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In today’s world of AI, the amount of training data is a critical factor in the suc-
cess of model training. Especially in cases where data acquisition is difficult due 
to rare occurrence of events or annotation cost, synthetic data can be used to sup-
plement data needs. In computer vision, some tasks require pixel-wise annota-
tion which, if done by hand, is labor intensive and error-prone. In this study, we 
use eDSR methodology to design and evaluate a synthetic data generator, to 
serve as a reference generator for those who seek to start synthetic visual data 
generation from scratch. A generator, combining an Omniverse Replicator Py-
thon script and 3D assets, is developed and the quality of the synthetic data out-
puts is measured by training three different neural networks to predict segmen-
tation masks from a real-world scene. In addition to the generator, a model of 
scene-specific synthetic data generation pipeline is presented, to complement the 
reference generator as a source of knowledge for newcomers in the field. Two 
major processes in synthetic data generator building are observed to be domain 
gap bridging and domain randomization. Domain gap bridging aims to increase 
the visual similarity in the synthetic scene and the real world, while domain ran-
domization aims to increase the data distribution. Because the main benefit of 
synthetic data is minimal annotation cost, the optimization of generation speed 
should be integrated in the development process. The Python code developed is 
available in: https://github.com/jkuhno/reference-SDGenerator 

Keywords: artificial intelligence, synthetic data, data generator, computer vi-
sion, semantic segmentation, deep learning, Nvidia Omniverse 
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Nykypäivänä oppimisdatan määrä tekoälypohjaisten mallien oppimisessa on 

elintärkeää, kun halutaan kehittää toimivia malleja. Synteettisella datalla on 

mahdollista täydentää dataa jos oikean datan hankkiminen on kallista tai vaikea 

saada. Tietokonenäössä jotkut tehtävät vaativat pikselitason annotaatiota, jonka 

tekeminen käsin on työlästä ja virhealtista. Tässä tutkielmassa käytämme eDSR 

metodia, jonka avulla suunnittelemme ja arvioimme synteettisen datan 

generaattoria. Tämä generaattori toimii mallina kaikille, jotka ovat 

kiinnostuneita rakentamaan visuaalisen datan generaattorin alusta asti. Työssä 

kehitetään generaattori, joka yhdistää Omniversen Replicatorin Python skriptin 

ja 3D-malleja. Tuotetun datan laatua mitataan kouluttamalla kolmea erilaista 

neuroverkkoa, jotka muodostavat segmentaatiomaskeja oikeasta maailmasta. 

Generaattorin lisäksi esitetään malli skenaariospesifisen synteettisen datan 

luomisprosessista, joka toimii tiedonlähteenä uusille tekijöille synteettisen datan 

alalla. Työssä tunnistetaan kaksi pääprosessia synteettisen datan generaattorin 

rakentamisessa, jotka ovat synteettisen ja oikean maailman visuaalinen 

lähentäminen ja synteettisen maailman satunnaistaminen. Satunnaistaminen 

tähtää datan jakauman suurentamiseen. Synteettisen datan suurin hyöty on 

minimaalinen annotaation hinta, joten generaationopeuden optimointi tulisi olla 

integroituna kehittämisprosessiin. Tutkimuksessa kirjoitettu Python-koodi on 

saatavilla osoitteessa: https://github.com/jkuhno/reference-SDGenerator 

Asiasanat: tekoäly, synteettinen data, data generaattori, tietokonenäkö, 
semanttinen segmentointi, syväoppiminen, Nvidia Omniverse 
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1 INTRODUCTION 

In today’s AI development, high-quality training data is possibly a depletable 
resource. According to estimates of Villalobos et al., we are on course to run out 
of quality training data for language models in between 2023 and 2027, and com-
puter vision in 2030-2070. However, these estimates do not factor in the likeli-
hood of researchers and practitioners doing something about the coming prob-
lem (Villalobos et al., 2022), therefore this is less a catastrophic scenario and more 
a highlight of the fact that modern AI models are consuming enormous amounts 
of data to train.  

After deep learning became the leading subcategory of AI in computer vi-
sion, the need for large datasets for training grew rapidly (Nikolenko, 2021). 
What makes training data for computer vision more complicated than most other 
forms of data is the annotation required in supervised learning of a vision model, 
which is in other words the goal for the model to learn, associated with every 
image it is trained on. Image classification tasks are relatively simple in regard to 
annotating training data. Even object detection, where the model is trained to 
locate an object in an image and provide coordinates to draw a box around it, is 
viable to annotate training data by hand using extensively pretrained models to 
limit the amount of required data and using advanced annotation tools like Ro-
boflow (Roboflow, 2024). Going into more advanced annotation tasks, like se-
mantic segmentation, instance segmentation or depth maps for example, the dif-
ficulty of acquiring pixel-perfect annotations by manual labor make related com-
puter vision tasks an interesting use for synthetic data. 

Synthetic data generation in the context of computer vision can take many 

forms but they can be categorized in two ways: synthetically generated images 

from generative AI and data extracted from 3D-modelled scenes. In this thesis 

work we solely focus on the latter. The underlying logic in generating synthetic 

data from 3D models is that in 3D modelled scenes every object can be given 

classification of what it is, and pixel-perfect information on its location is made 

available to the renderer which “draws” the scene to a set of pixels representing, 

for example, an image. Combining this preliminary information about the scene 

allows automatic and pixel-perfect annotation by just extracting desired 
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information in a form that is usable for a given task, for example producing RGB 

images alongside a segmentation mask where every pixel is labelled according 

to a semantic class it is part of. While the modern collection of datasets for com-

puter vision is large and pretrained models are plenty (Goldblum at al., 2024), 

synthetically generated data is efficient in tasks where fine-tuning data is hard to 

collect or when pretraining on public datasets does not yield desired results in 

classes of rare occurrence. 

The main challenge, indicated in the literature and observed in the experi-

ments of this study, in synthetic visual data is the domain gap (e.g., Sankarana-

rayanan et al., 2018; Schieber et al., 2024; Steinhoff and Hind, 2024). The domain 

gap results from the visual and distributional differences of synthetic and real 

worlds. The domain gap manifests itself when a neural network trained to high 

accuracy on synthetic data fails to function accurately on real-world data. Bridg-

ing the domain gap is the main factor in synthetic data generation success, the 

second factor being generator performance. 

A problem identified in the literature (see section 4.2) of synthetic data gen-

eration is that a reference work for newcomers in the field aiming to document 

an end-to-end design process of a scene-specific synthetic data generator is, to 

the best of our knowledge, non-existent. The majority of the studies developing 

a synthetic data generator are focused on presenting the results of the generation 

as a dataset or as improved accuracy of a known machine learning task. None of 

the studies we reviewed focus on the entry-level information of what factors need 

to be considered when building a synthetic data generator. Practical examples 

and tutorials found on the internet provide this entry-level knowledge but fail to 

provide additional measurements and evaluation to complement the design pro-

cess. 

To tackle the identified problem, this thesis work sets out to design a refer-

ence synthetic data generator for a scene-specific semantic segmentation task, us-

ing the eDSR methodology by Tuunanen et al. (2024). The contribution of this 

study to the field of synthetic data generation is the reference generator artifact 

that acts as reference on how to build a generator (cf. Conde et al.), while the 

study and its iterative design process acts as complementary information of the 

process. We present a novel model for creating a scene-specific synthetic data 

generation pipeline, emerging from the results of the study. The model is novel 

due to its iterative nature (cf. Ng et al., 2023) and the separation of domain gap 

and domain randomization (cf. Nvidia, 2024). 

The study is organized as follows: First, a brief review of AI and machine 

learning is conducted to serve as motivation for synthetic data usage, and termi-

nology used in the study is explained. Second, a brief review on synthetic data in 

computer vision is conducted. Third, the eDSR design process is presented and 

the problem is validated through a review of related work, before iteratively de-

veloping and testing the generator in six iterations of domain gap bridging and 
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domain randomization to achieve quality data as generator output. The quality 

is evaluated with three different neural networks trained solely on synthetic data, 

through the visual accuracy and mean intersection over union of predicted seg-

mentation masks. After the last experiment, a final evaluation on a small hand-

labelled dataset is performed and performance optimization techniques are pre-

sented and measured. Fourth, the results, implications and limitations of the 

study are discussed in view of previous knowledge, existing literature and the 

results of this study. Finally, a conclusion of the study is presented. 
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2 ARTIFICIAL INTELLIGENCE 

This chapter presents an introduction to artificial intelligence (AI). It explains the 

history of AI, what AI is and the basics of AI development. Also, this chapter 

gives a brief overview of machine learning and deep learning, the most used 

techniques to train AI. Computer vision with neural networks, which is the cate-

gory this study addresses, is also discussed. 

2.1 Definition of AI 

It is still hard to precisely define what is AI since intelligence in itself is a vague 
concept and has not been fully agreed on in science either. Researchers are still 
trying to figure out how to measure intelligence and how human brains work. 
(Ertel, 2018.)  These are crucial questions when trying to build a machine that can 
mimic human intelligence. Since there can be numeral explanations of what AI 
is, many people nowadays are using the term AI for almost everything that seems 
intelligent to them in the field of computer science. Basically, the name AI refers 
to a computer program or set of algorithms that are used to do tasks which re-
quire intelligence and deduction or reasoning to perform them. Simple AI pro-
grams can be suitable for solving small or specific problems but for more complex 
issues and for general artificial intelligence machines we need more complicated 
algorithms and models. Artificial intelligence is disrupting a lot of different in-
dustries by executing tasks that previously would have needed humans to per-
form them. This means that AI aims to simulate, supplement and augment hu-
man intelligence (Muthukrishnan et al., 2020). In the very first paper about AI in 
1955 John McCarthy explains that the goal of AI would be to develop machines 
or devices that behave like they were intelligent (Ertel, 2018). This means that 
machines don’t necessarily have to be intelligent in itself to qualify as AI but just 
need to act like they would be thinking. Later McCarthy (2004) continues to state 
that AI is rarely about mimicking or copying the human brain and intelligence. 
Even though we can make machines observe other people and use that to solve 
problems this way, AI mostly studies challenges and problems the world and life 
presents to intelligence itself. This usually means we have to use methods that 
involve more computing than human beings can actually do (McCarthy, 2004.). 
Russel & Norvig (2016) elaborate this by dividing AI into categories depending 
on the goal it is trying to achieve. In developing AI, we can divide them into 
human approach and ideal approach. Human approach means that the AI’s goal 
is to think and act like humans. The ideal approach includes computational mod-
els to increase the reasoning and acting. This approach only focuses on the com-
putational intelligence aspect of artifacts and how to increase it. 

Human and machine intelligence are viewed differently, and they have 
very different limitations and challenges. Normally, humans’ intellectual 
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differences come from differences in processing data. This means processing 
speed, short term memory and how well we can form accurate long-term mem-
ories. In machine intelligence it is quite the opposite. Computer programs have a 
lot of speed and memory, but they might be lacking in understanding the context 
and social norms or other areas of intelligence. We have to keep in mind that 
computer programs are made by humans and are quite simple in a way, that they 
only do what they are programmed to do. This means that, if people are doing 
some tasks more efficiently than computer programs, it only means that the de-
signer of the program did not understand the intellectual mechanism needed to 
perform the task (McCarthy, 2004.). The evaluation of human and machine intel-
ligence is also quite different. For example, if we see a child do complex mathe-
matical calculations, we might think they are quite smart. On the other hand, if 
they do not recognize the faces of their family members, we might say they are 
lacking in some areas of intelligence. The reverse is true in machine intelligence. 
Doing complex calculations and computations are assumed from a computer but 
if it happens to recognize faces then it is considered to be smart (Bench-Capon, 
2014). 

2.2 History behind AI 

For many centuries humans have dreamed about machines that have humanlike 
abilities and devices that could think and reason like us. This can be traced back 
to at least stories and writings in the ancient Greek. Although there has been a lot 
of dreams and stories about machines having brain functions and logic similar to 
humans, this started to slowly become reality in the 20th century when digital 
computers were invented and computer science itself started to quickly take 
steps forward. (Nilsson, 2009.) 

First concrete mentions of machines that have the ability to think can be 
traced back to 1950 to Alan Turing who is considered to be the father of computer 
science. In his paper Turing is contemplating if it is possible for a machine to have 
the ability to think like a human being. Turing comes up with a test that can de-
termine if a machine is thinking or not (Turing, 1950). He called this test The Im-
itation Game but today the test is more famously known as Turing Test. In this 
test Turing comes up with a questionnaire. In the test there was a blind interview 
with machines and humans. The interviewer’s task was to define from their an-
swers if the subject was a human or a machine. If the interviewer could not sep-
arate them, then the machine was considered to be thinking. Even though now-
adays there are many other ways to test machines’ thinking that are way more 
developed, Turing Test remains still one of the key experiments when consider-
ing AI abilities of thinking. 

However, as stated in the previous chapter, the real journey of AI began in 

1956 when McCarthy came up with the term artificial intelligence in his paper. 

Together with Minsky, Rochester and Shannon they came up with a proposal for 
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Dartmouth conference about AI. In this proposal they attempt to make a machine 

that solves problems, uses language, forms concepts and abstractions while im-

proving itself at the same time. (McCarthy, Minsky, Rochester & Shannon, 2006.) 

In the proposal they also discussed about artificial neural networks in importance 

of constructing such a machine that can learn. Before this only a single neuron 

with just basic input-output functions had been discovered to be able to learn 

things (Muthukrishnan et al., 2020). This was the beginning of many researchers 

studying AI and attempting to make such a machine. Rosenblatt (1958) intro-

duced the first more advanced neural network model named Perceptron a few 

years later. This multiple neural network concept which was inspired by human 

brain functions is still the main building block for creating valuable and complex 

AI. 

Even though there was progress in the field, the unrealistic expectations 

were too much at the time and a lot of researchers came to the conclusion that the 

things they were trying to build AI to do were ahead of their time. Limitations 

with computing power and lack of models really caught up with the evolution of 

AI (Muthukrishnan et al., 2020). This led to what was called “AI winter" during 

which nothing really happened in AI science field and no significant progress 

was made during this time period. During 1970 to 1990 there was some progress 

made in AI field mainly because the studies made in the last twenty years could 

be relied on and researchers did not have to invent everything from zero. Ru-

melhart, Hinton & Williams (1986) had one of the key findings in this time, back-

propagation. They managed to come up with a multi-layer neural network where 

each neural layer was connected to the next one. This enabled the network to set 

more accurate bias and weight evaluation to each input and could learn from 

mistakes it made. Towards the turning of the century, in the the mid 1990s the 

increased computing power of machines with the knowledge from previous re-

search AI started to really take off and huge leaps in development were made. 

The first time AI substantially caught the eye of public attention was in 1997 

when IBM’s Deep Blue supercomputer defeated the reigning chess champion 

Garry Kasparov in a chess match. This also marked the first time that an AI was 

superior to human intelligence in such a complex matter (Russel & Norvig, 2016). 

The event gathered a lot of recognition through the news and caught the public 

eye. After that, people started to really see the concrete uses of AI and many busi-

nesses started to invest heavily in AI. Even though the error rate to AI machines 

at the time were very low, there were still some limitations in hardware and data 

that affected AI’s abilities. 

During the last ten years AI has taken huge leaps forward in its capabilities 

and recognition. Most of the AI’s abilities have surpassed human capabilities in 

recent years as Kiela et. al (2023) illustrates in Figure 1. This is mostly due to the 

fact that the limitations of data storage and graphic processing units (GPU) issues 
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were overcome. When GPUs become increasingly more powerful and affordable, 

AI’s abilities will advance as well. 

 

 

Figure 1 Test scores of the AI relative to human performance by Kiela et al. (2023) 

These machine learning and deep learning algorithms rely heavily on available 

data (Muthukrishnan et al., 2020). This is because the more data they get as input 

the more accurate they become. Even though AI has become more accurate than 

human in a majority of things, image recognition and natural language pro-

cessing are two main areas where AI still has a lot to improve. 

Most recent development in AI has been GPTs (Generative pre-trained 

transformer). GPTs are part of large language models which use neural networks 

to process natural language. These models are pre-trained with large amount of 

data sets to generate human like language. They are also trained to predict and 

analyze. Most known GPT is called ChatGPT which was launched in late 2022 by 

OpenAI and it has widely adopted in popular and commercial use. 

2.3 Machine learning 

Machine learning (ML) is a field of study in AI. Machine learning is about making 
and creating algorithms that can solve more complex problems that basic com-
puter science algorithms with simple outputs and few parameters cannot solve. 
Because the world around us is not simple but rather complex these ML algo-
rithms are more applicable to real-life scenarios and predictions for example. ML 
can automate this prediction making and make unseen generalization from huge 
datasets. With the rise of AI and ML in businesses there are many industries 
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implementing them into their core business including finance, healthcare, enter-
tainment and engineering for example. Usually in business ML is mostly used in 
making predictions of future or to spot patterns in data. The purpose of ML is to 
learn from the data and make informed decisions based on it. (Mahesh, 2020.) 

One of the key elements in machine learning is the ability to learn by itself 

through trial and error, data and past experience (Alpaydin, 2021). Before the 

term machine learning was coined these algorithms were called self-teaching 

computers. This learning can be done without explicitly programming or in-

structing them. Although the basic idea of computer science still remains the 

same, give computer programs some kind of input to provide output based on 

the input. The only difference between ML and traditional algorithms is that ML 

can improve the outcome with data and past experience thus making it more 

efficient and accurate to solve complex problems or when output, parameters or 

the problem itself is not distinct. Even though ML relies on algorithms to solve 

data problems there is no model that fits to solve all problems. Every problem 

needs to be evaluated to find and create the best algorithms to solve it (Mahesh, 

2020.).  

We can categorize ML algorithms based on the way they approach data, 

handle it and learn from it. To simplify, in literature usually these are categorized 

into four different approaches. These approaches are supervised learning, unsu-

pervised learning, semi-supervised learning and reinforced learning. Nowadays 

there are also many more approaches to addition, but these four are the most 

studied and applied so therefore we focus only on these main categories to give 

overall coverage of ML. Also, some ML algorithms might mix and use more than 

one approach to create comprehensive algorithms (Alpaydin, 2021). As stated 

before, not one of these methods and approaches are better than another, but ra-

ther different problems require different solutions. 

2.3.1 Supervised learning 

In supervised learning, the algorithm maps the set of inputs (samples) to outputs 
(targets) based on example data. Algorithms learn rules in which inputs are trans-
ferred to outputs. Usually, the output itself is supervised and a specific target is 
already defined by a supervisor. Learning and recognizing this pattern in rules 
from training data it can perform outputs to new unseen data with the same ex-
pected rules. This method requires the most external assistance to perform (Ma-
hesh, 2020.). According to Gollapudi (2016) in supervised learning, inputs and 
outputs form a pair with the given rules and the algorithms’ job is to find this 
relationship between them to give specific inputs a matching output. Supervised 
learning uses what is called training data and test data. Training data is used to 
train the algorithm to learn the rules and test data is used to test the training 
already done (Mahesh, 2020). If not happy with the results of test data, it is pos-
sible to improve the algorithm by feeding it more training data for better results. 
Supervised learning is best used in cases where the data is labelled. This means 
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that we already know the context of the data and what it contains. In computer 
vision, labelled data is often called annotated data. With large amount of labelled 
data, where inputs and outputs are known we can easily predict the output of 
any new inputs (Gollapudi, 2016). 

2.3.2 Unsupervised learning 

As the name suggests, unlike supervised learning, unsupervised learning does 
not have any supervisor to give the algorithm any implications on how the input 
data should be categorized or what to do with it. This means that the algorithm 
is not given any targets to deal with the data but rather it needs to find the best 
way to do it on its own. In this approach the algorithm is left alone to deal with 
the inputs and try to figure out the correct outputs. Mahesh (2020) states that in 
unsupervised learning there are no correct answers but rather it is all about find-
ing similarities and presenting the interesting structure of the data. The Algo-
rithm tries to discover and find patterns in the data to create classifications. It 
attempts to find structures in the data that appear more often than others to form 
this data into groups (Alpaydin, 2021). When new data is presented to the algo-
rithm, it uses the features of the previous data to recognize it. Unsupervised 
learning is best used in cases where there is no specific problem to be solved. Also 
unlike in supervised learning where data is best suited if it is labeled, in unsu-
pervised learning it is the opposite. Unlabeled data is best for unsupervised 
learning since even the attributes of the output are not defined (Gollapudi, 2016). 

2.3.3 Semi-supervised learning 

Semi-supervised learning is basically the combination of both previously intro-
duced ML methods, supervised and unsupervised learning. This method is actu-
ally the closest to the way that humans learn and has been simulated from it. 
Semi-supervised approach is best for the cases where we have both labeled and 
unlabeled data to train the algorithm (Gollapudi, 2016). Usually this is con-
structed by training the algorithm with one of the methods first and addition to 
that enhance the performance of it with the other method.  

2.3.4 Reinforced learning 

Reinforced learning is an ML approach which focuses heavily on rewarding. It 
maximizes the rewarding of a result. Basically, it means that the system is re-
warded when it does something right and therefore it learns to give results that 
accumulate the most rewards for itself. This way the results may not be immedi-
ate and might require a lot of steps before coming to it, since the algorithm is 
deciding between trade-offs to get the best rewards (Gollapudi, 2016). This ap-
proach is best when the output might be unknown but there is a way to evaluate 
the performance or the success of the outcome. In reinforced learning we have an 
agent that is trying to learn with given policy how to interact with the environ-
ment it is in by preferring to maximize its reward (Henderson et al., 2018). This 
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means that we can have a problem with more than one result, but the agent is 
trying to pick the one result that maximizes it rewards with given success criteria. 
The learning itself comes from the agent interacting with the environment and 
getting feedback in the form of rewards. Example of this method is given by Gol-
lapudi (2016) where he describes that if an agent wants to get from place A to 
place B, there can be many ways to get there but the agent will pick the one that 
suits the policy of the environment best. The result can vary depending on if the 
environment rewards on getting there as fast as possible, with the least incon-
venience or the cheapest for example. Also, other factors add depth to this, for 
example when the agent has to decide between a small reward immediately or a 
bigger one in the future, which might affect and change the result. 

2.4 Artificial neural networks and deep learning 

The idea of neural networks comes from neurobiology. Mostly in literature arti-

ficial neural networks are referred to as a copy of human brains and represent 

how they operate. Chollet (2021) states that artificial neural networks do not ac-

tually have any real implications to real human brains, but it is just merely the 

way we visualize how human brains operate. Neural networks and deep learn-

ing itself are just a mathematical framework for computers that learn from data.  

Neural networks have neurons with tasks that provide the output to yet another 

neuron, similar to the way human brains have different parts with own tasks. 

This way humans can construct complicated thoughts and decisions (Mahesh, 

2020). Artificial neural network contains one or more neurons. Each of these neu-

rons has their own task inside the network. Furthermore, each of the tasks have 

their own weighted value inside the network that provides the ultimate output 

of it. (Goodfellow et al., 2016). This way it is possible to make more complex al-

gorithms by dividing and digesting workload to simpler tasks. 

Machine learning techniques are mostly used to solve and automate simple 
tasks or problems. When considering more complex problems and tasks we need 
even more complex algorithms. This is where deep Learning (DL) comes in hand. 
It can be considered that ML is a flat one layer of a neural network which solely 
by itself tries to solve problems and DL algorithms consist of many layers of these 
artificial neural networks stacked over each other (Chollet, 2021). Usually each of 
the neural networks are one set of algorithms with different tasks and weighted 
values that affect the final output. The simplest DL algorithm has at least three 
layers. These layers are input layer, hidden layer and output layer (Goodfellow 
et al., 2016). Each of the layers consists of neurons. These neurons and layers each 
have different simpler tasks which are combined to provide the output. In this 
kind of DL algorithm, the input data is first handled by an input layer which then 
forwards it to the hidden layer and lastly the output layer is the one that provides 
the final output of the algorithm. There can be more than one hidden layer, also 
known as inner layers, which brings more depth to the algorithm. To simplify, 
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the more layers the algorithm has, the more complex problems with greater ac-
curacy it can solve. With new data inputs DL algorithms can learn and adjust the 
weighted value of each neuron to become more accurate. Nowadays modern DL 
algorithms can contain hundreds of layers stacked on top of each other (Chollet, 
2021). Deep learning has become the modern way of making AI based programs 
in some tasks, like natural language processing and computer vision, since it has 
proven to outperform a lot of other methods. This is especially the case when 
dealing with large amounts of complex data from different sources and formats 
like audio or visual data (Voulodimos et al., 2018). 
 

 

Figure 2 Illustration of a neural network with two hidden layers and eight neurons in total 

2.5 Computer vision 

Computer vision is a subfield of AI, which is focusing on developing algorithms 

that understand and analyze visual data. If we assume that AI makes computers 

think, computer vision is all about enabling computers to see and observe. Com-

puter vision tries to capture useful information about variation of digital images 

or videos. This information can be anything but usually it revolves around what 

is in the picture itself and what it represents. Computer vision can also be used 

to detect errors or defects in visual data. In practice it is about mimicking human 

vision (Voulodimos et al., 2018). This means computer vision is not trying to solve 

something that a human cannot already do, but rather try to automate this ability 

so it can be done faster and on a larger scale. The difference is that computer 

vision is trying to do this with just cameras, sensors or data. Computer vision 

itself has been studied since the late 1960s, but it has had huge leaps in 
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development in recent years due to improvement and availability of deep learn-

ing techniques. DL is heavily utilized in modern computer vision (Szeliski, 2022). 

To learn and perform successfully, computer vision needs a lot of data. For ex-

ample, to recognize a car from a picture these algorithms might need thousands 

or even millions of pictures of cars to do so, depending on the complexity of the 

task, like if we want it to recognize different types of cars, which are in different 

shapes, colors and sizes. Any deviation from the training data that has been used 

can be challenging for the algorithm to spot and adapt to, which explains the 

need for large sets of training data and variation of sample distribution in the 

dataset. Most of this learning in computer vision is done by using convolutional 

neural networks (Szeliski, 2022). 

2.5.1 Convolutional neural network 

Previously we covered the basics of neural networks and how they work. In pre-
sent day there are many types of different neural networks depending on the use 
but in this paper we only dive into convolutional neural networks (CNN) since 
these are most relevant to our research due to large availability of different so-
phistication levels. Where artificial neural networks try to mimic human thinking, 
convolutional neural networks are trying to simulate human visual cortex. Using 
CNNs in a DL model we can stack many layers that each spot different things 
from visual data. Convolutional neural networks differentiate from normal arti-
ficial neural networks by their more complicated and diverse hidden layers. 
There are three different types of hidden layers in CNN: convolutional layers, 
pooling layers and fully connected layers (O'Shea & Nash, 2015) 

CNNs are primarily used in computer vision since it has convolutional lay-
ers that can learn to observe only specific things in an image. These layers can 
ignore other non-related information in the picture. With convolutional layers 
we can also identify the edges and corners of an image. These convolutional lay-
ers make CNN so effective on image recognition. (Voulodimos et al., 2018). Be-
cause an image is composed of pixels, we can divide images into 3x3 (width and 
height) pixel segments for example. Each neuron is only capable of observing the 
segment of the image that is assigned to it.  Neurons have filters or kernels which 
they are trying to recognize from that area. By going through the whole image 
following this method we can compose the image to pass onto the next layer 
(O'Shea & Nash, 2015). The deeper we go into the layers, these filters become 
more complex and are trying to identify more abstract things from the image. 

Pooling layers are used to reduce spatial dimensions of the image. In this 
layer we combine the information that came from previous layers and simplify it 
for the next layer. This is also called downsampling. This method allows to re-
duce the computational capacity needed to perform the next tasks in the layer. 
(Chollet, 2021). Because normal artificial neural networks do not have this pool-
ing layer constructed in it, they lack the capacity to perform image recognition 
well enough.  
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Fully connected layers are the ones that connect all the previous layers’ data 
together. These layers have access to the information in the previous layers’ neu-
rons, in addition to their own neurons. This layer will construct the whole image 
from the pieces it has gathered from all the previous layers using classification 
and pass it to output layer that can identify the final output. Fully connected lay-
ers are applying high level reasoning to construct the general view of the image 
(Voulodimos et al., 2018). In the case of identifying human faces for example, this 
would mean in theory that the first layer is trained to recognize eyes, the second 
one identifies noses and the third one the overall face shape and so on, although 
this might not be what the network actually does but is a good representation of 
the logic. By stacking these layers on top of each other we get the general view of 
the image and can construct the whole face and separate other information from 
the picture, like the background. The algorithm can then produce the output that 
the image is indeed a human face and not just random parts of a face. If we teach 
the algorithm with enough training data of faces it can adapt and recognize new 
faces that it has not seen before based on the features of it.  

2.5.2 Semantic segmentation 

Semantic segmentation is a type of image segmentation process in computer vi-
sion that tries to identify and classify objects in the image into different classes. 
The goal of semantic segmentation is to group each pixel of the image into corre-
sponding class (Thoma, 2016). For example, if we have a picture of a street, we 
could identify cars, humans, animals, the sky, buildings and traffic signs from it. 
Semantic segmentation is easy for humans and performing segmentation with-
out knowing the identity itself is a crucial part of learning and understanding the 
world around us. For computers this kind of segmentation has been a challenge. 
Semantic segmentation is sometimes more important than object detection since 
computers do not necessarily need to understand what is in the picture to be able 
to segmentate (Guo et al., 2018).  

In practice segmentation is done by going through every pixel in the image 
and colorizing it depending on the class that it belongs to. The goal of the seg-
mentation is to find which pixels belong together semantically (Guo et al., 2018). 
This is visualized with a segmentation mask which highlights these various clas-
ses with each a color of their own. Classes are predetermined before the segmen-
tation, and there can be as many or as few classes as is seen fit for the specific 
purpose. In supervised learning, the training of semantic segmentation models 
usually involves target segmentation masks, and annotating these pixel-wise tar-
gets by hand for training is what makes training data in semantic segmentation 
usually difficult to gather. 
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2.6 Importance of data in AI 

Data is one of the most important things in AI development. The whole industry 

basically revolves around data. Both machine learning and deep learning relies 

heavily on data to perform and become more accurate. Each algorithm needs var-

ious amounts of data depending on the task, but to simplify it can be said that 

the more complex tasks the algorithm is needed for, the more data it needs to 

successfully do the task. ImageNet, which is a popular public database that is 

used to train a lot of AI models that perform some kind of image recognition, 

consists of more than 14 million images in over 20,000 categories (ImageNet, 

2020). Not all algorithms need as much data, but it is stated that usually even a 

simple algorithm needs at least thousands of images per class to perform de-

cently. Also, the acceptable performing rates can vary a lot depending on the al-

gorithms task. For some algorithms 80% success rate might be good, and for oth-

ers 80% is not usable. Therefore, the data volume needed depends on the error 

tolerance. If we want an algorithm with close to 100% success rate it is going to 

take more data to train it compared to 80%. Of course, data volume is not always 

the best metric for the algorithms and usually quality is even more crucial.  

The problem is that there is only a finite amount of real-life data and data 
storage available. Real-life data is also expensive and slow to acquire considering 
the speed and amount of which these algorithms consume it. There are many 
scientists and authors in the field trying to tackle this problem of needing huge 
datasets to teach algorithms (Mahesh, 2020). One solution for the problem is con-
sidered to be synthetic data. 
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3 SYNTHETIC DATA 

In this chapter the concept of synthetic data is introduced. History and basics of 
synthetic data is discussed. In addition, this chapter covers why synthetic data is 
needed and the benefits of it, especially in computer vision context. 

Synthetic data is a form of data that is artificially generated to simulate real-
world scenes or occurrences (Raghunathan, 2021). This data can be in any form 
like text, audio or visual for example. Synthetic data is usually generated with 
algorithms or simulations rather than from real life recordings (Steinhoff & Hind, 
2024). Even though synthetic data hype has risen in recent years with AI, it has a 
long history. Earliest mention of synthetic data in computer science can be traced 
back to 1960s. Of course, methods to acquire and generate synthetic data have 
developed but the basics of it have stayed the same (Nikolenko, 2021). For many 
years synthetic data was only seen as a poor substitute for real data and it could 
be used only in very rare cases. Sometimes it was even referred as fake data, 
which is far from the truth. However, mostly in the past decade AI developers 
have started to recognize the true capabilities of synthetic data (Ramos & 
Subramanyam, 2021). Ramos & Subramanyam (2021) continues to state that in 
the future synthetic data is going to be the backbone of AI development since the 
demand for training data in ML and DL is skyrocketing. They estimate that by 
2030 synthetic data will be more than two-thirds of the overall data used to train 
these DL models. This means that real life data is used only to supplement syn-
thetic data in ML and DL. 

There are many reasons why the industry is heavily switching to using syn-
thetic data. As said previously, one of them is the increase in need for data in 
training ML and DL algorithms. Real life data can be hard to obtain and very 
expensive. Even though we would have data from real world, it still needs to be 
labeled for AI. This means we need to explain to the algorithm what the data 
represents. Usually, this is done manually and is very time-consuming. It is 
stated that more than 80% of the time spent in ML development is consumed by 
data preparation (Brownlee, 2020). In synthetic data it is possible to do the label-
ling whilst generating the data itself (Steinhoff & Hind, 2024). The second reason 
for synthetic data is that most often real data is incomplete. This means that even 
though we can have a large set of data, it can exclude situations or occurrences 
that might happen. With synthetic data we can create situations that the real data 
does not cover (Ramos & Subramanyam, 2021). One of the situations where syn-
thetic data is also viable is when real data is really hard to get or is restricted or 
regulated. This can be for example insensitive data like medical data. With syn-
thetic data it is possible to still train these models without having to worry about 
confidentiality leaks (Steinhoff & Hind, 2024). 
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3.1 Synthetic data in computer vision 

Man and Chahl (2022) define synthetic image data as “any image data that is 
either artificially created by modifying real image data or captured from syn-
thetic environments”. While this describes synthetic image data well and image 
data is the scope later in the design science research part of this study, the defini-
tion can be expanded to cover all computer vision data. This includes data from 
such as lidar or depth sensor. For example, Oh et al. (2024) make synthetic data 
to train object detection via lidar. Including data modified from real world data, 
the risk is that synthetic data gets confused with data augmentation, which is an 
essential data processing tool used to supplement datasets. 

Data augmentation is a collection of techniques to produce modified sam-
ples from existing data to increase the size of the dataset, while synthetic data is 
creating data from scratch using computer-enabled methods (IBM, 2024). These 
methods include machine learning solutions and 3D-modelling solutions. For 
3D-modelling solutions, graphic API’s and game engines are one of the most 
common techniques (Schieber et al., 2024). More information on the generation 
methods is presented in section 3.1.1. Having discussed aspects of synthetic data 
definition, we propose that for this study the term “synthetic visual data” is any 
data used in training of computer vision models and algorithms that has been 
created using computer-based methods. We argue that synthetic image data and 
synthetic visual data are, at least for the purposes of this study, interchangeable. 
The most important distinction is between synthetic data and data augmentation, 
which are techniques often with the same goal but essentially different. 

In the world of synthetic data, related to the main challenge in machine 

learning, overfitting (Chollet, 2021), is the challenge of domain gap. Overfitting 

happens when the model learns to be too precise with training data and does not 

generalize well to new data. Similarly, domain gap is the difference between syn-

thetic data and real data. If the domain gap is not bridged, it is more than likely 

the model will learn to be extremely accurate on synthetic data but fail to gener-

alize on real data. Domain gap is also called “the reality gap” (Tremblay et al., 

2018), “sim-to-real gap” (Huang, Jin & Ruan, 2012), “synthetic-to-real domain 

transfer” (Nikolenko, 2021) and “domain shift” (Sankaranarayanan et al., 2018), 

all of which refer to the same phenomenon. In this study, we will present tech-

niques to mitigate the domain gap and train neural networks that are moderately 

accurate with real-world data. 

3.1.1 Generation methods 

A recent survey by Bauer et al. (2024) identified 20 distinct types of synthetic data 

generation models and 417 models of generation. Computer vision was reported 

to be the most popular domain of synthetic data generation and Generative Ad-

versarial Networks (GAN) were the most popular models. While GANs can be 
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used for various generative tasks, they have wide usage in image creation. The 

researchers classified the methods related to our study as generation from “vir-

tual environments”, which was further divided into subcategories of graphic 

models, virtual worlds and interactive environments. (Bauer et al., 2024). The un-

derlying idea, in the methods Bauer et al. categorized as graphic models and vir-

tual worlds, is to use computer graphics to render objects mimicking the real 

world and classify the objects before or while rendering them. Methods identified 

as interactive environments are intended for experimenting with, training and 

evaluating AI agents and reinforced learning methods. 

In the scope of this study, which is focused on synthetic data generation 
from graphic models and virtual worlds, we briefly mention usages for GANs in 
the context and continue to present generation methods related to this study. 
Studies about building synthetic data generators are presented in section 4.2. 

Abou Akar et al. (2024) present applications for GANs in different indus-
tries and suggest one of the use cases to be domain gap bridging. GANs can cre-
ate textures for materials that are realistic and thus advance realism of the syn-
thetic scene. GANs can also help in transferring from synthetic data domain to 
real world accuracy. (Abou Akar et al., 2024). This transfer is called domain shift, 
and one study to alleviate this problem was conducted by Sankaranarayanan et 
al. (2018), using GANs successfully. 

While early studies in graphic model synthetic data generation were con-
ducted using unique methods built by the researchers, game engines and other 
3D modelling tools and platforms have since included synthetic data tools in 
them. Borkman et al. (2021) introduced Unity Perception, an extension package 
to popular game engine Unity. This package allows users to create annotated 
synthetic visual datasets with ease. Unreal Engine, which is another popular 
game engine, also has extensions for synthetic data generation, like Nvidia Deep 
Learning Data Synthesizer (To et al., 2018) and UNREALROX+ (Martinez-Gon-
zalez et al., 2021). These game engine methods rely on the advanced rendering 
capabilities of the engines to produce high-quality images and extract ground-
truth information to produce annotations. The open-source 3D creation software 
Blender (Blender, 2024) is a basis for multiple synthetic data studies, for example 
Kubric (Greff et al., 2022). A widely used platform for graphic models is Nvidia 
Omniverse (Nvidia, 2024), using Replicator extension (Nvidia, 2023). The Nvidia 
Omniverse Replicator is the generation method used in this study, and the fea-
tures and usage of the Replicator are described in depth in chapter 3. 

Using virtual worlds for synthetic data generation stems from the abun-
dance of digital content they often include. For example, a well-known triple-A 
title Grand Theft Auto 5 includes a comprehensive artificial urban scenery, with 
many moving 3D assets like pedestrians and cars. This game was used in a study 
by Richter et al. (2016). In the study, researchers intercepted communication be-
tween the game and graphics hardware to gain access to ground-truth infor-
mation and produced a synthetic dataset of 25 000 samples with pixel-wise se-
mantic segmentation annotations. (Richter et al., 2016). 
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3.1.2 Benefits 

Supervised tasks in computer vision require considerable effort to create a train-
ing dataset by hand. In computer vision, some tasks require complex annotation 
of an image. While creating the popular semantic understanding dataset “City-
scapes” (Cordts et al., 2016), the researchers reported that some of the complex 
annotations took around 90 minutes per image to complete. The complexity 
grows even larger with video, and a study stated that in a video object segmen-
tation task, annotating one object in a 10 second video would take 5 hours done 
manually (Delatolas, Kalogeiton & Papadopoulos, 2024). This complexity of an-
notation is eased by advanced technology tools such as Roboflow’s use of the 
Segment Anything Model (Skalski, 2024), yet per image manual efforts are still 
required. 

Synthetic data alleviates this problem of annotated dataset creation by au-
tomating the creation of images and labelling of the target images. Considering 
the graphic model methodology, most of the manual labor is done while creating 
the synthetic data pipeline. The images and annotations are then created unat-
tended. An Nvidia blog post from 2021 presents an estimate from Paul Wal-
borsky that an image which costs 6 dollars to annotate manually, costs 6 cents 
generated synthetically (Andrews, 2021). While we argue that the estimates have 
changed at the time of writing this paper in 2024, the drastic difference in estima-
tion suggests that synthetic data offers a considerable reduction in annotation 
cost. 

In some situations, manually gathering samples for a dataset might be hard. 
For example, Haselmann and Gruber (2019) had to artificially create samples and 
annotations in pixel-wise defect detection due to the nature of defect detection. 
This task requires inspecting extremely large quantities of samples to identify 
enough rare defects to create a comprehensive dataset, and pixel-wise annota-
tions of the defects. (Haselmann & Gruber, 2019). Man and Chahl (2022) provide 
an example of a problem related to previous: Gathering a dataset of a foggy road 
relies on fog being present on the road when gathering the images. Extreme en-
vironmental conditions and long tail anomalies are usually hard to collect or 
missed entirely in manually created datasets. However, in synthetic data, rare 
conditions are limited only by the expertise of the researcher or practitioner do-
ing the generation. 

This concludes the motivation for synthetic data creation. In the next chap-
ter, we iteratively develop and evaluate a synthetic data generator built on 
Nvidia Omniverse. The thinking process and iterative evaluation is documented, 
and findings are presented. 
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4 DESIGN PROCESS 

The research problem is “a reference scene-specific synthetic data generator for 
points-of-interest on Omniverse Replicator does not exist”. The purpose of our 
design process is to answer the problem by designing a synthetic data generator 
(SD Generator), which can successfully produce quality training data for a se-
mantic segmentation model. While designing, we record intermediate steps thor-
oughly to act as reference for those who seek to start developing systems similar 
to the SD Generator. 

In the research problem, “points-of-interest" mean specific areas of a scene 
that are of special interest. With a single point-of-interest, the interesting area is 
usually centered in the camera (or any other perception sensor) view. Multiple 
points-of-interest are either situated in a single view or require a moving camera 
or multiple cameras. For example, this study uses a single point-of-interest, 
which is a table and home office objects on top of it. An example of multiple 
points-of-interest could be a warehouse, where all the shelves and the isles be-
tween the shelves would be of interest for a robot moving in the warehouse. 

The “scene” in the research problem is the setting in which the points-of-
interest reside. For examples of the table and the warehouse, scenes would be a 
corner of a room where the table is and a warehouse with all the shelves, respec-
tively. 

These concepts are in theory simple to scale into larger and more complex 

settings. Increasing the number of points-of-interest and the size and complexity 

of the scene, one can adjust the idea to a broader set of problems than a table and 

objects on it. A reference generator acts as a starting point and a more complex 

generator is achieved by appending and substituting parts of the generator. For 

example, going from the table task to the warehouse task: substituting the corner 

of a room with the warehouse, table with shelves and isles, the home office ob-

jects with objects commonly found on the shelves and blocking the isles, and 

adding more cameras or a moving camera to capture the whole space, one would 

have built a synthetic data generator for a warehouse environment. In practice, 

availability of 3D assets to build the scene and the points-of-interest poses a prob-

lem for building a complex generator. The quantity and quality of assets is related 

to the quality of training data generated. 

4.1 Methodology 

In this study, design science research (DSR) is adopted to research synthetic data 
generation and gather knowledge on how to build a synthetic data generator us-
ing Nvidia Omniverse. DSR is well suited for designing innovative artefacts 
(Vom Brocke et al., 2020), therefore it is suitable for research on building methods 
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to generate synthetic data. More specifically, for the purposes of creating the SD 
Generator with accompanying information of the development process and iter-
ative evaluation, we adopt an echeloned DSR (eDSR) methodology from Tuuna-
nen et al. (2024). Using eDSR allows for using a flexible iterative process of de-
signing, demonstrating and validating intermediate artifacts (figure 3). 

The macro-level design process is conducted as follows: first, related work 
is reviewed to validate the problem statement. Second, objectives are defined for 
the design process. Rephrased more practically, this means an overall explana-
tion of what activities are done and why. Third, an iterative design phase is pre-
sented, where each iteration consists of multiple instances of echelon types of 
Objectives and requirements definition, Design and development, Demonstra-
tion and Evaluation (Tuunanen et al., 2024). Finally, a macro-level evaluation of 
the artifact is undertaken. This evaluation utilizes a small, hand-crafted dataset 
from real-world to measure accuracy of the models trained on generated syn-
thetic data. 

The iterated phases are referenced as “experiments”, and they produce an 
intermediate artifact each, which is demonstrated and evaluated each time. This 
approach to design allows us to document the design process and demonstrate 
what design components and stages work and why, in order to produce a well-
documented reference synthetic data generator. 

 

 

Figure 3 The eDSR metamodel by Tuunanen et al. (2024) 

The main limitation of this study is the final evaluation. While numerical and 
visual data of the fitness of the final artifact is provided, no industry opinion of 
the solution is gathered. The study lacks expert interviews and surveys from 
practitioners to validate the value of the solution in practice. 
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4.2 Related work 

In order to validate the relevancy of the problem, a brief literature review is pre-
sented. We search for other visual synthetic data generation studies and papers 
to find out if the problem is already solved in the literature. In addition to scien-
tific literature, enterprise solutions are reviewed in order to know whether the 
solution already exists as proprietary or open source. 

Given the technology in this study is largely Nvidia’s, we search the Nvidia 
ecosystem for partners and papers related to synthetic data generation. Search 
engines are used to find more practitioners and enterprises using or producing 
synthetic data for computer vision, in search of solutions similar to what this 
study proposes. A simple keyword search over Google Scholar is undertaken to 
find related studies and papers. The keywords used were “synthetic data gener-
ation”, “semantic segmentation”, “object detection”, “computer vision” and 
“Nvidia Omniverse” with various combinations of “synthetic data generation” 
and the rest.  For all search results, we make a distinction between visual syn-
thetic data and all other types, like structured data or text. Only visual synthetic 
data generation is in the scope of the problem of this study. With these criteria it 
was possible to find the most relevant studies to us. We found 9 comparable stud-
ies and 3 open-source generators from practice. 

In 2018, researchers of Nvidia and University of Utah generated synthetic 
data for 6D pose estimation with 3D bounding box labels. (Tremblay et al., 2018). 
Although successful in using synthetic data to train a functioning deep learning 
model, the study aims to train a pose estimation model. This study aims to vali-
date using synthetic data by training a semantic segmentation model. Another 
difference is that the study suggests generating domain-randomized and photo-
realistic scenes separately, while this study generates both at the same time. The 
development process is also minimally described for it is not the focus of the 
study, when our goal is to create a well-documented design process for synthetic 
data generation. 

A review by Schieber et al. (2024) indicates various synthetically generated 
datasets for semantic segmentation tasks but does not mention a study focusing 
on the design process of a scene specific data generator. The study highlights the 
importance of addressing sim-to-real gap (domain gap) when using synthetic 
data, which is the cause for underperforming models in real world when trained 
on synthetic data. We focus on addressing that gap by evaluating accuracy of the 
model on real-world data. 

Metzeler et al. (2023) use Nvidia Omniverse platform to present a genera-
tion method for object detection, which is similar in nature to this study and 
could be done with our generator by just adding a bounding box annotator to the 
SD Generator. 

Conde et al. present a synthetic data generator built on Omniverse platform 
as a GUI extension of Omniverse. The researchers study the effect of using syn-
thetic data alongside real-world data to train multiple object tracking models for 
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road environments. (Conde et al.). The study does not focus on the design process 
of the generator, only briefly describing the platform and presenting the GUI ex-
tension. 

Cascante-Bonilla et al. (2023) present a codebase for synthetic data genera-
tion in their study. However, the focus of the study is Vision and Language mod-
els and producing pixel-wise annotations is only briefly mentioned. 

Erfanian Ebadi et al. (2022) built a synthetic data generator for human-cen-
tric computer vision. This generator is built on Unity Perception and enables cre-
ation of synthetic data with human assets for human-centric computer vision 
tasks like pose estimation. The researchers present the creation process and vali-
date the generator outputs. The generator, however, is focused on human-centric 
data and does not act as a reference for scene specific tasks, although it can pro-
duce semantic segmentation annotation. 

Richard et al. (2023) introduces a lunar environment simulator built on Om-
niverse. This generator uses Omniverse’s synthetic data tools to produce annota-
tions, uses domain randomization techniques and aims for photorealistic render-
ing. All are features that this study goes into more depth explaining. 

Ng et al. (2023) utilize Omniverse to create a synthetic data generator that 
produces annotations for amodal instance segmentation (Li & Malik, 2016) of 
cluttered tabletops. The focus of the study differs from our intention, although 
their objective of producing a simple and accessible synthetic data generator 
shares commonality with our study. They use physics simulation to clutter the 
tabletop with assets, our generator does not utilize the physics rendering capa-
bility of Omniverse. The physics simulation is arguably a key feature in Om-
niverse; therefore, a highlight of the feature is in place. The focus of this study is 
a more general approach to the generator, even though the example scene in this 
study is a table and tabletop items. 

Many of the synthetic data generation studies present a generated synthetic 
dataset, like Abou Akar et al. (2022) work on industrial object detection. Our pur-
pose is not to make a dataset to train a segmentation model for home office equip-
ment, rather it is to build a generator and document the incremental building 
process to act as a reference generator. 

The choice of building our SD Generator on the Omniverse platform stems 
from the high integration capability of the platform. Use of USD format and built 
in connectivity to third-party applications enables researchers and practitioners 
to use the tools of their liking and import the results to the Omniverse platform. 
Martinez-Gonzalez et al. (2021) integrated their Unreal Engine –based synthetic 
data generator to the Omniverse platform, therefore not only 3D modelling tools 
are importable, but whole pipelines. Synthetic data generation benefits from this 
integration when the scale of the scene grows. An example of this is BMW 
Group’s Omniverse system, which integrates modelling tools and synthetic data 
generation around digital twins (Higgins, 2021). 

The rendering quality of Omniverse renderer is another feature that is im-
portant in synthetic data generation. Ng et al. (2023) argue that while game en-
gines like Unreal and Unity are fast and advanced, they prioritize frame rate over 
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quality and offer less lighting simulation features than Omniverse. In synthetic 
data experimentation with simulated smoke by Seefried et al. (2024) the research-
ers find Omniverse to be around 12% slower than Unreal in smoke generation. 
While the smoke generation is a specific task, a generalization that Omniverse is 
around a tenth slower than game engines can be loosely made, acknowledging 
the fact that this was not what was tested in the study. While these studies sug-
gest that game engines are more optimized for performance, a trade-off surfaces 
between game engines and Omniverse. Quality of the rendering and integration 
capabilities of the Omniverse, or performance of game engines? Practitioner pref-
erences and use case should account for the decision. 

Devaux (2022) made market research about synthetic data and provides a 
table of synthetic data tools and companies. Filtering the table to results of data 
type of “visual” collects 45 tools and companies. The tools listed are separate 
codebases, meaning generators built on top of for example Omniverse Replicator 
are not listed independently. At the time of writing of this paper, the information 
is outdated but indicates that synthetic data generators have existed in abun-
dance for some time. Not all of the tools and companies provide annotated syn-
thetic data for AI model training but produce synthetically generated content and 
media. This is an important distinction, and the SD Generator in this study is not 
comparable in technique to the content creation generators. This mixing of syn-
thetic data for AI model training and synthetic data for content creation might 
inflate the coverage of market by synthetic data, but this is out of the scope of this 
study. 

To further validate the idea, commercial success for synthetic data genera-
tor is demonstrated in synthetic data company SKY ENGINE AI’s blog (Sky En-
gine AI, 2024). In the span of year 2023, the blog presents five major deals includ-
ing deals with Renault Group and a “major Japanese car manufacturer”. In Jan-
uary 2024, the company announced raising 7 million dollars in Series A funding. 

Only three of the listed tools are open source, the rest are commercial solu-
tions. Commercial solutions are not well suited to act as reference generators be-
cause of the licensing. For example, a synthetic data generation platform 
Anyverse (2024) publishes documentation for the platform but requires a pur-
chased license for usage of the platform. 

In 2022, Google research –lead team presented Kubric (Greff et al., 2022), an 
open-sourced synthetic data generation Python framework, which offers a selec-
tion of annotation possibilities and is photorealistic and scalable. Despite the ex-
cellence Kubric demonstrated in general purpose dataset creation, the paper 
clearly separates it from scene-specific pipelines, which in turn is the goal of this 
study. 

 This review of related work in academia and industry validates the goal of 
this study. To the extent of our knowledge, a similar work does not exist where 
the purpose is to provide a reference generator for scene-specific tasks to act as 
guidance for researchers or practitioners looking for a reference for a similar task. 
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4.3 Setup 

In this chapter we present the technical process of the study. Our aim is to build 
a synthetic data generator including a 3D asset set and a Nvidia Omniverse (OV) 
(Nvidia, 2024) Replicator (Nvidia, 2023) script capable of providing training data 
for a neural network and to be able to train this neural network to correctly pro-
duce a segmentation mask from a real-life photo. This technical process is made 
of iterations where the SD Generator is gradually improved. Success is measured 
by how accurately a neural network can produce the segmentation mask, sug-
gestions for improvement we seek from literature and experimentation. The aim 
is not to produce a production-ready data pipeline, rather it is to find general 
factors that need to be addressed when generating synthetic data in OV and to 
demonstrate the ability of the platform to implement these factors. 

The experimentation setup used in this study is installed on a local PC. The 
GPU accelerator used is a Quadro RTX 4000 from Nvidia, with 8GB of VRAM. 
CPU used is Intel Xeon Silver 4110. The GPU is over five years and the CPU over 
six years old technology at the time of writing this paper. The installed system 
memory is 32GB. This hardware poses a limit to which extent we have freedom 
in how large neural networks can be utilized for testing and how much data can 
be fed to the model (Xu et al., 2021), and to the speed and quality of the SD Gen-
erator output. Software-wise Nvidia OV platform is used for designing 3D Uni-
versal Scene Description (USD) (Pixar, 2021) assets and synthetic data generation. 
The neural networks are implemented using TensorFlow and Keras API (Chollet, 
F., & Others, 2015). 

The Python code for the SD Generator is available in GitHub at 

https://github.com/jkuhno/reference-SDGenerator. In order to run the code, OV must 

be downloaded, and inside OV launcher, the Omniverse Code application. The 

Replicator is distributed as an extension to Code (Nvidia, 2024). Python 3 is re-

quired for running the script, and NumPy is used for some functions. After in-

stalling these components, the SD Generator can be used headless from com-

mand line or with graphical interface via OV Code. 

The study aims to build an SD Generator and validate its usability in a cat-

egory of computer vision where extensive and laborious labelling efforts nor-

mally take place in data collection phase. Segmentation masks for training labels, 

if done manually, may require considerable effort (Sankaranarayanan et al., 2018). 

The validation goal of the experiment is to produce a segmentation mask of a 

picture taken from a home office scene in real life (figure 4). The scene chosen for 

the experiment is inherently random but serves as validation. It has many objects 

and surfaces where the predicting model needs to learn these while their pixel 

values are close to each other in some areas of the picture. 

 Pictures will be limited in size to 512 by 512 pixels. The scene is a table 

surrounded by gadgets and devices normally found in a home office setup, the 

point of interest being the table and devices on it. Assumption is that the neural 
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network is able to learn to interpolate between training samples (Chollet, 2021) 

from our synthetic data. The aim is to correctly categorize the visual elements in 

this picture into classes. While categorizing the neural network masks the picture 

by predicting a value for each pixel representing the class, resulting in a segmen-

tation mask which can be illustrated by displaying a picture where these pixel 

values are multiplied by an RGB colormap for visual separation. Validation of 

the usefulness of the data is done by implementing three different convolutional 

neural networks, with varying architectures to gain a comprehensive view on the 

quality of training data itself. With multiple outcomes we reduce the chance that 

a specific architecture affects the result in a way that is hidden and possibly gain 

more insight. 

 

 

Figure 4 Real-life scene for inference 

Results of the iteration are presented in the same order side by side, for simplified 
comparisons. On the left will be displayed the result from a simple tutorial seg-
mentation model by Chollet (2021). Centre result is by a U-NET Xception style 
model by Chollet (2019). A combination of U-NET and Xception architectures has 
outperformed other architectures in COVID research (Akash Guna et al., 2022) 
which indicates it should be performant in image segmentation. On the right will 
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be displayed the result from a DeepLabV3+ model (Rakshit, 2021). When the ar-
chitecture was introduced by Chen et al. (2018) it achieved state-of-the-art results 
in multiple segmentation datasets. This indicates sufficient performance in the 
scope of this study. All three models use Keras Adam optimizer with 0.001 learn-
ing rate (Keras, 2024) and sparse categorical crossentropy as loss function (Keras, 
2024). For reproducibility, we publish the notebooks used to run the models at 
https://github.com/jkuhno/reference-SDGenerator. Results of each model are also 
measured by mean Intersection over Union (mIoU) (Keras, 2024), which is a com-
monly used evaluation metric for image segmentation tasks. With mIoU metric 
we can measure the overall performance, and with visual guidance specific areas 
of interest can be identified from the picture for further development. Achieving 
95% mIoU or over is considered sufficient and the experimentation finishes. The 
models implement cutout augmentation (DeVries and Taylor, 2017), and shuf-
fling inside TensorFlow data pipeline. Shuffling is perceived necessary because 
the SD Generator implements parts of its randomization process as sequential, 
and shuffling breaks these sequences. 

The OV Replicator API (version 1.7.7) is used to produce synthetic data for 
training. Replicator API provides necessary features for SDG in the experiment, 
mainly annotation tools, functionality for randomizing the scene and a writer 
class to write the annotated dataset to disk. Being part of the larger Omniverse 
platform, we can utilize USD assets and realistic rendering capabilities using a 
single platform. Replicator API is used via a Python script, which is the main way 
the SD Generator is fine-tuned. The USD scene from which the data is generated, 
is composed of ready-made assets from Sketchfab (2024) and sample assets and 
materials using OV USD Composer (Nvidia, 2024). Using a single platform also 
enables an easy way to introduce semantic information of the scene to the SD 
Generator. In addition to the assets generated programmatically, using the OV 
platform enables injecting semantic information directly to the USD assets via the 
Semantics Schema Editor extension (Nvidia, 2024), where the injected semantic 
information usage is seamless with the information produced in the script. The 
Python script ensembles the scene, applies randomizations and snapshots a 
frame iteratively as many times as specified. A writer object annotates the scene 
with semantic information and saves RGB and corresponding target pictures to 
disk, per snapshot. 

4.4 First experiment 

To serve as a basis for experimentation, a rudimentary scene is assembled from 

a set of ready-made assets from Nvidia’s sample library and Sketchfab asset li-

brary (Sketchfab, 2024). In this baseline run the scene is a background, three al-

ternating tables and static props placed on top of the tables. Only slight random-

ization around the point of interest is applied on this stage: the tables alternate 

between three assets, lighting is slightly randomized in terms of intensity and 
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temperature, and camera position is randomized in a union distribution inside (-

400, 300, 550), (400, 800, 700) coordinates (figure 5). Minimal randomization and 

static elements without a comprehensive realistic rendering matching the real-

life scene leaves room for experimentation on the factors affecting the result. 

 

Figure 5 A sample and a target from baseline run 

 
The SD Generator is run for 10 000 frames, producing 10 000 samples as pictures 

and their corresponding targets as segmentation masks. One of the main benefits 

of synthetic data comes from the automated annotation. There is minimal effort 

to annotate, for the writer object to produce pixel-perfect segmentation masks 

only explicit information on the class labelling is required. Note that the colors of 

the different classes in figures presenting the generated data and in figures 

presenting results are different because different helper functions are used for 

the visual presentation. This helps to separate the images of synthetic data targets 

from visual representations of model predictions. 

When assembling the scene, all annotated assets were given a semantic class, 
TABLE and PROPS. The writer automatically assumes assets without label to be 
classified as background. Due to human error, sometimes unlabeled information 
is leaked into the scene, for example if a gap between assets looks into the void. 
To ensure no unlabeled pixels are possible, the scene should be enclosed in an air 
gapped 3D object or pay close attention to scene composition and camera angles. 
However, for experimentation of different distant lighting options no enclosure 
is implemented, and a separate class id is reserved for unlabeled to allow an error 
marginal. The OV Replicator has problems with naming the classes correctly, this 
is remedied later in the study. 

For each frame 50 subframes (Nvidia, 2023) were run to reduce noise and 
add quality to rendering.  While this argument is optional, it adds a layer of bal-
ance between quality and performance. Without subframes the rendering lacks 
quality and the scene loses structure. At this stage, 50 subframes are producing 
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enough quality with relatively minimal effect on performance. The amount of 
subframes is experimented on in section 4.11, where the performance is meas-
ured. 

When the dataset is complete with 10 000 samples and targets, minor 

amounts of preprocessing are needed to start training. All models utilize the 

same simple Tensorflow data pipeline, in which cutout data augmentation and 

data shuffling is performed and data is read from disk into tensors and buffered 

into GPU memory. For the DeepLabV3+ model, only 5000 samples and 500 vali-

dation samples are used due to the larger memory demand, to keep the resolu-

tion of the picture due to the hardware limitations. 

All the models converge and require only a few epochs. Basic validation 

data split from training dataset is unnecessary at least with this amount of ran-

domization. When the validation data is basically the same as training data, eval-

uating model performance needs different metrics. To demonstrate this, the sim-

ple CNN model is trained with 1000 samples (for smaller time consumption) and 

for more epochs (figure 6). 

 

 

Figure 6 Loss values experiment 

 
For the uninformative nature of validation data split from training data when 
having insufficient randomization, and also in general when using synthetic data, 
we suggest using real life hand-labeled data for validation if available. In the 
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scope of this study, using evaluation metrics is enough guidance since the aim of 
the study is not to fine tune best-performance models. 

Finally, the models are used to predict segmentation masks from a real-life 

picture (figure 4). The results (figure 7) are promising but are insufficient in ac-

curacy. 

 

Figure 7 Predicted segmentation masks from real life, first experiment. From left to right: A 
simple CNN, U-NET Xception style, DeepLabV3+ 

 
While the simple CNN and DeepLabV3+ models are able to identify PROPS with 
relative accuracy, they struggle to identify the structures that differentiate a TA-
BLE from BACKGROUND. The U-NET Xception style performs otherwise well 
but predicts wrong classes for TABLE and PROPS. In this study the prediction 
from the real-life picture is used to approximate the success of the current itera-
tion, the first one serving as a baseline. Overall, the DeepLabV3+ model outper-
forms others, as measured by mIoU (table 1). This is expected, since the model is 
the most recent state-of-the-art of the three models. 

TABLE 1 Mean intersection over union, first experiment 

Model mIoU 

Simple CNN 36,27 % 

U-NET Xception 31,43 % 

DeepLabV3+ 50,12 % 

 
As explained in the chapter Design process, the experiment iterates over echelons 
of eDSR methodology. The artefact is demonstrated by predicting a segmentation 
mask and evaluated by comparing the result to the baseline result in addition to 
approximating success by eye. After evaluation, objectives are defined to further 
improve the artefact and then implemented in the following iteration. 

According to Nvidia (2024), addressing the domain gap is done by address-
ing two sub-gaps, appearance gap and content gap (Nvidia, 2024). Appearance 
gap is the difference in how the scene looks when compared to the real world, at 
pixel value level. The content gap is the difference in the amount and variety of 
objects in the scene versus real world. The baseline run in the first iteration is 
highly susceptible to both of these factors. With minimal focus on bridging the 
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domain gap, the resulting dataset lacks real world visuals and variety, which are 
important qualities of data for deep learning. More randomization is needed, and 
the scene should be upgraded visually. Additionally, the SD Generator needs 
more utility. 

4.5 Second experiment 

The first iteration revealed potential in the approach but has space for improve-

ment. Our hypothesis at the end of the first iteration is that increase in domain 

gap bridging and randomization is needed. Tackling the issue of randomization 

first, a function is defined to help randomize prop positioning in the scene 

around the point of interest. Replicator has built in functionality to instantiate 

USD files into the scene from a folder and to scatter items on a surface. We place 

an invisible plane on the table surface and scatter the instantiated items on this 

plane. Combining these into a simple function, further randomization of props 

on the table is done by placing additional USD files in a folder and calling the 

function with a limit in the number of items. Scattering has built in check for 

collisions but enabling it crashes the software at the time of writing this study, 

with Replicator version 1.7.7. 

Bridging the domain gap is improved by adding a background scene better 
representing the real-world scene. Added curtains and carpet provide textures 
for background and plank-like texture on the floor distinguishes it from the walls. 
A sample from the new stage and the corresponding mask are presented in Fig-
ure 8. 

 

 

Figure 8 Visually improved stage and corresponding mask 
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In the previous iteration, 50 subframes were used for rendering. We experiment 

with 25 subframes benefits without trade-offs can be expected. First, performance 

should be slightly increased and since time saving is a main theme for visual 

synthetic data, performance is an important topic. Secondly, at 25 subframes, no 

ghost artifacts and other rendering issues are not visible, at least by randomly 

inspecting 100 produced pictures. Therefore, 25 subframes should be used at this 

level of complexity instead of 50, for suspected increase in performance for no 

trade-off. 

The results with the new training data are presented in figure 9 and table 2. 
The new data allows the model to more accurately predict concepts in the picture. 
Most notably the background prediction is improved in the simple CNN model, 
the model learned the difference between background and objects in the scene. 
The U-NET model also increased in accuracy, it learned correctly predict the class 
ids of TABLE and PROPS. The DeepLabV3+ model achieves the largest accuracy 
of the models, with room for improvement but satisfactory overall. 

 

 

Figure 9 Predicted segmentation masks from real life, second experiment. From left to right: 
A simple CNN, U-NET Xception style, DeepLabV3+ 

 

Table 1 Mean intersection over union, second experiment 

Model mIoU 

Simple CNN 63,92 % 

U-NET Xception 57,66 % 

DeepLabV3+ 78,08 % 

 
Experimenting with different configurations of data quantity and prepro-

cessing, the results vary in terms of mIoU in the range of at least 40 %. While out 

of the scope of this study, it is worthwhile to mention that on the same synthetic 

dataset the choice of model architecture, hyperparameters, data preprocessing 

and augmentation methods influence the result in ways that may not always be 

foreseeable. Therefore, we highlight the importance of gathering some amount 
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of validation data from the real world and manual labeling to achieve the best 

possible results. 

Since no changes were made in the Replicator script regarding the tables, 
we assume that added distinction in the background textures is crucial for the 
model to predict foreground objects. By evaluating the visible result, we can form 
points of interest for the next iteration. Adding background objects visible in the 
real-world picture has a possibility of removing inaccuracies visible under the 
table in the result mask. 

4.6 Third experiment 

The objects added to the USD scene (figure 10) are objects seen in the real-world 
picture: a drawer, a bin, a desktop pc and crutches. Especially the drawer and pc, 
having pixel values close to pixel values of some point of interest areas, should 
reduce the domain gap by providing more content found in the real world with 
more accurate pixel values. All objects were found in the sample USD library by 
Sketchfab (2024) and slightly modified to fit the scene, mainly materials to fit the 
real-world scene more accurately. If needed, these objects can be annotated by 
adding semantic class information via the Semantics Schema Editor. We tried 
adding annotations to the additional objects, aiming to improve the accuracy of 
PROPS and TABLE classes, which are the area of interest. This did not improve 
accuracy but shows the efficiency of synthetic data. If all the objects in the scene 
were of interest, their annotations could effortlessly be added to dataset genera-
tion. 

To control which objects get annotated, a semantic filter is added to the SD 
Generator. This filter enables the user to define which semantic classes get anno-
tated by the annotator. In addition, a function modified from the API is written 
to control class id values to answer the requirement from the first experiment. 
Combining the input for the filter and the class id control into a single dictionary, 
there is full control on what is annotated and with what values. A note on using 
the Semantics Schema Editor: it should be used to only add semantic information 
to objects which are added to the background scene in 3D modelling software. If 
it is used to add semantic information to objects of assets that are added to the 
scene via code, and in that code the assets are assigned a semantic class, the re-
sulting annotation is a pairing of the classes, eg. If a static monitor object would 
be added to a table asset and would be given a separate semantic class in Seman-
tics Schema Editor, the resulting class would be class:TABLE,PROPS.  
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Figure 10 Scene with additional objects, and corresponding mask 

The DeepLabV3+ model visual results (figure 11) show promise on adding more 
objects, since the improvement area under the table has only a little PROPS class 
pixels predicted. Other models gained cohesion but did not visibly improve in 
the target area. With simple CNN and U-NET Xception style models there is still 
many pixels predicted as PROPS under the table. 
 

 

Figure 11 Predicted segmentation masks from real life, third experiment. From left to right: 
A simple CNN, U-NET Xception style, DeepLabV3+ 

As shown in table 3, despite the visual concentration with the simple CNN model, 
it lost 9 % mIoU in accuracy. More sophisticated models both gained 5 %. This 
could implicate that added complexity in the data benefits models with larger 
representation power, which seems intuitive. 
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Table 2 Mean intersection over union, third experiment 

Model mIoU 

Simple CNN 55,36 % 

U-NET Xception 63,28 % 

DeepLabV3+ 82,95 % 

 
Observing small improvements in two of the three models, the development con-
tinues. The 0.83 mIoU is not sufficient end design process, and visual cues from 
figure 8 implicate some areas of inaccuracy. Comparing the real-world picture 
and figure 8, the real-world scene is full of different kinds of shadows, which are 
not well presented in the synthetic dataset. Adjusting lighting randomization is 
the only way to produce more realistic shadows. Creating a point light source 
simulating indoor lighting is a possible solution. 

4.7 Fourth experiment 

In this experiment, the topic is light simulation and randomization. OV Replica-

tor provides a plethora of attributes for light creation and adjusting (Nvidia, 

2023). The goal is to produce lighting conditions similar to the real-world scene, 

where a single ceiling lamp is a source of artificial light. This results in shadows 

in the scene, where pixel values are darker than other pixels in the same surface. 

The solution is to produce a spherical light in the synthetic scene, the photoreal-

istic renderer in the Replicator will produce the shadows accordingly when the 

spherical light is positioned the same way as in the real world. 

The Replicator has default settings for ambient lighting, which means every 
scene created has dim environmental lighting if left default. Therefore, a call to 
adjust the setting needs to be added for full control of scene lighting. The SD 
Generator in this study applies randomization to this setting to produce different 
lighting scenarios in addition to randomizing temperature and intensity of the 
spherical light. As observed (figure 12), the produced dataset with improved 
lighting now has shadows and overall, more realistic lighting. The altered color 
mapping in the segmentation mask (figure 12) results from adjusting the class ids 
with the function described in the previous experiment, it has no effect on model 
prediction quality. 
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Figure 12 Scene with spherical indoor lighting, and corresponding mask 

Inspecting the visual results (figure 13), the improvement we seek is under the 
table, where in the real-world picture there is a large and dark shadow. Previ-
ously, the DeepLabV3+ model was able to predict the shadowy area to be back-
ground. Now the U-NET Xception style model is also able to predict the shadowy 
area almost correctly. However, the overall visual results of the two more simple 
models are lacking in structure definition.  
 

 

Figure 13 Predicted segmentation masks from real life, fourth experiment. From left to right: 
A simple CNN, U-NET Xception style, DeepLabV3+ 

Despite the problems in visual results, all the models improved their respective 
mIoU accuracies (table 4). The improvements in lighting seem to address domain 
gap by adding realism. We would suggest that when implementing synthetic 
data generation, the lighting conditions of the target scene are taken into account. 
For example, the temperature and intensity of artificial indoor lighting and daily 
cycle of natural light are factors that can be accounted for when generating syn-
thetic data. 
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Table 3 Mean intersection over union, fourth experiment 

Model mIoU 

Simple CNN 70,90 % 

U-NET Xception 66,08 % 

DeepLabV3+ 85,36 % 

 
More domain gap bridging is required, all the models have troubles with surfaces 
of the table on the left-hand side. The monitor stand is also hard for the models, 
since the training data does not contain objects that represent a flat and u-curved 
stand base. A proposed improvement is to use custom USD assets that better em-
ulate the real world. 

4.8 Fifth experiment 

As proposed previously, in this experiment we bridge the domain gap even fur-
ther by making custom USD assets for objects that are difficult for the models to 
predict correctly. The monitor stand, the conference speaker and the table itself 
are causing issues with accuracy. The table is relatively simple to reconstruct, but 
the monitor stand and the conference speaker need some simple modelling. 

The tabletop is taken from existing sample USD tables and applied new cus-

tom material to better emulate the real world. OV USD Composer provides ex-

tensive customization options to materials, and simple modelling tools to make 

the wooden frame the tabletop sits on. The other custom objects are made with 

Blender 4.1 (2024). Blender can export in USD format, which makes it easy to use 

modelling software for the SD Generator. OV also provides an alpha USD branch 

of Blender (NVIDIA-STUDIO, 2022), which is directly integrated into OV. As 

seen in figure 14, the scene has bridged the domain gap further, even if the assets 

are not completely photorealistic. 

The manner in which the USD assets are made or customized is not partic-
ularly interesting in the design of the SD Generator, but this highlights an im-
portant feature of the OV Replicator. Because OV platform uses USD format as 
default asset format, the synthetic generation pipeline integrates efficiently to 
plethora of modelling software. The OV platform has connection components for 
multiple 3D modelling software, and converters for multiple formats into USD 
format (Nvidia, 2024). By having a large quantity of different 3D modelling soft-
ware usable for SD Generator, the barrier to use it in organizational setting is 
proposed to be lower than it would be with more limited options. 
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Figure 14 Scene with custom made USD assets, and corresponding mask 

Training the models we made an observation about representation power of the 
models and the quality of the data. Training the DeepLabV3+ model for the five 
epochs as before, the accuracy is not as good as when training for ten epochs. 
Investigating this phenomenon, we trained that model on five and ten epochs on 
the most recent dataset generated and ten epochs on the dataset from last itera-
tion. For additional information, the less sophisticated models were also trained 
for ten epochs. Results (figure 15 and table 5) were that the DeepLabV3+ model 
benefits from training on more epochs when the amount of domain gap bridging 
and randomization is on the level of this current iteration of the SD Generator 
but does not benefit from extra training with the dataset from previous iteration. 
The simple CNN model and U-NET Xception style model do not benefit from 
extra training but lose accuracy when training for ten epochs. 
 

 

Figure 15 Predicted segmentation masks from real life, fifth experiment. From left to right: A 
simple CNN over 10 epochs, U-NET Xception style over 10 epochs, DeepLabV3+ 
over 5 epochs, DeepLabV3+ over 10 epochs with previous experiment data 

 

Table 4 Mean intersection over union with exploratory but incorrect epoch counts, fifth ex-
periment 

Model mIoU 

Simple CNN, 10 epochs 86,13 % 
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U-NET Xception, 10 epochs 85,51 % 

DeepLabV3+, 5 epochs 84,00 % 

DeepLabV3+, 10 epochs on data 
from previous experiment 

82,31 % 

 
When trained with the more correct count of epochs, the models are improved in 
accuracy, the two simpler ones by a large margin. Visually (figure 16), the im-
provement in the predictions of these two models is extremely evident. The sim-
ple CNN and DeepLabV3+ models have some imperfections in the background 
area, the first more than the latter. The U-NET Xception style model is very de-
fined and has little to no error in the background classification. While the 
DeepLabV3+ model has more visible errors, it has higher definition in the struc-
tures and surfaces of the scene. Overall, the custom 3D assets are evidently a must 
for high accuracy when training with synthetic data. 
 

 

Figure 16 Predicted segmentation masks from real life, fifth experiment. From left to right: A 
simple CNN over 5 epochs, U-NET Xception style over 5 epochs, DeepLabV3+ 
over 10 epochs 

All models improved their mIoU accuracy (table 6). Especially the U-NET Xcep-
tion style model saw an improvement of 0.27. Closing on 1, which is perfect ac-
curacy, the domain gap is getting observably smaller. 

Table 5 Mean intersection over union with correct epoch counts, fifth experiment 

Model mIoU 

Simple CNN, 5 epochs 88,15 % 

U-NET Xception, 5 epochs 92,91 % 

DeepLabV3+, 10 epochs 91,63 % 

 
Because of the high definition the DeepLabV3+ model provides, a higher score 
for it should be a focus. Therefore, we propose a final fine-tuning iteration for the 
SD Generator, before we evaluate the data quality on a very small test dataset, 
and measure performance optimizations. 

Focusing on the most sophisticated model, we inspect visually the inaccu-

rate areas of the model prediction. The bottom section of the right-hand side 
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monitor is inaccurate, possibly due to the absence of the router in the real-world 

scene. The keyboard is predicted with less accuracy than the other models. The 

table frame has inconsistent accuracy, as well as the right-hand side monitor. 

4.9 Sixth experiment 

The back wall color of the synthetic data with the spherical light source differs 
slightly from the real-world equivalent. We remedy this by changing the material 
to a lighter one, hoping to distinguish the back wall from the table legs more 
efficiently. An object resembling the Wi-Fi router on the table is added to half of 
the samples to improve accuracy of the DeepLabV3+ model around that area. A 
keyboard asset is added to the props directory to help the forementioned model 
around the area, the keyboard is modelled after the keyboard make and model 
in the real-world scene, conveniently accessible in the Sketchfab sample library. 
The updated scene also has material colors tweaked to match the real-world ma-
terials more accurately and to help the neural networks to distinguish between 
surfaces. 

We experimented with different combinations of polishing and randomiza-
tion and arrived at a sufficient ratio between accuracy and effort. Over 95% mIoU 
is achieved without specialized 3D modelling expertise or custom 3D material 
artistry. The custom objects mentioned before and the red trimmings in the PC 
chassis, to separate the black surfaces from other black surfaces in the scene, re-
quired minimal effort. Materials’ changes are made in the OV Composer software 
via GUI altering the RGB channels of the materials. The customization of the 
scene and materials were kept deliberately minimal to illustrate the efficiency 
benefit of synthetic data. If the same amount of time were spent modelling the 
scene, as would have been spent on taking and labelling pictures from the real 
world, the efficiency of synthetic data labelling would be called to question. 

The other configurations experimented on were modifications of the final 
configuration, no additional objects or materials were added. Five best perform-
ing alternative configurations, used to train the DeepLabV3+ model, are in table 
7. The changes were made separately, except for adding the Wi-Fi router and 
keyboard assets, which was done for all configurations. We tried to remove ran-
domization of the tables and only use the custom table, which resulted in similar 
results to the first experiment. Removing additional assets from being instanti-
ated on the table decreases accuracy. Judging by these two facts, the need for 
randomization of the scene is argued to be an effective technique to improve the 
quality of synthetic data. 
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Table 6 Experimentation with different changes, training the DeepLabV3+ model 

Changes to the training data mIoU 

Added the Wi-Fi router and keyboard only 94.26 % 

Floor and carpet color adjustment 94.13 % 

Added red trim in the PC chassis with adjusted color 93.11 % 

Instantiated only objects found in the real scene 92.68 % 

Curtains and PC chassis color adjustment 86.12 % 

 
Finally, a final configuration of fine-tuning changes was made (figure 17) based 
on observations from testing different modifications. The final changes from fifth 
experiment: Added Wi-Fi router and keyboard assets to randomization, raised 
occurrence of the custom table to half of the samples, added red trims to the PC 
chassis but kept the original color, modified color channels of materials of table 
legs, floor, walls, curtains, carpet and crutches, and modified the pattern on the 
carpet. These changes took less than 30 minutes, an experienced artist would pos-
sibly make the modifications even faster or visually more accurate. 
 

 

Figure 17 Scene with added USD assets and polished materials, and corresponding mask 

Training the models on the final-form data, an improvement is observed on the 
U-NET Xception style and DeepLabV3+ models. The simple CNN model loses 
accuracy and visually has inaccurate predictions on some of the larger homoge-
nous surfaces (figure 18). Visually, the U-NET Xception style model confuses 
some edges and surfaces with wrong classes on the background from curtains 
and the PC. These have been challenging throughout the experimentation. The 
DeepLabV3+ model visibly only has issues with cables and wires present in the 
real-world scene. None of these cables are 3D modelled in the synthetic dataset, 
which is a deficiency in the reference SD Generator, but possibly a remediable 
one if needed, if a skilled 3D designer produces the assets. The simple CNN 
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model possibly lacks the representational power to gain accuracy from more de-
tailed materials. The smaller props on the table are predicted with sufficient ac-
curacy visually, but the larger surfaces appear challenging. 
 

 

Figure 18 Predicted segmentation masks from real life, sixth experiment. From left to right: 
A simple CNN, U-NET Xception style, DeepLabV3+ 

The mIoU accuracies of the two more advanced models exceed the 95% threshold 
(table 8). Interestingly, the simple CNN model accuracy decreased beyond the 
accuracies of two previous experiments. The model was run three times, result-
ing in low accuracy each time. For the sake of comparability, the two better per-
forming models are selected for the final evaluation. 

 

Table 7 Mean intersection over union with correct epoch counts, sixth experiment 

Model mIoU 

Simple CNN, 5 epochs 82.89 % 

U-NET Xception, 5 epochs 95.40 % 

DeepLabV3+, 10 epochs 96.71 % 

 

4.10 Final evaluation 

Taking the models from the last experiment with over 95% mIoU accuracies, the 
quality of the synthetic data is validated on a small test dataset. 20 additional 
pictures from the real-world scene are taken and annotated by hand (figure 19). 
The accuracy of the models is recorded and an average of the mIoU accuracy is 
presented for both of the models. Hand-labelling is prone to errors and time con-
suming (Suchi et al., 2019), which causes the measurement to have methodolog-
ical inaccuracy. This error margin is presumed to be small but is nonetheless not 
accounted for and as such is a limitation of this study. 

The evaluation samples are taken from different angles of the same scene as 

the prediction picture (figure 4). Objects on the table are moved to different 



50 

locations and randomly removed. Lighting conditions are slightly different from 

the initial picture, but no radical changes are made. If a large change in lighting 

conditions is predicted for the real-world scene, this has to be accounted for in 

the SD Generator by broadening the range of lighting randomization. This is 

done by adding smaller and larger values to the respective ends of value range 

in temperature, intensity and default light settings parameters in the light ran-

domization function. 

 

 

Figure 19 Examples from the evaluation dataset 
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First running inference on the DeepLabV3+ model on the test set, the overall 

visual results (figure 20) are promising. Most of the predictions have difficulty 

with the monitor stand. This is possibly due to more visible cables in the test set, 

or difference in the looks of the stand in the test set compared to the initial eval-

uation picture. In some of the predictions, background objects are not entirely 

predicted as background. This was an issue for a large portion of the experiments 

and is not easily mediated. Arguably a solution for this would be more accurate 

shape and material modelling for the objects in the synthetic scene. New camera 

angles should not be the culprit, since the SD Generator has a large range of ran-

domization of camera angles. One picture has a large inaccuracy on the table sur-

face and the mouse pad. Given this is not a widespread issue, no direct sugges-

tion for a remedy is available. Like all improvements made in the experiments, 

adding randomization and bridging the domain gap further should improve this 

inaccuracy. 
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Figure 20 Predicted segmentation masks from real life, final evaluation, DeepLabV3+ model 

Predicting the test set on the U-NET Xception style model shows (figure 21) less 
accuracy than the other model. The small objects on the table are predicted with 
generally good visual accuracy, but larger surfaces show inaccuracy. Especially 
the top part of the monitors and the wall area behind them are problematic areas. 

The majority of the pictures show an incorrectly classified area along the 
top edge of the monitors, predicting the pixels to be more likely a part of the 
background. The wall area behind the left monitor is classified to be part of the 
table. In contrast to the highly accurate visual results of the sixth experiment, the 
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model seems to have overfitted to the texture and color of the wall in the training 
data. This suggests that, depending on the power of the model, information leak-
ing from the validation data reduces generalization. This is a well-known phe-
nomenon in deep learning (Chollet, 2021). In the context of synthetic data gener-
ation, one way of reducing the effect information leakage has on generalization 
is substituting the neural network model with a more sophisticated one. This is 
not always possible, for example, if working with state-of-the-art models, or if 
other reasons guide the selection of the model. Other ways suggested to increase 
generalization are randomization and domain gap bridging. We successfully re-
duced overfitting on the tabletop props and the table itself by adding randomi-
zation and more realistic assets and materials. Adding background randomiza-
tion and modelling the texture and color of the wall more like the real –world 
wall, could possibly help generalization. 
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Figure 21 Predicted segmentation masks from real life, final evaluation, U-NET Xception 
style model 

The mIoU results (table 9) show a promise in the SD Generator when validating 
on data not seen when adjusting the synthetic dataset. Given the similarity of the 
test set to the initial evaluation picture, the results are close to the final evaluation 
on the initial picture with DeepLabV3+, which achieves an average mIoU of 
94,05 % across the test set, dropping 2,66 points from the initial picture evaluation 
accuracy. 
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The U-NET Xception style saw a more drastic decrease in accuracy than the 
more sophisticated model. Achieving average accuracy of 81,80 % over the test 
set, the decrease in accuracy is 13,6 points. Judging from this difference of de-
crease in accuracy between the models, we argue that when working with syn-
thetic data, representational power of the model dictates its potential to overfit to 
evaluation data.  

Table 8 Final evaluation on dataset models have not seen 

DeepLabV3+ 

(test set 0-19) 

mIoU 

 

U-NET 

(test set 0-19) 

mIoU 

 

0 94,85 % 0 88,02 % 

1 95,67 % 1 84,81 % 

2 85,10 % 2 81,90 % 

3 96,09 % 3 59,85 % 

4 96,44 % 4 73,98 % 

5 94,83 % 5 68,52 % 

6 91,82 % 6 86,71 % 

7 92,85 % 7 76,46 % 

8 95,95 % 8 81,87 % 

9 96,47 % 9 89,97 % 

10 94,14 % 10 87,57 % 

11 94,54 % 11 88,35 % 

12 93,06 % 12 80,34 % 

13 95,01 % 13 89,98 % 

14 96,33 % 14 77,07 % 

15 96,25 % 15 82,95 % 

16 96,73 % 16 83,28 % 

17 83,07 % 17 89,73 % 

18 95,37 % 18 83,99 % 

19 96,51 % 19 80,57 % 

Average 94,05 % Average 81,80 % 

 
Having evaluated the models trained on the synthetic dataset and achieving high 
mIoU accuracy with a test dataset on DeepLabV3+, no more adjustments are 
made to the reference SD Generator output-wise. The quality of the data and ac-
curacy of the results is correlated to the amount of effort put in domain gap bridg-
ing and randomization. To achieve same accuracy on a more complex scene, we 
argue that more effort must be put into 3D modelling of the scene and randomi-
zation. For the single point-of-interest, the table and the props, we have achieved 
a balanced mixture of effort and accuracy. 

A promised benefit of synthetic data generation is the speed in comparison 
to annotation by hand. For a relatively small dataset of 10 000 samples, the most 
time saving is done by reducing the effort put into the modelling of the synthetic 
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scene. However, for a larger and more complicated scene and millions of samples, 
the unattended running time of the generator plays a larger role. OV Replicator 
offers performance optimization tools, and some decisions on the architecture of 
the SD Generator were observed to affect the running time of the generator dur-
ing the experimentation. Next, we experiment with the optimization of the unat-
tended running time. The goal is to present optimization techniques and con-
cerns for the reference SD Generator. 

4.11 Performance optimization 

As mentioned previously, one of the benefits of synthetic data is that it speeds up 
the creation of large, annotated datasets. The time used in generating synthetic 
data from scratch is divided into several phases. First, the generator must be 
coded or, in case of using a ready-made solution, generation methods must be 
learned. Then, a synthetic scene must be composed of 3D assets and materials, 
focusing on randomization options and photorealism of point-of-interest objects. 
During these phases, validation data from the real world should be gathered and 
labelled in order to measure the domain gap bridging, or in other words, the ac-
curacy of the neural networks in the real world when trained on synthetic data. 
Optimization of the synthetic data and model accuracy takes place after these 
phases. Finally, after all these phases, the generation pipeline is ready, and the 
large-scale generation can start. In the optimization phase, the generator might 
also output large datasets. 

For small datasets, the primary method of time saving is efficiency in the 
building and composing phases. For large datasets, the time spent running the 
generator for output is significant, and optimization of this accumulates more 
time savings when the amount of data increases. Hardware, on which the gener-
ator is run, affects both rendering and writing speeds. This study is run on over 
five-year-old technology, the simplest way to improve speed is to run the SD 
Generator on more powerful technology. 

In this section, we measure the time spent on running generation on SD 
Generator. Different optimizations are timed and measured by timing the differ-
ence between when the first and last frame are generated. The generator is run 
for 1000 frames per test, in order to time an easily multipliable quantity of sam-
ples.  

We observed increases in time spent in the generating phase when increas-

ing the complexity of the synthetic scene. Multiple levels of complexity are meas-

ured to observe if changes in complexity change the time spent generating sam-

ples. This complexity includes the randomization of point-of-interest assets. The 

results are presented in table 10. Time taken drops from first to second experi-

ment, and from third to final experiment. This suggests that code-wise improve-

ments in the SD Generator script between experiments affected the speed of the 

generator. A jump in time taken is observed between experiments two and three, 
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where more assets were added to the scene. This implicates that adding assets to 

render is more demanding than adding randomization, which happened be-

tween third and final experiments. A 53 second difference in speed for 1000 

frames is a large jump, for example for one million frames the difference would 

be 53 x 1000 seconds, assuming the difference scales linearly. The result suggests 

that when crafting large datasets, special attention should be paid to the amount 

of rendered assets in a scene. 

 

Table 9 Timed results of different complexities, 1000 frames 

Complexity Time (h.mm.ss) 

First experiment 0.10.09 

Second experiment 0.10.04 

Third experiment 0.10.57 

Final experiment 0.10.45 

 
The custom writer class of the SD Generator loops through every pixel of a gen-
erated segmentation mask in order to control the assignment of class ids. Looping 
through every pixel of every target image is adding basic NumPy computation 
to the generator. However, the NumPy library is optimized for computations 
with large matrices (NumPy, 2024) and the custom writer omits multiple if-
checks not needed in the semantic segmentation task it is built for. The custom 
writer is compared to the default basic writer class to measure the effect of the 
differences. The final experiment configuration of the SD Generator is used, and 
custom writer result of 10 minutes and 45 seconds from table 10 is compared to 
using the default basic writer class with otherwise same conditions. The custom 
writer is 7 seconds faster (table 11). We suggest that a use-specific custom writer 
is built assuming that all the features of the default basic writer are not needed. 
 

Table 10 Timed results of custom and default writers, 1000 frames 

Writer Time (h.mm.ss) 

Custom 0.10.45 

Basic (default) 0.10.52 

 
The quantity of subframes used for generating the datasets started from 50 in the 
first experiment and reduced to 25 in the second experiment. According to the 
documentation (Nvidia, 2024), the amount of subframes is a direct tradeoff be-
tween quality and performance. The difference the amount of subframes makes 
in the performance is measured and irregularities are reported if found. These 
irregularities include ghost artifacts, inaccurate light simulation and rendering 
issues including material rendering. Running the SD Generator with default 
amount of subframes, which is 1, rendering of the scene loses quality, and the 
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speaker lost its materials completely (figure 22). Some ghosts are visible along 
the left side of the right-side table leg and along the front edge of the tabletop. 
 

 

Figure 22 Rendering issues due to not enough subframes 

10 subframes still produce low-quality rendering and some material loss, but not 
as dramatically as the default 1 subframe. 25 subframes result in the same quality 
used in experimentation. 50 and 100 subframes slightly increase quality, but not 
in the same ratio as they decrease performance. Observing from figure 23, the 
performance cost of subframes scales almost linear with the quantity of sub-
frames. We recommend experimenting with the amount of subframes, to achieve 
a suitable performance-to-quality balance. 
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Figure 23 Rendering speed with different amount of subframes: 1, 10, 25, 50, 100 

 
The SD Generator custom writer inherits a feature from the default basic writer 
to asynchronously encode images and write to disk, called BackendDispatch 
(Nvidia, 2024). Tasks given to BackendDispatch are queued in system memory 
to wait for an available processor thread. The thread count is limited to 4 by de-
fault. We measure the difference in time between thread limits. The more cores a 
CPU has, the more threads are available. A limitation emerges from hardware in 
use. Even with subframes set to 1, the renderer is not able to fill the queue at 
thread count of 4 or more with the scene we created. A more powerful graphics 
accelerator might be able to fill the queue, or a slower CPU. We tried constructing 
a minimalistic generator which only renders empty black images without any 
objects and were not able to get the CPU to bottleneck the generator. The ability 
to increase the thread count available for BackendDispatch is included in the ref-
erence SD Generator, but we argue that without a powerful GPU it does not in-
crease the generation speed. 

Finally, sample storing formats are tested. Both the default basic writer and 

our custom writer can write the RGB samples either as JPEG or PNG formats. 

JPEG is a lower quality image format resulting from lossy compression, com-

pared to PNG which is higher quality due to lossless compression. (Gondur, 

2024). Resulting from the higher quality, PNG file sizes are larger than JPEG. We 

measure the difference in speed comparing these two file formats for samples. To 

shift emphasis from the renderer to the encoding process, a subframe count of 1 
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is used. No difference is observed between the formats. We argue this is due to 

the encoding process being executed by the CPU, and in this study the renderer 

bottlenecks the generation such that no CPU optimization affects the generation 

speed. With a more powerful GPU, it should be possible to achieve I/O optimi-

zation, as suggested by Nvidia (2024). An additional benefit of JPEG, if reduced 

quality is tolerated, is a reduced footprint in storage. JPEG footprint is approxi-

mately a tenth of PNG footprint. 

4.12 Results 

In this section, we present the findings of the experiments conducted. The find-

ings are summarized as a model of generation pipeline with the reference SD 

Generator. Additionally, we list noteworthy observations about synthetic data 

generation and the SD Generator. 

The main result is a working synthetic data generator, comprised of USD 
assets and a Python script using the Replicator API. The generator is able to pro-
duce annotated training data which is of enough quality that a neural network is 
able to learn a segmentation task from it. The experimentation process followed 
the iterative structure of eDSR methodology by Tuunanen et al. (2024). Starting 
from a baseline generator, the components of the SD Generator were cyclically 
improved until the quality of the data produced was able to train a semantic seg-
mentation neural network to a mean intersect-over-union of 95 % or over. Two 
of the three neural networks achieved this and were evaluated on a final test da-
taset, where the best average accuracy was 94,05 %. 

From the experimentation, we could observe the phases and components 
that produce a synthetic data generation pipeline. To complement the generator, 
a model (figure 24) is constructed from these observations to act as further refer-
ence. 
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Figure 24 A reference model for building a synthetic data generation pipeline 

As visible from the model, the iteratively improving nature of the multi-phased 
development process highlighted potential in an iterative design process. Real-
world validation data is necessary for feedback, since synthetic validation data 
fails to accurately implicate real-world performance. Two main processes were 
identified, domain gap bridging and domain randomization. 

Domain gap bridging aims to reduce the difference in appearance between 
the real-world scene and the synthetic scene. This should be done by adding a 
sufficient number of objects found in the real world to the synthetic scene, ad-
justing materials to resemble the real world as closely as possible and creating 
custom 3D assets in case sample libraries do not contain assets close enough in 
resemblance to the real-world objects. Nvidia Omniverse, which is the platform 
the SD Generator is built on, eases domain gap bridging by offering comprehen-
sive sample libraries of USD assets and materials, and by integrating to other 3D 
tools and even game engines for custom modelling processes. 

Domain randomization aims to randomize the images in order to allow the 
neural network to learn accurate interpolations between samples and generalize 
to different situations in the real world, for example, lighting changes or different 
objects. Minimum randomization observed in the experiments was lighting and 
points-of-interest. Omniverse Replicator API, which is the backbone of the SD 
Generator, offers multiple features for domain randomization. 

After achieving satisfactory results doing test generation, a final evaluation 
should be performed on data not seen before, even in validation. We observed a 
great decrease in accuracy for one of the models when evaluating on a test dataset. 
Information leak is a known phenomenon (Chollet, 2021) and it happens not only 
when fine-tuning the neural network, but also when fine-tuning synthetic data, 
as was observed. If satisfactory results are achieved with the test dataset, perfor-
mance should be optimized before starting generation of a large dataset. 

Any unnecessary computations should be removed from the code, espe-

cially in functions that are called every frame. In the custom writer, anything ex-

ecuted of called in the “write” function is executed every frame. In case the 
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generation is run on a system where rendering is extremely fast due to a perfor-

mant GPU, asynchronous image encoding and writing to disk should be imple-

mented, and a setting allowing more than 4 threads for these tasks should be set 

to a higher count if running on a high-core-count CPU. Depending on the task, 

image file format could be changed from PNG to JPEG. This introduces a trade-

off between higher quality of the PNG and faster generation of JPEG. JPEG also 

requires a smaller footprint in storage. Like with the thread count setting, the file 

format throughput increase is only realized on a system where the graphics ac-

celerator is not a bottleneck. 

Two of the proposed optimization techniques should take place in the de-

sign phase of the generator. We observed that the amount of assets rendered in a 

scene affects the performance of the generator. Unnecessary assets should be re-

moved from the synthetic scene, testing against validation data can be used to 

identify unnecessary assets. The most difference in performance is made with the 

number of subframes rendered. The renderer takes an argument of how many 

subframes are generated per frame. This is a direct trade-off between quality and 

speed. Testing should be conducted to find the minimum number of subframes 

that produces sufficient quality. Rendering with excess subframes leads to 

quickly diminishing results. 

Having provided an overview of the results of the study, we provide addi-

tional findings that complement the reported findings, possibly from a view of a 

practitioner looking to develop a synthetic data generation pipeline on the Om-

niverse platform. 

First of the additional findings is that at the time of the writing of this study, 

the Replicator API does not implement a way to keep class ids explicitly constant 

between generation runs (jiehanw, 2024, April 17). The version used was 1.7.7 

but later versions (up to 1.10.10 at the time of writing) have not addressed the 

issue according to the changelog in API documentation (Nvidia, 2024). We sug-

gest that a function to address this is written in the custom writer class. Our work 

provides an example of the implementation. 

Second, a suggested way to add semantic information to the USD assets is 

to separate the assets instantiated via code, and assets added to the scene via 3D 

modelling. Adding semantic information both ways for the same assets results in 

a conjoined class which is annotated with its own id. For example, in the SD Gen-

erator a router was added on the table. Given its real-world stationary location, 

an easy way would have been to add it to the scene by adding the router to the 

table assets via 3D modelling and giving a “props” class to it via the Semantics 

Schema Editor. Because the tables are added to the scene in code and “table” class 

is given in code, the router would have acquired a separate class id as “props:ta-

ble”. 

Third, we observed that changes made in synthetic data cause changes in 

model performance, converging speed and overfitting. While intuitively obvious, 
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we would remind to use real-world validation data, early stopping and hyperpa-

rameter tuning techniques when testing a generated dataset and treat a new syn-

thetic dataset as separate from a previous test even with minor changes. It is ben-

eficial to treat synthetic data and the neural network as connected, where a 

change to one affects the other. 

Lastly, identifying bottlenecks when the generator is running allows for 

knowledge about optimal systems and hardware configurations to be gathered. 

In this study, we identified a rendering bottleneck on our system which suggests 

a lackluster GPU in comparison to other components. To benefit from the speed 

of annotation in synthetic data generation to its optimal potential, a more pow-

erful GPU would be needed. 

This concludes the experimentation chapter of this study. In the next chap-
ter, we discuss the results, implications, limitations and future research ideas of 
this study, before giving a conclusion of the study in the final chapter. 
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5 DISCUSSION 

In this chapter, the results of the study are discussed and compared to previous 
knowledge. Due to the concrete results being presented in the previous section, 
they are not repeated in this chapter. In addition to discussing the results of the 
study, we discuss what implications for practice the study poses. After the impli-
cations, limitations of the study are identified and presented. Finally, potential 
future research is proposed based on this study. 

5.1 Discussion of results 

We presented a proven method of synthetic data generator building and built the 
SD Generator, a reference generator for scene-specific semantic segmentation 
around point-of-interests. A DeepLabV3+ model trained solely on synthetic data 
from the generator was able to predict segmentation masks for images it had not 
seen before to an average mIoU accuracy of 94,05 %. 

The introductory page for synthetic data in the Omniverse Replicator doc-
umentation divides the challenge of domain gap into two categories: appearance 
gap and content gap. Appearance gap being the visual differences on a pixel level 
between synthetic and real worlds, and content gap being the amount and ran-
domization of objects in the scene. (Nvidia, 2024). We observed the effects of tack-
ling these challenges and can confirm the existence of both. However, we propose 
the content gap be divided into the number of objects and the amount of random-
ization, separately. In the study, we observed independent increases in model 
accuracy when adding more objects separately from increasing randomization, 
and vice versa. We assume that domain randomization increases model accuracy 
by extending data distribution, as presented in the review study by Schieber et 
al. (2024), not only by addressing the domain gap, but because the broadness of 
training data distribution is similarly important in real-world datasets (Ramanu-
jan et al., 2024). 

We evaluated the quality of the synthetic data by measuring the accuracy 
of model predictions against manually labelled real-world data. In the absence of 
real-world data, the validation of the model becomes difficult. Because of the do-
main gap, validation on synthetic data does not guarantee performance in actual 
use. As studied by Sankaranarayanan et al. in 2018, generative neural networks 
can alleviate the domain shift and improve performance on real data, but we ar-
gue that the quality of the synthetic training data is an important aspect in accu-
racy of the model predictions. Having a well-documented reference generator is 
a possible solution to the problem. 
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5.2 Implications for practice 

Most of the synthetic data generation methods and synthetic datasets in com-
puter vision (Bauer et al., 2024) aim towards generality. However, in the paper 
introducing Kubric, Greff et al. (2022) argue that while only manually scalable, 
task-specific synthetic data generation pipelines offer high-quality results. As we 
demonstrated, although with an extremely specific application, focusing on 
scene-specificity provides arguably accurate results on the real-world data. 

As presented in the introductory section of Chapter 4, our approach scales 
to larger scenes and further points-of-interest in theory, requiring a great amount 
of manual work in asset generation only. The task can easily be changed from 
semantic segmentation to other computer vision tasks in bounds of what Nvidia 
Omniverse Replicator API offers as annotation methods. For example, using the 
generator building model we presented, a scene-specific object detection dataset 
would require minimal modification to the code. 

Aiming to provide only a reference generator for practitioners, we do not 
argue that the generator specifically built in this study would provide business 
benefits. However, as demonstrated in section 4.11, synthetic data generation al-
lows for extremely fast dataset generation with pixel-perfect annotations. Given 
that this study managed to output over one quality sample-target-pair per second 
with a single outdated GPU, we assume that adequate acceleration hardware 
would achieve a throughput of multiple images per second. 

As stated in section 3.1.2 about the benefits of synthetic data, in 2021 an 
estimation was that an image costing 6 dollars to annotate by hand, would cost 6 
cents done via synthetic data generation (Andrews, 2021). While we do not as-
sure the accuracy of that estimate at the time of writing this study, synthetic data 
should offer cost reduction on the acquisition of training datasets. The quality of 
the dataset in real-life use is largely dependent on domain gap bridging and do-
main randomization, which are time-consuming processes, but only initially. Af-
ter the pipeline is completed, the generation of the dataset is automated and can 
be left with minimal supervision. While the automated generation takes time, this 
task does not require a human to be present. For example, left running 16 hours 
outside office hours with a throughput of 3 samples per second, a relatively small 
but pixel-perfectly annotated dataset of approximately 172 000 samples and tar-
gets could be generated. 

5.3 Limitations 

Due to the specific nature of the experiment, the accuracy of the models could 
not be measured on an existing dataset. The SD Generator is not meant to be a 
general-purpose data generator, but rather a reference on scene-specific point-of-
interest generation. Because the models cannot be evaluated on a public dataset, 
the results are not comparable to other synthetic data generators in literature or 
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in business. The evaluation dataset created in this study does not offer a large 
variety of situations but serves as a test set – data the models have not seen 
through training or information leak. 

Combining real data with synthetic data is widely used to achieve the best 

performance with neural networks. Borkman et al. (2021) observed that the com-

bination achieves best accuracy compared to either only real data or synthetic 

data. The accuracy was improved regardless of the amount of real data used. 

(Borkman et al., 2021). In this study, the models are trained only on synthetic data. 

While the reason is that this study focuses on building the generator and does 

not compare the performance against existing benchmark datasets, therefore not 

needing the optimal performance on the neural network’s end, we recognize the 

limitations in synthetic-data-only training. 

The final evaluation is done on a hand-labelled dataset. The method of the 

labelling was Roboflow’s polygon drawing, since we did not have access to the 

Segment Anything Model enabled smart annotation tool. This method exposes 

the data to inaccuracy, which affects the mIoU accuracy metric. Due to this limi-

tation, the real accuracy can vary a few percentages and may not be totally in line 

with the visual accuracy. 

Another limitation regarding the study is that we did not survey experts 

and practitioners of the field to validate the need for a reference generator or 

scene-specific tasks, nor did we evaluate the findings of the study with experts. 

The intention in eDSR methodology is to help DSR research with complex re-

search involving stakeholders from the industry. The purpose of the evaluation 

echelon is to validate the generalizability and utility of the artifact in use (Tuun-

anen et al., 2024). While we technically follow the guidance of eDSR, we lack the 

validation from experts and practitioners of the field and validation of practical-

ity the SD Generator in its intended purpose as a reference for scene-specific tasks. 

5.4 Future research  

As indicated in section 5.3 about the limitations of the study, we suggest that 
further research into the topic should be conducted. The study lacks expert vali-
dation of usability of the SD Generator as reference in practice. In addition, the 
study discusses the scalability of the generator and theorizes that the structure 
scales to larger tasks with relatively simplicity. However, this scaling is only pre-
sented as an idea, and it is not tested or measured. A larger scale generator should 
be built to measure the quality of the synthetic data in a practical setting, solving 
a real computer vision task in the industry. If feasible, multiple generators could 
be built to solve different problems, and interviews with experts of the field could 
be used to validate the utility in practice, along with model accuracy metrics. 
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6 CONCLUSION 

In today’s computer vision development, deep learning is the most popular 
method. The nature of deep learning is data-intensive, and quality training data 
is a limiting factor in the advancement of computer vision and deep learning in 
general. Quality training data for supervised learning includes annotations 
which are the targets in the training dataset. Especially in computer vision, the 
annotations can be laborious to create manually, and alternative methods have 
been developed. One of the alternative methods is synthetic data, where the goal 
is to use computer-generated data to replace or complement real-world data. 

In the study, we set out to build a scene-specific synthetic data generator on 
Nvidia Omniverse platform to act as a reference generator for semantic segmen-
tation computer vision problem. 

A review of literature on the basic terms was conducted to offer background 
information on the task and to motivate the study. We presented key terminology 
related to synthetic data in computer vision deep learning. A review of synthetic 
data and its generation methods was presented, and we identified automated 
annotation to be the most important benefit of synthetic data generation in su-
pervised learning computer vision tasks. Automated annotation can be done via 
multiple methods, in this study the annotation capabilities of Omniverse Repli-
cator were used. 

The eDSR methodology by Tuunanen et al. (2024) was used in the design 
phase of the study. The methodology allows for iterative design by planning, im-
plementing and evaluating the artifact, the SD Generator, in small repetitive cy-
cles. Before starting the development phase, a review of related work was con-
ducted to find similar work from academic literature and from industry. No sim-
ilar work was found, which validated the research problem: no such reference 
generator for scene-specific point-of-interest tasks built on Nvidia Omniverse ex-
ists. The aim of the study was to build a generator and document the factors that 
affect output data quality and thus affect neural network prediction accuracy. 

We iterated the design six times, validating the changes by predicting a seg-
mentation mask for a real-world picture. Validation combined a visual analysis 
of the mask and a mean intersection over union calculation against a hand-la-
belled target. After reaching a high accuracy on the validation picture, a small 20-
image test dataset was hand-labelled, and the models trained on synthetic data 
were evaluated against the data the models had not previously seen. A 
DeepLabV3+ model trained solely on synthetic data achieved 94,05 % mIoU ac-
curacy on the evaluation dataset. 

The result of the study was a generator, combining a set of USD assets and 
a Python script for the Omniverse Replicator, capable of creating a quality dataset 
and implementing distinguishable features to act as a simple reference for new-
comers in the field to start generating synthetic data. 

While developing the generator, we observed the impact of changes made 
to the generator and presented a model of building a synthetic data generation 
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pipeline. This model, which is presented in section 4.12, can help identify key 
processes in developing a synthetic data generator. Iterating and validation with 
real-world data is key in increasing the model accuracy the data yields. The per-
formance of the generator was measured using a variety of settings, where a de-
pendency on graphics hardware was observed. We found that half of the perfor-
mance optimization should take place in the developing and testing phase of 
building the generation pipeline. 

In the last part of the study, we discussed the results and observations of 
the design process. A notable finding discussed was that the amount of content 
in the scene and the amount of randomization could be treated as separate effects, 
since they affect the quality of training data independently. We identified and 
presented the limitations of the study, in which the main limitation identified 
was the lack of expert interviews or surveys to evaluate the utility of the artifact 
in a real use case. In the discussion we implied that for practitioners, the reference 
generator could be a useful tool in entering synthetic data generation, which 
could result in reduced costs of training data acquisition. Future research based 
on the limitations of the study was suggested. To further advance the develop-
ment of a reference generator, experts and practitioners of the field should be 
interviewed for evaluation of the utility and value of the SD Generator. A larger 
scale generator based on the creation process of the reference generator solving a 
real industry task would also be a topic of future research, validating the idea 
behind this study. 
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