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Introduction 

We consider a nonelementary Kleinian group G acting on the Riemann sphere, 
and the set K of the limit points of G. The geometry of K is, in general, very 
complicated, as we can see by the following observation. 

If G does not preserve any disc, it certainly has loxodromic elements and, 
moreover, infinitely many. Every fixed point of such an element is a limit point. 
Suppose that we have loxodromic elements T and T' in G with distinct sets of 
fixed points. Call x the attractive fixed point of T and y a fixed point of T'. 
Then the sequence {Tn y} converges to x spiralling around it. Now every Tn y 
is a limit point of G and, in fact, a fixed point of Tn T' T-n , which is also a 
loxodromic element and thus has its own spirals around itself, and so on. It is 
clear that, in general, this leads to a very complicated behaviour of K. 

With this in mind, it is rather surprising that there is a deep theorem of Maskit 
[Ml], based on Teichmiiller theory, which asserts that if G is finitely generated 
and the set of the ordinary points of G has exactly two components, then K 1s 
even a quasicircle. 

It remains open what happens if the assumption on a finite generation is 
dropped. Then K is not necessarily a quasicircle. This becomes clear from the 
following example. 

Let {Cn } nEZ be a sequence of tangent circles as in Figure 1. 

Co 

Figure 1 

Let G be the group generated by the reflections on these circles ( and pass to 
a subgroup if one wants to consider groups with only directly conformal elements). 
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It follows that the limit point set of G is a Jordan curve which travels through all 
the circles and intersects them exactly at the points of tangency. There is a cusp 
at infinity and so K cannot be a quasicircle. 

One may ask whether K is always a Jordan curve or not, assuming that the 
set of the ordinary points has exactly two components. The answer is negative, as 
seen by following construction, due to Uri Srebro; see also Abikoff [A, pp. 3-5]. 

Choose an infinite tube narrowing at the both ends, filled by tangent circles 
and located as in Figure 2. 

Figure 2 

Again let G be the group generated by reflections on these circles. It results 
that the limit point set looks something like the set in Figure 3. 

Figure 3 

This is obviously not a Jordan curve. Note that the picture is greatly simpli
fied because the bad behaviour of the set repeats itself inside every circle infinitely 
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many times. It is, however, still true that the set of the ordinary points has exactly 
two components. 

In this paper we state a sufficient and necessary condition under which I< is 
a Jordan curve, see Theorem 3.1.1 and also Note 3.2.9. 

To prove the theorem we will need quite a lot of preparatory material, which 
is developed in Sections 1 and 2. Section 1 is devoted to classical plane topology. 
There we also obtain a characterization of a Jordan curve which may have some 
interest of its own. In Section 2 we recall the basics on Kleinian and Fuchsian 
groups and prove some simple lemmas for Section 3, which contains the main 
theorem. 

Our proof is rather laborious but almost completely elementary in the sense 
that only one deeper result is needed (see Theorem 2.3.2.). After proving the 
theorem we note that the theorem of Maskit mentioned above follows almost im
mediately from our result. 

0. Notations

In this paper we denote by C the Riemann sphere and by B the open unit 
disc in the complex plane C. 

Two non-empty domains D1 and D2 in C are said to be complementary, if 
D 1 U D2 = C, D1 n D2 = 0 and the domains have a common boundary. 

A Jordan arc is a homeomorphic image of the closed unit interval [0, l]. A 
Jordan curve is a homeomorphic image of the circle fJB. By M we denote the 
group of all Mobius transformations acting on C. All the elements of M are 
assumed to be directly conformal. We use the standard classification of these 
elements: if T(z) = (az + b)/(cz + d), ad- be= 1, Ti= id, then T is called 
elliptic, parabolic, hyperbolic or loxodromic if the trace square ( a + d)2 is in the 
interval [O, 4[, exactly 4, in the interval ]4, oo[ or not in R+, respectively. 

A characteristic property of parabolic elements is that they have exactly one 
fixed point in C. A hyperbolic or loxodromic element T has always two fixed 
points z1 and z2 . One of them, say z1 , has the property that Tn w --+ z1 for all 
w E C \ { z2 }. We call z1 the attractive fixed point of T. The other fixed point 
z2 is the attractive fixed point of T- 1 . Note that if T is parabolic, then Tn w 
converges to the sole limit point of T for all w E C. 

1. Plane topology

1.1. Basic notions and general results. In this chapter we suppose that 
D1 and D2 are complementary domains in C. It follows immediately that D1 

and D2 are simply connected. 
A point x in the boundary fJD1 = 8D2 is said to be accessible from D 1 , if x 

can be joined to an interior point of D1 by a curve that lies, except the endpoint 
at x, entirely in D 1 . By selecting a suitable part of the connecting curve, we may 
always assume that it is a Jordan arc. 
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Because D1 is simply connected, it can be mapped conformally onto B by 
the Riemann mapping theorem. Let k be such a mapping. 

The behaviour of k near the boundary and especially near the accessible 
points is well known. We will list here some lemmas, proofs of which can mainly 
be found in Ford's classical book [F, Chapter 80]. 

Let the symbol A stand for the set of the points in 8D1 , which are accessible 
from D1. 

Lemma 1.1.1. Let x be a point nf A, 1 a curve in D1 excluding the other
endpoint at x and { x n} a sequence in D1 n I such that x n -+ x . Then there
exists a point y E 8B such that k(xn)-+ y.

Moreover, the point y does not depend on the choice of the curve I or the
sequence {xn }. 

Proof. The existence of y follows directly from [F, p. 191 ]. The uniqueness 
of y needs au arg;umP.11 L. 

Let ,1 am! ,2 he curves in D1 U { x}  such that they have a common initial 
point w E D1 and x is their common endpoint. Select r > 0 such that r <

d(x,w). Then 11 and 12 meet the circle S(x,r); denote by Wi the last poiut 
of 'Yi which meets S(x,r), when we are travelling from w to x, i = 1,2. Select 
further points z; E 'Yi such that z; lies between Wi and x in 1;, i = 1, 2. It 
foiiows that the Zi : s iie in the disc B ( x, r) . 

According to [F, pp. 190 and 192], it is now enough to show that z1 can be 
connected to z2 by a curve lying entirely in D1 n B(x, r). 

Call O'.i the parts of 'Yi that lie between w; and x,  i = l, 2. If O'.i meets a2 

in D1 n B(x, r), we are done. So we may suppose that they do not meet. We 
may also suppose that a1 and a2 are Jordan arcs. The points w1 and w2 can be 
connected by a Jordan arc /3 in D1 , and we may suppose that /3 does not meet 
a1 or a2, except at the endpoints w1 and w2. (If w1 = w2, /3 is not needed.) 

Then a1 U a2 U /3 is a Jordan curve, which does not meet D2. Because D2 is 
connected, it lies entirely in one component of C \ ( a1 U a2 U /3). Then the other 
component contains only points of D1. 

The existence of the <lesire<l connective curve follows now from the fact that 
a1 U 0'.2 does not go out of B(x,r) U {w1,w2}. D 

With the ai<l of the preceding lemma we can now define a rnapping k: A - -► an
as follows: if x E A and I is a curve from D1 to x,  let k( x) be the well defined 
endpoint of k( 1) in 8B.

We will need the following lemma, which is adapted directly from [F, pp. 192 
and 195]. 

Lemma 1.1.2. The mapping k: A-+ 8B is injective and the set k(A) 1s 
dense in 8B. 

For later use we make here a definition, again according to [F, p. 196]. 
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Consider a point x in 8B. Select points a1 and b1 in k(A) C 8B different 
from each other and x, and recursively an, bn E k( A) such that an lies in the 
open arc of 8B from an-1 to x, which does not contain bn-1 and bn in the 
open arc of 8B from x to bn-1, which does not contain an-1, respectively. By 
Lemma 1.1.2 we may additionally demand that an -+ x and bn -+ x. 

For each n we can select a curve 'Y
n 

connecting k-1(an ) and k-1(bn ) in D1
such that diam k('Yn) -+ 0. We also assume that the 'Yn :s are disjoint. Each k('Yn ) 
divides B into two components; let Bn be the one for which x E B n. Then 
Bn+1 C Bn for all n. 

According to the above construction nn Bn = {x}. Now the set nn k
-1(Bn )

lies in 8D1 and contains at least one point. 
----

It is quite obvious that the set nn k- 1 (Bn ) is independent of the choices 
made. 

Definition 1.1.3. Let x E f)B. The set C(x, k-1, D1) = nn k-1(Bn ) C 8D1
constructed as above is called the cluster set of x corresponding to k-1 and D1.

We will have a frequent use of the following purely topological result, known 
as the Zoretti theorem (see, e.g., Whyburn [W, p. 35]). 

Theorem 1.1.4. If I< is a component of a compact set MC C and c is any 
positive number, then there exists a Jordan curve 1, which circulates I< and is 
such that I n M = 0, and every point of I is at a distance less than c from some 
point of I<. 

1.2. Two characterizations of Jordan curves. The following character
ization of a Jordan curve shall be essential in the proof of our main theorem. It 
appears for the first time in Kerekjart6 [K], but there is a gap in his reasoning. A 
correct but quite long proof is given by Eilenberg [E]. We give here a short and 
possible new proof. 

Theorem 1.2.1. Let D1 and Dz be complementary domains in C and K 
their common boundary. If there exists a homeomorphism f: D 1 -+ Dz such that
JIK = idK, then I< is a Jordan curve. 

Proof. We may assume that I< C C and ( defining f = 1-1 in D2) that f
is a homeomorphism f: C -+ C. According to the results in [W, pp. 33-34], it is 
enough to show that I<. is locally connected. 

So, let us have p E K and c > 0 given. We must find 8 > 0 such that every 
pair of points x and y in Kn B(p, 8) lies in the same component of Kn B(p, c) . 

Because f is continuous in the compact set C, it is uniformly continuous, and 
we can find 8' > 0 such that lf(z) - f(w)I < r::/2 whenever lz - wl < 8' (we can 
use the plane metric near the point p E K C C ) . Now we define 8 = min { 8', c / 2} 
and show that this choice of 8 will work. 
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Let x and y be in J{ n B(p, 8). Connect x to y by a Euclidean line segment 
L. The set L n D1 consists of at most denumerably many open segments, call
them ]Yln , n E N. Similarly L meets D2 at open segments N11 , n E N. Now
suppose that x and y are not connected in J{ n B(p, €).

Components of the compact set I{ n B(p, €) are compact, and thus distinct 
components have a positive distance. In virtue of Theorem 1.1.4 we find a Jordan 
curve 1, which separates the points x and y and does not meet the set KnB(p, €). 

By the choices made, f(M11) C B(p,c) and f(N11) C B(p,€) for all n. There
fore M11 U f(M11) and N11 U f(N11) can be considered as Jordan curves, each of 
which separates C into two components, one of which lies entirely inside B(p, €). 
Call these components C11 and C�, respectively. The choice of the curve I assures 
that it must intersect the line segment L, but only at the points of M11 or N 11 • 

It follows that we must have some M11 , say, such that I intersects also f(M11)
and, moreover, there is a part of 1, call it a, lying inside C11 and connecting a 
point of M,, to a point of f(Mn ). 

Because Cn C B(p, €), a cannot meet I<. This is impossible, for A111 C D1 
and f(Mn ) C D2 . This contradiction establishes the proof. □

We have still another topological characterization of a Jordan curve, suggested 
by Olli Martio. Let again D1 and D2 be complementary domains in C and J{ 
their common boundary. It is well known that I< is a Jordan curve if and only if 
every point of I< is accessible from both D1 and D2 . We get a slight improvement 
of this theorem. 

Theorem 1.2.2. Let D1 , D2 and I< be as above and denote by A' the set 
of the points in I< that are accessible from both D1 and D2 . If the set I< \ A' is 
compact and totally disconnected, then I< is a Jordan curve. 

Proof. We may assume that J{ C C. As in Chapter 1.1 both D1 and D2 

are simply connected; let k: D1 - B be a conformal Riemann mapping. Denote, 
as earlier, by A the set of the points in J{ that are accessible from D1 . Then 
A' C A. Let k: A - on Le Lhe umµµiug JefiueJ iu Chapler 1.1. 

Claim (i). A' is dense in K. 

Proof. Select a point x in ..,_T( \ �4' and c > 0. From assumption and Theorem 
1.1.4 it follows that there exists a Jordan curve , C C \ (K \ A') such that ,.../ 
circulates x and I C B( x, €). We may assume that c is small enough, so that 1 
contains points of both D1 and D2 . Then there must be boundary points in 1, 
and, by the choice of 1, these boundary points must be in A' n B( x, s). 

Claim (ii). k(A') is dense in 8B. 

Proof. By Lemma 1.1.2 k(A) is dense in 8B. Select now any open arc I of 
8B. 
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Then we may choose distinct points x1 and x2 in A such that k( x1), k( x2) E 
I. Now connect x 1 and x2 by a Jordan arc , in D1. Then k(1) separates B into
two components. Denote by B1 the component whose boundary consists only of
k(,) and points of I, and denote D} = k-1 (B1 ).

Then , C ,8D}, but because x1 /. x2 , 1 cannot be the whole of 8D} (a 
Jordan arc cannot separate the plane). So we have a point z E 8D} \ 1 and then 
necessarily z E K. z might or might not be in K \A', but in any case we can 
find a Jordan curve a that circulates .z and a C B(x,c:) n (C \ (K \ A')) for€ 
small enough. This follows either from Theorem 1.1.4 or from the fact that A' is 
open in J{. 

Because D} = k- 1 (B1 ) is simply connected, a will contain points of both D} 
and C \ D} for small €. Because d( z, 1) > 0, we may also suppose that an, = 0. 

We now select a point in anD} and travel along a until we meet the boundary 
8D} at a point y. By the choice of a, the point y must belong to A'. The point y 
is thus accessible from D} , and recalling the definition of k, k(y) E k( Di) = B 1 . 
Because B1 meets 8B only at the points of I, k(y) E J and so k(A') n Ji- 0. 
The claim (ii) is therefore established. 

Claim (iii). If {xn} CA' and Xn --+ x E K, then the sequence' {k(xn)} 
converges in 8B. 

Proof By the compactness of 8B there exists a convergent subsequence, and 
it is enough to show that every convergent subsequence converges to the same 
limit point. So we assume that {yn }, {zn} CA', Yn --+ x, Zn --+ x, k(yn)--+ y, 
k(zn) --+ z and claim that y = z. 

Assume this is not the case. 
By (ii) we may select points u and v in A' such that y and z are in different 

components of 8B \ { k( u ), k( v)}. Because u and v are in A', we can connect 
them by Jordan arcs ,1 and ,2 in D1 and D2, respectively. Then , 1 U ,2 1s a 
Jordan curve, which divides C into two components C1 and C2 . 

On the other hand, k(,1) separates B into components B1 ' and B2 . We 
number the sets so that y E B 1 , z E B2 and k-1(Bi) C Ci for i = 1, 2. For n
large enough k(yn) E B1 \ k(,1) and k(zn) E B2 \ k(,1) ,  from which it follows, 
recalling again the definition of k, that Yn E C 1 and Zn E C2 . 

Thus we see that x E C1 n C2 , and because x EK, x = u or x = v. This, 
in turn, leads to a contradiction, for the choice of u and v was quite ambiguous: 
we could change them a little, and get x = u' or x = v' for different u' and v'. 
This proves (iii). 

Now we proceed to extend the mapping k: A' --+ 8B to the whole K. 
Let x E J{ \A'. By (i) there exists a sequence { Xn} in A' converging to x. 

By (iii) {k(xn )} converges in 8B. Now we define 

k(x) = lim k(xn)-
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By repeating the proof of (iii) above, we see that the definition is independent 
of the sequence { xn}. Thus we have a well defined mapping k: I< -t 8B. 

We will show that k is a homeomorphism, what is, of course, sufficient for 
the proof of the whole theorem. 

Claim (iv). k is continuous. 

Proof. Let x E J{ and { x n} C J{ such that x n -t x . Select also some 
positive number s. 

By (i) and the definition of k we can, for each n, select a point Yn E:: A' such 
that lxn -Yn l < 1/n and lk(xn)-k(yn)I < s/2. Then also Yn -t x. If x E I<\A', 
lk(x)-k(yn)I < s/2 for large n, and it follows that lk(x)-k(xn)I < s for large n.

If x C .1', we muot uoe (iii) to obtain lk(x) k(yn)I < c/2 for large n (conoider, 
for example, the sequence Y1, x, Y2, x, y3, x, ... ). So, in all cases, lk(x )-k(xn)I < s 
for n large enough; and the continuity of k is clear. 

Clahn ( v). k is injective. 

Proof. Select distinct elements x and y in I<. 
First of  all, we may, with the aid of Lemma 1.1.2, suppose that both x and 

y are not in A' at the same time. 
Suppose then x is in I< \ A' and y is in A' . Because A' is open in I<,  

we can choose a Jordan curve I in C, which circulates y ,  does not circulate x 
and meets I< only at the points of A'. Denote by Cx (respectively, C

y
) the 

component of C \ 1 that contains x (respectively, y ). By the definition of k, 
k(Cx n I<) c k(Cx n D1) and k(C

y 
n I<) c k(C

y 
n D1). On the other hand, the 

set k(Cx n D1)n8B meets the set k(C
y 

n D1)n8B only at the points of k(,nK). 
This can be seen as follows. 

If w is a common point of those two sets, a sequence {zn} can be found in 
1 n D1 such that k(zn) -t w. 1 is compact, and so we may assume that { zn} 
converges to a point of z ,  which necessarily lies in I n K. Now it must be so that 
k( z) = w. This, in turn, may be proved by a similar idea as we proved the claim 
(iii) above.

We have now seen that k(Cx nI<)nk(C
y

nI<) C k(,nK). If k(x) = k(y) , it
wouid then foiiow that k(y) = k(z) for some z EI rl I< C A1

• This is impossibie 
by Lemma 1.1.2. 

Finally we suppose that both x and y are in I< \ A' . 
As above we see that if k( x) = k(y) , then k(y) = k( z) for some z E -1nK C A'

(the only difference in the reasoning is that we have to use Theorem 1.1.4 when 
choosing 1 ). But this is again impossible because y E K \ A', z E A' and from 
what was said above. This finishes the proof of injectivity. 

The rest is now easy. The surjectivity follows from (ii), from the compactness 
of I< and from the continuity. Because a continuous bijection of a compact set is 
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a homeomorphism, we have finished the proof. D 

Note. There also exists a shorter proof for Theorem 1.2.2. We, however, 
prefer the above proof, because it provides a new argument for the classical case, 
i.e. A'= K.

2. General facts on Kleinian groups

2.1. Kleinian groups. We consider a subgroup G of M. If there exists an 
open set U C C such that T(U) n U = 0 for all but finitely many T E G, G is 
classically called a Kleinian group. If a point x E C has a neighbourhood U of 
the above type, x is an ordinary point of G. All the other points are called limit 
points. 

The limit points are characterized by the property that for any limit point x 
and any ordinary point y there exist a sequence of distinct elements Tn of G such 
that {Tn(Y)} converges to x. 

The set of the limit points is closed and is the boundary of the set of the 
ordinary points. The set of the ordinary points has always one, two or infinitely 
many components. As indicated in the introduction we are interested in the two
componented case. A component D is called invariant, if T(D) = D for all 
TEG. 

A fixed point of a non-elliptic element is always a limit point and the set of 
these fixed points is dense in the set of the limit points. A fixed point of an elliptic 
element may be an ordinary point, but every elliptic element is of finite order. 

The proof of the following lemma can be found, e.g., in Beardon [B, p. 69], 
and Maskit [M2, p. 19]. 

Lemma 2.1.1. Two non-elliptic elements of a Kleinian group commute if

and only if they have exactly the same set of the fixed points. The sets of the fixed 
points of two elements are always exactly the same or completely disjoint. 

It follows that a parabolic element never shares a fixed point with an element 
of a different type. 

Another simple lemma is needed later (for a proof, see [M2, p. 22]). 

Lemma 2.1.2. Let {Tn } be a sequence of distinct elements of a Kleinian 
group G. Then there exist limit points x and y and a subsequence { Sn } of {Tn } 
such that Sn(z)--+ y u11ifurrnly in compact subsets of C \ {x}. 

Note that if T is hyperbolic or loxodromic and Tn = T n in 2.1.2, then y 
is the attractive fixed point of T, x is the other fixed point and we can select 
Sn = Tn . If T is parabolic, then x = y is the only fixed point of T .  

Note 2.1.3. Let D be  an invariant component of the set of the ordinary 
points of a Kleinian group G. If z is a fixed point of a non-elliptic element 
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T E G, then z E aD, but much more can be said. Namely, z is accessible from 
D. 

This can be seen as follows. Firstly ( using T-1 if necessary), we may suppose 
that Tn( w) --+ z for all w E D and this convergence is uniform in compact 
subsets of D. Then we choose a point w E D. T( w) lies also in D and w can be 
connected to T( w) by a curve a C D. Define now 

1 = LJ Tn(a) U {z}. 
nEN 

By the uniform convergence in the set a one sees immediately that I can be 
considered as a curve in D excluding its other endpoint at z.

2.2. Fuchsian groups, Dirichlet fundamental domains. If every ele
ment of a Kleinian group preserves the unit disc B, the group is called Fucbsian.
The limit points of a Fuchsian group lie in the boundary 8B. If every point of 
aB is a limit point, the group is said to be of the flri:!l kind, otherwise it is of tbe 
second kind. 

There is a classical way to construct a special fundamental domain of a Fuch
sian group G, the so called Diricblet polygon. Proofs of all the following facts can 
be found, e.g., in [B]. 

Let p be the usual hyperbolic metric in B. Select some w E B, which is not 
fixed by any elliptic element of G. For each T E G set H r = { z E B I p( z, w) < 
p(z,T(w))} and finally n = n(w) = nTEG\{id}Hr. 

n is a hyperbolically convex polygon and a fundamental domain of G, in the 
sense that n n T(n) = 0 for all TE G \ {id} and for every z E B there exists an 
element TE G such that T(z) En. 

The set an n B consists of hyperbolic segments, rays or lines, all of which we 
call sidei:!. If a side is a hyperbolic ray or line, we add to it the endpoint(s) in aB,
so that a side is always a Jordan arc. If (and only if) G is of the second kind, n
meets aB at whole arcs of aB. These are called free sides.

For a (non-free) side s there is a uniquely determined side s1 -=I- s and an 
element SE G such that S(s) = s'. In this case S(n) n n = s1

. These elements, 
the so called side pairing transformations, generate G.

For the sake of the convexity, a point z E an can lie on at most two sides. 
If a point lies exactly on two sides, we call it a vertex. The vertices in aB are 
special ones; we call them parabolic vertices. 

The definition of n = n( w) depends on the central point w. It can be shown 
(see, e.g., [B]) that for almost all choices of w, the polygon n has the following 
additional properties: 

(i) every parabolic vertex is a fixed point of a parabolic element,
(ii) every fixed point in an n aB is a parabolic vertex (and thus a parabolic

fixed point),
(iii) if z is a parabolic vertex and TE G such that T(z) En, then T(z) = z.
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If a Dirichlet polygon n has the above three properties, we call it regular. 
Throughout the rest of this paper we assume that a Dirichlet polygon is always 
regular. 

The following lemma can easily be established by the convexity property of 
n. See, for instance, [B, p. 219].

Lemma 2.2.1. If {Tn} is a sequence of distinct elements of G, then the
Euclidean diameter of Tn (n) converges to zero. 

From now on we concentrate on Fuchsian groups of the first kind. Then there 
are no free sides of n .

Consider a point x E an n 8B. As we noted earlier x can lie on at most two 
sides. If x lies on two sides, it is, as defined, a parabolic vertex. It is, however, 
possible that x lies on only one side or outside all sides. In these cases n must, 
of course, have infinitely many sides. 

We classify the points of an n aB into three disjoint categories. Let x E 
an n aB and we say that 

- x E I, if x lies outside all sides,
- x E I I, if x lies on exactly one side,
- x E I I I, if x is a parabolic vertex.

It is quite clear that an is a Jordan curve and can be oriented in a natural 
way. So it makes sense to say that {xn} converges to x in an from the right or 
the left. 

If x E I, there must be a sequence {Sn} of sides such that {Sn} converges to 
x from the right and also {s�} such that {s�} converges to x from the left (the 
precise meaning of "sides converging to a point" is obvious). 

If x E I I, there is a sequence of sides converging to x from either side. 
If we have x E I I, denote by s x the unique side ending at x. There is 

another ( again unique) side s�, different from Sx, and an element Sx of G such 
that Sx(s�) = Sx. 

These notations remain fixed throughout this chapter. 
Now we can naturally orient also the boundary of n U Sx (n) and we have 

Lemma 2.2.2. Let x be a point in I I and { sn} a sequence of sides con-
verging to x from the right ( respectively, left). Then there exists a sequence { s�} 
of sides such that {Sx(s�)} converges to x from the left (respectively, right). 

Proof. If there is a sequence { s�} of sides converging to 5; 1 ( x), this sequence 
will suit. 

If such a sequence does not exist, S; 1 (x) must be a parabolic vertex. Because 
n is regular, S; 1 (x) is a parabolic fixed point. Then also x is a fixed point and 
thus a parabolic vertex. This is impossible, because x E I I. □
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Construction 2.2.3. For a point x in I U II we define certain curves J;,,

n E N, as follows: 
For x E I select sequences {Sn} and { s�} of sides such that {Sn} ( respec

tively, { s�}) converges from the right (respectively, left) to x .  Let Sn and S� be 
the side pairing transformations for which n n Sn(n) = Sn and n n S�(n) = s�. 
Select an inner point Zn ( respectively, z� ) of Sn ( respectively, s�) and connect 
Zn to z� by a hyperbolic line segment in n .  Connect Zn (respectively, z�) to 
Sn(x) (respectively, S�(x)) by a hyperbolic ray in Sn(n) (respectively, S�(n)), 
and add the endpoints to the rays. 

Now let J;, be the union of these three arcs. J;, is a Jordan arc, which 
separates B into two components; denote by B; the component for which x E B;.

(Note that x ff_ J;, and thus B� is well defined.) 
The choices made and Lemma 2. 2.1 ensure that diam B; - 0 , when n - oo . 
If x E I I, we proceed similarly. The situation is slightly complicated and we 

have to use Lemma 2.2.2 to find the other ::;equence needed. The choice of the line 
segment above must be made in two parts; in n and Sx(n) separately. However, 
it is obvious that also in this case we can obtain distinct Jordan arcs J;, such that 
diamB; - 0. 

Lemma 2.2.4. (i) If x EI, then x ff_ T(n) for all TE G \ {id}, 
(ii) If X E II, then X rt:. T(n) for all TE G \ {id, s; 1 }. 

Proof. (i) Suppose X E T(n) for some T E G \{id}. Let Sn ' s�' Sn ' s�' 
J;, and B; be as in 2.2.3. Because n n Sn(n) =Sn , T cannot be any of the side 
pairing transformations Sn . Similarly T -/- S� for all n. Then T(n) n J;, = 0, 
because the points of n are not equivalent with any other point of n .  

Because x E T(n) = T(n) , we must have T(n) C B;. This is, however, 
impossible, because diam B; - 0. 

The proof of the case (ii) is similar. D 

2.3. Isomorphisms. Suppose that G1 and G2 are Kleinian groups such 
that each element of them preserves a domain D1 and D2 , respectively. Suppose 
also that there is an isomorphism cp: G1 - G2. We say that the isomorphism cp 
is geometric, if there exists a homeomorphism J: D1 - D2 such that 

cp(T)(z) = f(T(J-1(z))) for all TE G1 and z E Dz.

We say that the homeomorphism f is induced by the isomorphism cp. 
The following simple fact turns out to be extremely important in the sequel. 

Note 2.3.1. Suppose that f: D 1 - D2 is induced by an isomorphism 
cp: G1 - G2, T is a  non-elliptic element with the (attractive) fixed point z E 8D1. 
We saw in Note 2.1.3 that z is accessible from D1. Let I be a curve in D1 (ex
cluding the other endpoint at z) constructed by the method of 2.1.3. Then J( 1) 
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is a curve in D2, the one endpoint of which is the (attractive) fixed point of cp(T). 
This follows directly from the proof of 2.1.3, because now J(,) is constructed by 
the method in 2.1.3 corresponding to D2, G2 and cp(T). 

We now turn to Fuchsian groups G1 and G2, so that D1 = D2 = B. The 
problem whether or not a given isomorphism cp: G1 ---+ G2 is geometric is solved 
in Tukia [T] and Zieschang-Vogt-Coldewey [ZVC], but before we are able to refer 
to this result we need some definitions. 

Let G be a Fuchsian group. If T E G is hyperbolic, both of its fixed points 
lie in the boundary 8B . We call the hyperbolic line in B connecting the fixed 
points the axis of T .  

If G1 and G2 are Fuchsian groups and cp: G1 ---+ G2 an isomorphism, cp is 
said to preserve the relation of being crossed if the following condition holds: the 
axes of hyperbolic elements T and S E G1 intersect if and only if the axes of 
cp(T) and cp(S) intersect. (Note that, in general, there is no guarantee that cp(T) 
and cp(S) are hyperbolic. If they are not, they must be parabolic. We have to 
define the axis of a parabolic element to be the singleton that contains the only 
fixed point, and, after this, the above definition makes sense.) 

The following theorem is proved in [T] and, for the compact case, in [ZVC]. 

Theorem 2.3.2. Let G1 and G2 be Fucbsian groups with infinitely many 
limit points. Then an isomorphism cp: G1 ---+ G2 is geometric if and only if it 
preserves the relation of being crossed. 

2.4. Kleinian groups: the two-componented case. We take up the 
situation that we are mainly interested in. From now on we assume that G is a 
Kleinian group such that the set of ordinary points consists of exactly two com
ponents D1 and D2. The set of the limit points, denoted by I<, is our object, 
and it causes no restriction if we assume that D1 ( and thus also D2) is an in
variant component, because otherwise we would select a subgroup G' ={TE G I 

T(D1 ) = Di }, which has exactly the same set of the limit points. 
It follows that D1 and D2 are simply connected complementary domains with 

a common boundary I<. We fix conformal bijections k: D1 ---+ B and h: D2 ---+ B.

For every T E G the mapping k o To k- 1 is the restriction of a Mobius
transformation into B with k o T o k- 1 ( B) = B and so the group k* ( G) =

{ k o To k-1 
I T E G} can be considered as a Fuchsian group. Denote by k* the

isomorphism that sends T to the extension of koTok-1. We call the group k*(G)
the Fuchsian model of G induced by k .  Similarly we define h*( G), the Fuchsian 
model of G induced by h, and the isomorphism h*: G ---+ h*( G). 

Lemma 2.4.1. An element TE G is parabolic if and only if k*(T) (respec
tively, h*(T)) is parabolic. 

Proof. (i) Let T E G be parabolic. k*(T) cannot be elliptic, because an 
elliptic element in a Fuchsian group is of finite order and T is not. If k*(T) were 
not parabolic, it would thus be hyperbolic. 
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Denote, in this case, by a the axis of k*(T). The curve a can be considered 
as the union of two curves, which have been constructed by the method indicated 
in Note 2.1.3, corresponding to the elements k*(T) and k*(T)- 1 

= k*(T- 1 ). Now 
Note 2.3.1 ensures that k-1(a) is the union of two curves, one of which having an
endpoint at the fixed point of k;1 (k*(T)) = T, and the other at the fixed point 
of T- 1 . 

T and T-1 have, of course, the same fixed point. This leads to a contradiction
with the uniqueness part of Lemma 1.1.1. 

(ii ) Let k*(T) be parabolic. Let a be a circle inside 8B tangent to 8B at 
the fixed point of k*(T). This curve a can again be considered the union of two 
curves constructed as in 2.1.3, using the elements k*(T) and k*(T-1). As above,
k- 1 (a) is a curve, which connects the (attractive) fixed points of T and T- 1 . 
Because of Lemma 1.1.2 these points cannot be distinct from each other. This is 
possible only when T is parabolic. D 

Now we define an isomorphism cp: h*(G)-+ k*(G) by setting cp = k* o h; 1 . 

Lemma 2.4.2. The isomorphism cp: h*( G) -+ k*( G) preserves the relation 
of being crossed. 

Proof. Let T and S be hyperbolic elements in h*( G) such that their axes 
intersect. In virtue of Lemma 2.1.1 we may assume that the axes are not identical 
so that the sets of the fixed points of T and S are disjoint and the elements T

and S do not commute. 
Then h; 1 (T) and h; 1 (S) (respectively, cp(T) and cp(S)) do not commute 

either and thus have disjoint sets of fixed points, again by Lemma 2.1.1. 
By Lemma 2.4.1 all the elements h;1 (T), h;1 (S), cp(T) and cp(S) must 

have two distinct fixed points. Denote by a the axis of T and by a' the axis of 
cp(T). The curve h-1(a) connects the fixed points of h; 1 (T) in D2 and k-1(a')
connects the fixed points of k; 1 (cp(T)) = h; 1 (T) in D1.

Therefore the union h- 1 (a) U k- 1 (a') forms a Jordan curve, which separates 
C into two components C1 and C2. Because the axes of T and S intersect, 
the fixed points of S are accessible from different components h(C1 n D2) and 
h(C2 n D2) of B \ a. Taking into account that h; 1 (T) and h; 1 (S) do not have 
any common fixed point, we see that the fixed points of h; 1 (S) lie in different 
components ci, i = 1, 2. 

One of these fixed points is then accessible from C1 n D1 and the other from 
C2 n D1 , and therefore the fixed points of k* o h; 1 (S) must be accessible from 
different components k(Ci n D1 ), i = 1,2. These components are precisely those 
of B \a'. Thus the axis of k* o h; 1 (S) = cp(S) must intersect a', which is the 
axis of cp(T), and we are done. D 

Because I{ must have infinitely many points, there are infinitely many fixed 
points, and so the groups h*(G) and k*(G) must, by Lemma 2.1.1, have infinitely 
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many fixed and thus limit points. The previous lemma tells us now that The
orem 2.3.2 is available. According to it <p is geometric and thus there exists a 
homeomorphism f: B --+ B such that 

f(T(f-1(z))) = cp(T)(z) for all TE h .(G) and z E B.

The mapping f is by no means unique, but we fix now one such f. 

Lemma 2.4.3. f is orientation reversing.

Proof Select two distinct non-elliptic fixed points x and y in I<. They can 
be connected, by the method of 2.1.3, in D1 by a Jordan arc , and similarly in 
D2 by a Jordan arc r,. Then , Ur, is a Jordan curve, which separates C into two 
components C1 and C2. Suppose that C1 lies left of , U r,, when we travel from 
x to y along , . 

The point x is the (attractive) fixed point of some element T E G. Then, by 
2.3.1, the curve k(,) has an endpoint at the (attractive) fixed point of k.(T). On 
the other hand, we have in D2 , by the choice of f,

(f o h)-1 o cp(h*(T)) o (f oh)= T, 

and 2.3.1 says now that the curve f o h(r,) has an endpoint at the (attractive) 
fixed point of cp (h*(T)). But cp (h*(T)) = k*(T), and so k( 1) and f o h (  r,) have 
a common endpoint, call it x'. Similarly the other endpoint is also common, call 
it y' . Lemma 1.1.2 implies that x' i=- y' . 

Now we select a third non-elliptic fixed point z in C1 and, by 2.1.3, two more 
curves, one in D1 and the other in D2 , with a common endpoint at z. As above, 
k and f o h map the curves in such a way that they have a common endpoint in 
8B, distinct from x' and y', call it z'.

Because z lies left of , U r, when we travel from x to y along , and k is 
orientation preserving, z' must lie left of k( 1) when we travel from x' to y' along 
k(,). (Note that k(,) is a Jordan arc, which cuts B into two distinct pieces and 
the above makes sense.) 

Then it must be so that z' lies right off o h(r,) when we travel from y' to 
x'. Because the point z lies left of I U r,, when we travel from y to x along r,,
the mapping f oh reverses orientation. 

Because h is orientation preserving, f must reverse it. D 

It is sometimes convenient to conjugate the group G to be T G T -1 with a
suitable T E M. If O is the set of the ordinary points of G, then T( 0) is the set 
of the ordinary points of T G T-1 and similarly for the limit points. We call this 
process a normalization.

Consider now any subgroup r of G. A subset A C C is said to be precisely

invariant under r if 
(i) T(A) = A for all TE r, and

(ii) T(A) n A= 0 for all TE G \ r.
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The following lemma is probably known, but in a lack of a reference explicit 
enough, we prove it here. 

Lemma 2.4.4. (i) Let x in K be the fixed point of a parabolic element P
of G. Then there exist open discs Hi C Di, i = 1, 2, such that H; n K = { x} 
and H; is precisely invariant under the subgroup { T E G I T( x) = x} . 

(ii) If r: D 1 - D 2 is a homeomorphism such that T(z) = r-1 (T(r(z))) for
all TE G and z E D1, then the discs above may be chosen so that r(H1) C H2.

Proof. (i) The result (i) for Fuchsian groups is proven explicitly in [M2, 
p. 117]. We may normalize so that P(z) = z + I. Lemma 2.4.1 says that h*(P)
is parabolic, denote its fixed point in 8B by y. By the above result of [M2] we
find an open disc H C B such that H n 8B = {y} and H is precisely invariant
under the subgroup { T E h* ( G) I T(y) = y} .

As in the proof of 2.4.1, 8H can be considered as a union of two curves 
constructed as in 2.1.3 and it follows that h-1(8H)U {oo} = (UnEZPn(-1)) U {oo}
can be considered as a Jordan curve u. Here ·,- denotes a Jordan arc in D2,

1 = h-1 ('I]), where 'I] is a suitable part of 8H. The Jordan curve o: separates C
into two components, one of which lies entirely in D2 . Denote that component by 
H'. 

Now I C C is bounded and there exist numbers M1 and M2 such that 
M1 < Im( z) < M2 for all z E 1. It follows that 1vfi < Im( z) < lvl 2 for all 
z E 8H' \ {oo} = UnEZpn('Y) = UnEZ('Y + n).  

This, in turn, means that either the set { a + i b I a E Fil, b > M2} or the set 
{ a + i b I a E R, b < M1} is inside the set H' C D2. Suppose, e.g., the former 
and denote H2 = {a+ i b I a E R, b > M2}. It follows from the properties of H
and Lemma 2.1.1 that this choice of H2 is suitable, i.e. H2 is precisely invariant 
under the subgroup {TE G I T( oo) = oo}. 

(ii) The assumption on r implies that r- 1(z + n) = r-1(z) + n for all z E D2 

and n E Z. Therefore {Im (r-1(z)) I z E 8H2 n C} = {Im (r-1(z)) I z =

x + i M2, x E [O, l]}. The continuity of r-1 implies that the set mentioned must
have a lower bound KER. 

Now we set H1 ={a+iblaER,b<K}. It is clear that H1 CD1. The 
fact that r(H1) C H2 follows from the assumption on r and the fact that H1 is 
precisely invariant under {T E G I T(oo) = oo} follows from the corresponding 
property of Hz. □

3. The main theorem

3.1. Formulation. We are now in a position to state the main theorem. 
Recall the definition of a cluster set (Definition 1.1.3), of a regular Dirichlet polygon 
(Chapter 2.2), of a Fuchsian model (Chapter 2.4) and of a homeomorphism induced 
by an isomorphism (Chapter 2.3). The existence of an induced homeomorphism 
was discussed in Chapter 2.4. 
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Theorem 3. 1. 1. Let G be a Kleinian group such that the set of the ordinary 
points of G has exactly two components D1 and D2 . We denote by I< the set 
of the limit points of G, select conformal mappings k and h from D1 and D2, 
respectively, onto B and denote by k*(G) and h*(G) the Fuchsian models of G 
induced by k and h, respectively. We choose a regular Dirichlet polygon n of the 
Fuchsian group k* ( G) and let k* : G -+ k* ( G) and h* : G -+ h* ( G) be the natural 
isomorphisms and l: B -+ B a homeomorphism induced by the isomorphism
k* o h-; 1

: h*(G)-+ k*(G). 
The set I{ is a Jordan curve if and only if k*( G) is of the first kind and 

for each x E an n aB, which is not a parabolic vertex, the following condition
is fulfilled: the cluster set C( x, k-1, D1) consists of a single point, say y, and if
{Tn} is a sequence of distinct elements of G converging to a point uniformly in 

compact subsets of C \ {y}, then the spherical diameters of the sets Tn (k-1(n))
and Tn(h-1 o 1-1(n)) converge to zero.

Note 3.1.2. If G is finitely generated, k*(G) must be of the first kind in 
this situation, and the set an n aB is empty or consists only of parabolic vertices 
and the condition automatically holds. 

Note 3.1.3. The assumption that k*(G) is of the first kind can be replaced 
by the assumption that the set k-1(n) n J{ is totally disconnected. It is also 
possible that this assumption is unnecessary. On the other side, if k*( G) is of the 
first kind we can prove that the mapping k has a natural continuous extension 
k: D1 -+ B. There are, however, situations (see e.g. the example in Figure 2) 
when there cannot exist such an extension and thus k* ( G) is not of the first kind. 

Note 3.1.4. With connection to the last condition in the theorem, note that 
in the case of a Fuchsian group, the spherical diameters of Tn (n) converge to zero 
for all sequences of distinct elements Tn . 

3.2. Proof. If J{ is a Jordan curve, the conformal mappings k: D1 -+Band 
h : D2 -+ B can be extended to homeomorphisms k: D1 -+ B and h: D2 -+ B.

Limit points are mapped to limit points and thus every point of aB is a limit 
point of both k*(G) and h*(G) and the groups k*(G) and h*(G) are of the first 
kind. 

Then it follows from [T, Corollary 3.5.1] that the homeomorphism l: B -+ 
B can be extended to a homeumurphisrn j: B -+ B. Both of the mappings 
k-1: B-+ D1 and h-1 o 1-1: B -+ D2 are thus uniformly continuous and the last
condition of the theorem follows from the facts that diam k*(Tn)(n) converges
to zero ( cf. Lemma 2.2.1) and that T(k-1 (n)) = k-1 (k*(T)(n)) and T(h-1 o
1-1(n)) = h- 1 o 1-1 (k*(T)(n)) for all TE G. The condition on the cluster set
is valid for all x E aB.

The proof of the sufficiency of the conditions is divided into several lemmas. 
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We use the notations and results from Chapter 2.4. So, denote by c.p the isomor
phism k* o h; 1 

: h* ( G) --+ k* ( G) as indicated there. 
First of all we concentrate on the parabolic vertices of n, the cluster sets of 

which also turn out to be singletons. 

Lemma 3.2.1. Let z E oB be the fixed point of a parabolic element P E 
k* ( G) and { Zn } C B a sequence converging to z. Then 

where x EK is the fixed point of k; 1 (P) E G. 

(Note that any direct argumentation based on 2.3.1 i□ not avaibble, because 
the convergence may be too complicated.) 

Proof. We prove the result for k-1. For h-1 o J-1 the proof ii::; i::;irnilar (cou
formality is not needed). Now suppose the claim is not true. Then we get a point 
y E K, y different from x, and a subsequence, denoted also by { Zn } , such that 
{k-1(zn)} converges to y.

By Lemmas 2.4.1 and 2.4.4 we can find an open disc H C D1 such that 
HnK = {x} and H is precisely invariant under the subgroup {TE G \ T(x) = x}. 
We introduce in H the hyperbolic geometry and select a hyperbolic line C, which 
connects X to some other point U E oH n D1. 

With the aid of Note 2.3.1 we can see that H is mapped to a domain k(H) 
such that k( H) n oB = { z}. From this it follows that the other endpoint of k( £) 
is z. Sok(£) is a Jordan arc, which connects z to k(u) E B. It is possible to 
connect k( u) to a non-elliptic fixed point v E oB \ { z} with a Jordan arc a in 
B \ k( H), constructed as in 2.1.3, in such a way that a n P( a) = 0. We denote 
by 1 the Jordan arc k( £) U a which connects the points z and v and is such that 

1nPb) = {z}. 
Denote now by E the domain in B that is bounded by the curves 1, P( 1) 

and a part of oB. It is quite easy to see that E is a fundamental domain of 
the cyclic group {Pn \ n E Z}. (One must handle the points inside and outside 
k(H) separately.) It follows that k-1(E) is a fundamental domain of the subgroup
{k;i (P") \ n C Z}. 

Now we go back to the beginning and remember that k-1(zn) --+ y and
y -=/- x. Because k- 1(E) is a fundamental domain, we can find for every n a 
number q( n) E Z such that 

There are two possibilities: the sequence { q( n)} C Z is either bounded or 
unbounded. 
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First suppose that it is bounded. Selecting a subsequence we may suppose 
that q(n) is a constant q E Z. So k;1 (Pq)(k-1 (zn )) E k-1 (E) for all n. The set 
k-1(E) n H is a domain bounded by two hyperbolic lines R and k; 1(P)(R) and a
part of fJH. Now if k; 1(Pq)(k-1(zn )) E k-1(E) \ H, then Pq(zn ) E E \ k(H). 
This cannot be the case for infinitely many n, for Zn - z and thus Pq(zn ) -
Pq(z) = z. Thus we may assume that k:; 1(Pq)(k-1(zn )) E k-1(E) n H for all
n. Because of k-1(zn ) - y, k:;1(Pq)(k-1 (zn ))-+ k:; 1(Pq)(y) EI<. The set
k-1 (E) n H meets the boundary only at the point x; so k:; 1 (Pq)(y) = x is the 
only possibility. Then y = k:;1 (P-q)(x) = x,  which contradicts our assumption. 

So we may concentrate on the case that the set { q( n)} C Z is unbounded. By a 
suitable choice of a subsequence again we may assume that the mapping n f-t q( n) 
is strictly increasing ( the strictly decreasing case can be handled similarly). If 
k; 1(Pq(n))(k-1(zn )) = (k:; 1(P))q(n\k-1(zn )) belongs to the set k-1(E)nH for
infinitely many n, we find a subsequence of {k-1(zn )} converging to x (from 
the simple geometry of the set k-1(E) n H it is easy to decide that the sequence 
{(k;1 (P))-q(n)} converges uniformly to x in k-1(E) n H). This is, however, 
impossible according to our assumption y f: x. 

So we again take a subsequence to obtain the situation that 

for all n. Now the construction of a and Note 2.3.1 imply that x � k-1 (E) \ H, 
and the sequence {k; 1(P)}-q(n) converges uniformly to x in the compact set 
k-1(E) \ H (cf. the note after Lemma 2.1.2 ). It follows again that k-1(zn ) - x
and this contradiction accomplishes the proof. D 

From the definition of the cluster set and the condition of the theorem it is 
clear that if {xn} CB converges to a point x E fJD,nfJB, which is not a parabolic 
vertex, then { k-1(xn )} converges to the singleton C(x, k-1, D1 ). By Lemma 3.2.1 
a similar result holds for the parabolic vertices, too. 

Thus we can extend the mapping k-1: n - k-1(r!) to a mapping g: n -+ 
---

k-1(n) in a natural way. It is easy to see that g is continuous. It is also clear that g
is surjective and the injectiviness follows from the uniqueness part of Lemma 1.1.l. 
Therefore g is a continuous bijection of a compact set and thus a homeomorphism. 

We also want to extend the mapping h-1 o 1- 1 : n -+ h-1 o 1- 1 (n) to the 
closure n . For this we need a lemma. 

Lemma 3.2.2. Let x E 8B be a point whose cluster set C(x, k-1 , D1) is a 
singleton { u} C I< and { xn} CB a sequence converging to x. Then the sequence 
{h-1 o J-1(xn )} converges to the point u. 

Proof. Assume that the claim is not true. Then we can find a subsequence, 
denoted also by {xn} ,  such that {h-1 o J-1(xn )} converges to a point y EI<, 
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y distinct from u. We select a sequence {yn } C D1 converging to y and, taking 
a subsequence if necessary, we may suppose that the sequence { k(yn)} converges 
to a point z E 8B. (In fact, it can be proved that the whole sequence { k(yn)} 
converges). From the definition of the cluster set it follows that z must be distinct 
from x.  

Now we use the fact that k* ( G) is of  the first kind. Then the set of the 
non-elliptic fixed points of k*( G) is dense in 8B, and we can find fixed points 
v and w of k*(G) such that the points x and z lie in different components of 
8B \ { v, w}. We connect v and w by a Jordan arc I using the meLhod of 2.1.3. It 
follows, in the same way as in the proof of 2.4.3, that the Jordan arcs k- 1 (,) and 
h-101-1( ,) have common distinct endpoints v' and w'. It also follows that v' and

w' must be distinct from y and u. The condition k(yn) --, z and the assumption 
C(x,k-1,D1 ) = {u} imply that the Jordan curve 'r/ = k-1(,) U h-1 o 1-1(,)
separates the points y and u. 

The Jordan arc , cuts B into two pieces, one cuutaining x and the other 
containing z. Suppose that x lies left of , when we travel from v to w along 
1. Because k preserves orientation, u must lie left of the Jordan curve 'r/, when
we travel from v' to w' along k-1 ( 1) . This means that y iies ieft of 'r/ , when we
travel from v' tow' along h-1 o 1- 1 (,). Because h-1 o 1-1(xn)--, y, Xn --, x
and lo h reverses the orientation (Lemma 2.4.3), x must lie right of , , when we
travel from v to w. This is a contradiction, and the proof is established. D

With the aid of Lemmas 3.2.1 and 3.2.2 we can now naturally extend the 
mapping h-1 0 f-1: n - h-1 01-1(n) to a mapping g': n - h- 1 01- 1 (n).

Directly from 3.2.1 and 3.2.2 we get 
Remark 3.2.3. If x E an n 8B, then g(x) = g'(x). 
Like the mapping g, g' is also a continuous surjection. The injectivity of 

g' cannot be established directly from Lemma 1.1.1, because of the lack of con
formality, but it follows from 3.2.3 and the injectivity of g. Thus also g' is a 
homeomorphism. 

Next we define the sets 

U = LJ T(n), V = LJ T(g(D)) and V' = LJ T(g'(n)). 
TEk.(G) TEG TEG 

Note that B C U S B, D 1 c V S D1 and D2 C V' S D2. 
We define a mapping g: U --, V as follows: If x E U, select an element 

TE k*( G) such that T(x) E n and set 

g(x) = k; 1 (T- 1 ) o go T(x). 

Similarly we <lefine g' : U --, V' by setting 

g'(x) = k; 1 (T- 1 ) o g' o T(x). 
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We must check that these mappings are well defined. This is done for g, the 
situation is similar for g' . First of all, we see immediately that in B, g( x) = k- 1 ( x) 
and we may concentrate on the boundary. 

We recall the classification of the points of an n aB from Chapter 2.2. The 
examination is now divided into three parts according to T(x) E an n aB being 
in class I, II or II I.

If T( x) E I, it follows from Lemma 2.2.4 that the choice of T is the only 
possibility and the uniqueness of g(x) is clear. 

If T( x) E I I, we proceed as follows. There is a side s 0 of n having an 
endpoint at T(x), call So the corresponding side pairing operation in k*(G). Now 
if S(x) En for some S in k*(G), then SoT-1(T(x)) En and Lemma 2.2.4 says 
that either SoT-1 

= id or SoT-1 
= So 1 . The former case is clear, so we consider 

the latter. Select a point Win T-1(so)nB. Then s- 1 og-1 ok;; 1(S'o 1 )o§ oT(w) 
makes sense and equals w. Because x is the endpoint of the arc T- 1 ( s0) and 
everything is continuous, we see that s- 1 o g-1 o k;; 1 (S) o k;; 1 (T-1) o § o T( x) = x,
from which the desired uniqueness follows. 

Lastly, let T( x) be in class I I I, i.e. a parabolic fixed point. Let S( x) E n 
for some S E k*( G). Because the Dirichlet polygon 0, is regular, it follows that 
T(x) is the fixed point of S o  T-1

. Then, by Lemma 3.2.1, §(T(x)) is the fixed 
point of k;; 1(S o T-1 ) and thus s- 1 o g-1 o k;; 1(S) o k;; 1(T-1 ) o § o T(x) = x and 
we get the uniqueness again. 

Remark 3.2.4. Remark 3.2.3 and the definitions of g and g' imply imme
diately that 

g(x) = g'(x) for all x EU n aB.

Lemma 3.2.5. The mappings g and g' are continuous. 

Proof We may concentrate on the boundary Un aB. So let x be in Un aB
and TE k*(G) such that T(x) E an n aB.

If T( x) is not a parabolic vertex, the assumption of the main theorem says 
that the cluster set C (T( x ), k-1, D1 ) is just {§ (T( x))}. From the definition of the
cluster set we see that C(x, k-1, D1 ) = {k;; 1(T-1 )og oT(x)} = {g(x)} and further 
that if {xn } CB and Xn --+ x, then g(xn ) = k- 1(xn )--+ g(x). Lemma 3.2.2 and 
Remark 3.2.4 also imply that g'(xn )--+ g'(x). 

If T( x) is a parabolic vertex, it is the fixed point of some parabolic element 
P E k*( G). Then x is a fixed point of T-1 PT and T-1 PT is also parabolic. 
Lemma 3.2.1 implies that §(T(x)) = g'(T(x)) is the fixed point of k; 1(P). Then 
g(x) = g'(x) is the fixed point of k;; 1(T-1 PT ). Now, if {xn } CB and Xn --+ x, 
it follows from Lemma 3.2.1 that g(xn ) = k- 1(xn )--+ g(x) and similarly g'(xn ) = 

h- 1 o J- 1(xn )--+ g'(x).
We have shown that if {xn } CB and Xn --+ x, then, in every case, g(xn )--+ 

g( x) and g' ( Xn ) --+ g' ( x). The rest of the proof is an easy exercise. D 
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Lemma 3.2.6. Tbe mappings g: U --+ V and g': U --+ V' are bijective.

Proof. The surjectivity is clear. As to the injectivity we first notice that
all the points of §(ft) are accessible from D1 and thus all the points of V =

UTE GT(§( n)) are accessible from D1 . After this, the injectivity of g follows fromthe uniqueness part of Lemma 1.1.1, and then Remark 3.2.4 implies that g' must
also be injective. D

Lemma 3.2.6 says that there exist inverse mappings g-1: V --+ U and g1 -1:
V' --+ U, and we have 

Lemma 3.2. 7. Tbe mappings g-1 and g1
-

1 are continuous.

Proof. We prove the assertion for g-1; for g1
-

1 the proof is similar. Becauseg-1
= k in D 1 , we may concentrate on the set V n K. Suppose the claim is not

true. Then we have a point x E V n K and sequences {xn} and {Yn} in V such
that Xn --+ x, Yn --+ x, but g-1(xn ) --+ z and g- 1 (yn ) --+ w, where z and w are
distinct points in oB. 

Because k* ( G) is of the first kind, we can select some non-elliptic fixed points
u and v of k*( G) such that z and w lie in different components of oB \ { u, v}. Connect u and v by a Jordan curve I constructed as in 2.1.3. Then k-1( 1)connects the corresponding fixed points u' and v' of G in D1. By a suitable 
choice of u and v we may assure that neither u' nor v' is the point x. Weconnect the fixed points u' and v' also in D2 by, e.g., h-1 

o 1-1(,). Then
a = k-1(,) U h-1 

o 1-1(,) is a Jordan curve, and x lies in one component, say
C, of C \ a.

Because Xn --+ x and Yn --+ x, Xn and Yn also lie in C for large n. Thereforeg-1(xn ) and g-1(yn ) lie in the same component of B \ 1 for large n. This is,
however, impossible because of the choice of u, v and 1. D 

Now we define a mapping r: D1 --+ D2 by setting

{ g'og- 1 (x), 
r(x) = ' , 

x, 

when x E V
when x EK.

By Remark 3.2.4, r is well defined. We want to show that r is a homeo
morphism. The bijectivity follows from 3.2.6, and it is enough to see that r iscontinuous in the compact set D 1 . Because r = h- 1 

o 1- 1 
o k in D 1 , we mayrestrict ourselves to the boundary K. To simplify the notation we first formulate

a simple lemma.
Lemma 3.2.8. For all x E D1 and TE G, r(T(x)) = T(r(x)). 
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Proof. Directly from the definitions we get 

r-1 o To r(x) =go g'-1 o Tog' o g- 1 (x)
= k-1 of oho To h- 1 

o J- 1 
o k(x) 

= k-1 o 'P(h*(T)) o k(x)

= k- 1 o k o h- 1 oho To h- 1 oho k- 1 o k(x)
= T(x). □
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Now we proceed to show that r is continuous at a boundary point z E K. 
Because of 3.2.5 and 3.2.7 and the simple behaviour of r along the boundary, we 
may assume that z E K \ V. Let {zn } be a sequence in D1 converging to z. 
We must show that {r(zn )} converges to z. We suppose now the contrary. The 
idea of the proof is to repeatedly extract a subsequence, so that we reach a desired 
contradiction. 

Firstly, we may suppose that Zn E D1 for all n. Secondly, we may suppose 
that r(zn ) converges to some point y E D2 , distinct from z. Then we select for 
all n an element Tn E G such that Tn (zn ) E g(n). This is possible, because 
Zn E D1 C V. We may suppose that all the elements Tn are distinct. Because, 
if this is not the case, there is a constant no such that Zn E T;;/ (g(n)) for 
infinitely many n, and thus z E V, what is against the choice of z. Also we may 
suppose that the sequence {Tn (zn )} converges to some point x E g(n). Now we 
apply Lemma 2.1.2 and, taking again a subsequence, we can assume that there 
are points a and b in K such that T;: 1 ( w) - b uniformly on compact subsets of 
c\{a}. 

Now we consider the location of the point x E g(n). First of all, x cannot 
belong to D1 . That can be seen as follows: If x E D1 , it is not a limit point and 
cannot equal the point a above. Then Zn = T;: 1 (Tn (zn )) - b, so that z = b. 
Moreover r( x) E D2 , and r( x) -/- a as well, and now according to Lemma 3.2.8 
and to the fact that r(Tn (zn )) - r(x) we see that r(zn ) = T;: 1 (r(Tn (zn ) )) - b, 
and so y = b, too. This is against our explicit assumption y-/- z. 

So it must be the case that x E g(n) n K and thus g- 1 (x) E an n 8B. 
We consider first the case that g- 1 (x) is a parabolic vertex. Then g- 1 (x) 

and x are fixed points of some parabolic elements of k*( G) and G, respectively. 
We select open discs Hi C Di, i = 1, 2, as indicated in Lemma 2.4.4. Moreover, 
we select an open disc H3 in B such that H3 n 8B = {g-1 (x)}, g(H3 ) C H1 and 
H3 is precisely invariant under the subgroup {TE k*(G) I T(g- 1 (x)) = g- 1 (x)}. 
The existence of such a disc can be proved in the same way as Lemma 2.4.4. 

Because Tn (zn ) -4 x, the sequence {g- 1 (Tn (zn ))} converges to g-1(x), and
because of the convexity of n, g- 1 (Tn (zn )) belongs to the disc H3 for large n. 
This implies the facts that Tn (zn ) E H1 and r(Tn (zn )) E H2 for large n. We 
assume that this happens for all n. 
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Now we may suppose that Tm o T;: 1 (H1 ) n H1 = 0, when m c/- n. This can 
be seen by the following reasoning. If this is not the case, there exists some n0 

such that Tm o T;;�_(!!1) = H1 for infinitely many m. Then T;;, 1 (H1) = T;:/(H1 )
and because T;;/(H1) meets the boundary only at the point T;;;/(x), it must be 
so that z=limzm =limT;;:; 1 (Tm(zm)) =T;;/(x) E V, a contradiction. 

So we have Tm o T;: 1 (H1 ) n H1 = 0 when m c/- n, and it follows that also 
Tm o T;: 1(H2) n H2 = 0 when m c/- n.

Then T;;-,1(H)nT1-;
1 (H1) = 0 when m c/- n, and because T

1
-;

1 (H1) is always a 
disc, it has to follow that the spherical diameter diam T;: 1 (H1 ) converges to zero. 
Similarly diamT;: 1 (H2 ) -, 0. 

Now Tn(zn) E H1 , x E 8H1 and T;: 1 (Tn(zn )) = Zn -, z, and so it must hap
pen that T;: 1(x)-, z. This, the fact that r(Tn(zn)) E H2 aml the <limiuicil1iug of 
diam T;: 1(H2 ) imply that r(zn) = T;: 1 (r(Tn(zn))) -, z, which is a contradiction. 

So we have seen that the point g-1(x) in 80, n 8B cannot be a parabolic
vertex, and the last assumption of the theorem is available. Remember that we 
have points a and b in K such that T;: 1 (w) -, b uniformly in compact subsets 
of C \ {a}. If it happens that x = a, the assumption says that diam T;: 1 (g(TI)) 
and diamT;: 1 (r(g(0-))) converge to zero and it must be so that z = limzn = 
b = lim r( Zn ) = y, which is impossible. So, x cannot be equal to a. Because 
Tn(zn )--+ x and r(Tn(zn))--+ x, there is some compact set in C \ {a} containing 
Tn(zn) and r(Tn(zn )) for large n. The uniform convergence of the sequence {Tn } 
then implies again that z = b = y, a contradiction. 

All these contradictions establish the proof of the continuity of r.

It follows that r is a homeomorphism. Theorem 1.2.1 then implies the main 
theorem and we are done. 

Note 3.2.9. We can also modify the conditions of Theorem 3.1.1 and restate 
it as follows (notations as in 3.1.1). 

The limit point set K is a Jordan curve if and only if the following three 
conditions arc fulfilled: 

(i) h* ( G) is of the first kind,
-,--------,--,--

(ii) the sets k-1(0-) n K and h-1 o J- 1(0,) n K are equal and totally discon-
nected and

(iii) if x E 80 n 8B is not a parabolic vertex, y belongs to the cluster set
C(x,k-1,D1) and {Tn } C G is a sequence converging to a point uni
formly in compact subsets of C \ {y}, then the spherical diameters of the
sets Tn(k-1(0-)) and Tn(h-1 o J- 1(0-)) converge to zero.

The proof of the necessity of the conditions is quite immediate as in 3.1.1. As 
to the sufficiency we first notice that because k-1(0-) n K is totally disconnected, 
k*(G) must be of the first kind, and moreover, using Theorem 1.2.2, we see that 
k-1(0-) must be a Jordan domain. Thus we can naturally extend the mapping
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k-1: f! -+ k-1(D) to a mapping g: f! -+ k-1(D) . To get the extension §': f! -+
h-1 o J-1(D) we have to use, besides the condition that h-1 o J-1(D)nK is totally
disconnected, also the condition (i), from which it follows that we can extend f
to a homeomorphism B -+ B . As in 3 .1.1 we can define the mappings g : U -+ V
and g': U -+ V' and Remark 3.2.4 follows from the condition k-1(D) n K =
h-1 o J-1(D)n K. Next we show that the condition of 3.1.1 on the cluster set of a
point x E 8D n 8B is valid. We select curves J;,, n E N, as in Construction 2.2.3.
Then 'Yn = g(J;,)Ug'(J;,) is a Jordan curve; denote by En the component of C\'Yn 

which contains x .  Then C(x,k- 1 ,D1 ) C En+l C En for all n. Now our condition
(iii) applies to the pre-images k; 1 (Sn) of the side pairing transformations Sn 

in 2.2.3 and we get that diam 'Yn -+ 0 and thus diam En -+ 0 at least for a
subsequence. Then diam C( x, k-1 , D1 ) = 0 and the cluster set contains exactly
one point. We are now back in the proof of 3.1.1 and the sufficiency follows.

Note 3.2.10. In the introduction we mentioned the theorem of [Ml], which 
states that if G is finitely generated, then K is a quasicircle. Our result implies 
the theorem as follows: 

Because f o T = cp(T) o f in B, f induces a homeomorphism J between 
the Riemann surfaces B/h*(G) and B/k*(G). These surfaces are of a finite type 
and it is a well-known fact that there then exists a quasiconformal ( orientation 
reversing, in this case) homeomorphism ]' between them, such that the mappings 
J and ]' are homotopic. The mapping }' can be lifted to a quasiconformal 
homeomorphism f': B -+ B satisfying f' o T = cp(T) o f'. Thus we may suppose 
that our original f is quasiconformal and it is readily established that r: D1 -+ D2

gives a quasiconformal reflection on the Jordan curve K. This means that I{ is 
indeed a quasicircle. 
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