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Abstract 

Latent Moderated Structural Equations (LMS) is one of the most common techniques for 

estimating interaction effects involving latent variables (i.e., XWITH command in Mplus). 

However, empirical applications of LMS often overlook that this estimation technique assumes 

normally distributed variables and that violations of this assumption may lead to seriously biased 

parameter estimates. Against this backdrop, we study the robustness of LMS to different shapes 

and sources of non-normality and examine whether various statistical tests can help researchers 

detect such distributional misspecifications. In four simulations, we show that LMS can be severely 

biased when the latent predictors or the structural disturbances are non-normal. On the contrary, 

LMS is unaffected by non-normality originating from measurement errors. As a result, testing for 

the multivariate normality of observed indicators of the latent predictors can lead to erroneous 

conclusions, flagging distributional misspecification in perfectly unbiased LMS results and failing 

to reject seriously biased results. To solve this issue, we introduce a novel Hausman-type 

specification test to assess the distributional assumptions of LMS and demonstrate its performance. 

Keywords: Interactions, Moderation, Latent variables, LMS, Hausman, Specification test, 

Instrumental variables, XWITH   
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Testing the normality assumption in latent interaction models 

Moderating effects—also called interaction effects—are ubiquitous in the social sciences. 

However, the correct estimation of interaction effects presents several critical challenges, 

including the issue of measurement error (e.g., Cortina et al., 2021; Dawson, 2014; Dimitruk et 

al., 2007; Kenny & Judd, 1984). Fortunately, several techniques for modeling measurement error 

in moderated models exist (Kelava & Brandt, 2022). Among these methods, Latent Moderated 

Structural Equation Modeling is perhaps the most popular (LMS, Klein & Moosbrugger, 2000). 

The success of LMS is easily explained. If the model is correctly specified, LMS produces 

consistent (i.e., the parameter estimates converge to the true value as sample size increases) and 

efficient (i.e., precise) estimates. LMS is also easy to apply, adding to its popularity (e.g., the 

XWITH command in Mplus or the nlsem package in R, Umbach et al., 2017)1. 

Whereas LMS is straightforward to apply, understanding whether it produces trustworthy 

results is not as simple. Consider the following example using the Program for International 

Student Assessment (PISA) 2006 dataset inspired from Kelava et al. (2014). We use LMS and 

another technique, EXT (explained later in the article), to study if students’ career aspiration in 

science depends on their enjoyment of science, their academic self-concept in science, and the 

interaction between the two. Both LMS and EXT are consistent when their assumptions hold and 

should produce very similar results in large samples such as the PISA data. Nevertheless, this 

time, LMS and EXT return entirely different results. LMS suggests a negative but not significant 

interaction effect (-.02, SE = .02, p = .344), whereas EXT suggests a positive and strongly 

 

1 To get a rough idea of how widespread LMS is, it is worth reporting that a simple search on Google 
Scholar on 19.11.2023 of the keywords ("LMS" OR "XWITH") AND "MPLUS" returns 2,550 results. 
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statistically significant (.05, SE = .02, p = .009) effect. Why are these results so different? Which 

technique should one trust? 

When two consistent techniques produce vastly different results in large samples, this 

strongly indicates that the assumptions of at least one of the techniques do not hold. Thus, we 

need to focus on the assumption that LMS makes and EXT does not: Normality of latent 

variables. This normality assumption is different from the assumption of normally distributed 

observed data (i.e., indicators of latent variables) made in linear latent variable models (Klein & 

Moosbrugger, 2000). It is also a much stronger assumption. In linear models, violations of 

normality lead to biased standard errors and fit statistics, but they leave the parameter estimates 

unaffected, at least in large samples (e.g., Curran et al., 1996; Satorra & Bentler, 2001; Yuan et 

al., 2005). When using LMS, non-normal latent variables not only lead to incorrect inferential 

tests but can also lead to biased parameter estimates (e.g., Aytürk et al., 2020; Brandt et al., 2014; 

Cham et al., 2012; Klein & Muthén, 2007). As such, failing to acknowledge potential biases 

related to non-normality in empirical applications that rely on LMS or just assuming that Satorra-

Bentler corrections or similar fixes will solve them risks engendering misleading conclusions 

(e.g., Alessandri et al., 2021; Belogolovsky et al., 2016; Fasbender & Gerpott, 2023; McDermott 

et al., 2020; Sun et al., 2021; Taggart et al., 2019). Thus, statistical procedures and 

methodological guidelines for testing the normality assumption of LMS are sorely needed. 

In this paper, we tackle this broad topic by focusing on two types of diagnostic tools: 

multivariate normality tests for the observed indicators (e.g., Doornik & Hansen, 2008; Mardia, 

1970) and a novel Hausman-type specification test (cf. Hausman, 1978). Multivariate normality 

tests rely on a simple intuition. If the observed indicators of the latent predictors are significantly 

non-normal, chances are that latent predictors are also non-normal, thus causing biased LMS 

estimates. The specification test rests on a different logic, which, to the best of our knowledge, 
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was first proposed informally by Aguirre-Urreta et al. (2020). Specifically, it involves comparing 

LMS (i.e., a consistent and efficient estimator under normality) with another estimator that may 

be less efficient but is known to be consistent under more relaxed assumptions. If the two 

estimators produce very similar point estimates in large samples, this result means that the 

underlying population data are likely normal and LMS can be trusted; if they differ, normality is 

likely violated, suggesting that LMS is biased and inconsistent and should not be used to estimate 

the data at hand. 

We contribute to the literature by formalizing the novel specification test and comparing 

its performance against traditional multivariate normality tests in four Monte Carlo simulations. 

We show how LMS and alternative estimators perform under a large set of non-normality shapes 

(e.g., skewed or kurtotic variables) and types (i.e., non-normal latent predictors, structural 

disturbance, or measurement errors of the observed indicators). Overall, our results suggest that 

the multivariate normality tests and the specification tests are complementary. We, thus, urge all 

future applications of LMS to be more mindful of its normality assumption, always to report both 

types of tests in research articles, and to prefer a consistent estimator whenever LMS’ 

distributional assumptions are violated. 

Measurement error in interaction models: Problems and solutions 

Before turning to the core topic of our paper—the normality assumption—we briefly 

explain some key ideas related to measurement error in interaction models. We then present 

common corrective procedures, differentiating between estimators that assume normality (LMS) 

and estimators that do not. 

Measurement error in moderated models: Latent interaction  

Social scientists often use imprecise measures from questionnaires, surveys, or archival 

data. In these cases, measurement error—the difference between an observed measure and its 
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latent, unobserved value—can lead to untrustworthy estimates (Antonakis et al., 2010; Blake & 

Gangestad, 2020; Cole & Preacher, 2014; Cortina et al., 2021; Schmidt & Hunter, 1996). 

Measurement error in the predictors is problematic because it causes the well-known attenuation 

bias in bivariate regression, making it harder for researchers to detect effects. However, when 

multiple independent variables are measured with error, the bias’s magnitude and direction are 

difficult to predict (Wooldridge, 2002, Chapter 9).  

Researchers in psychology and neighboring disciplines often solve the measurement error 

issue using latent variable models (cf. Kline, 2015). This approach is straightforward if a model 

contains only linear terms, yet it becomes complex if it includes latent interactions. Consider the 

simplest possible latent interaction model shown in Figure 1 (see equations 1-6 in Klein & 

Moosbrugger, 2000 for details). This model has an observed dependent variable, 𝑦, and two latent 

predictors, 𝜉! and 𝜉". The latent variables 𝜉! and 𝜉" represent unobservable concepts, which are 

measured with three observed indicators (e.g., questionnaire items; 𝑥!, 𝑥", and 𝑥# for 𝜉!; 𝑧!, 𝑧", 

and 𝑧# for 𝜉"). 𝛿! to 𝛿$ represent measurement errors, and 𝜖 is the disturbance of the structural 

equation. The measurement errors and the disturbance are assumed to be uncorrelated with the 

latent predictors and each other. 

Estimating the model in Figure 1 is complicated by the fact that the latent variables 𝜉! and 

𝜉" do not have observed values that could be multiplied together to produce the interaction term, 

𝜉!𝜉", as one would do when estimating interactions between observed variables. The literature 

has, thus, proposed three broad categories of estimation techniques to “produce” 𝜉!𝜉" and 

estimate its effect (for a review, see, e.g., Kelava & Brandt, 2022): Distribution-analytic 

approaches, product indicator approaches, and observed variables approaches. We next review 

one commonly used estimator from each category: LMS, the extended unconstrained product 
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indicators (EXT, Marsh et al., 2004), and model-implied instrumental variables (MIIV, Bollen, 

1996; Bollen & Paxton, 1998)2. These techniques differ in their technical implementation, ease of 

use, efficiency, and—crucially for this article—distributional assumptions (Brandt et al., 2020). 

[Figure 1 about here] 

Latent Moderated Structural Equations 

Among the distribution analytic approaches, LMS is the most widely adopted. The 

mathematical explanation of LMS may appear complex (see Klein & Moosbrugger, 2000), but 

the intuition behind it is simple. Assume that the latent predictors, the measurement errors, and 

the structural disturbance are normally distributed. Because the product of two normal latent 

predictors is non-normally distributed, the dependent variable of an interaction model is also non-

normal. LMS estimation relies on this fact: The larger the interaction effect, the more non-normal 

the dependent variable should be. Formally, LMS does this by approximating the non-normal 

multivariate density of the indicators by a finite mixture of conditionally normal distributions 

produced by a numerical integral over the distribution of the latent predictor variables (Klein & 

Moosbrugger, 2000). 

When latent predictors, measurement errors, and structural disturbance are normally 

distributed, LMS is a maximum likelihood estimator and is consistent, asymptotically efficient, 

and asymptotically normal (Klein & Moosbrugger, 2000). Simulation results confirm these 

properties in finite samples (Brandt et al., 2014). However, LMS can perform poorly when its 

distributional assumptions fail (Kelava & Nagengast, 2012). The distribution of the latent 

 

2 Other approaches include, for example, the Quasi-Maximum Likelihood method (Klein & Muthén, 2007), 
the Method of Moments of Wall and Amemiya (2003), the method of Mooijaart and Bentler (2010), and the 
nonlinear structural equation mixture modeling approach (Kelava et al., 2014; Umbach et al., 2017). We do not cover 
these approaches because they are not widely used. 
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predictors is particularly critical. Generally, the stronger the non-normality, the larger the bias in 

the LMS estimates (Kelava et al., 2014; Lodder et al., 2019). The bias can also increase—rather 

than decrease—in larger sample sizes (Aytürk et al., 2020; Cham et al., 2012). 

Extended Unconstrained Product Indicator approach 

The model in Figure 1 can also be estimated by adding a new latent variable representing 

the interaction term (i.e., 𝜉!𝜉") and using the products of the indicators (e.g., 𝑥!𝑧!) as indicators 

for this new variable. When two variables are multiplied together, the error term of the product 

generally correlates with the error terms of the original variables (e.g., the product indicators 𝑥!𝑧! 

and 𝑥!𝑧" have the linear indicator 𝑥! in common, Foldnes & Hagtvet, 2014). This issue can be 

addressed in many ways by selecting which product indicators are used, centering the original 

variables or the product indicators, and freeing and constraining the error covariances of the 

product indicators. Consequently, many variants of this “product indicator approach” have been 

proposed since the early 1980s (Kenny & Judd, 1984). Recent literature recommends the 

“extended unconstrained product indicator” approach (EXT, Kelava & Brandt, 2009). This 

straightforward strategy freely estimates all parameters in latent interaction models (Marsh et al., 

2004).  

EXT is typically estimated using the same maximum likelihood estimator used for models 

containing only linear terms. This estimator is consistent and asymptotically normal when the 

data are multivariate normal (equation 2, see Yuan et al., 2005) and remains consistent 

irrespective of the distribution of the data (see, e.g., Browne & Shapiro, 1988; White, 1982; Yuan 

et al., 2005). However, both theory (see, e.g., eq. 25, Wall & Amemiya, 2001) and simulation 

work (e.g., Curran et al., 1996) show that standard errors and fit statistics are not trustworthy with 

non-normal variables. This property can represent a problem for EXT because the product 

indicators are never normally distributed. Fortunately, simulation studies show that the bias of 
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EXT is small and, although EXT underestimates standard errors (Cham et al., 2012; Kelava et al., 

2014; Marsh et al., 2004), this problem can be solved by using robust standard errors. However, 

robust standard errors are valid only asymptotically and may still be slightly underestimated in 

small samples (Brandt et al., 2014). 

Model Implied Instrumental Variables 

The MIIV procedure of Bollen (1996) is an entirely different way to estimate latent 

interaction models. MIIV recasts the latent variable model as an observed variable one by 

expressing each latent variable as a function of one of its indicators (latent-to-observed 

transformation). For instance, the two latent variables of Figure 1 can be expressed as 𝜉! = 𝑥! −

	𝛿! and 𝜉" = 𝑧! −	𝛿% (see equations 7-11, Bollen & Paxton, 1998). The transformation 

introduces a correlation between the predictors and the structural disturbance term and must be 

estimated with an instrumental variable estimator. In the MIIV estimator, the other indicators of 

𝜉!and 𝜉" (i.e., 𝑥", 𝑥# and 𝑧", 𝑧#) can serve as instruments, because each indicator is correlated 

with the latent variable, yet should be uncorrelated with the structural disturbance (Bollen et al., 

2022). When the interaction term 𝑥!𝑧! is included in the model, the products of the instruments 

(i.e., 𝑥"𝑧", 𝑥"𝑧#, 𝑥#𝑧",	and 𝑥#𝑧#) are used as additional instruments (see, e.g., Brandt et al., 2020). 

The MIIV estimator is typically estimated with two-stage least squares (Bollen, 1996) or 

generalized method of moments (Bollen et al., 2014). As such, MIIV does not require any 

distributional assumptions for consistency and asymptotic normality (Bollen, 1996; Bollen & 

Paxton, 1998). However, MIIV is inefficient and biased in small samples (see Chapter 4, Angrist 

& Pischke, 2009; Klein & Moosbrugger, 2000; Moulder & Algina, 2002); perhaps for this reason, 

there has not been much simulation work on MIIV estimation of interaction models.  
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The normality assumption 

The normality assumption is a major difference between LMS and the alternative 

estimators (EXT and MIIV). Whereas LMS has been proven to be consistent only when latent 

predictors, measurement errors, and structural disturbance(s) are normally distributed, EXT and 

MIIV do not require any specific distributional assumption to achieve the same result. This raises 

a deceptively simple question: Why would researchers ever want to use LMS instead of the safer 

alternatives that make fewer assumptions? 

Normality assumption: Convenience or conviction? 

Under normality, LMS is both statistically more appealing and more convenient to apply 

than the alternatives. First, it is more efficient (Brandt et al., 2014; Kelava et al., 2014). This 

means that researchers have a higher chance of correctly finding a significant interaction effect 

using LMS than other estimators. Second, LMS calculates correct standard errors under 

normality without the corrections to fit statistics and standard errors that EXT requires. Third, 

LMS does not suffer from the small sample bias problem of MIIV. Last, LMS can be effortlessly 

evoked with canned routines (e.g., the XWITH command in Mplus or the nlsem package in R, 

Umbach et al., 2017), and it does not require constructing complex product indicators, choosing 

which products to use, and deciding how to specify them in the model. 

Unfortunately, the normality assumption is not always credible. Indeed, observed data in 

the social sciences are often non-normal (Cain et al., 2017). Such non-normality can originate 

from three sources: the latent predictor variables, the structural disturbances, or the measurement 

errors. Non-normality in the latent predictors emerges whenever researchers focus on a variable 

that would be skewed or kurtotic even if it was perfectly measured. For instance, non-normal 

latent predictors can emerge whenever a researcher studies a rare ability (see, e.g., Micceri, 

1989), a low base-rate phenomenon (e.g., abusive supervision, Fischer et al., 2021), or a power-
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law distributed variable, like individual performance (i.e., many low-performers and a handful of 

star performers are usually observed, see Aguinis & O'Boyle Jr, 2014). 

Yet, even when latent predictors are (approximately) normally distributed (e.g., 

intelligence, Antonakis et al., 2017), non-normality might creep in from measurement errors. 

Non-normal measurement errors emerge by construction whenever researchers measure a 

(possibly normal) continuous latent factor with a Likert scale containing only categorical 

response options. In this case, respondents cannot precisely indicate their true score of the latent 

variable, ending up indicating the categorical option lying closer to their true latent value, thereby 

causing a non-normal measurement error3. Skewed measurement errors are also possible. For 

instance, the wording of questionnaire items might systematically shape responses, causing some 

ceiling effects (cf. Schwarz, 1999). Similarly, respondents’ reactions to sensitive or socially 

desirable questions might cause skewed responses, wherein most respondents misrepresent their 

true answers and fake either complete agreement or disagreement on a question (see Katz & 

Katz, 2010; Millimet & Parmeter, 2022). 

Finally, a non-normal structural disturbance also violates LMS assumptions and can occur 

even if latent predictors and measurement errors are normally distributed. The disturbance 

represents the sum of all unmeasured causes of the outcome, which can be many. The normality 

assumption of the disturbance is often justified by arguing that the sum of many independent 

causes is generally normal regardless of the distribution of the individual causes (and, thus, the 

 

3 To better understand how the use of categorical indicators leads to non-normal errors, the reader can run the 
following simple R code: 
set.seed(123) 
latent.var <- rnorm(10000)                    # normal latent variable 
observed.indicator <- round(latent.var)       # observed indicator 
meas.error <- latent.var - observed.indicator # measurement error 
hist(meas.error)         
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Central Limit Theorem applies, Zeckhauser & Thompson, 1970). However, there can sometimes 

be just a handful of omitted causes. For instance, if a researcher’s model already explains most of 

the outcome variance, assuming many unobserved causes might be unwarranted. It is also 

possible that one unobserved cause correlates with other ones, leading to non-independent 

omitted causes. The justification based on the Central Limit Theorem also breaks apart if one of 

the unobserved causes is substantially more important than others. Finally, measurement errors of 

observed dependent variables are comprised in the disturbance and can cause non-normality, as 

explained in the previous paragraph.  

Testing the normality assumption: Multivariate normality of the observed indicators 

A key question we address is this: How do we test for the inherently unobservable 

normality assumption of LMS? The first way is to examine the distribution of the observed 

indicators of the latent predictor variables (Brandt et al., 2014; Klein & Moosbrugger, 2000). 

Because observed indicators are functions of the latent variable and measurement error (e.g., 

𝑥! = 𝜉! +	𝛿! in Figure 1), non-normality of an indicator means that either the latent variable, 𝜉!, 

or the measurement error, 𝛿!, or both are non-normally distributed. Thus, researchers can inspect 

the normality of the indicators using graphical aids or multivariate normality tests (e.g., Mardia, 

1970) and use this information to determine if LMS estimates can be trusted.  

Yet, inspecting the distribution of the observed indicators has some limits. First, 

multivariate normality tests cannot determine whether non-normality originates from 

measurement error or latent predictors. This is a critical limitation because prior research 

suggests that non-normal latent predictors cause significant problems for LMS, but the same is 
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not necessarily the case with non-normal errors4. Second, multivariate normality tests cannot be 

applied to the dependent variable and, thus, cannot detect non-normality that originates from the 

structural disturbance. The issue is that the dependent variable is expected to be non-normal 

whenever an interaction effect exists (i.e., the product between two normal variables is never 

normally distributed). As such, testing the distribution of the outcome is meaningless because a 

non-normal outcome can either signal the presence of a non-normal disturbance or of an 

interaction effect. Third, multivariate normality tests of observed data are not tests for latent 

variable distributional misspecifications—and hence for bias—of LMS. As such, they risk 

flagging trivial deviations from normality that might lead to negligible bias in LMS (e.g., Klein & 

Moosbrugger, 2000; Lodder et al., 2019). 

Testing the normality assumption: Hausman-type specification test 

Because of the limitations of multivariate normality tests, we need a diagnostic tool that 

does not target the observed indicators. Moreover, we are not interested in violations of normality 

per se but rather in non-normality that is large enough to bias the LMS estimator meaningfully. 

Thus, we follow the intuition of Aguirre-Urreta et al. (2020) and propose a novel Hausman-type 

specification test to test the distributional assumptions of LMS. 

Hausman’s (1978) specification test is a general test of the consistency of an estimator 

that applies to a wide range of empirical problems (e.g., Aït-Sahalia & Xiu, 2019; Creel, 2004; 

Fair & Parke, 1980; Hahn & Hausman, 2002; White, 1980). The idea of the test is the following. 

Consider two different ways of estimating the same parameter (e.g., a latent interaction term) 

 

4 To the best of our knowledge, no simulation has tested the performance of LMS with non-normal 
continuous measurement errors, yet several papers have shown that categorical indicators (which can be thought of 
as a way to introduce a specific type of non-normal measurement error) lead to relatively little bias in LMS per se 
(Aytürk et al., 2020, 2021; Lodder et al., 2019). 
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referred to as 𝛽-& and 𝛽-' . Both estimators are consistent but 𝛽-'  makes fewer assumptions than 𝛽-&. 

When its stronger assumptions hold, 𝛽-& is more efficient than 𝛽-' . For instance, 𝛽-& might be 

efficient and consistent only under normality (e.g., LMS). In contrast, 𝛽-'  might be consistent 

under all distributional conditions but is less efficient (e.g., EXT, MIIV). In large samples, the 

difference between two consistent estimators should be small. The Hausman test considers this 

difference. If the difference is small enough to be attributed to chance, we can conclude that 𝛽-& is 

consistent. If the difference is large, we must conclude that 𝛽-& is inconsistent. 

More formally, the Hausman test tests the null hypothesis that 𝛽-& is consistent. The test 

assumes that 𝛽-& is efficient, that 𝛽-'  is consistent but inefficient, and that both estimators are 

normal in large samples under the null hypothesis. The test statistic is the ratio of the squared 

difference between the estimators and the variance of this difference: 

𝐻 =
/𝛽-' − 𝛽-&0

"

𝑉𝑎𝑟/𝛽-' − 𝛽-&0
 (1) 

This ratio follows a 𝜒" distribution with 1	degree of freedom under the null hypothesis 

(Hausman, 1978, Theorem 2.1). The key challenge in calculating the test statistic is estimating 

𝑉𝑎𝑟/𝛽-' − 𝛽-&0. Hausman’s (1978) main contribution was proving that 𝑉𝑎𝑟/𝛽-' − 𝛽-&0 =

	𝑉𝑎𝑟/𝛽-'0 − 𝑉𝑎𝑟/𝛽-&0. This produces a simple test statistic (Hausman, 1978, Lemma 2.1): 

𝐻 =
/𝛽-' − 𝛽-&0

"

𝑉𝑎𝑟/𝛽-'0 − 𝑉𝑎𝑟/𝛽-&0
 (2) 

A key challenge in the Hausman test is that Equation (2) is not always defined. Because 

𝑉𝑎𝑟/𝛽-'0 and 𝑉𝑎𝑟/𝛽-&0 are estimated, the (estimated) variance of the efficient estimator is 

sometimes larger than the (estimated) variance of the consistent estimator even when all the 

assumptions of the test hold. When this occurs, the 𝜒" value is negative and has no p-value. This 
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issue does not invalidate the Hausman test in large samples (as it becomes irrelevant 

asymptotically), but it poses significant challenges in practical applications. There are ways to 

address the issue with various closed-form estimators (e.g., Baum et al., 2003), but they do not 

apply to maximum likelihood estimates that use numerical optimization. 

A general solution to the negative H problem is to use another statistic that approximates 

the Hausman test statistic but is always positive. These approaches are sometimes called “Robust 

Hausman Tests” in the literature (Cameron & Trivedi, 2005, p. 273). One way to define such a 

statistic for a single coefficient is (henceforth labeled “robust Hausman”) 

𝐻( =
/𝛽-' − 𝛽-&0

"

𝑉𝑎𝑟/𝛽-'0
  (3) 

The 𝐻( 	statistic does not follow any known probability distribution because the variance of the 

numerator depends on 𝛽-&, which is not included in the denominator. However, 𝐻( can be a 

reasonable proxy of 𝐻 because it is always smaller than 𝐻5. This means that if 𝐻( is larger than 

the 𝜒"(1) critical value used in the significance test, then the null hypothesis would also be 

surely rejected based on 𝐻.  

Another solution to the negative Hausman statistic is to use a lower bound for the test 

statistic—that is, the lowest possible value the Hausman statistic can have—under maximally 

conservative assumptions (Cameron & Trivedi, 2005, p. 273): 

𝐻)* =
/𝛽-' − 𝛽-&0

"

𝑉𝑎𝑟/𝛽-'0 + 𝑉𝑎𝑟/𝛽-&0
  (4) 

 

5 Proving that 𝐻! is always smaller than or equal to 𝐻 is straightforward: 𝑉𝑎𝑟(𝛽'") is equal to or larger 
than 𝑉𝑎𝑟)𝛽'"* − 𝑉𝑎𝑟)𝛽'#* under the null hypothesis, because 𝑉𝑎𝑟)𝛽'#* is always a positive value. 
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Like 𝐻(, the 𝐻)* statistic is always positive. 𝐻)* is also always smaller than H under the null 

hypothesis, assuming that 𝐶𝑜𝑣/𝛽-' , 𝛽-&0 > 0, because the denominator of Equation (4) Error! 

Reference source not found.is always greater than the denominator of Equation (1). 

In sum, 𝐻( and 𝐻)* are conservative versions of the standard Hausman test. These 

statistics are guaranteed to be always positive and smaller than 𝐻. However, both 𝐻( and 𝐻)* are 

less powerful than the standard Hausman test (Cameron & Trivedi, 2005, pp. 273-274). This 

property should guarantee Type I error rates below these tests’ nominal levels (e.g., less than 5%). 

That is, both tests have a low probability of incorrectly flagging an unbiased LMS estimate as 

misspecified. The downside is that they risk flagging biased LMS estimates as correctly specified 

because the tests are less powerful than the standard Hausman test (see Figure 2). 

[Figure 2 about here] 

Testing the normality assumption: Simulation evidence 

How well do the multivariate normality tests of the observed indicators and the Hausman 

specification tests of LMS against EXT or MIIV detect distributional misspecifications in LMS in 

finite samples? In this section, we answer this question with four Monte Carlo simulations where 

we manipulate both the shape of non-normality and its origin (i.e., latent predictors, measurement 

errors, or structural disturbance). Table 1 summarizes the simulation setup and main results. 

In Simulation 1, we manipulate latent predictors’ distributions while keeping both 

measurement errors and the structural disturbance normally distributed. This scenario should lead 

to large biases in LMS and substantial departures from normality in the observed indicators. 

Thus, we expect the performance of multivariate normality tests to be excellent. Because latent 

predictors’ non-normality should leave the parameters estimated by EXT and MIIV unaffected, 
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we expect the specification tests to also perform well. However, all specification tests should lack 

power compared to the multivariate normality tests. 

In Simulation 2, we use normal latent predictors and structural disturbance, and 

manipulate the observed indicators’ measurement error distribution. We expect the multivariate 

normality tests to flag any possible distributional misspecifications in LMS, as non-normal 

measurement errors will substantially affect observed indicators’ distributions. However, we do 

not have a clear expectation about LMS’ performance. Whereas non-normal measurement errors 

formally represent a distributional violation for LMS (Klein & Moosbrugger, 2000), prior 

simulation evidence suggests that non-normal measurement errors have little biasing effect on 

LMS. Thus, we expect the specification test to rarely—if ever—flag LMS models as 

distributionally misspecified. 

In Simulation 3, we focus on a scenario that mimics the use of rating scales in a 

questionnaire (cf. Rhemtulla et al., 2012). In this simulation, we use non-normal latent predictors 

and normal structural disturbance (as in Simulation 1) but introduce also non-normal errors by 

collapsing the indicators into a small number of categories. We expect the multivariate normality 

tests to flag most data of this kind as problematic because categorical indicators are, by 

definition, non-normal. However, we also expect LMS to be biased mainly by the non-normal 

distribution of the latent predictors and not by the categorical indicators, at least if the number of 

categories of the indicators is large enough (Aytürk et al., 2020). Thus, we expect the multivariate 

normality tests to flag as misspecified some LMS estimates that might not be particularly biased 

and that the specification test might not reject. 

Finally, in Simulation 4, we let non-normality enter only from the structural disturbance. 

In this scenario, we have no clear expectations about the performance of LMS because violations 

of such distributional assumptions have never been studied, to the best of our knowledge. As a 
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result, we have no clear prediction about the performance of the specification tests. We anticipate, 

however, that the multivariate normality tests should be useless in this scenario because the 

misspecification affects only the dependent variable. As we previously discussed, the outcome’s 

distribution is uninformative (and, hence, not tested), because it cannot be expected to be normal 

even in a correctly specified interaction model. 

[Table 1 about here] 

Overview of the simulations 

Because all four simulations share the same basic structure, we set up the study as one 

large fractional factorial design. Each of the four simulations was full-factorial and nested in this 

larger design. The R code for the simulation and data are available online at 

https://osf.io/bsx23/?view_only=92ccaa76S26740578f984c8348fe2723. 

Data generation 

We use Figure 1 to set up a basic latent interaction model6. The coefficients of 𝜉! and 𝜉" 

(i.e.,  𝛾! and 𝛾") were set to 1, the variance of the structural disturbance was set at 3.2, and the 

nonlinear effect of 𝜉!𝜉" (i.e., 𝛾#) was set to .50 to produce effect sizes that are comparable with 

prior simulations (Brandt et al., 2020; Marsh et al., 2004; Moulder & Algina, 2002) or to 0 for a 

null interaction effect. The latent variables correlate .30. The error variances of 𝑥!-𝑥# and 𝑧!-𝑧# 

were set to either .86 or 1.14, corresponding to a coefficient alpha of roughly .80 and .70, 

respectively. The sample size was varied at 100, 200, 350, 650, and 1,000. 

All simulations used the same distributions but varied how the non-normal distributions 

were applied. In the baseline condition, all latent predictor variables, structural disturbance, and 

 

6 We use an observed dependent variable for simplicity and because measurement error in the dependent 
variable does not cause bias (Wooldridge, 2002, Chapter 9). As a robustness check, we re-run simulation 1 with a 
latent dependent variable, finding qualitatively identical bias figures (unreported results). 

https://osf.io/bsx23/?view_only=92ccaa76a26740578f984c8348fe2723
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indicator error terms were normal. We used several non-normal distributions for the other 

conditions. We had four 𝜒" distributions, with 1, 2, 4, or 8 degrees of freedom, ranging from 

severe to low skewness (cf. Kelava et al., 2014). We also had a t distribution with 4 degrees of 

freedom to model data with relatively large kurtosis (i.e., platykurtic data) and a uniform 

distribution, which models data with negative excess kurtosis (i.e., leptokurtic data). The 

distributions were scaled to have a mean of 0 and a standard deviation of 1 in the population. We 

used the copula method by Mair et al. (2012) to generate correlated non-normal latent variables 

because of the issues identified in the more commonly used Vale and Maurelli (1983) method 

(Foldnes & Grønneberg, 2015; Olvera Astivia & Zumbo, 2015). The indicator error terms (i.e., 

the measurement errors 𝛿!-𝛿$ in Figure 1) and the structural disturbance (𝜖 in Figure 1) are 

independent of other variables and were, thus, generated from univariate distributions. We used 

1’000 replications per condition. 

Estimators 

For each family of estimators considered, we employed several variants. First, we used 

two options for LMS: The traditional LMS and the reliability-corrected single-indicator LMS (SI-

LMS), recently introduced in prominent organizational behavior journals (Cheung & Lau, 2017; 

Su et al., 2019). SI-LMS differs from the traditional LMS because it combines the indicators of 

each latent predictor as a single parcel whose error variances are constrained like in errors-in-

variables models (Culpepper, 2012). The LMS-SI proponents argue that its theoretical properties 

should be close to those of LMS, yet violations of the distributional assumptions might have less 

severe consequences (Su et al., 2019). We also estimated LMS with robust standard errors as a 

robustness check. All LMS estimates were calculated with Mplus using the MplusAutomation 

package (Hallquist & Wiley, 2018). 
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Second, we used two variants of EXT, one with matched product indicators (EXT-

MATCHED) and one with all product indicators included (EXT-ALL). EXT-MATHCED was set 

up following Marsh et al. (2004) using only three non-redundant product indicators (i.e., 𝑥!𝑧!, 

𝑥"𝑧", and 𝑥#𝑧#) for the non-linear term. EXT-ALL was set up following Foldnes and Hagtvet 

(2014), using all potential product indicators (i.e., 𝑥!𝑧!, 𝑥"𝑧", 𝑥#𝑧#, 𝑥!𝑧", 𝑥!𝑧#, 𝑥"𝑧!, 𝑥"𝑧#, 𝑥#𝑧!, 

𝑥#𝑧") and freeing all error covariances among product indicators sharing an indicator (e.g., 𝑥!𝑧! 

and 𝑥!𝑧"). The indicators were centered before generating the product indicators (Marsh et al., 

2006; Wall & Amemiya, 2001). The EXT estimates were calculated with lavaan (Rosseel, 2012) 

using robust standard errors (indicated with the “-R” label) and, as a robustness check, also with 

conventional ones. 

Third, we used two variants of MIIV. MIIV-ALL was set up using all possible product 

indicators as instruments. Thus, there are 2 instruments per latent variable (i.e., 𝑥", 𝑧", 𝑥#, and 𝑧#) 

and 4 instruments for the interaction term (i.e., 𝑥"𝑧", 𝑥"𝑧#, 𝑥#𝑧", and 𝑥#𝑧#). MIIV-PARCEL 

combined the original instruments as three parcels (see Rönkkö et al., 2020). Parceling the 

instruments is an unexplored strategy, which might be helpful in small samples and follows the 

recommendation by Bollen et al. (2007) to use only a few instruments. The MIIV estimates were 

calculated with a two-stage least squares estimator implemented with the AER package (Kleiber 

& Zeileis, 2009). 

Finally, as a benchmark, we also estimated a naïve observed-variable regression model 

via ordinary least squares (OLS) using scale means and their interactions as predictors. 

Non-convergent solutions and outliers 

Before analyzing the simulation data, we inspected solutions flagged as nonconvergent or 

where no coefficients or standard errors were produced. After ensuring that these were caused by 
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a non-convergent estimator and not a programming error, we discarded the entire replication (i.e., 

all estimators) because a non-convergent result signals a replication that could also be 

challenging for the other estimators. Then, following Boomsma (2013), we used the box-plot 

method to identify outliers in the interaction effect estimates. Proceeding with one estimator-

design combination at a time, we flagged all estimates that were more than three interquartile 

ranges below the first quartile or above the third quartile as outliers. We then deleted all 

replications that contained at least one outlier estimate, as in the case of non-convergent 

replications. 

Performance of the estimators 

We analyze the bias of the estimators using absolute bias (i.e., the average estimated 

interaction effect over successful replications minus the true value of the interaction effect). To 

assess their precision (i.e., efficiency), we calculated the mean standard deviation of the estimated 

interaction effect across all successful replications in each design cell. We then compared this 

statistic against the mean standard error to assess the bias of the standard errors (see, e.g., Morris 

et al., 2019; see also Supplementary Material 1). 

Multivariate normality and specification tests 

We tested the multivariate normality of the observed indicators using the Mardia’s 

multivariate kurtosis and skewness tests (Mardia, 1970) and the more recent omnibus test of 

Doornik and Hansen (2008), all calculated with the MVN package (Korkmaz et al., 2014)7. We 

also recorded the 𝐻(, 𝐻)*, and the standard Hausman statistic and their p values. 

 

7 During the study, we noted that the result of the Doornik-Hansen test computed by the MVN package 
depended on the means of the variables. After verifying that this behavior was caused by a programming error in the 
package, we reported the error to the package maintainer. Because we did not hear back from him, we forked the 
package and published a corrected version at https://github.com/mronkko/MVN. We also simulated the Royston 

 

https://github.com/mronkko/MVN
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Simulation 1: Manipulating latent predictors’ distributions 

In Simulation 1, we manipulated the distribution of the latent predictor variables using 11 

different configurations. We used the three symmetric distributions (normal, t, uniform) and four 

𝜒" distributions. Each 𝜒"	distribution was used twice by modeling a scenario where both 

predictors were skewed in the same direction (right-skewed) and a scenario where they were 

skewed in different directions. We used all five sample sizes and varied the indicators’ reliability 

and whether an interaction existed in the population, producing an 11×5×2×2 = 220 full-factorial 

design. Structural disturbance and measurement errors were standard normal in all conditions. 

Results for Simulation 1 

Figure 3 shows the overview of the simulation results across latent predictors’ 

distributions, and Figure 4 and Figure 5 show the results also by sample size. Although we show 

the results for all estimators in Figure 3, we discuss only on the best-performing estimator of each 

type: LMS with normal standard errors, EXT-ALL-R with robust standard errors, and MIIV-

PARCEL8. Complete results are reported in Supplementary Material 1. 

Outliers and non-convergent solutions. Overall, there were a few convergence 

problems with LMS (.07%) and EXT-ALL-R (.71%). MIIV-PARCEL always converged, being a 

closed-form estimator. Outliers were also rare: LMS (.20 %), EXT-ALL-R (.76 %), and MIIV-

PARCEL (.78%). Most outliers emerged in the smallest sample condition, which was the most 

challenging one for all estimators. 

 

(Royston, 1992) and the Henze-Zirkler (Henze & Zirkler, 1990) multivariate normality tests. Their performance was 
qualitatively similar to the Mardia tests and the Doornik-Hansen test. Given that these tests are also more rarely used 
by applied researchers, we just report their results in the Supplementary Material. 

8 We focused on: (a) LMS with normal standard errors because the use of robust standard errors did not 
make a difference and because the performance of LMS-SI, while being promising and generally better behaved than 
LMS at the smallest sample size, led to no substantive differences in terms of bias under non-normality; (b) EXT-
ALL-R because non-robust standard errors are generally underestimated and because EXT-MATCHED-R is slightly 
more biased; (c) MIIV-PARCEL, which performs similarly to MIIV-ALL but tends to be less biased. 
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Bias when the latent interaction effect is present. LMS shows virtually no bias in the 

normal condition. However, when the latent variables are highly skewed in the same direction, 

LMS is strongly biased (i.e., absolute bias around .40). The bias decreases with decreasing 

skewness (i.e. when the degrees of freedom of the 𝜒" distribution increases) and when the latent 

variables are skewed in opposite directions (see Figure 4). To our understanding, this result is 

new to the literature. When both predictors are skewed in the same direction, the outcome 

contains a lot of “excess skew” compared to the case of normal predictors. Our intuition is that 

because interactions of correlated and centered variables also produce skewed outcome 

distributions, the excess skew is “used” by LMS to infer the existence of an interaction effect, 

causing bias. When the predictors are skewed in different directions, there is much less excess 

skew and consequently a smaller positive bias in LMS estimates (i.e., the opposite skews “cancel 

out”). With symmetric distributions, LMS shows sizable bias in the t-distribution condition but 

virtually no bias in the uniform condition. We believe this pattern emerges because interactions 

also produce heavy-tailed distributions (large kurtosis). Thus, the t distribution with its large 

kurtosis throws off the LMS estimator in a way that the uniform distribution with its negative 

excess kurtosis does not. 

In contrast to LMS, the performance of both MIIV-PARCEL and EXT-ALL-R is virtually 

unaffected by non-normally distributed predictors. Also, indicator reliability has little effect on 

their bias. In contrast, when LMS produces biased results because of non-normal predictors, the 

bias becomes visibly larger in low-reliability conditions (see Figure S1). Moreover, the effects of 

sample size on LMS’ bias are minor compared to the effects of the latent variables’ distributions 

(see Figure S4). Finally, the linear terms estimated by LMS are also slightly biased under non-

normality (see Figure S10). 
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Bias when the latent interaction effect is null. The same pattern of results mostly holds 

when there is no interaction effect in the population, as shown in Figure 5. One important 

difference is that LMS is now unbiased when the latent variables are skewed in opposite 

directions. Moreover, when LMS produces biased results, the bias tends to be less pronounced 

than in the conditions where the effect existed in the population. We attribute both results to the 

previously mentioned LMS’s sensitivity to skewed outcomes. However, the bias LMS can still be 

unacceptably high in some conditions; in these cases, EXT and MIIV are unbiased and should be 

preferred. Finally, the effect of indicators’ reliability and sample size is qualitatively similar to the 

conditions where the latent interaction effect is present (see Figures S1 and S7). 

Efficiency and accuracy of the standard errors. Figure 3 shows that LMS is the most 

efficient estimator with a clear margin when its assumptions hold, especially in the smallest 

sample sizes (see Figure S5). LMS remains more efficient than the alternative unbiased 

estimators also in some non-normal conditions. However, LMS tends to lose its efficiency 

advantage when skewness increases, becoming even less efficient than EXT-ALL-R in the most 

skewed condition. All these patterns are qualitatively similar, whether the interaction effect exists 

or not (see Figure S8). 

Concerning the other estimators, MIIV-PARCEL is generally the least efficient estimator. 

Moreover, MIIV-PARCEL also underestimates standard errors in the most skewed conditions. 

EXT-ALL-R is generally more efficient and its estimated standard errors tend to be closer to the 

Monte Carlo standard deviations. EXT approaches tend, however, to overestimate the Monte 

Carlo standard deviation at the smallest sample sizes and especially in uniform and normal 

conditions, confirming known results (see Figure S6-S9).  

Multivariate normality and specification tests. The Mardia and the Doornik-Hansen 

tests perform very well, flagging biased LMS models even in the smallest sample sizes (Figure 4 
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and Table S5). The Mardia skewness test is especially powerful. On the flip side, the multivariate 

normality tests also detect instances of non-normality that are inconsequential for LMS, 

especially when the interaction effect does not exist (see Figure 5 and Table S6). This is because 

non-normal latent predictors invariably cause non-normal observed indicators, yet not all shapes 

and degrees of non-normality are equally problematic for LMS. 

Turning our attention to the specification test, we find a large number of negative 

Hausman statistics. Averaging across conditions, almost 64% and 45% of 𝐻 values computed 

using EXT-ALL and MIIV-PARCEL as consistent estimators were negative. The negative H issue 

was more common in the most skewed condition (85.78% and 72.25% negative values) than in 

the normal one (27.61% and 6.17% negative values) because LMS is no longer efficient in these 

conditions. Although it may be tempting to interpret a negative H as evidence against the null 

hypothesis of no distributional misspecification, the false positive rates (i.e., when all latent 

variables are normally distributed) are too high for this decision rule to be of much practical use. 

As such, we do not discuss the traditional Hausman test any further and focus on the robust 

alternatives. 

The robust Hausman specification test has adequate power in mid-to-large sample sizes 

and for severely skewed latent variables, especially when using EXT-ALL-R as the consistent 

estimator (Figure 4 and Table S5). The test loses power when distributions are less skewed, or the 

predictors are skewed to different directions because LMS is less biased in these conditions. The 

𝐻( test is more powerful than the “lower bound” Hausman test, 𝐻)*, by a clear margin in all 

conditions (in line with Cameron & Trivedi, 2005, p. 273). Both specification tests show a low 

Type I error rate (less than 5%) when latent predictors are normally distributed, regardless of 

which estimator is used as the consistent one. In the case of a null interaction effect, the power of 

the specification tests is visibly lower (Figure 5 and Table S6). This low statistical power stems 
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from the fact that, even though the distributional assumptions of LMS are violated, they affect the 

LMS estimates less than in the case where the interaction effect exists. Finally, the specification 

test performs particularly well in the low-reliability conditions when the latent interaction effect 

is present, most likely because LMS’s performance degrades particularly in these cases (see 

Figure S11-S14). 

[Figure 3, Figure 4, and Figure 5 about here] 

Brief discussion of Simulation 1 

Simulation 1 demonstrates that the specification tests can flag important distributional 

misspecifications at mid-to-large sample sizes. However, the multivariate normality tests of the 

observed indicators can accomplish the same objective with substantially more statistical power. 

These tests are so powerful that using them to detect misspecifications in LMS might come at a 

cost. Whereas all non-normal distributions formally violate LMS’s assumptions, some violations 

are inconsequential, leading researchers to select possibly less efficient estimators over LMS 

even when LMS would show minimal bias.  

Simulation 2: Manipulating measurement errors’ distributions 

In Simulation 2, we use normal latent predictors and introduce non-normality through 

indicators’ measurement errors. To save on computation costs, we use a subset of the conditions 

from Simulation 1. Instead of using all 𝜒" distributions, we used only the most skewed one and, 

thus, focused on three distributions (𝜒"(1), 𝑡(4), and uniform). We did not include the normal 

distribution because the “all normal” condition was already reported as a part of Simulation 1. 

The sample sizes and reliability conditions were the same as in the first simulation, producing a 

3×5×2 = 30 full factorial design.  
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Results 

For brevity, we again report only results for the estimators that performed best in 

Simulation 1 and do not report figures for standard errors and Monte Carlo standard deviations 

(complete results are in Supplementary Material 2). 

Outliers and non-convergent solutions. As in Simulation 1, we first dropped all non-

convergent replications (.09% for LMS and 1.68% for EXT-ALL-R) and all replications 

including outliers (.05% for LMS, .80% for EXT-ALL-R, .66% for MIIV-PARCEL). 

Bias. Figure 6 shows that measurement errors’ distributions have little to no effect on the 

bias of any of the estimators, including LMS. This result is relatively unsurprising given that 

LMS estimates the interaction effect from the distribution of the dependent variable, which is 

unaffected by the distribution of the errors of the predictor variables’ indicators.  

Efficiency and accuracy of the standard errors. LMS is unaffected by measurement 

errors’ distributions and generally remains the most efficient estimator, also estimating standard 

errors rather accurately (see Figures S20 and S23). In contrast, EXT-ALL-R (and, to a lower 

extent, also MIIV-PARCEL) tend to overestimate standard errors, particularly at low sample sizes 

(see Figures S21 and S24). 

Multivariate normality and specification tests. The multivariate normality tests can 

detect all non-normal measurement errors throughout most conditions. Nevertheless, this high 

power is not very useful because non-normal errors pose little problems for LMS. To reiterate, 

this behavior is expected because the normality tests inform us of the distribution of the 

indicators but do not consider the bias of LMS estimates. In contrast, the specification tests 

perform better. Because of the low bias of LMS, the 𝐻( and 𝐻)* specification tests have a 

virtually 0 probability of flagging LMS estimates as misspecified, irrespective of whether EXT-

ALL-R or MIIV-PARCEL is used as the consistent estimator. 



NORMALITY ASSUMPTION IN LATENT INTERACTION MODELS 27 

[Figure 6 about here] 

Brief discussion of Simulation 2 

Simulation 2 clarifies that violations of distributional assumptions concerning 

measurement errors do not lead to meaningful bias in LMS. In this case, the multivariate 

normality tests flag unbiased LMS estimates as misspecified. In contrast, the Hausman-type 

specification test performs better, keeping the Type I error rate at a minimum. Taken together, the 

results thus far indicate that the multivariate normality tests and the specification tests have 

different strengths and weaknesses. The multivariate normality tests are very powerful in 

detecting problematic conditions for LMS, but using them as the sole diagnostic would lead to 

rejecting perfectly acceptable LMS results. In contrast, the specification tests are less powerful 

and outright underpowered in the smallest sample sizes but rarely lead to rejecting acceptable 

LMS results. This pattern suggests that the two classes of tests are complementary. 

Simulation 3: Non-normal measurement error due to categorical observed indicators 

In Simulation 3, we focused on categorical indicators (e.g., rating scales in a survey). We 

manipulated the distribution of the latent predictor variables using both correct (normal) and a 

subset of the misspecified (𝜒"(1), 𝑡(4), uniform) distribution conditions from the first simulation. 

Following Simulations 1 and 2, we used all five sample sizes and the two reliability conditions. 

Additionally, we varied the number of categories between 2 and 7 indicators, producing a 

4×5×2×6 = 240 full factorial design. In all conditions, the structural disturbance was normally 

distributed. We generated categorical data by generating continuous indicators (exactly as in 

Simulations 1 and 2), cutting these into the desired number of categories, and finally rescaling the 

data to have the same population means and variances as the continuous data. The cutoffs were 

determined by estimating each continuous indicator’s 1% and 99% cumulative probability and 

cutting the resulting interval into equally spaced parts.  
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Results 

For brevity, we again report only the main results in the text (complete results are in 

Supplementary Material 3). 

Outliers and non-converging simulations. We dropped all replications that did not 

converge (1.02% for LMS, 3.37% for EXT-ALL-R, and .001% for MIIV-PARCEL9) and all 

replications including outliers (.31% for LMS, 1.48% for EXT-ALL-R, 1.44% for MIIV-

PARCEL). Compared to the previous simulations, these figures are larger. For instance, the non-

convergence rates were as high as 50% for the LMS estimator in the most demanding conditions 

(e.g., binary indicators, skewed latent predictors, low reliability, and smallest sample size)10. We 

inspected a subset of the nonconvergent replications (using LMS-SI, which suffered especially 

from non-convergence issues) to understand the cause of the problem. Even increasing the 

number of integration points by ten times or using the population values as starting values did not 

help. Based on these diagnostics, we conclude that binary indicators present a challenging case 

for the LMS estimation algorithm. As such, the simulation results obtained when indicators have 

only two categories should be interpreted with much caution. In conditions with more categories, 

however, the non-convergence issue is much less severe. 

 

9 The MIIV estimator is closed form and, thus, does not have convergence issues. In this simulation, we 
encountered a few cases where binary indicators and the smallest sample size produced perfect collinearity between 
predictors or instruments. In this case, the estimates do not exist, and none of the estimation techniques provided 
results. 

10 LMS-SI had the most convergence problems (in the 90% range) in the two-indicator, low-reliability, and 
skewed latent predictors conditions. Whereas we present the results only for LMS, EXT-ALL-R, and MIIV-
PARCEL in the main text, we always dropped non-convergent replications based on all estimators because the 
figures of Simulation 1 include all estimators. We use the same dropping rule throughout the study for simplicity and 
to maintain comparability between the simulations. Nevertheless—and because of the concern that the high non-
convergence rates of LMS-SI might be driving the results in Simulation 3—we generated an alternative set of results 
where we excluded replications only based on LMS, EXT-ALL-R, and MIIV-PARCEL. These results are very 
similar to the figures presented in the article and they are available at 
https://osf.io/bsx23/?view_only=92ccaa76S26740578f984c8348fe2723. 

https://osf.io/bsx23/?view_only=92ccaa76a26740578f984c8348fe2723
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Bias. Figure 7 shows that all estimators performed very similarly to Simulation 1, though 

the bias is systematically larger due to the lower information content of categorical indicators. 

LMS is severely biased when the latent predictors are skewed but is less affected by the kurtotic 

ones11. All estimators show some bias in the t distribution but are unaffected by the uniform one. 

A higher number of categories tends to decrease the bias for all estimators (see also Aytürk et al., 

2020). This result aligns with a prior suggestion that items with enough categories (e.g., five) can 

usually be considered continuous (Rhemtulla et al., 2012)12. As in the previous simulations, when 

LMS is biased, the magnitude of the bias is strongly affected by the indicator reliability (see 

Figure S30-S31).  

Efficiency and accuracy of the standard errors. The behavior of all estimators is 

similar to Simulation 1 but suffers when indicators have few categories. LMS is usually the most 

efficient estimator, except again in the most skewed condition. EXT-ALL-R and MIIV-PARCEL 

have large Monte Carlo standard deviations, especially in the t-distribution condition and when 

the indicators have only a handful of categories (see Figure S32-S33). All estimators tend to 

overestimate standard errors, but this problem diminishes from three or four categories onwards. 

When indicators are binary, all estimators substantially overestimate standard errors, especially in 

low-reliability conditions (see Figure S34-S35). 

 

11 Figure 7 shows a smaller bias for LMS in the two-category case compared to the three-category case. 
This result is an artifact due to how non-convergent results were dropped. When we drop results only based on LMS, 
EXT-ALL-R, and MIIV-PARCEL, LMS shows slightly more bias for the two-category case than the three-category 
case (see Footnote 10). 

12 Mplus implements categorical variable estimation using polychoric correlations. We also considered 
using this estimator but did not, because it would produce results that are scaled differently from the continuous 
variable estimators. Whereas the scaling issue can be solved by using standardized estimates (Rhemtulla et al., 
2012), this procedure presents an additional problem because it is not clear how the LMS results should be 
standardized. 
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Multivariate normality and specification tests. The multivariate normality tests 

perform similarly to Simulation 1 but with some exceptions. Most notably, the Mardia 

multivariate kurtosis test and the Doornik-Hansen test flag most of the normal latent variable 

cases as non-normal. Although categorical indicators are indeed always non-normal, they rarely 

bias LMS per se, as our results show. Even with seven categories, these tests suggest discarding 

perfectly unbiased LMS estimates more than 50% of the time. In addition, there is some loss of 

statistical power compared to Simulation 1. Specifically, the Mardia kurtosis test flags now fewer 

issues when the latent variables are 𝜒" distributed and the number of categories is more than 3. 

Likewise, the Mardia skewness test detects fewer issues when latent variables are t or uniformly 

distributed. 

The specification tests also perform qualitatively similarly to Simulation 1. This is 

expected because LMS remains biased with non-normal latent variables even if indicators are 

categorical. However, 𝐻( loses power because the standard errors of EXT and MIIV are 

overestimated and because these estimators can be slightly biased by the categorical indicators. 

The same applies to the 𝐻)* statistic, which is particularly underpowered. Finally, like in 

Simulation 1, the specification tests perform better with low-reliability indicators, probably 

because of the LMS’ bias, which is more considerable in this condition (see Figure S37-38). 

[Figure 7 about here] 

Brief discussion of Simulation 3 

Simulation 3 shows that non-normality that originates from using categorical indicators to 

measure continuous latent variables does not, per se, lead to a large bias in LMS. Rather, 

categorical indicators worsen the bias caused by non-normal latent predictors. Categorical 

indicators pose challenges for both the multivariate normality tests and the specification tests. 
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The multivariate normality tests are the most powerful alternative for detecting problems when 

they exist but suffer from the problem of flagging inconsequential non-normality as problematic. 

Categorical indicators pose little-to-no problems for LMS as long as the other assumptions hold, 

but are flagged as non-normal and thus potentially problematic by the normality test. The 

Hausman-type specification test (𝐻() performs visibly better in normal and uniform conditions, 

correctly suggesting that few LMS models are biased. However, the Hausman-type test has less 

power to detect problematic conditions, and its power further decreases with categorical 

indicators compared to continuous ones, making it useful only with extreme violations of 

normality. 

Simulation 4: Manipulating structural disturbance 

In Simulation 4, we again generate normal latent predictors and measurement errors but 

simulate non-normal structural disturbance. To save on computation costs, we focused again only 

on three distributions (𝜒"(1), 𝑡(4), and uniform). The sample size and reliability conditions were 

the same as in the other simulations. Altogether, this produced a 3×5×2 = 30 full factorial design.  

Results for Simulation 4 

For brevity, we again report only the main results in the paper (complete results are in 

Supplementary Material 4). 

Outliers and non-convergent solutions. We first dropped from the analysis all non-

convergent replications (1.76% for LMS and 1.62% for EXT-ALL-R) and all replications with 

outliers (1.46% for LMS, .93% for EXT-ALL-R, .67 for MIIV-PARCEL). 

Bias. Figure 8 shows that all estimators are virtually unaffected by non-normal structural 

disturbances, with one exception. LMS suffers from a major bias when the disturbance is 𝜒"(1) 

distributed and the indicator reliability is low. The bias also counterintuitively increases with the 
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sample size. The magnitude of bias is surprising and deserves some explanation. We, thus, plotted 

the distribution of these estimates in Figure 9, which shows them to be strongly bimodal. The 

issue affected both LMS and LMS-SI. We investigated the latter because it was slightly less 

affected by the problem. To rule out the possibility of a programming error, we ran a few models 

by hand directly in Mplus. We also adjusted the number of integration points and starting values, 

which had little effect on the results. We then regressed the estimates against the sample 

characteristics and found that estimates close to the second mode depended on the skewness of 

the dependent variable in the sample. Plotting the estimate over skewness revealed a clear cutoff 

of skewness (about 1.7 for N = 1’000 and in the low-reliability condition), after which the 

secondary mode appears. Increasing the sample size to 5’000 decreased the secondary peak but 

did not eliminate it. These results and the datasets are available on the previously linked OSF 

page. 

This unexpected behavior of LMS is cause for concern and should be studied further in 

future research. Here, we provide an initial and brief explanation of why and when this problem 

occurs. The product of two correlated latent variables has a skewed distribution. When a case has 

a dependent variable value far in the tail, it should also have explanatory variables’ values in the 

tails of their distributions. In the high-reliability conditions, we have more information on the 

explanatory variables; consequently, this second condition is easier to evaluate. When reliability 

decreases, it becomes increasingly difficult to differentiate whether the skewness of the 

dependent variable is due to the interaction or the skewed disturbance. As a result, the interaction 

effect becomes nearly empirically underidentified. In this scenario, the optimizer sees a flat 

region in the likelihood and tends to converge on the edge of this region (note: this pattern was 

visible in the Mplus iteration log). In other words, the estimation algorithm either attributes most 

of the (excess) skewness to the error term, producing an estimate in the primary mode, or 
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attributes most of the (excess) skewness to the interaction term, producing an estimate in the 

secondary mode. 

Efficiency and accuracy of the standard errors. In the kurtotic and normal 

distributions, the behavior of the various estimators is similar to Simulation 1, with LMS being 

the most efficient. With highly skewed structural disturbances, however, LMS behaves poorly, 

being the least efficient estimator and severely underestimating the standard errors, especially in 

the low-reliability condition (see Figure S43; note, however, that interpreting the Monte Carlo 

standard deviation of LMS in the skewed condition is complex, due to the large bias exhibited by 

LMS in this condition). Concerning the other estimators, EXT-ALL-R shows an upward bias of 

the estimated standard errors (especially in small samples), whereas MIIV-PARCEL is mostly 

unaffected by the structural disturbance distribution (see Figures S43 and S46). 

Multivariate normality and specification tests. The multivariate normality tests cannot 

provide any information about the distribution of the structural disturbance because these tests are 

—by construction—not applied to the dependent variable. In contrast, the specification tests 

perform better. Indeed, the 𝐻( specification had virtually 100% chance of detecting extremely 

biased estimates in the secondary mode. The reason why Figure 8 (i.e., 𝜒"(1) – low reliability 

panel) shows lower power levels is just an artifact of the bimodal distribution of the LMS bias in 

this condition. Extreme bias (i.e., secondary mode) emerges in a subset of replications (between 

about 20% and 75% depending on the sample size) and the power levels in the figure reflect this 

fact (see Figure S50). 

[Figure 9 and Figure 8 about here] 

Brief discussion of Simulation 4 

Simulation 4 portrays a complex and perplexing picture of LMS. Non-normal structural 

disturbances are mostly harmless, at least regarding bias. However, they can lead to rare—though 
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catastrophic—bias if the disturbance is severely skewed and the reliability of the indicators is 

relatively low. Such an extreme scenario might be rare in empirical studies. Nevertheless, it poses 

a major challenge for LMS and multivariate normality tests of the observed indicators, which 

cannot detect such misspecification. However, the Hausman-type test performs much better, 

flagging all instances of extreme LMS bias. 

Empirical examples 

We now present two empirical examples to show how to diagnose violations of normality 

in practice. The code to replicate the first empirical example, based on publicly available data, is 

available on the previously linked OSF page. For brevity, we present only the interaction models. 

The confirmatory factor analysis results, model fit indices, and diagnostics are presented in 

Supplementary Material 5. We emphasize that these examples are just illustrations and put aside 

other aspects of correct model specification (e.g., the presence of unobserved confounders). As 

such, the reader should refrain from drawing any causal conclusions from the results. 

PISA dataset 

Following Kelava et al. (2014), the first example uses the Jordan data of the Program for 

International Student Assessment 2006 dataset (Organisation for Economic Co-Operation and 

Development, 2009) for demonstration purposes. The sample consists of 6,038 15-year-old 

students, and the data measures their attitudes, motivation, and educational performance on a 

four-point scale. We use these data to run a simple model where enjoyment of science (ENJ, five 

items, 𝑥!-𝑥+), academic self-concept in science (SC, six items, 𝑥$-𝑥!!), and their interaction (ENJ 

× SC) are used to explain career aspiration in science (four items, 𝑦!-𝑦%). To simplify the 

analysis—given the mere didactical purpose of this example—we did not use survey weights and 

focused on a latent interaction effect rather than on estimating a full-polynomial model (like 

Kelava et al., 2014). 
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We estimate the LMS model in Mplus and both EXT-MATCHED-R and MIIV-PARCEL 

in R. Given the pedagogical nature of this example, we chose EXT-MATCHED over EXT-ALL, 

because it is considerably simpler to implement and can, thus, be a more useful blueprint for 

applied researchers interested using our code. We use 𝑥!𝑥$, 𝑥"𝑥,, 𝑥#𝑥-, 𝑥%𝑥., and 𝑥+𝑥!/ as 

product indicators for the latent interaction in the EXT-MATCHED-R model. We use 𝑥!, 𝑥$, and 

𝑥!𝑥$ to recast the latent interaction model into an observed variable one in MIIV-PARCEL, using 

𝑥"-𝑥+ to generate a parcel for ENJ, 𝑥,-𝑥!! to generate a parcel for SC, and the 20 possible 

interactions between the potential indicators of ENJ and SC (e.g., 𝑥"𝑥,) to generate a parcel for 

ENJ × SC; we also use an index of career aspiration as a dependent variable for MIIV-PARCEL. 

We center all indicators before generating the product indicators.  

Across estimators, we find positive estimates of both linear effects (see Table 2). 

However, the latent interaction effect estimates differ considerably between the estimators. 

According to LMS, the interaction term is negative and not significant (-.02, p = .344), whereas it 

is positive according to EXT (.05, p = .009) and MIIV (.08, p < .001); as a benchmark, the 

interaction term estimated with OLS (where scale means and their interaction are entered as 

predictors, ignoring measurement error) is positive, but not significant. To select which estimator 

to retain, we run the 𝐻( specification test using EXT-MATCHED-R or MIIV-PARCEL as the 

consistent estimators. In both cases, we strongly reject the assumption of no distributional 

misspecification of LMS (EXT vs. LMS: 𝐻( 	= 12.64, p < .001; EXT vs. MIIV: 𝐻( 	= 20.43, p 

< .001), suggesting that the distributional assumptions of LMS are unlikely to be met. In this 

case, inspecting the distribution of the observed variables is not as useful because of the small 

number of response categories (four). However, both visual inspection and normality tests show 

that the observed variables are left skewed. Thus, this example shows that the conclusions drawn 
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using LMS may be wrong and that the specification tests can help researchers select the correct 

model.  

[Table 2 about here] 

ZVT dataset 

For our second example, we use a smaller dataset where the independent variable is not a 

set of questionnaire responses but a psychometric test. Specifically, we use an unpublished 

dataset (available from the third author) based on surveys conducted in small and medium-sized 

firms in Kampala City (Uganda) from July 2012 to August 2012. In each structured 

questionnaire/interview, entrepreneurs were asked several questions, as well as to complete four 

versions of the Zahlen-Verbindungs-Test (ZVT), a trail-making test where subjects are asked to 

connect numbers ranging from 1 to 90 in four different matrixes with a hand-written line (Oswald 

& Roth, 1987). Crucially, the numbers are positioned randomly in each matrix and subjects have 

30 seconds to complete each matrix; their score is given by the highest correct number they 

managed to connect within the time limit. The ZVT is, thus, a measure of information processing 

speed that correlates with measures of intelligence (e.g., Schweizer & Moosbrugger, 2004; 

Vernon, 1993).  

We run a simple model where the network size of each entrepreneur (a measure of social 

capital) is explained by her/his intelligence and intelligence squared. We model this quadratic 

effect (i.e., an “interaction” of a variable with itself) because nonlinear effects of intelligence are 

becoming more and more acknowledged in the psychology literature (e.g., Antonakis et al., 2017; 

Gignac et al., 2020; Rammstedt et al., 2016). For MIIV-PARCEL, we use the first ZVT 

completed by the respondents as a reference indicator and all remaining indicators (or products 

between indicators) as parceled instruments. For EXT-MATCHED-R, we used all four ZVT 

versions to indicate the linear term and the squared term of each ZVT version as indicator for the 
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squared latent predictor. The results in Table 2 show that all estimators produce very similar 

results. According to all estimators, the linear (marginal) effect is negative and insignificant. 

Similarly, the quadratic term is negative and significant for LMS (-.01, p = .001) and for MIIV-

PARCEL (-.01, p = .004), even though it is not significant—but similar in magnitude—for EXT-

MATCHED (-.01, p = .057); as a benchmark, the OLS interaction estimate that neglects 

measurement error is negative and significant (-.01, p = .001). 

Because all estimators return virtually the same result, choosing one or the other would 

lead to no substantive differences in conclusions. Calculating the 𝐻( specification test using 

EXT-MATCHED or MIIV-PARCEL fails to reject the assumption of no misspecification of LMS 

in both cases. However, all multivariate normality tests for the observed indicators suggest that 

the distributions of the four ZVT versions are not multivariate normal. 

In contrast to the PISA case, this example shows that the conclusions drawn by LMS may 

be correct and that our specification tests can help researchers select the appropriate estimator. 

Moreover, the example shows that relying on multivariate normality tests for the observed 

variable indicators might lead researchers to different conclusions. Of course, we cannot know 

whether LMS is biased in this case. However, the point estimates of LMS and both MIIV and 

EXT are virtually identical, suggesting that distributional misspecifications are not a major 

problem. It is also possible that the specification tests are underpowered because of the small 

sample size. Nevertheless, the example demonstrates that relying on multivariate normality tests 

alone would lead researchers to reject the significant LMS interaction estimate in favor of the 

non-significant EXT ones. 

Discussion and Recommendations 

Recommendations for practitioners 
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The general recommendation stemming from our results is simple: We strongly advise 

against putting faith in the LMS estimates unless the assumption that the latent predictors and the 

structural disturbances are normally distributed can be justified. Unfortunately, these assumptions 

cannot be tested directly. We show that the multivariate normality tests for the observed 

indicators of the predictor variables and the robust Hausman specification test are useful indirect 

tests of these assumptions. Based on our theoretical considerations and simulation results, we 

recommend using these two tools following the decision rule of Table 3. 

When both the multivariate normality tests for the observed indicators and the 

specification test agree, the choice between LMS and an alternative estimator is clear. If neither 

the multivariate normality tests nor the specification test indicates a problem (i.e., normal 

indicators and no discernible difference between LMS and another consistent estimator), the 

researcher has some evidence that LMS estimates might be valid and can be used. In contrast, if 

both types of tests indicate a problem, researchers should discard the LMS results and trust 

consistent (but inefficient) alternatives, like EXT or MIIV. When the specification test and the 

multivariate normality tests disagree, the situation is more complicated. In such cases, we 

recommend trusting the specification test, especially if the sample size is reasonably large. This is 

because multivariate normality tests might fail to flag misspecifications caused by non-normal 

structural disturbances or indicate inconsequential distributional misspecifications due to non-

normal measurement errors. 

The robust Hausman test is no panacea, however. In small samples, the specification test 

is underpowered. To address this issue, and given the expected losses related to Type II error (i.e., 

using an inconsistent estimator) and Type I error (i.e., using an inefficient estimator), we 

recommend an 𝛼 = 10% significance threshold for this test (cf. Kim & Choi, 2021; Maier & 

Lakens, 2022). With this more lenient criterion, LMS models can be correctly flagged as 
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misspecified much more often, including in conditions with mild skewness. Even with this more 

lenient significance level, the Type I error rate remains extremely low: The robust Hausman tests 

flag as misspecified a correct LMS model—at worse—with 3% probability (see Supplementary 

Material 1, 2, 3, and 4 for the results with 𝛼 = 10%). On the contrary, the “lower bound” 

Hausman test is too underpowered to be practically useful unless the sample size is in the 

thousands. 

Finally, readers must be mindful that although multivariate normality tests and the 

specification test can uncover potential distributional misspecifications, they are not tests for 

structural misspecifications (e.g., omitted paths, unobserved confounders, incorrect measurement 

models). Thus, the tests can only complement clear theory, a defensible causal identification 

strategy, and a careful examination of the fit of the measurement model. 

[Table 3 about here] 

Recommendations for future research 

Our study suggests at least two areas where further research is needed. First, our 

simulation on non-normal structural disturbances shows patterns that prior research has—to the 

best of our knowledge—never documented. This simulation revealed a particularly bizarre 

behavior of the LMS estimator, highlighting a bimodal sampling distribution and a catastrophic 

bias even when the sample size was in the thousands. Although we heavily diagnosed the 

problem and speculated about its origin, future technical work should focus on understanding 

why this pattern of results emerges. Second, we developed the specification tests for continuous 

variable estimators and the single parameter case, which is simple to calculate. Future research 

could focus on developing multiparameter tests or tests that support comparing the results from a 

continuous-variables estimator against categorical-variable estimation results. 
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Finally, this work is not without limitations. As with all simulations, it is impossible to 

address every scenario that might be relevant for applied researchers. For instance, we did not 

examine models with multiple dependent variables. We also did not consider all possible non-

normality shapes or models with many indicators or unequal factor loading. Similarly, we did not 

review and study all possible multivariate normality tests and latent interaction estimators. Most 

notably, we did not study the “nonlinear structural equation mixture model” approach (NSEMM, 

Kelava et al., 2014). This estimator is promising yet relatively unknown in applied research. 

Although it should be more robust to non-normality than LMS and be as efficient under 

normality, it is also computationally costly and can be complex to implement (see the companion 

code in Kelava & Brandt, 2022). NSEMM also comes with its own set of assumptions and 

limitations (i.e., the properties of NSEMM are ensured if the correct number of latent classes is 

used, and simulation evidence suggests that its robustness properties are valid only under 

relatively strong reliability, see Brandt et al., 2020). Thus, a particularly interesting question is 

whether the specification test we propose can be used relying on NSEMM (rather than EXT or 

MIIV) as a consistent estimator or if the specification test could be applied to detect potential bias 

due to latent class misspecifications in NSEMM. Future simulation work will, hopefully, fill 

these and other gaps13.  

Conclusion 

Normality plays a key role when estimating latent interaction effects with the commonly 

used LMS approach (i.e., XWITH in Mplus). However, the normality assumption is rarely 

 

13 We run NSEMM with two mixture components for the practical examples we discuss. In the PISA 
dataset, NSEMM produces results that are qualitatively similar to LMS (interaction effect: .02, SE = .02, p = .473). 
For the ZVT dataset, NSEMM produces visibly different results compared to both LMS and the other approaches 
(interaction effect: -.002, SE = .001, p = .054). 
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discussed by practitioners, let alone tested for. Our theoretical considerations and simulation 

results provide clear methodological guidelines that can help applied researchers to understand if, 

when, and how violations of normality can be a major cause of concern for their latent interaction 

models and how possible problems can be detected with appropriate statistical tests. We 

recommend that researchers always test latent variable normality using both multivariate 

normality tests of the observed indicators of the latent predictors and the specification tests we 

proposed in this paper. Failure to do so may mean publishing potentially misleading estimates. 
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Tables 

Table 1 

Overview of Monte Carlo simulations and main results, broken down by most significant experimental condition where relevant. 

Simulation Non-normality in Effects on 
LMS bias 

Reject biased LMS 
(Power) 

Reject unbiased 
LMS 

(False positives) Explanation 
MVN 
tests 𝑯𝑹 test  MVN 

tests  𝑯𝑹 test 

#1 

Latent variables 
(interaction effect in the 

population) 
Very large 82% 41% [49%] 

  
9% 0% [0%] MVN tests are more powerful than the 

specification test 

Latent variables (no 
interaction effect) Large 83% 30% [42%]  56% 0% [1%] MVN tests can flag deviations from normality 

that are inconsequential for LMS bias 

#2 Continuous measurement 
errors None NAa NAa 

 

89% 0% [0%] 

The specification test rarely signals a 
misspecification in LMS 

 
MVN flags as misspecified most LMS models 
where observed indicators are non-normally 

distributed 

#3 Latent variables & 
categorical indicators Extremely large 71% 42% [46%] 

 

65% 0% [0%] 

MVN tests are more powerful than the 
specification test 

 
Some MVN tests can flag deviations from 
normality that are inconsequential for LMS 

bias 

#4 

Structural disturbance 
(high reliability) 

Little-to-no 
bias 5% 6% [9%]  5% 0% [1%] MVN test cannot detect these 

misspecifications 

Structural disturbance 
(low reliability) 

Potentially 
catastrophic 5% 40% [42%] 

 
5% 1% [2%] 

MVN tests can never detect non-normality in 
the structural disturbance, different from the 

specification test 
Note. Share of LMS models rejected on average by the three multivariate normality (MVN) tests and 𝐻( using EXT-ALL-R as consistent 
estimator. Average of all conditions with N >= 350. An LMS model is considered “biased” if the absolute bias of LMS > |.05|; it is 
considered “unbiased” otherwise. 𝛼 = 5%, [𝛼 = 10% in brackets].  
a = no LMS model has an absolute bias larger than |.05| in this condition. 
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Table 2 

Empirical example based on the PISA dataset (Panel A) and ZVT dataset (Panel B). 

Panel A – Dependent variable: career aspiration in science 
 LMS MIIV-PARCEL EXT-MATCHED-R OLS 

𝐸𝑁𝐽 .517*** .476*** . 528*** .429*** 
 (.019) (.021) (.022) (.012) 
𝑆𝐶 .469*** .492*** .475*** .369*** 

 (.023) (.027) (.025) (.013) 
𝐸𝑁𝐽 × 𝑆𝐶 -.019 .075*** .053** .019 

 (.020) (.021) (.020) (.012) 
     

𝐻( (LMS vs. EXT-MATCHED-R) 12.644***    
𝐻( (LMS vs. MIIV-PARCEL) 20.429***    
Mardia skewness test   6407.428***  
Mardia kurtosis test   122.625***  
Doornik-Hansen test   3310.517***  

Panel B – Dependent variable: network size 
 LMS MIIV-PARCEL EXT-MATCHED-R OLS 

𝑍𝑉𝑇 -.028 -.027 -.028 -.020 
 (.022) (.023) (.021) (.017) 

𝑍𝑉𝑇" -.008** -.008** -.007 -.005** 
 (.002) (.003) (.004) (.002) 
     

𝐻( (LMS vs. EXT-MATCHED-R) .027    
𝐻( (LMS vs. MIIV-PARCEL) .010    

Mardia skewness test 482.391***    
Mardia kurtosis test 31.916***    
Doornik-Hansen test 101.547***    

Note. *** p < .001, ** p < .01, * p < .05. N = 6,038 for Panel A; N = 219 for Panel B. Constant 
terms omitted from the table. Standard errors in parentheses. LMS = Latent Moderated Structural 
Equations; EXT-MATCHED-R = Extended Unconstrained approach using 3 matched indicators 
with robust standard errors; MIIV-PARCEL = Model-Implied Instrumental variables estimator 
using parcels of all available instruments; OLS = Ordinary Least Squares using all indicators as 
indexes; 𝐻( (LMS vs. EXT-MATCHED-R) = robust Hausman specification test contrasting LMS 
and EXT-MATCHED-R; 𝐻( (LMS vs. MIIV-PARCEL) = robust Hausman specification test 
contrasting LMS and MIIV-PARCEL; Mardia skewness test, Mardia kurtosis test, and Doornik-
Hansen test are multivariate normality tests for the observed indicators of the latent predictor(s). 
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Table 3 

Using multivariate normality and specification tests’ results for model selection. 

 

 

Result of the robust Hausman test 

comparing LMS against EXT or MIIV 

 
 

Non-significant (p > .10) 
 

 
Significant (p < .10) 

Multivariate 

normality of 

observed 

indicators of 

the predictor 

latent 

variables 

Su
pp

or
te

d Lack of multivariate normality is not 

a problem and the LMS results 

should be reported. 

 This may indicate a non-normal 

disturbance term, which can severely 

bias the LMS results. LMS should 

not be used. 

    

N
ot

 su
pp

or
te

d 

If there is a clear reason for why the 

normality tests fail (e.g., categorical 

indicators) and the sample size is 

sufficiently large (e.g., 350 or more), 

LMS can be used. 

 

Lack of multivariate normality is 

clearly a problem and LMS should 

not be used. 
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Figures 

Figure 1 

Graphical representation of a simple latent interaction model. 
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Figure 2 

Specification tests and rejection regions under the null hypothesis of no distributional 

misspecification of LMS. 

 

Note. When the null hypothesis is correct, 𝐻)* < 𝐻( < 𝐻. Thus, for the 95% critical value of 
χ"(1) = 3.418, the probability of rejecting LMS is highest with the statistic 𝐻 and lowest with the 
statistic 𝐻)*. 
  

Pr
ob

ab
ili

ty

χ2

Reject LMS

HLB

χ2(1) = 3.418

HR H
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Figure 3 

Simulation 1: Absolute bias, standard deviation, and standard error over standard deviation over 

latent predictors’ distribution and presence/absence of the interaction effect. 

   

 

 
Note. LMS = Latent Moderated Structural Equations; LMS-SI = single-indicator Latent Moderated 
Structural Equations; EXT-MATCHED-R = Extended Unconstrained approach using 3 matched 
indicators with robust standard errors; EXT-ALL-R = Extended Unconstrained approach using all 
potential indicators with robust standard errors; MIIV-ALL = Model-Implied Instrumental 
variables estimator using all available instruments; MIIV-PARCEL = Model- Implied Instrumental 
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variables estimator using parcels of all available instruments; OLS = Observed-variable regression 
model via Ordinary Least Squares using scale means and their interactions as predictors. Absolute 

bias = !
(
∑ 𝛾O#0 − 𝛾#(
01! ; SD = !

(2!
∑ /𝛾O#0 − 𝛾O̅#0(
01! ; SE = Q!

(
∑ 𝑉𝑎𝑟R (𝛾O#0)(
01! , where 𝑅 is the number 

of successful replications in each condition.  
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Figure 4 

Simulation 1: Absolute bias of estimators and statistical power of specification tests over sample 

size by latent predictors’ distribution when the interaction effect is set to .50. 

  

Note. Statistical power at α = 5%. LMS = Latent Moderated Structural Equations; EXT-ALL-R = 
Extended Unconstrained approach using all potential indicators with robust standard errors; MIIV-
PARCEL = Model-Implied Instrumental variables estimator using parcels of all available 
instruments. 
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Figure 5 

Simulation 1: Absolute bias of estimators and statistical power of specification tests over sample 

size by latent predictors’ distribution when the interaction effect is set to 0. 

 

Note. Statistical power at α = 5%. LMS = Latent Moderated Structural Equations; EXT-ALL-R = 
Extended Unconstrained approach using all potential indicators with robust standard errors; MIIV-
PARCEL = Model-Implied Instrumental variables estimator using parcels of all available 
instruments. 
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Figure 6 

Simulation 2: Absolute bias of estimators and statistical power of specification tests with normal 

latent variables over measurement errors’ distributions. 

  

Note. Statistical power at α = 5%. LMS = Latent Moderated Structural Equations; EXT-ALL-R = 
Extended Unconstrained approach using all potential indicators with robust standard errors; MIIV-
PARCEL = Model-Implied Instrumental variables estimator using parcels of all available 
instruments. In all conditions, latent predictors are normally distributed.  
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Figure 7 

Simulation 3: Absolute bias of estimators and statistical power of specification tests over the 

number of observed indicators’ categories by latent predictors’ distribution. 

 

Note. Statistical power at α = 5%. LMS = Latent Moderated Structural Equations; EXT-ALL-R = 
Extended Unconstrained approach using all potential indicators with robust standard errors; MIIV-
PARCEL = Model-Implied Instrumental variables estimator using parcels of all available 
instruments. 
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Figure 8 

Simulation 4: Absolute bias of estimators and statistical power of specification tests with normal 

latent variables over disturbance’s distributions. 

 

Note. Statistical power at α = 5%. LMS = Latent Moderated Structural Equations; EXT-ALL-R = 
Extended Unconstrained approach using all potential indicators with robust standard errors; MIIV-
PARCEL = Model-Implied Instrumental variables estimator using parcels of all available 
instruments. In all conditions, latent predictors are normally distributed. 
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Figure 9 

Simulation 4: Distribution of the estimated latent interaction effect with LMS in the largest 

sample size condition when the structural disturbance is 𝜒"(1) distributed, by reliability of the 

indicators. 

  

Note. High reliability = standard deviation of indicators’ measurement errors equals .86; Low 
reliability = standard deviation of indicators’ measurement errors equals 1.14. 
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