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Suomenkielinen tiivistelmä: Reunalaskennan mukanaan tuomat vaatimukset ovat aiheutta-

neet paineen uusien konttien orkestrointiteknologioiden kehittämiselle. Tämän kandidaatin-

tutkielman tarkoituksena on kartoittaa nämä reunalaskentaa varten kehitetyt konttien orke-

strointiteknologiat ja vertailla niitä toisiinsa niiden ominaisuuksien ja resurssienkäytön suh-

teen. Tämä vertailu antaa kuvan siitä, mitä reunalaskentaan kehitettyjä konttien orkestroin-

titeknologioita on olemassa ja kuinka hyvin ne soveltuvat käytettäväksi reunalaskennassa.
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1 Introduction

Today there is a huge number of different IoT-devices that generate a massive amount of

data all the time. These IoT-devices are very heterogeneous and many of them need fast data

processing to be able to react quickly to, for example, changes in the environment. Cloud

computing will not alone be able to meet the requirements of these different IoT-devices.

That is why a couple of new computing paradigms, edge computing and fog computing,

have arisen. Edge computing and fog computing bring the computing power, applications,

storage, and other services closer to the end user and edge devices that are dependent on fast

connections and fast data processing (Khan et al. August 2019; Iorga et al. March 2018).

There are no clear definitions for edge computing and fog computing, and it is not clear what

the differences between these two computing paradigms are. Therefore, in this thesis, for

simplicity, these two concepts will be seen as same and only edge computing will be used

from now on to describe the aforementioned computing paradigms.

To be able to manage these massive networks of connected devices, their resources, and

the applications they are running, orchestration is necessary. There are various container

orchestration technologies, such as Kubernetes and Docker Swarm, that were developed for

orchestrating cloud services. However, since these technologies have not been specifically

designed for edge computing, they are not able to meet the requirements of edge computing

and therefore may not be feasible for orchestrating the edge as they are (Hoque et al. July

2017). To solve this problem, some new orchestration technologies and tools have been

developed with the requirements of edge computing in mind.

The objective of this thesis is to map these new technologies and tools and to define their

strengths and limitations regarding how well they are suited for orchestrating containerized

applications at the edge. Knowing the technologies available and their strengths and limita-

tions will help with picking the most feasible orchestration tools for different use cases of

edge computing. The research questions are:

1. What is edge computing?

2. What container orchestration technologies developed specifically for edge computing
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are there?

3. What are the strengths and limitations of these technologies?

This thesis was conducted as a semi systematic mapping study. The reason for why it is not

completely systematic is that a bachelor’s thesis does not require following the guidelines

and rules of conducting scientific literature reviews too strictly. However, the thesis aims

for some systematicity in the research process since the objective of the thesis is to give an

overview of the different container orchestration technologies and to minimize bias in the

research and review process.

The process of conducting the research was as follows: First, the research questions were

formulated. Second, relevant search terms were picked based on the research questions and

they were formulated to an adequate search string. Third, this search string was used to

conduct searches to some databases, such as ACM Digital Library, IEEEXplore, Scopus and

SpringerLink. After doing the searches to the databases, the metadata of the found articles

was collected on one excel-sheet, and the process of removing duplicates and including and

excluding papers based on some defined criteria followed. Next step was to collect and

synthesize relevant data form the included papers to answer the research questions. The

findings from this research are reported in this thesis.

The structure of this thesis will be as follows: In chapter 2 edge computing, containeriza-

tion and container orchestration are discussed, and an overview of Kubernetes is provided.

Chapter 3 will list all found container orchestration technologies developed for edge com-

puting and shortly describe their features and components. In chapter 4 these technologies

are compared to each other based on their features and resource utilization and in chapter 5

the results from these comparisons are presented. Chapter 6, conclusion, wraps up the most

important findings.
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2 Edge computing and container orchestration

There are a couple of concepts that need to be clarified and defined before starting the dis-

cussion about container orchestration technologies developed for edge. In this chapter edge

computing and its characteristics, as well as containerization and container orchestration, are

discussed. At the end of the chapter, an overview of Kubernetes is provided since many of

the container orchestration technologies analyzed in this thesis are based on Kubernetes.

2.1 Edge computing

Edge computing specializes cloud computing by moving computing capacity from the cen-

tralized datacenters closer to the decentralized edge. For this reason, edge computing has

some special characteristics that differentiate it from cloud computing. These characteristics

are low latency, geographical distribution, control (Iorga et al. March 2018), security, and

privacy. These characteristics are described in Table 1. Bringing computing power, storage,

and other services closer to the edge makes edge computing more suitable for localized pro-

cessing, large-scale sensor networks, mobility support, real-time interactions, heterogeneity,

interoperability, and interplay with the centralized cloud (Iorga et al. March 2018).

These characteristics are actualized in many different use-cases of edge computing, and

smart factories are one of these use cases (Soori, Arezoo, and Dastres January 2023). In

a smart factory there can be a lot of different devices and machines, distributed all over the

factory. These devices can be connected to edge servers also located in the factory, near the

devices that generate the data. Since these edge servers are located inside the factory and

not in a remote data center, the staff of the factory has control over these servers. Moreover,

the locality of these edge servers affects the security and privacy inside the factory, since,

for example, sensitive data can be shared and processed inside the factory’s local network.

Lastly, many of the devices used in a smart factory can be time sensitive. This means that

they require low latency in processing computational tasks. Some of the data generated by

these devices may even have to be processed in real time to, for example, prevent accidents.
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Table 1. Characteristics of edge computing

Characteristic Description

Low Latency Quicker response time for computation tasks

due to the closer processing of data.

Geographical Distri-

bution

Devices in an edge environment are in the close

proximity of each other.

Control The owner of the devices in an edge environ-

ment has complete control over these devices.

Security and Privacy The data is processed in a local network and not

sent to a centralized cloud over the Internet.

2.2 Container-based virtualization and container orchestration

There are different virtualization technologies, such as container-based virtualization and

hypervisor-based virtualization. Container-based virtualization is the more lightweight and

portable alternative of these two virtualization technologies for edge applications (Costa et

al. February 2023). Containerization makes the development, testing and deployment of ap-

plications running in edge environments easier and faster (Ramalho and Neto June 2016)

compared to hypervisor-based virtualization. In container-based virtualization, containers

run on a common host kernel which optimizes the use of CPU, memory, and network re-

sources, and makes the containers highly scalable and cost-effective (Watada et al. 2019).

Since container-based virtualization is not dependent on any specific type of hardware, con-

tainers are an excellent alternative for running applications on the heterogeneous edge de-

vices.

In order to manage multiple containers at the same time, container orchestration is needed.

Container orchestration is used, among other things, for scaling containers up or down,

migrating containers, allocating resources for containers, and load balancing (Malviya and

Dwivedi March 2022). There are several open-source container orchestration platforms such
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as Kubernetes, Docker Swarm, and Apache Mesos. However, these container orchestrators

do not meet the requirements of edge computing, as was shown in the article by Hoque et

al. (July 2017). Edge computing needs container orchestration technologies that take into

consideration the requirements of edge computing, such as resource constraints, heterogene-

ity, and low-latency requirements of the edge devices.

2.3 Kubernetes

Since many of the container orchestration technologies that were found from the analyzed

articles are in one way or another related to Kubernetes, this section will give an overview

of Kubernetes and its most important components and functionalities. The architecture of

Kubernetes is depicted in Figure 1.

Kubernetes is a widely used open-source container orchestration platform (Overview, ).

When Kubernetes is deployed a cluster is created, consisting of a set of nodes (Kubernetes

Components, ). There is at least one master node in a Kubernetes cluster and one to many

worker nodes (Carrión December 2022). The master node, or the control plane, consists of

the following components: an API server which receives commands for the worker nodes

from outside of the cluster, a controller manager which monitors etcd and makes sure that

the system is in the desired state (Carrión December 2022), etcd which is a key-value stor-

age for storing all cluster data, and a scheduler which assigns newly created pods to nodes

(Kubernetes Components, ).

Worker nodes in a Kubernetes cluster usually run multiple pods (Nodes, ). These pods con-

tain the containerized application. According to the Kubernetes documentation about nodes,

one of the components of a node is the container runtime, which is a software that is needed

for running the containers. According to the documentation other components of a node are

the kubelet, which is an agent responsible for making sure that the containers are running in

a pod, and the kube-proxy, which is a network proxy.
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Figure 1. Kubernetes cluster. This figure is based on a figure shown on a YouTube-video

by ByteByteGo (November 2023), the figure in Kubernetes documentation about Kuber-

netes components (Kubernetes Components, ), and Kubernetes documentation about con-

tainer runtimes (Container Runtimes, ).

6



3 Container orchestration technologies for edge

There are several container orchestration technologies that have been developed with the

characteristics of edge computing in mind. This chapter gives a general overview of each of

these orchestrators, their architecture, and their features. The found technologies will also be

categorized based on how they relate to Kubernetes. The first section will explain how the

categorization has been made.

3.1 Categorization of container orchestration technologies

The categories used for categorizing the orchestrators are edge extensions for Kubernetes,

Kubernetes distributions, plugins for Kubernetes scheduler, and other container orchestra-

tors. The category of edge extensions for Kubernetes includes KubeEdge and FLEDGE.

They both need a Kubernetes master node to connect to and they are both deployed on the

worker nodes, except for a couple of components that are placed on the master node to enable

communication between the master and the edge nodes. FLEDGE consists of a FLEDGE

Agent and KubeEdge consists of an edge core. These both edge components provide services

that are needed to enable orchestration of containers in an edge environment.

The category of Kubernetes distributions includes K3s, K0s, Microk8s and MicroShift.

These container orchestrators are based on the Kubernetes source code. However, by re-

moving some unimportant components and by adding some edge orchestration enabling

components Kubernetes has been modified to be more suitable for edge environments. For

example, in K3s, etcd is replaced with sqlite3, which is a more lightweight datastore (K3s -

Lightweight Kubernetes | K3s April 2024), and a tunnel proxy is added to enable the inclu-

sion of devices without a public IP address to the cluster (Čilić et al. January 2023).

The category of plugins for Kubernetes scheduler includes KubeHICE and REACT. These

orchestrators have been developed to solve a specific problem or to add some specific logic

to the existing Kubernetes scheduler. They are mainly plugins to the Kubernetes scheduler

with some additional components for the master node and the edge nodes to support and

enable what the scheduling extension is meant to accomplish.
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The last category, other container orchestrators, includes Nomad and RTCO. Nomad and

RTCO has been assigned their own category because they are not related to Kubernetes like

the other technologies are. This means that they are not, for example, any extension or plugin

for Kubernetes, nor are they Kubernetes distributions. However, Nomad has a similar cluster

structure as Kubernetes: in Nomad regions (or clusters) consist of servers (or master nodes)

and clients (or worker nodes) (Architecture | Nomad | HashiCorp Developer, ). RTCO, on

the other hand, was implemented on Linux in the article by Struhár et al. (January 2024).

3.2 Edge extensions for Kubernetes

One of the container orchestration technologies presented in this category is KubeEdge.

KubeEdge is an open-source edge computing platform built on Kubernetes, that extends

container orchestration and device management to the edge (Why KubeEdge | KubeEdge

August 2023). According to the documentation, KubeEdge can be used in both edge com-

puting and cloud computing environments. KubeEdge supports both high-availability (De-

ploying HA CloudCore | KubeEdge August 2023) and multi-node clusters (Why KubeEdge |

KubeEdge August 2023). The CPU architectures supported by KubeEdge are x86, ARMv7,

and ARMv8 (KubeEdge, ) and supported container runtimes are Docker, Containerd, Cri-o,

and Virtlet (Getting Started | KubeEdge August 2023).

KubeEdge consists of two parts, a cloud component, and an edge component (Why KubeEdge

| KubeEdge August 2023). According to the documentation, the cloud component manages

the edge nodes in the cluster and interacts with the Kubernetes API server. It consists of

an Edge Controller and a Device Controller that extend the existing Kubernetes controller

(Čilić et al. January 2023). According to the authors these controllers take care of the data

synchronization between the cloud and the edge. The authors mention that the cloud part

also includes a Cloud Hub, which is responsible for enabling communication between cloud

and the edge devices.

The edge component, which is aimed at the edge node, manages the containerized applica-

tions that run on the edge nodes and reports status changes to the cloud part (Why KubeEdge

| KubeEdge August 2023). One of the components of the edge part is Edge Hub, which
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is connected to the Cloud Hub mentioned above. It reports edge-side status changes to the

cloud and syncs the cloud-side resource updates to edge. Other components of the edge part

are Edged, which manages the containerized applications, Meta Manager, which is the pro-

cessor for messages between Edged and Edge Hub, Device Twin, which stores the device

status and syncs it to the cloud, Event Bus, which enables interaction with MQTT servers,

and Service Bus, which enables interaction with HTTP servers. All the information in this

paragraph is based on the KubeEdge documentation Why KubeEdge | KubeEdge (August

2023).

The other container orchestration technology presented in this category is FLEDGE. The

information about FLEDGE presented in this overview is completely based on the article by

Goethals, De Turck, and Volckaert (2020). FLEDGE is a container orchestrator developed

for low resource devices at the edge. It uses modified Virtual Kubelet to connect to a Kuber-

netes cluster and OpenVPN and encryption to ensure secured connection between the edge

and the cloud. FLEDGE consists of a Kubernetes master node and a FLEDGE agent which is

deployed on every edge device in the cluster. The master node consists of the Virtual Kubelet

and a FLEDGE broker server. The Virtual Kubelet acts as a proxy for Kubernetes and passes

API calls to the FLEDGE broker server, which in turn sends these calls to the edge.

On an edge node, a FLEDGE agent and a container runtime are deployed. The FLEDGE

agent consists of the FLEDGE broker client which receives API calls from the master node,

a container runtime interface, a cgroup and namespace manager, and components for con-

tainer networking and resource monitoring. Since FLEDGE has its own container network-

ing component integrated to the system there is no need for installing a separate container

network interface (CNI) plugin for container networking.

With FLEDGE there are no specific requirements regarding container runtime. Goethals, De

Turck, and Volckaert (2020) tested both Docker and Containerd with FLEDGE. According

to the test results Containerd is a more resource friendly option among the aforementioned

container runtimes. In addition, it is not said clearly in the article what CPU architectures

FLEDGE supports. However, according to the authors, the evaluations of FLEDGE were

run on armfh and x64.

9



3.3 Kubernetes distributions

The first container orchestration technology presented in this category is K3s. K3s is a

lightweight Kubernetes distribution packaged as a single binary, and it is half the size com-

pared to Kubernetes in terms of memory requirements (K3s - Lightweight Kubernetes | K3s

April 2024). According to the documentation K3s is targeted for edge computing environ-

ments, IoT, and many more, and it uses Cri-o and Containerd as default container runtimes.

K3s supports high-availability and multi-node clusters (Requirements | K3s April 2024). In

addition, according to the requirements documentation, the CPU architectures supported by

K3s are x86_64, armhf, arm64/aarch64, and s390x.

The architecture of K3s is very similar to the architecture of Kubernetes. A K3s control

plane consists of the API server, scheduler, controller manager and a control plane datastore

(Architecture | K3s April 2024). However, one difference between Kubernetes and K3s is

that etcd, which is the control plane storage used in Kubernetes, has been replaced with

sqlite3 in K3s (K3s - Lightweight Kubernetes | K3s April 2024).

The second container orchestrator presented in this category is K0s. The information of K0s

presented in this paragraph is based on the K0s documentation Documentation (). K0s is

a Kubernetes distribution that consists of all the important features of Kubernetes to build

a Kubernetes cluster. According to the documentation K0s is well suited for running ap-

plications in centralized cloud, on bare metal computers, in edge environments and on IoT-

devices. K0s is distributed as a single binary, and it can run on any Linux system. K0s

supports Containerd as default container runtime, but custom container runtime interface

plugins are also supported. K0s also supports high-availability and multi-node clusters. The

CPU architectures supported by K0s are x86-64, ARM64, and ARMv7.

Like for K3s, the architecture of K0s does not differ very much from Kubernetes’ archi-

tecture. In addition to the main Kubernetes control plane components (control plane data-

store, API server, scheduler, and controller manager), a K0s control plane also includes a

Konnectivity-server, which acts as a proxy that forwards traffic from the API server to the

worker nodes (Networking (CNI) - Documentation, ). The components of the worker nodes

include Kubelet and a container runtime (Architecture - Documentation, ).
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The third container orchestration technology presented in this category is Microk8s. Mi-

crok8s is a lightweight Kubernetes distribution developed for automated deployment, scal-

ing, and management of containerized applications (MicroK8s - MicroK8s documentation -

home | MicroK8s, ). According to Bohm and Wirtz (no date) Microk8s provides only the

most important Kubernetes components (the API server, scheduler, and controller manager

among other things) making it lightweight and suitable to use for IoT applications. In addi-

tion, the authors mention that instead of etcd Microk8s uses Dqlite as its control plane data

store.

Microk8s can be used for IoT-applications and in minimal environments (MicroK8s - Mi-

croK8s documentation - home | MicroK8s, ), such as edge computing. It supports Con-

tainerd and Kata container runtimes (MicroK8s vs k3s vs Minikube | MicroK8s, ), as well

as multi-node and high-availability clusters (MicroK8s - MicroK8s documentation - home |

MicroK8s, ). The CPU architectures supported by Microk8s are x86, ARM64, s390x, and

POWER9 (MicroK8s vs k3s vs Minikube | MicroK8s, ).

The last container orchestration technology presented in this category is MicroShift. Mi-

croShift is a container orchestration platform based on OpenShift Kubernetes and devel-

oped for edge computing environments (openshift/microshift April 2024). It consists of

only the most important components, and it requires only minimal configuration, mak-

ing it lightweight and easy to use (microshift/docs/contributor/design.md at main · open-

shift/microshift, ). According to the design documentation, MicroShift has a small resource

footprint, and it works well with poor or no network connectivity. Microshift does not sup-

port multi-node clusters or high-availability clusters (microshift/docs/contributor/design.md

at main · openshift/microshift, ). The CPU architectures supported by MicroShift are amd64/

x86_64, arm64, and riscv64 (Getting Started, ). According to the documentation, MicroShift

requires CRI-O to be installed as a container runtime. There is almost no information avail-

able about MicroShift’s architecture, and therefore, its architecture will not be presented in

this overview.
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3.4 Plugins for Kubernetes scheduler

One of the container orchestrators presented in this category is KubeHICE. The information

about KubeHICE presented in this overview is completely based on an article by Yang et

al. (September 2021). KubeHICE is a container orchestrator for devices with heterogeneous

Instruction Set Architecture (ISA) in Cloud-Edge platforms, and it can be integrated into

the Kubernetes scheduler. The main goals of the KubeHICE orchestrator are to be able to

automatically match a node with a specific ISA with a containerized application that supports

the ISA of the node, to be compatible with existing container ecosystems, and to provide

performance-aware container orchestration for improved utilization of CPU.

KubeHICE is composed of two core methods: Automatic Instruction Set Architecture Match-

ing (AIM) and Performance Aware Scheduling (PAS). AIM is responsible for finding a node

with a suitable ISA for a container whereas PAS is responsible for scheduling containers

according to the computing capability of the nodes. AIM and PAS are deployed on the Ku-

bernetes master node and plugged into the Kubernetes scheduler. A Monitor Client running

on each node reports the CPU usage of the containers to the Monitor Server which stores

this data to an external database. The Performance Analyzer running on the master node

then reads this data form the database to make estimations of the performance of each node.

The other container orchestrator presented in this category is REACT. The information

about REACT presented in this overview is completely based on an article by Struhar et

al. (September 2021). REACT is a container orchestration extension for Kubernetes, de-

veloped for orchestrating containerized applications with real-time (RT) requirements. The

article does not directly mention any name for the orchestrator but since “REACT” is men-

tioned in the title of the article, it will be used in this thesis to address the orchestrator in

question. Furthermore, it is not stated clearly in the article that REACT would be targeted

specifically for edge computing. According to the article, REACT supports multi-node and

high-availability clusters.

REACT provides these following functionalities: placement of real-time containers on suit-

able nodes according to the containers’ real-time requirements, and continuous monitoring

of the resource usage of the containers. This information about resource usage is then con-
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sidered in the next scheduling decision. The REACT extension consists of a RT Scheduler

Extender on the master node, and a RT Manager on the worker nodes. The RT Scheduler

Extender is an additional scheduler that performs a secondary filtering of feasible nodes for

the real-time containers that is performed after Kubernetes’ default scheduling process. The

RT Manager deploys the containers onto the worker nodes and reports their real-time perfor-

mance to the master node.

3.5 Other container orchestrators

One of the container orchestration technologies presented in this category is Nomad. No-

mad is a simple, flexible, and scalable workload orchestrator for deploying and managing

containerized, non-containerized, microservice based and batch applications (Introduction |

Nomad | HashiCorp Developer, ). According to the documentation it runs as a single bi-

nary with no external services needed for deployment. Nomad supports high-availability

(Nomad reference architecture | Nomad | HashiCorp Developer, ) and multi-node clusters

(Introduction | Nomad | HashiCorp Developer, ).

In this paragraph the architecture of Nomad is described. The information in this paragraph

is completely based on the architecture documentation Architecture | Nomad | HashiCorp

Developer () for Nomad. When Nomad is deployed a region is created, consisting of clients

and servers. Servers are responsible for receiving and accepting jobs from users, managing

the clients, and making decisions about task placements in the region. A job consists of a set

of tasks that should be run. A region consists of multiple servers among which a leader server

is elected. This leader server is responsible for processing all queries to the region and for

coordinating the scheduling being carried out by the servers in parallel. Clients communicate

with their regional servers using remote procedure calls to register themselves and to report

their status and the status of the allocations to the servers.

With Nomad multiple regions can be connected to form a single big cluster, to ensure avail-

ability or scalability (Architecture | Nomad | HashiCorp Developer, ). According to the

architecture documentation regions do not share jobs, clients, or state, but users can submit

jobs or query the state of any region in the cluster through a gossip protocol.
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The other container orchestration technology presented in this category is a real-time con-

tainer orchestration framework developed by Struhár et al. (January 2024). The authors pro-

pose a real-time container virtualization and orchestration framework (RTCO) which was

developed to support real-time containers in a multi-container environment. According to

the article the orchestrator consists of two phases: The offline phase is responsible for mak-

ing an initial reservation of resources for containers and selecting a node for the containers.

The online phase, on the other hand, is responsible for distributing CPU resources among

real-time and regular containers by continuously evaluating the real-time performance of the

containers. According to the article, the system model of the orchestrator is based on the

REACT orchestrator (see section 3.4).

In the article it is not clearly said what container runtime can be used with RTCO. How-

ever, in the experiment conducted in the article Docker containers were used. In addition

to container runtime, it is also not said clearly whether the orchestrator has been developed

specifically for edge computing.
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4 Comparison of container orchestration technologies

In this chapter the container orchestration technologies presented in the previous chapter

will be compared against each other based on their features and their resource utilization.

However, since the orchestration technologies are very different from each other, they are

not directly comparable.

4.1 Feature comparison

In this section the found orchestration technologies will be compared against each other in

terms of their features. The feature comparison of these container orchestration technologies

is depicted in Table 2. The "Edge" column shows which orchestrators are developed for

edge computing environments. The "HA", which stands for high availability, and the "Multi-

node" columns show which container orchestrators support high-availability and multi-node

clusters respectively. The "Heterogeneity" column shows all the CPU architectures each

technology supports. The "Real-time" column shows which technologies support real-time

containers. The last column ("ISA matching") shows which technologies provide automatic

Instruction Set Architecture (ISA) matching between containers and worker nodes. The

abbreviation “n/a” used in the table stands for “not available/applicable” and is used in case

the information about a specific feature for a technology is not available.

Table 2 shows that almost all the listed container orchestration technologies have been devel-

oped specifically for edge computing. The only exceptions are REACT, RTCO and Nomad.

For Nomad the documentation does not say that Nomad would have been developed specif-

ically for edge computing. For REACT and RTCO the articles do mention edge computing

but whether the orchestrators in question were developed for edge is not stated directly.

In the context of these container orchestration technologies, high-availability means that

there are more than one node in the cluster and the control plane is deployed on more than one

node (MicroK8s - High Availability (HA) | MicroK8s, ). According to the documentation of

Microk8s, high availability allows for the cluster to function and continue serving workloads

even if one node in the cluster would go down. The container orchestration technologies that
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Table 2. Feature comparison of container orchestration technologies developed for edge.

The meanings of the abbreviations are following: HA stands for high availability of the

master node, ISA stands for instruction set architecture, and n/a stands for "not avail-

able/applicable".

Technology Edge HA Multi-node Heterogeneity Real-time ISA matching

KubeEdge yes yes yes x86, ARMv7,

ARMv8

n/a n/a

FLEDGE yes n/a yes n/a (armhf and

x64 were used in

the evaluation)

n/a n/a

K3s yes yes yes x86_64, armhf,

arm64/aarch64,

s390x

n/a n/a

K0s yes yes yes x86-64, ARM64,

ARMv7

n/a n/a

Microk8s yes yes yes x86, ARM64,

s390x, POWER9

n/a n/a

Microshift yes no no amd64/x86_64,

arm64, riscv64

n/a n/a

KubeHICE yes n/a yes same as Kuber-

netes

no yes

REACT n/a n/a yes same as Kuber-

netes

yes no

Nomad no yes yes n/a n/a n/a

RTCO n/a n/a yes n/a yes no
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do support high-availability clusters are KubeEdge, K3s, K0s, MicroShift, and Nomad. For

FLEDGE, KubeHICE, REACT, and RTCO it is usure whether they support high-availability

clusters or not. MicroShift on the other hand does not support high-availability clusters since

it does not support multi-node clusters either. KubeEdge, K3s, K0s, Microk8s, REACT,

and Nomad, on the other hand, do support multi-node clusters. FLEDGE (Goethals, De

Turck, and Volckaert 2020), KubeHICE (Yang et al. September 2021), and RTCO (Struhár

et al. January 2024) support multi-node clusters, too.

KubeEdge, K3s, K0s, Microk8s, and MicroShift run on both x86 and ARM machines. In

addition, K3s and Microk8s run on s390x machines. Microk8s also supports the POWER9

architecture and MicroShift supports the riscv64 architecture. For Nomad and RTCO it is

unknown what CPU architectures they support. In the articles that present KubeHICE and

REACT it is not said directly what architectures they support either. However, since they

are extensions for the Kubernetes scheduler, they can be assumed to support the same CPU

architectures as Kubernetes.

Real-time containers are supported only by REACT and RTCO. This is because these tech-

nologies were developed specifically to solve the problem of scheduling containers with

real-time requirements to worker nodes. For all the other container orchestrators it is unsure

whether they support real-time containers or not, except for KubeHICE, which does not sup-

port real-time containers. This is because it is an extension for the Kubernetes scheduler, like

REACT and RTCO, that was developed to solve the problem about automatic ISA matching

between a containerized application and a worker node (see section 3.4).

Based on this feature comparison the best container orchestrators to use in edge computing

are K3s and Microk8s, since they both support multi-node and high-availability clusters, and

they both support four different CPU architectures. The support for multi-node clusters and

different CPU architectures are especially important for a container orchestration technology

that is meant to be used in edge environments. This is because edge environments usually

consist of multiple edge devices that often have very heterogeneous hardware. Based on

the feature comparison KubeEdge and K0s are also good options for orchestration at edge

environments since they also support many of the features listed in Table 2.
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KubeHICE is well suited for edge computing environments since it was developed to make

Kubernetes more suitable for edge computing. In addition, REACT and RTCO are also

well suited for edge computing environments since many edge devices require real-time pro-

cessing of data. Furthermore, since KubeHICE and REACT are plugins for the Kubernetes

scheduler they could be used with some of the other container orchestration technologies,

such as K3s, K0s, Microk8s, MicroShift, FLEDGE, and KubeEdge, to improve their feasi-

bility for edge environments. However, this is not possible in practice since KubeHICE and

REACT are experimental projects and they are not available for use.

MicroShift, on the other hand, is not very well suited for edge computing since it does

not support multi-node clusters. Furthermore, it does not support high-availability clusters

either. According to the MicroShift documentation microshift/docs/contributor/design.md at

main · openshift/microshift () high-availability of the control plane increases the complexity

of deployment and upgrade processes, which conflicts with MicroShift’s design principles

about minimal configuration and ease-of-use. Based on this feature comparison it is hard to

say for FLEDGE and Nomad how well-suited they are for edge computing. For Nomad the

reason is that it is not specifically developed for edge computing. For FLEDGE, on the other

hand, the reason is that a lot of important information about its features is not available as

can be seen in Table 2.

4.2 Resource utilization comparison

In this section the found orchestration technologies will be compared against each other in

terms of their resource utilization. KubeHICE, REACT, and RTCO will not be included in

this comparison since there is no information available about their resource utilization.

For this comparison five articles have been analyzed. Bahy et al. (September 2023), Bohm

and Wirtz (no date), and Telenyk et al. (September 2021) tested CPU, memory, and storage

utilization of the found container orchestrators. However, Koziolek and Eskandani (April

2023) tested only CPU and memory utilization. Goethals, De Turck, and Volckaert (2020)

compared FLEDGE to Kubernetes and K3s in terms of memory and storage requirements.

Furthermore, some of the found container orchestrators have been researched more than
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others. For instance, K3s has been analyzed in all articles whereas KubeEdge, Nomad, K0s,

FLEDGE, and MicroShift have been analyzed in only one article.

In all these articles the technologies have been tested in different test scenarios. Bahy et

al. (September 2023) tested Nomad, K3s, and KubeEdge in three different test scenarios:

when the node was created, when the orchestrator was deployed onto the node, and when

an application was deployed. Koziolek and Eskandani (April 2023), on the other hand, an-

alyzed Microk8s, K3s, K0s, and MicroShift in the idle condition of the orchestrator. The

authors conducted the experiment both for the control plane and the worker nodes for each

orchestrator. Lastly, Bohm and Wirtz (no date) and Telenyk et al. (September 2021) both

tested and compared K3s, Microk8s and Kubernetes against each other. Bohm and Wirtz

(no date) tested the resource utilization of each technology during starting, adding, run-

ning, draining, and stopping of nodes. In addition, the test scenarios also included applying,

running, and deleting a web server deployment. Telenyk et al. (September 2021), on the

other hand, tested the technologies in the scenarios of starting and stopping the master node,

adding and deleting a worker node, applying and removing a deployment, and in idle cluster

state. Goethals, De Turck, and Volckaert (2020) compared FLEDGE to Kubernetes when

FLEDGE was running with kube-proxy and FLEDGE to K3s when FLEDGE was not run-

ning with kube-proxy.

In the CPU utilization tests there is no clear winner among the found container orchestra-

tors developed for edge computing. Bahy et al. (September 2023) report that Nomad per-

formed best in the CPU utilization tests. However, the authors report that K3s performed only

slightly worse that Nomad. On the other hand, Koziolek and Eskandani (April 2023) report

that K0s performed significantly better in the CPU utilization tests compared to the other

technologies analyzed in the article. Bohm and Wirtz (no date) and Telenyk et al. (Septem-

ber 2021) compared K3s and Microk8s against Kubernetes, and for both articles the authors

report that Kubernetes was most efficient in CPU utilization. However, according to Bohm

and Wirtz (no date), there was only small difference in the CPU utilization between K3s and

Kubernetes.

Bahy et al. (September 2023) report that KubeEdge performed worst in the CPU utilization

test. According to the authors, KubeEdge performed significantly worse compared to Nomad
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and K3s. Telenyk et al. (September 2021) report that Microk8s and K3s showed worst CPU

utilization on average. According to the authors, in some test scenarios K3s performed

better and in some scenarios Microk8s performed better. In addition, in some cases K3s

is reported even to have performed better than Kubernetes. Koziolek and Eskandani (April

2023) report that K3s and Microk8s performed worst in the CPU utilization tests. According

to the authors, there were not very big differences in the CPU utilization between Microk8s,

K3s, and MicroShift. Bohm and Wirtz (no date) report that Microk8s performed significantly

worse in the CPU utilization tests than Kubernetes and K3s. These results indicate that

Microk8s does not utilize CPU resources very efficiently.

In the memory utilization tests there is no clear winner among the edge container orches-

trators. Both Bohm and Wirtz (no date) and Telenyk et al. (September 2021) report that

Kubernetes performed best in the memory utilization tests. However, according to Bohm

and Wirtz (no date) the difference between Kubernetes’ and K3s’ memory utilization was

very small. Bahy et al. (September 2023) report that Nomad performed best in the memory

utilization tests on average. According to the authors there were not very big differences

between the technologies in the memory utilization tests on the ARM and x86 worker nodes.

On the master node, on the other hand, the authors report that Nomad performed signifi-

cantly better compared to KubeEdge and K3s. Lastly, Koziolek and Eskandani (April 2023)

report that MicroShift and K3s performed best in the memory utilization tests: MicroShift

performed best for the master node and K3s performed best for the worker node. Goethals,

De Turck, and Volckaert (2020) report that FLEDGE performed significantly better in the

memory usage test compared to Kubernetes and K3s.

Koziolek and Eskandani (April 2023) report that Microk8s performed worst in the memory

utilization tests for the master node, whereas K0s performed worst for the worker node. Ac-

cording to Bohm and Wirtz (no date) Microk8s performed significantly worse in the memory

utilization tests compared to K3s and Kubernetes. According to Telenyk et al. (September

2021) both Microk8s and K3s performed worst in the memory utilization tests. According to

the authors, in some testing scenarios Microk8s performed worst and in some scenarios K3s

performed worst. Bahy et al. (September 2023) report that KubeEdge had worst memory

utilization. However, according to the authors, the difference between the technologies in
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memory utilization was quite small for the worker nodes. For the master node the difference

between KubeEdge and Nomad was significant.

Bahy et al. (September 2023), Bohm and Wirtz (no date), and Telenyk et al. (September

2021) report that K3s performed best in the storage utilization tests. According to Telenyk

et al. (September 2021) K3s performed significantly better in the storage utilization test com-

pared to Kubernetes and Microk8s in all test scenarios. According to the authors the reason

for this may be because K3s uses Sqlite3 instead of Kubernetes’ default etcd. However, ac-

cording to Goethals, De Turck, and Volckaert (2020) FLEDGE performed better compared

to K3s in the storage usage test.

Bahy et al. (September 2023) report that KubeEdge had the worst storage utilization. Bohm

and Wirtz (no date) and Telenyk et al. (September 2021), on the other hand, report that Mi-

crok8s performed worst in the storage utilization tests on average. In the storage utilization

tests the authors for both of these articles report that Microk8s performed significantly worse

than the other technologies analyzed in these articles.

Based on this resource utilization comparison there is no one clear winner among the an-

alyzed container orchestration technologies. When comparing the results of the resource

utilization tests for K3s between all four analyzed articles, the results vary. However, one

constant result is that Bahy et al. (September 2023), Bohm and Wirtz (no date), and Telenyk

et al. (September 2021) all report that K3s performed best in the storage utilization tests in all

test scenarios. According to Goethals, De Turck, and Volckaert (2020), however, FLEDGE

performed better compared to K3s in both memory and storage usage tests. Based on this

resource utilization comparison Microk8s does not utilize resources very efficiently. Since

the remaining technologies (K0s, MicroShift, Nomad, and KubeEdge) have all been ana-

lyzed in only one article, and some of them even in different articles, it is hard to say how

efficient they are in resource utilization compared to each other but also compared to K3s

and Microk8s.
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5 Results

Based on the feature comparison and the resource utilization comparison of the container

orchestration technologies K3s is a very well-suited container orchestration platform for

edge computing environments. There are many reasons for this. First, K3s supports both

multiple different CPU architectures and multi-node clusters. Second, K3s uses storage

resources very efficiently compared to the other orchestrators, which was discovered in the

resource utilization comparison (see section 4.2. Third, the results of the resource utilization

tests indicate that K3s is on average fairly efficient in utilizing CPU and memory, too.

Based on the feature comparison and resource utilization comparison Microk8s and Mi-

croShift are less well-suited for edge computing environments. This is because MicroShift

does not support multi-node clusters and based on the results of the resource utilization

comparison Microk8s does not utilize resources very efficiently. KubeHICE, REACT, and

RTCO, on the other hand, are not even options when it comes to deciding what container

orchestrator to use at the edge, since they are experimental orchestrators and not available

for use. FLEDGE, on the other hand, is not only an experimental orchestrator. Based on the

results from resource utlization comparison and feature comparison it could be considered

as a container orchestrator well-suited for edge environments. However, it cannot be used

for container orchestration at the edge since it is not available either. For Nomad, KubeEdge,

and K0s, on the other hand, it is hard to say how well-suited they are for edge environments.

The most important reason for this is that Nomad, K0s, and KubeEdge have been analyzed

in only one article and therefore no conclusions can be drawn about how well they utilize

resources in comparison to the other orchestrators.

The container orchestration technologies that were presented and analyzed in this thesis are

different from each other in many ways. In addition, in the articles that were analyzed in

section 4.2 some of the technologies were analyzed in more than one article, whereas many

of them were analyzed in only one of the articles. These are the reasons why the feature and

resource utilization comparisons between the container orchestration technologies analyzed

in this thesis are not fair. Another thing that can affect the results in the resource utilization

comparison is that not all of the technologies were tested in an actual edge computing en-
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vironment. For instance, in the article by Bohm and Wirtz (no date) the experimental setup

consisted of one master node and three worker nodes, all virtual machines hosted on one

single physical machine.
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6 Conclusion

In this thesis ten container orchestration technologies were presented and categorized based

on how they relate to Kubernetes. These technologies were also analyzed based on their

features and resource utilization. Based on the comparison results the technologies’ feasi-

bility for edge computing environments was discussed. The results indicate that K3s is well

suited for edge computing environments. On the other hand, Microk8s and MicroShift are

less well-suited for edge computing. This is because Microk8s is not very resource efficient

and MicroShift does not support multi-node clusters. KubeHICE, REACT, FLEDGE, and

RTCO, on the other hand, are not available for use.

The container orchestrators analyzed in this thesis are different from each other. In addition,

some of them have been researched more than others, and some of them have not been tested

in an actual edge computing environment. For these reasons the feature comparison and

the resource utilization comparison cannot give an absolutely fair comparison between these

technologies or a completely realistic idea about how well these technologies are suited for

edge computing environments.
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