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ABSTRACT
As machine learning models are used increasingly in the educa-
tional domain, ensuring that they are fair and do not discriminate
against certain groups or individuals is imperative. Although there
are a few recent attempts to ensure fairness in these models, the
majority of fairness literature tends to overlook the feature selec-
tion (FS) process despite its critical role as one of the foundational
steps in the machine learning pipeline. Moreover, traditional FS
methods identify features by examining the correlational relation-
ships between predictive features and the target variable without
seeking to uncover causal connections between them. To address
these issues, we compare for four openly available datasets—two
educational ones and two benchmark datasets regularly used in
the fairness literature—the impact of these two different ways of FS
(i.e., causality- versus correlation-based) on the performance and
fairness of the resulting models. Our results show that causality-
based FS generally leads to fairer models, while the models built
after correlation-based FS manifest higher performance.

CCS CONCEPTS
• Computing methodologies → Feature selection; Causal rea-
soning and diagnostics; • Applied computing → Education.
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1 INTRODUCTION
Ensuring inclusive and equitable quality education and promoting
lifelong learning opportunities for all is one of the key sustainability
development goals [44]. However, access to superior educational
resources remains skewed in favor of more privileged learners. Fur-
thermore, global assessments highlight a concerning shortage of
educators, leaving them increasingly strained and fatigued. The on-
set of the COVID-19 pandemic and subsequent school closures have
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further exacerbated these challenges [23, 36, 39]. Artificial intelli-
gence (AI) in education can be part of the solution to overcome these
problems: It can unburden teachers, enable learners and educators
to access specialized materials well beyond textbooks in multiple
formats that bridge time and space, and deliver quality education
for all, personalized and at scale [38]. With this, the application
of machine learning algorithms is necessary to extract beneficial
information from large educational data sets with multiple modali-
ties, support automatic decision-making, and provide appropriate
content to the learners. For instance, personalized learning systems
can provide instructions in mixed-ability learning groups, chatbots
can provide students with detailed and timely feedback on their
writing products, and automated assessments can free teachers
from some repetitive work and give them more room to support
their students [21, 47].

However, despite the remarkable results achieved by current
educational AI models, ensuring their fairness remains a significant
challenge [5, 29]. Fairness, in this context, pertains to treating indi-
viduals or groups equitably, without any bias or favoritism based
on their inherent or acquired characteristics, particularly within
decision-making processes [30, 37]. As in other domains, educa-
tional applications and tools driven by machine learning algorithms
carry the potential for ethical challenges [1]. Not only can bias in
the real world “creep” into AI systems [37]. Even if the underlying
data itself is unbiased, the behavior of algorithms can exhibit bias
based on certain design choices [30]. Moreover, unlike low-stakes
applications, such as a Netflix model predicting movie preferences,
deploying machine learning models in education often involves
high-stakes decisions, such as determining a student’s admission to
a study program or eligibility for a scholarship [41]. A recent review
on fairness in educational models points out that ethical challenges
have been identified in various dimensions, encompassing student
attributes like race, ethnicity, nationality, gender, native language,
urbanicity, parental educational background, and socioeconomic
status [5]. Thus, with the proliferation of AI and automatedmachine
learning models in education, it has become crucial to prioritize
the fairness of these models.

Feature selection (FS) is one of the most commonly applied pre-
processing or data-transformation/-generation techniques in the
machine learning pipeline before training a model [19]. It involves
the task of pinpointing and choosing a subset of input features that
hold the highest relevance to the target variable. Using it offers
numerous advantages, including aiding in data visualization and
comprehension, decreasing the need for extensive measurement
and storage, reducing training and processing times, and mitigating
the challenges of high-dimensional data to enhance prediction accu-
racy [18, 28]. However, despite it being such an essential step in the
machine learning pipeline, according to Galhotra et al. (2022) [16],
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the majority of the fairness literature neglects it. In addition, tradi-
tional FS methods identify features by examining the correlational
relationships between predictive features and the class variable
without seeking to uncover causal connections between them [48].
Thus, an intriguing topic to explore is how the causality-based
versus correlation-based FS relates to the performance and fairness
of the resulting models.

Especially in the educational domain, recent machine learning
fairness articles emphasize the importance of using causal algo-
rithms as future work [9, 29]. Typically, correlations merely indi-
cate the co-occurrence of features without capturing their causal
relationships with the class variable, but research indicates that
incorporating causal features in FS for classification can offer two
significant potential advantages: First, incorporating causal features
can enhance the resilience and robustness of classification models
as causal relationships indicate the fundamental mechanism behind
the class variable, making them consistent across various settings
or environments [4, 34, 40]. Second, causal features can potentially
enhance the explanatory power of classification models [32]. Cor-
relations only capture the simultaneous occurrence of features and
the class variable. Consequently, the selected features often fail to
provide a compelling explanation for predictions. For instance, a
strong correlation between a pupil’s height and their mathematics
skills might be observed in one primary school. This observation
might suggest that height is a significant predictive feature of a
pupil’s mathematics skills. However, it clearly is not a reasonable
explanation for mathematical skills. In reality, factors like age serve
as more plausible and understandable causes of mathematical skills,
and such predictors will also be more robust if the model is applied
in another school.

To address these issues, this article analyzes four openly avail-
able datasets—two specifically from the educational domain and
two well-known benchmark datasets from the general fairness
literature—and examines how causality- versus correlation-based
FS relates to the performance and fairness of the resulting models.
More specifically, we compare the traditional correlation-based fil-
ter FS technique with a specific causality-based filter FS algorithm,
which came out on top in a recent evaluation of causality-based FS
algorithms [48].

2 THEORETICAL FOUNDATIONS
In this section, we provide the theoretical foundations for the empir-
ical experiments. First, we explain the main concepts of FS. Second,
we give a short introduction to the discovery of the Markov blan-
ket, which is needed for causality-based FS. Third, we summarize
current fairness metrics that can be used to assess the fairness of
machine learning models.

2.1 Feature selection
FS involves identifying and selecting a subset of input features that
exhibit the highest relevance to the target variable. FS techniques
currently in use can be divided into three main categories: wrap-
pers, embedded methods, and filters [15, 18, 28]. Wrapper methods
conduct an exhaustive search through potential combinations of fea-
tures. They evaluate each subset by employing the target learning

algorithm as a black box [25].Wrapper FS approaches can be compu-
tationally demanding, as model training and cross-validation must
be performed for each feature subset, and the results are tailored to
a specific model. Embedded methods carry out FS intrinsically as
part of the training process and are typically designed for specific
learning algorithms. In comparison to wrappers, embedded meth-
ods can offer several efficiency advantages. They make optimal use
of available data without the need to split the training data into
separate sets for training and validation. They also reach a solution
more swiftly by avoiding the need to retrain a predictor entirely for
each variable subset under investigation [18]. Embedded methods,
which have an integrated FS mechanism as part of the predictive
model construction process, encompass techniques such as decision
trees and ensemble machine learning methods, with random forests
[6] and gradient boosting [12] being the most prominent examples.

Compared to these other two FS types that rely on specific pre-
dictive models, filter methods operate independently of predictive
models. They share a similar search approach with wrappers, but
instead of evaluating against a predictor, they use a basic filter as
a preprocessing step. Consequently, filters operate independently
of the chosen predictor. Because of their model independence, fil-
ter methods offer swift processing speeds and do not exhibit bias
towards particular predictive models. As high-dimensional data
become more prevalent, filter methods are garnering increased
attention. Traditional filter FS methods rely on correlations (see
Section 2 in [18] for an overview), whereas emerging and successful
filter methods are based on causality [48].

Causality-based FS aims to pinpoint the Markov Blanket (MB)
associated with a class variable, with the goal of constructing pre-
dictive models that are both more interpretable and robust [17, 46].
The MB provides insight into the local causal relationship between
the class variable and the features within it. As explained in more
detail below (Section 2.2), because all other features are probabilis-
tically independent of the class variable when conditioned on its
MB, the MB of a class variable represents the theoretically optimal
subset of features for classification [26, 31].

2.2 Markov blanket
The concept of Markov blanket (MB) in a Bayesian network was
developed by Pearl [31]. A Bayesian network is a visual tool that
succinctly illustrates a combined probability distribution across
a set of random variables using a directed acyclic graph adorned
with conditional probability tables [31]. These tables detail the
probability distribution of a node based on any instantiation of its
parent nodes. As a result, the graph conveys qualitative insights
about the random variables, such as conditional independence prop-
erties. Meanwhile, the associated probability distribution, which
aligns with these properties, offers a numerical portrayal of how
the variables are interrelated. The probability distribution and the
graph of a Bayesian network are linked by the Markov condition,
which asserts that a node is conditionally independent of its non-
descendants when given knowledge of its parents.

Definition 1. (Faithfulness): A Bayesian network 𝐺 and a joint
distribution 𝑃 are faithful to each other if every conditional indepen-
dence implied by 𝐺 and the Markov condition is also reflected in 𝑃

[31].
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The MB of a variable within a Bayesian network comprises
its parents (direct causes), children (direct effects), and spouses
(other parents of these children). Given a target variable𝑇 and with
the faithfulness assumption (Definition 1) in place, the MB of 𝑇
is unique, and it becomes straightforward to extract it from the
associated Bayesian network within a given application domain
[15, 46]. More specifically, this means that by conditioning on the
MB of a class variable 𝑇 in a dataset, all the remaining features are
conditionally independent of 𝑇 . Thus, the MB of the class variable
is theoretically optimal for FS [2, 3, 46, 49, 50].

Given that possessing complete knowledge of the𝑀𝐵(𝑇 ) is suf-
ficient to ascertain the probability distribution of the class variable
𝑇 , rendering the values of all other variables redundant, the process
of inducing𝑀𝐵(𝑇 ) can be classified as a causal FS filter procedure
[15, 46, 48]. Nonetheless, this necessitates having the Bayesian net-
work pre-established. Conventionally, we must initially learn the
desired Bayesian network to ascertain the MB of a specific variable.
Hereby, one distinguishes between the global and the local learn-
ing of the network. Global learning refers to learning the whole
Bayesian network. Local learning refers to discovering only the
local structure around the target variable 𝑇 or any other specific
variable of interest [2, 3]. Generally, the process of structure learn-
ing for Bayesian networks is recognized as an NP-complete problem.
Hence, several algorithms have been invented to deduce the MB
without the prerequisite of having the entire Bayesian network
pre-constructed, thereby significantly diminishing the complexity
of time and computing resources.

In a recent review, several of theseMB discovery algorithmswere
assessed in their capability to act as causality-based FS techniques
[48]. The algorithm that came off best was the Iterative Parent-Child
based search of MB (IPC-MB) algorithm by Fu and Desmarais [13].
The IPC-MB algorithm uses the following procedure to find the
parent-child (PC) set of the target variable 𝑇 : First, all features are
the candidate PC of𝑇 . Second, conditional independence tests check
each feature in the candidate PC of𝑇 level by level of the cardinality
of the conditioning sets, starting with an empty set. Third, the
local search is repeated given all found candidates, which not only
recognizes false positives but also candidate spouses. The IPC-MB
algorithm came off as the optimal choice in several comparisons
of local MB discovery algorithms, excelling in terms of robustness,
speed, data utilization, and information retrieval [13, 14, 48].

In this paper, we will compare this causality-based FS (i.e., IPC-
MB) with a standard correlation-based FS with regard to the perfor-
mance and fairness of the resulting models. As illuminated above,
the causality-based FS algorithm should select the theoretically
optimal features. Another advantage of learning the MB is that
it also gives the number of optimal features automatically, while
for other FS algorithms, one usually has to provide the number of
features one wishes to select.

2.3 Fairness Metrics
In the history of constructing and implementing machine learning
models in education, the main priority has frequently been to max-
imize the overall performance of these models. This is particularly
evident in typical educational classification tasks, such as endeavors
to identify as many at-risk students as possible. However, there has

been a conspicuous shortage of attention given to guaranteeing
the fairness of these models [29]. As machine learning models are
used increasingly in the educational domain, ensuring that they are
fair and do not discriminate against certain groups or individuals
is imperative.

There is no universally accepted notion of fairness. Several differ-
ent notions of fairness exist, and many metrics are used to measure
these different notions [45]. As recent reviews have given excel-
lent overviews of fairness notions (see [30] for a comprehensive
overview of fairness concepts in machine learning in general, and
[22] for one specifically tailored to the educational domain), we
refrain from repeating those and only explain what is needed for
understanding our experiments.

In our experiments, we concentrated on group fairness. Follow-
ing Saxena et al. [37], we judged fairness as the absence of any
favoritism towards a specific group in the context of the machine
learning decision-making process. More specifically, we measured
fairness between groups labeled as a and b—determined by the
sensitive attribute group membership, as explained below in Sec-
tion 3. Our evaluation was based on the nine quantitative metrics
outlined in Table 1. The combination of these metrics allowed us to
holistically assess the fairness of the machine learning models.

3 EXPERIMENTAL SETUP
This section explains the overall experimental setup. First, we de-
scribe the used datasets, including references to the original articles,
dataset sizes, and the features used as sensitive attributes in the ex-
periments. Second, we describe our general analysis and evaluation
pipeline, including the model and hyperparameter optimization
processes. All experiments were performed in Python version 3.12.
Moreover, we used the pyCausalFS1 toolbox [48, 49] to find the
causal features in the datasets, and the holistic AI tool2 for assessing
the fairness of the models.

3.1 Datasets
Weused four openly available datasets: two educational ones, that is,
the Open University Learning Analytics Dataset (OULAD) [27] and
the Portuguese Secondary School Math Performance (here referred
to as PSSMP) dataset [8], and two commonly used benchmark
datasets in the fairness literature: one from the social/law area, that
is, the Correctional Offender Management Profiling for Alternative
Sanction (COMPAS) dataset [24], and one from the financial domain,
that is, the German credit (here referred to as GERCRE) dataset
[10].

3.1.1 Open university learning analytics dataset. The OULAD [27]
data originates from courses taught at the Open University in the
United Kingdom and consists of five tables with information from
24,806 students, their interactions in the virtual learning environ-
ment, assessments, courses, and registrations. We used the binary
information of whether a student passed a course as the target
variable and the disability status (disability) of the student as the
sensitive attribute. To ensure reproducibility of the results, we pre-
processed the data following a public repository.3

1https://github.com/wt-hu/pyCausalFS
2https://holisticai.readthedocs.io/en/latest/
3https://github.com/gogoladzetedo/Open_University_Analytics
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Table 1: Fairness metrics used in this study. DV refers to the desired value (i.e., the value that would mean fairness was achieved
according to the metric).

Metric DV Formula Interpretation

Statistical Parity 0 𝑠𝑟𝑎 − 𝑠𝑟𝑏 Fairness is achieved if the probability of a specific prediction
is not dependent on sensitive group membership.

Disparate Impact 1 𝑠𝑟𝑎/𝑠𝑟𝑏 Very similar to statistical parity but computes the ratio
instead, meaning fairness is achieved if this metric equals 1.

Four Fifths Rule 1 4/5 Uses statistical parity with a result considered fair if the
ratio exceeds 80% for all groups.

Cohen D 0 𝑠𝑟𝑎 − 𝑠𝑟𝑏/𝑠𝑡𝑑𝑝𝑜𝑜𝑙 Normalised statistical parity. 0.2 is considered a small effect
size, 0.5 is medium, and 0.8 is considered large.

2SD Rule 0 𝑍𝑡𝑒𝑠𝑡 (𝑠𝑟𝑎 − 𝑠𝑟𝑏 ) Z-test statistic for the difference in success rates. Fairness
is achieved if the computed value is between -2 and 2, indi-
cating no statistically significant difference in success rates.

Equality of Opportunity Differ-
ence

0 𝑡𝑝𝑟𝑎 − 𝑡𝑝𝑟𝑏 Difference in true positive rates for 𝑔𝑟𝑜𝑢𝑝𝑎 and 𝑔𝑟𝑜𝑢𝑝𝑏 ,
considered fair if it achieves 0, range between -1 and 1.

False Positive Rate Difference 0 𝑓 𝑝𝑟𝑎 − 𝑓 𝑝𝑟𝑏 Difference in false positive rates between 𝑔𝑟𝑜𝑢𝑝𝑎 and
𝑔𝑟𝑜𝑢𝑝𝑏 , considered fair if it achieves 0, range between -
1 and 1.

Average Odds Difference 0 0.5∗ (𝑓 𝑝𝑟𝑎 − 𝑓 𝑝𝑟𝑏 +𝑡𝑝𝑟𝑎 −𝑡𝑝𝑟𝑏 ) Difference in average odds between 𝑔𝑟𝑜𝑢𝑝𝑎 and 𝑔𝑟𝑜𝑢𝑝𝑏 ,
considered fair if it achieves 0, range between -1 and 1.

Accuracy Difference 0 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑦𝑏 Difference in the accuracy of predictions for 𝑔𝑟𝑜𝑢𝑝𝑎 and
𝑔𝑟𝑜𝑢𝑝𝑏 , considered fair if it achieves 0, range between -1
and 1.

3.1.2 Portuguese secondary school math performance dataset. The
Portuguese secondary school mathematics performance (PSSMP)
dataset [8] consists of 649 students from two Portuguese secondary
schools. We used pass/fail of the students’ final math grade (fea-
ture G3) as a binary classification task and removed the first and
second grades because they are highly correlated with the target,
making the prediction task trivial if included. Moreover, we one-
hot-encoded all categorical features in the dataset. As the sensitive
attribute, we used the students’ gender (sex).

3.1.3 Correctional offender management profiling for alternative
sanctions dataset. The COMPAS software assesses the likelihood
of an individual committing another crime. Judges rely on COM-
PAS to determine whether to grant release to an offender or main-
tain their incarceration. A scrutiny of the software revealed a bias
against African Americans: COMPAS tends to exhibit higher rates
of incorrect positive predictions for African-American offenders
compared to Caucasian offenders, falsely indicating a greater risk
of re-offending [30]. Because of that, the COMPAS dataset [24] has
become a well-known benchmark dataset in the fairness literature.
It entails data about 6,172 individuals. We designated the target
class as the indication of whether a person commits a crime in the
following two years or not (Two_yr_Recidivism). Additionally, we
identified the sensitive attribute (race) as the information regarding
whether this person is African-American.

3.1.4 German credit dataset. The German credit dataset, here re-
ferred to as GERCRE, serves as a benchmark dataset frequently
employed in the machine learning fairness literature (see, e.g.,
[20, 33, 43] for a selection of articles published after 2020). Re-
cently, this fairness benchmark dataset faced criticism [11] due to
the use of gender as the sensitive attribute in several machine learn-
ing articles (including those mentioned, i.e., [20, 33, 43]), despite
the absence of a specific coding for gender in the data. Instead,
the dataset includes only the combined feature of sex and marital
status. Despite its age and recent scrutiny regarding its suitability
for assessing fairness in machine learning models [11], we opted to
use the GERCRE dataset for illustrative and comparative purposes.
The dataset comprises information on 1,000 individuals. For the
sensitive attribute, we selected the sex and marital status column,
designating divorced/separated males as the sensitive group. Our
target class was determined by creditworthiness, where one denotes
credit-worthy, and zero signifies not credit-worthy.

3.2 Analysis pipeline and performance
evaluation

Our goal was to compute the effect of two different ways of FS
(causality- versus correlation-based) in comparison to no FS on
the performance and fairness of the resulting machine learning
models. In order to reduce the risk of getting results by chance and
to increase stability and robustness, we implemented two nested
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cross-validation loops. The outer stratified five-fold cross-validation
loops over each experimental dataset, always using four folds for
training and one for testing. Within each division, the training set
is used to

(1) build a model (another five-fold cross-validation grid-search
is employed to select the best hyperparameters, as explained
in Section 3.2.1 below) using all features (i.e., without FS),

(2) perform causality-based FS and build a model using the same
model-building function as in (1) but by using only the 𝑝
selected causal features, and

(3) perform correlation-based FS to select exactly as many fea-
tures 𝑝 as the causality-based FS selected and build a model
using the same model-building function as in (1) and (2) but
by using only the 𝑝 selected correlational features.

Hereby, the IPC-MB FS algorithm (see Section 2.2) of the py-
causalFS toolbox is employed to get the causal features in (2), and
the f_classif is employed to get the correlation-based features in
(3). As explained in Section 2, the causality-based FS also readily
returns the number of optimal features 𝑝 , and hence, in our algo-
rithmic pipeline, we use the 𝑝 most important features from the
correlation-based FS that by default returns only an ordering of
feature importances. After model building and FS on the train set,
the model performance and fairness are evaluated on the selected
features of the respective hold-out test set. To further decrease the
risk of getting results by chance, the model building and perfor-
mance and fairness assessing process is repeated ten times for each
kind of FS (i.e., 1 - without FS, 2 - causality-based FS, 3 - correlation-
based FS). Finally, the performance and fairness results on the 50
different runs and test sets (i.e., ten repetitions for each five-fold
split) are averaged for each kind of FS.

3.2.1 Models and hyperparameter optimization. Initially, we tried
several different classification model types (logistic regression, sup-
port vector machines, multilayer perceptron, random forest), but
since random forest [6] consistently gave the best performance in
the initial tests, we used only this model class for the final pipeline
and evaluation to improve comparability and simplicity. To select
the best parameters, each training set of the outer cross-validation
loop was split further into five folds to select the best hyperparame-
ters. A random forest model with the current hyperparameters was
trained on each fold, while the objective function of each step was
to increase the performance on the hold-out datasets of each fold.
For hyperparameter optimization of the random forest model, we
implemented a grid-search over the max_depth, the max_features,
the min_samples_leaf, and the min_samples_split of the trees in
the forest. For classification performance evaluation, we used five
common metrics: Accuracy, balanced accuracy, precision, recall,
and the F1-score.

4 RESULTS
Table 2 summarizes the performance results, and Table 3 summa-
rizes the fairness results for the OULAD dataset. As described in
Section 3.2, the tables report the averages (mean and standard devi-
ation) over the 50 different runs and test sets (i.e., ten repetitions
for each five-fold split). Tables 4 and 5 summarize these results for
the PSSMP dataset, Tables 6 and 7 for the COMPAS, and Tables 8
and 9 for the GERCRE dataset, respectively.

A first observation that can be made from the results is that
generally, FS decreased model performance and fairness.Without
FS shows the best results in most cases. However, there are a few
notable exceptions to this general observation: For the PSSMP
dataset, correlational-FS yielded the best performance according to
all metrics (one possible reason for this is that there may be adverse
features in the dataset that the correlation-based FS correctly did
not select), and for the OULAD dataset, the causality-based FS often
gave better results in terms of model fairness (indicating that the
causality-based FS correctly not selected features that could be
linked to the sensitive attribute).

For the two FS types, we bolded for each row the FS that gave the
best results. As shown in the Tables 2–9, typically, causality-based
FS performed better when measuring fairness and correlation-based
FS performed better when measuring classification performance.
Although there were a few exceptions, generally, the models built
after correlation-based FS outperformed those built after causality-
based FS in terms of accuracy, balanced accuracy, precision, recall,
and F1-score. Moreover, on average, the models built after causality-
based FS more often had fairness metrics value closer to the desired
value of the respective metric (see Table 1 for an overview of all
employed fairness metrics and their respective desired values).

Correlation-based FS is a technique that focuses on finding and
selecting the most relevant features from a dataset. Causality-based
FS aims to identify the MB of a class variable to build more in-
terpretable and robust predictive models. Thus, using the causal
features for similar data points in another environment or at a
later time (for example, by updating the already quite old GERCRE
dataset with current information) would probably lead to better
results, although the performance of the correlation-based selected
features is better for the existing data.

Another result worth pointing out that possibly affects the appli-
cation of causality-based FS algorithms in real-world applications
is that the causality-based FS took significantly longer than the
correlation-based FS. For example, even for the relatively small
PSSMP dataset, the computation of the causal features with the
pyCausalFS toolbox took on average 0.266 seconds per training
set fold, while the computation of the correlational features on
the same folds took only 15.625 milliseconds on average. Thus,
causality-based FS is not recommendable if computing resources
are an issue.

5 DISCUSSION
Machine learning is now being applied in a diverse array of decision-
making contexts, many of which carry significant consequences
for both individuals and society at large. While this technology
holds the promise of mitigating undesirable elements of human
decision-making, there is a valid apprehension that biases present
in the data and inaccuracies in the model can result in decisions
that unfairly disadvantage groups with a history of discrimination.
Consequently, the research community has begun to explore meth-
ods to guarantee that the models we train do not render decisions
that exhibit unfairness concerning sensitive attributes [7].

Until now, the fairness literature has largely overlooked the FS
step in the machine learning pipeline [16], and several fairness AI
in education articles have pointed out the need for more causal
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Table 2: Performance metrics for the OULAD test sets for the features selected on the training sets (mean and standard deviation
over five-fold cross-validation and ten repetitions). The best average FS (causal- or correlation-based) is bolded for each metric.

Without FS Causal-based FS Correlation-based FS
Metric mean std mean std mean std

Accuracy 0.793 0.001 0.790 0.001 0.790 0.001
Balanced accuracy 0.796 0.002 0.792 0.001 0.792 0.001
Precision 0.755 0.001 0.749 0.001 0.752 0.001
Recall 0.834 0.003 0.834 0.002 0.827 0.001
F1-Score 0.792 0.002 0.789 0.001 0.788 0.001

Table 3: Fairness metrics for the OULAD test sets for the features selected on the training sets (mean and standard deviation
over five-fold cross-validation and ten repetitions). The best average FS (causal- or correlation-based) is bolded for each metric.

Without FS Causal-based FS Correlation-based FS
Metric mean std mean std mean std

Statistical Parity 0.14 0.01 0.12 0.01 0.12 0.00
Disparate Impact 1.37 0.03 1.28 0.02 1.29 0.01
Four Fifths Rule 0.73 0.02 0.78 0.01 0.78 0.01
Cohen D 0.29 0.02 0.24 0.01 0.24 0.01
2SD Rule 6.61 0.38 5.44 0.28 5.47 0.21
Equality of Opportunity Difference 0.09 0.01 0.08 0.01 0.07 0.01
False Positive Rate Difference 0.10 0.01 0.07 0.00 0.08 0.00
Average Odds Difference 0.10 0.01 0.07 0.01 0.07 0.00
Accuracy Difference -0.01 0.00 -0.00 0.00 -0.01 0.00

Table 4: Performance metrics for the PSSMP test sets for the features selected on the training sets (mean and standard deviation
over five-fold cross-validation and ten repetitions). The best average FS (causal- or correlation-based) is bolded for each metric.

Without FS Causal-based FS Correlation-based FS
Metric mean std mean std mean std

Accuracy 0.886 0.022 0.722 0.033 0.903 0.041
Balanced accuracy 0.876 0.025 0.639 0.056 0.902 0.063
Precision 0.923 0.018 0.750 0.038 0.952 0.066
Recall 0.906 0.019 0.881 0.011 0.906 0.050
F1-Score 0.914 0.017 0.810 0.017 0.926 0.030

Table 5: Fairness metrics for the PSSMP test sets for the features selected on the training sets (mean and standard deviation
over five-fold cross-validation and ten repetitions). The best average FS (causal- or correlation-based) is bolded for each metric.

Without FS Causal-based FS Correlation-based FS
Metric mean std mean std mean std

Statistical Parity -0.00 0.15 0.02 0.08 0.03 0.04
Disparate Impact 1.01 0.17 1.04 0.11 1.04 0.04
Four Fifths Rule 0.89 0.08 0.94 0.07 0.96 0.03
Cohen D -0.03 0.46 0.05 0.19 0.09 0.11
2SD Rule -0.13 1.97 0.22 0.83 0.40 0.50
Equality of Opportunity Difference -0.02 0.11 0.00 0.03 0.00 0.02
False Positive Rate Difference 0.02 0.25 0.06 0.14 0.09 0.09
Average Odds Difference 0.00 0.16 0.03 0.08 0.04 0.06
Accuracy Difference -0.04 0.04 -0.04 0.02 -0.05 0.04

algorithms [9, 29]. Thus, the goal of this article was to assess the
impact of correlational versus causal FS on the resulting machine-
learning models. The theoretical superiority of causality-based

FS has been discussed in several works [31, 48, 49], but to our
knowledge, no direct comparisons to classical correlation-based FS
have been performed.
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Table 6: Performance metrics for the COMPAS test sets for the features selected on the training sets (mean and standard
deviation over five-fold cross-validation and ten repetitions). The best average FS (causal- or correlation-based) is bolded for
each metric.

Without FS Causal-based FS Correlation-based FS
Metric mean std mean std mean std

Accuracy 0.688 0.005 0.586 0.007 0.670 0.004
Balanced accuracy 0.679 0.004 0.581 0.005 0.660 0.004
Precision 0.682 0.012 0.549 0.011 0.666 0.009
Recall 0.588 0.007 0.517 0.024 0.551 0.013
F1-Score 0.631 0.002 0.532 0.008 0.603 0.007

Table 7: Fairness metrics for the COMPAS test sets for the features selected on the training sets (mean and standard deviation
over five-fold cross-validation and ten repetitions). The best average FS (causal- or correlation-based) is bolded for each metric.

Without FS Causal-based FS Correlation-based FS
Metric mean std mean std mean std

Statistical Parity -0.26 0.02 -0.15 0.06 -0.29 0.05
Disparate Impact 0.49 0.02 0.69 0.12 0.45 0.06
Four Fifths Rule 0.49 0.02 0.69 0.12 0.45 0.06
Cohen D -0.56 0.04 -0.32 0.13 -0.62 0.11
2SD Rule -9.45 0.55 -5.50 2.17 -10.37 1.73
Equality of Opportunity Difference -0.25 0.05 -0.15 0.06 -0.28 0.04
False Positive Rate Difference -0.20 0.03 -0.13 0.07 -0.22 0.07
Average Odds Difference -0.22 0.02 -0.14 0.06 -0.25 0.05
Accuracy Difference 0.02 0.04 0.02 0.02 0.02 0.03

Table 8: Performancemetrics for the GERCREtest sets for the features selected on the training sets (mean and standard deviation
over five-fold cross-validation and ten repetitions). The best average FS (causal- or correlation-based) is bolded for each metric.

Without FS Causal-based FS Correlation-based FS
Metric mean std mean std mean std

Accuracy 0.757 0.028 0.715 0.026 0.727 0.019
Balanced accuracy 0.629 0.040 0.547 0.034 0.622 0.051
Precision 0.763 0.021 0.721 0.015 0.766 0.035
Recall 0.948 0.015 0.967 0.018 0.883 0.066
F1-Score 0.845 0.016 0.826 0.016 0.819 0.016

Table 9: Fairness metrics for the GERCRE test sets for the features selected on the training sets (mean and standard deviation
over five-fold cross-validation and ten repetitions). The best average FS (causal- or correlation-based) is bolded for each metric.

Without FS Causal-based FS Correlation-based FS
Metric mean std mean std mean std

Statistical Parity 0.10 0.08 -0.06 0.01 0.07 0.04
Disparate Impact 1.14 0.12 0.94 0.01 1.09 0.06
Four Fifths Rule 0.88 0.10 0.94 0.01 0.92 0.05
Cohen D 0.30 0.24 -0.27 0.03 0.17 0.09
2SD Rule 0.95 0.79 -0.83 0.12 0.53 0.30
Equality of Opportunity Difference 0.14 0.06 -0.03 0.02 0.12 0.01
False Positive Rate Difference -0.07 0.25 -0.14 0.06 -0.12 0.11
Average Odds Difference 0.04 0.12 -0.09 0.02 -0.00 0.05
Accuracy Difference 0.17 0.11 0.14 0.18 0.17 0.05
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Our results showed that, mostly, the causality-based FS led to
fairer models than the correlation-based FS. However, there is a
trade-off, as the performance of the resulting models was usually
better after correlation-based FS. Causal FS aims to identify the MB
of a class variable to build more interpretable and robust predictive
models. Correlation-based FS is a technique that focuses on find-
ing and selecting the most relevant features from a dataset. Since
the correlation between two variables is a less stringent criterion
compared to independence, it is logical to question why there is
not much work on causal algorithms and machine learning [40],
and why fairness algorithms and standards are typically framed
in terms of correlations. One pragmatic justification is that, as dis-
cussed in Section 4, computing correlations is significantly more
straightforward than estimating independence. While correlation
is a descriptive statistic demanding relatively few assumptions for
calculation, establishing independence necessitates the application
of inferential statistics, which can generally be quite complex and
computationally expensive [22, 42].

5.1 Limitations and future research
Our study opens avenues for further exploration and refinement.
Firstly, our analysis was anchored in the utilization of the prevalent
correlation-based filter FS, and the best-performing causality-based
filter FS. Exploring additional FS techniques and types, such as
wrappers, could prove worthwhile. Another aspect deserving atten-
tion is the sensitivity of our outcomes to the choices embedded in
different algorithms.While our approach involved ameticulous grid
search, coupled with the aggregation of averages across multiple
iterations for result stability, the impact of diverse hyperparameter
search spaces warrants investigation.

Furthermore, we focused on specific sensitive attributes, namely
disability, gender, race, and marital status, aiming to encompass
various factors where individuals may face discrimination. How-
ever, it is essential to note that even if an algorithm is deemed
fair regarding one attribute, this does not necessarily extend to
others. Future work should also investigate the effect of FS on addi-
tional sensitive attributes. Finally, an intriguing avenue for future
research lies in delving into the comparative effects of causality-
versus correlation-based FS on the interpretability and quality of
subsequent AI models and explanations. Quality metrics such as
explanation robustness and fidelity [35] could serve as valuable
benchmarks in evaluating these effects.
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