
Jani Kuhno, Kasperi Kokko

BUILDING A SCENE-SPECIFIC SYNTHETIC DATA
GENERATOR WITH OMNIVERSE REPLICATOR

JYVÄSKYLÄN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2024

ABSTRACT

Jani Kuhno, Kasperi Kokko
Building a scene-specific synthetic data generator with omniverse replicator
Jyväskylä: University of Jyväskylä, 2024, 75 pp.
Information Systems Science, Master’s Thesis)
Supervisor(s): Nurmi, Jarkko; Pölönen, Ilkka

In today’s world of AI, the amount of training data is a critical factor in the suc-
cess of model training. Especially in cases where data acquisition is difficult due
to rare occurrence of events or annotation cost, synthetic data can be used to sup-
plement data needs. In computer vision, some tasks require pixel-wise annota-
tion which, if done by hand, is labor intensive and error-prone. In this study, we
use eDSR methodology to design and evaluate a synthetic data generator, to
serve as a reference generator for those who seek to start synthetic visual data
generation from scratch. A generator, combining an Omniverse Replicator Py-
thon script and 3D assets, is developed and the quality of the synthetic data out-
puts is measured by training three different neural networks to predict segmen-
tation masks from a real-world scene. In addition to the generator, a model of
scene-specific synthetic data generation pipeline is presented, to complement the
reference generator as a source of knowledge for newcomers in the field. Two
major processes in synthetic data generator building are observed to be domain
gap bridging and domain randomization. Domain gap bridging aims to increase
the visual similarity in the synthetic scene and the real world, while domain ran-
domization aims to increase the data distribution. Because the main benefit of
synthetic data is minimal annotation cost, the optimization of generation speed
should be integrated in the development process. The Python code developed is
available in: https://github.com/jkuhno/reference-SDGenerator

Keywords: artificial intelligence, synthetic data, data generator, computer vi-
sion, semantic segmentation, deep learning, Nvidia Omniverse

https://github.com/jkuhno/reference-SDGenerator

TIIVISTELMÄ

Jani Kuhno, Kasperi Kokko
Building a scene-specific synthetic data generator with omniverse replicator

Jyväskylä: Jyväskylän yliopisto, 2024, 75 s.
Tietojärjestelmätiede, pro gradu -tutkielma)
Ohjaaja(t): Nurmi, Jarkko; Pölönen, Ilkka

Nykypäivänä oppimisdatan määrä tekoälypohjaisten mallien oppimisessa on

elintärkeää, kun halutaan kehittää toimivia malleja. Synteettisella datalla on

mahdollista täydentää dataa jos oikean datan hankkiminen on kallista tai vaikea

saada. Tietokonenäössä jotkut tehtävät vaativat pikselitason annotaatiota, jonka

tekeminen käsin on työlästä ja virhealtista. Tässä tutkielmassa käytämme eDSR

metodia, jonka avulla suunnittelemme ja arvioimme synteettisen datan

generaattoria. Tämä generaattori toimii mallina kaikille, jotka ovat

kiinnostuneita rakentamaan visuaalisen datan generaattorin alusta asti. Työssä

kehitetään generaattori, joka yhdistää Omniversen Replicatorin Python skriptin

ja 3D-malleja. Tuotetun datan laatua mitataan kouluttamalla kolmea erilaista

neuroverkkoa, jotka muodostavat segmentaatiomaskeja oikeasta maailmasta.

Generaattorin lisäksi esitetään malli skenaariospesifisen synteettisen datan

luomisprosessista, joka toimii tiedonlähteenä uusille tekijöille synteettisen datan

alalla. Työssä tunnistetaan kaksi pääprosessia synteettisen datan generaattorin

rakentamisessa, jotka ovat synteettisen ja oikean maailman visuaalinen

lähentäminen ja synteettisen maailman satunnaistaminen. Satunnaistaminen

tähtää datan jakauman suurentamiseen. Synteettisen datan suurin hyöty on

minimaalinen annotaation hinta, joten generaationopeuden optimointi tulisi olla

integroituna kehittämisprosessiin. Tutkimuksessa kirjoitettu Python-koodi on

saatavilla osoitteessa: https://github.com/jkuhno/reference-SDGenerator

Asiasanat: tekoäly, synteettinen data, data generaattori, tietokonenäkö,
semanttinen segmentointi, syväoppiminen, Nvidia Omniverse

https://github.com/jkuhno/reference-SDGenerator

GLOSSARY

AI Artificial intelligence
CNN Convolutional neural network
CPU Central processing unit
DL Deep learning
DSR Design science research
eDSR Echeloned Design science research
GAN Generative Adversarial Network
GPT Generative Pre-Trained Transformer
GPU Graphic processing unit
mIoU Mean intersection over union
ML Machine learning
OV Nvidia Omniverse
SDG Synthetic data generation
SD Generator Synthetic data generator
USD Universal Scene Description

FIGURES

Figure 1 Test scores of the AI relative to human performance by Kiela et al.
(2023) 15

Figure 2 Illustration of a neural network with two hidden layers and eight
neurons in total .. 19

Figure 3 The eDSR metamodel by Tuunanen et al. (2024)..................................... 28

Figure 4 Real-life scene for inference .. 33

Figure 5 A sample and a target from baseline run ... 35

Figure 6 Loss values experiment ... 36

Figure 7 Predicted segmentation masks from real life, first experiment. From left
to right: A simple CNN, U-NET Xception style, DeepLabV3+ 37

Figure 8 Visually improved stage and corresponding mask 38

Figure 9 Predicted segmentation masks from real life, second experiment. From
left to right: A simple CNN, U-NET Xception style, DeepLabV3+ 39

Figure 10 Scene with additional objects, and corresponding mask 41

Figure 11 Predicted segmentation masks from real life, third experiment. From
left to right: A simple CNN, U-NET Xception style, DeepLabV3+ 41

Figure 12 Scene with spherical indoor lighting, and corresponding mask 43

Figure 13 Predicted segmentation masks from real life, fourth experiment. From
left to right: A simple CNN, U-NET Xception style, DeepLabV3+ 43

Figure 14 Scene with custom made USD assets, and corresponding mask 45

Figure 15 Predicted segmentation masks from real life, fifth experiment. From
left to right: A simple CNN over 10 epochs, U-NET Xception style over 10 epochs,
DeepLabV3+ over 5 epochs, DeepLabV3+ over 10 epochs with previous
experiment data ... 45

Figure 16 Predicted segmentation masks from real life, fifth experiment. From
left to right: A simple CNN over 5 epochs, U-NET Xception style over 5 epochs,
DeepLabV3+ over 10 epochs .. 46

Figure 17 Scene with added USD assets and polished materials, and
corresponding mask .. 48

Figure 18 Predicted segmentation masks from real life, sixth experiment. From
left to right: A simple CNN, U-NET Xception style, DeepLabV3+ 49

Figure 19 Examples from the evaluation dataset .. 50

Figure 20 Predicted segmentation masks from real life, final evaluation,
DeepLabV3+ model ... 52

Figure 21 Predicted segmentation masks from real life, final evaluation, U-NET
Xception style model ... 54

Figure 22 Rendering issues due to not enough subframes 58

Figure 23 Rendering speed with different amount of subframes: 1, 10, 25, 50, 100
 .. 59

Figure 24 A reference model for building a synthetic data generation pipeline 61

TABLES

Table 1 Mean intersection over union, second experiment 39

Table 2 Mean intersection over union, third experiment 42

Table 3 Mean intersection over union, fourth experiment 44

Table 4 Mean intersection over union with exploratory but incorrect epoch counts,
fifth experiment .. 45

Table 5 Mean intersection over union with correct epoch counts, fifth experiment
 .. 46

Table 6 Experimentation with different changes, training the DeepLabV3+ model
 .. 48

Table 7 Mean intersection over union with correct epoch counts, sixth experiment
 .. 49

Table 8 Final evaluation on dataset models have not seen.................................... 55

Table 9 Timed results of different complexities, 1000 frames 57

Table 10 Timed results of custom and default writers, 1000 frames 57

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
GLOSSARY
FIGURES AND TABLES

1 INTRODUCTION ... 9

2 ARTIFICIAL INTELLIGENCE .. 12

2.1 Definition of AI .. 12

2.2 History behind AI .. 13

2.3 Machine learning ... 15

2.3.1 Supervised learning ... 16

2.3.2 Unsupervised learning .. 17

2.3.3 Semi-supervised learning .. 17

2.3.4 Reinforced learning .. 17

2.4 Artificial neural networks and deep learning 18

2.5 Computer vision .. 19

2.5.1 Convolutional neural network ... 20

2.5.2 Semantic segmentation .. 21

2.6 Importance of data in AI ... 22

3 SYNTHETIC DATA .. 23

3.1 Synthetic data in computer vision ... 24

3.1.1 Generation methods ... 24

3.1.2 Benefits ... 26

4 DESIGN PROCESS .. 27

4.1 Methodology .. 27

4.2 Related work... 29

4.3 Setup .. 32

4.4 First experiment ... 34

4.5 Second experiment .. 38

4.6 Third experiment ... 40

4.7 Fourth experiment ... 42

4.8 Fifth experiment ... 44

4.9 Sixth experiment .. 47

4.10 Final evaluation .. 49

4.11 Performance optimization .. 56

4.12 Results ... 60

5 DISCUSSION ... 64

5.1 Discussion of results .. 64

5.2 Implications for practice ... 65

5.3 Limitations .. 65

5.4 Future research ... 66

6 CONCLUSION .. 67

REFERENCES .. 69

1 INTRODUCTION

In today’s AI development, high-quality training data is possibly a depletable
resource. According to estimates of Villalobos et al., we are on course to run out
of quality training data for language models in between 2023 and 2027, and com-
puter vision in 2030-2070. However, these estimates do not factor in the likeli-
hood of researchers and practitioners doing something about the coming prob-
lem (Villalobos et al., 2022), therefore this is less a catastrophic scenario and more
a highlight of the fact that modern AI models are consuming enormous amounts
of data to train.

After deep learning became the leading subcategory of AI in computer vi-
sion, the need for large datasets for training grew rapidly (Nikolenko, 2021).
What makes training data for computer vision more complicated than most other
forms of data is the annotation required in supervised learning of a vision model,
which is in other words the goal for the model to learn, associated with every
image it is trained on. Image classification tasks are relatively simple in regard to
annotating training data. Even object detection, where the model is trained to
locate an object in an image and provide coordinates to draw a box around it, is
viable to annotate training data by hand using extensively pretrained models to
limit the amount of required data and using advanced annotation tools like Ro-
boflow (Roboflow, 2024). Going into more advanced annotation tasks, like se-
mantic segmentation, instance segmentation or depth maps for example, the dif-
ficulty of acquiring pixel-perfect annotations by manual labor make related com-
puter vision tasks an interesting use for synthetic data.

Synthetic data generation in the context of computer vision can take many

forms but they can be categorized in two ways: synthetically generated images

from generative AI and data extracted from 3D-modelled scenes. In this thesis

work we solely focus on the latter. The underlying logic in generating synthetic

data from 3D models is that in 3D modelled scenes every object can be given

classification of what it is, and pixel-perfect information on its location is made

available to the renderer which “draws” the scene to a set of pixels representing,

for example, an image. Combining this preliminary information about the scene

allows automatic and pixel-perfect annotation by just extracting desired

10

information in a form that is usable for a given task, for example producing RGB

images alongside a segmentation mask where every pixel is labelled according

to a semantic class it is part of. While the modern collection of datasets for com-

puter vision is large and pretrained models are plenty (Goldblum at al., 2024),

synthetically generated data is efficient in tasks where fine-tuning data is hard to

collect or when pretraining on public datasets does not yield desired results in

classes of rare occurrence.

The main challenge, indicated in the literature and observed in the experi-

ments of this study, in synthetic visual data is the domain gap (e.g., Sankarana-

rayanan et al., 2018; Schieber et al., 2024; Steinhoff and Hind, 2024). The domain

gap results from the visual and distributional differences of synthetic and real

worlds. The domain gap manifests itself when a neural network trained to high

accuracy on synthetic data fails to function accurately on real-world data. Bridg-

ing the domain gap is the main factor in synthetic data generation success, the

second factor being generator performance.

A problem identified in the literature (see section 4.2) of synthetic data gen-

eration is that a reference work for newcomers in the field aiming to document

an end-to-end design process of a scene-specific synthetic data generator is, to

the best of our knowledge, non-existent. The majority of the studies developing

a synthetic data generator are focused on presenting the results of the generation

as a dataset or as improved accuracy of a known machine learning task. None of

the studies we reviewed focus on the entry-level information of what factors need

to be considered when building a synthetic data generator. Practical examples

and tutorials found on the internet provide this entry-level knowledge but fail to

provide additional measurements and evaluation to complement the design pro-

cess.

To tackle the identified problem, this thesis work sets out to design a refer-

ence synthetic data generator for a scene-specific semantic segmentation task, us-

ing the eDSR methodology by Tuunanen et al. (2024). The contribution of this

study to the field of synthetic data generation is the reference generator artifact

that acts as reference on how to build a generator (cf. Conde et al.), while the

study and its iterative design process acts as complementary information of the

process. We present a novel model for creating a scene-specific synthetic data

generation pipeline, emerging from the results of the study. The model is novel

due to its iterative nature (cf. Ng et al., 2023) and the separation of domain gap

and domain randomization (cf. Nvidia, 2024).

The study is organized as follows: First, a brief review of AI and machine

learning is conducted to serve as motivation for synthetic data usage, and termi-

nology used in the study is explained. Second, a brief review on synthetic data in

computer vision is conducted. Third, the eDSR design process is presented and

the problem is validated through a review of related work, before iteratively de-

veloping and testing the generator in six iterations of domain gap bridging and

11

domain randomization to achieve quality data as generator output. The quality

is evaluated with three different neural networks trained solely on synthetic data,

through the visual accuracy and mean intersection over union of predicted seg-

mentation masks. After the last experiment, a final evaluation on a small hand-

labelled dataset is performed and performance optimization techniques are pre-

sented and measured. Fourth, the results, implications and limitations of the

study are discussed in view of previous knowledge, existing literature and the

results of this study. Finally, a conclusion of the study is presented.

12

2 ARTIFICIAL INTELLIGENCE

This chapter presents an introduction to artificial intelligence (AI). It explains the

history of AI, what AI is and the basics of AI development. Also, this chapter

gives a brief overview of machine learning and deep learning, the most used

techniques to train AI. Computer vision with neural networks, which is the cate-

gory this study addresses, is also discussed.

2.1 Definition of AI

It is still hard to precisely define what is AI since intelligence in itself is a vague
concept and has not been fully agreed on in science either. Researchers are still
trying to figure out how to measure intelligence and how human brains work.
(Ertel, 2018.) These are crucial questions when trying to build a machine that can
mimic human intelligence. Since there can be numeral explanations of what AI
is, many people nowadays are using the term AI for almost everything that seems
intelligent to them in the field of computer science. Basically, the name AI refers
to a computer program or set of algorithms that are used to do tasks which re-
quire intelligence and deduction or reasoning to perform them. Simple AI pro-
grams can be suitable for solving small or specific problems but for more complex
issues and for general artificial intelligence machines we need more complicated
algorithms and models. Artificial intelligence is disrupting a lot of different in-
dustries by executing tasks that previously would have needed humans to per-
form them. This means that AI aims to simulate, supplement and augment hu-
man intelligence (Muthukrishnan et al., 2020). In the very first paper about AI in
1955 John McCarthy explains that the goal of AI would be to develop machines
or devices that behave like they were intelligent (Ertel, 2018). This means that
machines don’t necessarily have to be intelligent in itself to qualify as AI but just
need to act like they would be thinking. Later McCarthy (2004) continues to state
that AI is rarely about mimicking or copying the human brain and intelligence.
Even though we can make machines observe other people and use that to solve
problems this way, AI mostly studies challenges and problems the world and life
presents to intelligence itself. This usually means we have to use methods that
involve more computing than human beings can actually do (McCarthy, 2004.).
Russel & Norvig (2016) elaborate this by dividing AI into categories depending
on the goal it is trying to achieve. In developing AI, we can divide them into
human approach and ideal approach. Human approach means that the AI’s goal
is to think and act like humans. The ideal approach includes computational mod-
els to increase the reasoning and acting. This approach only focuses on the com-
putational intelligence aspect of artifacts and how to increase it.

Human and machine intelligence are viewed differently, and they have
very different limitations and challenges. Normally, humans’ intellectual

13

differences come from differences in processing data. This means processing
speed, short term memory and how well we can form accurate long-term mem-
ories. In machine intelligence it is quite the opposite. Computer programs have a
lot of speed and memory, but they might be lacking in understanding the context
and social norms or other areas of intelligence. We have to keep in mind that
computer programs are made by humans and are quite simple in a way, that they
only do what they are programmed to do. This means that, if people are doing
some tasks more efficiently than computer programs, it only means that the de-
signer of the program did not understand the intellectual mechanism needed to
perform the task (McCarthy, 2004.). The evaluation of human and machine intel-
ligence is also quite different. For example, if we see a child do complex mathe-
matical calculations, we might think they are quite smart. On the other hand, if
they do not recognize the faces of their family members, we might say they are
lacking in some areas of intelligence. The reverse is true in machine intelligence.
Doing complex calculations and computations are assumed from a computer but
if it happens to recognize faces then it is considered to be smart (Bench-Capon,
2014).

2.2 History behind AI

For many centuries humans have dreamed about machines that have humanlike
abilities and devices that could think and reason like us. This can be traced back
to at least stories and writings in the ancient Greek. Although there has been a lot
of dreams and stories about machines having brain functions and logic similar to
humans, this started to slowly become reality in the 20th century when digital
computers were invented and computer science itself started to quickly take
steps forward. (Nilsson, 2009.)

First concrete mentions of machines that have the ability to think can be
traced back to 1950 to Alan Turing who is considered to be the father of computer
science. In his paper Turing is contemplating if it is possible for a machine to have
the ability to think like a human being. Turing comes up with a test that can de-
termine if a machine is thinking or not (Turing, 1950). He called this test The Im-
itation Game but today the test is more famously known as Turing Test. In this
test Turing comes up with a questionnaire. In the test there was a blind interview
with machines and humans. The interviewer’s task was to define from their an-
swers if the subject was a human or a machine. If the interviewer could not sep-
arate them, then the machine was considered to be thinking. Even though now-
adays there are many other ways to test machines’ thinking that are way more
developed, Turing Test remains still one of the key experiments when consider-
ing AI abilities of thinking.

However, as stated in the previous chapter, the real journey of AI began in

1956 when McCarthy came up with the term artificial intelligence in his paper.

Together with Minsky, Rochester and Shannon they came up with a proposal for

14

Dartmouth conference about AI. In this proposal they attempt to make a machine

that solves problems, uses language, forms concepts and abstractions while im-

proving itself at the same time. (McCarthy, Minsky, Rochester & Shannon, 2006.)

In the proposal they also discussed about artificial neural networks in importance

of constructing such a machine that can learn. Before this only a single neuron

with just basic input-output functions had been discovered to be able to learn

things (Muthukrishnan et al., 2020). This was the beginning of many researchers

studying AI and attempting to make such a machine. Rosenblatt (1958) intro-

duced the first more advanced neural network model named Perceptron a few

years later. This multiple neural network concept which was inspired by human

brain functions is still the main building block for creating valuable and complex

AI.

Even though there was progress in the field, the unrealistic expectations

were too much at the time and a lot of researchers came to the conclusion that the

things they were trying to build AI to do were ahead of their time. Limitations

with computing power and lack of models really caught up with the evolution of

AI (Muthukrishnan et al., 2020). This led to what was called “AI winter" during

which nothing really happened in AI science field and no significant progress

was made during this time period. During 1970 to 1990 there was some progress

made in AI field mainly because the studies made in the last twenty years could

be relied on and researchers did not have to invent everything from zero. Ru-

melhart, Hinton & Williams (1986) had one of the key findings in this time, back-

propagation. They managed to come up with a multi-layer neural network where

each neural layer was connected to the next one. This enabled the network to set

more accurate bias and weight evaluation to each input and could learn from

mistakes it made. Towards the turning of the century, in the the mid 1990s the

increased computing power of machines with the knowledge from previous re-

search AI started to really take off and huge leaps in development were made.

The first time AI substantially caught the eye of public attention was in 1997

when IBM’s Deep Blue supercomputer defeated the reigning chess champion

Garry Kasparov in a chess match. This also marked the first time that an AI was

superior to human intelligence in such a complex matter (Russel & Norvig, 2016).

The event gathered a lot of recognition through the news and caught the public

eye. After that, people started to really see the concrete uses of AI and many busi-

nesses started to invest heavily in AI. Even though the error rate to AI machines

at the time were very low, there were still some limitations in hardware and data

that affected AI’s abilities.

During the last ten years AI has taken huge leaps forward in its capabilities

and recognition. Most of the AI’s abilities have surpassed human capabilities in

recent years as Kiela et. al (2023) illustrates in Figure 1. This is mostly due to the

fact that the limitations of data storage and graphic processing units (GPU) issues

15

were overcome. When GPUs become increasingly more powerful and affordable,

AI’s abilities will advance as well.

Figure 1 Test scores of the AI relative to human performance by Kiela et al. (2023)

These machine learning and deep learning algorithms rely heavily on available

data (Muthukrishnan et al., 2020). This is because the more data they get as input

the more accurate they become. Even though AI has become more accurate than

human in a majority of things, image recognition and natural language pro-

cessing are two main areas where AI still has a lot to improve.

Most recent development in AI has been GPTs (Generative pre-trained

transformer). GPTs are part of large language models which use neural networks

to process natural language. These models are pre-trained with large amount of

data sets to generate human like language. They are also trained to predict and

analyze. Most known GPT is called ChatGPT which was launched in late 2022 by

OpenAI and it has widely adopted in popular and commercial use.

2.3 Machine learning

Machine learning (ML) is a field of study in AI. Machine learning is about making
and creating algorithms that can solve more complex problems that basic com-
puter science algorithms with simple outputs and few parameters cannot solve.
Because the world around us is not simple but rather complex these ML algo-
rithms are more applicable to real-life scenarios and predictions for example. ML
can automate this prediction making and make unseen generalization from huge
datasets. With the rise of AI and ML in businesses there are many industries

16

implementing them into their core business including finance, healthcare, enter-
tainment and engineering for example. Usually in business ML is mostly used in
making predictions of future or to spot patterns in data. The purpose of ML is to
learn from the data and make informed decisions based on it. (Mahesh, 2020.)

One of the key elements in machine learning is the ability to learn by itself

through trial and error, data and past experience (Alpaydin, 2021). Before the

term machine learning was coined these algorithms were called self-teaching

computers. This learning can be done without explicitly programming or in-

structing them. Although the basic idea of computer science still remains the

same, give computer programs some kind of input to provide output based on

the input. The only difference between ML and traditional algorithms is that ML

can improve the outcome with data and past experience thus making it more

efficient and accurate to solve complex problems or when output, parameters or

the problem itself is not distinct. Even though ML relies on algorithms to solve

data problems there is no model that fits to solve all problems. Every problem

needs to be evaluated to find and create the best algorithms to solve it (Mahesh,

2020.).

We can categorize ML algorithms based on the way they approach data,

handle it and learn from it. To simplify, in literature usually these are categorized

into four different approaches. These approaches are supervised learning, unsu-

pervised learning, semi-supervised learning and reinforced learning. Nowadays

there are also many more approaches to addition, but these four are the most

studied and applied so therefore we focus only on these main categories to give

overall coverage of ML. Also, some ML algorithms might mix and use more than

one approach to create comprehensive algorithms (Alpaydin, 2021). As stated

before, not one of these methods and approaches are better than another, but ra-

ther different problems require different solutions.

2.3.1 Supervised learning

In supervised learning, the algorithm maps the set of inputs (samples) to outputs
(targets) based on example data. Algorithms learn rules in which inputs are trans-
ferred to outputs. Usually, the output itself is supervised and a specific target is
already defined by a supervisor. Learning and recognizing this pattern in rules
from training data it can perform outputs to new unseen data with the same ex-
pected rules. This method requires the most external assistance to perform (Ma-
hesh, 2020.). According to Gollapudi (2016) in supervised learning, inputs and
outputs form a pair with the given rules and the algorithms’ job is to find this
relationship between them to give specific inputs a matching output. Supervised
learning uses what is called training data and test data. Training data is used to
train the algorithm to learn the rules and test data is used to test the training
already done (Mahesh, 2020). If not happy with the results of test data, it is pos-
sible to improve the algorithm by feeding it more training data for better results.
Supervised learning is best used in cases where the data is labelled. This means

17

that we already know the context of the data and what it contains. In computer
vision, labelled data is often called annotated data. With large amount of labelled
data, where inputs and outputs are known we can easily predict the output of
any new inputs (Gollapudi, 2016).

2.3.2 Unsupervised learning

As the name suggests, unlike supervised learning, unsupervised learning does
not have any supervisor to give the algorithm any implications on how the input
data should be categorized or what to do with it. This means that the algorithm
is not given any targets to deal with the data but rather it needs to find the best
way to do it on its own. In this approach the algorithm is left alone to deal with
the inputs and try to figure out the correct outputs. Mahesh (2020) states that in
unsupervised learning there are no correct answers but rather it is all about find-
ing similarities and presenting the interesting structure of the data. The Algo-
rithm tries to discover and find patterns in the data to create classifications. It
attempts to find structures in the data that appear more often than others to form
this data into groups (Alpaydin, 2021). When new data is presented to the algo-
rithm, it uses the features of the previous data to recognize it. Unsupervised
learning is best used in cases where there is no specific problem to be solved. Also
unlike in supervised learning where data is best suited if it is labeled, in unsu-
pervised learning it is the opposite. Unlabeled data is best for unsupervised
learning since even the attributes of the output are not defined (Gollapudi, 2016).

2.3.3 Semi-supervised learning

Semi-supervised learning is basically the combination of both previously intro-
duced ML methods, supervised and unsupervised learning. This method is actu-
ally the closest to the way that humans learn and has been simulated from it.
Semi-supervised approach is best for the cases where we have both labeled and
unlabeled data to train the algorithm (Gollapudi, 2016). Usually this is con-
structed by training the algorithm with one of the methods first and addition to
that enhance the performance of it with the other method.

2.3.4 Reinforced learning

Reinforced learning is an ML approach which focuses heavily on rewarding. It
maximizes the rewarding of a result. Basically, it means that the system is re-
warded when it does something right and therefore it learns to give results that
accumulate the most rewards for itself. This way the results may not be immedi-
ate and might require a lot of steps before coming to it, since the algorithm is
deciding between trade-offs to get the best rewards (Gollapudi, 2016). This ap-
proach is best when the output might be unknown but there is a way to evaluate
the performance or the success of the outcome. In reinforced learning we have an
agent that is trying to learn with given policy how to interact with the environ-
ment it is in by preferring to maximize its reward (Henderson et al., 2018). This

18

means that we can have a problem with more than one result, but the agent is
trying to pick the one result that maximizes it rewards with given success criteria.
The learning itself comes from the agent interacting with the environment and
getting feedback in the form of rewards. Example of this method is given by Gol-
lapudi (2016) where he describes that if an agent wants to get from place A to
place B, there can be many ways to get there but the agent will pick the one that
suits the policy of the environment best. The result can vary depending on if the
environment rewards on getting there as fast as possible, with the least incon-
venience or the cheapest for example. Also, other factors add depth to this, for
example when the agent has to decide between a small reward immediately or a
bigger one in the future, which might affect and change the result.

2.4 Artificial neural networks and deep learning

The idea of neural networks comes from neurobiology. Mostly in literature arti-

ficial neural networks are referred to as a copy of human brains and represent

how they operate. Chollet (2021) states that artificial neural networks do not ac-

tually have any real implications to real human brains, but it is just merely the

way we visualize how human brains operate. Neural networks and deep learn-

ing itself are just a mathematical framework for computers that learn from data.

Neural networks have neurons with tasks that provide the output to yet another

neuron, similar to the way human brains have different parts with own tasks.

This way humans can construct complicated thoughts and decisions (Mahesh,

2020). Artificial neural network contains one or more neurons. Each of these neu-

rons has their own task inside the network. Furthermore, each of the tasks have

their own weighted value inside the network that provides the ultimate output

of it. (Goodfellow et al., 2016). This way it is possible to make more complex al-

gorithms by dividing and digesting workload to simpler tasks.

Machine learning techniques are mostly used to solve and automate simple
tasks or problems. When considering more complex problems and tasks we need
even more complex algorithms. This is where deep Learning (DL) comes in hand.
It can be considered that ML is a flat one layer of a neural network which solely
by itself tries to solve problems and DL algorithms consist of many layers of these
artificial neural networks stacked over each other (Chollet, 2021). Usually each of
the neural networks are one set of algorithms with different tasks and weighted
values that affect the final output. The simplest DL algorithm has at least three
layers. These layers are input layer, hidden layer and output layer (Goodfellow
et al., 2016). Each of the layers consists of neurons. These neurons and layers each
have different simpler tasks which are combined to provide the output. In this
kind of DL algorithm, the input data is first handled by an input layer which then
forwards it to the hidden layer and lastly the output layer is the one that provides
the final output of the algorithm. There can be more than one hidden layer, also
known as inner layers, which brings more depth to the algorithm. To simplify,

19

the more layers the algorithm has, the more complex problems with greater ac-
curacy it can solve. With new data inputs DL algorithms can learn and adjust the
weighted value of each neuron to become more accurate. Nowadays modern DL
algorithms can contain hundreds of layers stacked on top of each other (Chollet,
2021). Deep learning has become the modern way of making AI based programs
in some tasks, like natural language processing and computer vision, since it has
proven to outperform a lot of other methods. This is especially the case when
dealing with large amounts of complex data from different sources and formats
like audio or visual data (Voulodimos et al., 2018).

Figure 2 Illustration of a neural network with two hidden layers and eight neurons in total

2.5 Computer vision

Computer vision is a subfield of AI, which is focusing on developing algorithms

that understand and analyze visual data. If we assume that AI makes computers

think, computer vision is all about enabling computers to see and observe. Com-

puter vision tries to capture useful information about variation of digital images

or videos. This information can be anything but usually it revolves around what

is in the picture itself and what it represents. Computer vision can also be used

to detect errors or defects in visual data. In practice it is about mimicking human

vision (Voulodimos et al., 2018). This means computer vision is not trying to solve

something that a human cannot already do, but rather try to automate this ability

so it can be done faster and on a larger scale. The difference is that computer

vision is trying to do this with just cameras, sensors or data. Computer vision

itself has been studied since the late 1960s, but it has had huge leaps in

20

development in recent years due to improvement and availability of deep learn-

ing techniques. DL is heavily utilized in modern computer vision (Szeliski, 2022).

To learn and perform successfully, computer vision needs a lot of data. For ex-

ample, to recognize a car from a picture these algorithms might need thousands

or even millions of pictures of cars to do so, depending on the complexity of the

task, like if we want it to recognize different types of cars, which are in different

shapes, colors and sizes. Any deviation from the training data that has been used

can be challenging for the algorithm to spot and adapt to, which explains the

need for large sets of training data and variation of sample distribution in the

dataset. Most of this learning in computer vision is done by using convolutional

neural networks (Szeliski, 2022).

2.5.1 Convolutional neural network

Previously we covered the basics of neural networks and how they work. In pre-
sent day there are many types of different neural networks depending on the use
but in this paper we only dive into convolutional neural networks (CNN) since
these are most relevant to our research due to large availability of different so-
phistication levels. Where artificial neural networks try to mimic human thinking,
convolutional neural networks are trying to simulate human visual cortex. Using
CNNs in a DL model we can stack many layers that each spot different things
from visual data. Convolutional neural networks differentiate from normal arti-
ficial neural networks by their more complicated and diverse hidden layers.
There are three different types of hidden layers in CNN: convolutional layers,
pooling layers and fully connected layers (O'Shea & Nash, 2015)

CNNs are primarily used in computer vision since it has convolutional lay-
ers that can learn to observe only specific things in an image. These layers can
ignore other non-related information in the picture. With convolutional layers
we can also identify the edges and corners of an image. These convolutional lay-
ers make CNN so effective on image recognition. (Voulodimos et al., 2018). Be-
cause an image is composed of pixels, we can divide images into 3x3 (width and
height) pixel segments for example. Each neuron is only capable of observing the
segment of the image that is assigned to it. Neurons have filters or kernels which
they are trying to recognize from that area. By going through the whole image
following this method we can compose the image to pass onto the next layer
(O'Shea & Nash, 2015). The deeper we go into the layers, these filters become
more complex and are trying to identify more abstract things from the image.

Pooling layers are used to reduce spatial dimensions of the image. In this
layer we combine the information that came from previous layers and simplify it
for the next layer. This is also called downsampling. This method allows to re-
duce the computational capacity needed to perform the next tasks in the layer.
(Chollet, 2021). Because normal artificial neural networks do not have this pool-
ing layer constructed in it, they lack the capacity to perform image recognition
well enough.

21

Fully connected layers are the ones that connect all the previous layers’ data
together. These layers have access to the information in the previous layers’ neu-
rons, in addition to their own neurons. This layer will construct the whole image
from the pieces it has gathered from all the previous layers using classification
and pass it to output layer that can identify the final output. Fully connected lay-
ers are applying high level reasoning to construct the general view of the image
(Voulodimos et al., 2018). In the case of identifying human faces for example, this
would mean in theory that the first layer is trained to recognize eyes, the second
one identifies noses and the third one the overall face shape and so on, although
this might not be what the network actually does but is a good representation of
the logic. By stacking these layers on top of each other we get the general view of
the image and can construct the whole face and separate other information from
the picture, like the background. The algorithm can then produce the output that
the image is indeed a human face and not just random parts of a face. If we teach
the algorithm with enough training data of faces it can adapt and recognize new
faces that it has not seen before based on the features of it.

2.5.2 Semantic segmentation

Semantic segmentation is a type of image segmentation process in computer vi-
sion that tries to identify and classify objects in the image into different classes.
The goal of semantic segmentation is to group each pixel of the image into corre-
sponding class (Thoma, 2016). For example, if we have a picture of a street, we
could identify cars, humans, animals, the sky, buildings and traffic signs from it.
Semantic segmentation is easy for humans and performing segmentation with-
out knowing the identity itself is a crucial part of learning and understanding the
world around us. For computers this kind of segmentation has been a challenge.
Semantic segmentation is sometimes more important than object detection since
computers do not necessarily need to understand what is in the picture to be able
to segmentate (Guo et al., 2018).

In practice segmentation is done by going through every pixel in the image
and colorizing it depending on the class that it belongs to. The goal of the seg-
mentation is to find which pixels belong together semantically (Guo et al., 2018).
This is visualized with a segmentation mask which highlights these various clas-
ses with each a color of their own. Classes are predetermined before the segmen-
tation, and there can be as many or as few classes as is seen fit for the specific
purpose. In supervised learning, the training of semantic segmentation models
usually involves target segmentation masks, and annotating these pixel-wise tar-
gets by hand for training is what makes training data in semantic segmentation
usually difficult to gather.

22

2.6 Importance of data in AI

Data is one of the most important things in AI development. The whole industry

basically revolves around data. Both machine learning and deep learning relies

heavily on data to perform and become more accurate. Each algorithm needs var-

ious amounts of data depending on the task, but to simplify it can be said that

the more complex tasks the algorithm is needed for, the more data it needs to

successfully do the task. ImageNet, which is a popular public database that is

used to train a lot of AI models that perform some kind of image recognition,

consists of more than 14 million images in over 20,000 categories (ImageNet,

2020). Not all algorithms need as much data, but it is stated that usually even a

simple algorithm needs at least thousands of images per class to perform de-

cently. Also, the acceptable performing rates can vary a lot depending on the al-

gorithms task. For some algorithms 80% success rate might be good, and for oth-

ers 80% is not usable. Therefore, the data volume needed depends on the error

tolerance. If we want an algorithm with close to 100% success rate it is going to

take more data to train it compared to 80%. Of course, data volume is not always

the best metric for the algorithms and usually quality is even more crucial.

The problem is that there is only a finite amount of real-life data and data
storage available. Real-life data is also expensive and slow to acquire considering
the speed and amount of which these algorithms consume it. There are many
scientists and authors in the field trying to tackle this problem of needing huge
datasets to teach algorithms (Mahesh, 2020). One solution for the problem is con-
sidered to be synthetic data.

23

3 SYNTHETIC DATA

In this chapter the concept of synthetic data is introduced. History and basics of
synthetic data is discussed. In addition, this chapter covers why synthetic data is
needed and the benefits of it, especially in computer vision context.

Synthetic data is a form of data that is artificially generated to simulate real-
world scenes or occurrences (Raghunathan, 2021). This data can be in any form
like text, audio or visual for example. Synthetic data is usually generated with
algorithms or simulations rather than from real life recordings (Steinhoff & Hind,
2024). Even though synthetic data hype has risen in recent years with AI, it has a
long history. Earliest mention of synthetic data in computer science can be traced
back to 1960s. Of course, methods to acquire and generate synthetic data have
developed but the basics of it have stayed the same (Nikolenko, 2021). For many
years synthetic data was only seen as a poor substitute for real data and it could
be used only in very rare cases. Sometimes it was even referred as fake data,
which is far from the truth. However, mostly in the past decade AI developers
have started to recognize the true capabilities of synthetic data (Ramos &
Subramanyam, 2021). Ramos & Subramanyam (2021) continues to state that in
the future synthetic data is going to be the backbone of AI development since the
demand for training data in ML and DL is skyrocketing. They estimate that by
2030 synthetic data will be more than two-thirds of the overall data used to train
these DL models. This means that real life data is used only to supplement syn-
thetic data in ML and DL.

There are many reasons why the industry is heavily switching to using syn-
thetic data. As said previously, one of them is the increase in need for data in
training ML and DL algorithms. Real life data can be hard to obtain and very
expensive. Even though we would have data from real world, it still needs to be
labeled for AI. This means we need to explain to the algorithm what the data
represents. Usually, this is done manually and is very time-consuming. It is
stated that more than 80% of the time spent in ML development is consumed by
data preparation (Brownlee, 2020). In synthetic data it is possible to do the label-
ling whilst generating the data itself (Steinhoff & Hind, 2024). The second reason
for synthetic data is that most often real data is incomplete. This means that even
though we can have a large set of data, it can exclude situations or occurrences
that might happen. With synthetic data we can create situations that the real data
does not cover (Ramos & Subramanyam, 2021). One of the situations where syn-
thetic data is also viable is when real data is really hard to get or is restricted or
regulated. This can be for example insensitive data like medical data. With syn-
thetic data it is possible to still train these models without having to worry about
confidentiality leaks (Steinhoff & Hind, 2024).

24

3.1 Synthetic data in computer vision

Man and Chahl (2022) define synthetic image data as “any image data that is
either artificially created by modifying real image data or captured from syn-
thetic environments”. While this describes synthetic image data well and image
data is the scope later in the design science research part of this study, the defini-
tion can be expanded to cover all computer vision data. This includes data from
such as lidar or depth sensor. For example, Oh et al. (2024) make synthetic data
to train object detection via lidar. Including data modified from real world data,
the risk is that synthetic data gets confused with data augmentation, which is an
essential data processing tool used to supplement datasets.

Data augmentation is a collection of techniques to produce modified sam-
ples from existing data to increase the size of the dataset, while synthetic data is
creating data from scratch using computer-enabled methods (IBM, 2024). These
methods include machine learning solutions and 3D-modelling solutions. For
3D-modelling solutions, graphic API’s and game engines are one of the most
common techniques (Schieber et al., 2024). More information on the generation
methods is presented in section 3.1.1. Having discussed aspects of synthetic data
definition, we propose that for this study the term “synthetic visual data” is any
data used in training of computer vision models and algorithms that has been
created using computer-based methods. We argue that synthetic image data and
synthetic visual data are, at least for the purposes of this study, interchangeable.
The most important distinction is between synthetic data and data augmentation,
which are techniques often with the same goal but essentially different.

In the world of synthetic data, related to the main challenge in machine

learning, overfitting (Chollet, 2021), is the challenge of domain gap. Overfitting

happens when the model learns to be too precise with training data and does not

generalize well to new data. Similarly, domain gap is the difference between syn-

thetic data and real data. If the domain gap is not bridged, it is more than likely

the model will learn to be extremely accurate on synthetic data but fail to gener-

alize on real data. Domain gap is also called “the reality gap” (Tremblay et al.,

2018), “sim-to-real gap” (Huang, Jin & Ruan, 2012), “synthetic-to-real domain

transfer” (Nikolenko, 2021) and “domain shift” (Sankaranarayanan et al., 2018),

all of which refer to the same phenomenon. In this study, we will present tech-

niques to mitigate the domain gap and train neural networks that are moderately

accurate with real-world data.

3.1.1 Generation methods

A recent survey by Bauer et al. (2024) identified 20 distinct types of synthetic data

generation models and 417 models of generation. Computer vision was reported

to be the most popular domain of synthetic data generation and Generative Ad-

versarial Networks (GAN) were the most popular models. While GANs can be

25

used for various generative tasks, they have wide usage in image creation. The

researchers classified the methods related to our study as generation from “vir-

tual environments”, which was further divided into subcategories of graphic

models, virtual worlds and interactive environments. (Bauer et al., 2024). The un-

derlying idea, in the methods Bauer et al. categorized as graphic models and vir-

tual worlds, is to use computer graphics to render objects mimicking the real

world and classify the objects before or while rendering them. Methods identified

as interactive environments are intended for experimenting with, training and

evaluating AI agents and reinforced learning methods.

In the scope of this study, which is focused on synthetic data generation
from graphic models and virtual worlds, we briefly mention usages for GANs in
the context and continue to present generation methods related to this study.
Studies about building synthetic data generators are presented in section 4.2.

Abou Akar et al. (2024) present applications for GANs in different indus-
tries and suggest one of the use cases to be domain gap bridging. GANs can cre-
ate textures for materials that are realistic and thus advance realism of the syn-
thetic scene. GANs can also help in transferring from synthetic data domain to
real world accuracy. (Abou Akar et al., 2024). This transfer is called domain shift,
and one study to alleviate this problem was conducted by Sankaranarayanan et
al. (2018), using GANs successfully.

While early studies in graphic model synthetic data generation were con-
ducted using unique methods built by the researchers, game engines and other
3D modelling tools and platforms have since included synthetic data tools in
them. Borkman et al. (2021) introduced Unity Perception, an extension package
to popular game engine Unity. This package allows users to create annotated
synthetic visual datasets with ease. Unreal Engine, which is another popular
game engine, also has extensions for synthetic data generation, like Nvidia Deep
Learning Data Synthesizer (To et al., 2018) and UNREALROX+ (Martinez-Gon-
zalez et al., 2021). These game engine methods rely on the advanced rendering
capabilities of the engines to produce high-quality images and extract ground-
truth information to produce annotations. The open-source 3D creation software
Blender (Blender, 2024) is a basis for multiple synthetic data studies, for example
Kubric (Greff et al., 2022). A widely used platform for graphic models is Nvidia
Omniverse (Nvidia, 2024), using Replicator extension (Nvidia, 2023). The Nvidia
Omniverse Replicator is the generation method used in this study, and the fea-
tures and usage of the Replicator are described in depth in chapter 3.

Using virtual worlds for synthetic data generation stems from the abun-
dance of digital content they often include. For example, a well-known triple-A
title Grand Theft Auto 5 includes a comprehensive artificial urban scenery, with
many moving 3D assets like pedestrians and cars. This game was used in a study
by Richter et al. (2016). In the study, researchers intercepted communication be-
tween the game and graphics hardware to gain access to ground-truth infor-
mation and produced a synthetic dataset of 25 000 samples with pixel-wise se-
mantic segmentation annotations. (Richter et al., 2016).

26

3.1.2 Benefits

Supervised tasks in computer vision require considerable effort to create a train-
ing dataset by hand. In computer vision, some tasks require complex annotation
of an image. While creating the popular semantic understanding dataset “City-
scapes” (Cordts et al., 2016), the researchers reported that some of the complex
annotations took around 90 minutes per image to complete. The complexity
grows even larger with video, and a study stated that in a video object segmen-
tation task, annotating one object in a 10 second video would take 5 hours done
manually (Delatolas, Kalogeiton & Papadopoulos, 2024). This complexity of an-
notation is eased by advanced technology tools such as Roboflow’s use of the
Segment Anything Model (Skalski, 2024), yet per image manual efforts are still
required.

Synthetic data alleviates this problem of annotated dataset creation by au-
tomating the creation of images and labelling of the target images. Considering
the graphic model methodology, most of the manual labor is done while creating
the synthetic data pipeline. The images and annotations are then created unat-
tended. An Nvidia blog post from 2021 presents an estimate from Paul Wal-
borsky that an image which costs 6 dollars to annotate manually, costs 6 cents
generated synthetically (Andrews, 2021). While we argue that the estimates have
changed at the time of writing this paper in 2024, the drastic difference in estima-
tion suggests that synthetic data offers a considerable reduction in annotation
cost.

In some situations, manually gathering samples for a dataset might be hard.
For example, Haselmann and Gruber (2019) had to artificially create samples and
annotations in pixel-wise defect detection due to the nature of defect detection.
This task requires inspecting extremely large quantities of samples to identify
enough rare defects to create a comprehensive dataset, and pixel-wise annota-
tions of the defects. (Haselmann & Gruber, 2019). Man and Chahl (2022) provide
an example of a problem related to previous: Gathering a dataset of a foggy road
relies on fog being present on the road when gathering the images. Extreme en-
vironmental conditions and long tail anomalies are usually hard to collect or
missed entirely in manually created datasets. However, in synthetic data, rare
conditions are limited only by the expertise of the researcher or practitioner do-
ing the generation.

This concludes the motivation for synthetic data creation. In the next chap-
ter, we iteratively develop and evaluate a synthetic data generator built on
Nvidia Omniverse. The thinking process and iterative evaluation is documented,
and findings are presented.

27

4 DESIGN PROCESS

The research problem is “a reference scene-specific synthetic data generator for
points-of-interest on Omniverse Replicator does not exist”. The purpose of our
design process is to answer the problem by designing a synthetic data generator
(SD Generator), which can successfully produce quality training data for a se-
mantic segmentation model. While designing, we record intermediate steps thor-
oughly to act as reference for those who seek to start developing systems similar
to the SD Generator.

In the research problem, “points-of-interest" mean specific areas of a scene
that are of special interest. With a single point-of-interest, the interesting area is
usually centered in the camera (or any other perception sensor) view. Multiple
points-of-interest are either situated in a single view or require a moving camera
or multiple cameras. For example, this study uses a single point-of-interest,
which is a table and home office objects on top of it. An example of multiple
points-of-interest could be a warehouse, where all the shelves and the isles be-
tween the shelves would be of interest for a robot moving in the warehouse.

The “scene” in the research problem is the setting in which the points-of-
interest reside. For examples of the table and the warehouse, scenes would be a
corner of a room where the table is and a warehouse with all the shelves, respec-
tively.

These concepts are in theory simple to scale into larger and more complex

settings. Increasing the number of points-of-interest and the size and complexity

of the scene, one can adjust the idea to a broader set of problems than a table and

objects on it. A reference generator acts as a starting point and a more complex

generator is achieved by appending and substituting parts of the generator. For

example, going from the table task to the warehouse task: substituting the corner

of a room with the warehouse, table with shelves and isles, the home office ob-

jects with objects commonly found on the shelves and blocking the isles, and

adding more cameras or a moving camera to capture the whole space, one would

have built a synthetic data generator for a warehouse environment. In practice,

availability of 3D assets to build the scene and the points-of-interest poses a prob-

lem for building a complex generator. The quantity and quality of assets is related

to the quality of training data generated.

4.1 Methodology

In this study, design science research (DSR) is adopted to research synthetic data
generation and gather knowledge on how to build a synthetic data generator us-
ing Nvidia Omniverse. DSR is well suited for designing innovative artefacts
(Vom Brocke et al., 2020), therefore it is suitable for research on building methods

28

to generate synthetic data. More specifically, for the purposes of creating the SD
Generator with accompanying information of the development process and iter-
ative evaluation, we adopt an echeloned DSR (eDSR) methodology from Tuuna-
nen et al. (2024). Using eDSR allows for using a flexible iterative process of de-
signing, demonstrating and validating intermediate artifacts (figure 3).

The macro-level design process is conducted as follows: first, related work
is reviewed to validate the problem statement. Second, objectives are defined for
the design process. Rephrased more practically, this means an overall explana-
tion of what activities are done and why. Third, an iterative design phase is pre-
sented, where each iteration consists of multiple instances of echelon types of
Objectives and requirements definition, Design and development, Demonstra-
tion and Evaluation (Tuunanen et al., 2024). Finally, a macro-level evaluation of
the artifact is undertaken. This evaluation utilizes a small, hand-crafted dataset
from real-world to measure accuracy of the models trained on generated syn-
thetic data.

The iterated phases are referenced as “experiments”, and they produce an
intermediate artifact each, which is demonstrated and evaluated each time. This
approach to design allows us to document the design process and demonstrate
what design components and stages work and why, in order to produce a well-
documented reference synthetic data generator.

Figure 3 The eDSR metamodel by Tuunanen et al. (2024)

The main limitation of this study is the final evaluation. While numerical and
visual data of the fitness of the final artifact is provided, no industry opinion of
the solution is gathered. The study lacks expert interviews and surveys from
practitioners to validate the value of the solution in practice.

29

4.2 Related work

In order to validate the relevancy of the problem, a brief literature review is pre-
sented. We search for other visual synthetic data generation studies and papers
to find out if the problem is already solved in the literature. In addition to scien-
tific literature, enterprise solutions are reviewed in order to know whether the
solution already exists as proprietary or open source.

Given the technology in this study is largely Nvidia’s, we search the Nvidia
ecosystem for partners and papers related to synthetic data generation. Search
engines are used to find more practitioners and enterprises using or producing
synthetic data for computer vision, in search of solutions similar to what this
study proposes. A simple keyword search over Google Scholar is undertaken to
find related studies and papers. The keywords used were “synthetic data gener-
ation”, “semantic segmentation”, “object detection”, “computer vision” and
“Nvidia Omniverse” with various combinations of “synthetic data generation”
and the rest. For all search results, we make a distinction between visual syn-
thetic data and all other types, like structured data or text. Only visual synthetic
data generation is in the scope of the problem of this study. With these criteria it
was possible to find the most relevant studies to us. We found 9 comparable stud-
ies and 3 open-source generators from practice.

In 2018, researchers of Nvidia and University of Utah generated synthetic
data for 6D pose estimation with 3D bounding box labels. (Tremblay et al., 2018).
Although successful in using synthetic data to train a functioning deep learning
model, the study aims to train a pose estimation model. This study aims to vali-
date using synthetic data by training a semantic segmentation model. Another
difference is that the study suggests generating domain-randomized and photo-
realistic scenes separately, while this study generates both at the same time. The
development process is also minimally described for it is not the focus of the
study, when our goal is to create a well-documented design process for synthetic
data generation.

A review by Schieber et al. (2024) indicates various synthetically generated
datasets for semantic segmentation tasks but does not mention a study focusing
on the design process of a scene specific data generator. The study highlights the
importance of addressing sim-to-real gap (domain gap) when using synthetic
data, which is the cause for underperforming models in real world when trained
on synthetic data. We focus on addressing that gap by evaluating accuracy of the
model on real-world data.

Metzeler et al. (2023) use Nvidia Omniverse platform to present a genera-
tion method for object detection, which is similar in nature to this study and
could be done with our generator by just adding a bounding box annotator to the
SD Generator.

Conde et al. present a synthetic data generator built on Omniverse platform
as a GUI extension of Omniverse. The researchers study the effect of using syn-
thetic data alongside real-world data to train multiple object tracking models for

30

road environments. (Conde et al.). The study does not focus on the design process
of the generator, only briefly describing the platform and presenting the GUI ex-
tension.

Cascante-Bonilla et al. (2023) present a codebase for synthetic data genera-
tion in their study. However, the focus of the study is Vision and Language mod-
els and producing pixel-wise annotations is only briefly mentioned.

Erfanian Ebadi et al. (2022) built a synthetic data generator for human-cen-
tric computer vision. This generator is built on Unity Perception and enables cre-
ation of synthetic data with human assets for human-centric computer vision
tasks like pose estimation. The researchers present the creation process and vali-
date the generator outputs. The generator, however, is focused on human-centric
data and does not act as a reference for scene specific tasks, although it can pro-
duce semantic segmentation annotation.

Richard et al. (2023) introduces a lunar environment simulator built on Om-
niverse. This generator uses Omniverse’s synthetic data tools to produce annota-
tions, uses domain randomization techniques and aims for photorealistic render-
ing. All are features that this study goes into more depth explaining.

Ng et al. (2023) utilize Omniverse to create a synthetic data generator that
produces annotations for amodal instance segmentation (Li & Malik, 2016) of
cluttered tabletops. The focus of the study differs from our intention, although
their objective of producing a simple and accessible synthetic data generator
shares commonality with our study. They use physics simulation to clutter the
tabletop with assets, our generator does not utilize the physics rendering capa-
bility of Omniverse. The physics simulation is arguably a key feature in Om-
niverse; therefore, a highlight of the feature is in place. The focus of this study is
a more general approach to the generator, even though the example scene in this
study is a table and tabletop items.

Many of the synthetic data generation studies present a generated synthetic
dataset, like Abou Akar et al. (2022) work on industrial object detection. Our pur-
pose is not to make a dataset to train a segmentation model for home office equip-
ment, rather it is to build a generator and document the incremental building
process to act as a reference generator.

The choice of building our SD Generator on the Omniverse platform stems
from the high integration capability of the platform. Use of USD format and built
in connectivity to third-party applications enables researchers and practitioners
to use the tools of their liking and import the results to the Omniverse platform.
Martinez-Gonzalez et al. (2021) integrated their Unreal Engine –based synthetic
data generator to the Omniverse platform, therefore not only 3D modelling tools
are importable, but whole pipelines. Synthetic data generation benefits from this
integration when the scale of the scene grows. An example of this is BMW
Group’s Omniverse system, which integrates modelling tools and synthetic data
generation around digital twins (Higgins, 2021).

The rendering quality of Omniverse renderer is another feature that is im-
portant in synthetic data generation. Ng et al. (2023) argue that while game en-
gines like Unreal and Unity are fast and advanced, they prioritize frame rate over

31

quality and offer less lighting simulation features than Omniverse. In synthetic
data experimentation with simulated smoke by Seefried et al. (2024) the research-
ers find Omniverse to be around 12% slower than Unreal in smoke generation.
While the smoke generation is a specific task, a generalization that Omniverse is
around a tenth slower than game engines can be loosely made, acknowledging
the fact that this was not what was tested in the study. While these studies sug-
gest that game engines are more optimized for performance, a trade-off surfaces
between game engines and Omniverse. Quality of the rendering and integration
capabilities of the Omniverse, or performance of game engines? Practitioner pref-
erences and use case should account for the decision.

Devaux (2022) made market research about synthetic data and provides a
table of synthetic data tools and companies. Filtering the table to results of data
type of “visual” collects 45 tools and companies. The tools listed are separate
codebases, meaning generators built on top of for example Omniverse Replicator
are not listed independently. At the time of writing of this paper, the information
is outdated but indicates that synthetic data generators have existed in abun-
dance for some time. Not all of the tools and companies provide annotated syn-
thetic data for AI model training but produce synthetically generated content and
media. This is an important distinction, and the SD Generator in this study is not
comparable in technique to the content creation generators. This mixing of syn-
thetic data for AI model training and synthetic data for content creation might
inflate the coverage of market by synthetic data, but this is out of the scope of this
study.

To further validate the idea, commercial success for synthetic data genera-
tor is demonstrated in synthetic data company SKY ENGINE AI’s blog (Sky En-
gine AI, 2024). In the span of year 2023, the blog presents five major deals includ-
ing deals with Renault Group and a “major Japanese car manufacturer”. In Jan-
uary 2024, the company announced raising 7 million dollars in Series A funding.

Only three of the listed tools are open source, the rest are commercial solu-
tions. Commercial solutions are not well suited to act as reference generators be-
cause of the licensing. For example, a synthetic data generation platform
Anyverse (2024) publishes documentation for the platform but requires a pur-
chased license for usage of the platform.

In 2022, Google research –lead team presented Kubric (Greff et al., 2022), an
open-sourced synthetic data generation Python framework, which offers a selec-
tion of annotation possibilities and is photorealistic and scalable. Despite the ex-
cellence Kubric demonstrated in general purpose dataset creation, the paper
clearly separates it from scene-specific pipelines, which in turn is the goal of this
study.

 This review of related work in academia and industry validates the goal of
this study. To the extent of our knowledge, a similar work does not exist where
the purpose is to provide a reference generator for scene-specific tasks to act as
guidance for researchers or practitioners looking for a reference for a similar task.

32

4.3 Setup

In this chapter we present the technical process of the study. Our aim is to build
a synthetic data generator including a 3D asset set and a Nvidia Omniverse (OV)
(Nvidia, 2024) Replicator (Nvidia, 2023) script capable of providing training data
for a neural network and to be able to train this neural network to correctly pro-
duce a segmentation mask from a real-life photo. This technical process is made
of iterations where the SD Generator is gradually improved. Success is measured
by how accurately a neural network can produce the segmentation mask, sug-
gestions for improvement we seek from literature and experimentation. The aim
is not to produce a production-ready data pipeline, rather it is to find general
factors that need to be addressed when generating synthetic data in OV and to
demonstrate the ability of the platform to implement these factors.

The experimentation setup used in this study is installed on a local PC. The
GPU accelerator used is a Quadro RTX 4000 from Nvidia, with 8GB of VRAM.
CPU used is Intel Xeon Silver 4110. The GPU is over five years and the CPU over
six years old technology at the time of writing this paper. The installed system
memory is 32GB. This hardware poses a limit to which extent we have freedom
in how large neural networks can be utilized for testing and how much data can
be fed to the model (Xu et al., 2021), and to the speed and quality of the SD Gen-
erator output. Software-wise Nvidia OV platform is used for designing 3D Uni-
versal Scene Description (USD) (Pixar, 2021) assets and synthetic data generation.
The neural networks are implemented using TensorFlow and Keras API (Chollet,
F., & Others, 2015).

The Python code for the SD Generator is available in GitHub at

https://github.com/jkuhno/reference-SDGenerator. In order to run the code, OV must

be downloaded, and inside OV launcher, the Omniverse Code application. The

Replicator is distributed as an extension to Code (Nvidia, 2024). Python 3 is re-

quired for running the script, and NumPy is used for some functions. After in-

stalling these components, the SD Generator can be used headless from com-

mand line or with graphical interface via OV Code.

The study aims to build an SD Generator and validate its usability in a cat-

egory of computer vision where extensive and laborious labelling efforts nor-

mally take place in data collection phase. Segmentation masks for training labels,

if done manually, may require considerable effort (Sankaranarayanan et al., 2018).

The validation goal of the experiment is to produce a segmentation mask of a

picture taken from a home office scene in real life (figure 4). The scene chosen for

the experiment is inherently random but serves as validation. It has many objects

and surfaces where the predicting model needs to learn these while their pixel

values are close to each other in some areas of the picture.

 Pictures will be limited in size to 512 by 512 pixels. The scene is a table

surrounded by gadgets and devices normally found in a home office setup, the

point of interest being the table and devices on it. Assumption is that the neural

33

network is able to learn to interpolate between training samples (Chollet, 2021)

from our synthetic data. The aim is to correctly categorize the visual elements in

this picture into classes. While categorizing the neural network masks the picture

by predicting a value for each pixel representing the class, resulting in a segmen-

tation mask which can be illustrated by displaying a picture where these pixel

values are multiplied by an RGB colormap for visual separation. Validation of

the usefulness of the data is done by implementing three different convolutional

neural networks, with varying architectures to gain a comprehensive view on the

quality of training data itself. With multiple outcomes we reduce the chance that

a specific architecture affects the result in a way that is hidden and possibly gain

more insight.

Figure 4 Real-life scene for inference

Results of the iteration are presented in the same order side by side, for simplified
comparisons. On the left will be displayed the result from a simple tutorial seg-
mentation model by Chollet (2021). Centre result is by a U-NET Xception style
model by Chollet (2019). A combination of U-NET and Xception architectures has
outperformed other architectures in COVID research (Akash Guna et al., 2022)
which indicates it should be performant in image segmentation. On the right will

34

be displayed the result from a DeepLabV3+ model (Rakshit, 2021). When the ar-
chitecture was introduced by Chen et al. (2018) it achieved state-of-the-art results
in multiple segmentation datasets. This indicates sufficient performance in the
scope of this study. All three models use Keras Adam optimizer with 0.001 learn-
ing rate (Keras, 2024) and sparse categorical crossentropy as loss function (Keras,
2024). For reproducibility, we publish the notebooks used to run the models at
https://github.com/jkuhno/reference-SDGenerator. Results of each model are also
measured by mean Intersection over Union (mIoU) (Keras, 2024), which is a com-
monly used evaluation metric for image segmentation tasks. With mIoU metric
we can measure the overall performance, and with visual guidance specific areas
of interest can be identified from the picture for further development. Achieving
95% mIoU or over is considered sufficient and the experimentation finishes. The
models implement cutout augmentation (DeVries and Taylor, 2017), and shuf-
fling inside TensorFlow data pipeline. Shuffling is perceived necessary because
the SD Generator implements parts of its randomization process as sequential,
and shuffling breaks these sequences.

The OV Replicator API (version 1.7.7) is used to produce synthetic data for
training. Replicator API provides necessary features for SDG in the experiment,
mainly annotation tools, functionality for randomizing the scene and a writer
class to write the annotated dataset to disk. Being part of the larger Omniverse
platform, we can utilize USD assets and realistic rendering capabilities using a
single platform. Replicator API is used via a Python script, which is the main way
the SD Generator is fine-tuned. The USD scene from which the data is generated,
is composed of ready-made assets from Sketchfab (2024) and sample assets and
materials using OV USD Composer (Nvidia, 2024). Using a single platform also
enables an easy way to introduce semantic information of the scene to the SD
Generator. In addition to the assets generated programmatically, using the OV
platform enables injecting semantic information directly to the USD assets via the
Semantics Schema Editor extension (Nvidia, 2024), where the injected semantic
information usage is seamless with the information produced in the script. The
Python script ensembles the scene, applies randomizations and snapshots a
frame iteratively as many times as specified. A writer object annotates the scene
with semantic information and saves RGB and corresponding target pictures to
disk, per snapshot.

4.4 First experiment

To serve as a basis for experimentation, a rudimentary scene is assembled from

a set of ready-made assets from Nvidia’s sample library and Sketchfab asset li-

brary (Sketchfab, 2024). In this baseline run the scene is a background, three al-

ternating tables and static props placed on top of the tables. Only slight random-

ization around the point of interest is applied on this stage: the tables alternate

between three assets, lighting is slightly randomized in terms of intensity and

35

temperature, and camera position is randomized in a union distribution inside (-

400, 300, 550), (400, 800, 700) coordinates (figure 5). Minimal randomization and

static elements without a comprehensive realistic rendering matching the real-

life scene leaves room for experimentation on the factors affecting the result.

Figure 5 A sample and a target from baseline run

The SD Generator is run for 10 000 frames, producing 10 000 samples as pictures

and their corresponding targets as segmentation masks. One of the main benefits

of synthetic data comes from the automated annotation. There is minimal effort

to annotate, for the writer object to produce pixel-perfect segmentation masks

only explicit information on the class labelling is required. Note that the colors of

the different classes in figures presenting the generated data and in figures

presenting results are different because different helper functions are used for

the visual presentation. This helps to separate the images of synthetic data targets

from visual representations of model predictions.

When assembling the scene, all annotated assets were given a semantic class,
TABLE and PROPS. The writer automatically assumes assets without label to be
classified as background. Due to human error, sometimes unlabeled information
is leaked into the scene, for example if a gap between assets looks into the void.
To ensure no unlabeled pixels are possible, the scene should be enclosed in an air
gapped 3D object or pay close attention to scene composition and camera angles.
However, for experimentation of different distant lighting options no enclosure
is implemented, and a separate class id is reserved for unlabeled to allow an error
marginal. The OV Replicator has problems with naming the classes correctly, this
is remedied later in the study.

For each frame 50 subframes (Nvidia, 2023) were run to reduce noise and
add quality to rendering. While this argument is optional, it adds a layer of bal-
ance between quality and performance. Without subframes the rendering lacks
quality and the scene loses structure. At this stage, 50 subframes are producing

36

enough quality with relatively minimal effect on performance. The amount of
subframes is experimented on in section 4.11, where the performance is meas-
ured.

When the dataset is complete with 10 000 samples and targets, minor

amounts of preprocessing are needed to start training. All models utilize the

same simple Tensorflow data pipeline, in which cutout data augmentation and

data shuffling is performed and data is read from disk into tensors and buffered

into GPU memory. For the DeepLabV3+ model, only 5000 samples and 500 vali-

dation samples are used due to the larger memory demand, to keep the resolu-

tion of the picture due to the hardware limitations.

All the models converge and require only a few epochs. Basic validation

data split from training dataset is unnecessary at least with this amount of ran-

domization. When the validation data is basically the same as training data, eval-

uating model performance needs different metrics. To demonstrate this, the sim-

ple CNN model is trained with 1000 samples (for smaller time consumption) and

for more epochs (figure 6).

Figure 6 Loss values experiment

For the uninformative nature of validation data split from training data when
having insufficient randomization, and also in general when using synthetic data,
we suggest using real life hand-labeled data for validation if available. In the

37

scope of this study, using evaluation metrics is enough guidance since the aim of
the study is not to fine tune best-performance models.

Finally, the models are used to predict segmentation masks from a real-life

picture (figure 4). The results (figure 7) are promising but are insufficient in ac-

curacy.

Figure 7 Predicted segmentation masks from real life, first experiment. From left to right: A
simple CNN, U-NET Xception style, DeepLabV3+

While the simple CNN and DeepLabV3+ models are able to identify PROPS with
relative accuracy, they struggle to identify the structures that differentiate a TA-
BLE from BACKGROUND. The U-NET Xception style performs otherwise well
but predicts wrong classes for TABLE and PROPS. In this study the prediction
from the real-life picture is used to approximate the success of the current itera-
tion, the first one serving as a baseline. Overall, the DeepLabV3+ model outper-
forms others, as measured by mIoU (table 1). This is expected, since the model is
the most recent state-of-the-art of the three models.

TABLE 1 Mean intersection over union, first experiment

Model mIoU

Simple CNN 36,27 %

U-NET Xception 31,43 %

DeepLabV3+ 50,12 %

As explained in the chapter Design process, the experiment iterates over echelons
of eDSR methodology. The artefact is demonstrated by predicting a segmentation
mask and evaluated by comparing the result to the baseline result in addition to
approximating success by eye. After evaluation, objectives are defined to further
improve the artefact and then implemented in the following iteration.

According to Nvidia (2024), addressing the domain gap is done by address-
ing two sub-gaps, appearance gap and content gap (Nvidia, 2024). Appearance
gap is the difference in how the scene looks when compared to the real world, at
pixel value level. The content gap is the difference in the amount and variety of
objects in the scene versus real world. The baseline run in the first iteration is
highly susceptible to both of these factors. With minimal focus on bridging the

38

domain gap, the resulting dataset lacks real world visuals and variety, which are
important qualities of data for deep learning. More randomization is needed, and
the scene should be upgraded visually. Additionally, the SD Generator needs
more utility.

4.5 Second experiment

The first iteration revealed potential in the approach but has space for improve-

ment. Our hypothesis at the end of the first iteration is that increase in domain

gap bridging and randomization is needed. Tackling the issue of randomization

first, a function is defined to help randomize prop positioning in the scene

around the point of interest. Replicator has built in functionality to instantiate

USD files into the scene from a folder and to scatter items on a surface. We place

an invisible plane on the table surface and scatter the instantiated items on this

plane. Combining these into a simple function, further randomization of props

on the table is done by placing additional USD files in a folder and calling the

function with a limit in the number of items. Scattering has built in check for

collisions but enabling it crashes the software at the time of writing this study,

with Replicator version 1.7.7.

Bridging the domain gap is improved by adding a background scene better
representing the real-world scene. Added curtains and carpet provide textures
for background and plank-like texture on the floor distinguishes it from the walls.
A sample from the new stage and the corresponding mask are presented in Fig-
ure 8.

Figure 8 Visually improved stage and corresponding mask

39

In the previous iteration, 50 subframes were used for rendering. We experiment

with 25 subframes benefits without trade-offs can be expected. First, performance

should be slightly increased and since time saving is a main theme for visual

synthetic data, performance is an important topic. Secondly, at 25 subframes, no

ghost artifacts and other rendering issues are not visible, at least by randomly

inspecting 100 produced pictures. Therefore, 25 subframes should be used at this

level of complexity instead of 50, for suspected increase in performance for no

trade-off.

The results with the new training data are presented in figure 9 and table 2.
The new data allows the model to more accurately predict concepts in the picture.
Most notably the background prediction is improved in the simple CNN model,
the model learned the difference between background and objects in the scene.
The U-NET model also increased in accuracy, it learned correctly predict the class
ids of TABLE and PROPS. The DeepLabV3+ model achieves the largest accuracy
of the models, with room for improvement but satisfactory overall.

Figure 9 Predicted segmentation masks from real life, second experiment. From left to right:
A simple CNN, U-NET Xception style, DeepLabV3+

Table 1 Mean intersection over union, second experiment

Model mIoU

Simple CNN 63,92 %

U-NET Xception 57,66 %

DeepLabV3+ 78,08 %

Experimenting with different configurations of data quantity and prepro-

cessing, the results vary in terms of mIoU in the range of at least 40 %. While out

of the scope of this study, it is worthwhile to mention that on the same synthetic

dataset the choice of model architecture, hyperparameters, data preprocessing

and augmentation methods influence the result in ways that may not always be

foreseeable. Therefore, we highlight the importance of gathering some amount

40

of validation data from the real world and manual labeling to achieve the best

possible results.

Since no changes were made in the Replicator script regarding the tables,
we assume that added distinction in the background textures is crucial for the
model to predict foreground objects. By evaluating the visible result, we can form
points of interest for the next iteration. Adding background objects visible in the
real-world picture has a possibility of removing inaccuracies visible under the
table in the result mask.

4.6 Third experiment

The objects added to the USD scene (figure 10) are objects seen in the real-world
picture: a drawer, a bin, a desktop pc and crutches. Especially the drawer and pc,
having pixel values close to pixel values of some point of interest areas, should
reduce the domain gap by providing more content found in the real world with
more accurate pixel values. All objects were found in the sample USD library by
Sketchfab (2024) and slightly modified to fit the scene, mainly materials to fit the
real-world scene more accurately. If needed, these objects can be annotated by
adding semantic class information via the Semantics Schema Editor. We tried
adding annotations to the additional objects, aiming to improve the accuracy of
PROPS and TABLE classes, which are the area of interest. This did not improve
accuracy but shows the efficiency of synthetic data. If all the objects in the scene
were of interest, their annotations could effortlessly be added to dataset genera-
tion.

To control which objects get annotated, a semantic filter is added to the SD
Generator. This filter enables the user to define which semantic classes get anno-
tated by the annotator. In addition, a function modified from the API is written
to control class id values to answer the requirement from the first experiment.
Combining the input for the filter and the class id control into a single dictionary,
there is full control on what is annotated and with what values. A note on using
the Semantics Schema Editor: it should be used to only add semantic information
to objects which are added to the background scene in 3D modelling software. If
it is used to add semantic information to objects of assets that are added to the
scene via code, and in that code the assets are assigned a semantic class, the re-
sulting annotation is a pairing of the classes, eg. If a static monitor object would
be added to a table asset and would be given a separate semantic class in Seman-
tics Schema Editor, the resulting class would be class:TABLE,PROPS.

41

Figure 10 Scene with additional objects, and corresponding mask

The DeepLabV3+ model visual results (figure 11) show promise on adding more
objects, since the improvement area under the table has only a little PROPS class
pixels predicted. Other models gained cohesion but did not visibly improve in
the target area. With simple CNN and U-NET Xception style models there is still
many pixels predicted as PROPS under the table.

Figure 11 Predicted segmentation masks from real life, third experiment. From left to right:
A simple CNN, U-NET Xception style, DeepLabV3+

As shown in table 3, despite the visual concentration with the simple CNN model,
it lost 9 % mIoU in accuracy. More sophisticated models both gained 5 %. This
could implicate that added complexity in the data benefits models with larger
representation power, which seems intuitive.

42

Table 2 Mean intersection over union, third experiment

Model mIoU

Simple CNN 55,36 %

U-NET Xception 63,28 %

DeepLabV3+ 82,95 %

Observing small improvements in two of the three models, the development con-
tinues. The 0.83 mIoU is not sufficient end design process, and visual cues from
figure 8 implicate some areas of inaccuracy. Comparing the real-world picture
and figure 8, the real-world scene is full of different kinds of shadows, which are
not well presented in the synthetic dataset. Adjusting lighting randomization is
the only way to produce more realistic shadows. Creating a point light source
simulating indoor lighting is a possible solution.

4.7 Fourth experiment

In this experiment, the topic is light simulation and randomization. OV Replica-

tor provides a plethora of attributes for light creation and adjusting (Nvidia,

2023). The goal is to produce lighting conditions similar to the real-world scene,

where a single ceiling lamp is a source of artificial light. This results in shadows

in the scene, where pixel values are darker than other pixels in the same surface.

The solution is to produce a spherical light in the synthetic scene, the photoreal-

istic renderer in the Replicator will produce the shadows accordingly when the

spherical light is positioned the same way as in the real world.

The Replicator has default settings for ambient lighting, which means every
scene created has dim environmental lighting if left default. Therefore, a call to
adjust the setting needs to be added for full control of scene lighting. The SD
Generator in this study applies randomization to this setting to produce different
lighting scenarios in addition to randomizing temperature and intensity of the
spherical light. As observed (figure 12), the produced dataset with improved
lighting now has shadows and overall, more realistic lighting. The altered color
mapping in the segmentation mask (figure 12) results from adjusting the class ids
with the function described in the previous experiment, it has no effect on model
prediction quality.

43

Figure 12 Scene with spherical indoor lighting, and corresponding mask

Inspecting the visual results (figure 13), the improvement we seek is under the
table, where in the real-world picture there is a large and dark shadow. Previ-
ously, the DeepLabV3+ model was able to predict the shadowy area to be back-
ground. Now the U-NET Xception style model is also able to predict the shadowy
area almost correctly. However, the overall visual results of the two more simple
models are lacking in structure definition.

Figure 13 Predicted segmentation masks from real life, fourth experiment. From left to right:
A simple CNN, U-NET Xception style, DeepLabV3+

Despite the problems in visual results, all the models improved their respective
mIoU accuracies (table 4). The improvements in lighting seem to address domain
gap by adding realism. We would suggest that when implementing synthetic
data generation, the lighting conditions of the target scene are taken into account.
For example, the temperature and intensity of artificial indoor lighting and daily
cycle of natural light are factors that can be accounted for when generating syn-
thetic data.

44

Table 3 Mean intersection over union, fourth experiment

Model mIoU

Simple CNN 70,90 %

U-NET Xception 66,08 %

DeepLabV3+ 85,36 %

More domain gap bridging is required, all the models have troubles with surfaces
of the table on the left-hand side. The monitor stand is also hard for the models,
since the training data does not contain objects that represent a flat and u-curved
stand base. A proposed improvement is to use custom USD assets that better em-
ulate the real world.

4.8 Fifth experiment

As proposed previously, in this experiment we bridge the domain gap even fur-
ther by making custom USD assets for objects that are difficult for the models to
predict correctly. The monitor stand, the conference speaker and the table itself
are causing issues with accuracy. The table is relatively simple to reconstruct, but
the monitor stand and the conference speaker need some simple modelling.

The tabletop is taken from existing sample USD tables and applied new cus-

tom material to better emulate the real world. OV USD Composer provides ex-

tensive customization options to materials, and simple modelling tools to make

the wooden frame the tabletop sits on. The other custom objects are made with

Blender 4.1 (2024). Blender can export in USD format, which makes it easy to use

modelling software for the SD Generator. OV also provides an alpha USD branch

of Blender (NVIDIA-STUDIO, 2022), which is directly integrated into OV. As

seen in figure 14, the scene has bridged the domain gap further, even if the assets

are not completely photorealistic.

The manner in which the USD assets are made or customized is not partic-
ularly interesting in the design of the SD Generator, but this highlights an im-
portant feature of the OV Replicator. Because OV platform uses USD format as
default asset format, the synthetic generation pipeline integrates efficiently to
plethora of modelling software. The OV platform has connection components for
multiple 3D modelling software, and converters for multiple formats into USD
format (Nvidia, 2024). By having a large quantity of different 3D modelling soft-
ware usable for SD Generator, the barrier to use it in organizational setting is
proposed to be lower than it would be with more limited options.

45

Figure 14 Scene with custom made USD assets, and corresponding mask

Training the models we made an observation about representation power of the
models and the quality of the data. Training the DeepLabV3+ model for the five
epochs as before, the accuracy is not as good as when training for ten epochs.
Investigating this phenomenon, we trained that model on five and ten epochs on
the most recent dataset generated and ten epochs on the dataset from last itera-
tion. For additional information, the less sophisticated models were also trained
for ten epochs. Results (figure 15 and table 5) were that the DeepLabV3+ model
benefits from training on more epochs when the amount of domain gap bridging
and randomization is on the level of this current iteration of the SD Generator
but does not benefit from extra training with the dataset from previous iteration.
The simple CNN model and U-NET Xception style model do not benefit from
extra training but lose accuracy when training for ten epochs.

Figure 15 Predicted segmentation masks from real life, fifth experiment. From left to right: A
simple CNN over 10 epochs, U-NET Xception style over 10 epochs, DeepLabV3+
over 5 epochs, DeepLabV3+ over 10 epochs with previous experiment data

Table 4 Mean intersection over union with exploratory but incorrect epoch counts, fifth ex-
periment

Model mIoU

Simple CNN, 10 epochs 86,13 %

46

U-NET Xception, 10 epochs 85,51 %

DeepLabV3+, 5 epochs 84,00 %

DeepLabV3+, 10 epochs on data
from previous experiment

82,31 %

When trained with the more correct count of epochs, the models are improved in
accuracy, the two simpler ones by a large margin. Visually (figure 16), the im-
provement in the predictions of these two models is extremely evident. The sim-
ple CNN and DeepLabV3+ models have some imperfections in the background
area, the first more than the latter. The U-NET Xception style model is very de-
fined and has little to no error in the background classification. While the
DeepLabV3+ model has more visible errors, it has higher definition in the struc-
tures and surfaces of the scene. Overall, the custom 3D assets are evidently a must
for high accuracy when training with synthetic data.

Figure 16 Predicted segmentation masks from real life, fifth experiment. From left to right: A
simple CNN over 5 epochs, U-NET Xception style over 5 epochs, DeepLabV3+
over 10 epochs

All models improved their mIoU accuracy (table 6). Especially the U-NET Xcep-
tion style model saw an improvement of 0.27. Closing on 1, which is perfect ac-
curacy, the domain gap is getting observably smaller.

Table 5 Mean intersection over union with correct epoch counts, fifth experiment

Model mIoU

Simple CNN, 5 epochs 88,15 %

U-NET Xception, 5 epochs 92,91 %

DeepLabV3+, 10 epochs 91,63 %

Because of the high definition the DeepLabV3+ model provides, a higher score
for it should be a focus. Therefore, we propose a final fine-tuning iteration for the
SD Generator, before we evaluate the data quality on a very small test dataset,
and measure performance optimizations.

Focusing on the most sophisticated model, we inspect visually the inaccu-

rate areas of the model prediction. The bottom section of the right-hand side

47

monitor is inaccurate, possibly due to the absence of the router in the real-world

scene. The keyboard is predicted with less accuracy than the other models. The

table frame has inconsistent accuracy, as well as the right-hand side monitor.

4.9 Sixth experiment

The back wall color of the synthetic data with the spherical light source differs
slightly from the real-world equivalent. We remedy this by changing the material
to a lighter one, hoping to distinguish the back wall from the table legs more
efficiently. An object resembling the Wi-Fi router on the table is added to half of
the samples to improve accuracy of the DeepLabV3+ model around that area. A
keyboard asset is added to the props directory to help the forementioned model
around the area, the keyboard is modelled after the keyboard make and model
in the real-world scene, conveniently accessible in the Sketchfab sample library.
The updated scene also has material colors tweaked to match the real-world ma-
terials more accurately and to help the neural networks to distinguish between
surfaces.

We experimented with different combinations of polishing and randomiza-
tion and arrived at a sufficient ratio between accuracy and effort. Over 95% mIoU
is achieved without specialized 3D modelling expertise or custom 3D material
artistry. The custom objects mentioned before and the red trimmings in the PC
chassis, to separate the black surfaces from other black surfaces in the scene, re-
quired minimal effort. Materials’ changes are made in the OV Composer software
via GUI altering the RGB channels of the materials. The customization of the
scene and materials were kept deliberately minimal to illustrate the efficiency
benefit of synthetic data. If the same amount of time were spent modelling the
scene, as would have been spent on taking and labelling pictures from the real
world, the efficiency of synthetic data labelling would be called to question.

The other configurations experimented on were modifications of the final
configuration, no additional objects or materials were added. Five best perform-
ing alternative configurations, used to train the DeepLabV3+ model, are in table
7. The changes were made separately, except for adding the Wi-Fi router and
keyboard assets, which was done for all configurations. We tried to remove ran-
domization of the tables and only use the custom table, which resulted in similar
results to the first experiment. Removing additional assets from being instanti-
ated on the table decreases accuracy. Judging by these two facts, the need for
randomization of the scene is argued to be an effective technique to improve the
quality of synthetic data.

48

Table 6 Experimentation with different changes, training the DeepLabV3+ model

Changes to the training data mIoU

Added the Wi-Fi router and keyboard only 94.26 %

Floor and carpet color adjustment 94.13 %

Added red trim in the PC chassis with adjusted color 93.11 %

Instantiated only objects found in the real scene 92.68 %

Curtains and PC chassis color adjustment 86.12 %

Finally, a final configuration of fine-tuning changes was made (figure 17) based
on observations from testing different modifications. The final changes from fifth
experiment: Added Wi-Fi router and keyboard assets to randomization, raised
occurrence of the custom table to half of the samples, added red trims to the PC
chassis but kept the original color, modified color channels of materials of table
legs, floor, walls, curtains, carpet and crutches, and modified the pattern on the
carpet. These changes took less than 30 minutes, an experienced artist would pos-
sibly make the modifications even faster or visually more accurate.

Figure 17 Scene with added USD assets and polished materials, and corresponding mask

Training the models on the final-form data, an improvement is observed on the
U-NET Xception style and DeepLabV3+ models. The simple CNN model loses
accuracy and visually has inaccurate predictions on some of the larger homoge-
nous surfaces (figure 18). Visually, the U-NET Xception style model confuses
some edges and surfaces with wrong classes on the background from curtains
and the PC. These have been challenging throughout the experimentation. The
DeepLabV3+ model visibly only has issues with cables and wires present in the
real-world scene. None of these cables are 3D modelled in the synthetic dataset,
which is a deficiency in the reference SD Generator, but possibly a remediable
one if needed, if a skilled 3D designer produces the assets. The simple CNN

49

model possibly lacks the representational power to gain accuracy from more de-
tailed materials. The smaller props on the table are predicted with sufficient ac-
curacy visually, but the larger surfaces appear challenging.

Figure 18 Predicted segmentation masks from real life, sixth experiment. From left to right:
A simple CNN, U-NET Xception style, DeepLabV3+

The mIoU accuracies of the two more advanced models exceed the 95% threshold
(table 8). Interestingly, the simple CNN model accuracy decreased beyond the
accuracies of two previous experiments. The model was run three times, result-
ing in low accuracy each time. For the sake of comparability, the two better per-
forming models are selected for the final evaluation.

Table 7 Mean intersection over union with correct epoch counts, sixth experiment

Model mIoU

Simple CNN, 5 epochs 82.89 %

U-NET Xception, 5 epochs 95.40 %

DeepLabV3+, 10 epochs 96.71 %

4.10 Final evaluation

Taking the models from the last experiment with over 95% mIoU accuracies, the
quality of the synthetic data is validated on a small test dataset. 20 additional
pictures from the real-world scene are taken and annotated by hand (figure 19).
The accuracy of the models is recorded and an average of the mIoU accuracy is
presented for both of the models. Hand-labelling is prone to errors and time con-
suming (Suchi et al., 2019), which causes the measurement to have methodolog-
ical inaccuracy. This error margin is presumed to be small but is nonetheless not
accounted for and as such is a limitation of this study.

The evaluation samples are taken from different angles of the same scene as

the prediction picture (figure 4). Objects on the table are moved to different

50

locations and randomly removed. Lighting conditions are slightly different from

the initial picture, but no radical changes are made. If a large change in lighting

conditions is predicted for the real-world scene, this has to be accounted for in

the SD Generator by broadening the range of lighting randomization. This is

done by adding smaller and larger values to the respective ends of value range

in temperature, intensity and default light settings parameters in the light ran-

domization function.

Figure 19 Examples from the evaluation dataset

51

First running inference on the DeepLabV3+ model on the test set, the overall

visual results (figure 20) are promising. Most of the predictions have difficulty

with the monitor stand. This is possibly due to more visible cables in the test set,

or difference in the looks of the stand in the test set compared to the initial eval-

uation picture. In some of the predictions, background objects are not entirely

predicted as background. This was an issue for a large portion of the experiments

and is not easily mediated. Arguably a solution for this would be more accurate

shape and material modelling for the objects in the synthetic scene. New camera

angles should not be the culprit, since the SD Generator has a large range of ran-

domization of camera angles. One picture has a large inaccuracy on the table sur-

face and the mouse pad. Given this is not a widespread issue, no direct sugges-

tion for a remedy is available. Like all improvements made in the experiments,

adding randomization and bridging the domain gap further should improve this

inaccuracy.

52

Figure 20 Predicted segmentation masks from real life, final evaluation, DeepLabV3+ model

Predicting the test set on the U-NET Xception style model shows (figure 21) less
accuracy than the other model. The small objects on the table are predicted with
generally good visual accuracy, but larger surfaces show inaccuracy. Especially
the top part of the monitors and the wall area behind them are problematic areas.

The majority of the pictures show an incorrectly classified area along the
top edge of the monitors, predicting the pixels to be more likely a part of the
background. The wall area behind the left monitor is classified to be part of the
table. In contrast to the highly accurate visual results of the sixth experiment, the

53

model seems to have overfitted to the texture and color of the wall in the training
data. This suggests that, depending on the power of the model, information leak-
ing from the validation data reduces generalization. This is a well-known phe-
nomenon in deep learning (Chollet, 2021). In the context of synthetic data gener-
ation, one way of reducing the effect information leakage has on generalization
is substituting the neural network model with a more sophisticated one. This is
not always possible, for example, if working with state-of-the-art models, or if
other reasons guide the selection of the model. Other ways suggested to increase
generalization are randomization and domain gap bridging. We successfully re-
duced overfitting on the tabletop props and the table itself by adding randomi-
zation and more realistic assets and materials. Adding background randomiza-
tion and modelling the texture and color of the wall more like the real –world
wall, could possibly help generalization.

54

Figure 21 Predicted segmentation masks from real life, final evaluation, U-NET Xception
style model

The mIoU results (table 9) show a promise in the SD Generator when validating
on data not seen when adjusting the synthetic dataset. Given the similarity of the
test set to the initial evaluation picture, the results are close to the final evaluation
on the initial picture with DeepLabV3+, which achieves an average mIoU of
94,05 % across the test set, dropping 2,66 points from the initial picture evaluation
accuracy.

55

The U-NET Xception style saw a more drastic decrease in accuracy than the
more sophisticated model. Achieving average accuracy of 81,80 % over the test
set, the decrease in accuracy is 13,6 points. Judging from this difference of de-
crease in accuracy between the models, we argue that when working with syn-
thetic data, representational power of the model dictates its potential to overfit to
evaluation data.

Table 8 Final evaluation on dataset models have not seen

DeepLabV3+

(test set 0-19)

mIoU

U-NET

(test set 0-19)

mIoU

0 94,85 % 0 88,02 %

1 95,67 % 1 84,81 %

2 85,10 % 2 81,90 %

3 96,09 % 3 59,85 %

4 96,44 % 4 73,98 %

5 94,83 % 5 68,52 %

6 91,82 % 6 86,71 %

7 92,85 % 7 76,46 %

8 95,95 % 8 81,87 %

9 96,47 % 9 89,97 %

10 94,14 % 10 87,57 %

11 94,54 % 11 88,35 %

12 93,06 % 12 80,34 %

13 95,01 % 13 89,98 %

14 96,33 % 14 77,07 %

15 96,25 % 15 82,95 %

16 96,73 % 16 83,28 %

17 83,07 % 17 89,73 %

18 95,37 % 18 83,99 %

19 96,51 % 19 80,57 %

Average 94,05 % Average 81,80 %

Having evaluated the models trained on the synthetic dataset and achieving high
mIoU accuracy with a test dataset on DeepLabV3+, no more adjustments are
made to the reference SD Generator output-wise. The quality of the data and ac-
curacy of the results is correlated to the amount of effort put in domain gap bridg-
ing and randomization. To achieve same accuracy on a more complex scene, we
argue that more effort must be put into 3D modelling of the scene and randomi-
zation. For the single point-of-interest, the table and the props, we have achieved
a balanced mixture of effort and accuracy.

A promised benefit of synthetic data generation is the speed in comparison
to annotation by hand. For a relatively small dataset of 10 000 samples, the most
time saving is done by reducing the effort put into the modelling of the synthetic

56

scene. However, for a larger and more complicated scene and millions of samples,
the unattended running time of the generator plays a larger role. OV Replicator
offers performance optimization tools, and some decisions on the architecture of
the SD Generator were observed to affect the running time of the generator dur-
ing the experimentation. Next, we experiment with the optimization of the unat-
tended running time. The goal is to present optimization techniques and con-
cerns for the reference SD Generator.

4.11 Performance optimization

As mentioned previously, one of the benefits of synthetic data is that it speeds up
the creation of large, annotated datasets. The time used in generating synthetic
data from scratch is divided into several phases. First, the generator must be
coded or, in case of using a ready-made solution, generation methods must be
learned. Then, a synthetic scene must be composed of 3D assets and materials,
focusing on randomization options and photorealism of point-of-interest objects.
During these phases, validation data from the real world should be gathered and
labelled in order to measure the domain gap bridging, or in other words, the ac-
curacy of the neural networks in the real world when trained on synthetic data.
Optimization of the synthetic data and model accuracy takes place after these
phases. Finally, after all these phases, the generation pipeline is ready, and the
large-scale generation can start. In the optimization phase, the generator might
also output large datasets.

For small datasets, the primary method of time saving is efficiency in the
building and composing phases. For large datasets, the time spent running the
generator for output is significant, and optimization of this accumulates more
time savings when the amount of data increases. Hardware, on which the gener-
ator is run, affects both rendering and writing speeds. This study is run on over
five-year-old technology, the simplest way to improve speed is to run the SD
Generator on more powerful technology.

In this section, we measure the time spent on running generation on SD
Generator. Different optimizations are timed and measured by timing the differ-
ence between when the first and last frame are generated. The generator is run
for 1000 frames per test, in order to time an easily multipliable quantity of sam-
ples.

We observed increases in time spent in the generating phase when increas-

ing the complexity of the synthetic scene. Multiple levels of complexity are meas-

ured to observe if changes in complexity change the time spent generating sam-

ples. This complexity includes the randomization of point-of-interest assets. The

results are presented in table 10. Time taken drops from first to second experi-

ment, and from third to final experiment. This suggests that code-wise improve-

ments in the SD Generator script between experiments affected the speed of the

generator. A jump in time taken is observed between experiments two and three,

57

where more assets were added to the scene. This implicates that adding assets to

render is more demanding than adding randomization, which happened be-

tween third and final experiments. A 53 second difference in speed for 1000

frames is a large jump, for example for one million frames the difference would

be 53 x 1000 seconds, assuming the difference scales linearly. The result suggests

that when crafting large datasets, special attention should be paid to the amount

of rendered assets in a scene.

Table 9 Timed results of different complexities, 1000 frames

Complexity Time (h.mm.ss)

First experiment 0.10.09

Second experiment 0.10.04

Third experiment 0.10.57

Final experiment 0.10.45

The custom writer class of the SD Generator loops through every pixel of a gen-
erated segmentation mask in order to control the assignment of class ids. Looping
through every pixel of every target image is adding basic NumPy computation
to the generator. However, the NumPy library is optimized for computations
with large matrices (NumPy, 2024) and the custom writer omits multiple if-
checks not needed in the semantic segmentation task it is built for. The custom
writer is compared to the default basic writer class to measure the effect of the
differences. The final experiment configuration of the SD Generator is used, and
custom writer result of 10 minutes and 45 seconds from table 10 is compared to
using the default basic writer class with otherwise same conditions. The custom
writer is 7 seconds faster (table 11). We suggest that a use-specific custom writer
is built assuming that all the features of the default basic writer are not needed.

Table 10 Timed results of custom and default writers, 1000 frames

Writer Time (h.mm.ss)

Custom 0.10.45

Basic (default) 0.10.52

The quantity of subframes used for generating the datasets started from 50 in the
first experiment and reduced to 25 in the second experiment. According to the
documentation (Nvidia, 2024), the amount of subframes is a direct tradeoff be-
tween quality and performance. The difference the amount of subframes makes
in the performance is measured and irregularities are reported if found. These
irregularities include ghost artifacts, inaccurate light simulation and rendering
issues including material rendering. Running the SD Generator with default
amount of subframes, which is 1, rendering of the scene loses quality, and the

58

speaker lost its materials completely (figure 22). Some ghosts are visible along
the left side of the right-side table leg and along the front edge of the tabletop.

Figure 22 Rendering issues due to not enough subframes

10 subframes still produce low-quality rendering and some material loss, but not
as dramatically as the default 1 subframe. 25 subframes result in the same quality
used in experimentation. 50 and 100 subframes slightly increase quality, but not
in the same ratio as they decrease performance. Observing from figure 23, the
performance cost of subframes scales almost linear with the quantity of sub-
frames. We recommend experimenting with the amount of subframes, to achieve
a suitable performance-to-quality balance.

59

Figure 23 Rendering speed with different amount of subframes: 1, 10, 25, 50, 100

The SD Generator custom writer inherits a feature from the default basic writer
to asynchronously encode images and write to disk, called BackendDispatch
(Nvidia, 2024). Tasks given to BackendDispatch are queued in system memory
to wait for an available processor thread. The thread count is limited to 4 by de-
fault. We measure the difference in time between thread limits. The more cores a
CPU has, the more threads are available. A limitation emerges from hardware in
use. Even with subframes set to 1, the renderer is not able to fill the queue at
thread count of 4 or more with the scene we created. A more powerful graphics
accelerator might be able to fill the queue, or a slower CPU. We tried constructing
a minimalistic generator which only renders empty black images without any
objects and were not able to get the CPU to bottleneck the generator. The ability
to increase the thread count available for BackendDispatch is included in the ref-
erence SD Generator, but we argue that without a powerful GPU it does not in-
crease the generation speed.

Finally, sample storing formats are tested. Both the default basic writer and

our custom writer can write the RGB samples either as JPEG or PNG formats.

JPEG is a lower quality image format resulting from lossy compression, com-

pared to PNG which is higher quality due to lossless compression. (Gondur,

2024). Resulting from the higher quality, PNG file sizes are larger than JPEG. We

measure the difference in speed comparing these two file formats for samples. To

shift emphasis from the renderer to the encoding process, a subframe count of 1

60

is used. No difference is observed between the formats. We argue this is due to

the encoding process being executed by the CPU, and in this study the renderer

bottlenecks the generation such that no CPU optimization affects the generation

speed. With a more powerful GPU, it should be possible to achieve I/O optimi-

zation, as suggested by Nvidia (2024). An additional benefit of JPEG, if reduced

quality is tolerated, is a reduced footprint in storage. JPEG footprint is approxi-

mately a tenth of PNG footprint.

4.12 Results

In this section, we present the findings of the experiments conducted. The find-

ings are summarized as a model of generation pipeline with the reference SD

Generator. Additionally, we list noteworthy observations about synthetic data

generation and the SD Generator.

The main result is a working synthetic data generator, comprised of USD
assets and a Python script using the Replicator API. The generator is able to pro-
duce annotated training data which is of enough quality that a neural network is
able to learn a segmentation task from it. The experimentation process followed
the iterative structure of eDSR methodology by Tuunanen et al. (2024). Starting
from a baseline generator, the components of the SD Generator were cyclically
improved until the quality of the data produced was able to train a semantic seg-
mentation neural network to a mean intersect-over-union of 95 % or over. Two
of the three neural networks achieved this and were evaluated on a final test da-
taset, where the best average accuracy was 94,05 %.

From the experimentation, we could observe the phases and components
that produce a synthetic data generation pipeline. To complement the generator,
a model (figure 24) is constructed from these observations to act as further refer-
ence.

61

Figure 24 A reference model for building a synthetic data generation pipeline

As visible from the model, the iteratively improving nature of the multi-phased
development process highlighted potential in an iterative design process. Real-
world validation data is necessary for feedback, since synthetic validation data
fails to accurately implicate real-world performance. Two main processes were
identified, domain gap bridging and domain randomization.

Domain gap bridging aims to reduce the difference in appearance between
the real-world scene and the synthetic scene. This should be done by adding a
sufficient number of objects found in the real world to the synthetic scene, ad-
justing materials to resemble the real world as closely as possible and creating
custom 3D assets in case sample libraries do not contain assets close enough in
resemblance to the real-world objects. Nvidia Omniverse, which is the platform
the SD Generator is built on, eases domain gap bridging by offering comprehen-
sive sample libraries of USD assets and materials, and by integrating to other 3D
tools and even game engines for custom modelling processes.

Domain randomization aims to randomize the images in order to allow the
neural network to learn accurate interpolations between samples and generalize
to different situations in the real world, for example, lighting changes or different
objects. Minimum randomization observed in the experiments was lighting and
points-of-interest. Omniverse Replicator API, which is the backbone of the SD
Generator, offers multiple features for domain randomization.

After achieving satisfactory results doing test generation, a final evaluation
should be performed on data not seen before, even in validation. We observed a
great decrease in accuracy for one of the models when evaluating on a test dataset.
Information leak is a known phenomenon (Chollet, 2021) and it happens not only
when fine-tuning the neural network, but also when fine-tuning synthetic data,
as was observed. If satisfactory results are achieved with the test dataset, perfor-
mance should be optimized before starting generation of a large dataset.

Any unnecessary computations should be removed from the code, espe-

cially in functions that are called every frame. In the custom writer, anything ex-

ecuted of called in the “write” function is executed every frame. In case the

62

generation is run on a system where rendering is extremely fast due to a perfor-

mant GPU, asynchronous image encoding and writing to disk should be imple-

mented, and a setting allowing more than 4 threads for these tasks should be set

to a higher count if running on a high-core-count CPU. Depending on the task,

image file format could be changed from PNG to JPEG. This introduces a trade-

off between higher quality of the PNG and faster generation of JPEG. JPEG also

requires a smaller footprint in storage. Like with the thread count setting, the file

format throughput increase is only realized on a system where the graphics ac-

celerator is not a bottleneck.

Two of the proposed optimization techniques should take place in the de-

sign phase of the generator. We observed that the amount of assets rendered in a

scene affects the performance of the generator. Unnecessary assets should be re-

moved from the synthetic scene, testing against validation data can be used to

identify unnecessary assets. The most difference in performance is made with the

number of subframes rendered. The renderer takes an argument of how many

subframes are generated per frame. This is a direct trade-off between quality and

speed. Testing should be conducted to find the minimum number of subframes

that produces sufficient quality. Rendering with excess subframes leads to

quickly diminishing results.

Having provided an overview of the results of the study, we provide addi-

tional findings that complement the reported findings, possibly from a view of a

practitioner looking to develop a synthetic data generation pipeline on the Om-

niverse platform.

First of the additional findings is that at the time of the writing of this study,

the Replicator API does not implement a way to keep class ids explicitly constant

between generation runs (jiehanw, 2024, April 17). The version used was 1.7.7

but later versions (up to 1.10.10 at the time of writing) have not addressed the

issue according to the changelog in API documentation (Nvidia, 2024). We sug-

gest that a function to address this is written in the custom writer class. Our work

provides an example of the implementation.

Second, a suggested way to add semantic information to the USD assets is

to separate the assets instantiated via code, and assets added to the scene via 3D

modelling. Adding semantic information both ways for the same assets results in

a conjoined class which is annotated with its own id. For example, in the SD Gen-

erator a router was added on the table. Given its real-world stationary location,

an easy way would have been to add it to the scene by adding the router to the

table assets via 3D modelling and giving a “props” class to it via the Semantics

Schema Editor. Because the tables are added to the scene in code and “table” class

is given in code, the router would have acquired a separate class id as “props:ta-

ble”.

Third, we observed that changes made in synthetic data cause changes in

model performance, converging speed and overfitting. While intuitively obvious,

63

we would remind to use real-world validation data, early stopping and hyperpa-

rameter tuning techniques when testing a generated dataset and treat a new syn-

thetic dataset as separate from a previous test even with minor changes. It is ben-

eficial to treat synthetic data and the neural network as connected, where a

change to one affects the other.

Lastly, identifying bottlenecks when the generator is running allows for

knowledge about optimal systems and hardware configurations to be gathered.

In this study, we identified a rendering bottleneck on our system which suggests

a lackluster GPU in comparison to other components. To benefit from the speed

of annotation in synthetic data generation to its optimal potential, a more pow-

erful GPU would be needed.

This concludes the experimentation chapter of this study. In the next chap-
ter, we discuss the results, implications, limitations and future research ideas of
this study, before giving a conclusion of the study in the final chapter.

64

5 DISCUSSION

In this chapter, the results of the study are discussed and compared to previous
knowledge. Due to the concrete results being presented in the previous section,
they are not repeated in this chapter. In addition to discussing the results of the
study, we discuss what implications for practice the study poses. After the impli-
cations, limitations of the study are identified and presented. Finally, potential
future research is proposed based on this study.

5.1 Discussion of results

We presented a proven method of synthetic data generator building and built the
SD Generator, a reference generator for scene-specific semantic segmentation
around point-of-interests. A DeepLabV3+ model trained solely on synthetic data
from the generator was able to predict segmentation masks for images it had not
seen before to an average mIoU accuracy of 94,05 %.

The introductory page for synthetic data in the Omniverse Replicator doc-
umentation divides the challenge of domain gap into two categories: appearance
gap and content gap. Appearance gap being the visual differences on a pixel level
between synthetic and real worlds, and content gap being the amount and ran-
domization of objects in the scene. (Nvidia, 2024). We observed the effects of tack-
ling these challenges and can confirm the existence of both. However, we propose
the content gap be divided into the number of objects and the amount of random-
ization, separately. In the study, we observed independent increases in model
accuracy when adding more objects separately from increasing randomization,
and vice versa. We assume that domain randomization increases model accuracy
by extending data distribution, as presented in the review study by Schieber et
al. (2024), not only by addressing the domain gap, but because the broadness of
training data distribution is similarly important in real-world datasets (Ramanu-
jan et al., 2024).

We evaluated the quality of the synthetic data by measuring the accuracy
of model predictions against manually labelled real-world data. In the absence of
real-world data, the validation of the model becomes difficult. Because of the do-
main gap, validation on synthetic data does not guarantee performance in actual
use. As studied by Sankaranarayanan et al. in 2018, generative neural networks
can alleviate the domain shift and improve performance on real data, but we ar-
gue that the quality of the synthetic training data is an important aspect in accu-
racy of the model predictions. Having a well-documented reference generator is
a possible solution to the problem.

65

5.2 Implications for practice

Most of the synthetic data generation methods and synthetic datasets in com-
puter vision (Bauer et al., 2024) aim towards generality. However, in the paper
introducing Kubric, Greff et al. (2022) argue that while only manually scalable,
task-specific synthetic data generation pipelines offer high-quality results. As we
demonstrated, although with an extremely specific application, focusing on
scene-specificity provides arguably accurate results on the real-world data.

As presented in the introductory section of Chapter 4, our approach scales
to larger scenes and further points-of-interest in theory, requiring a great amount
of manual work in asset generation only. The task can easily be changed from
semantic segmentation to other computer vision tasks in bounds of what Nvidia
Omniverse Replicator API offers as annotation methods. For example, using the
generator building model we presented, a scene-specific object detection dataset
would require minimal modification to the code.

Aiming to provide only a reference generator for practitioners, we do not
argue that the generator specifically built in this study would provide business
benefits. However, as demonstrated in section 4.11, synthetic data generation al-
lows for extremely fast dataset generation with pixel-perfect annotations. Given
that this study managed to output over one quality sample-target-pair per second
with a single outdated GPU, we assume that adequate acceleration hardware
would achieve a throughput of multiple images per second.

As stated in section 3.1.2 about the benefits of synthetic data, in 2021 an
estimation was that an image costing 6 dollars to annotate by hand, would cost 6
cents done via synthetic data generation (Andrews, 2021). While we do not as-
sure the accuracy of that estimate at the time of writing this study, synthetic data
should offer cost reduction on the acquisition of training datasets. The quality of
the dataset in real-life use is largely dependent on domain gap bridging and do-
main randomization, which are time-consuming processes, but only initially. Af-
ter the pipeline is completed, the generation of the dataset is automated and can
be left with minimal supervision. While the automated generation takes time, this
task does not require a human to be present. For example, left running 16 hours
outside office hours with a throughput of 3 samples per second, a relatively small
but pixel-perfectly annotated dataset of approximately 172 000 samples and tar-
gets could be generated.

5.3 Limitations

Due to the specific nature of the experiment, the accuracy of the models could
not be measured on an existing dataset. The SD Generator is not meant to be a
general-purpose data generator, but rather a reference on scene-specific point-of-
interest generation. Because the models cannot be evaluated on a public dataset,
the results are not comparable to other synthetic data generators in literature or

66

in business. The evaluation dataset created in this study does not offer a large
variety of situations but serves as a test set – data the models have not seen
through training or information leak.

Combining real data with synthetic data is widely used to achieve the best

performance with neural networks. Borkman et al. (2021) observed that the com-

bination achieves best accuracy compared to either only real data or synthetic

data. The accuracy was improved regardless of the amount of real data used.

(Borkman et al., 2021). In this study, the models are trained only on synthetic data.

While the reason is that this study focuses on building the generator and does

not compare the performance against existing benchmark datasets, therefore not

needing the optimal performance on the neural network’s end, we recognize the

limitations in synthetic-data-only training.

The final evaluation is done on a hand-labelled dataset. The method of the

labelling was Roboflow’s polygon drawing, since we did not have access to the

Segment Anything Model enabled smart annotation tool. This method exposes

the data to inaccuracy, which affects the mIoU accuracy metric. Due to this limi-

tation, the real accuracy can vary a few percentages and may not be totally in line

with the visual accuracy.

Another limitation regarding the study is that we did not survey experts

and practitioners of the field to validate the need for a reference generator or

scene-specific tasks, nor did we evaluate the findings of the study with experts.

The intention in eDSR methodology is to help DSR research with complex re-

search involving stakeholders from the industry. The purpose of the evaluation

echelon is to validate the generalizability and utility of the artifact in use (Tuun-

anen et al., 2024). While we technically follow the guidance of eDSR, we lack the

validation from experts and practitioners of the field and validation of practical-

ity the SD Generator in its intended purpose as a reference for scene-specific tasks.

5.4 Future research

As indicated in section 5.3 about the limitations of the study, we suggest that
further research into the topic should be conducted. The study lacks expert vali-
dation of usability of the SD Generator as reference in practice. In addition, the
study discusses the scalability of the generator and theorizes that the structure
scales to larger tasks with relatively simplicity. However, this scaling is only pre-
sented as an idea, and it is not tested or measured. A larger scale generator should
be built to measure the quality of the synthetic data in a practical setting, solving
a real computer vision task in the industry. If feasible, multiple generators could
be built to solve different problems, and interviews with experts of the field could
be used to validate the utility in practice, along with model accuracy metrics.

67

6 CONCLUSION

In today’s computer vision development, deep learning is the most popular
method. The nature of deep learning is data-intensive, and quality training data
is a limiting factor in the advancement of computer vision and deep learning in
general. Quality training data for supervised learning includes annotations
which are the targets in the training dataset. Especially in computer vision, the
annotations can be laborious to create manually, and alternative methods have
been developed. One of the alternative methods is synthetic data, where the goal
is to use computer-generated data to replace or complement real-world data.

In the study, we set out to build a scene-specific synthetic data generator on
Nvidia Omniverse platform to act as a reference generator for semantic segmen-
tation computer vision problem.

A review of literature on the basic terms was conducted to offer background
information on the task and to motivate the study. We presented key terminology
related to synthetic data in computer vision deep learning. A review of synthetic
data and its generation methods was presented, and we identified automated
annotation to be the most important benefit of synthetic data generation in su-
pervised learning computer vision tasks. Automated annotation can be done via
multiple methods, in this study the annotation capabilities of Omniverse Repli-
cator were used.

The eDSR methodology by Tuunanen et al. (2024) was used in the design
phase of the study. The methodology allows for iterative design by planning, im-
plementing and evaluating the artifact, the SD Generator, in small repetitive cy-
cles. Before starting the development phase, a review of related work was con-
ducted to find similar work from academic literature and from industry. No sim-
ilar work was found, which validated the research problem: no such reference
generator for scene-specific point-of-interest tasks built on Nvidia Omniverse ex-
ists. The aim of the study was to build a generator and document the factors that
affect output data quality and thus affect neural network prediction accuracy.

We iterated the design six times, validating the changes by predicting a seg-
mentation mask for a real-world picture. Validation combined a visual analysis
of the mask and a mean intersection over union calculation against a hand-la-
belled target. After reaching a high accuracy on the validation picture, a small 20-
image test dataset was hand-labelled, and the models trained on synthetic data
were evaluated against the data the models had not previously seen. A
DeepLabV3+ model trained solely on synthetic data achieved 94,05 % mIoU ac-
curacy on the evaluation dataset.

The result of the study was a generator, combining a set of USD assets and
a Python script for the Omniverse Replicator, capable of creating a quality dataset
and implementing distinguishable features to act as a simple reference for new-
comers in the field to start generating synthetic data.

While developing the generator, we observed the impact of changes made
to the generator and presented a model of building a synthetic data generation

68

pipeline. This model, which is presented in section 4.12, can help identify key
processes in developing a synthetic data generator. Iterating and validation with
real-world data is key in increasing the model accuracy the data yields. The per-
formance of the generator was measured using a variety of settings, where a de-
pendency on graphics hardware was observed. We found that half of the perfor-
mance optimization should take place in the developing and testing phase of
building the generation pipeline.

In the last part of the study, we discussed the results and observations of
the design process. A notable finding discussed was that the amount of content
in the scene and the amount of randomization could be treated as separate effects,
since they affect the quality of training data independently. We identified and
presented the limitations of the study, in which the main limitation identified
was the lack of expert interviews or surveys to evaluate the utility of the artifact
in a real use case. In the discussion we implied that for practitioners, the reference
generator could be a useful tool in entering synthetic data generation, which
could result in reduced costs of training data acquisition. Future research based
on the limitations of the study was suggested. To further advance the develop-
ment of a reference generator, experts and practitioners of the field should be
interviewed for evaluation of the utility and value of the SD Generator. A larger
scale generator based on the creation process of the reference generator solving a
real industry task would also be a topic of future research, validating the idea
behind this study.

69

REFERENCES

Abou Akar, C., Abdel Massih, R., Yaghi, A., Khalil, J., Kamradt, M., & Makhoul,
A. (2024). Generative Adversarial Network Applications in Industry 4.0: A
Review. International Journal of Computer Vision, 1-60.

Abou Akar, C., Tekli, J., Jess, D., Khoury, M., Kamradt, M., & Guthe, M. (2022,
October). Synthetic object recognition dataset for industries. In 2022 35th
SIBGRAPI conference on graphics, patterns and images (SIBGRAPI) (Vol.
1, pp. 150-155). IEEE.

Akash Guna, R. T., Rahul, K., & Sikha, O. K. (2022, September). U-NET
Xception: A Two-Stage Segmentation-Classification Model for COVID
Detection from Lung CT Scan Images. In International Conference on
Innovative Computing and Communications: Proceedings of ICICC 2022,
Volume 1 (pp. 335-343). Singapore: Springer Nature Singapore.

Alpaydin, E. (2021). Machine learning. MIT press.

Andrews, G. (2021). What is Synthetic Data. Nvidia. Retrieved May 16, 2024,
from https://blogs.nvidia.com/blog/what-is-synthetic-data/

Anyverse. (2024). Platform documentation. Anyverse. Retrieved May 11, 2024,
from https://anyverse.ai/article-categories/documentation/

Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., ... &
Foster, I. (2024). Comprehensive exploration of synthetic data generation:
A survey. arXiv preprint arXiv:2401.02524.

Bench-Capon, T. J. (2014). Knowledge representation: An approach to artificial
intelligence (Vol. 32). Elsevier.

Blender. (2024). Blender 4.1. Blender. Retrieved April 25, 2024, from
https://www.blender.org/

Borkman, S., Crespi, A., Dhakad, S., Ganguly, S., Hogins, J., Jhang, Y. C., ... &
Yadav, N. (2021). Unity perception: Generate synthetic data for computer
vision. arXiv preprint arXiv:2107.04259.

Brownlee, J. (2020). Data preparation for machine learning: data cleaning,
feature selection, and data transforms in Python. Machine Learning
Mastery.

Cascante-Bonilla, P., Shehada, K., Smith, J. S., Doveh, S., Kim, D., Panda, R., ... &
Karlinsky, L. (2023). Going beyond nouns with vision & language models
using synthetic data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (pp. 20155-20165).

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-
decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European conference on computer
vision (ECCV) (pp. 801-818).

https://anyverse.ai/article-categories/documentation/
https://www.blender.org/

70

Chollet, F., & Others. (2015). Keras. Retrieved March 6, 2024, from
https://keras.io

Chollet, F. (2019). Image segmentation with a U-Net-like architecture. Retrieved
March 6, 2024, from
https://keras.io/examples/vision/oxford_pets_image_segmentation/

Chollet, F. (2021). Deep Learning with Python (2nd ed.). Manning Publications.

Conde, D., Martínez, J., Balado, J., Arias, P., & GeoTECH, C. I. N. T. E. C. X.
Generation of road zone synthetic data for training MOT models with the
NVIDIA Omniverse platform.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., ... &
Schiele, B. (2016). The cityscapes dataset for semantic urban scene
understanding. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 3213-3223).

Delatolas, T., Kalogeiton, V., & Papadopoulos, D. P. (2024). Learning the What
and How of Annotation in Video Object Segmentation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision
(pp. 6951-6961).

Devaux, E. (2022). Browse a collection of synthetic data tools and companies.
syntheticdata.carrd.co. Retrieved May 11, 2024, from
https://syntheticdata.carrd.co/

DeVries, T., & Taylor, G. W. (2017). Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552.

Erfanian Ebadi, S., Jhang, Y. C., Zook, A., Dhakad, S., Crespi, A., Parisi, P., ... &
Ganguly, S. (2021). PeopleSansPeople: A Synthetic Data Generator for
Human-Centric Computer Vision. arXiv e-prints, arXiv-2112.

Ertel, W. (2018). Introduction to artificial intelligence. Springer.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Gollapudi, S. (2016). Practical machine learning. Packt Publishing Ltd.

Goldblum, M., Souri, H., Ni, R., Shu, M., Prabhu, V., Somepalli, G., ... &
Goldstein, T. (2024). Battle of the backbones: A large-scale comparison of
pretrained models across computer vision tasks. Advances in Neural
Information Processing Systems, 36.

Gondur, R. (2024). Choosing the Right Image Format for Your ML Model: A
transparent look at PNG file sizes. Medium. April 8, 2024.
https://medium.com/@rabiagondur/choosing-the-right-image-format-
for-your-ml-model-a-transparent-look-at-png-file-sizes-0d89ffbe59b0

Greff, K., Belletti, F., Beyer, L., Doersch, C., Du, Y., Duckworth, D., ... &
Tagliasacchi, A. (2022). Kubric: A scalable dataset generator. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 3749-3761).

https://keras.io/
https://keras.io/examples/vision/oxford_pets_image_segmentation/
https://syntheticdata.carrd.co/
https://medium.com/@rabiagondur/choosing-the-right-image-format-for-your-ml-model-a-transparent-look-at-png-file-sizes-0d89ffbe59b0
https://medium.com/@rabiagondur/choosing-the-right-image-format-for-your-ml-model-a-transparent-look-at-png-file-sizes-0d89ffbe59b0

71

Guo, Y., Liu, Y., Georgiou, T., & Lew, M. S. (2018). A review of semantic
segmentation using deep neural networks. International journal of
multimedia information retrieval, 7, 87-93.

Haselmann, M., & Gruber, D. P. (2019). Pixel-wise defect detection by CNNs
without manually labeled training data. Applied Artificial Intelligence,
33(6), 548-566.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2018,
April). Deep reinforcement learning that matters. In Proceedings of the
AAAI conference on artificial intelligence (Vol. 32, No. 1).

Higgins, S. (2021). How BMW uses NVIDIA Omniverse for a 30% increase in
production planning efficiency. Spatial Reality. Retrieved May 11, 2024,
from https://spatialreality.io/how-bmw-uses-nvidia-omniverse-for-a-30-
increase-in-production-planning-efficiency/

Huang, X., Jin, G., & Ruan, W. (2012). Deep reinforcement learning. In Machine
Learning Safety (pp. 219-235). Singapore: Springer Nature Singapore.

IBM. (2023). What is synthetic data?. IBM. Retrieved April 3, 2024, from
https://www.ibm.com/topics/synthetic-data

ImageNet. (2020). About ImageNet. Stanford Vision Lab, Stanford University,
Princeton University. Retrieved May 19, 2024, from https://image-
net.org/about.php

jiehanw. (2024, April 17). Unfortunately we don’t really have a great way to get
consistent semantic id across runs. Work has been proposed [Comment on
the blog post “Maintain class IDs between separate generations”]. Nvidia
Developer forum. https://forums.developer.nvidia.com/t/maintain-class-
ids-between-separate-generations/288850/1

Keras. (2024). Adam. Retrieved May 22, 2024, from
https://keras.io/api/optimizers/adam/

Keras. (2024). Image segmentation metrics. Retrieved April 16, 2024, from
https://keras.io/api/metrics/segmentation_metrics/#meaniou-class

Keras. (2024). Probabilistic losses. Retrieved May 22, 2024, from
https://keras.io/api/losses/probabilistic_losses/#sparsecategoricalcross
entropy-class

Kiela et al. (2023) – with minor processing by Our World in Data. “Test scores of
the AI relative to human performance”. Retrieved April 20, 2024, from
https://ourworldindata.org/grapher/test-scores-ai-capabilities-relative-
human-performance

Li, K., & Malik, J. (2016). Amodal instance segmentation. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part II 14 (pp. 677-693). Springer
International Publishing.

https://spatialreality.io/how-bmw-uses-nvidia-omniverse-for-a-30-increase-in-production-planning-efficiency/
https://spatialreality.io/how-bmw-uses-nvidia-omniverse-for-a-30-increase-in-production-planning-efficiency/
https://www.ibm.com/topics/synthetic-data
https://image-net.org/about.php
https://image-net.org/about.php
https://forums.developer.nvidia.com/t/maintain-class-ids-between-separate-generations/288850/1
https://forums.developer.nvidia.com/t/maintain-class-ids-between-separate-generations/288850/1
https://keras.io/api/optimizers/adam/
https://keras.io/api/metrics/segmentation_metrics/#meaniou-class
https://keras.io/api/losses/probabilistic_losses/#sparsecategoricalcrossentropy-class
https://keras.io/api/losses/probabilistic_losses/#sparsecategoricalcrossentropy-class
https://ourworldindata.org/grapher/test-scores-ai-capabilities-relative-human-performance
https://ourworldindata.org/grapher/test-scores-ai-capabilities-relative-human-performance

72

Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense
object detection. In Proceedings of the IEEE international conference on
computer vision (pp. 2980-2988).

Mahesh, B. (2020). Machine learning algorithms-a review. International Journal
of Science and Research (IJSR).[Internet], 9(1), 381-386.

Man, K., & Chahl, J. (2022). A review of synthetic image data and its use in
computer vision. Journal of Imaging, 8(11), 310.

Martinez-Gonzalez, P., Oprea, S., Castro-Vargas, J. A., Garcia-Garcia, A., Orts-
Escolano, S., Garcia-Rodriguez, J., & Vincze, M. (2021, July). Unrealrox+:
An improved tool for acquiring synthetic data from virtual 3d
environments. In 2021 International Joint Conference on Neural Networks
(IJCNN) (pp. 1-8). IEEE.

McCarthy, J. (2004). What is artificial intelligence.

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal
for the dartmouth summer research project on artificial intelligence,
august 31, 1955. AI magazine, 27(4), 12-12.

Metzler, J., Bahrpeyma, F., & Reichelt, D. (2023, July). An end to end workflow
for synthetic data generation for robust object detection. In 2023 IEEE 21st
International Conference on Industrial Informatics (INDIN) (pp. 1-7).
IEEE.

Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., &
Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging
Clinics of North America, 30(4), 393-399.

Ng, Z., Wang, H., Zhang, Z., Hock, F. T. E., & Ang Jr, M. H. (2023). SynTable: A
Synthetic Data Generation Pipeline for Unseen Object Amodal Instance
Segmentation of Cluttered Tabletop Scenes. arXiv preprint
arXiv:2307.07333.

Nikolenko, S. I. (2021). Synthetic data for deep learning (Vol. 174). Springer
Nature.

Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University
Press.

NumPy. (2024). What is NumPy?. Numpy. Retrieved May 13, 2024, from
https://numpy.org/doc/stable/user/whatisnumpy.html#

Nvidia. (2023). omni.replicator.core PYTHON API. Nvidia. Retrieved March 6,
2024, from
https://docs.omniverse.nvidia.com/py/replicator/1.10.10/source/extens
ions/omni.replicator.core/docs/API.html

Nvidia. (2024). Code overview. Nvidia. Retrieved April 25, 2024, from
https://docs.omniverse.nvidia.com/code/latest/index.html

https://numpy.org/doc/stable/user/whatisnumpy.html
https://docs.omniverse.nvidia.com/py/replicator/1.10.10/source/extensions/omni.replicator.core/docs/API.html
https://docs.omniverse.nvidia.com/py/replicator/1.10.10/source/extensions/omni.replicator.core/docs/API.html
https://docs.omniverse.nvidia.com/code/latest/index.html

73

Nvidia. (2024). Connect overview. Nvidia. Retrieved April 25, 2024, from
https://docs.omniverse.nvidia.com/connect/latest/index.html

Nvidia. (2024). Replicator. Nvidia. Retrieved April 17, 2024, from
https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator.htm

Nvidia. (2024). USD Composer Overview. Nvidia. Retrieved April 17, 2024,
from https://docs.omniverse.nvidia.com/composer/latest/index.html

Nvidia. (2024). NVIDIA Omniverse. The platform for connecting and
developing OpenUSD applications. Nvidia. Retrieved March 6, 2024, from
https://www.nvidia.com/en-us/omniverse/

NVIDIA-STUDIO. (2022). NVIDIA Omniverse Unlocks Endless Creative
Possibilities for Blender Artists. Blendernation. Retrieved April 25, 2024,
from https://www.blendernation.com/2022/01/24/advertorial-nvidia-
omniverse-unlocks-endless-creative-possibilities-for-blender-artists/

Oh, C., Jang, Y., Shim, D., Kim, C., Kim, J., & Kim, H. J. (2024). Automatic
Pseudo-LiDAR Annotation: Generation of Training Data for 3D Object
Detection Networks. IEEE Access.

O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458.

Pixar. (2021). Universal Scene Description. Retrieved April 17, 2024, from
https://openusd.org/release/index.html

Raghunathan, T. E. (2021). Synthetic data. Annual review of statistics and its
application, 8, 129-140.

Rakshit, S. (2021). Multiclass semantic segmentation using DeepLabV3+.
Retrieved March 29, 2024, from
https://keras.io/examples/vision/deeplabv3_plus/

Ramanujan, V., Nguyen, T., Oh, S., Farhadi, A., & Schmidt, L. (2024). On the
connection between pre-training data diversity and fine-tuning
robustness. Advances in Neural Information Processing Systems, 36.

Ramos, L., & Subramanyam, J. (2021). Maverick Research: Forget About Your
Real Data—Synthetic Data Is the Future of AI. Gartner, Inc, Jun.

Richard, A., Kamohara, J., Uno, K., Santra, S., van der Meer, D., Olivares-
Mendez, M., & Yoshida, K. (2023). OmniLRS: A Photorealistic Simulator
for Lunar Robotics. arXiv preprint arXiv:2309.08997.

Richter, S. R., Vineet, V., Roth, S., & Koltun, V. (2016). Playing for data: Ground
truth from computer games. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II 14 (pp. 102-118). Springer International Publishing.

Roboflow. (2024). ROBOFLOW ANNOTATE. Roboflow. Retrieved March 19,
2024, from https://roboflow.com/annotate

https://docs.omniverse.nvidia.com/connect/latest/index.html
https://docs.omniverse.nvidia.com/extensions/latest/ext_replicator.htm
https://docs.omniverse.nvidia.com/composer/latest/index.html
https://www.nvidia.com/en-us/omniverse/
https://www.blendernation.com/2022/01/24/advertorial-nvidia-omniverse-unlocks-endless-creative-possibilities-for-blender-artists/
https://www.blendernation.com/2022/01/24/advertorial-nvidia-omniverse-unlocks-endless-creative-possibilities-for-blender-artists/
https://openusd.org/release/index.html
https://keras.io/examples/vision/deeplabv3_plus/
https://roboflow.com/annotate

74

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6), 386.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
representations by back-propagating errors. nature, 323(6088), 533-536.

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach
(Third edition, Global edition). Pearson

Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S. N., & Chellappa, R. (2018).
Learning from synthetic data: Addressing domain shift for semantic
segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 3752-3761).

Schieber, H., Demir, K. C., Kleinbeck, C., Yang, S. H., & Roth, D. (2024). Indoor
synthetic data generation: A systematic review. Computer Vision and
Image Understanding, 103907.

Seefried, E., Jung, C., Fitzgerald, J., Bradford, M., Chartier, T., & Blanchard, N.
Balancing Quality and Quantity: The Impact of Synthetic Data on Smoke
Detection Accuracy in Computer Vision. In Synthetic Data for Computer
Vision Workshop@ CVPR 2024.

Skalski, P. (2024). How to Use the Segment Anything Model (SAM). Roboflow.
Retrieved May 16, 2024, from https://blog.roboflow.com/how-to-use-
segment-anything-model-sam/

Sketchfab. (2024). Omniverse 3D models. Sketchfab. Retrieved March 6, 2024,
from https://sketchfab.com/tags/omniverse

Sky Engine AI. (2024). Developer Blog. SKY ENGINE AI. Retrieved May 15,
2024, from https://skyengine.ai/se/skyengine-blog

Steinhoff, J., & Hind, S. (2024). Simulation and the Reality Gap: Moments in a
prehistory of synthetic data.

Suchi, M., Patten, T., Fischinger, D., & Vincze, M. (2019, May). EasyLabel: A
semi-automatic pixel-wise object annotation tool for creating robotic RGB-
D datasets. In 2019 International Conference on Robotics and Automation
(ICRA) (pp. 6678-6684). IEEE.

Szeliski, R. (2022). Computer vision: algorithms and applications. Springer
Nature.

Thoma, M. (2016). A survey of semantic segmentation. arXiv preprint
arXiv:1602.06541.

To, T., Tremblay, J., McKay, D., Yamaguchi, Y., Leung, K., Balanon, A., …
Birchfield, S. (2018). NDDS: NVIDIA Deep Learning Dataset Synthesizer.

Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., ... &
Birchfield, S. (2018). Training deep networks with synthetic data: Bridging
the reality gap by domain randomization. In Proceedings of the IEEE

https://blog.roboflow.com/how-to-use-segment-anything-model-sam/
https://blog.roboflow.com/how-to-use-segment-anything-model-sam/
https://sketchfab.com/tags/omniverse
https://skyengine.ai/se/skyengine-blog

75

conference on computer vision and pattern recognition workshops (pp.
969-977).

Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., & Birchfield, S.
(2018). Deep object pose estimation for semantic robotic grasping of
household objects. arXiv preprint arXiv:1809.10790.

Turing, A. M. (1950). Computing machinery and intelligence (pp. 433–460).
Mind, Volume LIX, Issue 236.

Tuunanen, T., Winter, R. & vom Brocke, J. (2024) (in press). Dealing with
Complexity in Design Science Research: Using Design Echelons to Support
Planning, Conducting, and Communicating Design Knowledge
Contributions. MIS Quarterly.
https://doi.org/10.25300/MISQ/2023/16700

Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn, M., & Ho, A. (2022).
Will we run out of data? an analysis of the limits of scaling datasets in
machine learning. arXiv preprint arXiv:2211.04325.

Vom Brocke, J., Hevner, A., & Maedche, A. (2020). Introduction to design
science research. Design science research. Cases, 1-13.

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep
learning for computer vision: A brief review. Computational intelligence
and neuroscience, 2018.

Xu, W., Zhang, Y., & Tang, X. (2021). Parallelizing dnn training on gpus:
Challenges and opportunities. In Companion Proceedings of the Web
Conference 2021 (pp. 174-178).

https://doi.org/10.25300/MISQ/2023/16700

