud-native”:

Cloud-native architecture and technologies are an approach to designing, con-

structing, and operating workloads that are built in the cloud and take full ad-

vantage of the cloud computing model.

5. Andrikopoulos, Fehling & Leymann, 2012. Designing for CAP - The Effect of Design Decisions on the

CAP Properties of Cloud-native Applications
6. Garca-Gmez, et al., 2012. 4CaaSt: Comprehensive Management of Cloud Services through a PaaS

22

In my opinion this definition is vague, with the main conceptual burden carried by ”cloud”

and ”cloud computing model”. Patrizio (2018) offers additional details to the definition:

cloud-native is a modern way to build and run software systems, and leverages the elastic-

ity, scalability and resilience offered by cloud computation. A still more specific definition

comes from Kratzke and Quint (2017), whose systematic mapping study aimed to collate the

research trends around cloud-native software development practices. They also wanted to

define the Cloud-Native Application (CNA), for which the resulting definition is as follows

(Kratzke and Quint 2017, 13):

A cloud-native application (CNA) is a distributed, elastic and horizontal scal-

able system composed of (micro)services which isolates state in a minimum of

stateful components. The application and each self-contained deployment unit

of that application is designed according to cloud-focused design patterns and

operated on a self-service elastic platform.

From this we can conclude that a CNA is not merely a distributed system, but especially

distributed, horizontally scaling, resilient, and load-adaptive (Kratzke and Quint 2017, 13).

Scalability is at the heart of cloud-native software (Noval et al. 2022). A CNA must be more

more than ”available via the internet”: it must achieve global scale by serving thousands of

concurrent users (Gannon, Barga, and Sundaresan 2017, 17). If you think of global, culture-

penetrating companies, you might come up with Netflix, Spotify, Uber, Airbnb, Facebook, or

Twitter (Gannon, Barga, and Sundaresan 2017; Patrizio 2018).

Companies such as Microsoft, Google, Amazon, Oracle, IBM, Alibaba, Heroku, and Redhat

provide public cloud platforms for other companies to build cloud software on. They are

called Cloud Service Providers (CSP). CSPs’ own software products might utilize the CSP’s

own infrastructure, which makes sense for simplicity of logistics. Some services such as

AWS Kinesis, DynamoDB, SQS, and Amazon Redshift; Microsoft Azure CosmosDB and Data

Lake; and Google BigQuery are themselves cloud-native under the hood, and used to build

CNAs. (Gannon, Barga, and Sundaresan 2017, 17).

CNAs share some common features. They are expected to be always running. At the same

time, a CNA must expect the physical infrastructure to vary, which leads to related intermit-

23

tent errors (Gannon, Barga, and Sundaresan 2017, 17). This is different from single-machine

applications, where we can usually assume that the platform — which consists of hardware

and an operating system — stays the same during application runtime and always works. For

CNAs, the reality is that once the application starts receiving a sufficient number of requests,

something is always either breaking or broken. It is necessary to architect the software in

such a way that updates and testing are possible without disruptions to the production in-

stance of the software. Security should also be an integral part of the architecture, due to

multiple small components, and a need to manage access on multiple levels of the software.

A simple firewall is not enough. (Gannon, Barga, and Sundaresan 2017, 17).

CNAs utilize technology and techniques suitable for dynamic cloud environments. These

cloud environments can be either public, private or hybrid (Noval et al. 2022). The tech-

niques include microservices, containers, service meshes, immutable infrastructure, declara-

tive APIs, continuous delivery technology, backing services and automation (Noval et al. 2022;

Patrizio 2018; Vettor, Pine, Jain, et al. 2022). Methodologies such as DevOps and agile are

often adopted when building CNAs (Patrizio 2018). Other CNA development methodologies

are often based on design patterns (Kratzke and Quint 2017).

The three most common ways to build CNAs are microservices architecture, fully managed

high-abstraction services, and serverless computing (Gannon, Barga, and Sundaresan 2017,

17). In fully managed services, the service handles everything outside of business logic:

infrastructure, management, scaling, and so on. Microservices architecture is the most com-

mon approach. Serverless computing means utilizing CSP-provided services to build soft-

ware without VMs and sometimes even without containers. (Gannon, Barga, and Sundaresan

2017, 17). I will discuss microservices and serverless in the following chapters.

2.3.2 Microservices

Microservices architecture (MSA) is an increasingly accepted and adopted architectural

style, and is much used in modern softwares (Vale et al. 2022, 10). It was the first major

style for cloud-native applications, dating back to 2013 (Gannon, Barga, and Sundaresan

2017, 18). Scalability is important when moving to a cloud-first paradigm, and MSA can

24

help overcame the limitations of traditional monolithic systems related to scalability (Vale

et al. 2022, 10). Monolithic software is often built using layered architecture, relational

databases shared across all services, and is run as a single process (Vettor, Pine, Jain, et

al. 2022). MSA on the other hand encourages you to implement small-scale, independently

distributed services instead of tying up all functionality into a single monolith (Li et al. 2021,

1). When using MSA, you will disassemble the application into its basic building blocks by

encasing a single functionality into a single service (Gannon, Barga, and Sundaresan 2017,

18). This also allows for technological heterogeneity, when different services can use the

technologies that best allow it to reach its goal (Li et al. 2021, 18). Together these services

form the complete application (Vettor, Pine, Jain, et al. 2022).

A single microservice implements a specific business functionality as part of a larger domain

context (Vettor, Pine, Jain, et al. 2022). This context should be limited, giving the service

limited responsibility, with only a small number of dependencies on other services (Gannon,

Barga, and Sundaresan 2017, 18). According to Vettor, Pine, Jain, et al. (2022), the service

should contain the necessary logic, state, data, external dependencies and programming plat-

form (Vettor, Pine, Jain, et al. 2022). Meanwhile, Gannon, Barga, and Sundaresan (2017, 18)

recommend that each service should pursue statelessness, where the state is not saved into

the microservice itself, but in another service, such as a database, cache or directory. In my

opinion these differing views on handling state are not conflicting. Absolutes are harmful,

and as prescribed in the CNA definition by Kratzke and Quint (2017, 13), the main idea is to

isolate state in a minimum of stateful components.

The microservice should run its own process independently of other active services, and

communicate with them using standard messaging protocols, such as HTTP/HTTPS, gRPC,

WebSockets or AMQP. Every microservice should be able to be separately managed, repli-

cated, scaled, updated, and deployed (Gannon, Barga, and Sundaresan 2017, 18). Vettor,

Pine, Jain, et al. (2022) elaborate that independent scaling enables a more accurate control

over the system. At the same time this lowers the total costs involved, because there is no

need to scale services with lower usage alongside those that need it. Autonomous develop-

ment and deployment of the separate services removes the need to wait for e.g. quarterly

release schedule to roll out an anticipated feature or fix. Independent deployment also re-

25

duces the risk of total system malfunction, as the changes are isolated to smaller context.

(Vettor, Pine, Jain, et al. 2022). Security must also be considered. One microservice should

only have access to select few other microservices, and the target service must verify access

rights of the requester service. Using role-based access control such as OAuth, AWS IAM, or

Azure RBAC can be instrumental in achieving this. (Gannon, Barga, and Sundaresan 2017,

18).

Gannon, Barga, and Sundaresan (2017, 18) remember a time when a need arose to pack

microservices into spaces smaller than an entire VM image. When using containers, the

code, dependencies, and runtime are packed into a container image (Vettor, Pine, Jain, et

al. 2022). The images are then stored in a container registry, where they can be fetched when

deploying a service that uses them. It is possible to run multiple containers in the cloud on

a single VM, and achieve startup times even lower than one second (Gannon, Barga, and

Sundaresan 2017, 18). Other reasons to select containers as a basis for your application

include portability, and lack of a need to configure every environment separately with the

required frameworks, libraries, and runtime engines. This helps to achieve uniform environ-

ments with greater accuracy and speed. (Vettor, Pine, Jain, et al. 2022). Companies such

as Docker popularized the container technology for use in MSAs (Gannon, Barga, and Sun-

daresan 2017, 18). According to Vettor, Pine, Jain, et al. (2022), Docker is the most popular

container vendor, and it has become industry standard for packaging, deploying and running

cloud-native software.

Containers are often arranged in a service mesh, using a container orchestration solution like

Kubernetes, Apache Mesos, Docker Swarm, Azure Service Fabric or IBM Blue Container

Service (Gannon, Barga, and Sundaresan 2017, 18). The orchestrator takes care of things like

scheduling, affinity, health monitoring, failover, scaling, networking, service discovery, and

rolling upgrades (Vettor, Pine, Jain, et al. 2022). Scheduling means automatic provisioning

of the container instances. Affinity and anti-affinity describe how far away the containers are

from each other, measured in respect to hardware topology. Health monitoring allows for

automatic detection and recovery from failures. If a failure happens, a failover process will

automatically provision the failed instance to a healthy host. As we can extrapolate from

previous definitions of the word, scaling means automatically adding or removing container

26

instances depending on the demand. The orchestrator handles the networking overlay for

container communication. Service discovery makes it possible for containers to find each

other. Lastly, the orchestrator coordinates incremental updates and rollback of problematic

changes to achieve rolling upgrades. (Vettor, Pine, Jain, et al. 2022).

Jumping aboard the MSA bandwagon is not all sunshine and roses. Li et al. (2021, 18)

point out that if the monolith is complex to begin with, componentizing it will bring this

inner chaos on display. The end result might still be complex, even if the complexity is now

slightly different from previous state of affairs. Gannon, Barga, and Sundaresan (2017, 20)

remind that we need to allocate efforts to manage computation resource clusters in order to

run our services. As I see it, while the container orchestrator service take care of automatic

operations day-to-day, the initial setup is non-trivial, and monitoring is still required.

Vettor, Pine, Jain, et al. (2022) presents some challenges for MSA systems. I’d like to

reframe these challenges as things to consider when architecting such systems, rather than

strictly negative aspects of the MSA approach. The listed challenges are most often related to

communication, resiliency, or distributed data. Firstly, because microservices need to com-

municate via APIs and network protocols instead of in-process, the architect should account

for network congestion, latency and intermittent errors (Vettor, Pine, Coulter, Schonning,

et al. 2022). It is especially important to retry failed requests, which is made easier if all

state-altering requests are idempotent. There will also be some overhead for every service

from serializing, deserializing, decrypting, and encrypting messages. (Vettor, Pine, Coulter,

Schonning, et al. 2022).

While the cloud platform will automatically handle most of the resiliency issues that CNAs

face, the architect still needs to consider them while designing the system (Vettor, Pine,

Coulter, Wenzel, et al. 2022). In my view, this means minimizing disruptions caused by A)

the issues themselves, and B) the actions that the platform takes to respond to the issues. The

platform might restart and migrate a failed process to a new host. A container orchestrator

might be in the middle of a rolling upgrade, or move the service from one node to the next,

for one reason or another. (Vettor, Pine, Coulter, Wenzel, et al. 2022).

When following the MSA model to the letter, we will end up with distributed data. Because

27

all data is no more in a single shared database, it will be more difficult to compose queries

across multiple services (Vettor, Pine, Coulter, Victor, et al. 2022). The architect must also

remember that the ACID principles do not hold across the entire system at any one point in

time. This is because propagating a change of state through multiple data stores will take

some time. On the plus side, each data store can be individually scaled and developed without

direct effect on other services. Each of them can select a data model that best suits that

specific service: relational, document, key-value, graph, or some other database paradigm.

This boosts the agility, performance, and scalability of the system. (Vettor, Pine, Coulter,

Victor, et al. 2022).

2.3.3 Serverless

Cloud-nativity doesn’t constrain itself to MSA. Another relevant approach is striving for the

so-called serverless architecture. The title ”serverless” is something of an oxymoron, be-

cause there is a server, but it’s not you who is responsible for it. Roberts (2018) puts it suc-

cinctly: though it might mean zero system administration work for you, the abstraction might

leak at times, and then you’ll become aware that a Systems Administrator is supporting your

application somewhere. Broadly speaking, a serverless architecture can be achieved with

two approaches: Backend-as-a-Service (BaaS) or Functions-as-a-Service (FaaS). (Roberts

2018).

With BaaS, you manage server-side logic and state by significantly or fully incorporating

third-party cloud-hosted applications and services (Roberts 2018). These services handle

everything else but your business logic: infrastructure, management, scaling, and so on.

When such services are combined, we will end up with an application that fulfills the criteria

for cloud-nativity (Gannon, Barga, and Sundaresan 2017, 20). Sometimes BaaS is used

with the prefix ”Mobile” BaaS, due to their popularity with application backends written for

mobile devices. Examples of BaaS are Parse and Firebase databases, and Auth0 and AWS

Cognito authentication services. (Roberts 2018).

When going down the FaaS route instead, you use stateless, event-triggered, ephemeral,

fully managed compute containers to run your server-side logic (Roberts 2018). Vendor

28

handles all the underlying resource provisioning and allocation by creating and destroying

FaaS instances based on runtime need. FaaS instances are typically triggered as a response

to inbound HTTP requests. Because you don’t have control of the lifecycle of individual in-

stances, you must store any persistent data to an external service, such as a database. While

the management of the underlying compute resource is abstracted away to a very high de-

gree, there’s still monitoring, deployment, networking, support, and production debugging

to handle (Roberts 2018). Examples of FaaS services are AWS Lambda, Azure Functions,

Google Cloud Functions and many others. They are often paired with serverless services

such as AWS SQS, Kinesis, Amazon ML and DynamoDB, or Azure Event Hub, Stream Ana-

lytics, AzureML and CosmosDB. (Gannon, Barga, and Sundaresan 2017, 17).

The two approaches BaaS and FaaS are similar in that neither of them concern themselves

with resource management. They are also frequently used together. For example, a FaaS

function can rely on a BaaS database for state management. Roberts (2018) describes the

two approaches as preferring ”choreography over orchestration”. I understand this phrase

to mean that the control flow is born from interaction of the individual components, instead

of keeping control in some centralized location. This means that each component is more

architecturally aware, which is a common idea also with MSA applications (Roberts 2018).

Serverless architecture does have some drawbacks, some of which are inherent to the paradigm

and some which can be at least partially mitigated with careful implementation (Roberts

2018). Inherent drawbacks cannot be entirely fixed, and need to be always considered. With

BaaS and FaaS, you have to give up some control of your system to a third-party vendor. As

features vary between vendors, you might suffer from vendor lock-in if migrating to another

service would require significant changes to code, operational tooling, or even architecture.

Because it is more economic, vendors might run multiple instances of software for several

different customers on the same machine, possibly even on the same hosting application.

This multitenancy might be unacceptable in strictly regulated domains. More vendors re-

sults in a larger surface area for cyber attacks, and more FaaS functions means that identity-

and access management issues such as IAM policy errors are compounded. (Roberts 2018).

Roberts (2018) points out that implementation drawbacks can be mitigated by either your

actions, or by the vendor improving their service. Immature platforms might offer less

29

options for configuration, monitoring, deployment, packaging, versioning, and debugging

(Roberts 2018). Execution duration for FaaS functions is limited, which might require you

to re-architect tasks that require long running times. It is entirely possible for you to run

a denial-of-service (DoS) attack on yourself unwittingly if you accidentally or intentionally

launch a large number of instances, because e.g. AWS has a limit for maximum number of

running instances per cloud account. (Roberts 2018).

Testing can become a pain point. Sometimes a BaaS vendor might not allow load testing at

all, or will at least bill you dearly (Roberts 2018). Setting up and tearing down state might

be difficult with third-party services. FaaS approach will almost certainly lead to a high

number of small units, and replicating the entire cloud environment on your local machine

is impossible. This makes integration testing more important than with other architectural

styles. (Roberts 2018).

Despite these drawbacks, serverless architecture brings many benefits to the table. Amazon

Web Services (2023) advertise their serverless offerings to provide automatic scaling, built-in

high availability, pay-for-value billing model, and built-in service integrations. It eliminates

infrastructure management tasks, which increases agility and optimizes costs (Amazon Web

Services 2023). Reduced operational and development costs make sense due to economies

of scale and commodified services for common functionality (Roberts 2018). FaaS is espe-

cially economical for occasional or inconsistent traffic, because the FaaS service spins only

the necessary number of instances up or down, and you often are billed down to microsecond

accuracy. This way you don’t need to overprovision a VM for peak traffic. For predictable

and consistent traffic however a traditional VM might be cheaper, as then it is easier and safer

to keep the computing hosts at high CPU utilization. Also, time-to-market can be consider-

ably shortened because continuous iteration is easier due to simple and fast redeployment of

individual components. (Roberts 2018).

2.3.4 Cloud architecture

A typical layered architecture might include separate layers for presentation, business logic,

and data management (Pahl, Jamshidi, and Zimmermann 2018, 5). Even though the devel-

30

oper has no direct access to the hardware of the cloud platforms, cloud software is mapped

onto physical tiers and their services. A physical tier means the physical location of the ap-

plication execution, and the places where software layers are deployed and where they run.

Each node in a cloud architecture should handle management and recovery tasks themself,

which is why cloud services are self-managed entities. (Pahl, Jamshidi, and Zimmermann

2018, 5).

Due to these factors and the need for continuous services, Pahl, Jamshidi, and Zimmermann

(2018, 5) think that the cloud requires its own architectural style. They define cloud architec-

ture as ”an abstract model of a distributed cloud system with the appropriate elements to rep-

resent not only application components and their relationships but also the resources these

components are deployed on and the respective management elements”. This aligns with my

experiences, where architectural diagrams for cloud-native applications always seem to in-

clude the names of the used platform services. For example in case of an application built on

AWS, the diagram will specify each usage of SNS, SQS, Cognito. S3, Lambda, DynamoDB,

API Gateway and so forth, instead of using generic terminology.

Cloud-native architectural style described by Pahl, Jamshidi, and Zimmermann (2018, 5)

includes a set of principles and patterns. Principles are service-orientation, virtualization,

adaptation, and uncertainty. Service-orientation can be considered a group of three related

principles: layering, modularity, and loose coupling. Layering will be necessary, because

services will likely have different lifecycles, interface granularities, and so on. This will lead

to the communication containing more indirections, which might require additional commu-

nications infrastructure. Modularity means refactoring an application into services and ex-

posing only their interfaces, encapsulating implementation details. This makes integrations

and composition easier, but requires a way to locate and call these smaller services. Care

must also be taken to avoid service calls creating undesired side effects for state manage-

ment. Because the separate services in a modular application are in some way dependent on

each other, coupling should be minimized where possible. Loose coupling can be achieved

e.g. with a messaging system, which decouples time, location, and even platform. Stateless

services make loose coupling easier, as service calls to stateless services are less likely to

result in side effects. (Pahl, Jamshidi, and Zimmermann 2018, 3–8).

31

Virtualization is generally considered a necessity to manage a shared pool of cloud resources

effectively, with optimised cost benefits and economies of scale (Pahl, Jamshidi, and Zim-

mermann 2018, 8). CSPs offer services for virtualizing infrastructure such as VMs, and

platforms such as container orchestration services. Emphasizing adaptation means that the

service should meet its requirements with minimal human intervention despite changing cir-

cumstances such as system resources, errors, or usage patterns. Unfortunately, in the cloud it

is difficult to map requirements to underlying infrastructure. Another thing to keep in mind is

that placing a burden on the infrastructure will also map directly to the cloud cost model. This

means that cost should be considered in adaptation requirement choices, excluding some as

too costly. (Pahl, Jamshidi, and Zimmermann 2018, 3–10). In my view it is beneficial if an

architect knows the cloud service provider’s offerings almost to the infrastructure level, to

the extent it is possible.

Uncertainty is always present in the cloud. It is caused by physical and logical distribu-

tion, heterogeneity, and multi-user involvement in changing contexts (Pahl, Jamshidi, and

Zimmermann 2018, 3). It is also possible that monitoring data is unreliable or inadequate,

if multiple distributed monitoring systems are in use. This makes reliable measurement

of quality attributes of cloud software difficult. For example, creating or freeing cloud re-

sources such as VMs is not immediate, which contributes to uncertainty during the change

as the workload varies. (Pahl, Jamshidi, and Zimmermann 2018, 3–11).

2.4 Maintainability in cloud-native architecture

In this section I will tie together the topics I discussed in previous sections: architecture,

maintainability, and cloud-nativity.

The Twelfe-Factor App (Wiggins 2017) is a methodology for building software for the web

and software-as-a-service model (SaaS), and as such fits the cloud-native paradigm. It is

intended to increase awareness of system-level problems in modern software development,

offer a shared vocabulary to discuss them, and showcase a selection of broad concept-level

solutions to them. Some of these solutions will support maintainability. Solution #2 encour-

ages to explicitly declare and isolate dependencies. This means that one should never rely

32

on the supposed existence of system-wide packages or tools. If you need them, you should

package them along with your application. All dependencies should be explicitly declared,

and the environment should be isolated from external dependencies. These can be achieved

by using the preferred tools in your programming language, such as Gemfiles and bundle

exec with Ruby programming language, or pip and virtualenv with Python. (Wiggins 2017).

Vettor, Pine, Jain, et al. (2022) concur that packaging dependencies in the container image

of a microservice belonging to an MSA application fulfills this solution. This speeds up

development, as a new developer will only need the codebase, the language runtime, and a

dependency manager to run the application.

A ”log” is a stream of aggregated, time-ordered events collected from the output streams

of all running processes and backing services (Wiggins 2017). Logs are often saved to a

text file for later browsing. I consider software logs to be an inseparable part of a software

maintainer’s daily life. Twelve-factor app solution #11 says that logs should be treated as

event streams, and forwarded unchanged into the standard output. This means relying on the

platform’s log management capabilities instead of trying to manage the log files yourself.

Then the logs will be directed to the execution environment, which manages the logs for

you. (Wiggins 2017).

In regards to software, a ”smell” is considered synonymous to antipattern, flaw, or anomaly

(Mumtaz, Singh, and Blincoe 2021, 1). In their paper about architectural smells detection,

Mumtaz, Singh, and Blincoe (2021, 20) found that research tends to focus on dependency

smells, which are usually connected to coupling issues in the architecture. Most detection

tools can detect common dependency smells. Service-oriented architecture smells were cov-

ered nicely in their research, but unfortunately there was little literature about smells related

to MSA or cloud architectures; the researchers identified only one research about cloud ar-

chitecture smells. The researchers suggest more investigations into these architectural styles

that are currently popular in the industry. The most commonly studied quality characteristic

was maintainability, which can shed light into the efforts required to fix the problems result-

ing from the smells. There is however still room for investigating the sub-characteristics of

maintainability, such as testability and reusability. Modularity and modifiability were well

covered in the available research. (Mumtaz, Singh, and Blincoe 2021, 21–22).

33

Almost like an answer to the suggestion by Mumtaz, Singh, and Blincoe (2021), Licht-

enthäler and Wirtz (2022) formulated a quality model7 that is focused on the design time

attributes of cloud-native software. This makes it possible to evaluate architecture before the

implementation, because it doesn’t rely on source code. They say that the model can be used

to approximate the level of ”cloud-nativeness” of the application. The higher-level quality as-

pects in the model are mapped from the ISO/IEC 25010 standard8. According to the ISO/IEC

25010 standard, the quality aspect maintainability can be split into sub-characteristics modu-

larity, reusability, analysability, modifiability, and testability. Lichtenthäler and Wirtz (2022)

add simplicity to this list. The model then connects these quality aspect to the so-called

”product factors”. Product factors characterize an architecture, and evaluating them will

give us an idea how to practically improve the quality of the architecture in relation to that

aspect. Additionally, the researchers list the metrics related to each product factor, but I omit

them here for sake of brevity. (Lichtenthäler and Wirtz 2022).

The quality aspect reusability can be improved by focusing on standardization on system,

component, and link levels (Lichtenthäler and Wirtz 2022). The goal is to have similarity

between components. When components are similar to each other, reuse becomes easier.

”System” means the cloud-native application as a whole. A ”component” is an abstract

entity for representing a distinct part of the system that provides certain functionalities. A

component can for example be a service or a certain cloud resource. A ”link” then is a

directed potential connection between a specific component and a specific endpoint of a

different component. (Lichtenthäler and Wirtz 2022).

The quality aspect modularity is related to product factors service-orientation, isolated state,

and loose coupling (Lichtenthäler and Wirtz 2022). Each of these three contains additional

nested product factors. Service-orientation can be deconstructed into limited functional

scope, and separation by gateways. Limited functional scope consists of nested product

factors limited data scope, limited endpoint scope, and command query responsibility seg-

regation. Isolated state means moving majority of the system state into specialized stateful

services, and keeping most of the other services as stateless as possible. Loose coupling can

7. https://r0light.github.io/cna-quality-model/
8. https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

34

https://r0light.github.io/cna-quality-model/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

be achieved by implementing asynchronous communication, and communication partner ab-

stractions. Focusing on these factors would improve modularity as a whole. (Lichtenthäler

and Wirtz 2022).

The quality aspect analysability is improved by implementing automated monitoring. This

can mean consistent centralized logging and metrics, distributed tracing of invocations, and

health and readiness checks (Lichtenthäler and Wirtz 2022). Monitorability is related to

analysability, and is especially relevant for MSA systems, because such systems contain

many dynamic structures and behaviors (Li et al. 2021, 13). It is possible to monitor many

aspects of the stack separately: infrastructure, such as VM or a container metrics; software

metrics such as response time; or the platform metrics, such as network latency. However

with CNAs, we only need to worry about monitoring our own services, and leave the platform

and infrastructure monitoring to the cloud service provider. In general, monitoring includes

generating, storing, processing, and presenting the monitored data (Li et al. 2021, 13). These

steps might require installing an agent and other additional tooling, but luckily cloud services

often provide basic functionality out of the box.

The quality aspect simplicity can be broken down into sparsity, operation outsourcing, and

usage of existing solutions for non-core capabilities. Operation outsourcing means using

managed infrastructure, and managed backing services (Lichtenthäler and Wirtz 2022). It

is understandable how this increases maintainability: the lower the scope of your mainte-

nance responsibilities, the higher the maintainability. Cloud service providers offer backing

services to facilitate building software. Backing services can help with monitoring, stream-

ing, security, analytics, message brokering, storage, caching, and other needs (Vettor, Pine,

Jain, et al. 2022). One should favor backing services provided by the cloud service provider

in order save time and money by not having to worry about the backing service’s perfor-

mance, security or maintenance. Backing services are best utilized as an attached resource,

that are dynamically attached to the application as an external configuration, for example

via environment variables. This enables us to attach and detach a backing service without

code changes. Another best practice is to implement a middle layer that sits between the

business code and backing service. This helps avoid being tightly coupled to specific APIs,

and changing the service will be easier if needed. (Vettor, Pine, Jain, et al. 2022).

35

The quality aspect modifiability can be improved by emphasizing service independence,

which in turn can be achieved with low coupling, functional decentralization, limited request

trace scope, logical grouping, and backing service decentralization. Implementing abstrac-

tions for addressing these services will also benefit modifiability. Automated infrastructure

provisioning is important, for which the natural companion is infrastructure-as-code (IaC). It

helps automate platform provisioning and software deployment, because you are able to uti-

lize software development practices such as testing and version control for the infrastructure

definitions (Vettor, Pine, Jain, et al. 2022). IaC technologies include AWS Cloudformation,

Azure Resource Manager (ARM), Azure Bicep, Terraform, and Ansible. Resource names,

locations, capacities and secrets are parametrized and dynamic in IaC. IaC scripts are also

designed to be idempotent, meaning that you can change one resource’s definition and rerun

the script without altering the other resources. This makes IaC play nicely with continuous

integration and continuous deployment (CI/CD) technologies: changes to infrastructure are

easy to execute. If deployments are easy, integration and deployment likely happens more

often than once a quarter, which leads to better communication and mistakes that are cheaper

to fix, resulting in higher quality software. (Vettor, Pine, Jain, et al. 2022).

If a system is highly testable, it is able to demonstrate its flaws through testing (Li et al. 2021,

17). Testability is important with MSA applications, because microservices go through many

changes during their life, and their interactions are often complex. By maximizing testabil-

ity, we aim to minimize threats for performance, availability, and security, in addition to

maintainability. Testability can be increased by API documentation and management, where

we manage API versions and changes over time. This management should be automated as

far as possible by tools such as Swagger and RAML, to avoid ”forgetting” to update docu-

mentation. (Li et al. 2021, 17).

Testing can be made easier - and in turn more effective - by implementing automatic test

procedures (Li et al. 2021, 17). Increasing automation in the testing process reduces the

complexity and effort required. Comprehensive manual testing is in many cases impossible,

due to the complexity inherent to MSAs. Automated testing procedures align well with the

DevOps approach, which emphasizes automating away as much manual work as possible,

in order to avoid tedium and human mistakes. Many different testing paradigms can be au-

36

tomated, not only unit tests. As a few examples, LBTest uses machine learning to automate

end-to-end testing, EVOMASTER uses an evolutionary genetic algorithm for service testing,

Diffy uses a continuous delivery pipeline for regression testing, and GMAT uses graph-based

dependency analysis for contract testing. Integrating these tools into the development pro-

cess will require a learning curve, especially when the aimed at production software. (Li

et al. 2021, 18).

This concludes my overview of the scientific background of maintainability in cloud-native

architecture. In the following chapters I will present the basis of my own research: research

method, results, and analysis. After that I will draw conclusions, and describe how they

relate to the literary background I presented in this chapter 2.

37

3 Method

In this chapter I present the research questions, method, and the research process.

3.1 Research questions and choice of method

Through the research, I aimed to answer three research questions:

RQ1 How much importance do cloud architects place on maintainability during the design

phase?

RQ2 How to address maintainability concerns when architecting cloud-native applications?

RQ3 Do the recommendations from literature match the views of architects working in the

field?

To me, a digital survey appeared to be the best-fitting research method for answering these

questions. It probably would have been possible find existing data sets through a literary

review, but finding a reasonable amount of existing data seemed unlikely for RQ1 and RQ3.

3.2 Survey

I targeted the survey at cloud architects of Nordcloud, an IBM company, where I work. When

weighing my options how to collect the necessary data, I decided to only utilize my current

workplace as the target organization. The reasoning behind this was twofold: proximity

through my current employment, and the fact that the company employs numerous cloud

architects who had experience and, hopefully, opinions about their craft. I had access to

the company’s collaboration software that’s used for internal communications, which made

contacting potential survey respondents convenient.

I used Google Forms for creating the survey and collecting the results. Before the respondent

could proceed to answer the actual questions, the survey briefly described the research topic.

There was also a data collection disclaimer with a mandatory agree-disagree choice. If the

respondent disagreed with the disclaimer, they were thanked for initial interest, and encour-

38

aged to submit the form nevertheless, so I would know that the terms were not preferable.

The first half of the survey gathered some demographic insights:

Q1 Years of experience in cloud-native architecture?

Q2 Years of experience in software architecture in general?

Q3 Years of experience in IT in general?

Each domain field mentioned in these questions was intended to be a subset of the next:

in my view, IT is a superset of software architecture, which is a superset of cloud-native

architecture. All three questions were multiple-choice, single answer with these ranges:

• 0-2 years

• 2-5 years

• 5-10 years

• 10+ years

Second half of the survey was dedicated to the main subject matter of maintainability and its

relation to other quality attributes:

Q4 How do you prioritize these software quality attributes when designing cloud-native

architecture?

Q5 How do you address maintainability with platform- and technology choices?

Q6 How do you address maintainability with application architecture?

Survey question Q4 is directly linked to research question RQ1. The question listed a prede-

fined selection of software quality attributes:

• Performance

• Reliability

• Maintainability

• Scalability

• Security

The respondent needed to set the above quality attributes in a priority order. Available options

were:

39

• Most important

• More important

• Important

• Less important

• Least important

Survey questions Q5 and Q6 are both linked to research questions RQ2 and RQ3. The input

was a free text field, so that the respondents could express their thoughts in a non-structured

way. I did not want to limit the answer space with my own lack of knowledge by providing

a predefined set of options. My intention was to later interpret the answers in a qualitative

fashion to find common factors between the responses.

On Monday 20.03.2023 I posted an introductory message along with a link to the survey to a

few of the company’s internal communication channels in order to reach most of their cloud

architects. Some of the channels had overlapping audience, but the total reach was over a

thousand people. My goal was to get 10-20 answers, to be able to conduct any amount of

meaningful statistical analysis on the data. I was prepared to repost the survey once a week

up to four times until I decide I have enough answers to proceed. In the end there was no

need to repost, because I received a sufficient number of responses after the initial posting.

In early April I managed to convince one additional architect in-person at the company’s

Jyväskylä office to respond. Some stray responses were recorded up to 21.4.2023, with a

final tally of 15 responses.

I could have widened the target audience to other companies, if I wanted to collect a larger

sample base. I decided against it, because my preliminary plans at the time did not require

more than 20 samples. I planned to do some qualitative processing on the results, in addition

to basic quantitative analysis, and qualitative analysis is more labor intensive per response

than qualitative methods. If I had included other companies in the research, I would have

likely approached the companies via email instead.

I used my own university-provided Google account for all survey-related functions. Indi-

vidual answers and their aggregated analysis will be stored in Google Forms and Google

Sheets in this student account until the end of my study rights and subsequent removal of the

40

account. All answers were collected and analyzed anonymously. Email addresses or other

pieces of personal information were not collected. Responding to the survey required log-

ging in with a Google account, but it was only enforced to kindly remind the busy architects

if they had already responded to the survey.

3.3 Analysis

My approach to the analysis of the survey results was not strictly quantitative or qualitative,

but rather a mix of both depending on the source data. Questions Q1 to Q4 had a limited

input space with multiple-choice fields, and as such were a natural candidate for basic quan-

titative processing. To answer research question RQ1, I decided to calculate the priority of

maintainability relative to the other quality attributes based on answers to question Q4.

Q5 and Q6 benefitted from a more qualitative approach. Because the responses were in an

unstructured format, I needed multiple steps to transform the data to a format that could be

aggregated and analyzed as an answer to research questions RQ2 and RQ3:

• Interpret and list the suggestions from answers to questions Q5 and Q6.

• Normalize the suggestions to find common categories.

• Find the most popular categories and point out possible outliers.

• Compare the categories to solutions proposed in literature.

Because I gathered some demographic data with survey questions Q1 to Q3, I could formu-

late additional insights by combining those results with results to the domain question Q4.

It is possible to calculate statistical correlation between years of experience and perceived

importance of maintainability.

41

4 Results

4.1 Demographics (Q1-Q3)

The survey began with demographic questions about the respondents’ working experience.

Table 1 shows respondent experience in cloud-native architecture specifically. Table 2 shows

respondent experience in software architecture in general. Table 3 shows respondent expe-

rience in information technology in general. Individual responses are available in appendix

section A.

Table 1. Respondent experience in cloud-native architecture, n = 15

Option Responses Percentage Rank

0-2 years 2 13.33% 3

2-5 years 6 40.00% 2

5-10 years 7 46.67% 1

10+ years 0 0.00% 4

Table 2. Respondent experience in software architecture in general, n = 15

Option Responses Percentage Rank

0-2 years 3 20.00% 3

2-5 years 4 26.67% 2

5-10 years 3 20.00% 3

10+ years 5 33.33% 1

Table 3. Respondent experience in information technology in general, n = 15

Option Responses Percentage Rank

0-2 years 0 0.00% 4

2-5 years 1 6.67% 3

5-10 years 3 20.00% 2

10+ years 11 73.33% 1

42

4.2 Prioritization of maintainability (Q4)

To calculate a priority score for each quality attribute, I gave the options an incremental

integer value from 1 to 5. The value 1 corresponds to option Least Important, while value 5

corresponds to Most important. The exact values chosen here are not of importance as long

as the difference between each consecutive option is equal, to avoid introducing additional

bias. This makes our scale analogous to the Likert scale (Likert 1932), which is often used

in research questionnaires. Table 4 lists the integer values given to each priority option.

Table 4. Priority options and their integer values

Priority Value

Most important 5

More important 4

Important 3

Less important 2

Least important 1

Table 5 portrays relevant metrics calculated for each quality attribute.

Table 5. Quality attributes, their average priorities, and other metrics, n = 15

QA Average ∆ to next highest Min Mode Max

Security 4.07 - 1 5 5

Reliability 3.80 0.27 1 5 5

Maintainability 2.67 1.13 1 2 4

Scalability 2.27 0.40 1 1 5

Performance 2.20 0.07 1 1 4

Additionally, I calculated how much respondents’ experience correlates with perceived im-

portance of maintainability. To accomplish this, I calculated the the correlation coefficient

for each question Q1, Q2, and Q3 in relation to Q4. I mapped each experience range option

in the demographic questions to a numerical value, in order to calculate the correlation. The

numerical integer values for each option are listed in Table 6. I chose the values to be the

midpoint of each range, with the exception of final option ”10+ years”, where value follows

43

the increasing trend across the options. The resulting correlation coefficients are shown in

Table 7.

Table 6. Experience range options and their integer values

Experience range Value

0-2 years 1

2-5 years 3.5

5-10 years 7.5

10+ years 13

Table 7. Correlations between experience in a given domain, and prioritization of maintain-

ability.

Domain Correlation Coefficient

Cloud-native architecture 0.23

Software architecture 0.12

Information technology -0.10

4.3 Ways to improve maintainability (Q5 & Q6)

Responses to questions Q5 and Q6 are available in appendix section C and section D re-

spectively. I originally intended the two questions Q5 and Q6 to be scoped to two separate

areas: choices about technology, and those related to application architecture. Instead, the

responses were varied and included suggestions touching multiple different areas. I think

this was luck on my part, because otherwise I would not have received answers related to

processes or architectural philosophies. As a consequence, I saw no need to keep the results

of the two questions separate, and instead decided to pool the answers together. In my opin-

ion, dividing results based on the question number would be technically correct, but it would

add artificial complexity to the analysis. One respondent did not provide answers to either

of the questions Q5 or Q6, which resulted in a pool of 14 responses to analyze.

I categorized the results to three top-level categories, two of which align with the survey

question prompts Q5 and Q6:

44

• Platform and technology choices

• Application architecture

• Others (processes, best practices, philosophy, ...)

For each top-level category, I further interpreted subcategories from each suggestion, and

aggregated them where reasonable. For example, I consider all the following responses to

belong to subcategory ”established technologies”:

• ”Future-proof technologies” (Respondent 2)

• ”Use up-to-date (but established) frameworks” (Respondent 4)

• ”By using commonly used technologies” (Respondent 13)

Below are are the resulting categorizations, with list of respondents who had the same sug-

gestion. Table 8 contains suggestions about platform and technology choices, Table 9 shows

suggestions about application architecture, and Table 10 lists the remaining suggestions that

do not strictly belong to either of the prior categories.

45

Table 8. Suggestions about platform- and technology choices, n = 14

Suggestion Respondent IDs Response count Rank

CI/CD pipelines R3, R8 2 3

Configuration-as-code R7 1 4

Consider vendor support R1 1 4

Disaster recovery R15 1 4

Don’t avoid vendor lock-in R8 1 4

Established technologies R2, R4, R9, R10, R13, R14 6 1

Infrastructure-as-code R3, R7, R12 3 2

Limited dependencies R2 1 4

Managed services R11, R13 2 3

PaaS offerings R3 1 4

Prefer a single vendor R1 1 4

Technologies the team already knows R1 1 4

Technologies with high observability R1 1 4

Ticketing system R9 1 4

Version control system R9 1 4

Table 9. Suggestions about application architecture, n = 14

Suggestion Respondent IDs Response count Rank

Autoscaling R3 1 3

Centralized logging R1 1 3

Common architectures R14 1 3

High availability R15 1 3

Loose coupling R3, R10, R14 3 1

Microservices R3, R10, R14 3 1

Modularity R1, R8, R9 3 1

Scalability R15 1 3

Simple architectures R4, R6 2 2

SOLID R2 1 3

Statelessness R3 1 3

46

Table 10. Other suggestions to improve maintainability, n = 14

Suggestion Respondent IDs Response count Rank

Architecture decision log R9 1 2

Avoid breaking changes R7 1 2

Avoid shortcuts / Don’t cut corners R4 1 2

Avoid time pressure in implementation phase R9 1 2

Clear resource naming R4 1 2

Clear responsibilities R12 1 2

Clearly defined processes R4 1 2

Consistency R6 1 2

Deliver security fixes R12 1 2

Design with goal in mind R1 1 2

DevOps R1 1 2

Documentation R9 1 2

Facilitate easy updates R7, R13 2 1

KISS R9 1 2

Regular reviews R12 1 2

Testing R7 1 2

Update libraries and dependencies before EoL R12 1 2

Versioned app releases R12 1 2

47

5 Discussion

In this chapter I further discuss the results presented in previous chapter. I subdivide the

chapter around my research questions RQ1, RQ2, and RQ3, which were introduced in sec-

tion 3.1. At the end of the chapter are the other miscellaneous topics and thoughts about the

results and related literature.

5.1 Research question RQ1

Research question RQ1 focuses on the perceived importance of maintainability from the

point of view of cloud architects. Survey question Q4 was used to collect the data necessary

to answer the research question, with questions Q1 through Q3 providing perspective about

each respondent’s work experience.

Q4 required the architect to prioritize various quality attributes on a Likert-like scale. From

the average priorities and deltas ∆ between each quality attribute in Table 5 we can draw mul-

tiple conclusions. The top two quality attributes, Security and Reliability, are unequivocally

the most highly prioritized attributes in the minds of our cloud architects. Maintainability is

sitting quite comfortably in the middle of the range. This means it is considered important,

but not a priority if major sacrifices are needed for reliability or security. Performance and

scalability are considered least important items to an almost identical degree. In my mind,

performance and scalability are related, as scalability affects single- and multi-user perfor-

mance. I probably could have replaced one of the two with a quality attribute that is not as

highly linked to each other.

From the ”Min” column in Table 5 we see that every quality attribute was considered ”Least

important” by at least one responent. I find this slightly surprising, because I expected that

the quality attribute Security is widely considered important, if not a top priority. Apparently

not in every case; even this expectation is subject to consideration when building software,

depending on the other drawbacks.

In a similar vein, four out of six quality attributes were considered ”Most important” by at

48

least one respondent, as visible in the ”Max” column. The exceptions were Maintainability

and Performance, which were at most considered ”More important”, the second highest

priority. This is more in line with my gut feeling of the subject. Despite maintainability

being the most researched quality attribute in most software life cycle stages (Arvanitou et

al. 2017, 61–62; Mumtaz, Singh, and Blincoe 2021, 21–22), it probably isn’t the top one item

in shareholders’ and implementors’ minds. No one builds software for the sake of having

more software to maintain, instead of solving some business problem.

Survey questions Q1 through Q3 asked about experience in three different domains: cloud-

native architecture, software architecture, and information technology. My interpretation and

intention was that cloud-native architecture is a subset of software architecture, which in turn

is a subset of information technology. Against this interpretation, respondents R3, R7, R10,

and R15 reported less experience in software architecture than cloud-native architecture (see

appendix section A). This discrepancy could probably have been avoided if I had explicitly

stated my assumptions of subsets in the survey. But it does raise the idea that cloud-native

architecting is separate from (traditional) software architecting, due to factors discussed in

subsection 2.3.1.

From Table 7 we can see that correlation between respondent experience and importance

maintainability is weak, at best. The correlation between cloud-native experience and im-

portance of maintainability is positive and weak. Correlation between software architecture

experience and importance of maintainability is also positive, but even weaker. Because the

reported experience in the information technology sector is highly weighted towards longer

tenures, the very weak negative correlation probably disappears into margin of error. I con-

clude that based on this dataset, there is no relevant correlation between years of experience

and perceived importance of maintainability.

5.2 Research question RQ2

Research question RQ2 requests a list of concrete ways to improve maintainability already

in the design phase of software lifecycle. Questions Q5 and Q6 allowed me to get such

ideas directly from a sample of practicing experts. You can consider the results shown in

49

section 4.3 to be the high-level answer to research question RQ2. In this section I will bring

forward additional reasonings provided by the respondents, and my own thoughts about the

answers.

Each top-level category that I established contained suggestions that were mentioned by

more than one respondent. Table 8 contains the aggregated answers related to platform and

technology choices. The most popular suggestions were:

• Using established technologies (six responses)

• Infrastructure-as-code (three responses)

• CI/CD pipelines (two responses)

• Utilizing managed services (two responses)

In the context of survey results, ”established technologies” means well-known programming

languages and frameworks, base technologies on a mainstream platform, tech that is up to

date, common, and ”de facto”. Infrastructure-as-code and CI/CD pipelines are widely known

concepts and were explicitly mentioned by name, so there was no interpretation needed.

Utilizing managed services is a boon in the cloud, and R11 writes that such services require

less maintenance, presumably when compared to implementing such functionality yourself.

This does not mean that the rest of the items are less effective or relevant. For example, using

a version control system (VCS) was mentioned by only one respondent, but maintaining a

software system whose source code is not covered by a VCS must be horribly short-sighted

and error-prone. Maybe the ability to easily track and revert changes as needed is such

an obvious aspect of modern software development that the rest of the respondents did not

bother to mention it explicitly.

Respondent R8 mentioned an interesting idea: don’t avoid vendor lock-in. I’ve understood

that vendor lock-in is usually considered a negative, and makes it more difficult to evolve a

system in a flexible way. The respondent didn’t provide more reasoning for this, but I think

R1 to question Q5 is highly related: R1 advises to prefer offerings from a single vendor

due to superior integrations between such services when compared to integrating third-party

products. I expect that building a service across multiple CSPs will unavoidably increase the

complexity of the architecture, which will make maintenance more difficult.

50

As discussed in subsection 2.3.4, in the cloud world the technology and platform choices are

intertwined with applications architecture. The architectural suggestions are categorized in

Table 9, and the most popular suggestions were:

• Loose coupling (three responses)

• Microservices architecture (three responses)

• Modularity (three responses)

• Simple architectures (two responses)

According to R14 a loosely coupled architecture, such as a microservices architecture, can

be more easily maintainable than a layered architecture. R10 agrees: decoupling the compo-

nents makes it easier and more flexible to maintain the components individually. Microser-

vices architecture and loose coupling are seen as highly related, as is modularity. R1 and R8

concur that a modular architecture enables each component to be maintained or even replaced

if needed. The last point however might be in opposition to the others: a highly modular ar-

chitecture might be inherently complex. R4 advises to avoid convoluted architectures, and

R6 reminds us to be aware that integration of each new service has a maintainability cost.

Q6 response R9 raised the very relevant point that architecture itself seems to be a lesser

factor in deciding maintainability when compared to how the implementation phase is carried

out. They mention time pressure as a possible risk for a maintainable implementation. This

makes sense to me, as then developers are tempted or even forced to cut corners, which R4

advises against in Q5. This might result in less-than-ideal focus to be allocated for writing

a robust test suite, documentation, automation, and other aspects that make the maintenance

team’s life easier.

The ”other” response category was necessary due to high variety in answers. This category

was even more varied than the two discussed prior, as seen in Table 10: only one category,

”Facilitate easy updates” was mentioned by multiple respondents. Even then, the wording in

those responses required much interpretation to find the common denominator:

• R7, Q5: ”--, no breaking changes or clear path to update”

• R13, Q6: ”--, or having updates possible to be made as easily as possible if they need

to be done manually.”

51

Many responses were left vague and without further specifications. For example in Q5, R12

suggested a review at least once a year. In Q6 the same respondent mentioned code reviews

before software end-of-life, so answer to Q5 is likely related to architecture or platforms.

In a similar vein, R6 called for consistency in application development. Because there was

no further elaboration, this might relate to either architectural design, implementation, or

both. ”Designing with the goal in mind” by R1 is likely a reminder to the architect not to

get stuck in the mindset of trying to fit every possible feature or technological item in the

final product; ”circus horse jumps only as high as it needs”, as the respondent put in other

words. Because especially the last top-level category I discussed contained a high number

of individual answers, I will continue to the next research question RQ3, where I relate the

responses to existing source literature.

5.3 Research question RQ3

The research question RQ3 concerns itself with comparing the survey results to research

literature. In this section I will look back to the existing research I reviewed in chapter 2, and

find common threads in the observed survey results.

Maintainability assurance (or maintainability control) is the processes, tools, and metrics

used to avoid accumulation of technical debt and to control maintainability as a quality

attribute during the design, development, and maintenance phase (Bogner et al. 2018, 2).

Bogner et al. (2018) found that there was less scientific research about the ”state of practice”

than the ”state of the art” around these topics. This compelled them to conduct a research into

the state of practice by using a survey for software professionals. Their research questions

are somewhat parallel to my thesis:

RQ1 What processes, tools, and metrics are used in the industry to measure and control

maintainability?

RQ2 Is the usage of maintainability controls different for service-based systems and microservice-

based systems?

RQ3 What correlations exist between applied maintainability controls and participants’ over-

all view of maintainability in their project?

52

97% of respondents in their survey reported at least some symptoms of low maintainability in

their project (Bogner et al. 2018). The symptoms include missing or outdated documentation,

inadequate testing, time needed to add new functionality, high number of defects with new

releases, architectural erosion or complexity, and low release frequency. To alleviate these,

some architecture level metrics such as coupling, cohesion, and architectural violations were

reported to be used by some respondents in their survey. Despite this, no respondent explic-

itly mentioned using tools for quality control at an architectural level. Bogner et al. (2018,

5–6) propose that this hints at neglect for architecture level maintainability or evolvability

control, which is the core of my survey in this thesis.

When following cloud-native principles, the application will be loosely coupled (R3, R10,

R14), resilient, manageable, and observable (Noval et al. 2022). Another staple of such

software is statelessness (R3), which makes it easier to scale to multiple servers, leverage

caching, use less storage space, and avoid vendor lock-in by not being reliant on any specific

type of server. You can avoid much downtime because CSP backing systems (R11, R13)

have inbuilt redundancy, and are geographically distributed (Patrizio 2018).

According to ISO/IEC/IEEE 12207:2017(E) (2017), maintainability can be improved in the

architectural design phase by emphasizing encapsulation, modularity (R1, R8, R9), and

scalability (R15). Documenting the architecture and system (R9) reduces the efforts re-

quired to reverse-engineer the system and components when a fix is needed. (ISO/IEC/IEEE

12207:2017(E) 2017, 95–96). As a sidenote, before reading this standard, I did not men-

tally connect scalability with maintainability, because I feel it more relates to performance

and reliability. R9 had good suggestions related to documentation, including an architecture

decision log. Architecture decision log is an artifact with descriptions of the chosen architec-

tural concepts, as well as considered alternatives and related justifications. Another standard

ISO/IEC/IEEE 42010:2007 (2007, 3) also states that such information must be present in the

architectural description (AD).

The standard ISO/IEC/IEEE 12207:2017(E) (2017, 95–96) also notes that the decisions

made during architecting can also affect the need and possibilities for e.g. remote diag-

nostics and maintenance, roll back, backup, and recovering data. Remote diagnostics might

be supported by incorporating technologies with high observability (R1). Allocating some

53

effort for disaster recovery (R15) will in turn facilitate rollbacks, backups, and data recovery.

Because maintainability highly affects the time needed to add new functionality, the time

can be shortened by focusing on the various subcategories of maintainability such as modu-

larity (R1, R8, R9), reusability, analyzability/observability (R1), changeability, modification

stability, testability, and compliance (ISO/IEC 5055:2021(E) 2021, 233). The quality aspect

analysability is improved by implementing automated monitoring. This can mean consis-

tent centralized logging (R1) and metrics, distributed tracing of invocations, and health and

readiness checks (Lichtenthäler and Wirtz 2022). Consistency (R6) between modules is also

beneficial, which in the context of modularity can mean that different modules should per-

form similar tasks in a similar fashion (Bass, Clements, and Kazman 1998, 16).

Li et al. (2021, 18) says that breaking up a complex monolith into components will likely

still be complex. It is then a worthy endeavor to take the chance to simplify the architecture

(R4, R6), if a rewrite is needed anyway. As presented in section subsection 2.3.2, a highly

componentized architecture such as an MSA will require additional considerations due to

increased need for network calls between the components (Vettor, Pine, Coulter, Schonning,

et al. 2022). Quality aspect simplicity contains operation outsourcing, which in the cloud

computing paradigm means using managed infrastructure and managed backing services

(Lichtenthäler and Wirtz 2022). This benefits maintainability, as presented in section 2.4.

Low release frequency can be countered, among other practices, by facilitating easy updates

(R7, R13), adopting DevOps practices (R1) such as CI/CD pipelines (R3, R8), and using

technologies that the team already knows (R1; Broy, Deissenboeck, and Pizka (2006, 25)).

CNAs have high support for automation, which enables the developers to concentrate on

relevant challenges instead of tedium (Patrizio 2018). Combined with the ability to deploy

small individual services instead of an entire complex system every time, a CNA is easy to

update. This boosts productivity when development teams can make both small-scale and

sweeping changes with predicable results, and deliver new features to customers more often

(Noval et al. 2022; Patrizio 2018).

Because my thesis is especially concerned with cloud-nativity, I want to raise another find-

ing by Bogner et al. (2018) related to service-based systems (SBS) and microservice-based

54

systems (µµµSBS). Based on their survey results, 67% of respondents do not treat maintain-

ability differently for SBSs and µSBSs versus other types of systems. Many companies are

not aware of existing service-oriented approaches and metrics for maintainability, or don’t

see a need for special treatment despite the very different nature of SBSs and µSBSs. On

the other hand, 26% of respondents report using different strategies specifically aimed to in-

crease maintainability with service-oriented systems. The following strategies augment and

align with my survey responses:

• Additional integration and behavioral-driven testing

• Usage of reference architectures

• Standardization of interfaces

• Agile methodologies

• Different deployment process

• Different tool support due to increased technological heterogeneity

• Different metrics usage to account for additional abstraction of services

• Relaxed maintainability controls due to high trust in high base level of maintainability

gained through service-orientation: flexibility, scalability, less dependency problems,

separation of concerns, etc.

In my survey results, respondent R12 calls for ”clear responsibilities”. Without further elab-

oration it is unclear what the respondent exactly meant by this. I hypothesize that it has a dual

purpose: clear responsibility for each software module, and clear responsibilities in the orga-

nization that produces the software. The first interpretation is linked to R2’s suggestions of

the SOLID design principles1, whose first letter corresponds to the single-responsibility prin-

ciple. The principles were originally written for object-oriented programming, but at least

some parts can be extrapolated to architectural design: each software module should only

have a single reason to change. This increases modifiability, a subcategory of maintainabil-

ity, because then a change doesn’t require touching multiple components (Bass, Clements,

and Kazman 1998, 78). The latter interpretation – that R12 means organizational responsi-

bilities – aligns with advise from Bass, Clements, and Kazman (1998, 15): a single architect

or a team of architects with a designated leader should be responsible for the architecture.

1. https://en.wikipedia.org/wiki/SOLID

55

https://en.wikipedia.org/wiki/SOLID

5.4 Internal and external validity

In this section I will discuss the internal and external validity of my thesis. For internal valid-

ity, I identify some issues with the survey. First of all, because my survey was anonymous,

I don’t have any way of verifying that all the respondents were, in fact, cloud architects.

Instead I relied on the introductory message that I used to advertise the survey where I ad-

dressed the intended group. As a cheeky notion, I expect that everyone is so busy these

days that no one is likely to volunteer for optional tasks that are directed at another group

of employees, so my respondent group should be valid. As a reassurance to myself, some

verified cloud architects approached me about the survey questions, so I can safely assume

their responses are represented in the result set.

Second, as I wrote in the beginning of section 4.3, the suggestions to Q5 and Q6 were highly

varied, and not necessarily scoped to the intended topic of each question. If this had been a

series of interviews instead of a one-and-done survey, I could have honed into the intended

categories with higher accuracy. But as I wrote earlier, the unexpected suggestions gave

a broader look into the respondents’ understanding of maintainability and how it could be

improved.

Third, I also pointed out in section 5.1 that some respondents did not share my understanding

of nested domains when responding to questions Q1 and Q2. This discrepancy could prob-

ably have been avoided if I had explicitly stated my assumptions of subsets in the survey.

This notion also includes the obvious oversight that I didn’t define cloud-nativity or main-

tainability at all, but instead relied on the target group having an innate shared understanding

of the topics. I remember that I might originally have made a conscious decision to omit

these definitions in order not to influence the results too much with a definition that might

conflict with a respondent’s view. In hindsight, I don’t consider intentional vagueness to be

good practice when doing research.

Fourth, I understand that my results for RQ1 are in relation to the set of quality attributes I

chose to represent in the survey. The choice was somewhat arbitrary, as I was simply trying

to include a few reasonably different quality attributes in addition to maintainability. If I had

chosen to include other quality attributes such as usability, availability, or integrability, the

56

numerical result for prioritization of maintainability would likely have been different.

Fifth, my interpretation of responses to questions Q5 and Q6 is highly subjective and limited

by my own lack of architectural experience. I probably missed many nuances and entire

valid suggestions, if I didn’t see how they relate to maintainability as I understand it. The

difficulty was also exacerbated by short length of some answers; a single word or a sentence

might leave too much for interpretation. Again, qualitative interviews would likely have

given enough bandwidth for the respondents to convey their knowledge in a more intact

form.

As a last point regarding internal validity, my respondents work for a consulting company.

While there are longer engagements, the primary mode of software development for a given

respondent might be project-based work. This means that an architect’s relationship with the

resulting software might be shorter than for an architect working in a company that is build-

ing its own product 2. Most of my respondents will likely take part in many engagements

over the years. Will project-based work cause the architects to skimp on maintainability, or

will they instead double down on it, because ”I will not be there to fix it later”? Variety

in projects might also give the architect a better overview on the landscape of possible ap-

proaches and what works. It would be interesting to see additional research into how the

company’s ”type” affects the architects’ views on maintainability, but this is likely too niche

a topic to gather enough interest.

External validity is difficult for me to judge outside of the preceding discussion available in

section 5.3. If the validity should be comprehensively judged, each individual suggestion by

my respondents should be searched for from the existing literature in context of maintain-

ability in cloud-native architectures. Maybe I could have attempted to draft a more rigorous

comparison to literature in a table format, for example. At the moment I don’t feel that this

is necessary, and I am satisfied with a blanket statement that the results generally appear

to align with existing literature, as can be understood based on chapter 2 and the examples

pointed out in section 5.3. I can rest assured that any advise contained in this thesis will be

filtered through the expertise of the reader before being applied.

2. Thanks to my colleague Henri Nieminen for pointing out this idea.

57

6 Conclusions

I take this chance to sum up the results based on what I have learned. While the implementa-

tion phase has an enormous impact in determining maintainability, there are many important

considerations to be accounted for already in the architectural design phase in order to lay

a foundation for a highly maintainable software product. My view aligns with Bogner et

al. (2018, 9): in addition to applying best practices, one should consider maintainability in

specific ways depending on the chosen architectural approach, in order to avoid technical

debt in long-living service-based software systems.

As I mentioned before, I think that my research would have benefitted from interviews with

the cloud architects. That way I could have dived deeper into the reasoning behind the

suggestions gathered via the survey. While there is good variety in the discovered advice, my

results are mostly a list of things to consider during architecting. Having more explanations

and context around each response would allow the reader to better align the advice with the

reality of their current project. In this light I echo the suggestion by Bogner et al. (2018, 9),

and request future research to utilize qualitative interviews with experts in the field of µSBSs

and CNAs.

For more future research topics, I would be interested in hearing if there are differences in

how a cloud architect views maintainability if they work in a consulting company, versus if

they work in a product company instead. I hypothetize that while the different nature of the

architect-product relationships in these two types of companies influences the prioritization

of maintainability to some degree, the architect’s personality and overarching professional

views play a larger role.

Based on the discussion in section 5.3 we can conclude that there are many connection points

between my survey, existing literature, and survey by Bogner et al. (2018). The discussion

in that section is only a subset of all possible inquiries that can be derived from my survey

results. Fully connecting the dots in a formal mapping would require a systematic mapping

study or a systematic literature review, both of which are out of scope in this thesis. I raise

this item as another topic for future research.

58

As closing thoughts, this thesis project was my humble attempt at passable science1. Much

could have been improved in the process, but I will leave that for my next thesis. I did reach

my unspoken goal, however: to unearth as much of my chosen subject as I can within the

framework of a thesis, which has a limited scope by nature. The topic was and still is highly

relevant to my professional interests, and I aim to carry and enhance these learnings in my

future work engagements.

1. In addition to my supportive wife Sanna, I extend my thanks to Nathan W. Pyle for his comic strip ”I have

attempted science” which loaned me inspiration to power through. View the comic here before link rot sets in:

https://nathanwpyle.threadless.com/designs/strange-planet-i-have-attempted-science

59

https://nathanwpyle.threadless.com/designs/strange-planet-i-have-attempted-science

Bibliography

Amazon Web Services. 2023. “Serverless Computing”. Visited on September 2, 2023. https:

//aws.amazon.com/serverless/.

Arvanitou, Elvira Maria, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Matthias Gal-

ster, and Paris Avgeriou. 2017. “A mapping study on design-time quality attributes and met-

rics”. Journal of Systems and Software 127:52–77. ISSN: 0164-1212. https://doi.org/https:

//doi.org/10.1016/j.jss.2017.01.026.

Bass, Len, Paul Clements, and Rick Kazman. 1998. Software Architecture in Practice. USA:

Addison-Wesley Longman Publishing Co., Inc. ISBN: 0201199300.

. 2003. Software Architecture in Practice. SEI series in software engineering. Addison-

Wesley. ISBN: 9780321154958. http://books.google.fi/books?id=mdiIu8Kk1WMC.

Bogner, Justus, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. 2018. “Limiting

Technical Debt with Maintainability Assurance - An Industry Survey on Used Techniques

and Differences with Service-and Microservice-Based Systems”. In 1st International Con-

ference on Technical Debt (TechDebt’18). https://doi.org/10.1145/3194164.3194166.

Bouwers, Eric, and Arie van Deursen. 2010. “A Lightweight Sanity Check for Implemented

Architectures”. IEEE Software 27 (4): 44–50. ISSN: 1937-4194. https://doi.org/10.1109/MS.

2010.60.

Broy, Manfred, Florian Deissenboeck, and Markus Pizka. 2006. “Demystifying Maintain-

ability”. In Proceedings of the 2006 International Workshop on Software Quality, 21–26.

WoSQ ’06. Shanghai, China: Association for Computing Machinery. ISBN: 1595933999.

https://doi.org/10.1145/1137702.1137708.

Gannon, Dennis, Roger Barga, and Neel Sundaresan. 2017. “Cloud-Native Applications”.

IEEE Cloud Computing 4 (5): 16–21. ISSN: 2325-6095. https://doi.org/10.1109/MCC.2017.

4250939.

60

https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://doi.org/https://doi.org/10.1016/j.jss.2017.01.026
https://doi.org/https://doi.org/10.1016/j.jss.2017.01.026
http://books.google.fi/books?id=mdiIu8Kk1WMC
https://doi.org/10.1145/3194164.3194166
https://doi.org/10.1109/MS.2010.60
https://doi.org/10.1109/MS.2010.60
https://doi.org/10.1145/1137702.1137708
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/MCC.2017.4250939

Gorla, Narasimhaiah, and Shang-Che Lin. 2010. “Determinants of software quality: A survey

of information systems project managers”. Information and Software Technology 52 (6):

602–610. ISSN: 0950-5849. https://doi.org/https://doi.org/10.1016/j.infsof.2009.11.012.

ISO/IEC 5055:2021(E). 2021. Information technology - Software measurement - Software

quality measurement - Automated source code quality measures. Standard. Geneva, CH: In-

ternational Organization for Standardization.

ISO/IEC/IEEE 12207:2017(E). 2017. Systems and software engineering – Software life cycle

processes. Standard. International Organization for Standardization. https://doi.org/10.1109/

IEEESTD.2017.8100771.

ISO/IEC/IEEE 42010:2007. 2007. Recommended Practice for Architectural Description of

Software-Intensive Systems. Standard. International Organization for Standardization. https:

//doi.org/10.1109/IEEESTD.2007.386501.

“JYKDOK international articles search”. 2023. Visited on February 26, 2023. https://jyu.

finna.fi/primo.

Koskimies, K., and T. Mikkonen. 2005. Ohjelmistoarkkitehtuurit. Valikko-sarja. Talentum.

ISBN: 952-14-0862-6.

Kratzke, Nane, and Peter-Christian Quint. 2017. “Understanding cloud-native applications

after 10 years of cloud computing - A systematic mapping study”. Journal of Systems and

Software 126:1–16. ISSN: 0164-1212. https://doi.org/https://doi.org/10.1016/j.jss.2017.01.

001.

Li, Shanshan, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhihao Shan, Jinfeng

Shen, and Muhammad Ali Babar. 2021. “Understanding and addressing quality attributes

of microservices architecture: A Systematic literature review”. Information and Software

Technology 131:106449. ISSN: 0950-5849. https://doi.org/https://doi.org/10.1016/j.infsof.

2020.106449.

61

https://doi.org/https://doi.org/10.1016/j.infsof.2009.11.012
https://doi.org/10.1109/IEEESTD.2017.8100771
https://doi.org/10.1109/IEEESTD.2017.8100771
https://doi.org/10.1109/IEEESTD.2007.386501
https://doi.org/10.1109/IEEESTD.2007.386501
https://jyu.finna.fi/primo
https://jyu.finna.fi/primo
https://doi.org/https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106449

Lichtenthäler, Robin, and Guido Wirtz. 2022. “Towards a Quality Model for Cloud-native

Applications”. In Service-Oriented and Cloud Computing, edited by Fabrizio Montesi, George

Angelos Papadopoulos, and Wolf Zimmermann, 109–117. Cham: Springer International

Publishing.

Likert, Rensis. 1932. “A Technique for the Measurement of Attitudes”. Archives of Psychol-

ogy 140:1–55.

Moses, John. 2009. “Should we try to measure software quality attributes directly?” Software

Quality Journal 17 (2): 203–213. ISSN: 1573-1367. https://doi.org/https://doi.org/10.1007/

s11219-008-9071-6.

Mumtaz, Haris, Paramvir Singh, and Kelly Blincoe. 2021. “A systematic mapping study on

architectural smells detection”. Journal of Systems and Software 173:110885. ISSN: 0164-

1212. https://doi.org/https://doi.org/10.1016/j.jss.2020.110885.

Noval, Ahmad, Chris Aniszczyk, Vincent Rabah, Orlin Vasilev, Michal Jakobczyk, Mario

Cisterna, Dominik Liebler, et al. 2022. “CNCF Cloud Native Definition v1.0 · cncf/toc”.

Visited on April 10, 2023.

Pahl, Claus, Pooyan Jamshidi, and Olaf Zimmermann. 2018. “Architectural Principles for

Cloud Software”. ACM Trans. Internet Technol. (New York, NY, USA) 18 (2). ISSN: 1533-

5399.

Patrizio, Andy. 2018. “What is cloud-native? The modern way to develop software”. In-

foWorld.com (San Mateo), https://www.proquest.com/trade-journals/what-is-cloud-native-

modern-way-develop-software/docview/2055357601/se-2?accountid=11774.

Roberts, Mike. 2018. “Serverless Architectures”. Visited on September 2, 2023. https : / /

martinfowler.com/articles/serverless.html.

Vale, Guilherme, Filipe Figueiredo Correia, Eduardo Martins Guerra, Thatiane de Oliveira

Rosa, Jonas Fritzsch, and Justus Bogner. 2022. “Designing Microservice Systems Using

Patterns: An Empirical Study on Quality Trade-Offs”. (Ithaca), https://www.proquest.com/

working-papers/designing-microservice-systems-using-patterns/docview/2619059217/se-

2.

62

https://doi.org/https://doi.org/10.1007/s11219-008-9071-6
https://doi.org/https://doi.org/10.1007/s11219-008-9071-6
https://doi.org/https://doi.org/10.1016/j.jss.2020.110885
https://www.proquest.com/trade-journals/what-is-cloud-native-modern-way-develop-software/docview/2055357601/se-2?accountid=11774
https://www.proquest.com/trade-journals/what-is-cloud-native-modern-way-develop-software/docview/2055357601/se-2?accountid=11774
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://www.proquest.com/working-papers/designing-microservice-systems-using-patterns/docview/2619059217/se-2
https://www.proquest.com/working-papers/designing-microservice-systems-using-patterns/docview/2619059217/se-2
https://www.proquest.com/working-papers/designing-microservice-systems-using-patterns/docview/2619059217/se-2

Vettor, Rob, David Pine, David Coulter, Nick Schonning, and Maira Wenzel. 2022. “Cloud-

native communication patterns”. Visited on March 25, 2023.

Vettor, Rob, David Pine, David Coulter, Youssef Victor, Nick Schonning, and Maira Wenzel.

2022. “Cloud-native communication patterns”. Visited on March 25, 2023.

Vettor, Rob, David Pine, Nick Coulter, Maira Wenzel, and Steve Smith. 2022. “Cloud-native

communication patterns”. Visited on March 25, 2023.

Vettor, Rob, David Pine, Tarun Jain, Szanto Peter, Omair Majid, Genevieve Warren, Kent

Sharkey, et al. 2022. “What is Cloud Native?” Visited on March 25, 2023.

Wiggins, Adam. 2011. “The New Heroku (Part 4 of 4): Erosion-resistance & Explicit Con-

tracts”. Visited on March 26, 2023. https://blog.heroku.com/the_new_heroku_4_erosion_

resistance_explicit_contracts.

. 2017. “The Twelve-Factor App”. Visited on March 26, 2023. https://12factor.net/.

63

https://blog.heroku.com/the_new_heroku_4_erosion_resistance_explicit_contracts
https://blog.heroku.com/the_new_heroku_4_erosion_resistance_explicit_contracts
https://12factor.net/

Appendices

A Survey responses: Q1-Q3

Table 11. Respondents’ years of experience in the relevant domains.

Respondent Cloud-native architecture Software architecture Information technology

R1 2-5 years 10+ years 10+ years

R2 2-5 years 2-5 years 5-10 years

R3 2-5 years 0-2 years 10+ years

R4 2-5 years 10+ years 10+ years

R5 5-10 years 5-10 years 10+ years

R6 5-10 years 10+ years 10+ years

R7 5-10 years 2-5 years 10+ years

R8 5-10 years 5-10 years 10+ years

R9 2-5 years 5-10 years 5-10 years

R10 5-10 years 0-2 years 10+ years

R11 0-2 years 2-5 years 2-5 years

R12 5-10 years 10+ years 10+ years

R13 0-2 years 2-5 years 5-10 years

R14 2-5 years 10+ years 10+ years

R15 5-10 years 0-2 years 10+ years

64

B Survey responses: Q4

Table 12. How respondents prioritize the selected quality attributes when designing cloud-

native architecture.

Respondent Performance Reliability Maintainability Scalability Security

R1 More important Important Less important Least important Most important

R2 Least important Important More important Less important Most important

R3 Important Most important Less important Least important More important

R4 Less important More important Important Least important Most important

R5 Important Less important Least important Most important More important

R6 Less important Least important More important Important Most important

R7 Least important More important Important Less important Most important

R8 Least important Most important Important Less important More important

R9 Least important Most important More important Important Less important

R10 Least important More important Less important Important Most important

R11 More important Most important Less important Least important Important

R12 Least important Important More important Less important Most important

R13 Important More important Less important Most important Least important

R14 More important Most important Least important Less important Important

R15 Less important More important Important Least important Most important

65

C Survey responses: Q5

Table 13: How respondents address maintainability with

platform- and technology choices.

Respondent Answer

R1 Usually I would stick with offerings from the same provider... i.e. if

hosting on Azure and I’m looking for a security suite, I’d highly prefer

using Microsoft Defender and Sentinel, rather than a third-party product.

Integrations between them are usually superior.

Another factor is the capability of the team. Higher preference will be

given to technologies that the team already knows. The availability to

the inner workings (i.e. exposing debug logs to aid maintaining) is also a

factor.

Lesser factors to consider are support offered by the provider (which ob-

viously affects the choice of purely open-source products).

R2 Future-proof technologies, limiting number of technological dependen-

cies, proper DevOps practices

R3 PaaS where possible, atoscaling + stateless where possible, Infrastructure

as code, automated CI/CD pipelines.

R4 Use up-to-date (but established) technology, avoid shortcuts/cutting cor-

ners, CLEAR RESOURCE NAMING, clearly defined processes

R5 -

R6 Consistency is what is heavily missing during evolving application devel-

opment

R7 IaC, tests when updates are planned, no breaking changes or clear path to

update

R8 Don’t avoid vendor lock-ins, but make sure it’s split up in small compo-

nents, so each can be maintained and replaced if needed.

Continued on the next page...

66

Table 13: Continued from previous page

Respondent Answer

R9 VCS, ticket system, tests, use well known language and framework, write

docs, architecture decision log, stick to base technologies in (for example)

AWS

R10 picking mainstream platform if possible, using the more widely used tech-

nologies makes it easier to find people with skills to maintain it in the

future

R11 Most of the cloud-native service provides the managed service required

less maintenance

R12 IaC, clear responsibilies, at least once-a-year review + changes as needed

R13 By using commonly used technologies

R14 I prefer de facto solutions to assure platform and technology maintenance

by the vendors.

R15 Scalable (use case to use case, VMSS, HA) solution with resiliency (AV

set, AV zone) and highly secure (WAF, App gateway(depends on exter-

nal/internal app), Network rules (NSG/FW), right sizing (performance),

cost (depends on environment of the application (dev/test, UAT, prod)

67

D Survey responses: Q6

Table 14: How respondents address maintainability with ap-

plication architecture.

Respondent Answer

R1 Modularise the architecture, and enable each component to be main-

tained/swopped out individually. However, centralise logging for archi-

tecture wide debugging.

R2 limiting number of technological dependencies, proper application archi-

tecture (SOLID), designing with the goal in mind, ”circus horse jumps

only as high as it needs”

R3 loosely coupling, stateless components, microservices

R4 Use up-to-date (but established) frameworks, avoid convoluted architec-

tures, avoid shortcuts/cutting corners, CLEAR NAMING

R5 -

R6 Once more consistency - instead of integration of many services you

should be aware of each new cloud service costs maintainability

R7 IaC, configuration as a code

R8 A great CI/CD goes a long way

R9 Modularity and KISS, feel like application architecture is less of an issue

than HOW the implementation phase is going (time pressure,)

R10 if possible, microservices, decoupled components make it easier to main-

tain in parts and more flexibly

R11 Use managed cloud service

R12 IaC, clear responsibilities, app releases versioned, code reviewed and re-

placed well before EOL, security fixes delivered

R13 By using services that update automatically, or having updates possible to

be made as easily as possible if they need to be done manually.

Continued on the next page...

68

Table 14: Continued from previous page

Respondent Answer

R14 Microservices architecture (loosely coupled) can be more easily maintain-

able than a layered architecture. Just need to avoid too granular/small

microservices to prevent complexity in service relations and interactions.

Every new microservice in transactions call path/sequence brings extra

delay and complexity.

R15 HA (with DR for prod) with secure and scalable

69

	1 Introduction
	2 Background
	2.1 Architecture in software development
	2.1.1 Software architecture
	2.1.2 Software development life cycle
	2.1.3 General advice for achieving a good architecture

	2.2 Maintainability
	2.2.1 Quality Attributes
	2.2.2 What is maintainability, and why is it important
	2.2.3 How to measure maintainability
	2.2.4 How to improve maintainability

	2.3 Cloud-nativity
	2.3.1 What is cloud-nativity
	2.3.2 Microservices
	2.3.3 Serverless
	2.3.4 Cloud architecture

	2.4 Maintainability in cloud-native architecture

	3 Method
	3.1 Research questions and choice of method
	3.2 Survey
	3.3 Analysis

	4 Results
	4.1 Demographics (Q1-Q3)
	4.2 Prioritization of maintainability (Q4)
	4.3 Ways to improve maintainability (Q5 & Q6)

	5 Discussion
	5.1 Research question RQ1
	5.2 Research question RQ2
	5.3 Research question RQ3
	5.4 Internal and external validity

	6 Conclusions
	Bibliography
	Appendices
	A Survey responses: Q1-Q3
	B Survey responses: Q4
	C Survey responses: Q5
	D Survey responses: Q6

