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We apply Bayesian inference to determine the posterior likelihood distribution for the parameters
describing the initial condition of the small-x Balitsky-Kovchegov evolution equation at leading
logarithmic accuracy. The HERA structure function data is found to constrain most of the model
parameters well. In particular, we find that the HERA data prefers an anomalous dimension y ~ 1 unlike in
previous fits where y > 1 which led to, e.g., the unintegrated gluon distribution and the quark-target cross
sections not being positive definite. The determined posterior distribution can be used to propagate the
uncertainties in the nonperturbative initial condition when calculating any other observable in the color
glass condensate framework. We demonstrate this explicitly for the inclusive quark production cross
section in proton-proton collisions and by calculating predictions for the nuclear modification factor for the
F, structure function in the EIC and LHeC/FCC-he kinematics.

DOI: 10.1103/PhysRevD.109.054018

I. INTRODUCTION

Understanding the high-energy structure of protons and
nuclei is one of the central goals of the next-generation
Electron-Ion Collider (EIC) [1]. Especially the fact that one
can perform nuclear-DIS experiments for the first time in
collider kinematics is intriguing: at high center-of-mass
energies it is possible to access the high-density part of the
nuclear wave function where nonlinear QCD dynamics
with emergent saturation phenomena is expected to play a
major role.

Precise theory calculations taking into account saturation
effects are necessary to probe in detail the nonlinear QCD
dynamics in hadronic collisions at RHIC and at the LHC, as
well as in accurate nuclear-DIS experiments [2] at the EIC
or at the proposed future LHeC/FCC-he collider [3]. The
color glass condensate (CGC) effective theory of QCD [4]
provides a natural framework to describe gluon saturation
at high energies. In recent years there has been a rapid
progress toward next-to-leading order accuracy in CGC
calculations, see e.g. Refs. [5-15]. In addition to higher
order corrections, precise theoretical predictions require a
well constrained nonperturbative input describing the
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proton or nuclear structure at moderately small-x, which
is an initial condition to the perturbative evolution equa-
tions such as the Balitsky-Kovchegov (BK) [16,17] equa-
tion resumming contributions enhanced by large logarithms
of center-of-mass energy.

The initial condition for the BK evolution has been fitted to
the HERA structure function data [18,19] at leading [20-23]
and recently also at next-to-leading [24,25] order accuracy
(see also Ref. [26] for a complementary approach to
determine the initial condition from the large-x structure
of the proton). This initial condition is a necessary input when
calculating any other scattering process at small-x, such as
particle production in proton-nucleus collision at the LHC,
see, e.g., Refs. [8,21,27,28].

All current fits to the DIS data extracting the initial
condition for the BK evolution lack an uncertainty analysis,
i.e., do not provide any method to propagate the uncer-
tainties in the initial condition parametrization to the
calculated observables. When developing the CGC calcu-
lations to the precision level, a statistically rigorous treat-
ment of these uncertainties can be seen to be of equal
importance as the higher order corrections when comparing
predictions to current and future experimental data.

In this work we extract, for the first time with an
uncertainty estimate, the nonperturbative initial condition
for the BK evolution from the HERA structure function
data [19]. This is achieved by employing a Bayesian
inference setup extensively used in the field, recently when
extracting, e.g., properties of the quark gluon plasma [29-34]
and the event-by-event fluctuating proton geometry [35]. The
determined posterior distribution for the initial condition
parameters allows for a rigorous propagation of initial
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condition parametrization uncertainties to calculations of all
other observables in the CGC framework. In this work we
present results based on a leading order analysis but note that
the developed computationally efficient setup can be
extended to the numerically heavy next-to-leading order
case, where it has been recently shown that combined
analyses including both total cross section and charm
production data are feasible [24].

This paper is structured as follows. In Sec. II we review
the calculation of the proton structure functions at high
energy in the CGC approach. The Bayesian inference setup
is described in Sec. III. The determined initial condition for
the BK evolution with an uncertainty estimate is presented
in Sec. IV. To illustrate the propagation of uncertainties to
calculations of various observables, we calculate in Sec. V
inclusive quark production in proton-proton collisions and
the nuclear modification factor for the structure function F,
which will be measured at the EIC but for which no
predictions that include the BK evolution consistently with
the HERA data exist in the literature (see however
Ref. [36]). Conclusions are presented in Sec. VI, and the
importance of including correlations among the experi-
mental uncertainties is analyzed in the Appendix.

II. DEEP INELASTIC SCATTERING
AT HIGH ENERGY

The total cross section in lepton-nucleus scattering is
typically expressed in terms of the reduced cross section
defined as

Gr(xijy7 QZ) = FZ(xBy Qz)
S S
1+(1_y)2FL(xBJ$Q ) (1)

Here y = Q?/(sx) is the inelasticity, xp; is the Bjorken-x,
Q? the photon virtuality and /s the electron-proton center-
of-mass energy. The structure functions F, and F; are
related to the total virtual photon-nucleus cross section as

0? A A
F=—2 (4o 2)
2 4ﬂ2aem( L)
0? A
Y (3)
L Amlde, -

Here the subscripts 7 and L refer to the transverse and
longitudinal virtual photon polarization states, respectively.

In the dipole picture the total cross section for the virtual
photon-nucleus scattering at high energy factorizes to a
product of the virtual photon wave function 7 ~%9
describing y* — ¢g fluctuation, and the dipole-target scat-
tering amplitude N as [37]

*

ot =23 / be |y =i (r, 02 )
f
x N(r,b, xBJ) (4)

Here z is the fraction of the photon longitudinal momentum
carried by the quark, r is the transverse size of the ¢g dipole
(higher Fock states would enter beyond leading order) and
b is the center-of-mass of the dipole. We sum over light
quarks f = u, d, s, as it has been shown in Ref. [22] that in
a leading order calculation with the energy dependence
obtained from the BK evolution it is not possible to
simultaneously describe the total and charm production
cross section data.

Following Refs. [20-22], when calculating the virtual
photon-proton cross section we neglect the impact param-
eter dependence in the dipole-proton amplitude N and

replace
O,
&b - 2. 5
[ev=1 5

Here the proton transverse area o,/2 is taken to be a free
parameter.

The squared photon wave functions summed over quark
helicities read [37]

2N,
|WT(r’ <, Q2)|2 = :

{2+ (1= 2Pk e

+ me2 (er)} (6)

and

8N,
i(r.z. Q%) = == ameg0?2* (1 = 2)’KG(er). (7)

with &> = z(1 — 2)Q* + m2. Here m, = 0.14 GeV is the
light quark mass and e, is the quark charge. One could also
in principle take the light quark mass to be a fit parameter
as, e.g., in Refs. [22,38]. However these previous analyses
have found only a small sensitivity on m, and as such we
choose a fixed value that is compatible with previous fits.

The Bjorken-x dependence of the dipole amplitude is
given by the Balitsky-Kovchegov equation:

ON(x
a(Y(H) = /dZXZKBK(XOv X1, Xp)
x [N(Xg2) + N(x12) = N(Xq1)
— N(Xp2)N(x12)]. (8)
Here x;; = x; — x; and ¥ = In x,/x (see also Ref. [39] for a

detailed discussion of the evolution variable). In this work
we initiate the BK evolution at xy = 0.01. When the
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running coupling corrections are included following the
Balitsky prescription [40] the kernel reads

N, 0‘("012) X012
Kpk (X0, X1, X;) = —

2 2 2
2w X127 X2

1 [ay(xp)?
+_2< <022>_1)
X2 \Xs(X12

] G i | G

In this work we present a leading-order analysis. We note that
in addition to next-to-leading order corrections [6,7,13,14],
it is also possible to resum corrections enhanced by
large transverse logarithms to the BK equation following
Refs. [41-43] (that in practice approximate the full NLO BK
equation accurately [44,45]). Furthermore, it would be
worthwhile to use the recently developed resummation
procedure from Ref. [39] where the evolution is formulated
in terms of the target rapidity instead of the projectile rapidity.
These improvements we leave for future work.

For the initial condition of the BK evolution we use a
McLerran-Venugopalan model [46] inspired parametriza-
tion as, e.g., in Ref. [21]

(Xij2 g,o)y

4

1
x In 7+ec-e>]. 10)
<‘Xij|AQCD (

Here the free parameters are Q2 related to the initial
saturation scale, the anomalous dimension y controlling the
shape of the dipole amplitude at small |x;;| and the infrared
regulator e.. The Bayesian inference setup discussed in
Sec. III can efficiently handle multidimensional parameter
space, which allows us to use this more flexible para-
metrization for the initial condition compared to functional
forms used in previous fits (e.g., in Ref. [21] either y or e,
was fixed).

The strong coupling constant in Eq. (9) depends on the
transverse distance scale. Following again Refs. [20,21] we
write the coordinate space strong coupling as

N(x;;,x = x9) = 1 —exp [—

a,(r?) = 127 : (11)

4C?

Here we take ny = 3 as we only consider light quarks in
this work, and Agcp = 0.241 GeV. In the infrared region
the coupling is frozen to @, = 0.7. The parameter C?
controls the strong coupling scale in the coordinate space,
and based on Refs. [40,47] its expected value is
C? = e7%£ ~(.32. However we consider C? to be a free
parameter to control the uncertainty of the strong coupling

scale and to absorb some missing higher order corrections,
for example the fact that the next-to-leading order evolution
is known to result in slower evolution speed compared to
the leading order case [45]. Previous leading order fits have
also been found to prefer a much larger C? = 7...15 [21].

III. BAYESIAN ANALYSIS SETUP

The nonperturbative parameters describing the initial
condition for the BK evolution, the proton transverse area
and the scale of the coordinate space running coupling can
be estimated using Bayesian parameter inference. In this
work we use a similar inference procedure as, e.g., in
Refs. [29,33,35]. The output is a multidimensional like-
lihood distribution that comprehensively describes the
parameter uncertainties and correlations based on prior
beliefs and experimental data.

Bayesian inference is based on Bayes’ theorem:

P(¥(0)[¥exp) o P(Yexp|y(0)) P(0). (12)

Here the model output vector with given parame-
trization @ = (Q2.,7,e.,C? 6¢/2) over N kinematical
points x; = (xgj, 0%, y); is represented by y(0) = (y(6),,.
¥(@)y,, ---»¥(0)y,). The posterior function, represented by
P(y(0)|Yexp)- is the probability of y(6) being true given the
experimental data, y.,,, as evidence.

The probability represented by P(yex,|y(6)) is a measure
of the agreement between the observation and the model
calculation at the kinematical point x given the model
parameters 6. We use a multivariate normal distribution in
which case the logarithm of the likelihood function reads

102 P (Yexp|¥(0))

— _% [Ay(0)T=1(0)Ay(0) + log(2zdetX)].  (13)

Here X = X,,04e1(0) + Zeyp is @ matrix sum of the model, or
emulator as discussed shortly, and the experimental covari-
ance matrices and the difference Ay (@) = y(0) — yex, is a
vector with length N. The experimental data considered in
this work is the reduced cross section data measured by the
H1 and ZEUS collaborations [19], where the published
dataset also includes the full covariance matrix describing
correlations among the 162 sources of systematic uncer-
tainty. Furthermore we include as correlated uncertainties
the 7 different procedural uncertainties originating from
the combination of the Hl1 and ZEUS datasets. These
correlations between different systematic uncertainties
have not been included in previous dipole model fits,
and the effect of these correlations on the final posterior
distribution is illustrated in the Appendix. The uncorrelated
systematic uncertainties and statistical uncertainties are
added in quadrature.
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TABLE 1.
shown.

MAP and median values for the 4- and 5-parameter setups. The uncertainty estimates in the 95% credible intervals are also

4-parameter case 5-parameter case

Parameter description Prior range Median MAP Median MAP
Initial scale, Q2 [GeV?] [0.04, 0.11] 0.061+0:914 0.060 0.067+5:04 0.077
Infrared regulator, e, 0.5, 60.0] 353233 38.9 27.55330 15.6
Running coupling scale, C? [2.0, 10.0] 4.9732 4.60 472153 447
Proton transverse area, o;/2 [mb] [12.0, 18.0] 14171 13.9 14.07]3 13.9
Anomalous dimension, y [0.9, 1.1] 1 (fixed) 1 (fixed) 1,01jg.~8§‘ 1.01
Saturation scale, 0%, at xp; = 0.01 [GeV?] 0.279 0.280 0.288 0.289
y?/d.of. 1.013 1.011 1.016 1.012

The prior, represented by P(@) in Eq. (12), encodes
initial knowledge on the range and shape of the probability
distribution of the model parameters. Not much informa-
tion is known about the true distribution of the model
parameters other than estimates of previous fits from
Refs. [20-22]. In this study, the prior is chosen to be a
flat multivariate distribution with bounds corresponding to
guesses of possible parameter ranges, outside of which the
posterior is set to zero. Initially, the width of the posterior
distribution is unknown, so the study conservatively begins
with a wide allowable extent and is later narrowed down.
The prior ranges used in the final analysis are shown in
Table L.

In order to effectively sample the multidimensional
parameter space, we employ Gaussian process emulators
(GPEs) [48] as computationally efficient surrogates for the
actual theory calculation, and the Markov Chain
Monte Carlo (MCMC) sampling method. The MCMC
importance sampling is implemented via the EMCEE pack-
age [49] that uses an affine-invariant ensemble sampler.
This sampler uses an algorithm similar to the Metropolis-
Hastings (MH) where each step of a walker from A — B is

accepted with a probability of g ~ ;;Ez,li;' Unlike the MH
algorithm, EMCEE employs an ensemble of k walkers where
the advancement of the chain of one walker is also based on
the current positions of the other walkers; therefore, it
converges much faster than MH. Each step is then
appended to the MCMC chain to, eventually, form the
target posterior distribution.

The GPEs are trained at different points in the parameter
space sampled from a latin hypercube which ensures that
the design points are optimally distributed in the parameter
space. This significantly reduces the number of training
points needed to get accurate estimates from GPEs, and in
this analysis we use 500 training parametrizations. We
include data in the region 2.0 GeV? < Q? < 50.0 GeV?
where there are 403 datapoints. The low-Q? cut ensures the
presence of a perturbative scale, and the upper limit
removes contribution from the region dominated by
DGLAP dynamics not included in the present analysis.

We represent the HERA data in this kinematical domain by
6 principal components that capture 99.99999% variance of
the model output within the prior. The GP output at a
certain (x,6) is a mean estimate and a covariance matrix
that describes the emulator uncertainties and is used to form
the matrix Zgel-

The GPEs are validated by comparing their predictions
with the actual model calculations of the reduced cross
section. The left panel of Fig. 1 show the comparison
between the model and the emulator output at all kinematical
(xpj, Q% y) points in the HERA data computed using
separate validation sets of model parameters not included
in the training of the GPEs. The emulator accuracy is found
to very good, with the average relative difference being
0.047% in our standard setup where Q% ¢, C*,6o/2 and y
are free parameters. The right-hand side panel of Fig. 1
shows the corresponding z-score defined as

GPE — model

I=—", (14)
OGPE

where ogpg is the uncertainty estimate of the GPE. The width

of the z distribution is less than unity which means that the

emulator uncertainties are typically slightly overestimated.

3
S
5 5 Mean = 0.059
E ‘Sd:0A427
>
E1
ot ANt
0 1 2 3 -4 -2 0 2 4
Model o, z-score
FIG. 1. Validation for the 5-parameter Bayesian fit (left)

comparing the calculated reduced cross section to the emulator
prediction. The z-score plot (right) is constructed with 500
validation points over 403 kinematics. The dashed line shows
a Gaussian fit to the z-score histogram, for which the mean and
the standard deviation (SD) are given in the figure.
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However, it is the experimental uncertainty that dominates in
the likelihood function.

IV. INFERRED INITIAL CONDITION
FOR THE BK EVOLUTION

We determine the posterior distribution of model param-
eters in two separate setups. First, in our main setup we
consider all parameters discussed above (QZ. e, C*, 6/2
and y) to be free and determine the corresponding posterior
distribution. We will refer to this setup as the 5-parameter
case. For comparison we also consider the case where we
set y = 1 as in the standard MV model, and refer to this as

Q2, [Gev?] ec

the 4-parameter setup. This parametrization corresponds to
the “MV®” one used in Ref. [21].

The obtained posterior distributions are shown in Fig. 2
for both the 4- and 5-parameter cases. The plots along the
diagonal present the 1D projections of the posterior
showing the likelihood distributions for individual param-
eters. The off-diagonal plots are 2D histograms that
illustrate the correlations between the pairs of model
parameters.

The HERA data is found to constrain most of the model
parameters well, except the infrared regulator e, for which
the likelihood distribution extends to large values of e, in
both setups. The broad distribution is not unexpected as the

CZ 0'0/2 [mb]

02, [GeV?]

€c

CZ

0o/2 [mb]

TS o ® S ©,5 O 16 b % o ® L ®
09‘) 091 0'\0 o) Y SR Eo &S 19 A N, 9 S A8
02, [GeV?] ec c? 00/2 [mb] 1

FIG. 2.

1- and 2-dimensional projections of the posterior probability distributions for both the 4-parameter (red) and 5-parameter case

(blue). The dotted green line shows the best fit values from the MV® fit of Ref. [21].
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dipole amplitude depends on e, weakly and only in
the region where r 2 1/Aqcp, see Eq. (10). Also, in the
5-parameter case, large values for Q2 are allowed and
compensated by small e, and in both setups we obtain a
clear negative correlation between Q7 and e..

In the 5-parameter case where y is a free parameter, we
find that the HERA data prefers y = 0.95...1.05. This is in
contrast to previous fits performed in Refs. [20-22] where
the Q?-dependence of the HERA data was shown to prefer
y~ 1.1...1.2 (in fits with fixed e, = 1). As we will discuss
in more detail in Sec. V, having y < 1 is advantageous e.g.
when calculating inclusive particle production cross section
in proton-nucleus collisions. The most likely values for the
individual parameters in the 4-parameter case are similar to
what is reported in the previous leading order fit [21].

In addition to the negative Qf, — e, correlation dis-
cussed above, we also find a clear negative correlation
between Qg.o and o(/2 especially in the 5-parameter case.
This is because, in the region where the virtual photon-
proton cross section is dominated by small dipoles, one has

2
2N~ (52) . as)

where we use the fact that > ~ 1/Q? (except in the aligned
jet limit where z~0 or z=1). This dependence also
explains the negative correlation seen between y and (/2.

As stated earlier, O, parametrizes the saturation scale at
initial xg;. The saturation scale, Oy, determines the scale at
which nonlinear dynamics becomes important. Independent
of the functional form of the BK initial condition, we can
define (following, e.g., [21]) Q? as the solution to
N(r?> =2/Q2, xp;) = 1 — e7'/2. The determined saturation
scales at initial xg; in both 4- and 5-parameter setups are
shown in Table I, and are found to be identical in both cases.
Furthermore, Fig. 3 shows the xg; dependence of 02, which
is identical in both setups despite the differences in the
posterior distributions.

At large Q?,, the typical running coupling a(r) ~
as(1/Q,) is smaller. Consequently in that case there is
no need for as large C? to get a slow enough evolution
speed compatible with the x-dependence of the HERA data.
Hence the negative correlation between C? and Q2 is
obtained, and consequently a positive correlation between
C? and 6,/2. These correlations appear very clearly in both
setups. Consequently, it is essential to take into account the
correlations between the model parameters when estimat-
ing uncertainties when calculating different cross sections.

The median values for the parameters are presented in
Table I along with the maximum a posteriori (MAP)
estimates corresponding to the maximum of the posterior
distribution.

The compatibility with the HERA data is quantified by
y*/d.o.f. defined as

2
 SERN S
dof. N = p VO Tepay (@), (16)

where N = 403 is the number of experimental datapoints in
the considered kinematical domain and p =4 or p =5 is
the number of free model parameters. The y?/d.o.f. ~ 1.01
shows that an excellent description of the precise HERA
data is obtained, similarly as in previous leading order fits.
By calculating the average cross section over many samples
from the posterior and not using a single parametrization
(e.g., median or MAP), we get y*/d.o.f. = 1.02 in both the
4- and 5- parameter cases, showing that both the MAP and
median parametrizations are good estimates when calculat-
ing the proton structure functions.

The good agreement with the HERA data is also
illustrated in Fig. 4 where we show a comparison to
the reduced cross section data in a few selected virtuality
bins. The central lines are the average values obtained by
computing the cross section using many posterior sam-
ples, and the uncertainty band corresponds to two
standard deviation variation. To allow for asymmetric
uncertainty estimates, in this work we always calculate
separately the 2 standard deviation (2¢) uncertainty band
above and below the mean value. We note that the
reduced cross section is generically underestimated at
low Q2. However, we still get a good x> when the
correlated systematic uncertainties in the HERA data
are taken into account. If the statistical and systematical
uncertainties in the HERA data are simply added in
quadrature, we get a somewhat larger y*/d.o.f. = 2.2 in
both the 4- and 5-parameter case. See also discussion in
the Appendix for the effect of the correlated uncertainties
on the posterior distribution.

The initial condition for the dipole amplitude N(r, xg; =
0.01) and the evolved amplitude at a much smaller

1.4
_____ [Q2%, ec, C?,00/2, V]

12800 = [Q%, ec, C?, 00/2]

[GeV?]

2
s

Q

103 1074 10-3 1072

XBj

FIG. 3. The saturation scale as a function of xg;, defined as the
solution to N(r) = 1 — e~'/? when r> = 2/Q?. This is shown for
both the 4- and 5- parameter cases with 2o uncertainty bands.
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1.6
Posterior Mean+20 Q2 (GeV?)
¥ HERA data h} —— 45.0
1.4f i 27.0
— 15.0
8.5
12 r —— 45
2.0
g 1.0r
0.8} I;
0.6
04-. PR | N N PR | N .I......n
1074 1073 1072
XBj

FIG. 4. The reduced cross section as a function of xg; and
the 26 uncertainty band obtained from the posterior samples
in selected Q? bins compared with the HERA data at /s =
318 GeV [19].

Xgj = 1073 are shown in Fig. 5. Note that the initial dipole
amplitude only depends on Qg , e. and y, and furthermore
the evolution speed is also sensitive to C2. The central value
of the dipole amplitude is obtained as an average of the
dipole amplitudes computed using different samples
from the posterior distribution, and the uncertainty estimate
is a 2 standard deviation band. We show the dipole
amplitudes both from the 4- and 5-parameter setups,
and, as expected, the uncertainty band in the 5-parameter
case is slightly larger due to a broader posterior distribu-
tion. However the actual (2 standard deviation) uncertainty
in the dipole amplitude is small, typically a few percent and
maximally ~10%.

10

=== [0520’ €c CZ' 00/2, V]
=5 [Q2Z, e, C?,00/2]

N(r, xg;)

10

FIG. 5. The dipole amplitude at the initial condition and
evolved down to xg; = 1073 calculated in the 4- and 5- parameter
cases. The band shows a 26 uncertainty.

V. APPLICATIONS

As the dipole-target scattering amplitude is a convenient
degree of freedom at small-x (see e.g. Ref. [50]), the
determined posterior distribution is a necessary input to
calculations of all observables. The fact that the full
posterior distribution, and not just the best fit values, are
available, also enables us to rigorously take into account the
uncertainties in the nonperturbative parameters describing
the initial condition for the BK evolution. In this Section,
we demonstrate how the uncertainties in the extracted
dipole amplitude propagate to the inclusive quark-target
cross section and to the nuclear modification factor for the
F, structure function that will be measured at the EIC.

A. Inclusive quark production

Let us first consider quark-target scattering which is the
relevant subprocess in inclusive forward hadron production
in pp or pA collisions. The inclusive forward quark
production cross section in proton-proton collisions is
directly proportional to the two-dimensional Fourier trans-
form of the initial dipole-amplitude [21,27,51,52]:

d6q+A—>q+X
dyd’k

60/2
P

(x.1?)8, (k). (17)

where the produced quark transverse momentum and
rapidity are k and y, respectively. The dipole amplitude
is evaluated at x = |k|//se™ where /s is the center-of-
mass energy. Furthermore, xq(x, u?) is the quark parton
distribution function evaluated at scale y2, and

5, (k) = / dr e~ [1 = N(r)]. (18)

The two-dimensional Fourier transform of the dipole
amplitude scaled by 6(/2 at the initial xg; = 0.01 is
calculated in both the 4- and 5-parameter case, and the
results are shown in Fig. 6. Although the median y obtained
is close to 1, the posterior covers parametrizations where
anomalous dimensions slightly larger than unity (up to
y = 1.05) are encountered, resulting in negative values of
§,(K) in the large k region. This is because the Fourier
transform is not positive definite with y > 1 [53]. At
smaller x after the BK evolution the Fourier transform
would be positive definite as the BK evolution drives the
anomalous dimension toward an asymptotic value
y =0.6...0.8.

Additionally we observe that although the uncertainties
in the determined dipole amplitude are typically around 5%
(see Fig. 5), uncertainties in the quark-target cross section
(in the § » X 09/2) can be significantly larger. Even in the
4-parameter case where the Fourier transform is positive
definite, e.g., at k =2 GeV the upper limit of the 2¢
uncertainty band is around 150% larger than the mean

054018-7



CASUGA, KARHUNEN, and MANTYSAARI

PHYS. REV. D 109, 054018 (2024)

T
>
Q
S
N
>
[¢)
X
<
=
1% E
10-4[ == 0%, ec,C2, 0012, Y]
P s [Q2), e, C2, 00/2]
105 L " PR . A
0. 1 10

k [GeV]

FIG. 6. 2D Fourier transform of the dipole-proton ampli-
tude scaled by o(/2 at the initial x = 0.01 in the 4- and
S5-parameter cases.

value. This highlights the importance of properly taking
into account the parametrization uncertainties when apply-
ing the dipole amplitude determined from the HERA data
when describing particle production processes at the LHC
as e.g. in Ref. [21]. At next-to-leading order [9,10] the
possibility to emit a gluon changes the kinematics from
1 - latLOto1 — 2 at NLO, which can have a significant
effect on the py distribution (e.g., one can obtain a power-
law tail at high p; even with a Gaussian dipole). The
importance of properly take into account uncertainties in
the initial dipole-target scattering amplitude when calculat-
ing inclusive spectra at NLO has been recently emphasize
in Ref. [28].

B. Nuclear effects on F,

Much more pronounced saturation effects can be
expected to seen in scattering processes where the target
is a heavy nuclei instead of the proton, as the saturation
scale in the nucleus scales roughly as ~A!/3. The dipole-
proton scattering amplitude determined in this work can be
generalized to the dipole-nucleus case, e.g., by employing
the optical Glauber model. Following Ref. [21], we write
the initial condition for the BK evolution of the dipole-
nucleus scattering amplitude at fixed impact parameter b as
o0 (°05,)

Ny(r,b,x =x5) =1 —exp {—ATA(b)E 1

1
X In 7+ec~e>], 19
<|1'|AQCD (19)

where T, (b) is the transverse thickness function of the
nucleus of mass number A. The dipole-nucleus amplitudes
at fixed b are then evolved to small-x by solving the BK
equation without the impact parameter dependence. This
thickness function is obtained by integrating the Woods-
Saxon distribution

n

1+ exp {—V "ZZZZ_R"]

pa(b.z) = (20)

over z, where d=054fm and R,=(1.124'3 -
0.86A~!/3) fm. The normalization condition [d’bT4(b)=1
fixes the overall constant n. In the large |b| > by, region
where AT, (b)o,/2 < 1, the saturation scale of the nucleus
falls below that of the proton. In order to avoid an unphysi-
cally rapid growth of the nuclear size in this region we write,
following again Ref. [21], N4 (r, b, x) = AT (b) 2 N(r,x),
i.e., use a dipole-proton scattering amplitude scaled such that
all nuclear effects vanish.

We compute the nuclear modification factor for the
structure function F, defined as

F)4
ReA = ;

= 21
AF, )’ 1)

where F, , is the F, structure function for the nucleus with
mass number A. In this work we consider gold, i.e.
A =197, for which this modification factor will be
measured at the EIC. The obtained R, as a function of
xgj is shown in Fig. 7 and as a function of Q? in Fig. 8.

We predict a significant nuclear suppression in the F,
structure function already in the EIC kinematics. By
construction R,4, — 1 at the initial x = 0.01 in the limit
Q? — o0, and a stronger suppression is seen both toward
small-xp; and low-Q?. Unlike above when studying the
inclusive quark production cross section, in the case of R,
the parametrization uncertainties effectively cancel in the
structure function ratio and the 20 uncertainty is at 1-2%
level. The uncertainty grows slightly toward small-xg;
where also the C? parameter controlling the evolution
speed become important.

0.875r Q2=10.0 GeV?
0.850

0.825

_____ [Q%, ec, C?,00/2,V]

0.700 ) 5
————— [Q%. €c, C?, 00/2]
0.675 e M errararere r—e———
1073 1074 1073 102

XBj

FIG. 7. Nuclear modification factor for the structure function
F, as a function of xg; at fixed Q> = 10 GeV>.
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FIG. 8. Nuclear modification factor for the structure function

F, as a function of photon virtuality Q2 at fixed xgj = 0.001.

VI. CONCLUSIONS AND OUTLOOK

We have determined the posterior distribution for the
nonperturbative parameters describing the dipole-proton
scattering amplitude at the initial condition of the small-x
BK evolution. This is a necessary input to calculations of all
scattering processes at high energy in the color glass
condensate framework. We have also determined, for the
first time, uncertainty estimates for these nonperturbative
parameters. The obtained posterior distribution makes it
possible to rigorously take into account the uncertainties in
the initial condition parametrization when looking for
signals of gluon saturation from various different observ-
ables. The posterior distributions determined in this work
can be found from the Supplemental Material [54].

We have shown that the HERA structure function data
constrains most of the model parameters well and the
remaining uncertainties in the obtained dipole amplitude
are at a few percent level. The flexible Bayesian inference
setup allows us to include more freedom in the initial
dipole-proton amplitude than in the previous fits, and in
particular we find that the HERA data does not require a
large anomalous dimension y =~ 1.1...1.2 unlike in the
analyses presented in Refs. [20-22]. Instead we get y =
1 which is more natural considering that y < 1 is required to
obtain a positive definite quark production cross section
and unintegrated gluon distribution [53].

We demonstrate the uncertainty propagation by calcu-
lating the inclusive quark production cross section in
proton-proton collisions and the nuclear modification
factor R,, for the structure function F, to be measured
at the EIC and at the LHeC/FCC-he. Significant uncer-
tainties up to ~100% were found in the case of the inclusive
quark production in proton-proton collisions. On the other
hand, the uncertainties were found to mostly cancel in the
nuclear modification factor R,, for the F, structure
function. As such it can be crucial to properly propagate

the uncertainties in the nonperturbative input when com-
paring the CGC predictions describing the gluon saturation
effects to, e.g., LHC inclusive spectra.

In the future, we will apply the developed computation-
ally efficient setup to determine the initial condition for the
BK evolution at next-to-leading order accuracy. This is
especially intriguing as it has been recently shown that at
NLO global analyses including both total and heavy quark
production cross section data simultaneously become
feasible [24,25]. We expect the proper treatment of initial
condition uncertainties to be of equal importance as higher-
order corrections when the color glass condensate calcu-
lations are promoted to the precision level.
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APPENDIX: TREATMENT OF EXPERIMENTAL
CORRELATED SYSTEMATIC UNCERTAINTIES

In this work we have included, for the first time, the
correlations between the different sources of systematical
uncertainty in the HERA structure function data when
determining the initial condition for the BK evolution. In
order to quantify the effect these previously neglected
correlations have on the determined initial condition, we
also extract the initial condition for the BK evolution by
neglecting all correlations in the experimental data. Instead,
we choose the covariance matrix to be diagonal with X, =
diag(o?, 63,63, ..., 0%) where the statistical and both cor-
related and uncorrelated systematical uncertainties are
added in quadrature: 67 = 6% uncor + Otatuncorr T Ceorr-

The posterior distribution obtained with and without
the correlated uncertainties in the experimental data in the
S-parameter case are shown in Fig. 9. Overall we find quite
similar posterior distributions, except that when the corre-
lations between the experimental uncertainties are known
there is more flexibility for the model calculations to agree
with the data and we typically obtain broader distributions
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FIG. 9. Posterior distribution in the 5-parameter case obtained with (blue) and without (red) including the correlations among the
experimental uncertainties.

for the parameters. Additionally the preferred values for the C? (controlling the evolution speed) and o,/2 (proton size) are
also slightly shifted by the inclusion of the experimental covariance matrix.
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