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A B S T R A C T   

Panel data are ubiquitous in scientific fields such as social sciences. Various modeling approaches have been 
presented for observational causal inference based on such data. Existing approaches typically impose restrictive 
assumptions on the data-generating process such as Gaussian responses or time-invariant effects, or they can only 
consider short-term causal effects. To surmount these restrictions, we present the dynamic multivariate panel 
model (DMPM) that supports time-varying, time-invariant, and individual-specific effects, multiple responses 
across a wide variety of distributions, and arbitrary dependency structures of lagged responses of any order. We 
formally demonstrate how DMPM facilitates causal inference within the structural causal modeling framework 
and we take a Bayesian approach for the estimation of the posterior distributions of the model parameters and 
causal effects of interest. We demonstrate the use of DMPM by applying the approach to both real and synthetic 
data.   

1. Introduction 

Longitudinal panel data that consists of multiple individuals 
measured over multiple time points are common in various fields such as 
sociology, econometrics, and psychology. For example, analyzing 
individual-level life course data is valuable for assessing important life 
transitions, such as to employment or parenthood, and how policy re-
forms and interventions can impact the lives of individuals and the 
stability of their families. As conducting a randomized control trial is 
often infeasible in the social sciences, causal inference must be based on 
observational studies. Several approaches have been developed to 
analyze such data, tailored to specific research questions, characteristics 
of the available data, and information about the underlying causal graph 
or data-generating process. 

There are two general approaches to observational causal inference: 
The potential outcomes framework (Rosenbaum & Rubin, 1983) and 
structural causal models (SCM, Pearl, 2009). While potential outcomes 
are more popular in social sciences (Imbens, 2020, 2024) here we follow 
the SCM approach, which we will discuss in more detail in Section 2. 
One of the key components of the SCM framework is directed acyclic 
graphs (DAG) which are used to represent the assumed causal re-
lationships between observed and unobserved variables relevant to the 

research question (Lauritzen, 1996; Spirtes et al., 2001). This DAG can 
be then used to assess whether the available data are sufficient for 
answering causal queries of interest without any parametric assump-
tions. If the answer is yes, i.e., the causal effect of interest is identifiable 
(possibly after further assumptions or data collection), we can then 
proceed with suitable statistical modeling of the data to estimate the 
causal effects. In general, DAGs provide a convenient visual method for 
explicitly stating and presenting the general assumptions regarding the 
data-generating process, and they have long been used also in the 
context of structural equation models (SEM, Blalock, 1964; Kline, 2011) 
and general Bayesian modeling (Spiegelhalter, 1998). 

Our interest is in assessing the causal effects of an intervention on 
some variable xt at time t on a variable yt+k, k ≥ 0 from panel data with N 
units (individuals) and T time points. Typically, k ≤ T − t, meaning that 
we consider effects of interventions only within the observed time 
period 1, …, T, although forecasting beyond T is also possible assuming 
that we have data on potential exogenous variables of the system beyond 
T. Both xt and yt+k can be vector-valued variables with mixed types (e.g., 
continuous and categorical), and they can exhibit cross-lagged de-
pendencies such that yt and xt both depend on the past values of yt and xt 
(i.e., yt− ℓ and xt− ℓ for some ℓ > 0). For example, xt could be the size of 
the social network of an individual and yt their level of community 
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participation, and we could be interested in the causal effect of xt on yt, 
…, yt+k, but also how intervening on yt affects future values yt+1, yt+2, … 
and xt+1, xt+2, …. In many panel data models, the causal inference is 
based on the estimated model parameters (regression/path coefficients) 
which, under suitable assumptions, can be interpreted causally, for 
example as the effect of xt on yt+1. We do not directly assume that any 
model parameter has a causal interpretation, but such interpretations 
may arise in specific circumstances, as we will show in Section 2. 
Instead, following the SCM framework, we focus on the distributions of 
response variables after the intervention has been carried out, i.e., 
interventional distributions, to identify and estimate causal effects of 
interest. 

1.1. Long-term and time-varying effects 

Throughout the paper, we consider short-term and long-term causal 
effects of a variable xt on yt+k, which we define as follows: when 0 ≤ k ≤
1, the causal effect is short-term (i.e., a contemporaneous or a one-step- 
ahead causal effect) and when k ≥ 1, the causal effect is long-term. Note 
that these long-term effects are distinct from the long-run coefficients 
obtained from autoregressive distributed lag and error-correction 
models (Shamsollahi et al., 2022; Thombs, 2022) that describe the 
changes in the long-run equilibrium of the system, which corresponds to 
a long-term effect of xt on yt+k with k → ∞. To facilitate our approach for 
estimating short-term and long-term causal effects, we assume that the 
structure of the causal graph (DAG) is time-invariant, i.e., the presence 
or absence of nodes and the edges between them does not depend on 
time. 

In general, it is nontrivial to assess the long-term effect of say xt on 
yt+k directly as a function of the model parameters, especially in non- 
Gaussian or non-stationary settings and when the interest is not only 
in the average causal effect (ACE) but the whole distribution of yt+k after 
the intervention. Interest in long-term effects can also necessitate the 
expansion of univariate models to multivariate responses. For example, 
in the cross-lagged panel model formulation of (Allison et al., 2017) with 
two response variables yt and xt, only the equation related to yt is directly 
estimated. However, due to the cross-lagged dependencies between yt 
and xt, we also need to model how xt depends on yt in order to estimate 
the effect of xt on yt+k for k > 1 at time t. Thus, it is necessary to jointly 
model all relevant endogenous variables of the assumed underlying 
causal graph. In the context of vector autoregression (VAR) models 
(Holtz-Eakin et al., 1988; Sims, 1980), impulse response functions are 
often employed for assessing the long-term effects of external shocks. In 
a more general setting, probabilistic simulations offer a natural way to 
study such long-term effects in a multivariate cross-lagged setting, 
where manipulating one variable can lead to complex feedback 
dynamics. 

Even if the interest is mostly in the short-term effects of some vari-
ables on the outcome variables(s), these effects may change over time (i. 
e., depend on t), for example, because the effect of a policy change ac-
cumulates or diminishes over time, or due to unmeasured changes in the 
individuals’ common environment (shared context). Even if it is deemed 
unlikely that a variable has such a time-varying effect, it can still be 
beneficial to allow time-variability in the model formulation, as it can 
serve as a diagnostic check for unobserved time-varying confounding. 
More specifically, if domain knowledge indicates that the effect of a 
specific covariate on a response should be constant in time, but the 
model parameter estimates indicate the opposite, then there may be 
reason to believe that an unobserved time-varying confounder is pre-
sent. These considerations are especially relevant in scenarios where the 
time period under study is moderate or long, e.g., when studying how 
changes in family relationships such as the loss of a parent affect the life 
satisfaction and mental well-being during the life course trajectories 
from childhood to elderhood. Such events can have both immediate 
effects and long-term effects, the magnitude of which likely depends on 
the age when the event is experienced. 

When the time-varying effect itself does not have a strong serial 
dependency and the number of time points is relatively small, a simple 
dummy-coded time variable in the model could be reasonable in theory 
(as suggested for example by Wooldridge, 2010), but quickly leads to 
computational and overfitting issues as the number of time points in-
creases, so alternative approaches have to be considered. In multilevel 
modeling, time-specific random effects may be used to capture 
time-varying effects. Alternatively, when time-varying coefficients 
cannot be assumed to be exchangeable as in multilevel models but 
exhibit some pattern, an approach that takes into account dependency 
between adjacent coefficients can be more appropriate. For example, 
specifically for panel data, Sun et al. (2009) used kernel smoothing to 
estimate time-varying effects, while Harvey (1978) proposed a state 
space modeling (SSM, Durbin & Koopman, 2012) approach to deal with 
time-varying effects. The SSM approach has also been used in the 
context of generalized linear models (Durbin & Koopman, 2012; Harvey 
& Phillips, 1982; Helske, 2022). While the SSM approaches are highly 
flexible, they are often computationally demanding due to the assumed 
latent processes for the regression coefficients and an analytically 
intractable marginal likelihood when the observations are non-Gaussian 
(Andrieu et al., 2010; Vihola et al., 2020). Methods based on the varying 
coefficients models (Eubank et al., 2004; Haslbeck et al., 2021; Hastie & 
Tibshirani, 1993) can be computationally more convenient, especially 
when the varying coefficients are based on splines with suitable pen-
alties (Lang & Brezger, 2004; Wood, 2020). 

1.2. Earlier approaches 

Traditional methods to study causal effects in panel data settings in 
social sciences and especially in economics include variants and exten-
sions of fixed effect and random effect regression models which can also 
include, for example, instrumental variables and propensity score 
weighting and matching (for a general overview see (Wooldridge, 
2010), and (Barban et al., 2020) for an application of matching for 
causal inference in life course research). Especially in psychology, 
cross-lagged panel models and their various extensions are often 
employed (Allison et al., 2017; Asparouhov et al., 2018; Bollen & Brand, 
2010; Hamaker et al., 2015; Mulder & Hamaker, 2021; Zyphur et al., 
2020) and typically formulated as SEMs (see also Pakpahan et al., 2017, 
for a perspective to life course research). Often T, the number of time 
points, is assumed to be small or moderate, say T = 4 or T = 10, whereas 
N, the number of individuals can be large. Except for dynamic SEM and 
related variants (Asparouhov et al., 2018), SEM approaches are mostly 
suitable for cases with relatively small T due to the computational 
complexity of their classical wide format formulation (Asparouhov 
et al., 2018). In contrast, our main interest is in scenarios with relatively 
large T, say tens, hundreds, or even thousands of time points (while N 
can still be small or large). For example, Helske et al. (2018) used a 
subsample of the German National Educational Panel Survey (Blossfeld 
et al., 2011) with N = 1731 and T = 434. Hudde & Jacob (2023) 
advocate the use of monthly data for more fine-grained life course tra-
jectories in comparison to more commonly used yearly data which 
might miss some of the short-term effects of various life events (e.g., 
divorce). 

In life course research, variations of Markovian models are gaining 
more interest for studying transitions in life course trajectories (Liao 
et al., 2022; Piccarreta & Studer, 2019), sometimes as complementary 
tools for non-probabilistic sequence analysis approaches (Helske et al., 
2018, 2023; Pennoni & Piccarreta, 2017; Scott et al., 2024). Instead of 
directly modeling the dependency between consecutive observations, 
researchers sometimes choose to employ hidden Markov models (HMM, 
Bartolucci et al., 2013; MacDonald & Zucchini, 1997) and their exten-
sions. In HMMs, it is assumed that an observation yt depends on some 
underlying time-varying latent state zt which has a discrete and finite 
state space (in contrast to SSMs where the state space is continuous). The 
latent states follow a Markov process, whereas the observations are 
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conditionally independent given the latent states. These models are 
highly flexible and encompass various special cases such as latent class 
models and mixture HMMs (Vermunt et al., 2008). Also, when extending 
SEM to non-Gaussian responses, the cross-lagged dependencies of 
different variables are defined on the latent level instead of the obser-
vational level (Asparouhov and Muthén, 2021; Bollen, 1989; Finney & 
DiStefano, 2013; Muthén, 1984), which can be then cast as an SSM. 
While their origins are in predictive tasks such as speech recognition 
(Baum & Petrie, 1966) and control theory (Kalman, 1960), especially 
HMMs and their variations have been popular in social sciences as 
exploratory and descriptive tools (Liao et al., 2022). For example, Helske 
et al. (2018) used HMMs to describe and visualize underlying latent 
structures of work and family trajectories jointly. Basic HMMs can also 
be extended in various ways, for example, Bartolucci et al. (2007) 
considered multiple observation sequences per individual, whereas 
Altman (2007) introduced a general mixed HMM approach which in-
corporates covariates and random effects to model both the observa-
tional and latent state distributions. 

In typical HMM applications, causality is generally addressed only 
implicitly; if the model aligns with the data-generating process, the 
estimated effects can be interpreted causally. Some of the exceptions are 
(Bartolucci et al., 2016) which use the concept of potential latent vari-
ables and where the initial latent state probabilities and state transitions 
are assumed to depend on a discrete treatment variable with two or 
more categories. Bartolucci et al. (2023) consider a scenario where a 
binary treatment affects the initial, transition or emission probabilities 
of an HMM with data on pre- and post-treatment outcomes, similar to 
difference-in-differences methods (Callaway & Sant’Anna, 2021). 

The aforementioned models are typically estimated using least 
squares or a maximum likelihood (ML) approach (e.g., Allison et al., 
2017; Bollen & Brand, 2010; Hamaker et al., 2015; Wooldridge, 2010; 
Zyphur et al., 2020). An exception in the SEM framework is the dynamic 
SEM (Asparouhov et al., 2018) which is based on a Bayesian approach, 
while general multilevel models and SSMs are also often treated as 
Bayesian models (Bürkner, 2017; Gelman et al., 2013; Helske & Vihola, 
2021; Triantafyllopoulos, 2021). On the other hand, HMMs and other 
discrete latent variable models are more often based on ML. In discrete 
latent variable models, the likelihood is typically multimodal (Früh-
wirth-Schnatter, 2006), which is especially problematic for Bayesian 
estimation which generally does not focus on finding a single global 
maximum, but the full posterior distribution. 

In the ML approaches, the point estimates of the parameters are used 
to form plug-in estimates of some functions of interest. Especially for 
non-linear or non-Gaussian model components and long-term causal 
effects, relying on point estimates obtained from the ML method can 
severely underestimate the uncertainty and bias of the causal estimates 
as in forecasting problems (Chatfield, 2000). While bootstrap methods 
can offer a reasonable approach for uncertainty assessment in some 
scenarios, it can be problematic for serially dependent data and complex 
models with individual-specific effects (see e.g., (Morris, 2002 and dis-
cussion in (Helske, 2015, Chapter 4.1)). In contrast, Bayesian ap-
proaches provide automatic uncertainty quantification for any estimates 
of interest such as ACE, and enable a natural way to incorporate domain 
knowledge such as information from previous studies into the modeling 
workflow via the prior distribution, which can also be used to control 
model sparsity and induce desirable correlation structures (Gelman 
et al., 2013; Oganisian & Roy, 2021). However, while Bayesian methods 
can enable the estimation of complex models that are infeasible to es-
timate with ML, the Bayesian paradigm naturally has its own set of 
challenges, such as proper choice of priors and slow convergence rates 
and other computational issues with high-dimensional parameters or 
covariates (Gelman et al., 2013; Li et al., 2023). 

1.3. The proposed approach 

In this paper, we introduce the dynamic multivariate panel model 

(DMPM) for causal inference and general Bayesian modeling in the 
context of panel data. DMPMs can jointly estimate models consisting of 
multiple responses following various distributions, with time-invariant, 
time-varying, and individual-specific effects. When combined with the 
formal causal inference theory of structural causal models, DMPMs can 
be used to simulate both short-term and long-term counterfactual pre-
dictions under various scenarios of interest. We illustrate our approach 
using simulated and real data modeled with the R (R Core Team, 2024) 
package dynamite (Tikka & Helske, 2023) that provides an interface for 
fitting DMPMs. The codes to reproduce all analyses and the dynamite 
package can be found on GitHub (https://github.com/helske/dmpm). 

Given the generality of DMPMs, they share similarities with various 
established modeling techniques. For example, classic VAR models can 
be regarded as a specific instance of a Gaussian DMPM by treating the 
response variables as a multivariate Gaussian response variable, pre-
dicted by its lagged values. Moreover, DMPMs provide support for non- 
Gaussian responses and random effects in a manner akin to generalized 
linear mixed models. DMPM also extends basic Markov models with 
explanatory variables, time-varying effects, and joint modeling of mul-
tiple response variables with mixed distributions. Multiple responses 
consisting of mixed distributions have also been considered earlier in the 
HMM context for example by Bartolucci et al. (2013). Time-varying 
effects defined via splines have been studied earlier for example in a 
VAR setting by Haslbeck et al. (2021), but instead of estimating the 
smoothness penalization for the splines via cross-validation, DMPM 
models this via a random walk prior where the corresponding standard 
deviation is estimated jointly with other model parameters. 

The paper is structured as follows. Section 2 introduces SCMs and our 
general causal inference workflow for panel data combined with 
Bayesian inference. Section 3 provides formal details of DMPMs and 
discusses their estimation. Section 4 demonstrates the use of DMPMs in 
practice via examples using both real and synthetic data. Section 5 
concludes the paper with a discussion. 

2. Causal inference for panel data 

We consider the structural causal modeling framework of Pearl 
(2009). In this framework, a variable X is viewed as being the direct 
cause of another variable Y, if Y is a function of X. An SCM consists of a 
set of observed variables, a set of unobserved background variables, a set 
of functions that defines the causal relationships between all variables, 
and a joint probability distribution over the background variables. This 
distribution also induces a joint probability distribution over the 
observed variables through the functional relationships of the model. 
Finally, the functional relationships induce the causal diagram. 

The SCM framework enables the study of interventions which are 
actions that change the functional structure of the model. Formally, 
interventions are operationalized by the do(⋅) operator. For instance, an 
intervention that forces a variable X to take the value x irrespective of 
the value it would have attained otherwise is denoted by do(X = x). Such 
an intervention targeting a causal model essentially changes the func-
tion that defines X into a new function that outputs the constant value x. 
The distribution of a variable Y of interest under this intervention is 
called an interventional distribution and is denoted by p(Y = y∣do(X =
x)) or just p(y∣do(x)) for short. Whenever it is possible to represent the 
interventional distribution using only the observed probability distri-
bution of the SCM, we say that the interventional distribution is 
identifiable. 

The term “causal effect” refers to different quantities in literature. 
Here we use the term to refer to the full interventional distribution p 
(y∣do(x)), from which quantities such as the expected value of the 
interventional distribution E(y∣do(x)) and ACEs such as 

E(y|do(X = a)) − E(y|do(X = b)),

where a and b are two possible values of X, can be derived. 
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Our choice of the SCM framework is motivated by several factors. 
First, a graphical representation of the system under study via the causal 
graph easily communicates all causal assumptions about the variables of 
interest, without having to explicitly specify conditional independence 
properties of counterfactual quantities such as those encapsulated by the 
ignorability and exchangeability assumptions in the potential outcomes 
framework (Hernán and Robins, 2020; Rosenbaum & Rubin, 1983). A 
graphical representation can be understood even by those not 
well-versed in causal inference theory and jargon. Second, as a conse-
quence of the graphical representation, we do not need to make any 
additional assumptions regarding the identifiability of causal effects, as 
the sufficient and necessary conditions of causal effect identifiability are 
encoded in the causal diagram. This holds for a wide variety of scenarios 
in terms of the available data including purely observational data 
(Shpitser & Pearl, 2006a,b), a combination of experimental and obser-
vational data (Kivva et al., 2022; Lee et al., 2020a), and data collected 
from heterogeneous domains (Lee et al., 2020b; Tikka et al., 2021). 
Thus, even though we focus on observational settings, the approach we 
present in this section could be adapted to scenarios where some 
experimental data is also available. Third, we gain access to full inter-
ventional distributions instead of just point estimates which in turn al-
lows us to quantify the uncertainty of causal effects and compute other 
quantities of interest, such as probabilities of specific events under the 
intervention, for instance. This feature also couples seamlessly with a 
Bayesian approach, as we will demonstrate. 

The general causal inference pipeline in the SCM framework pro-
ceeds as follows. First, the causal model is constructed based on a 
combination of expert knowledge and causal discovery methods. Next, 
the causal effects of interest are identified by using do-calculus (Pearl, 
1995), a graphical criterion, such as the backdoor or the frontdoor cri-
terion (Pearl, 2009), or an identifiability algorithm such as the ID al-
gorithm (Shpitser & Pearl, 2006b). If the effects of interest are 
identifiable, then the next step is estimation, where the appropriate 
statistical modeling tools should be leveraged. Next, we describe this 
general process in greater detail in the context of panel data and 
long-term causal effects. Our approach shares similarities with the 
methods employed by Bijlsma & Wilson (2019) and Nisén et al. (2022), 
who utilized ML-based generalized linear models with backdoor 
adjustment and bootstrapping to estimate the causal determinants of 
fertility and the consequences of delayed parenthood. Here we present a 
theoretical framework for SCM-based causal inference using panel data 
that is more broadly applicable. Furthermore, the Bayesian DMPM we 
present in Section 3 offers greater flexibility in modeling and estimating 
causal effects in the context of panel data. 

2.1. Estimating temporal causal effects 

We distinguish two types of long-term causal effects of interest: the 
effect of an intervention at a single time point on a future time point p 
(yt+k∣do(Xt = x)) which we refer to as an atomic intervention and the 
effect of interventions at multiple sequential time points p(yt+k∣do(Xt 
= x1, …, Xt+k = xk)) which we refer to as a recurring intervention. 
Naturally, it is possible to distinguish other types of causal effects of 
interest and the value assignments of the interventions could also be 
based on the values of other variables in the system such as under dy-
namic treatment regimes (Murphy, 2003). However, in this paper, we 
focus on atomic and recurring interventions for simplicity. Note that 
these two types of interventions are different, albeit related, concepts 
than the short-term and long-term effects. 

We consider the causal graph in Fig. 1 where we have three types of 
response variables: nodes yt represent the response variable(s) of inter-
est, xt the intervention variable(s), and zt additional covariate(s) (this 
decomposition is done only to simplify the exposition and is in general 
not necessary). In the figure, each edge corresponds to the regressive and 
auto-regressive (either time-invariant or time-varying) effects of the 
previous time point on the next. For example, xt could be geographical 
mobility that influences individual’s educational attainment yt and 
employment status zt at time t. Education level, in turn, impacts 
employment opportunities, or an individual might relocate to pursue 
further education. Finally, lack of employment can encourage in-
dividuals to seek further education or to move in order to improve their 
employment opportunities. While xt, yt, and zt could also depend on 
some time-invariant unobserved variables and observed strictly exoge-
nous variables, we omit them from the graph to keep it more readable. 
We also do not draw any model parameters in the figure, as we have not 
made any parametric assumptions about the distributions of the vari-
ables at this point. In this example, there are no contemporaneous de-
pendencies between the responses, and the highest-order lag 
dependency is of first-order. While we focus on this specific graph for 
simplicity, the following methods generalize to other graphs with a 
similar structure. For example, there could be more or fewer variables of 
interest, or some of the edges might not exist in the causal graph. While 
each node can represent multiple variables, here we consider them to be 
univariate without loss of generality (Tikka et al., 2023). Our interest is 
in estimating the causal effect of xt on yt+k, but other effects could be 
estimated analogously. In particular, if the causal graph is 
time-invariant in the sense that the graph structure does not depend on t, 
then all the effects of interventions at time t on any response variables yt, 
xt, or zt at future time point(s) are identifiable and estimable using the 
following backdoor adjustment approach. 

By using the backdoor adjustment, we find a non-parametric iden-
tifying formula for the interventional distribution: 

p(yt+k|do(xt)) =
∑

yt ,zt
p(yt+k|yt , xt , zt)p(yt , zt). (1)  

This result is easy to see from Fig. 1 because at any time t, the obser-
vations other than the variable being intervened on block all backdoor 
paths to any responses at time t + k. The summations in the formula 
should be understood as integrals when the corresponding variable is 
continuous. Equation (1) shows that in order to estimate p(yt+k∣do(xt)), 
we need to model the distributions p(yt+k∣yt, xt, zt) and p(yt, zt). Fortu-
nately, we can avoid estimating the marginal distribution p(yt, zt), 
because simply computing the average of p(yt+k∣yt, xt, zt) over the in-
dividuals serves as a Monte Carlo approximation of p(yt+k∣do(xt)) 
(Hernán and Robins, 2020). However, in some instances, it may be of 
interest to also model p(yt, zt) explicitly. Note that in cases where we 
have data only on one individual with no external knowledge of p(yt, zt), 
we can still estimate conditional interventional distributions p(yt+k∣do 
(xt), yt, zt). 

In principle, we could construct a statistical model directly for the 
distribution p(yt+k∣yt, xt, zt), but say we are also interested in p(yt+k∣do 

Fig. 1. A causal graph of three responses y, x, and z, with arrows corresponding 
to the assumed direct causal effects. A cross-section at times t, t + 1, and t + 2 is 
shown, and only some of the arrows and nodes are fully depicted for 
readability. 

J. Helske and S. Tikka                                                                                                                                                                                                                         



Advances in Life Course Research 60 (2024) 100617

5

(xt− 1)), or some other intervention at a time other than t. The backdoor 
criterion still applies, but now we would need a new model for p 
(yt+k∣yt− 1, xt− 1, zt− 1), and similarly for other potentially interesting 
causal effects. Fortunately, we can rewrite the expression (1) such that 
we only have to model the relationship of observations at time t given 
the previous time point(s). Let wt = (yt, xt, zt). Then the first term of 
equation (1) can be written as 

p(yt+k|wt) =
∑

wt+1 ,…,wt+k− 1 ,

p(yt+k|wt+k− 1)p(wt+k− 1|wt+k− 2)⋯p(wt+1|wt). (2)  

We can simulate the distributions on the right-hand side of equation (2) 
directly by constructing a statistical model. For fixed model parameters, 
denoted by θ (we will henceforth use a bold font to denote vectors), we 
can simulate new values of yt+k for each of the N individuals in the data 
by first simulating wt+1 using the observed values of yt, zt, and the value 
of xt fixed by the intervention, and then repeating the same process for 
each time point from t + 2 to t + k, leading to samples from p(yt+k∣do 
(xt), θ) which takes into account the variability due to p(yt, zt) and the 
trajectories wt, …, wt+k. Repeating this over all M posterior samples θ1, 
…, θM gives us a sample from the posterior of the post-interventional 
distribution p(yt+k∣do(xt)). 

For the ACE 

E(yt+k|do(xt = a)) − E(yt+k|do(xt = b)),

contrasting two values a and b, we compute the expected values by 
replacing the sampling from p(yt+k∣wt+k− 1, θ) in the earlier approach 

with the computation of E(yt+k∣wt+k− 1, θ). Then, marginalizing over the 
distribution p(yt, zt) we obtain an estimate for E(yt+k∣do(xt), θ). By 
repeating the same procedure for both values a and b, and by subtracting 
the former estimate from the latter, we obtain the ACE conditional on 
the model parameters θ. The posterior distribution of the ACE can then 
be obtained by repeating this computation over the posterior samples of 
the model parameters, from which we can compute for example the 
posterior mean of the ACE as 

1
M
∑M

j=1
E(yt+k

⃒
⃒do(xt = a), θj) − E(yt+k

⃒
⃒do(xt = b), θj),

where M is the number of posterior samples and θj is the jth posterior 
sample. It is straightforward to extend this approach to a situation where 
the model contains higher-order lagged response values as covariates or 
contemporaneous dependencies between responses. 

As for the posterior distribution of p(yt+k∣do(xt)), the posteriors of 
ACE estimates for k > 1 contain not only the variation due to the 
parameter uncertainty but also the due to the simulation of a finite 
number of trajectories wt, …, wt+k. This latter Monte Carlo variation can 
be reduced by sampling multiple trajectories per individual. 

Finally, we consider the case in Fig. 2, which has the same structure 
as Fig. 1 but with the addition of an unobserved time-varying 
confounder denoted by u, which is common to each individual. 

For simplicity, assume that yt is linear-Gaussian and 

E(yt,i
⃒
⃒θ) = α + βyyt− 1,i + βxxt− 1,i + βzzt− 1,i + βuzut− 1zt− 1,i,

i.e., the unobserved confounder u acts as an effect modifier for z. Now let 
δt = βz + βuzut− 1 so that E(yt,i∣θ) = α + βyyt− 1,i + δtzt− 1,i, i.e., we have a 
linear model with a time-varying coefficient δt. Consequently, with a 
suitable assumption for the functional form of δt (e.g., a spline), we can 
still estimate the causal effect of x on y even if our causal graph contains 
unobserved time-varying confounders. Naturally, the causal effect of z 
on y (βz) is not identifiable without further assumptions. Also, in theory, 
the values of u could vary by individual, and we would still obtain an 
identifiable causal effect of x, but in such a case the time-varying effects 
δt should also be individual-specific, which in practice could lead to 
considerably higher computational burden. In general, when unob-
served confounders are present (either time-invariant or time-varying), 
the identifiability of causal effects of interest has to be assessed based on 
the causal assumptions, i.e., the causal graph (Shpitser & Pearl, 2006b). 
With parametric assumptions, such as linear causal relationships, 
additional causal effects can sometimes be identified, for example by 
using instrumental variables (Imbens & Angrist, 1994; Pearl, 2009) or 
more advanced methods such as auxiliary cutsets (Kumor et al., 2020). 

2.2. Incompatibility of long-term effects and latent Markov models 

Compared to Markovian models operating on the observational 
level, latent level models such as HMMs and SSMs can provide 

Fig. 2. A causal graph of three responses y, x, z, and unobserved time-varying 
confounder u, with arrows corresponding to the assumed direct causal effects. A 
cross-section at times t, t + 1, and t + 2 is shown. 

(a) (b)

Fig. 3. Example causal graphs illustrating a direct causal chain between variables of interest (a) and a latent process that generates the observations (b). Intervening 
on the observations yt in (b) has no effect on future observations. (a) A causal graph where y1 is a direct cause of y2, and y2 is a direct cause of y3. (b) A causal graph 
where the variables y1, y2, and y3 do not form a causal chain but are instead realizations of a latent process μ. 
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additional flexibility in modeling complex processes, and they allow 
more straightforward handling of missing response variables (Durbin & 
Koopman, 2012; MacDonald & Zucchini, 1997). Fig. 3 illustrates the 
difference between a Markov model (Fig. 3a) and a hidden Markov 
model (Fig. 3b) for three time points t = 1, 2, 3. 

The conditional independence assumption of observations in basic 
HMMs and SSMs is problematic in terms of causal inference, especially 
when the interest is in estimating long-term causal effects. In general, 
estimating such effects involves simulating new observations given the 
observations at the current time point; a dependency which is broken in 
Fig. 3b. In the graph of Fig. 3a, there is a direct causal chain between the 
variables, and manipulating (i.e., intervening) y1 affects the interven-
tional distributions of y2 and y3 (the future values). In the graph of 
Fig. 3b, however, an intervention on y1 does not affect the future values 
of y (y2 and y3); the intervention should target the unobserved latent 
variable μ1. While this can be less of a problem with Gaussian obser-
vations, when it can be reasonable to assume that the observed variables 
yt are noisy versions of the latent variables μ, and we could in theory 
intervene on μ, such an interpretation does not generalize to other 
observational distributions such as categorical and binomial distribu-
tions if the latent level is assumed to be Gaussian as in SEMs and typical 
SSMs. For example, for the binomial distribution with a logit link, the 
latent level corresponds to a probability (on the logit scale), and it can be 
challenging to conceptualize an intervention on this probability. Inter-
vening on the latent probability is also very different than intervening on 
the observed quantities as the former manipulates the underlying system 
(e.g., the probability that a rare virus is present in a community), 
whereas the latter manipulates the realization from this system (the 
virus causes hospitalizations). Using an intervention on a latent level 
process as an indirect way of estimating the causality on the observa-
tional level can be problematic also in practice. Consider a DAG with a 
structure as in Fig. 3b with binary observations yt ~ Bernoulli(logi-
t− 1(μt)) and a latent random walk process μt = μt− 1 + ϵt, ϵt ~ N(0, 1). 
Now, estimating the causal effect E(yt+k∣do(yt = 1)) indirectly by inter-
vening on latent μt = logit(P(yt = 1)) corresponds to E(yt+k∣do(μt = ∞)), 
but fixing μt = ∞ leads to μt+1 = ⋯ = μt+k = ∞ and thus E(yt+k∣do(μt =

∞)) = 1 for all k ≥ 0 with probability 1. 
While Markov models, where the observations directly depend on 

past observations, are more suitable than standard HMMs for long-term 
causal inference, it is naturally possible to extend HMMs so that the 
observation equation contains lagged responses as predictors, which 
corresponds to a graph similar to the one in Fig. 3b with additional edges 
from the previous observation y1 to the current observation y2 and from 
y2 to y3. Such double chain Markov models are considered for example 
by Berchtold (1999). These models combine some of the strengths of 
both traditional Markov and hidden Markov models, but they can be 
computationally very demanding in panel data settings like HMMs, as 
we need to estimate separate a hidden state trajectory for each indi-
vidual with a typically multimodal likelihood function. 

3. The dynamic multivariate panel model 

We consider data consisting of T time points and N individuals where 
we have measured C ≥ 1 response variables from each individual. In 
other words, the response variables of individual i are yt,i = (y1,t,i, …, yc,t, 

i, …, yC,t,i), t = 1, …, T, i = 1, …, N. The response variables can be 
continuous or discrete. When referring to the random variable itself, we 
simply drop the index related to the individual and write yt, or yc,t when 
referring to a specific response. Each element of yt,i can depend on other 
responses at the same time point t, the past values of the responses yt− ℓ,i, 
ℓ = 1, … (with potentially different sets of past values for different re-
sponses), as well as additional covariates xt,i which are treated as non- 
stochastic (strictly exogenous) in the subsequent modeling. The cova-
riates xt,i can be either time-varying or time-invariant. The first L time 
points are treated as fixed data, where L is the largest order of lag 
dependence in the model. For instance, L = 1 for a model where a first- 

order lag dependence is the highest. 
We assume that the joint distribution of yt,i given past observations 

and current covariates factorizes as follows for all t = L + 1, …, T and 
i = 1, …, N 

pt(yt,i

⃒
⃒y1:t− 1,i,xt,i) =

∏C

c=1
pc,t(yc,t,i

⃒
⃒
⃒yπ(c),t,i, y1:t− 1,i,xt,i), (3)  

where y1:t− 1,i denotes the past values of all responses (y1,i, …, yt− 1,i), π is 
an ordering of the responses, and yπ(c),t,i denotes the responses before 
response number c in this ordering. This ordering captures the 
contemporaneous dependency structure of the model and rules out cy-
clic dependencies. Because our model inherently includes a temporal 
order, it is not sensible to allow cyclic structures. Also, assumptions of 
contemporaneous feedback loops are rarely true in practice but origi-
nate from a temporal view of the problem that is too simplified (Murray 
& Kunicki, 2022). The conditional distributions pt,c can be different for 
different response variables, and the parameters of these distributions 
can depend on t, i.e., we allow the dynamics of our system to evolve over 
time. 

Given suitable link functions depending on our distributional as-
sumptions, we define the linear predictors ηc,t for all responses yc,t with 
the following general form: 

ηc,t,i = αc,t + u⊤
c,t,iβc + w⊤

c,t,iδc,t + z⊤
c,t,iνc,i + λ⊤

c,iψc,t (4)  

where αc,t is the common, possibly time-varying, intercept term. The 
vectors uc,t,i, wc,t,i, and zc,t,i define the covariates corresponding to the 
vectors of time-invariant effects βc, time-varying effects δc,t, and 
individual-specific random effects νc,i, respectively. As in multilevel 
models, zc,t,i can and often does contain the same covariates as in uc,t,i or 
wc,t,i, so that the individual-specific effects νc,i are deviations from the 
overall effect βc or δc,t. In general covariates in uc,t,i and wc,t,i should be 
unique to ensure the identifiability of the corresponding effects, 
although it is possible to separately estimate for example the average 
level of the effect and the temporal deviation from this with suitable 
priors or constraints (for example by using sum-to-zero constraints on 
∑T

t=1δc,t). Note that the covariates in the vectors uc,t,i, wc,t,i, and zc,t,i may 
contain values of other response variables yπ(c),t,i that appear before yc,t,i 
in the ordering π, values of lagged response variables y1:t− 1,i, and values 
of other non-stochastic covariates xt,i. These can also include for 
example individual-specific means for Mundlak’s approach (Mundlak, 
1978) which solves the critique of the random effects by the proponents 
of the fixed effect models (Bell et al., 2018, 2019). The random effects ν1, 

i, …, νC,i are assumed to follow a zero-mean Gaussian distribution, and 
they can be correlated both within and between response variables. We 
will use the symbols σ and ρ to denote the standard deviations and 
correlations of random effects, respectively. 

The final term λ⊤c,iψc,t is an alternative to a common time-varying 
intercept αc,t, consisting of latent individual loadings λc,i and a latent 
dynamic factor ψc,t, which can be correlated across response variables 
similarly as the common correlated effects discussed by Thombs (2022), 
for example. In a single response model, this term can be regarded as a 
special case of dynamic latent factor models (Bai & Wang, 2015; 
Geweke, 1977) with only a single factor, except that we treat ψc,t as a 
spline instead of a stationary autoregressive process. The purpose of this 
term is to model how individuals respond differently to some unob-
served, common process ψc,t. For example, our response variable could 
be consumer spending, affected by the changing environment modeled 
by ψc,t that is common to the individuals. Here ψc,t could reflect the 
latent overall economic status of the country (instead of a specific 
measure such as inflation rate), and λc,i would then describe how the 
individuals react differently to these latent changes in the economy. In a 
model with multiple responses, the latent factors ψc,t can be allowed to 
correlate with each other. While coefficients δc,t and latent factors ψc,t 
can capture common time-varying confounding, we assume that the 

J. Helske and S. Tikka                                                                                                                                                                                                                         



Advances in Life Course Research 60 (2024) 100617

7

underlying causal graph is time-invariant in the sense that there are no 
individual-specific unobserved variables affecting only some distinct 
time points. 

We define the time-varying coefficients δc,t (and similarly for the 
time-varying intercept αc,t and latent factor ψc,t) using Bayesian P- 
splines (penalized B-splines) (Eilers & Marx, 1996; Lang & Brezger, 
2004) as 

δc,t,k = b⊤

t ωc,k, k = 1,…,K,

where K is the number of covariates, bt is a vector of B-spline values at 
time t obtained from a cubic B-spline basis that we assume has been 
constructed with equally spaced knots on the time interval from L + 1 to 
T with D degrees of freedom, and ωc,k is a vector of corresponding spline 
coefficients. In general, the degrees of freedom, i.e., the number of B- 
splines D used for constructing the splines for the study period L + 1, …, 
T can be chosen freely, but too large D can result in overfitting. To 
mitigate this, we define a random walk prior (Lang & Brezger, 2004) for 
ωc,k as 

ωc,k,1 ∼ p(ωc,k,1),

ωc,k,d ∼ N
(

ωc,k,d− 1, τ2
c,k

)
, d = 2,…,D  

with a user-defined prior p(ωc,k,1) on the first coefficient, which due to 
the structure of b1 corresponds to the prior on δc,L+1,k. Here, the 
parameter τc,k controls the smoothness of the spline curves, which can be 
estimated along with other parameters of the model. Thus, the exact 
value of D is typically not too important, however, it is possible to use for 
example cross-validation approaches such as leave-one-out or leave- 
future-out cross-validation (Bürkner et al., 2020; Vehtari et al., 2016) 
for choosing the value of D. 

Conforming with the structural causal modeling, we consider in-
terventions on responses and non-stochastic covariates but not on the 
model parameters. For instance, we can consider the causal effects of 
responses on other responses, or the causal effects of non-stochastic 
predictors on responses. Importantly, we note that we do not directly 
imbue the model parameters of a DMPM with causal interpretations, but 
instead consider causal effects through interventions and interventional 
distributions. Whether and how the model parameters can be inter-
preted causally depends on the specifics of the causal graph and the 
model (Westreich & Greenland, 2013). Analogously to general Bayesian 
analysis, where it is straightforward to perform posterior inference for a 
quantity of interest which can be a complex function of the estimated 
posterior distribution of the parameters (Gelman et al., 2013), the esti-
mated full interventional distribution provides flexibility in answering 
causal queries in an interpretable way, tailored to the specific research 
question. 

While DMPMs are multivariate models by definition, we have thus 
far only considered the scenario where each response is related to a 
single linear predictor. We can easily extend the definition of the linear 
predictor in equation (4) to also accommodate multivariate distributions 
such as the multivariate Gaussian distribution and other distributions 
that are typically modeled with multiple components, such as the cat-
egorical distribution with a linear predictor for each category, excluding 
the reference, via the softmax link. Formally, we can accomplish this by 
simply replacing the index c with c, s in equation (4) where s denotes the 
index of the dimension, s = 1, …, S(c), and S(c) is the number of di-
mensions of response c. 

3.1. Estimation 

We estimate the unknown parameters of our model using a Bayesian 
approach by combining the likelihood implied by model (3) with priors 
on the time-invariant regression coefficients βc, intercept αc (or αc,L+1 in 
case the intercept is assumed to be time-varying), time-varying co-
efficients δc,L+1, the random walk standard deviation parameters τ, the 

standard deviations of the latent loadings λc,i and of the individual- 
specific random effects νc,i. For correlated random effects, we assume 
that their covariance matrix has been parametrized using the Cholesky 
factorization, and the prior is specified for the Cholesky factor (Lew-
andowski et al., 2009). In addition, there may be distribution-specific 
parameters, i.e., parameters that are not related to the linear pre-
dictors ηc,t of equation (4), but those that parametrize the density 
functions pc,t, such as the standard deviation of a Gaussian distribution 
or the dispersion parameter of a negative binomial distribution. The 
choice of priors is not always a straightforward task, but general rec-
ommendations have been presented that are suitable for a wide range of 
models and data (Gelman et al., 2013). Assuming that the priors are not 
specified so that they exclude the true parameter values, the Bayesian 
estimation of DMPM provides asymptotically consistent parameter es-
timates under similar regularity conditions as in the case of ML esti-
mation (see, e.g., Van der Vaart, 1998). 

The joint posterior distribution of the model parameters can be 
estimated via Markov chain Monte Carlo (MCMC) methods, for example 
with the R package dynamite which uses computationally scalable 
MCMC algorithms provided by the probabilistic programming language 
Stan (Stan Development Team, 2022) for the posterior sampling. By 
using the posterior samples obtained via MCMC, we can evaluate the 
expected values of arbitrary functions of the model parameters and the 
data. These estimates do not suffer from bias caused by the potential 
non-linearity of the functions of interest and naturally account for 
parameter uncertainty by marginalizing over the posterior samples. This 
is particularly crucial in the context of causal inference when computing 
ACEs, as they are defined as the expected value of a function of a joint 
distribution (Pearl, 2009). 

4. Examples 

Because the DMPM is very general, it is not feasible to fully explore 
all variations of distributions and effects. Instead, we illustrate some of 
the core capabilities of the DMPM using three examples. In the first 
example, we use simulated data where the ground truth is known, 
whereas in the latter examples, we use openly available data for 
reproducibility purposes. While there are many survey and register data 
sources of large and complex panel data that could be interesting to 
analyze using DMPMs, these datasets are not easily accessible. The real 
data examples are not fully realistic due to the lack of some key variables 
in these open data, and as such we do not claim that the subject-specific 
conclusions are necessarily valid. All analyses were carried out in R 
using the R packages dynamite, dplyr(Wickham et al., 2023), and 
ggplot2(Wickham, 2016). The code for reproducing all examples is 
provided as supplementary material on GitHub. The appendix contains 
further details of the examples. All provided posterior intervals are 
equal-tailed for ease of interpretation. 

4.1. Bivariate Gaussian Model 

As the first example, we consider data generated from the following 
model 

y1,t,i = 0.6y1,t− 1,i + 0.4y2,t− 1,i + xt,i + ϵ1,t,i
y2,t,i = − 0.1y1,t− 1,i + 0.9y2,t− 1,i + 0.4xt,i + ϵ2,t,i
ϵ1,t,i ∼ N(0,0.42)

ϵ2,t,i ∼ N(0,0.42)

(5)  

where t = 1, …, 100, i = 1, …, 500, and xt,i is a known binary variable 
where value 1 acts as an indicator for some intervention. Note that in a 
general DMPM, the variable xt does not need to be binary; its values can 
vary per individual and depend on the past values of y1,t and y2,t (in 
which case the variable xt should be modeled jointly with y1,t and y2,t). 
We consider two simple scenarios: in the first scenario xt,i is targeted by 
an atomic intervention with xt,i = 1 for t = 81 and zero otherwise for 
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each individual. In the second scenario, the intervention assigns xi,t = 1 
if t > 80 and zero otherwise, corresponding to a recurring intervention. 
In both scenarios, the interest is in assessing the effect of the intervention 
on y1,t, t = 81, …, 100 compared to a counterfactual setting where no 
intervention was made (xt,i = 0 for all t). 

Using model (5), we simulated trajectories of y1,t and y2,t for N = 500 
individuals under both scenarios, where we first estimated model (5) 
and then, using the posterior samples of the model parameters, simu-
lated new realizations of y1,t and y2,t for the post-intervention period 
using both the observed values of xt and for the counterfactual case of xt 
= 0 for all t. We also repeated this posterior predictive simulation where 
only y1,t was simulated and y2,t was kept fixed to its observed values, 
ignoring the fact that according to our data-generating process, both the 
covariate xt and the past value of the response y1,t− 1 affect y2,t. 

The ACEs of the two interventions at time t + k are   

Fig. 4 shows the posterior estimates of the mean and 95% marginal 
quantiles of ACE1(k) and ACE2(k) based on the correct counterfactual 
simulation of both y1,t and y2,t, and the incorrect simulation of only y1,t. 
As expected, the simulation of only y1,t leads to incorrect causal effect 
estimates, more specifically underestimation in this case. The error is 
especially large in the case of the recurring intervention, while the error 
diminishes for the atomic intervention as the effect of x81 on y1,t and y2,t 
decreases with increasing t. 

From the left panel of the figure, we can observe that the ACE of the 
atomic intervention eventually levels off to zero in the first scenario. 
This occurs because even though the coefficient of xt for y1,t is 1, the 
coefficients of y1,t− 1 and y2,t− 1 are less than 1. Thus, when we initially 
intervene by setting xt to 1 at time t = 81, the ACE is exactly 1, and the 

effect of this intervention diminishes over time because xt was set to 0 for 
the latter time points, and the initial intervention will affect y1 only 
through its past values (and the past values of y2). The same phenom-
enon occurs even if we do not model y2. In the right panel depicting the 
second scenario with the recurring intervention, the importance of the 
correct modeling approach becomes evident. Instead of propagating the 
initial intervention that forces xt to have the value 1 only at the first time 
point, we keep applying this intervention at each time point. As the 
intervention is applied constantly, and because xt affects y1 both directly 
and via past values of y1 and y2, we must correctly model both responses. 
We can also compute the true ACE using equation (5) by solving the 
recurrence relation for y1,t to obtain lim

k→∞
ACE2(t, k) = 13∕4 (see Appen-

dix A for details), which the simulated ACE is converging towards when 
modeling both responses as can be seen from the figure. 

4.2. Employment trajectories 

As the second example, we study a subset of the data from the Swiss 
Household Panel (Tillmann et al., 2016) that is available in the R 
package march(Maitre & Emery, 2020). The data consist of the 
employment trajectories of 845 individuals (421 women and 424 men). 
There is a vast literature on the determinants of employment. For 
example, Sianesi (2004) studied the short-term and long-term causal 
effects of labor market programs on employment using propensity score 
matching in the potential outcomes framework. The effects of previous 
employment experiences on the current employment status have been 
found to be significant for example by Heckman (1981) who discusses 
the importance of modeling the state dependency and heterogeneity of 
individuals using the labor force participation of women as an empirical 
application. Given our limited data, we do not aim to contribute to the 
literature of labor economics itself but merely illustrate how our 

Fig. 4. Posterior means and 95% marginal quantiles of ACE1(t, k) in the left panel and ACE2(t, k) in the right panel, based on simulation of both y1 and y2 (correct 
method, solid line) and only y2 (incorrect method, dashed line) in the bivariate Gaussian model example. In scenario 1, xt,i is targeted by an atomic intervention. In 
scenario 2, xt,i is targeted by a recurring intervention. 

ACE1(t, k) = E(y1,t+k
⃒
⃒do(xt = 1, xt+1 = 0,…, xt+k = 0)) − E(y1,t+k

⃒
⃒do(xt = 0,…, xt+k = 0)),

ACE2(t, k) = E(y1,t+k
⃒
⃒do(xt = 1,…, xt+k = 1)) − E(y1,t+k

⃒
⃒do(xt = 0,…, xt+k = 0)).
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proposed approach can be used to estimate long-term causal effects in a 
slightly more complex setting than in Section 4.1. 

The employment status was observed every two years from the age of 
20 until the age of 44 (i.e., at 13 time points), and it is coded as being 
either 1 (full-time employee) or 0 (other). We are interested in how an 
intervention on employment at the age of 30 affects the future 
employment status. More specifically, we compare two interventions: 
forcing everyone to work full time vs. forcing everyone to not work full 
time at the age of 30. This is an example of an atomic intervention that is 
carried out only at a single time point. After the intervention, the 
employment status is once again defined by the model equations at 
future time points. Our assumed causal graph is presented in Fig. 5. In 
addition to depending on the binary gender variable g (where 
0 = woman and 1 = man, as coded in the original data) and the previous 
employment status y1,t, we assume that the employment y1,t+1 depends 
on the full work history via a binary variable y2,t, which has the value 0 if 
the person has never worked full-time before age t + 1 and 1 otherwise. 
In other words, the variable y2,t describes whether the person has ever 
worked full-time and it is defined by its previous value y2,t− 1 and the 
current employment status y1,t. The graph in Fig. 5 is naturally a 
simplification of the true causal relationships related to employment, as 

we ignore the potential effects of education and differences between 
industries, for instance. 

We model the probability of full-time employment as follows: 

y1,t,i
⃒
⃒ηt,i ∼ Bernoulli

(
logit− 1

(ηt,i)
)

ηt,i =
(β1y2,t− 1,i + δt,1 + δt,2y1,t− 1,i)gi

+(β2y2,t− 1,i + δt,3 + δt,4y1,t− 1,i)(1 − gi)
y2,t,i = (1 − y2,t− 1,i)y1,t,i + y2,t− 1,i,

i.e., for both genders, we assume time-invariant effects for the work- 
history y2,t, time-varying intercept, and time-varying effects of previ-
ous work status. We define the time-varying effects δt,j, j = 1, …, 4, as 
splines with D = 6 degrees of freedom. The resulting estimates were not 
sensitive to reasonable choices of D (see Appendix C). 

While our main interest is in the ACE, given the graph in Fig. 5, we 
can interpret the model parameters β and δ as conditional causal effects 
on the logit scale. The mean of the time-invariant coefficients β of the 
work history were estimated as 0.07 for women, with a 95% posterior 
interval (-0.38, 0.52), and 0.58 (0.14, 1.01) for men, indicating that 
having at least some full-time work experience has a positive effect for 
men, but no effect for women. Fig. 6 shows the estimated posterior 
means and the 95% posterior intervals for the time-varying coefficients 
for men and women. The direction of change in these time-varying ef-
fects seems plausible: the coefficients corresponding to the gender- 
specific intercepts indicate decreases in the probabilities of transition-
ing to full-time employment if the person was not employed at the 
previous time point. For men, this probability starts to decrease after the 
age of 26, whereas for women the decrease starts already at the age of 22 
(or earlier), but levels off around age 32. On the other hand, the prob-
ability of being employed conditional on being employed at the previous 
time point increases considerably over time for both men and women. 

For estimating the ACE for ages 32, …, 44 given the intervention at 
the age of 30 (full-time employee vs. not), we simulate trajectories of y1,t 
and y2,t. Fig. 7 shows the posterior means and the 95% posterior in-
tervals for the ACE 

P(y1,t = 1
⃒
⃒
⃒do(y1,30 = 1)) − P(y1,t = 1

⃒
⃒
⃒do(y1,30 = 0))

as well as the observed values of 

Fig. 6. Posterior means and 95% posterior intervals of the time-varying coefficients of the employment model for the intercept (solid line) and employment at the 
previous time point (dashed line). The left panel shows the coefficients for men and the right for women, respectively. 

Fig. 5. A cross-section of the causal graph of the employment example at times 
t, t + 1, and t + 2, where y1,t is the employment status at time t, g is the gender, 
and y2,t is variable indicating whether the person has ever worked full-time up 
to and including time t. 
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P(y1,t = 1
⃒
⃒y1,30 = 1) − P(y1,t = 1

⃒
⃒y1,30 = 0)

for t = 32, …, 44, corresponding to the difference in full-time employ-
ment probabilities between those individuals who worked full-time at 
the age of 30 and those who did not. These observed associations differ 
considerably from the estimates of the ACE due to confounding and 
selection bias. Naturally, due to the simplified causal graph of this 
example, the ACE estimates are also probably subject to some bias as we 
do not adjust for all potentially important factors such as education. 

4.3. Partnership Statuses 

As the third illustration, we analyze partnership status sequence 
data; a subset of the German Family Panel Study (Brüderl et al., 2022), 
which is provided as supplementary material of (Raab & Struffolino, 
2022, https://sa-book.github.io/). This data consists of information on 
the partnership statuses of 1834 individuals between the ages of 18 and 
40 (22 time points, as we use the yearly granularity of the data). Our 
categorical response variable is the partnership status (single, living 
apart together, cohabiting, married). We also use data on the in-
dividuals’ gender (coded as binary in the original data, with 0 = man 
and 1 = woman) and church attendance. Appendix D contains some 
descriptive summary statistics of the data. Church attendance is recor-
ded as a time-invariant binary variable such that 0 corresponds to not 
having attended church and 1 corresponds to multiple church atten-
dances per year. Naturally, church attendance as a proxy to religiousness 
is not time-invariant in reality, but here we assume that religiousness is a 
stable personality trait measured by our time-invariant church atten-
dance (for discussion on religiousness and personality, see, e.g., Saucier, 
2019 and Entringer et al., 2023). Here we illustrate how we could study 
the effect of religiousness on the transition probabilities between 
different partnership statuses. If we had more detailed yearly informa-
tion on church attendance, we could model it along with the partnership 
status as a second response variable, with religiousness (affecting part-
nership status) defined by the previous five years of church attendance, 
for example. There are of course many other factors influencing the 
partnership trajectories (and religiousness) such as education and 
sosioeconomic background, which should be taken into account in 
proper studies of religiousness and partnership trajectories. There were 
32 individuals who had missing church attendance information, which 
we removed from the analysis for simplicity. This is unlikely to affect the 
results due to the large size of the data sample. 

We denote the partnership status by yt and model the probability of 

being in a particular status s using the previous status, church atten-
dance a, gender g, as well as with an individual-specific random inter-
cept term. The individual-specific random effects capture the time- 
invariant heterogeneity between individuals, namely that individuals 
differ in their behavior of transitioning between different partnership 
statuses. The regression coefficients and random intercepts vary by 
category, and the random intercepts are modeled as correlated. Let M 
= {LAT, COH, MAR}. The model is 

Table 1 
Posterior means, standard deviations, and posterior intervals of the partnership 
model parameters for categories Living apart together (LAT), Cohabiting (COH), 
and Married (MAR). The coefficients of category Single (S) are fixed to zero for 
identifiability. Variables S, LAT, COH, and MAR refer to the coefficient of the 
category at the previous time point (βk,s,1). Woman refers to the coefficient 
associated with women (βs,3), while Church refers to the coefficient for in-
dividuals attending church multiple times a year (βs,2).  

Category Variable Parameter Mean SD 2.5% 97.5% 

LAT Woman βLAT,3  0.25  0.05  0.15  0.35 
COH Woman βCOH,3  0.33  0.06  0.22  0.44 
MAR Woman βMAR,3  0.29  0.07  0.16  0.42 
LAT Church βLAT,2  0.18  0.05  0.08  0.29 
COH Church βCOH,2  − 0.11  0.06  − 0.22  0.01 
MAR Church βMAR,2  0.67  0.07  0.53  0.80 
LAT S βS,LAT,1  − 1.75  0.05  − 1.84  1.66 
COH S βS,COH,1  − 2.90  0.06  − 3.02  2.78 
MAR S βS,MAR,1  − 4.72  0.11  − 4.95  4.50 
LAT LAT βLAT,LAT,1  1.53  0.06  1.42  1.64 
COH LAT βLAT,COH,1  0.34  0.06  0.23  0.46 
MAR LAT βLAT,MAR,1  − 1.33  0.09  − 1.50  1.16 
LAT COH βCOH,LAT,1  − 0.83  0.11  − 1.06  0.61 
COH COH βCOH,COH,1  2.99  0.08  2.84  3.14 
MAR COH βCOH,MAR,1  1.14  0.08  0.98  1.30 
LAT MAR βMAR,LAT,1  − 0.29  0.14  − 0.57  0.01 
COH MAR βMAR,COH,1  − 0.97  0.18  − 1.33  0.63 
MAR MAR βMAR,MAR,1  4.48  0.10  4.28  4.68 
LAT  σν,LAT  0.48  0.05  0.39  0.57 
COH  σν,COH  0.33  0.07  0.18  0.45 
MAR  σν,MAR  0.31  0.07  0.17  0.45   

ρLAT,COH  0.68  0.12  0.41  0.89   
ρLAT,MAR  0.83  0.11  0.56  0.98   
ρCOH,MAR  0.34  0.24  − 0.19  0.76  

Fig. 7. Posterior means and 95% posterior intervals for P(y1,t = 1∣do(y1,30 = 1)) − P(y1,t = 1∣do(y1,30 = 0)) (solid line) and observed values of the difference of 
conditional probabilities P(y1,t = 1∣y1,30 = 1) − P(y1,t = 1∣y1,30 = 0) (dashed line) for the employment model. 
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yt,i∣ηt,i ∼ Categorical
(
softmax(ηt,i)

)

ηS,t,i = 0

ηs,t,i =
∑

k∈M

βk,s,1I(yt− 1,i = k) + βs,2ai + βs,3gi + νs,i, s ∈ M

νi∣σν,R ∼ N
(
0, σ⊤

ν Rσν
)

σν = (σν,LAT, σν,COH, σν,MAR)

R =

⎡

⎢
⎣

1 ρLAT,COH ρLAT,MAR

ρLAT,COH 1 ρCOH,MAR

ρLAT,MAR ρCOH,MAR 1

⎤

⎥
⎦

where softmax(x) = exp(x)∕
∑K

k=1exp(xk) for a vector x = (x1, …, xK) 
and I( ⋅ ) is an indicator function that has the value 1 if the argument is 
true and 0 otherwise. For each status s ∈ M, the parameters βk,s,1 
correspond to the effect of the status at the previous time point, βs,2 is the 
effect of attendance, βs,3 is the effect of gender, and νs,i is the individual- 
specific random effect. The standard deviation vector and correlation 
matrix of the random effects are σν and R, respectively. 

Table 1 shows the estimated regression coefficients for each cate-
gory, as well as the standard deviations of the random effects (σν) and 
their correlations ρ. Category Single (S) was set as the reference category 
for identifiability purposes, leading to a log odds interpretation of the 
coefficients. We see that church attendance increases the log odds of the 
Living apart together (LAT) status and especially the Married (MAR) 
status, and to some extent decreases the log odds of Cohabitation (COH). 
Women seem to have higher log odds for LAT, COH, and MAR. We could 
also similarly interpret the lagged effects of status, but instead of log 
odds interpretations, we study the corresponding transition probability 
matrices. 

We estimate two marginal transition matrices as follows. For 
computing transitions from status s to each of the four statuses, we set 
the status of each individual to s and their Church variable to 0 (no 
attendance) and estimate their transition probabilities for the next time 
point. Averaging over these probabilities gives the expected transition 
probabilities for those who did not attend church. By repeating this for 
each starting status and again with the Church variable set to 1, we 
acquire the two transition matrices shown in Table 2. 

From the transition probabilities, we see that those who are more 
religious (as measured by church attendance) tend to move faster to the 
Married status (higher probabilities in the MAR column) and they 
especially spend less time in the Cohabiting state (70% vs. 81%). There 
is also a slightly smaller chance of moving back to previous states, as can 
be seen from the smaller probabilities on the lower diagonals. 

5. Discussion 

We proposed the DMPM for modeling panel data applicable to both 
Gaussian and non-Gaussian data with potentially time-varying and 

individual-specific effects and showed how DMPMs can be used to es-
timate the full posterior distribution of long-term causal effects. This 
enables us to answer new causal questions related to panel data more 
realistically than before. 

While DMPMs are highly general, they do have some limitations. The 
presented model does not support multiple levels of hierarchy in the 
random effects, for example, individuals nested in cities or countries. We 
did not consider explicit error terms in the linear predictor, which could 
be used to construct more complex correlation structures between 
different responses. We also did not consider individual-specific time- 
varying effects. We note that these limitations are mainly technical, but 
explicit error terms could also pose difficulties for identifiability and 
interpretation concerning causal inference. We leave these topics for 
possible directions for future research. 

One of the strengths of latent variable approaches such as HMMs is 
the straightforward handling of missing response variables. As DMPMs 
operate on the observational level, dealing with missing data can be less 
trivial especially when missing variables are discrete, as they cannot be 
treated as unknown parameters in the gradient-based MCMC sampling 
(Neal, 2011), as is otherwise typical under the Bayesian paradigm. 
However, standard multiple imputation techniques (Van Buuren, 2018) 
combined with the Bayesian estimation of DMPMs is straightforward, 
although computationally intensive, as we can combine the posterior 
samples from multiple MCMC runs based on different imputed datasets 
(Gelman et al., 2013). Of course, a simple listwise deletion can also be a 
reasonable option under suitable missing data mechanisms (see, e.g., 
Van Buuren, 2018, sec. 2.7), especially when the missing data pattern is 
sparse. 

While the fully Bayesian DMPM is compatible with the general 
Bayesian workflow (Gelman et al., 2020) and thus allows us to rely on 
the common Bayesian model evaluation and comparison methods such 
as posterior predictive checking and cross-validation, from a causal 
inference perspective we, following (Pearl, 1995), advocate the con-
struction and critical assessment of the assumed causal graph as the first 
step. If this graph leads to identifiable causal effects that are compatible 
with the structure of the DMPM, then the tools provided by the R 
package dynamite can be used for defining, estimating, and obtaining 
predictions from DMPMs. 
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Appendix A. ACE for the Bivariate Gaussian Model Example 

We consider the model from Section 4.1: 

y1,t = 0.6y1,t− 1 + 0.4y2,t− 1 + xt,i + ϵ1,t
y2,t = − 0.1y1,t− 1 + 0.9y2,t− 1 + 0.4xt + ϵ2,t
ϵ1,t ∼ N(0,0.42)

ϵ2,t ∼ N(0,0.42).

Our goal is to compute the following average causal effect when k → ∞ : 

ACE2(t, k) = E(y1,t+k
⃒
⃒do(xt = 1,…, xt+k = 1)) − E(y1,t+k

⃒
⃒do(xt = 0,…, xt+k = 0)).

First, we solve the recurrence relation for y1,t under the intervention and take the expectation. We simplify the notation by dropping the do( ⋅ ) terms 
and simply treat xt as fixed. For the intervention do(xt = 1, …, xt+k = 1), the model equations become 

E(y1,t) = 0.6E(y1,t− 1) + 0.4E(y2,t− 1) + 1
E(y2,t) = − 0.1E(y1,t− 1) + 0.9E(y2,t− 1) + 0.4.

To further simplify the notation, we denote Yt = E(y1,t) and Zt = E(y2,t). Thus we have 

Yt = 0.6Yt− 1 + 0.4Zt− 1 + 1
Zt = − 0.1Yt− 1 + 0.9Zt− 1 + 0.4.

Solving for Zt− 1 in the first equation and incrementing the time index by one yields 

2Zt = 5Yt+1 − 3Yt − 5.

Substituting this into the second equation for both Zt and Zt− 1 yields 

5
2
Yt+1 −

3
2
Yt −

5
2
= −

1
10

Yt− 1 +
9
10

(
5
2
Yt+1 −

3
2
Yt −

5
2

)

+
2
5
.

By solving for Yt+1 we obtain a second-order recurrence relation 

Yt+1 =
3
2
Yt −

29
50

Yt− 1 +
13
50

.

This is a linear nonhomogeneous recurrence, and its steady-state value is 
13
50

1 − 3
2 +

29
50

=
13
4
.

Thus we can convert the recurrence to a homogeneous form, whose characteristic polynomial λ2 − 3
2 λ + 29∕50 has roots that are all less than 1 in 

absolute value. Thus the recurrence converges to the steady state. For the intervention do(xt = 0, …, xt+k = 0), it is easy to see that the expectation 
converges to 0. Thus we obtain the desired limit 

lim
k→∞

ACE2(t, k) =
13
4

= 3.25.

This result can also be obtained by noting that the model is a stationary VAR. 

B. Additional Details of the Bivariate Gaussian Model Example 

In Section 4.1 we simulated two datasets from the model 
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y1,t,i = α1 + β1y1,t− 1,i + β2y2,t− 1,i + β3xt,i + ϵ1,t,i

y2,t,i = α2 + β4y1,t− 1,i + β5y2,t− 1,i + β6xt,i + ϵ2,t,i

ϵ1,t,i ∼ N
(
0, σ2

1
)

ϵ2,t,i ∼ N
(
0, σ2

2
)

(6) 

with the parameter values fixed to those in equation (5). Table 3 shows the estimated parameters in the first scenario and Table 4 in the second 
scenario (both data were generated using the same parameter values).  

Table 3 
Posterior means, standard deviations, posterior intervals, R̂ estimates, and effective sample sizes for the model estimated using the data in the first scenario of Section 
4.1.  

Parameter Mean SD 2.5% 97.5% R̂ Bulk-ESS Tail-ESS 

α1  0.00  0.00  0.00  0.00  1.00  6569  3210 
α2  0.00  0.00  − 0.01  0.00  1.00  8118  2912 
β1  0.60  0.00  0.60  0.61  1.00  5249  3160 
β2  0.39  0.00  0.39  0.40  1.00  5045  3347 
β3  0.99  0.02  0.95  1.02  1.00  3647  3217 
β4  − 0.10  0.00  − 0.10  − 0.09  1.00  5590  3188 
β5  0.90  0.00  0.89  0.90  1.00  5898  3281 
β6  0.39  0.02  0.35  0.42  1.00  3328  2441 
σ1  0.40  0.00  0.40  0.40  1.00  6932  3060 
σ2  0.40  0.00  0.40  0.40  1.00  6508  3153   

Table 4 
Posterior means, standard deviations, posterior intervals, R̂ estimates, and effective sample sizes for the model estimated using the data in the second scenario of 
Section 4.1.  

Parameter Mean SD 2.5% 97.5% R̂ Bulk-ESS Tail-ESS 

α1  0.00  0.00  0.00  0.00  1.00  5342  2686 
α2  0.00  0.00  − 0.01  0.00  1.00  5939  3294 
β1  0.60  0.00  0.60  0.61  1.00  3361  3185 
β2  0.39  0.00  0.39  0.40  1.00  4777  3055 
β3  1.00  0.01  0.98  1.01  1.00  3027  2973 
β4  − 0.10  0.00  − 0.10  − 0.09  1.00  3482  2716 
β5  0.90  0.00  0.89  0.90  1.00  4555  2563 
β6  0.40  0.01  0.38  0.41  1.00  3474  2582 
σ1  0.40  0.00  0.40  0.40  1.00  5726  2956 
σ2  0.40  0.00  0.40  0.40  1.00  5929  2849  

As expected, the posterior means are close to the true values specified in equation (5) that were used to generate the data. The models converge 
well as indicated by the convergence diagnostics: R̂ statistics are less than 1.01 and the effective sample sizes are sufficient (see Vehtari et al., 2021, for 
details on these diagnostics). 

Computation time with four parallel chains, each with 2000 iterations (of which the first 1000 were discarded as warm-up) was about 13 and 18 s 
in the first and the second scenario, respectively, on a Windows laptop with a six-core Intel i3–1215 U processor and 16 GB of RAM. 

C. Additional Details of the Employment Example 

Table 5 shows the contingency table of 424 men and 421 women of the data of Section 4.2 in terms of whether they were ever full-time employed 
between the ages of 20 and 44. Table 6 shows the frequencies of the ages of first full-time employment for those who were employed full-time at some 
point during the study period.  

Table 5 
Contingency table of gender and full-time employment for the data of Section 4.2.   

Never worked full-time Worked full-time 

Woman  102  319 
Man  35  389  
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Table 6 
Frequency table of age of first full-time employment for the data of Section 4.2.  

Age 20 22 24 26 28 30 32 34 36 38 40 42 

Frequency  509  72  40  35  24  6  7  4  3  4  2  2  

Table 7 shows the estimated time-invariant parameters and the corresponding convergence diagnostics of the employment model of Section 4.2. 
Parameters τk, k = 1, …, 4 are the standard deviation parameters of the random-walk prior for the spline coefficients of the time-varying effect δk. 
Computation time with four parallel chains, each with 5000 iterations (of which the first 2500 were discarded as warm-up) was about 5 min on a 
Windows laptop with a six-core Intel i3–1215 U processor and 16 GB of RAM.  

Table 7 
Posterior means, standard deviations, posterior intervals, R̂ estimates, and effective sample sizes for the employment model of Section 4.2.  

Parameter Mean SD 2.5% 97.5% R̂ Bulk-ESS Tail-ESS 

β1  0.58  0.22  0.13  1.01  1.00  12464  8182 
β2  0.07  0.23  − 0.38  0.52  1.00  11622  7958 
τ1  1.13  0.39  0.56  2.06  1.00  6954  7094 
τ2  1.32  0.41  0.68  2.26  1.00  7739  7218 
τ3  1.10  0.37  0.56  2.00  1.00  6898  7183 
τ4  1.31  0.38  0.73  2.22  1.00  8087  5691  

We also tested how the choice of D, the degrees of freedom of the spline coefficients, affects the results. We estimated the same model as in the main 
text with D = 4, 6, 8, 15. While this choice has a small effect on the smoothness of the time-varying parameters, it had no meaningful effect on the 
causal effect estimates (see the figures in GitHub). We also compared the predictive accuracy of these models using the approximate leave-one-out 
cross-validation. No significant differences between the models were found, i.e., the differences in the estimated log predictive densities were less 
than the corresponding standard errors (see the GitHub codes for further details). 

D. Additional Details of the Partnership Example 

Table 8 shows the contingency table of 808 men and 1026 women of the data of Section 4.3 with respect to their church attendance.  

Table 8 
Contingency table of gender and church attendance for the data of 
Section 4.3.   

Does not attend Attends 

Man  528  280 
Woman  591  435  

The observed average transition probabilities conditional on the church attendance are shown in Table 9. The implied stationary distributions 
based on the observed and estimated transition probabilities in Table 2 are shown in the GitHub codes.  

Table 9 
Observed mean transition probabilities for those who regularly attend church (top) and those who do not (bottom) for 
the partnership data.  

(a) Regularly attend church      
S LAT COH MAR 

S  0.78  0.17  0.03  0.01 
LAT  0.10  0.67  0.16  0.07 
COH  0.03  0.02  0.74  0.21 
MAR  0.00  0.00  0.00  0.99  

(b) Do not regularly attend church      
S LAT COH MAR 

S  0.80  0.14  0.05  0.01 
LAT  0.12  0.66  0.19  0.03 
COH  0.03  0.02  0.82  0.13 
MAR  0.01  0.01  0.01  0.98  

Table 10 shows the parameter estimates of the model of Section 4.3 together with the corresponding convergence diagnostics. Computation time 
with four parallel chains, each with 6000 iterations (of which the first 1000 were discarded as warm-up) was about 2 h and 50 min on a Windows 
laptop with a six-core Intel i3–1215 U processor and 16 GB of RAM.  
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Table 10 
Posterior means, standard deviations, posterior intervals, R̂ estimates, and effective sample sizes for the partnership model of Section 4.3.  

Category Variable Parameter Mean SD 2.5% 97.5% R̂ Bulk-ESS Tail-ESS 

LAT Woman βLAT,3  0.25  0.05  0.15  0.35  1.00  14783  15520 
COH Woman βCOH,3  0.33  0.06  0.22  0.44  1.00  14576  15497 
MAR Woman βMAR,3  0.29  0.07  0.16  0.42  1.00  16154  15395 
LAT Church βLAT,2  0.18  0.05  0.08  0.29  1.00  16214  16764 
COH Church βCOH,2  − 0.11  0.06  − 0.22  0.01  1.00  18142  16425 
MAR Church βMAR,2  0.67  0.07  0.53  0.80  1.00  16402  16307 
LAT S βS,LAT,1  − 1.75  0.05  − 1.84  1.66  1.00  9884  12601 
COH S βS,COH,1  − 2.90  0.06  − 3.02  2.78  1.00  13281  14252 
MAR S βS,MAR,1  − 4.72  0.11  − 4.95  4.50  1.00  25252  14883 
LAT LAT βLAT,LAT,1  1.53  0.06  1.42  1.64  1.00  10594  13534 
COH LAT βLAT,COH,1  0.34  0.06  0.23  0.46  1.00  15584  14865 
MAR LAT βLAT,MAR,1  − 1.33  0.09  − 1.50  1.16  1.00  14354  15981 
LAT COH βCOH,LAT,1  − 0.83  0.11  − 1.06  0.61  1.00  17607  15773 
COH COH βCOH,COH,1  2.99  0.08  2.84  3.14  1.00  9895  13480 
MAR COH βCOH,MAR,1  1.14  0.08  0.98  1.30  1.00  14761  13806 
LAT MAR βMAR,LAT,1  − 0.29  0.14  − 0.57  0.01  1.00  20853  16412 
COH MAR βMAR,COH,1  − 0.97  0.18  − 1.33  0.63  1.00  23131  16357 
MAR MAR βMAR,MAR,1  4.48  0.10  4.28  4.68  1.00  16861  15874 
LAT  σν,LAT  0.48  0.05  0.39  0.57  1.00  4619  8676 
COH  σν,COH  0.33  0.07  0.18  0.45  1.00  2268  3146 
MAR  σν,MAR  0.31  0.07  0.17  0.45  1.00  3956  5330   

ρLAT,COH  0.68  0.12  0.41  0.89  1.00  4312  5890   
ρLAT,MAR  0.83  0.11  0.56  0.98  1.00  5583  8641   
ρCOH,MAR  0.34  0.24  − 0.19  0.76  1.00  4201  5538  

We also tested a model with additional interaction term between church attendance and gender. These terms did not differ from zero and based on 
the approximate leave-one-out cross-validation this interaction model had somewhat worse predictive performance (see the GitHub codes for further 
details). 

References 

Allison, P. D., Williams, R., & Moral-Benito, E. (2017). Maximum likelihood for cross- 
lagged panel models with fixed effects. Socius, 3. https://doi.org/10.1177/ 
2378023117710578 

Altman, R. M. (2007). Mixed hidden Markov models. Journal of the American Statistical 
Association, 102(477), 201–210. https://doi.org/10.1198/016214506000001086 

Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo 
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72 
(3), 269–342. https://doi.org/10.1111/j.1467-9868.2009.00736.x 

Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation 
models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359–388. 
https://doi.org/10.1080/10705511.2017.1406803 

Asparouhov, T., & Muthén, B. (2021). Expanding the Bayesian structural equation, 
multilevel and mixture models to logit, negative-binomial, and nominal variables. 
Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 622–637. https://doi. 
org/10.1080/10705511.2021.1878896 

Bai, J., & Wang, P. (2015). Identification and Bayesian estimation of dynamic factor 
models. Journal of Business & Economic Statistics, 33(2), 221–240. https://doi.org/ 
10.1080/07350015.2014.941467 

Barban, N., Luna, X., de Lundholm, E., Svensson, I., & Billari, F. C. (2020). Causal effects 
of the timing of life-course events: Age at retirement and subsequent health. 
Sociological Methods & Research, 49(1), 216–249. https://doi.org/10.1177/ 
0049124117729697 

Bartolucci, F., Farcomeni, A., & Pennoni, F. (2013). Latent markov models for 
longitudinal data. Chapman; Hall/CRC. https://doi.org/10.1201/b13246 

Bartolucci, F., Pennoni, F., & Francis, B. (2007). A latent Markov model for detecting 
patterns of criminal activity. Journal of the Royal Statistical Society: Series A (Statistics 
in Society), 170(1), 115–132. https://doi.org/10.1111/j.1467-985X.2006.00440.x 

Bartolucci, F., Pennoni, F., & Vittadini, G. (2016). Causal latent Markov model for the 
comparison of multiple treatments in observational longitudinal studies. Journal of 
Educational and Behavioral Statistics, 41(2), 146–179. https://doi.org/10.3102/ 
1076998615622234 

Bartolucci, F., Pennoni, F., & Vittadini, G. (2023). A causal latent transition model with 
multivariate outcomes and unobserved heterogeneity: Application to human capital 
development. Journal of Educational and Behavioral Statistics, 48(4), 387–419. 
https://doi.org/10.3102/10769986221150033 

Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of finite 
state Markov chains. The Annals of Mathematical Statistics, 37(6), 1554–1563. 
https://doi.org/10.1214/aoms/1177699147 

Bell, A., Fairbrother, M., & Jones, K. (2019). Fixed and random effects models: Making an 
informed choice. Quality & Quantity, 53, 1051–1074. https://doi.org/10.1007/ 
s11135-018-0802-x 

Bell, A., Jones, K., & Fairbrother, M. (2018). Understanding and misunderstanding group 
mean centering: A commentary on Kelley et al.’s dangerous practice. Quality & 
Quantity, 52, 2031–2036. https://doi.org/10.1007/s11135-017-0593-5 

Berchtold, A. (1999). The double chain Markov model. Communications in Statistics - 
Theory and Methods, 28(11), 2569–2589. https://doi.org/10.1080/ 
03610929908832439 

Bijlsma, M. J., & Wilson, B. (2019). Modelling the socio-economic determinants of 
fertility: A mediation analysis using the parametric g-formula. Journal of the Royal 
Statistical Society: Series A (Statistics in Society), 183(2), 493–513. https://doi.org/ 
10.1111/rssa.12520 

Blalock, H. M. (1964). Causal inferences in nonexperimental research. University of North 
Carolina Press,.  

Blossfeld, H.-P., Rossbach, H.-G., & Von Maurice, J. (2011). Education as a lifelong process: 
The German national educational panel study (NEPS). Springer,.  

Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons,. 
https://doi.org/10.1002/9781118619179 

Bollen, K. A., & Brand, J. E. (2010). A general panel model with random and fixed effects: 
A structural equations approach. Social Forces, 89(1), 1–34. https://doi.org/ 
10.1353/sof.2010.0072 
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Dissertation, University of Jyväskylä. Department of Mathematics and Statistics.〈htt 
ps://jyx.jyu.fi/handle/123456789/49043〉. 

Helske, J. (2022). Efficient Bayesian generalized linear models with time-varying 
coefficients: The walker package in R. SoftwareX, 18, Article 101016. https://doi. 
org/10.1016/j.softx.2022.101016 

Helske, J., & Vihola, M. (2021). bssm: Bayesian inference of non-linear and non-Gaussian 
state space models in R. The R Journal, 13(2), 578–589. https://doi.org/10.32614/ 
RJ-2021-103 

Helske, S., Helske, J., & Eerola, M. (2018). Combining sequence analysis and hidden 
Markov models in the analysis of complex life sequence data. In G. Ritschard, & 
M. Studer (Eds.), Sequence analysis and related approaches: Innovative methods and 
applications (pp. 185–200). Springer International Publishing. https://doi.org/ 
10.1007/978-3-319-95420-2_11.  
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